

City, University of London Institutional Repository

Citation: Hunt, S. & Sands, D. (2011). From exponential to polynomial-time security typing

via principal types. Lecture Notes in Computer Science, 6602 L, pp. 297-316. ISSN 0302-
9743

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/199/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

From Exponential to Polynomial-time Security Typing
via Principal Types

Sebastian Hunt1 and David Sands2

1 City University London
2 Chalmers University of Technology, Sweden

Abstract. Hunt and Sands (POPL’06) studied a flow sensitive type (FST) sys-
tem for multi-level security, parametric in the choice of lattice of security levels.
Choosing the powerset of program variables as the security lattice yields a system
which was shown to be equivalent to Amtoft and Banerjee’s Hoare-style indepen-
dence logic (SAS’04). Moreover, using the powerset lattice, it was shown how to
derive a principal type from which all other types (for all choices of lattice) can
be simply derived. Both of these earlier works gave “algorithmic” formulations
of the type system/program logic, but both algorithms are of exponential com-
plexity due to the iterative typing of While loops. Later work by Hunt and Sands
(ESOP’08) adapted the FST system to provide an erasure type system which de-
termines whether some input is correctly erased at a designated time. This type
system is inherently exponential, requiring a double typing of the erasure-labelled
input command. In this paper we start by developing the FST work in two key
ways: (1) We specialise the FST system to a form which only derives principal
types; the resulting type system has a simple algorithmic reading, yielding prin-
cipal security types in polynomial time. (2) We show how the FST system can
be simply extended to check for various degrees of termination sensitivity (the
original FST system is completely termination insensitive, while the erasure type
system is fully termination sensitive). We go on to demonstrate the power of these
techniques by combining them to develop a type system which is shown to cor-
rectly implement erasure typing in polynomial time. Principality is used in an
essential way to reduce type derivation size from exponential to linear.

1 Introduction

The control of information flow is at the heart of many security goals. The classic multi-
level security policy says that if a piece of data is considered secret from the perspective
of a certain observer of a system, then during execution of the system there should be
no information flow from the datum to that observer. Denning and Denning [DD77]
pioneered the use of program analysis to statically determine if the information flow
properties of a program satisfy a certain multi-level security policy.

A significant trend in the last 10 years has been the use of security type systems to
formulate the analysis of secure information flow in programs, and to aid in a rigorous
proof of its correctness.

The most well-cited works in this area [DD77, VSI96] are flow-insensitive, meaning
that a fixed security level is associated with each variable or data container. To under-
stand the limitations of flow-insensitivity in this context consider the following code

fragment which swaps the values of two secrets and then swaps the values of two non
secrets, via a temporary variable:

tmp := secret1; secret1 := secret2; secret2 := tmp;
tmp := public1; public1 := public2; public2 := tmp;

The program above is not typeable in a flow-insensitive system because the variable
tmp cannot be correctly assigned a single security level. In a flow sensitive system this
obviously secure program becomes typeable because the level of variable tmp can vary
over time to more accurately reflect the security level of its contents.

Our earlier work [HS06] studies a flow-sensitive type (FST) system for multi-level
security, parametric in the choice of lattice of security levels. It is shown that choosing
the powerset of program variables as the security lattice yields a system which is equiva-
lent to Amtoft and Banerjee’s Hoare-style independence logic [AB04]. Moreover, using
the powerset lattice, it is is shown how to derive a principal typing from which all other
typings (for all choices of lattice) can be simply derived. The FST system is reviewed
in Section 2. Later work by Hunt and Sands [HS08] adapts the FST system to provide
an erasure type system which determines whether some input is correctly erased at a
designated time. In this formulation, flow-sensitivity is essential to erasure typing.

The original FST system and the system of Amtoft and Banerjee (including [AB07])
provided ”algorithmic” formulations of the type system/program logic, but both algo-
rithms are of exponential complexity due to the iterative typing of While loops.

The erasure type system includes at its core a variant of the FST system. The core
differs slightly from the earlier FST system in that it is termination-sensitive (meaning
that it does not ignore those dependencies which arise purely from termination be-
haviour). The key to the erasure typing, however, is the typing of the erasure-labelled
input command:

input x : L1 erased to L2 after C

This command inputs a value from the channel of security level L1 and places it in
variable x, and then executes command C. The erasure specification “erased to L2” says
that after execution of C the value that was input will only be observable to observers
at level L2 and above. So in particular if level L2 is sufficiently high (so that there are
no observers at all) then the information is completely erased.

To type this command we first establish that C is well typed in a context where x
initially has type L1. But then to deal with the erasure condition we perform a second
typing in which we assume that x initially has type L2, and where we ignore the effects
of any output statements in C.

From an algorithmic perspective, the erasure type system is more inherently expo-
nential than the underlying FST system, in the sense that the non-algorithmic typing
derivations themselves can be exponential in the size of the original program. This is
due to a subprogram C being typed twice within the erasure-labelled input rule.

Contributions In this paper we start by developing the FST work in two key ways:

1. We specialise the FST system to a form which only derives principal typings (Sec-
tion 2.2); the resulting type system is compact and simple – arguably simpler than
all the previous descriptions of flow-sensitive security analyses – and at the same
time admits a direct algorithmic reading, yielding principal security typings in poly-
nomial time (Section 2.4).

2. We show (Section 3) how the FST system can be simply generalised to be para-
metric in the degree of termination-sensitivity (the original FST system is com-
pletely termination-insensitive, while the erasure type system is fully termination-
sensitive). From the principal typing of a program we can then deduce both term-
ination-sensitive (i.e. sensitive to information flows transmitted by the termination
status of a program) and termination-insensitive information flow properties.

We go on to demonstrate the power of these techniques by combining them to develop
a type system which is shown to correctly implement erasure typing in polynomial
time (Section 4). Principality is used in an essential way to reduce type derivation size
from exponential to linear. Again, the key idea is to specialise the system so that it
only derives principal typings. The notion of principality is sufficiently general that the
two different typings of the erasure command can be derived cheaply by instantiating a
single principal typing.

Finally (Section 5) we sketch how the FST system can be extended to handle recur-
sive procedures in polynomial time. The analysis is polymorphic (and hence context-
sensitive) in the procedures, but strikingly the extension to this case does not need to
introduce type variables, and the algorithm does not require the introduction of type
constraints and constraint solving.

Related work is discussed in Section 6.

2 Flow-sensitive security types

We begin by recalling from [HS06] the algorithmic version of the FST system3. See
Fig. 1. We refer to this system as Flow Core (fc). In the While rule, fix denotes the
least fixed-point operator. Well definedness depends on the fact that the typing rules
define a monotone function (see below).

Notation: we will be defining a number of alternative type systems; in most cases
we use an undecorated turnstile (`) in judgements, relying on context to clarify which
particular type system we mean; where we need to make our intention more explicit
(typically, when comparing different systems) we decorate the turnstile with a subscript
(for example, writing `fc for the Flow Core system).

All the type systems we consider are concerned with tracking information flows
with respect to various hierarchies of security levels; each such hierarchy consists of a
join-semilattice with a least element (that is, a partial order in which all finite sets have
a least upper bound). Wherever we say join-semilattice in the sequel we mean one with
a least element; we overload⊥ to mean the least element of whatever join-semilattice is

3 There are some notational differences from the original presentation.

Skip
p ` Γ {skip} Γ

Assign
a = Γ (E)

p ` Γ {x := E} Γ [x 7→ p t a]

Seq
p ` Γ {C1} Γ1 p ` Γ1 {C2} Γ2

p ` Γ {C1 ; C2} Γ2

If
a = Γ (E) p t a ` Γ {Ci} Γi i = 1, 2

p ` Γ {if E C1 C2} (Γ1 t Γ2)

While
Γf = fix(λΓ. let p t Γ (E) ` Γ {C} Γ ′ in Γ ′ t Γ0)

p ` Γ0 {while E C} Γf

Fig. 1. Flow Core (fc)

under discussion. Each security level models a class of users, grouped according to how
much they are permitted to observe; if a v b then b-users can see everything a-users
can see, and maybe more. Let L be a join-semilattice. Typing judgements in Flow Core
have the form

p ` Γ {C} Γ ′

where C is a command, p ∈ L represents the security level of the “program counter”,
and Γ, Γ ′ : PVar → L are environments mapping program variables to security levels.
(PVar is the finite set of variables used in whatever top-level program is being analysed.
Formally this should be an explicit parameter of the typing judgement, but glossing over
this detail saves us from notational clutter without causing any significant problems.)
Throughout the paper we treat function spaces such as PVar → L as join-semilattices,
inheriting their lattice structure pointwise from L (so Γ t Γ ′ = λx.Γ (x)t Γ ′(x), etc).
In these rules, Γ (E) means the join of the levels assigned to the free variables in the
expression E:

Γ (E) =
⊔

x∈fv(E)

Γ (x)

When E has no free variables (it only involves constants) then Γ (E) =
⊔
{} = ⊥. We

leave the syntax of expressions unspecified; semantic soundness assumes that expres-
sions are free of side-effects and are interpreted as total functions of the values of their
free variables.

Note that L is an implicit parameter in the definition of Flow Core, so Flow Core
actually defines a family of type systems, indexed by the choice of L.

Although the current paper is not primarily concerned with semantic soundness,
it is helpful to have some intuitions. By assigning levels to variables, an environment
determines a policy, for each level a ∈ L, stating which parts of a memory state a-users
should be allowed to see. Say that two memory states are a-equivalent under policy Γ
iff they agree on all variables x such that Γ (x) v a. Then the intended semantics of a
judgement p ` Γ {C} Γ ′ is that it should satisfy

1. C only changes variables x for which Γ ′(x) w p; and
2. for all a, if two initial memory states are a-equivalent under Γ , the corresponding

final stores after execution of C will be a-equivalent under Γ ′.

Semantic soundness of Flow Core with respect to this specification is proved in [HS06].
The use of two type environments (pre- and post-) in Flow Core deserves some

explanation. For a top-level program executed in batch mode, it is perhaps more natural
for a security policy to specify a single assignment of levels to variables, applying both
before and after the program executes. But it is the use of two distinct environments
which allows Flow Core to be flow-sensitive. Consider again the swap program from
the introduction:

tmp := secret1; secret1 := secret2; secret2 := tmp;
tmp := public1; public1 := public2; public2 := tmp;

It is a simple exercise to verify that this can be typed in Flow Core with low ` Γ {P} Γ
for Γ mapping tmp and the public variables to low, and mapping the secret variables
to high. The first assignment raises the level of tmp from low to high; this is mod-
elled by fact that the post-environment for the corresponding sub-derivation is not Γ
but Γ ′ = Γ [tmp 7→ high]. The assignment tmp := public1 later reduces the level
back down to low; this is modelled by the fact that the post-environment for the cor-
responding sub-derivation is Γ ′[tmp 7→ low] = Γ . In general, to enforce a policy
specified by a single Γ , we would compute the typing ⊥ ` Γ {P} Γ ′ and then check
that Γ ′ v Γ (it is safe for a program to make variables less informative than the policy
allows). In a language with IO channels, we are more likely to require a fixed policy
for channels and assume that program variables are not directly observable at all. This
scenario can also be modelled using essentially the same approach (see Section 4).

Flow Core is described in [HS06] as “algorithmic”, by which we mean that the
rules are syntax directed and that, for a given choice of p, Γ , they determine exactly one
derivation for each C. A consequence is that Flow Core is functional: for each command
C, for all p, Γ , there exists a unique Γ ′ such that p ` Γ {C} Γ ′ (it is also monotonic in
p and Γ). In [HS06] finite convergence of the While rule’s fixed-point construction was
trivially guaranteed by the requirement that L should be finite; here we have relaxed
that constraint by requiring only that L should have finite joins. Nonetheless, finite
convergence is guaranteed because environments are finite and the typing rules only
ever construct elements of L which are finite joins of lattice elements actually used in
the initial environment. Note that the use of fix makes the typing of nested while loops
exponential, since the body of a loop will be typed repeatedly, once for each iteration
towards the fixed-point.

2.1 FST with a pc-variable

The principal typings result presented in [HS06] is slightly less general than we would
like (and than we need in what follows) because it is restricted to “top-level” typings,
by which we mean typings where p is ⊥. To generalise the result we make a small
change to Flow Core: we adjoin a new variable pc to model the program counter and
we track pc in the type environments, along with the program variables, rather than
reserving a special place for it in the syntax of judgements. The slight disadvantage is
that the If and While rules must now explicitly “reset” pc in their post-environments.
The advantage is that we can easily state a fully general principal typings result, paving

the way to the key contributions of the current paper. Let Var = PVar ∪ {pc}. Type
environments are extended to this new domain, thus Γ : Var → L. Except for the
“resets” mentioned previously, when pc is updated in the new type rules it is always
increased. It is convenient to introduce some notation for such increasing updates: we
write Γ [x += a] to mean Γ [x 7→ Γ (x) t a]. We refer to the modified system as Flow
Core-pc (fpc). The rules are presented in Fig. 2.

Skip
` Γ {skip} Γ

Assign
p = Γ (pc) a = Γ (E)

` Γ {x := E} Γ [x 7→ p t a]

Seq
` Γ {C1} Γ1 ` Γ1 {C2} Γ2

` Γ {C1 ; C2} Γ2

If
p = Γ (pc) a = Γ (E) ` Γ [pc += a] {Ci} Γi i = 1, 2

` Γ {if E C1 C2} (Γ1 t Γ2)[pc 7→ p]

While
p = Γ (pc) Γf = fix(λΓ. let ` Γ [pc += Γ (E)] {C} Γ ′ in Γ ′ t Γ0)

` Γ0 {while E C} Γf [pc 7→ p]

Fig. 2. Flow Core-pc (fpc)

It is easily checked that derivations in Flow Core-pc preserve the type assignment
for pc:

Lemma 1. If ` Γ {C} Γ ′ then Γ ′(pc) = Γ (pc).

A straightforward induction on C then establishes that Flow Core-pc is essentially
equivalent to Flow Core:

Theorem 1. p `fc Γ {C} Γ ′ iff `fpc Γ [pc 7→ p] {C} Γ ′[pc 7→ p]

Note that while the theorem appears to leave open the possibility that there may be Flow
Core-pc derivations ` Γ {C} Γ ′ without any counterpart in Flow Core, this is ruled
out by Lemma 1.

2.2 Principal Typings

Intuitively, a principal typing for a term is a typing from which all its other typings may
be simply recovered. In this section we show that every command does indeed have a
principal Flow Core-pc typing in this sense. More formally, the most general definition
of principal typing is due to Wells [Wel02]. We do not use Wells’ definition in the
current paper but it is a simple corollary of Theorem 2 (see below) that our principal
typings are indeed principal according to that definition.

The following lemma establishes a property of Flow Core-pc which is fundamental
to the rest of the technical development. Say that a map α is join-preserving if it pre-
serves all finite joins or, equivalently, if α(⊥) = ⊥ and α(at b) = α(a)tα(b). It turns
out that join-preserving maps allow us freely to translate one valid typing into another.

Lemma 2. Let L,J be join-semilattices, let Γ, Γ ′ : Var → L and let α : L → J be
join-preserving. If ` Γ {C} Γ ′ then ` α ◦ Γ {C} α ◦ Γ ′.

The proof of this lemma essentially relies only on the fact that environment update
and t are the key operations used in the type rules. This also holds for all the other
algorithmic type systems presented in the current paper and so the lemma easily extends
to them. We rely on this fact without further comment in the sequel.

Principal typings are constructed by choosing P(Var) as the security lattice. In
what follows we let ∆ range over type environments just in this case (thus ∆ : Var →
P(Var)). The semantic content of such a ∆ can be understood simply as a set of depen-
dencies: y ∈ ∆(x) means “y depends on x”. On this reading, it would be very natural
to represent environments directly as binary relations rather than functions, so that we
could write, for example, x ∆ y in place of y ∈ ∆(x). However, using a different rep-
resentation just when L = P(Var) would make it awkward to relate P(Var) typings
to typings for other choices of L, which is necessary to establish our principal typings
result. To square this circle we introduce a notion of monadic composition.

For any finite set B, join-semilattice L and g : B → L, define g† : P(B) → L by
g†(X) =

⊔
x∈X g(x). In much of what follows, L will itself be a powerset, in which

case it is implicit that t is ∪. Note that, for any g : B → L, g† is join-preserving:
g†(X ∪ Y) = g†(X) t g†(Y) and g†({}) = ⊥. Now, given f : A → P(B) and
g : B → L, define the monadic composition f ; g : A → L by f ; g = g† ◦f . Note that
given two type environments ∆, ∆′ : Var → P(Var), the relational reading of ∆ ; ∆′

is simply relational composition (abusing notation, x ∆ ; ∆′ y iff ∃z.x ∆ z ∧ z ∆′ y).

Lemma 3 (Kleisli Axioms). For each finite set A, let ηA : A → P(A) be the map
x 7→ {x}. Then:

1. ηA
† = idP(A)

2. ηA ; f = f for f : A → L
3. f† ; g = (f ; g)† for f : A → P(B) and g : B → L

If we restrict attention to the cases where L is a powerset, these are exactly the Kleisli
axioms for the canonical powerset monad (see, for example, [Mog89]).

Note that ηVar (as defined in Lemma 3) is the environment λx ∈ Var . {x}. Hence-
forth we just write η for ηVar . The relational reading of η is just the identity relation.

Let ` η {C} ∆ (since Flow Core-pc is functional, such a typing exists and is
uniquely determined by C). It is this typing which we claim as the principal typing for
C. The following theorem justifies the claim by showing how every other typing for C
can be recovered from this one:

Theorem 2 (Principal Typings). Let ` η {C} ∆. Then ` Γ {C} Γ ′ iff Γ ′ = ∆ ; Γ .

Proof. Since the type system is functional, it suffices to show that ` Γ {C} ∆ ; Γ .
By definition of monadic composition, ∆ ; Γ = Γ † ◦ ∆. Since Γ † preserves unions,
Lemma 2 says that ` Γ † ◦ η {C} Γ † ◦∆ or, equivalently, ` η ; Γ {C} ∆ ; Γ . By the
second Kleisli axiom, η ; Γ = Γ , thus ` Γ {C} ∆ ; Γ . ut

From now on we refer to ∆ simply as the principal type for C (this is the only part of
the principal typing which is specific to C, since the other component is always η).

2.3 The Principal Type System

We formulate a type system which only constructs principal types and in which every
sub-derivation also derives a principal type. This system is arrived at by specialising
Flow Core-pc to the case that L = P(Var) and Γ = η and using the Principal Typings
Theorem to replace each sub-derivation by a principal type derivation. Crucially, this
allows us to replace the multiple sub-derivations required in the While rule by a single
derivation, thus removing the exponential cost which they incur. There is just one eureka
step in the specialisation of the While rule; we implement the fixed-point construction
as a transitive closure. We write ∆∗ for the reflexive-transitive closure of ∆, defined in
the standard way but transposed into functional form:

∆∗ =
⊔
n≥0

∆n

where ∆0 = η and ∆n+1 = ∆ ; ∆n. (Note that the “infinite join” in this definition
will actually be finite, since Var is finite, though even without this constraint it would
be well-defined, since Var → P(Var) would still be a complete lattice.)

Skip ` skip : η
Assign

` x := E : η[x 7→ {pc} ∪ fv(E)]

Seq
` Ci : ∆i i = 1, 2

` C1 ; C2 : ∆2 ; ∆1

If
` Ci : ∆i ∆′

i = ∆i ; η[pc += fv(E)] i = 1, 2

` if E C1 C2 : (∆′
1 t∆′

2)[pc 7→ {pc}]

While
` C : ∆ ∆f = (∆ ; η[pc += fv(E)])∗

` while E C : ∆f [pc 7→ {pc}]

Fig. 3. Flow Principal (fp)

Theorem 3. Flow Principal derives principal types: `fpc η {C} ∆ iff `fp C : ∆.

Proof sketch: Proof is by a simple induction on the structure of C showing that each
Flow Principal rule is the specialisation of its Flow Core-pc counterpart, using the Prin-
cipal Typings Theorem to replace sub-derivations with principal type derivations. For
example, consider the Seq rule. The Flow Core-pc derivation is:

Seq
` η {C1} ∆1 ` ∆1 {C2} ∆′

2

` η {C1 ; C2} ∆′
2

The derivation for C2 is not principal, so we replace it by ` η {C2} ∆2 and then apply
the Principal Typings Theorem to derive ∆′

2 = ∆2 ; ∆1.
The proof for the While rule is slightly more involved, because we have to show

that the reflexive-transitive closure in the Flow Principal rule correctly implements the
fixed-point specified in the Flow Core-pc rule, but in essence we are able to equate each
term in an ascending chain for the transitive closure with the corresponding term in the
fixed-point chain.

2.4 Complexity

Flow Principal (Fig. 3) has a direct algorithmic reading. Here we sketch the complexity
based on a direct implementation of a relational reading of the rules.

The key operations that must be implemented to construct a type are composition
(;), update ([· 7→ ·]), union, and reflexive-transitive closure (∗). Representing binary
relations as boolean matrices has a long tradition in program analysis (see e.g. [Pro59]).
In this representation we have one row for each element of the domain and one column
for each element of the range. Thus in the case of our relations between variables, ∆ is
represented by a matrix for which there is a 1 in the row for x and column for y if and
only if x ∆ y. Composition is then realised by boolean matrix multiplication, union
is just boolean matrix addition (pointwise conjunction), and the single-value update
operation is just row replacement. Using this representation we can easily construct a
polynomial time complexity for type inference:

Theorem 4. Flow Principal can be used to construct principal types in O(nv3) where
n is the size of the program and v is the number of variables.

Proof. Since the size of a type derivation is O(n) there are thus O(n) operations re-
quired to construct the type. Considering the cost of the operations, the potentially
expensive operations are composition and reflexive-transitive closure. Adopting the
boolean matrix representation, the matrices have size v2, and thus the cost of com-
position (matrix multiplication) is v3. Using Warshall’s algorithm the cost of transitive
(and reflexive) closure is also v3. Hence the total cost of constructing the principal type
is O(nv3).

3 Termination typing

The fc system, like Denning and Denning’s original flow-insensitive analysis of secure
information, enforces an imperfect notion of information flow which has become known
as termination-insensitive noninterference. Under this version of noninterference, infor-
mation leaks are permitted if they are transmitted purely by the program’s termination
behaviour (i.e., whether it terminates or not). This imperfection is the price to pay for
having a security condition which is relatively liberal (e.g. allowing while-loops whose
termination may depend on the value of a secret) and easy to check.

But in some circumstances (for example in the presence of IO [AHSS08]) it may be
desirable to enforce a stronger condition such as termination-sensitive security in which
a secret is not permitted to transmit information even through termination. For example,
suppose that h is high and l is low, then the following programs are not termination-
sensitive secure:

if h then (while true skip) else skip; l := 1

(while h skip) ; l := 1

(An example of a system enforcing this stronger condition is [AB04].) In what fol-
lows we generalise the FST system to track the degree of termination-sensitivity. This

provides a variant of the system from which a principal type provides both termination-
sensitive and termination-insensitive typings, and even typings which lie between the
two [DS09], for example where we can abide some termination leakage from a large
piece of data (on the basis that the rate of leakage is low) but not for small data.

The idea is to add a termination variable t to the state to record the levels upon
which termination of the command may depend. This corresponds to the termina-
tion effect from [Bou05] (a similar component can be found in earlier type systems
[Smi01, BC01]).4 The only rule which needs to consider the value of the termination
variable is the While-rule. Consider the While rule in Fig. 2. The fixed-point constructs
an environment Γf in which pc records the maximum level of data which can influence
the value of the loop condition. We therefore need to modify the rule to ensure that it
raises t to this level. Modifying the While rule in this way gives us a new type system
which we refer to as Flow Termination (ft). See Fig. 4. It is clear by comparing the

While
p = Γ (pc) Γf = fix(λΓ. let ` Γ [pc += Γ (E)] {C} Γ ′ in Γ ′ t Γ0)

` Γ0 {while E C} Γf [pc 7→ p, t += Γf (pc)]

Fig. 4. Flow Termination (ft) (extends Flow Core-pc)

two versions of the While rule that Flow Termination is functional and is a conservative
extension of Flow Core-pc.

After typing a program, the type of the termination variable can be used to de-
termine whether a certain degree of termination-sensitivity has been achieved. To have
termination-sensitivity we must demand that the type of t is⊥ - i.e. termination depends
only on public inputs. For termination-insensitivity one can simply ignore t. This gen-
eralisation to include termination-sensitivity is required for the erasure types considered
in the next section.

Although we do not focus on the semantic soundness of the systems in this pa-
per, it is useful to understand the semantic content of the termination variable. We can
state it informally as follows: suppose `ft Γ {C} Γ ′ and a = Γ ′(t). Now suppose
that M and N are two memory states (mappings from variables to values) which are
a-equivalent under policy Γ . Then C terminates starting with memory state M iff it
terminates starting with memory state N .

The Principal Typings Theorem also holds for the Flow Termination system:

Theorem 5. Let `ft η {C} ∆. Then `ft Γ {C} Γ ′ iff Γ ′ = ∆ ; Γ .

Specialising the new While rule in the obvious way, we obtain a modified version of
Flow Principal which computes principal types for Flow Termination. We refer to this
system as Termination Principal (tp). See Fig. 5.

Theorem 6. tp derives principal types: `ft η {C} ∆ iff `tp C : ∆.

4 We do not attempt to make the system more liberal in the manner of [Bou05, Smi01, BC01];
this is possible but would require a more pervasive change whereby the type of a variable is a
pair of levels.

While
` C : ∆ ∆f = (∆ ; η[pc += fv(E)])∗

` while E C : ∆f [pc 7→ {pc}, t += ∆f (pc)]

Fig. 5. Termination Principal (tp) (extends Flow Principal)

4 Erasure types

In this section we derive a polynomial time implementation of the erasure type system
from [HS08]. This system uses flow-sensitivity in an essential way to enforce a certain
kind of data erasure policy. As explained in the introduction, the system appears to be
inherently exponential because it makes essential use of a double typing of the body
of the erasure-labelled input command (the Erase rule in Fig.6). Even so, because the
core of the erasure type system is an FST system of essentially the same kind as the
one from [HS06], we are able to apply the techniques from Sections 2 and 3 above.
This enables us to implement erasure typing by transforming the original system into a
polynomial-time system for deriving principal types.

4.1 Non-Algorithmic Erasure Type System

Figure 6 presents the type system from [HS08]. Here the syntax input x : a↗ b in C
abbreviates the construction “input x : a erased to b after C” discussed in the Intro-
duction. We refer to this system as Erasure Basic (eb). In rule Erase, deleteOutput(C)

Skip
p ` Γ {skip} Γ

Assign
a = Γ (E)

p ` Γ {x := E} Γ [x 7→ p t a]

Erase
p ` Γ [x 7→ a] {C} Γ ′ p ` Γ [x 7→ b] {C′} Γ ′ p v a C′ = deleteOutput(C)

p ` Γ {input x : a↗b in C} Γ ′

Output
b = Γ (E) p t b v a

p ` Γ {output E on a} Γ

Seq
p ` Γ {C1} Γ ′ p ` Γ ′ {C2} Γ ′′

p ` Γ {C1 ; C2} Γ ′′ If
a = Γ (E) p t a ` Γ {Ci} Γ ′ i = 1, 2

p ` Γ {if E C1 C2} Γ ′

While
Γ (E) = ⊥ ⊥ ` Γ {C} Γ

⊥ ` Γ {while E C} Γ
Sub

p1 ` Γ1 {C} Γ ′
1

p2 ` Γ2 {C} Γ ′
2

p2 v p1, Γ2 v Γ1, Γ
′
1 v Γ ′

2

Fig. 6. Erasure Basic (eb)

operates on the syntax of C, producing a copy of C in which each output command
has been replaced by skip. Thus to type an erasing input command we have to type its
body, C, twice, under two different type environments. The first typing enforces non-
interference with respect to the security level of the input-channel, while the second
typing enforces non-interference with respect to the erasure level; output commands
in C are ignored during the second typing because the erasure level only applies after
C has executed.

Note that this type system is non-algorithmic. Additionally, in contrast to the FST
systems above, it is not parametric in the choice of security lattice; input and output
commands refer (independently of the type system) to elements from some lattice,
which means that programs can only be typed with respect to that particular lattice.
Both these issues are addressed in Section 4.2 below.

In this system we are primarily concerned with information flows on the I/O chan-
nels. The (flow-sensitive) typing of program variables is thus only a means to the end of
checking that the I/O flows comply with the required security policy. Since the type sys-
tem is monotone in Γ , if a program can be typed at all, it can be typed for the smallest
Γ . We say that a command C is typeable iff there exists a Γ such that ⊥ ` ⊥ {C} Γ .

In the following sections we proceed as follows:

1. We develop an algorithmic version of Erasure Basic. At the same time, we gener-
alise the system by introducing auxiliary variables to model the program counter,
the termination channel and the IO channels. This allows all constraints to be re-
moved from the type system (rules Erase, Output and While) and makes it paramet-
ric in the choice of security type lattice. We establish correctness of the new system
with respect to Erasure Basic.

2. We formulate and prove a principal typings result for the generalised system.
3. We specialise the generalised system to one which produces just principal types.

This principal types system has the same complexity as the earlier one (Section 2.4).

4.2 Generalised Erasure Type System

We introduce the following additional variables (assumed disjoint from the program
variables PVar):

– The variables pc and t, playing the same roles as in Flow Core-pc and Flow Term-
ination above (Sections 2.1 and 3).

– Disjoint sets IVar and OVar of channel variables.

We modify the language syntax to use channel variables in place of fixed channel
names. Input commands now have the form input x : i1↗ i2 in C, with i1, i2 ∈
IVar . Output commands have the form output E on o, with o ∈ OVar . These
are the only places in the syntax where channel variables appear. Commands written
in the original syntax are encoded in the new syntax by application of injective maps
a 7→ ia : L → IVar and a 7→ oa : L → OVar . For a command C in the old syntax,
we denote its encoding in the new syntax by Ĉ . Thus input x : a↗ b in C becomes
input x : ia↗ ib in Ĉ and output E on a becomes output E on oa. In the rest
of the paper C denotes a command in the new syntax unless explicitly stated otherwise.

Environments become maps Γ : Var → L, where Var = PVar ∪ {pc, t} ∪
IVar ∪OVar . The rules for the generalised system are presented in Fig. 7. We refer to
this system as Erasure General (eg).

Some intuitions for the Erasure General rules:

– Once information has flowed to a channel, it has “escaped” the system. This is
reflected in the rules by ensuring that, as for t, the post-assignment for a channel
variable is always at least as great as its pre-assignment.

Skip
` Γ {skip} Γ

Assign
p = Γ (pc) a = Γ (E)

` Γ {x := E} Γ [x 7→ p t a]

Erase

p = Γ (pc) aj = Γ (ij) ` Γ [x 7→ p t aj] {C} Γj j = 1, 2

∀y ∈ Var .Γ ′(y) =


Γ1(y) if y ∈ OVar
Γ1(y) t Γ2(y) otherwise

` Γ {input x : i1↗ i2 in C} Γ ′[i1 += p]

Output
p = Γ (pc) b = Γ (E)

` Γ {output E on o} Γ [o += p t b]

Seq
` Γ {C1} Γ1 ` Γ1 {C2} Γ2

` Γ {C1 ; C2} Γ2

If
p = Γ (pc) a = Γ (E) ` Γ [pc += a] {Ci} Γi i = 1, 2

` Γ {if E C1 C2} (Γ1 t Γ2)[pc 7→ p]

While
p = Γ (pc) Γf = fix(λΓ. let ` Γ [pc += Γ (E)] {C} Γ ′ in Γ ′ t Γ0)

` Γ0 {while E C} Γf [pc 7→ p, t += Γf (pc)]

Fig. 7. Erasure General (eg)

– In Erasure Basic the Erase rule imposes the constraint that p v a, where a is the
(fixed) input channel type. In Erasure General this constraint has been removed but
the post-environment is updated (Γ ′[i1 += p]) in a way which effectively allows
the constraint to be checked by examining the final result of the type derivation.
The p t b v a constraint in the Output rule is handled similarly.

– In Erasure Basic the While rule imposes the constraint that Γ (E) = ⊥. Erasure
General uses t to track whatever termination flows there may be, without building
in any constraint on what is allowed. Again, flows not permitted by Erasure Basic
can be caught by examining the final result.

– The generalised Erase rule still requires a double typing of the command body. But
rather than deleting output commands in the second typing, we are able simply
to discard those parts of the derived environment relating to output channels. This
is achieved by the definition of Γ ′, which discriminates between output channel
variables and others.

Lemma 4. Erasure General (Fig. 7) is functional and if ` Γ {C} Γ ′ then:

1. Γ ′(pc) = Γ (pc)
2. For all x ∈ {t} ∪ IVar ∪OVar , Γ ′(x) w Γ (x).

The following theorem shows how each Erasure Basic typing can be recovered from
a specified Erasure General typing. They key observation is that the Erasure Basic con-
straints are satisfied iff the termination and channel variable type assignments are in-
variant in the specified Erasure General typing. Given Γ : PVar → L and p ∈ L, let
Γ̂

p
: Var → L be defined by Γ̂

p
= Γ [pc 7→ p, t 7→ ⊥][ia 7→ a, oa 7→ a]a∈L.

Theorem 7. Let C be a command in the original syntax and let `eg Γ̂
p
{Ĉ } Γ ′.

Then p `eb Γ {C} Γ1 iff there exists Γ2 v Γ1 such that Γ ′ = Γ̂2

p
.

Corollary 1. Let C be a command in the original syntax and let `eg ⊥ {Ĉ } Γ . Then
C is typeable in Erasure Basic iff Γ (t) = ⊥ and Γ (ia) = a and Γ (oa) = a for each
a ∈ L.

Thus the problem of Erasure Basic typing is reduced to the problem of constructing a
specific Erasure General typing and then checking that the levels of the termination and
channel variables remain fixed.

4.3 Principal Types for Erasure Typing

The Erasure General system is sufficiently similar to the earlier FST systems that the
principal typings result carries over with no significant extra work:

Theorem 8 (Principal Erasure Typings). Let `eg η {C} ∆ (see Fig. 7). Then `eg

Γ {C} Γ ′ iff Γ ′ = ∆ ; Γ .

Proof. As for Theorem 2.

Using the Principal Erasure Typings Theorem we can specialise Erasure General to de-
rive a system which produces only principal erasure types, just as we did in Section 2.2
for the FST system. The derived rules are shown in Fig. 8. We refer to this system as
Erasure Principal (ep).

Erase

` C : ∆ ∆j = ∆ ; η[x 7→ {pc, ij}] j = 1, 2

∆′(x) =


∆1(x) if x ∈ OVar
∆1(x) t∆2(x) otherwise

` input x : i1↗ i2 in C : ∆′[i1 += {pc}]

Output
` output E on o : η[o += {pc} ∪ fv(E)]

Fig. 8. Erasure Principal (ep) (extends Termination Principal)

Theorem 9. Erasure Principal derives principal types: `eg η {C} ∆ iff `ep C : ∆.

Note that Erasure Principal contains no multiple typings. Indeed, the complexity analy-
sis of Theorem 4 carries over unchanged to Erasure Principal, showing that it is O(nv3).

5 Procedures

In this section we outline the extension of the FST system to a procedural language
to obtain a context-sensitive procedural analysis. In a type-based setting a standard ap-
proach is to use type variables to represent any possible calling context in a parametric

way. This in turn requires the generation of constraints on the values of such type vari-
ables. The key observation here is that the underlying FST system is already sufficiently
“polymorphic” to enable a smooth extension of the system to procedures without the
need for type variables and type constraints. Because of recursion, the algorithm re-
quires a fixed-point iteration over the analysis of procedure bodies, but this remains
polynomial-time.

First let us divide the set of program variables into two disjoint sets {x1, x2, . . .}
and {y1, y2 . . .} which will be used for a procedure’s formal in-parameters and formal
out-parameters, respectively. We assume that procedure names form a finite indexed set
ProcName = {pi}i∈A. A program Prog is a set

Prog = {pi(in x1, . . . , xni ;out y1, . . . , ymi) Ci}i∈A

where ni,mi ≥ 0 and fv(Ci) ∩ PVar ⊆ {x1, . . . , xni
, y1, . . . , ymi

} (no global vari-
ables). The grammar of commands from Section 4 is extended with procedure calls:

C ::= · · · | pi(E1, . . . Eni
; z1, . . . , zmi

)

where the actual out-parameters z1, . . . , zmi are required to be distinct. For the op-
erational semantics we can assume that there is a distinguished procedure main ∈
ProcName defined with zero parameters. The intended semantics of a procedure call
is call-by-value, return-by-value. Formal out-parameters are initialised to constant val-
ues, formal in-parameters are initialised with the values of the actual in-parameters and
the actual out-parameters are assigned from the formal out-parameters at the end of the
procedure call.

When extending the FST system to handle procedures it is desirable to make the
type system context-sensitive, so that the analysis of a given call takes into account the
context in which it is called. One natural way to achieve this in a compositional type-
based setting is to make the analysis of procedures polymorphic in the security levels
of their parameters. To do this, in turn, would require the introduction of type variables.
However, we can bypass this step altogether. Since our principal type system is already
“polymorphic” we can directly extend it to handle procedures in a context-sensitive
way without making any major changes to the system (such as the introduction of type
variables and an algorithm based on the solution of type constraints).

Each procedure will be typed by a function Var → P(Var). A program typing Ψ
will be a function which gives a type to each procedure, i.e., Ψ : ProcName → Var →
P(Var). Given such a program typing we can type a command. The previous typing
rules are unchanged.

The basic form of the new rule to handle procedure calls is:

∆ = Ψ(pi)

Ψ ` pi(~E;~z) : (∆outi
; ∆ ; ∆ini

)[v 7→ {v}]v∈PVar−~z

where:

∆ini describes the initial dependencies of the formal parameters; the formal in-parameters
are initially dependent on the actual in-parameters, while the formal out-parameters
are initialised to constants and so start with no dependencies, thus:

∆ini = η[xj 7→ fv(Ej), yk 7→ {}]j∈{1...ni},k∈{1...mi}

∆outi describes the assignment of the actual out-parameters from the formal out-
parameters, thus:

∆outi = η[zk 7→ {yk,pc}]k∈{1...mi}

If we wish to think of this in terms of instantiation of the polymorphic procedure type ∆,
then ∆ini is the instantiation of the in-parameter types and ∆outi is the instantiation of
the out-parameter types. The update in the conclusion of the rule implements the local
scoping of the procedure’s formal parameters; since we disallow global variables, the
only effect of a procedure call on program variables in the calling context is to update
the actual out-parameters, thus it acts as the identity (dependency v 7→ {v}) on all other
program variables.

As it stands, this rule does not correctly track termination flows arising from the
potential for non-terminating recursions. A conservative solution would be simply to
apply the update [t += {pc}] to the type. A more precise typing would be obtained by
using an auxiliary analysis to distinguish between those procedures which are guaran-
teed not to recurse infinitely (in which case the t update is not required) and those which
may; a cheap approach would simply use the structure of the program’s call graph.

In order to type the commands we need a procedure typing which is consistent with
the whole program. Such a typing is described by the following rule:

Prog
∀i ∈ A.Ψ ` Ci : ∆i Ψ(pi) = ∆i

` Prog : Ψ

The recursive calls from a procedure are handled no differently to any other calls, so in
conventional terms the type system could be said to use polymorphic recursion.

Example Consider the swap operation in the introduction represented as a procedure:

swap(in x1, x2; out y1, y2) y1 := x2 ; y2 := x1

Using the obvious syntactic sugar for in-out parameters, the code sequence in the intro-
duction could then be written:

swap(in out secret1, secret2);
swap(in out public1, public2);

The type for swap would be ∆ = η[y1 7→ {x2,pc} , y2 7→ {x1,pc}]. Abbreviating
secret1 as s1 and secret2 as s2, and defining ∆in = η[x1 7→ {s1} , x2 7→ {s2}]
and ∆out = η[s1 7→ {y1,pc} , s2 7→ {y2,pc}], the typing for the first call above
would thus be:

(∆out;∆;∆in)[v 7→ {v}]v∈{x1,x2,y1,y2} = η[s1 7→ {s2,pc} , s2 7→ {s1,pc}]

and the typing for the second call would be analogous.

5.1 Procedure Typing, Algorithmically

Although the Prog rule describes a valid typing it is not algorithmic. To obtain the
minimal valid typing we construct an ascending chain of approximations:

Ψ0 = λpi.λx. {}
Ψn+1 = λpi.∆ where Ψn ` Ci : ∆

The complexity of typing commands is unchanged (since typing procedure call is cheap),
so the cost of each iteration is O(nv3) as before. The number of iterations to reach a
fixed-point is constant if the call-graph is not recursive (it is bounded by the depth of the
call graph). In the presence of recursion we can bound the number of iterations at O(v2)
(the height of the powerset of variables multiplied by the number of variables). In The-
orem 4, v denoted the number of global variables and channels in the program. Since
we no longer have global variables, v now denotes the number of channel variables plus
the maximum number of parameters of any procedure.

6 Related work

To our knowledge, this is the first published work which shows how flow-sensitive
multi-level security typing can be achieved in polynomial time. Our own previous work
[HS06] includes an “algorithmic” type system which has exponential complexity. We
also showed that the system of Amtoft and Banerjee [AB04] is equivalent to a particular
instance of ours, but the published algorithmic versions of their system [AB04, AB07]
are also exponential.

We are not claiming, however, that the core algorithm presented in the current paper
is optimal. The specialised principal type systems we have described effectively reduce
the general security typing problem to a pure dependency analysis and there are a num-
ber of previously published polynomial algorithms for implementing essentially similar
dependency analyses:

– The work of Banâtre et al [BB93a, BBL94, BB93b] presents dependency analyses
which are similar to the Amtoft and Banerjee system. [BBL94] in particular is for
a similar language and takes an algorithmic approach. The algorithm involves con-
structing and then traversing a graph whose nodes correspond to program points.
[BB93b] is one of the only papers which attempts formally to relate a dependency
analysis to multi-level security analysis. The account is not entirely satisfactory,
since the details of the multi-level analysis are not made explicit, but the conclusion
is that the dependency analysis subsumes multi-level security analysis. This is also
implicit in Andrews and Reitman’s information flow logic [AR80], whereby a log-
ical flow deduction is made independently of a particular policy assigning security
levels to variables. The principal typings result of [HS06] confirms that conclusion
but also shows that (a) dependency analysis is itself a special case of flow-sensitive
multi-level security analysis and (b) if multi-level security in a given lattice is the
property of interest, dependency analysis doesn’t provide any additional precision.

– Algorithms for program slicing also incorporate dependency analysis and it is in-
tuitively clear that they could be adapted to implement the principal type systems
of the current paper. Weiser [Wei84] describes an O(n2) algorithm for building an
individual slice, which would yield an O(n2v) algorithm for calculating the full
matrix of dependencies (applying it once per variable).
Later work by Horwitz et al [HRB90] casts the slicing problem as a graph traversal
problem and extends the basic algorithm to the inter-procedural case, using a pow-
erful grammar-based technique to analyse procedure calls in a context-sensitive
manner. Hammer and Snelting [HS09, Ham10] explicitly apply this graph-based
approach to the problem of information flow analysis. The algorithm presented by
Horwitz et al is polynomial but the accompanying algorithmic analysis is stated
for measures which are specific to their grammar constructions, preventing any
straightforward comparison with the algorithm sketched for procedures in the cur-
rent paper. More fundamentally, it is not clear how to relate the relative precision
of the two approaches.

– The dependency analysis of Bergeretti and Carré [BC85] shares the same moti-
vations as the slicing work (aiding with program comprehension, testing and de-
bugging). Although the analysis is described in a more informal and arguably less
straightforward way, their algorithm seems to be essentially equivalent to the basic
principal types system described in the current paper and indeed their analysis of
its complexity is O(nv3), in agreement with ours. The paper does not deal with
the extension to recursive procedures. This work forms the basis of the information
flow analysis of the commercial Spark Examiner tool [CH04], suggesting that it is
algorithmically adequate.

A number of papers deal with the implementation of security type systems for similar
languages e.g. [VS97, DS06] and for more complex ones [PS03], but these all have
flow-insensitive treatments of imperative variables. Other algorithmic but non type-
based treatments of flow-sensitive information flow include Clark et al’s flow logic
approach [CHH02].

Regarding erasure there is rather little prior work; the type system of the authors
[HS08] and the concurrently developed system described by Chong and Myers [CM08]
are perhaps the only examples. Chong and Myers do not describe an algorithm, although
there approach is implemented in a restricted form as part of the Jif compiler. Their
approach is incomparable because it concerns a different kind of erasure specification:
it is assumed that there is an additional runtime mechanism which will overwrite all
data with a certain label at a designated erasure time. The purpose of the types system
is to ensure that there will be no sensitive data “left behind” when this is done. This
makes less work for the static analysis and one can get away with a flow-insensitive
system.

7 Conclusions and Future Work

We have presented a new approach to type-based security analysis which hinges on
specialisation to principal types. The approach leads to a novel high-level structural
description of a principal typing which has a direct algorithmic reading. By taking

advantage of principality we provide polynomial complexity for systems which were
previously presented in an implicitly exponential manner.

One direction for future work would be to see if this development can be carried
over to richer language features (e.g. [ABB06]). Do dynamic allocation, structured data
and aliasing fundamentally change the algorithmic approach?

Another direction would be to consider the theoretical question of expressiveness.
Among analyses which extract no information about expressions beyond the free vari-
ables that they contain, is the analysis optimal? In the context of slicing, Weiser gives
an example which can be used to show that our analysis is not optimal ([Wei84], Fig 3).
However if we consider the class of analyses which are also invariant under loop and
recursion unrolling (as we believe ours is) then we suspect that an optimality result may
be within reach.

Acknowledgements This work was partly funded by the European Commission un-
der the WebSand project and the Swedish research agencies SSF and VR. The first
author carried out part of this work while on sabbatical, very kindly hosted by Mark
Harman’s CREST group at UCL. Discussions with Tobias Gedell and Daniel Hedin in
the early stages of this work provided valuable insights. Jens Krinke helped us navigate
the related work on program slicing. Niklas Broberg and Josef Svenningsson provided
helpful comments on an earlier draft. Thanks to the anonymous referees for their very
helpful comments and suggestions for improvement.

References

[AB04] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical form.
In SAS 2004 (11th Static Analysis Symposium), Verona, Italy, August 2004, volume
3148 of LNCS, pages 100–115. Springer-Verlag, 2004.

[AB07] Torben Amtoft and Anindya Banerjee. A logic for information flow analysis with an
application to forward slicing of simple imperative programs. Science of Computer
Programming, 64(1):3–28, 2007.

[ABB06] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for information
flow in object-oriented programs. In POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 91–
102. ACM, 2006.

[AHSS08] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination insensitive non-
interference leaks more than just a bit. In Proc. European Symp. on Research in
Computer Security, 2008.

[AR80] G. R. Andrews and R. P. Reitman. An axiomatic approach to information flow in
programs. ACM TOPLAS, 2(1):56–75, January 1980.

[BB93a] J.-P. Banâtre and C. Bryce. Information flow control in a parallel language frame-
work. In Proc. IEEE Computer Security Foundations Workshop, pages 39–52, June
1993.

[BB93b] Jean-Pierre Banâtre and Ciaran Bryce. A security proof system for networks of
communicating processes. Research Report RR-2042, INRIA, 1993.

[BBL94] J.-P. Banâtre, C. Bryce, and D. Le Métayer. Compile-time detection of information
flow in sequential programs. In Proc. European Symp. on Research in Computer
Security, volume 875 of LNCS, pages 55–73. Springer-Verlag, 1994.

[BC85] Jean-Francois Bergeretti and Bernard Carré. Information-flow and data-flow analy-
sis of while-programs. ACM TOPLAS, 7(1):37–61, 1985.

[BC01] G. Boudol and I. Castellani. Noninterference for concurrent programs. In Proc.
ICALP’01, volume 2076 of LNCS, pages 382–395. Springer-Verlag, July 2001.

[Bou05] Gérard Boudol. On typing information flow. In ICTAC, pages 366–380, 2005.
[CH04] Roderick Chapman and Adrian Hilton. Enforcing security and safety models with

an information flow analysis tool. Ada Lett., XXIV(4):39–46, 2004.
[CHH02] D. Clark, C. Hankin, and S. Hunt. Information flow for Algol-like languages. Jour-

nal of Computer Languages, 28(1):3–28, April 2002.
[CM08] Stephen Chong and Andrew C. Myers. End-to-end enforcement of erasure and

declassification. In CSF, pages 98–111. IEEE Computer Society, 2008.
[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure information

flow. Comm. of the ACM, 20(7):504–513, July 1977.
[DS06] Zhenyue Deng and Geoffrey Smith. Type inference and informative error report-

ing for secure information flow. In ACM-SE 44: Proceedings of the 44th annual
Southeast regional conference, pages 543–548, New York, NY, USA, 2006. ACM.

[DS09] D. Demange and David Sands. All Secrets Great and Small. In Programming
Languages and Systems. 18th European Symposium on Programming, ESOP 2009,
number 5502 in LNCS, pages 207–221. Springer Verlag, 2009.

[Ham10] Christian Hammer. Experiences with pdg-based ifc. In Engineering Secure Software
and Systems, Second International Symposium, pages 44–60, 2010.

[HRB90] Susan Horwitz, Thomas W. Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM TOPLAS, 12(1):26–60, 1990.

[HS06] S. Hunt and D. Sands. On flow-sensitive security types. In POPL’06, Proceed-
ings of the 33rd Annual. ACM SIGPLAN - SIGACT. Symposium. on Principles of
Programming Languages, January 2006.

[HS08] Sebastian Hunt and David Sands. Just forget it - the semantics and enforcement of
information erasure. In Proc. European Symp. on Programming, pages 239–253,
2008.

[HS09] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence graphs. In-
ternational Journal of Information Security, 8(6):399–422, 2009.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In Proc. IEEE Symp.
on Logic in Computer Science, pages 14–23, 1989.

[Pro59] Reese T. Prosser. Applications of boolean matrices to the analysis of flow dia-
grams. In IRE-AIEE-ACM ’59 (Eastern): Papers presented at the December 1-
3, 1959, eastern joint IRE-AIEE-ACM computer conference, pages 133–138, New
York, NY, USA, 1959. ACM.

[PS03] F. Pottier and V. Simonet. Information flow inference for ML. ACM TOPLAS,
25(1):117–158, January 2003.

[Smi01] G. Smith. A new type system for secure information flow. In Proc. IEEE Computer
Security Foundations Workshop, pages 115–125, June 2001.

[VS97] D. Volpano and G. Smith. A type-based approach to program security. In Proc.
TAPSOFT’97, volume 1214 of LNCS, pages 607–621. Springer-Verlag, April 1997.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
J. Computer Security, 4(3):167–187, 1996.

[Wei84] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

[Wel02] J. B. Wells. The essence of principal typings. In Proc. International Colloquium on
Automata, Languages and Programming, volume 2380 of LNCS, pages 913–925.
Springer-Verlag, 2002.

