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Abstract 

This paper investigates the dynamics of stock price volatility for different vessel-type segments 

of the U.S, water transportation industry. We measure market exposure by a portfolio of tanker, 

dry bulk, container, and gas stocks to examine tail behavior and tail risk dependence. The role of 

mixture distributions in predicting future volatility is studied from both statistical and economic 

perspectives. We further test for predictability in co-movements in the tails of sectors returns. 

Findings indicate that large losses are strongly correlated, supporting asymmetric transmission 

processes for financial contagion. Finally, using a non-parametric approach, we extend the model 

to the multivariate case and assess the value of volatility and correlation timing in optimal 

portfolio selection. The results can help to improve the understanding of time-varying volatility, 

correlation and tail systemic risk of shipping stock markets, and consequently, have implications 

for risk management and asset allocation practices, as well as regulatory policies. 
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1. Introduction 

 

Ocean freight transportation companies operate in one of the most internationalized 

industries by connecting sources of supply and demand around the globe. A key aspect of this is 

that shipping market information has received repeated attention either as a gauge of the state of 

real economic activity (Kilian, 2009) or as a predictor of financial markets (Papapostolou et al., 

2016). Hence, uncertainty in the industry has broad economic policy and financial practice 

implications. The importance of the shipping industry is highlighted by the fact that more than 

80% of the world’s commodity trade by volume is transported by ocean going vessels (UNCTAD, 

2017). With large volumes shipped around the world at relatively low costs, maritime transport 

is central to the growth and sustainability of the global economy. Ocean transport has 

transformed, over the last decade, from a pure service market (cost of transporting raw, semi-

finished and finished materials), to a market where freight is bought and sold for investment and 

portfolio diversification purposes, attracting investment banks, equity traders, fund managers and 

hedge funds. 

This paper empirically examines equity volatility dynamics in the water transportation 

industry from the perspective of risk analysis, quantification and forecasting, to provide 

institutional and private investors – that consider shipping stocks as an alternative asset class – 

with information that can be used to calibrate risk attitudes and support the decision-making 

process. Shipping markets are a notoriously volatile sector, mainly due to freight rate volatility, 

which is driven by a range of deterministic or stochastic influences such as political events and 

conflicts, natural disasters, seasonality, fuel price and currency fluctuations, trading relationships, 

environmental regulations, supply and demand imbalances, among others. At the same time, a 

sound understanding of shipping equity risk is of particular significance; in light of the recent 

global financial crisis (that immensely affected international commodity trade, and, consequently, 

shipping) and the prominence of equity markets as a source of finance for shipping companies.1 

                                                           
1 Equity financing has contributed 43% on average to the total finance raised by the non-traditional sources (bonds, 

private equity and leasing) for the period 2004-2016 (source: Marine Money). This high contribution can be attributed 

to the wave of shipping companies entering the U.S. capital markets through Initial Public Offerings (IPOs), which 

also resulted in a higher profile for shipping in the global investment stage; and next, to the initial and secondary 

offerings filling a newbuilding funding gap created by the inability of the banking sector to provide the necessary 

capital or by the depletion of the equity base of shipping companies.   
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As a result, this paper is of practical value to equity funds, traders, institutional and private 

investors in search of alternative style investments. 

The literature exploring risk in shipping markets and its impacts focuses on physical 

market volatility and risk management; for a comprehensive survey see Kavussanos and Visvikis 

(2006a, 2008) and Alexandridis et al. (2018). For example, Cullinane (1995) considers the 

shipowner’s financial commitments as investments and examines hedging strategies, utilizing a 

combination of time charter, voyage charter and derivative instruments to derive a set of optimal 

charter mix particular to the risk attitude of an individual decision-maker (see also Cullinane, 

1991). The issue of freight derivatives hedging effectiveness has been investigated by Kavussanos 

and Visvikis (2010) and Alizadeh et al. (2015).2 Another string of articles examines the suitability 

of various volatility models for freight rates in terms of estimating the Value-at-Risk (VaR) (see 

Kavussanos and Dimitrakopoulos, 2011).3 Others, investigate linkages between freight volatility 

and other variables, such as the bid-offer spread (Batchelor et al., 2007), derivatives trading 

volume (Alizadeh, 2013) or commodity futures (Kavussanos et al., 2014).  

Over the last two decades there has been an influx of papers in the transportation literature 

that examine: (i) the various ship capital sources (see for example, Grammenos et al., 2007; 

Grammenos et al., 2008; Drobetz et al, 2013; Kavussanos and Tsouknidis, 2014; Kavussanos and 

Tsouknidis, 2016 and Satta et al. 2017, among others); (ii) the financial investments and corporate 

structure in shipping (see for example, Alizadeh and Nomikos, 2007; Tsionas et al. 2012; 

Alexandrou et al., 2014; Rau and Spinler, 2016; Drobetz et al., 2016a; and Papapostolou et al., 

2017, among others) and (iii) the hedging and risk management in shipping (see for example, 

Cullinane, 1995; Kavussanos et al., 2004; Andreou et al., 2014; Kavussanos et al., 2014; Alizadeh 

et al. 2015; Alexandridis et al., 2017a,b; and Kyriakou et al., 2017, among others). Thus, it seems 

that the euphoric 2003-2007 business environment, and the post-2008 challenging financial 

investment and money raising environment in seaborne transportation have generated an 

extensive academic research strand. 

Nevertheless, research on exchange-listed shipping equity risks has received less 

attention, although adverse price movements affect negatively the cost of capital and stockholder 

                                                           
2 For a comprehensive description of the freight derivatives markets, see Kavussanos and Visvikis (2006b, 2011, 2016) 

and Alizadeh and Nomikos (2009). 
3 VaR is defined as the expected maximum loss associated with a portfolio over a risk horizon within a fixed 

confidence interval. See Kavussanos et al. (2015) for a detailed application of VaR models in the shipping industry.  
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wealth by imposing costs. The existing literature suggests that the risk (beta) of shipping stocks 

can be explained by non-systematic risk factors, such as the: asset-to-equity ratio which is found 

to be negative related to shipping stocks (Kavussanos and Marcoulis, 2000a); the illiquidity risk 

premium in shipping stocks which is priced higher than market-wide illiquidity (Panayides et al., 

2013); oil prices which are positively associated; and changes in industrial production, which are 

negatively associated to shipping stock returns (Kavussanos and Marcoulis, 2000a; 2000b; 

Drobetz, et al. 2010). The above literature suggests that market participants can realize more 

efficient risk-return trade-offs by diversifying their portfolios with shipping stocks, reaching 

higher expected returns for a given risk level.  

More specifically, Syriopoulos and Roumpis (2009), by contrasting shipping portfolios to 

stock market indices, bond indices and diversified stock-bond portfolios, find that that shipping 

portfolios appear to be superior in terms of returns but are associated with higher volatility. Grelck 

et al., (2009) provide evidence in support of adding shipping stocks to a portfolio of stocks and 

bonds. In particular, performance of augmented portfolios is improved in terms of Sharpe ratios, 

although diversification gains are unstable throughout time. Moreover, Drobetz et al. (2010) 

argue that an investor whose goal is to maximize diversification gains could further enhance the 

risk-return spectrum by investing in shipping stocks as the risk-return profile of such stocks is 

distinct and should be regarded as a separate asset class.  

With this in mind, risk measurement is fundamental for investment, asset allocation and 

risk management decisions. Homan (2009) investigates marine operator equity risk and 

documents that, the 9/11 terror attacks marked a structural rise in systematic and idiosyncratic 

risk. In that line of research, Drobetz et al. (2016b) explore macroeconomic and industry-level 

effects on corporate systematic risk and provide evidence of time-varying beta risk which exhibits 

a considerable industry cycle (see also Gong et al., 2006).4 Drobetz et al. (2016a) argue that, as a 

result of the high volatility in the cash flows and asset values of shipping companies, their 

financing behaviour is more sensitive to rapidly changing economic conditions than companies 

                                                           
4 Kavussanos et al. (2003) and Kavussanos and Marcoulis (2005) include some of the studies that explore systematic 

risk of shipping equities and find market betas close to one. This is consistent with Drobetz et al. (2016b) who noted 

relatively low betas in the early 1990s. However, systematic risk increased notably in recent years, especially from 

2007 onwards, implying that business risk in the maritime industry is higher. Bearing in mind the importance of the 

relation between stock returns and liquidity in water transportation, Panayides et al. (2013) report that in addition to 

the other risk factors, the market-wide liquidity factor and the illiquidity risk premium are also significant in explaining 

shipping stock returns. For the return performance of the publicly-listed port industry see Satta et al. (2017). 
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operating in other industries. Furthermore, asset allocation and the risk-return characteristics of 

shipping stocks have been explored by Andriosopoulos et al. (2013) who employ evolutionary 

algorithms to devise equity investment strategies that replicate the performance of equity and 

freight indices cost-effectively. Syriopoulos and Roumpis (2009) examine equity VaR 

performance with a view to enhance asset allocation opportunities. Their findings confirm the 

“high risk” industry profile.  

Therefore, knowledge of the response of stock price risk to market news, the likelihood 

of extreme stock price fluctuations and systemic risk or interconnectedness among different 

segments of the shipping stock markets are of eminent practical value. For example, stock price 

volatility forecasts and spillovers constitute a significant input in many financial models to 

calculate optimum asset allocation and calculate safe capital of portfolio investments; as a cushion 

against unforeseen risks or to impose appropriate trading limits for controlling capital exposure. 

Using this framework, equity traders and risk managers can inform their decision-making process, 

manage their portfolios efficiently and concoct mitigating actions (equity hedging strategies) 

considering adverse portfolio value changes and their associated probability of occurrence (VaR). 

Moreover, shipping companies can also benefit from accurately modelling stock return volatility 

which serves as an input parameter when analysing capital budgeting decisions (see for example, 

Bulan, 2005 and Grullon et al., 2012 on the relation between uncertainty and investment). Finally, 

banks providing credit can evaluate their risk in providing funds; stock price volatility may be 

used as an input in structural models of credit risk to calculate amounts at risk for loans or credit 

instruments, expected default frequencies, default and migration probabilities. These constitute 

crucial topics for risk control and dynamic portfolio management.  

Overall, a better risk control in seaborne transportation can lead to more effective global 

logistical networks and more robust supply chain management. Kleindorfer and Visvikis (2009) 

argue that “as global logistics networks have grown and developed, they also have presented new 

challenges in managing risk and volatility across these broad, global networks”. They further 

discuss that “the integration of financial and physical markets is a driving force behind the 

emergence of global logistics”. Following this, it seems that the new integrated transportation 

logistics requires a strategic understanding of all components of the supply chain and highlight 

the greater importance on the market integration and financial flows across the physical network.  
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To this end, the main contributions of this paper are threefold. First, we develop a 

comprehensive risk model for the U.S., shipping equity sector and evaluate the extent to which 

modelling features affect risk measurement efficiency. In particular, we concentrate on the 

impacts of assuming more than one component for the volatility process (normal mixture 

conditional distribution models). This way, various insights are offered for the first time, to the 

best of our knowledge, as these models give rise to rich dynamics by: (i) differentiating 

components between different market states (Ball and Torous, 1983); (ii) taking into account 

time-variation in skewness and kurtosis (Alexander and Lazar, 2006); and (iii) accommodating 

non-standard types of conditional distributions (Wong and Li, 2001). The forecasting 

performance of the proposed models is assessed with an eye to judge their ability to forecast tail 

risk (i.e., risk is measured by the distribution tails or equivalently by the VaR). Using appropriate 

benchmarks, we evaluate both long (buy) and short (sell) equity positions; in terms of coverage 

tests (Christoffersen, 1998) and economic losses (Lopez, 1998; Gonzalez-Rivera et al., 2004). 

Therefore, we quantify the concerns from the viewpoint of regulators and policy-makers, who are 

interested in the likelihood of financial distress, and investors, who also face the objective to 

maximize profits and need to balance capital forgone from over-predicting the true risk.  

Second, we offer new insights on the dynamics of tail behavior of the U.S. shipping stocks 

and extreme risk spillovers; that is, the mechanism of how tail risk spills over the total system 

(tail co-movement). The transmission function of extreme risk (as measured by VaR) is examined 

for market-wide (general market vs. shipping market), industry-wide (overall shipping market vs. 

individual sectors) and inter-sector connectedness.5 We document new evidence on extreme risk 

spillover effects and causality in risk (Hong et al., 2009), providing information for investment 

and risk capital allocation decisions, as well as financial regulatory considerations. For instance, 

the transmission of extreme downside risk is important because market participants are 

increasingly concerned with their exposure to large fluctuations, and financial regulators are keen 

to measure exposures of the financial institutions they supervise. 

Finally, we extend the analysis and suggest a dynamic multi-component environment, 

where the information content of normal mixture conditional distribution models is utilized to 

derive state and time dependent correlations; that is, a kernel based semi-parametric approach 

                                                           
5 This is more relevant for risk management purposes. Volatility is representative of small rather than extreme risk and 

treats both gains and losses symmetrically whereas contagion is mainly associated with extreme negative returns (Bae 

et al., 2003). Tail probabilities, on the other hand, are directly related to the likelihoods of extreme movements. 
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(see Long et al., 2010; and Aslanidis and Casas, 2013, amongst others). Moreover, we address 

the issue of economic value of volatility and correlation timing (Fleming et al., 2001, 2003) for 

shipping equity investors for the first time, to our knowledge. Using conditional mean-variance 

analysis, this empirical investigation aims to fill a gap in the literature and connect the related 

econometric specifications to active shipping portfolio management gains. 

In the empirical analysis, we find that components of the mixture distributions are 

differentiated between a relatively low volatility process, acting as dominant state and 

characterized by low sensitivity to shocks that dissipate at a relatively slow pace, and a rather 

high volatility state, which occurs less frequently, and with shocks affecting the variance more 

but dissipate at a faster rate, while the inclusion of a third medium volatility component process 

is found to improve the fit of the data. Generally, component volatility models provide a more 

accurate tool for tail-risk measurement and forecasting, in terms of out-of-sample statistical tests 

and economic loss. Moreover, large price falls in shipping equities come in clusters and there is 

strong (non-existent) causality in risk on the lower (upper) tail of the distribution (i.e., evidence 

supports a bear-market contagion). Finally, we find that the proposed dynamic models of 

volatility and correlation are able to lead to shipping equity investment strategies, which generate 

higher Sharpe ratios and substantial economic gains compared to benchmarks; that is, a result 

robust to transaction costs and different rebalancing strategies.6 For example, a risk-averse 

investor would be willing to pay on average, across different objective and rebalancing strategies, 

a minimum of 470 basis points per year to capture the observed performance gains.  

Our paper differs from other studies in literature focusing on volatility and VaR, in several 

aspects. This is one of the first few empirical studies (see, for example Syriopoulos and Roumpis, 

2009) to model and forecast shipping equity volatility. We provide a thorough empirical 

application of advances in volatility and VaR estimation in the water transportation industry. 

Although modelling and forecasting in a state-dependent framework has been widely documented 

in equity, foreign exchange and commodity markets (see, e.g., Alexander and Lazar, 2006; Haas 

et al., 2004; Nomikos and Pouliasis, 2011), to the best of our knowledge, this is first empirical 

study to analyse the forecasting ability of those models in the specific market. At the same time, 

based on our model estimates and the recent concept of causality in risk (Hong at al., 2009), this 

                                                           
6 The Sharpe ratio measures the investment performance of an asset or a trading strategy by adjusting for its risk. It is 

defined as the excess return (risk premium) over standard deviation. 
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paper aims at testing the transmission mechanism of large co-movements between shipping 

sectors, such as financial contagions. Finally, extending the multi-component volatility modelling 

approach to a dynamic multivariate environment is another innovation of this paper 

differentiating our work from the extant literature. 

The remainder of this paper proceeds as follows. Section 2 presents the normal mixture 

volatility model, discusses a multivariate extension and outlines the VaR framework. In Section 

3, the data and their properties are described. Section 4 discusses the empirical results. This is 

followed by an application in asset allocation and measurement of the economic value of this 

volatility approach in the context of investment decisions. Section 6 concludes the paper.  

 

2. Methodology 

 

This section describes the theoretical background of the models employed and the risk 

prediction validation framework. First, we define the univariate volatility modelling approach and 

discuss estimation issues. For a more comprehensive analysis of the adopted formulation, 

theoretical properties and technical details we refer to Alexander and Lazar (2006) and Haas et 

al. (2004). Second, building on the work of Aslanidis and Casas (2013), we extend this 

methodology to the multivariate case. In doing so, we develop a new non-parametric approach 

for extracting multi-component correlation dynamics which constitutes our main methodological 

contribution. Third, we briefly review the VaR framework and forecasting validation procedures. 

Finally, following Hong et al. (2009), we present the concept of Granger causality in risk. 

 

2.1. Model Setup  

 

Define 𝑟𝑡 as the daily log return on trading day t. Let 𝐾 individual component variances 

𝜎𝑖𝑡
2  be represented by a Generalized Autoregressive Conditional Heteroscedastic (GARCH) 

process (Engle, 1982; Bollerslev, 1986). We specify the following dynamics: 

 

𝑟𝑡 = 𝜇𝑖 + 𝜀𝑡𝜎𝑖,𝑡,  𝜀𝑡|𝛺𝑡−1~ 𝑀𝑥𝑁(𝐾)(𝜋1, … , 𝜋𝐾; 𝜇1, … , 𝜇𝐾; 𝜎1𝑡
2 , … , 𝜎𝐾𝑡

2 ), 

𝜎𝑖𝑡
2 = 𝜔𝑖 + 𝑎𝑖𝜀𝑡−1

2 + 𝛽𝑖𝜎𝑖,𝑡−1
2 ,             (1) 
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for 𝑖 = 1,2, … , 𝐾 so that the conditional density of 𝜀𝑡 is the mixture density 𝑀𝑥𝑁 of 𝐾 ≥ 2 normal 

density functions with mixing parameter(s) 𝜋𝑖 denoting the probability of being in state  𝑖 

(characterized by the 𝑖th density) and assumed constant over time. Furthermore, 0 ≤ 𝜋𝑖 ≤ 1 and 

∑ 𝜋𝑖
𝐾
𝑖=1 = 1, and 𝛺𝑡−1 is the information set available at time t-1. The parameters must satisfy  

𝑎𝑖 ≥ 0 and 0 ≤ 𝛽𝑖 < 1 to guarantee non-negative component variances. In addition, the 

necessary parameter restrictions to ensure finite and positive total unconditional variance are:  

 

𝜔𝑖 + 𝑎𝑖
𝐴

𝐵
> 0,  

𝐴 = ∑ 𝜋𝑖𝜇𝑖
2𝐾

𝑖=1 + ∑ 𝜋𝑖𝜔𝑖(1 − 𝛽𝑖)
−1𝐾

𝑖=1 > 0,  

𝐵 = ∑ 𝜋𝑖(1 − 𝑎𝑖 − 𝛽𝑖)(1 − 𝛽𝑖)
−1 > 0,𝐾

𝑖=1             (2) 

 

where, 𝐴 𝐵⁄ = 𝐸(𝜀𝑡
2) = 𝐸(𝜎𝑡

2) and (𝜔𝑖 + 𝑎𝑖𝐸(𝜎𝑡
2))(1 − 𝛽𝑖)

−1 = 𝐸(𝜎𝑖𝑡
2), are the total 

unconditional variance and the unconditional component variances, respectively. In addition, the 

total conditional mean 𝜇 and variance 𝜎𝑡
2, which are weighted (based on 𝜋𝑖’s) combinations of 

the individual GARCH components, can be written as:  

 

𝜇 = ∑ 𝜋𝑖𝜇𝑖,
𝐾
𝑖=1               (3) 

𝜎𝑡
2 = ∑ 𝜋𝑖

𝐾
𝑖=1 (𝜇𝑖

2 + 𝜎𝑖𝑡
2) − (∑ 𝜋𝑖𝜇𝑖

𝐾
𝑖=1 )2.           (4) 

 

 Let 𝜃 = (𝜋1, … , 𝜋𝐾−1; 𝜇1, … , 𝜇𝐾; 𝜔1, … , 𝜔𝐾; 𝑎1, … , 𝑎𝐾; 𝛽1, … , 𝛽𝐾) be the vector of 5𝐾 −

1 parameters. Under conditional normality within each state, the density function can be 

represented as a weighted sum of 𝐾 normal state densities and the log-likelihood function can be 

constructed recursively, in the same way as in a GARCH model as:  

 

𝑙𝑛𝐿(𝑟𝑡; 𝜃) = ∑ 𝑙𝑜𝑔 [∑
𝜋𝑖

2𝜋𝜎𝑖𝑡

𝐾
𝑖=1 𝑒𝑥𝑝 {

−(𝑟𝑡−𝜇𝑖)2

2𝜎𝑖𝑡
2 }]𝑡 .           (5) 

 

The  𝑀𝑥𝑁(𝐾) − 𝐺𝐴𝑅𝐶𝐻 model, applied here in shipping portfolios for the first time, gives 

rise to rich dynamics and has distinct advantages. Unlike standard GARCH, the model allows for 

time-variation in skewness and kurtosis (Alexander and Lazar, 2006 and Haas et al., 2004) and is 

flexible towards volatility persistence. In the presence of heavy tails, asymmetries and structural 
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breaks, GARCH models encounter high volatility persistence (Lamoureux and Lastrapes, 1990) 

which leads to underestimation of risk and misleadingly high predictability. In particular, the 

decomposition of the conditional variance process is open to economic interpretation and 

component densities differentiate between states depending on market conditions (Ball and 

Torous, 1983). Finally, the 𝑀𝑥𝑁(𝐾) model is able to efficiently mix stationary and non-stationary 

variance components, while the total process remains non-explosive (Wong and Li, 2001). 

 

2.1.1. Conditional correlation structure    

 

Financial applications, such as portfolio selection and risk management, rely on the 

covariance structure of underlying returns. The simplest way of modelling correlation is to 

assume a constant relationship among variables. Engle (2002) and Tse and Tsui (2002) suggest 

making the correlation matrix time-dependent, implementing GARCH-type dynamics. 

Multivariate GARCH has become a widely used financial analysis tool. A shortcoming is the 

well-known curse of dimensionality, as the number of model parameters increases rapidly with 

the dimension of the system. To moderate computational demands, correlation models are often 

based on the partition of the conditional covariance matrix to correlations and volatilities.  

Let 𝑟𝑡 = [𝑟1𝑡, 𝑟2𝑡, … , 𝑟𝑁𝑡] represent a vector of 𝑁 asset returns with 𝐻𝑡 the [N x N] 

covariance matrix at time t. 𝐻𝑡 can be decomposed to 𝐷𝑡𝑅𝑡𝐷𝑡, where 𝐷𝑡 is a diagonal matrix 

defined as diag(𝜎1,𝑡, 𝜎2,𝑡, … , 𝜎𝑁,𝑡) and 𝑅𝑡 = [𝜌𝑖𝑗,𝑡] is positive definite with 𝜌𝑖𝑖,𝑡 = 1, for 𝑖 =

1,2, … 𝑁, for every t. We build our formulation on Aslanidis and Casas (2013) who propose a 

kernel based semi-parametric estimator of the conditional cross-correlation matrix 𝑅𝑡 with time 

as the dependent variable (see Long et al., 2010 for an alternative specification). Further, assume 

a smooth function on (0,1) such that 𝜌𝑖𝑗,𝑡 = 𝜌𝑖𝑗(𝜏), 𝜏 = 𝑡/𝑇, for 𝑡 = 1, 2, … 𝑇. If 𝑧𝑡 are the 

standardized residuals after parametric estimation of 𝐷𝑡, 𝑅𝑡 has the following structure: 

 

 𝑣𝑒𝑐ℎ(𝑄𝜏) = ∑ 𝑣𝑒𝑐ℎ(𝑧𝑡𝑧𝑡
′)𝑇

𝑡=1 𝑘𝑏(𝑡 − 𝜏)
𝑠2−𝑠1(𝑡−𝜏)

𝑠0𝑠2−𝑠1
2 , 

𝑅𝑡 = (𝑄𝑡
∗)−1𝑄𝑡(𝑄𝑡

∗)−1,             (6) 
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where, 𝑠𝑗 = ∑ (𝑡 − 𝜏)𝑗𝑘𝑏(𝑡 − 𝜏)𝑇
𝑡=1  for 𝑗 = 0, 1, 2, 𝑘𝑏(∙) = (1 𝑏⁄ )𝑘(∙ 𝑏⁄ ) with 𝑘 a symmetric 

kernel function concentrated around the origin, 𝜏 is the focal point, and b a bandwidth parameter.7 

𝑄𝑡
∗ is a [𝑁𝑥𝑁] diagonal matrix with its main diagonal equal to the square root of the diagonal 

elements of the pseudo-correlation matrix Qt (to ensure correlations lie within [-1, 1]). As such, 

Qt is derived from the N standardized residuals 𝑧𝑖,𝑡 =  𝜀𝑡 𝜎𝑖,𝑡⁄  obtained from Eq. (1). The model 

requires no assumption for the joint distribution of asset returns, is able to capture structural 

changes in its functional form and does not impose a particular structure to the data.   

In practice, estimation follows a sequential approach. Initially, 𝐷𝑡 is obtained 

parametrically (Eq. 1) by maximizing the 𝑙𝑛𝐿 (Eq. 5). Then, we utilize the information content of 

the univariate mixture distribution structure to estimate state-dependent correlations non-

parametrically. To illustrate, consider 𝑁 assets, each following a mixture of K normal 

distributions, i.e., 𝐾 independent asset-specific components (states). This accounts for the 

possibility that asset-specific states might display diversity, i.e., one being in the low and another 

in the high variance states. We link the N processes by estimating a joint weight matrix 𝛱 based 

on the state probabilities of the 𝐾 asset-specific components, computed as: 

 

𝛱 = (

𝜋1,1

…
𝜋𝐾,1

) ⊗ (

𝜋1,2

…
𝜋𝐾,2

) ⊗ … (

𝜋1,𝑁

…
𝜋𝐾,𝑁

) ,           (7) 

 

where, ⊗ is the Kronecker product and 𝜋𝑖,𝑗 the probability of asset 𝑗 being in state 𝑖. 

Consequently, the 𝑁𝑥𝑁 joint system will involve a 𝐾𝑁-component ‘combined’ processes with 

constant frequencies of occurrence 𝛱. This will result in 𝐾𝑁 vectors of standardized component-

dependent residual combinations, consequently 𝐾𝑁 component-dependent correlation matrices 

𝑅𝑡, which are directly affected through component volatilities. Finally, component correlations 

are weighted depending on 𝛱, to calculate the total 𝑁(𝑁 − 1) 2⁄  conditional correlations, which 

are directly affected through the mixing parameters.  

Our multivariate formulation (Eq. 1, 6 and 7) results in a versatile multi-component 

system. Although common forces drive asset price returns and asset-specific market conditions 

                                                           
7 Note that a single bandwidth is used for all co-movements, which ensures that Qt is positive definite. It is obtained 

through least squares as in Aslanidis and Casas (2013), i.e., 𝑎𝑟𝑔 min
𝑏

∑ [𝑣𝑒𝑐𝑙(𝑧𝑡𝑧𝑡
′) − 𝑣𝑒𝑐𝑙(𝑄−𝑡)]2𝑇

𝑡=1 .  
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(in our case shipping stock market states), we do not lose valuable information such as correlation 

breakdowns that might arise from the possibility that two segments of the industry might not be 

simultaneously at the same state. For example, Nomikos and Pouliasis (2015) use a factor Markov 

switching framework and find that, when one market is in the low- and the other in the high-

variance state, it is more likely to observe lower correlations.  

 

2.2. Value-at-Risk Empirical Framework 

 

A primary concern of investors is the ongoing level of market risk in their portfolios VaR. 

The c% VaR on day t is the quantity 𝑉𝑎𝑅𝑡
𝑐 such that:  

 

 𝑃(𝑟𝑡 < 𝑉𝑎𝑅𝑡
𝑐|𝛺𝑡−1) = 𝑐,                              (8) 

 

where, 𝛺𝑡−1 = 𝜎{𝑟𝑠: 𝑠 ≤ 𝑡}. 𝑉𝑎𝑅𝑡
𝑐 is the cth percentile of the return distribution referred to as 

coverage rate, i.e., the probability that the lower tail VaR will be exceeded on a given day. The 

time t VaR with confidence 100(1-c)% is based on 𝛺𝑡−1 and given predictions of (�̂�𝑡, �̂�𝑡) can be 

quantified as 𝑉𝑎𝑅𝑡
𝑐 = �̂�𝑡 + 𝐹−1(𝑐)�̂�𝑡, where F is a cumulative distribution function. We consider 

𝑐 = 0.01, 0.05 and 0.10 which yield one-sided 99%, 95% and 90% confidence intervals, 

respectively. VaR0.01, VaR0.05, VaR0.10 denote the lower tail estimates (long positions) and 

VaR0.99, VaR0.95, VaR0.90 the upper tail estimates (short positions). Thus, results will be robust to 

a possible bias in the risk measure due to the fixing of the confidence level and will also provide 

evidence for investors of different risk tolerance levels.  

 

2.2.1. VaR performance evaluation  

 

VaR estimates are evaluated by likelihood ratio tests for unconditional (LRUC) and 

conditional (LRCC) coverage. LRUC tests whether the observed probability of realizing a loss 

which exceeds the forecasted VaR is equal to 𝑐, i.e., 𝐻0: �̂� = 𝑐, where �̂� = 𝑛/𝑇 is the empirical 

coverage rate over the observation period {1, ..., T} and n the number of times that actual loss 

exceeds VaR. LRCC (Christoffersen, 1998) is a joint test of correct unconditional coverage and 

independent violations against the alternative of a first-order Markov process for violations. Let 
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nij be the number of violations (i = 1) or non-violations (i = 0) followed by violations (j = 1) or 

non-violations (j = 0), and �̂�𝑖𝑗 the corresponding transition probabilities. Under independent and 

identically distributed (iid) Bernoulli violations, LRUC and LRCC are asymptotically distributed as 

𝜒2(1) and 𝜒2(2), respectively:  

 

𝐿𝑅𝑈𝐶 = 2[𝑙𝑛(�̂�𝑛(1 − �̂�)𝑇−𝑛) − 𝑙𝑛(𝑐𝑛(1 − 𝑐)𝑇−𝑛)],              (9) 

 𝐿𝑅𝐶𝐶 = 2[𝑙𝑛((1 − �̂�01)𝑛00�̂�01
𝑛01(1 − �̂�11)𝑛10�̂�11

𝑛11) − 𝑙𝑛(�̂�𝑛(1 − �̂�)𝑇−𝑛)].    (10) 

 

In addition, to assess loss severity, we employ two loss functions. We use the Regulatory 

Loss Function (RLF; Lopez, 1998) which measures the magnitude of violations; this is essential 

because even a single extreme violation might lead to financial distress. However, RLF does not 

consider the associated costs, i.e., the capital forgone from over-predicting the true VaR. 

Companies need to consider not only safety but also the objective of profit maximization. This is 

a measure of fit of the predicted tail for a given confidence level. So, as the Firm’s Loss Function 

(FLF), we consider the predictive quantile loss which controls for the diverse implications of 

under and over-prediction: 

 

𝑅𝐿𝐹𝑡 = 𝟏{𝑟𝑡<𝑉a𝑅𝑡
𝑐}(𝑟𝑡 − 𝑉a𝑅𝑡

𝑐)2,                             (11) 

𝐹𝐿𝐹𝑡 = (𝑟𝑡 − 𝑉a𝑅𝑡
𝑐)(𝑐 − 𝟏{𝑟𝑡<𝑉a𝑅𝑡

𝑐}).                                (12) 

 

2.2.2 Testing causality in tails 

 

Tail co-movement between two distributions and causality (Granger, 1969) in risk is 

examined using the Hong et al. (2009) kernel-based test. We define large risk at a specific 

confidence level, when actual loss exceeds VaR at the given level. This way, extreme downside 

risk spillover between markets can arise not only from co-movements in mean and in variance, 

but also from co-movements in higher order conditional moments, even in the absence of 

causality in mean (Granger, 1969) and/or in variance (Granger et al. 1986).  

Let {𝑟1,𝑡}
𝑡=1

𝑇
, {𝑟2,𝑡}

𝑡=1

𝑇
 be the returns of the two sectors with 𝛺𝑗,𝑡 = 𝜎{𝑟𝑗,𝑠: 𝑠 ≤ 𝑡}, 𝑗 = 1, 2 

denoting the individual information set up to t based on 𝑟𝑗, and associated 𝑉𝑎𝑅𝑗,𝑡
𝑐  and 𝛺𝑡 =

𝜎{𝑟𝑠: 𝑠 ≤ 𝑡} the overall information set based on (𝑟1, 𝑟2). If the following null hypothesis holds: 
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𝐻0: 𝑃(𝑟2,𝑡 < 𝑉𝑎𝑅2,𝑡
𝑐 |𝛺2,𝑡−1) = 𝑃(𝑟2,𝑡 < 𝑉𝑎𝑅2,𝑡

𝑐 |𝛺𝑡−1)                 (13) 

 

we say that the time series {𝑟1,𝑡} does not Granger-cause {𝑟2,𝑡} in risk at level c with respect to 

𝛺𝑡−1. Rejection of 𝐻0 implies that the time series {𝑟1,𝑡} Granger-causes {𝑟2,𝑡} in risk at level c, 

hence VaR exceedances in {𝑟1,𝑡} can be used to predict VaR exceedances in {𝑟2,𝑡}. Let �̂�𝑗,𝑡 =

𝟏
{𝑟𝑗,𝑡<𝑉𝑎𝑅𝑗,𝑡

𝑐 }
 be a VaR exceedance at time t and define �̂�(𝑙) the 𝑙th sample cross-covariance 

function between {�̂�1,𝑡} and {�̂�2,𝑡} as:  

 

�̂�(𝑙) = {
𝑇−1 ∑ (�̂�1,𝑡−𝑙 − �̂�1)(�̂�2,𝑡 − �̂�2), 0 ≤ 𝑙 ≤ 𝑇 − 1,𝑇

𝑙=1+𝑙

𝑇−1 ∑ (�̂�1,𝑡 − �̂�1)(�̂�2,𝑡+𝑙 − �̂�2), 1 − 𝑇 ≤ 𝑙 ≤ 0,𝑇
𝑙=1+𝑙

                 (14) 

 

where, �̂�𝑗 = 𝑇−1 ∑ �̂�𝑗,𝑡
𝑇
𝑡=1  is the empirical coverage rate with sample variance �̂�𝑗

2 = �̂�𝑗(1 − �̂�𝑗).  

Let 𝑘(𝑧) be a symmetric kernel satisfying 𝑘(0) = 1 and ∫ 𝑘2(𝑧)𝑑𝑧 < ∞
+∞

−∞
. Then, the test 

statistic of Hong et al. (2009, henceforth HS) at a given bandwidth, L, is given by: 

 

𝐻𝑆(𝐿) =
𝑇

√𝑣2(𝐿)
(∑ 𝑘2 (

𝑙

𝐿
)

�̂�2(𝑙)

�̂�1
2�̂�2

2
𝑇
𝑡=1 − 𝑣1(𝐿)),               (15) 

 

where, 𝑣1 is a centering and 𝑣2 a standardization constant given respectively, by 𝑣1(𝐿) =

∑ (1 −
𝑙

𝑇
) 𝑘2 (

𝑙

𝐿
)𝑇−1

𝑙=1  and 𝑣2(𝐿) = 2 ∑ (1 −
𝑙

𝑇
) (1 −

𝑙+1

𝑇
) 𝑘4 (

𝑙

𝐿
)𝑇−1

𝑙=1 . Under certain regularity 

conditions (Hong et al. 2009, Theorem 1), 𝐻𝑆(𝐿) → 𝑁𝑑(0,1) as 𝑇 →  ∞. 

 

3. Data Description 

 

The dataset comprises closing prices for shipping stocks traded in the U.S., from October 

30, 2003 to October 12, 2016, leading to a total of 3,261 trading days. The source for daily closing 

prices is Thomson Reuters Datastream. The stock data are grouped into five portfolios which are 

arithmetically weighted according to the market capitalization of each company. As of October 

2016, the first is the all-shares shipping index (henceforth, SS) that consists of N=64 shipping 
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stocks. The remaining four indices represent companies that derive their revenues primarily from 

tanker (TS, N=23), dry bulk (DS, N=21), container (CS, N=10) and gas (liquefied petroleum and 

natural gas) LNG/LPG (GS, N=10) segments of the shipping industry, respectively.  

The shipping industry encompasses various diverse sectors, according to the 

characteristics of the vessels involved. As there are different risk-return characteristics of shipping 

equity in the particular industry compared to conventional financial assets, shipping market 

comprises a number of sectors, which are not only defined by the vessel type. Different vessels 

have been designed to serve the purpose for which they are built. The economics of the sectors, 

which generate the demand for the freight service have been very important in determining the 

vessel characteristics, along with technical developments in vessel design. The economies of scale 

associated with seaborne transportation have led to the creation of specialized types of vessels of 

various sizes, which can transport commodities in different trade areas around the world. 

Therefore, specialized markets have been developed for each of these vessels, with common 

driving forces, but also with distinct features in terms of factors affecting demand and supply, and 

as a consequence, the risk and return profiles of the assets. As such, we examine a broad and 

rather general taxonomy of the industry (tanker, dry bulk, container and gas) and we follow the 

categorization of companies into segments according to Tradewinds publication. 

To eliminate the impact of survivorship bias, the sample consists of all stocks with 

available data during the sample period even if data availability begun after the starting date 

and/or finished before the end date of the sample period (i.e., the number of stocks included is 

variable). The constructed market capitalization indices constitute an approximation of the 

performance (and consequently exposure) to a given segment of shipping market using a 

corresponding portfolio of stocks.  

We note that, as the prices of stocks are directly proportional to company/sector 

performance, there is an interplay of factors that define how different risks among different 

segments are actually reflected in the aggregated stock index returns, including operating 

leverage, financial leverage, corporate growth opportunities, default risk, the business cycle, and 

industry conditions (see, for example, Drobetz et al., 2016b), in addition to operational 

characteristics, such as trade areas, oil prices or even segment-specific freight rate volatility, etc.8 

                                                           
8 To examine the degree at which stock return volatility dynamics reflect segment-specific market conditions we 

calculate Clarksea Index earnings (obtained from Clarckson’s Shipping Intelligence Network) and segment-related 

shipping stock returns (idiosyncratic risk) weekly GARCH volatilities. The time series’ estimates indicate that the 
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Moreover, by examining market capitalization weighted equity performance as a whole, we 

recognize that pooling diverse firms together – e.g., high-leveraged vs. low-leveraged, hedging 

vs. non-hedging, diversified vs. non-diversified firms (in terms of the routes/trade areas, running 

on spot vs. time-charter contracts or both, etc.) may mask some exposures.  

For example, Samitas and Tsakalos (2010) find that the use of derivatives products by 

shipping companies can minimize business risks and improve their value and growth. El-Masry 

et al. (2010) report low exposures of shipping firms to exchange rate, interest rate and oil price 

risks (in line with Drobetz et al., 2010) suggesting that risk management has often been utilized 

to reduce the impact of such exposures. Therefore, to the extent that these risks are hedged away, 

they will not be reflected in the equity returns, even though, when operating a fleet such risks are 

present and efficient strategies to manage them need to be put in place. However, as stocks 

represent claims on the future profits, the volatility of stock returns of a sector should provide an 

adequate measure of the total uncertainty reflecting the characteristics of the sector. 

 

[INSERT TABLE 1] 

 

Table 1 provides summary statistics for the daily returns. Annualized mean returns are 

relatively low, as a result of the financial crisis, and range from -8.693% for the DS to 5.510% 

for the GS. The realized mean return of the SS is slightly positive, whereas CS and GS are the 

only segments with positive returns during the sample period. The annualized standard deviation, 

across all portfolios, ranges from 29.73% (CS) to 49.06% (DS). These figures correspond to 

Sharpe ratios from -0.177 (DS) to 0.167 (GS), which are rather low compared to S&P 500, i.e., 

0.289 (mean return of 5.52% and standard deviation of 19.1%) during the same sample period, 

indicative of shipping stock markets’ high uncertainty profile.  

If we exclude the 2008 financial crisis from the sample period, all indices exhibit higher 

average returns from 4.85% (GS) to 11.20% (CS) in excess of those presented in Table 1.9 

Standard deviations are relatively lower, from 295 (GS) to 977 (DS) basis points (bps). This 

                                                           
correlation for earnings-stock return volatilities is significantly positive and causality runs from earnings to stock 

markets, i.e., earnings’ volatilities precede increases in stock market riskiness. 
9 We considered August 9, 2007 and June 30, 2009 as the start and the end of the recent financial crisis. August 2007 

is when BNP Paribas stopped the redemption of its investment funds, which was followed by the liquidity squeeze in 

global financial market. June 2009 is when S&P 500 noticeably bypassed its lowest point observed in March 2009. 
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results in Sharpe ratios between -0.061 (DS) and 0.550 (CS); still lower than S&P 500 for the 

period, i.e., 0.759. Prior to the financial crisis (2003-2007), shipping stocks noted a Sharpe ratio 

of 1.477 (SS) which is rather high compared to 0.870 for S&P 500. This suggests that the recent 

global financial crisis amplified the shipping industry riskiness, as the standard deviation of their 

equity returns increased noticeably, and their returns turned to negative during that period. 

Moreover, non-negligible negative skewness and excess kurtosis signify that the 

unconditional distribution of shipping returns is not normal. Based on the Ljung-Box (1978) Q-

statistics the autocorrelation structure reveals strong persistence for each series. Engle’s (1982) 

ARCH test, carried out as the Q-statistic on the squared series, indicates the existence of 

heteroscedasticity for all returns. This provides preliminary evidence in support of the use of time-

varying conditional variance and further suggests that a model that can accommodate 

asymmetries and fat tails is more suitable in the analysis of shipping stocks return data with 

implications in both risk measurement and asset allocation.  

 

4. Empirical Results  

 

Parameter estimates appear in Table 2. N(1) is the standard GARCH with normal errors. 

MxN(2) and MxN(3) are, respectively, a mixture of two and three normals for the GARCH error 

structure. Model log-likelihoods (𝑙𝑛𝐿, Eq. 5) are also shown at the bottom of the table. Using 

standard likelihood ratio tests, computed as −2(𝑙𝑛𝐿𝑅 − 𝑙𝑛𝐿𝑈𝑅)~𝜒2(𝑟), MxN models provide a 

substantial increase in the 𝑙𝑛𝐿 function over N(1) at conventional significance levels and, further, 

restrictions on the parameters of the MxN(3) are not favoured; this implies that the postulated three 

component GARCH models provide a significant improvement in fit over the restricted model 

alternatives. 𝑙𝑛𝐿𝑅 and 𝑙𝑛𝐿𝑈𝑅 represent the 𝑙𝑛L for the restricted and unrestricted models, 

respectively, and r is the number of imposed restrictions. 

 

[INSERT TABLE 2] 

 

For both MxN(2) and MxN(3) the components/states of the mixture distributions are clearly 

differentiated. For example, the constituent means of the component processes are not equal, 

either in terms of sign and/or significance, hence capturing the observed skewness. Moreover, 
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MxN models exhibit asymmetry across the state variance dynamics with significant GARCH 

terms. Table 2 reports also the unconditional annualized ‘long-run’ component volatilities (𝜎𝑖𝑡) 

and parameters are listed first for the lowest and last for the highest 𝜎𝑖𝑡. Total unconditional 

volatilities (𝜎𝑡) figures are also shown for direct comparison with N(1).  

The volatility component with the lowest (highest) 𝜎𝑖𝑡 is associated with the highest 

(lowest) state probability (with the exception of DS); this is the frequency of the component 

occurrence within the estimation period and corresponds to the mixing weight (λi). Therefore, the 

models mainly capture two distinct states in volatility: first, a relatively ‘low’ volatility process 

(dominant state), which prevails most of the time and provides the main description of the smooth 

changes in daily volatility; second, a rather ‘high’ volatility state, which occurs less frequently, 

thus capturing unusual volatility episodes. The MxN(3) has one more component, the ‘medium’ 

volatility state, while the high volatility state, in some cases (e.g. GS and DS), could be interpreted 

as a ‘crash’ state (𝜎3𝑡>75%).  In general, weights are consistent with a relatively shorter duration 

of the high variance state, i.e., probabilities of 8.73% - 49.55% and 1.61% - 25.38% for the MxN(2) 

and MxN(3), correspond to an average duration of approx. 3.2 and 1.7 years, (based on our sample 

period of 13 years; 2013-2016). This is not surprising as the annualized volatility of the high 

variance state is rather elevated implying that it is associated with large shocks of transient nature, 

i.e., more than 30% p.a. (49.28% on average) for the MxN(2) and more than 39% p.a. (81.8% on 

average) for the MxN(3).  

In all cases, N(1) models generate highly persistent volatilities, i.e., 0.9698 < α11 + β1 < 

0.9865 with autoregressive coefficients around 0.84 to 0.87. For the component GARCH models, 

the low-variance states have degree of persistence close to 1 (MxN(2): 0.9733 < α11 + β1 < 0.9904 

and MxN(3): 0.8616 < α11 + β1 < 0.9853), whereas the degree of persistence increases with 

unconditional long-term volatility. For example, α12 + β2 lies between 0.9917 and 1.7973 for 

MxN(2) high variance state. Similarly for MxN(3), 0.9648 < α12 + β2 < 1.1341 and 1.0732 < α13 + 

β3 < 3.7678 for the medium and high variance states, respectively, which is in line with Haas et 

al. (2004), Alexander and Lazar (2006) and Nomikos and Pouliasis (2011), among others. Results 

so far illustrate that the standard GARCH specification is quite restrictive. For example, a 

GARCH parameter under the MxN specification can take a high value in one state and a low in 

another, whereas N(1) has the effect of averaging this parameter over the sample period; therefore, 

the model does a poor job of describing the data in either state.  
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All component models, but the MxN(2) for SS and TS, have non-stationary high volatility 

processes, nevertheless, the overall variance process is stationary in all cases, as parameter 

restrictions (Section 5.2) are not binding (results are available upon request). Furthermore, 

coefficients imply that the ‘low’ volatility component has low sensitivity to shocks (α11 < 0.19) 

that dissipate slowly, as evidenced by the relatively high lagged variance coefficient β1 > 0.87 

across sectors (excl. MxN(3) models for DS and TS for which  β1 > 0.69). On the contrary, for the 

‘high’ volatility, shocks affect the variance more and dissipate at a faster rate. This is also obvious 

from Figure 1.  

 

[INSERT FIGURE 1] 

 

Figure 1 illustrates the time evolution of conditional volatility in shipping equity portfolios 

obtained from the MxN(3) model. Presented is the total volatility process (rather than its 

components), as this is the effective estimate to be used for financial applications. For 

completeness, we show upper and lower bounds, calculated from the individual components (low, 

medium and high states). The upper bound process is clearly more variable than the lower bound 

or the total volatility. The upper bound coincides with the high volatility process and the lower 

bound reflects the low-volatility state. Note that there are exceptions (less than 10% of the time) 

as in the short run it is possible for the medium volatility to fall below (rise above) the low (high) 

volatility state process for a transient period of time. The last subplot of Figure 1 compares the 

time series for conditional volatility of SS obtained from the normal N(1) model with both the 

MxN(2) and MxN(3). From this perspective, there are some differences between the more advanced 

models and the GARCH model, in the range of -14% to 5% in annualized terms. When 

considering all indices, differences fluctuate historically from -15% to 25%.  

 

[INSERT FIGURE 2] 

 

Furthermore, there is another important difference between MxN and N(1) models. The 

basic GARCH formulation has zero conditional excess kurtosis as well as (un)conditional 

skewness, whereas models of finite mixtures accommodate diverse conditional distribution types 

because components contribute to conditional skewness (𝑠𝑡) and kurtosis (𝑘𝑡). Figure 2 displays 

time variation in the third and fourth conditional moments implied by MxN(2) and MxN(3) 

computed as follows (see Alexander and Lazar, 2006; Appendix A): 
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𝑠𝑡 =
3 ∑ 𝜋𝑖𝜇𝑖

𝐾
𝑖=1 𝜎𝑖𝑡

2 +∑ 𝜋𝑖𝜇𝑖
3𝐾

𝑖=1

(𝜎𝑡
2)

3/2 ,       (16) 

𝑘𝑡 =
3 ∑ 𝜋𝑖

𝐾
𝑖=1 (𝜎𝑖𝑡

2 )
2

+∑ 𝜋𝑖𝜇𝑖
2𝜎𝑖𝑡

2𝐾
𝑖=1 +∑ 𝜋𝑖𝜇𝑖

4𝐾
𝑖=1

(𝜎𝑡
2)

2 .       (17) 

 

Estimates in Figure 2 fluctuate within reasonable bounds. Interestingly, even in the case 

of portfolios with a more balanced component frequency (e.g. TS MxN(2) component weights are 

almost 50-50), the effects on higher conditional moments can be substantial. MxN(3) estimates 

encompass larger variability; this is in line with Alexander and Lazar (2006) who note that, the 

highest volatility component can sometimes be unstable. This seems to be the case for the 

observed erratic behavior of the GS. A possible interpretation is that one volatility component is 

associated with an unusually elevated unconditional volatility of close to 196% p.a with a 

probability of less than 2% (capturing mainly infrequent price jumps). 

Overall, the estimates of volatility and conditional higher moments presented, provide the 

observer with great insight into exactly how shipping equity risk has evolved during the last years 

across different segments of the market. Application of the MxN models provides, at least, some 

evidence on how shipping equity risk will react to a market shock across different market 

conditions. Accurate volatility estimates are useful for organizations to understand their 

limitations regarding risk exposures and use stress testing to gauge their vulnerabilities to “tail 

events”. The fact that MxN models fit the data better implies that they may yield even greater 

benefits in terms of understanding and optimizing the decision-making process. Therefore, this 

makes it important to explore the practical modelling issues investors have to consider while 

implementing risk management systems. The next section, quantifies the concerns from the 

viewpoint of regulators and policy-makers, who are interested in the likelihood of financial 

distress, and investors in the shipping industry, who also face the objective to maximize profits 

and need to balance capital forgone from over-predicting the true risk.  

 

4.1. Value-at-Risk Forecasts and Robustness Tests 

 

Institutional investors and portfolio managers employ a variety of risk models. Therefore, 

it is imperative to validate each model’s relative performance as VaR constitutes the basis to 



 

21 
 

quantify the minimum capital to cover market risk. In this section, we conduct an out-of-sample 

back-testing analysis to examine model ability in predicting a loss.  

For the computational analysis, the setup of our experiments is as follows. We estimate 

the parameters of the MxN(2) and MxN(3) models and two benchmarks: the single component 

GARCH (N(1)) and the static historical volatility model (R Vol).10 Initial estimation utilizes a 

history of data over the period October 30, 2003 to October 31, 2008. This period contains 1,260 

return observations for each index, used to derive the 1-day-ahead VaR for both long (buy) and 

short (sell) positions at 99%, 95% and 90% confidence levels.11 Through a rolling window 

forecasting scheme, the procedure is repeated for all days in the sample, resulting in 2,000 sets of 

parameter values for each model. Forecasts are based on these estimates. Thus, the out-of-sample 

analysis includes the period November 3, 2008 to October 12, 2016, i.e., 2,000 days.  

 

[INSERT TABLE 3] 

 

The first set of results is summarized in Table 3. The table shows the realized % number 

of violations 𝑛, i.e. �̂� = 𝑛/𝑇, the % number of instances where 𝑟𝑡 < 𝑉a𝑅𝑡
𝑐. All models produce 

few outliers and �̂� is very close to the theoretical value. Formal likelihood ratio tests to validate 

correct unconditional coverage, 𝐿𝑅𝑈𝐶  (𝐻0: �̂� = 𝑐); only R Vol and N(1) produce significant 

outliers, for the DS and GS cases. Conditional coverage tests, 𝐿𝑅𝐶𝐶 (testing violations clustering) 

further show that the MxN(3) (MxN(2)) models pass both tests in 26 (23) out of 30 cases, whereas 

the benchmarks in a total of 11 cases. To consolidate all information, we translate each empirical 

coverage rate �̂� into a percentage relative to the theoretical coverage rate 𝑐, ie.,  𝜉𝑐 = |�̂� 𝑐⁄ − 1|. 

Then, by averaging 𝜉𝑐’s across all VaR estimates for both tails of the distribution, we obtain a 

single coverage-based ranking criterion of the % of violations across all confidence levels (see 

also Alexander and Lazar, 2006). In all sectors, the order of ranking in terms of correct number 

of exceedances is MxN(3), MxN(2), N(1) and R Vol.  

                                                           
10 The R Vol model is equivalent to a random walk of log-return with a constant in-sample volatility (yet, out-of-

sample forecasts fluctuate in a rolling scheme framework). 
11 Note that, confidence level reflects the degree of risk aversion of the investor. In the dry bulk shipping sector, for 

example, Cullinane (1991) reports evidence of risk-neutral of risk-loving shipowners. Lower risk aversion implies a 

smaller amount of capital should be used to cover possible losses, thus leading to a lower confidence level, i.e., the 

lower the investor's risk aversion, the lower the confidence level will be chosen. 
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In addition, Table 3 shows that from the perspective of a regulator (Eq. 11), MxN models 

give the smallest loss in 28 out of 30 cases, while MxN(3) is found best in 26 cases. For example, 

banks need to ensure that entities for which they have granted loans are apposite to the scale of 

the services they provide, investments they undertake and liabilities they incur. In shipping, where 

even operational decisions involve vast sums of money, there is strong potential for the practical 

implementation of such measures to quantify exposures and control risks (e.g., if managers are 

given a mandate to keep VaR below a certain level and this is exceeded, they will have to 

deleverage portfolios from instruments triggering high VaRs; as such, VaR can be seen as a type 

of dynamic hedging).  

Besides allowing regulators to effectively supervise globally active firms (having a 

consistent and comparable quantitative standard), note that, the demand for portfolio managers to 

produce VaR reports may also come from the senior management of their firms or from clients; 

it essentially provides an efficient risk calculation framework that enables portfolio managers and 

investors to measure market risk accurately. Similarly, from the viewpoint of a company (Eq. 12), 

reports in Table 4 suggest that benchmarks do rather poor, i.e., MxN models are superior in 27 

(16 for MxN(3) and 11 for MxN(2)) out of 30 cases, with the R Vol and N(1) being significantly 

outperformed in all and 17 cases, respectively.12 The results are robust in favour of the MxN(3), 

irrespective of the loss function, the level of confidence and the sector. However, relative to 

MxN(2) differences seem marginal.  

 

[INSERT TABLE 4] 

 

The last column of Tables 3 and 4 rank the models after consolidating information across 

all confidence levels and tails. As loss functions are not comparable at different confidence levels, 

we construct a consolidated measure for each model and sector; each model’s loss function 𝐿𝐹 =

{𝑅𝐿𝐹, 𝐹𝐿𝐹} is translated into a percentage relative to the minimum achieved loss (across models) 

for a specific confidence level, i.e., adj. LF𝑖
𝑐 = LF𝑖

𝑐 min{LF1
𝑐, … , LF𝑗

𝑐} − 1⁄ , where LF𝑖
𝑐 is the ith 

                                                           
12 To arrive at this result, we consider pairwise loss function differentials and test the null hypothesis of superior 

predictive ability. The p-values are provided from Hansen (2005) using the stationary bootstrap of Politis and Romano 

(1994); the number of bootstrap simulations is set to 10,000. Similar procedures have been applied to test VaR 

forecasts by Gonzalez-Rivera et al. (2004) and Nomikos and Pouliasis (2011), among others. For technical details, we 

refer to Hansen (2005); a description of the stationary bootstrap algorithm can also be found in Politis and Romano 

(1994) and Sullivan et al. (1999, Appendix C).   
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model and j the number of models. Then, adj. LF𝑖
𝑐’s are averaged across all VaRs, to obtain a loss 

function-based ranking criterion. The ranking clearly favours MxN(3) for both loss functions. 

Our results indicate that the proposed model outperforms traditional modelling volatility 

structures. Tables 3 and 4 show that the MxN model produces superior forecasts relative to the 

benchmarks and matches more accurately the moments of the predictive distribution of stock 

price changes. These results include out-of-sample VaR forecasts for unconditional and 

conditional coverage, regulatory and firm loss functions.13 The substantial improvements in the 

out-of-sample forecasts, relative to popular benchmarks, should facilitate financial management 

decisions irrespective of who conceptualizes risk (regulator vs. firm).  

The users of the particular framework can benefit from gaining information on risk 

analytics which, in turn, have the capacity to expose risk management weaknesses and further 

inform the decision-making process (to assess resilience to tail risk events and implement risk 

mitigation policies). Since the probability and magnitude of a future loss directly influence 

borrowing costs, creditworthiness, profitability, and commitment of resources, among others, 

determination of risk helps improve investment decisions and portfolio holdings. In general, it 

provides decision-makers with improved tools to make better policy decisions. Understanding 

and subsequently quantifying risk conveys not only information about the relative risk of different 

segments in the shipping markets but can signal the need for change in operating decisions, as a 

proactive measure towards sustainability. 

 

4.2. Tail Risk Spillovers  

 

Controlling extreme downside market risk is relevant for risk management and investment 

diversification purposes. Most of the existing literature uses volatility to measure risk and focuses 

on volatility spillover (see for example, inter alios, King and Wadhwani, 1990 and Lin et al., 

1994). Although volatility is an important input for controlling and monitoring risk it can only 

represent small risks in practice, let alone risk in scenarios of infrequent extreme movements. For 

                                                           
13 As a control process, in order to avoid any results which are sample-depended, we repeat the analysis presented in 

Tables 3 and 4 using annual rolling windows of daily observations, i.e., {1-250}, {2-251},…{1751-2000}. Results are 

qualitatively equivalent between the different sub-samples; MxN volatility models still hold Ranks 1 and 2 of the 

empirical coverage, quadratic loss and quantile loss criteria. In particular, the models are found superior 70%-90% 

(empirical coverage), 72%-95% (quadratic loss) and 70%-96% (quantile loss) of the samples tested. For the sake of 

brevity, the results are not included in the paper, but are available upon request. 
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example, Bae et al. (2003) point out that contagion is a phenomenon associated with extreme 

returns, i.e., large and small return shocks do not share the same transmission function. Aiming 

to investigate the existence of bilateral Granger-causal relationships interconnecting large losses 

of shipping sectors, we use VaR at 99% and 95% as a measure of extreme risk. To this end, we 

use the MxN(3)-based VaR model violations to define extreme risk as this model proved to be the 

most efficient and robust in the back-testing evaluation.  

We conduct two directional tests for one-way causality in risk for each pair of portfolios, 

for the left and right distribution tails, adopting the Daniell kernel 𝑘(𝑧) = sin(𝑧𝜋) (𝑧𝜋)⁄  as 

suggested by Hong et al. (2009). We also consider extreme risk spillover between S&P 500 and 

the shipping indices; note that the VaR modelling approach for S&P 500 follows the same 

procedure, i.e., the MxN(3) formulation. The bandwidth is set to L = 5, 10 and 15.  

 

[INSERT TABLE 5] 

 

Table 5 reports the HS(L) statistic (Eq. 15) at the 1% and 5% risk levels. At the left tail of 

the distribution and the 1% risk level in Panel A (market-wide effects), there is a two-way 

feedback mechanism of extreme risk spillover between S&P – SS, TS and DS regardless of the 

bandwidth. The test, which checks risk causality from S&P to CS, also yields significant statistic 

values, but spillover does not exist two-ways. For GS, evidence for dependence is not convincing. 

Next, in Panel B, we report the industry-wide spillover effects between SS and the individual 

sectors. At the 1% risk level (left tail), there is significant extreme risk spillover from SS to all 

other sectors. Risk causality from the sectors to the all-shares index are similar, with the exception 

of GS, which is significant only for L = 15, suggesting that there may only exist weak extreme 

risk spillover. Panel C provides the results for inter-sector spillover effects. TS and DS Granger 

cause all other sectors in risk, whereas there is a two-way feedback mechanism between TS and 

DS. There is some mixing evidence of weak spillovers from CS and GS to other sectors, but 

results are not consistent across different bandwidths.  

At left tail 1% risk level, there exists strong causality in risk, close to 78% of the time. 

The figure is 73%, 92% and 72% of the time for market-, industry- and inter-sector special cases, 

respectively. One-way risk spillover is strong at the 1% risk level but weak at the 5% risk level; 

HS statistics give smaller statistic values at the 5% risk level for each L. This is consistent with 

Hong et al. (2009) and most of the empirical findings in the literature that the codependency 
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between financial markets may be stronger in times of extreme downside movements. In total, at 

5% risk level, there is evidence of causality only in 16% of the cases considered, whereas strong 

evidence (irrespective of L) is only observed for S&P → DS, TS → GS and DS → SS. A further 

comparison reveals that for the right tail of the distributions, i.e., 95% and 99% VaR (equivalent 

to loss of short position), risk causality is significant in less than 10% of the cases, whereas 

consistent evidence (i.e. irrespective of L) is observed only for SS→ DS and TS→ SS. This is in 

agreement with various empirical findings in the literature suggesting that the degree of 

correlation between financial assets or markets often becomes stronger in large downside 

movements (Longin and Solnik, 2001), i.e., extreme negative returns propagate while positive 

ones are not equally contagious (Bae et al., 2003). 

In summary, we find that large falls in shipping stock prices come in clusters and one 

portfolio’s extreme loss in value has predictive power in other portfolios’ losses. Whether extreme 

risk spillover refers to market-wide, industry-wide or inter-sector effects, causality in risk is 

strong at the 1% risk level but not at the 5%, while evidence supports bear-market contagion 

(King and Wadhani, 1990; Lin et al., 2004). This suggests that sectoral VaR measures move in 

proximity to one another in periods of down markets, demonstrating the usefulness of forecasts 

to organizations interested in monitoring risk exposures and gauging their vulnerabilities to “tail 

events”. This fact should be taken into account by private and institutional investors interested in 

asset allocation and diversification. In particular, potential diversification gains dissipate during 

periods of extreme losses and high volatility as different shipping sectors exhibit high levels of 

co-movements. The results are of equal standing for regulators, providers of credit and shipping 

companies alike; since during crises shipping companies may find themselves in the difficult 

position of utilizing equities as a way for future prudent injections of debt, collateral for bank 

loans or bond issues, incentives for employees, and as a reflection of their market value. In 

addition, risk managers should not view firms of different shipping segments as stand-alone 

entities; in fact, as a part of a diverse set of interconnected components, there is a two-way 

feedback mechanism. Clearly, scenarios that breakdowns will occur are low probability events, 

but it is precisely risk assessments along such lines that are needed in policy analysis. This implies 

that risk control is only one part of the risk mitigation process; they also need to build resilience, 

so they can identify in a timely manner potential systemic shocks or make provisions for strategies 

to recover with minimum losses. Finally, following critical evaluation of the model, its theoretical 
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soundness and adequacy for intended use (see Section 4.1), VaR provides a strong communication 

tool about risk with clear regulatory concerns with regard to systemic risk. 

 

5. The Economic Value of Volatility and Correlation Timing 

 

This section presents a portfolio selection example. We first describe the formulation of 

the problem for measuring the economic value of volatility/correlation timing. Note that, market 

participants, besides taking into account volatility and correlation timing that relate to the vessel 

sectors may also consider other factors that affect equity allocations decisions in shipping. Recent 

literature relating to shipping markets suggests a range of strategies ranging from technical 

indicators to fundamental indicators (see for example, Alizadeh and Nomikos, 2007; and 

Papapostolou et al., 2014) and index tracking strategies (Andriosopoulos et al., 2013), among 

others. Another strand of the finance literature investigates also strategies based on the 

predictability of second moments (see for example, Marquering and Verbeek, 2004; Corte et al., 

2012). Following the previous section, we limit ourselves to the latter research field, for several 

reasons. First, Fleming et al. (2001) show that volatility timing is a key determinant of asset 

allocations. Second, the allocation decision itself is a function of volatility and correlation; hence 

conditional second moments’ timing may significantly affect such decisions. Finally, forecasting 

equity volatility and correlations has long been at the top of the research agenda in international 

finance, and yet empirical success from the transportation sector remains elusive. In this regard, 

we follow Fleming et al. (2001, 2003) to evaluate the performance of conditionally mean-variance 

efficient portfolios rebalanced daily, weekly and monthly based on model forecasts.  

 

5.1. Problem Formulation  

 

Let 𝑟𝑡+1 represent the 𝑁𝑥1 vector of risky asset returns, with conditional expectation 

µ𝑡+1|𝑡 = 𝐸𝑡[𝑟𝑡+1] and conditional covariance 𝐻𝑡+1|𝑡 = 𝐸𝑡 [(𝑟𝑡+1 − µ𝑡+1|𝑡)(𝑟𝑡+1 − µ𝑡+1|𝑡)
′
]. Our 

objective is to determine whether there is economic value in conditioning on volatility and 

correlation in shipping stock portfolios and, if so, which specification works best. In the ensuing 

analysis, we consider: (i) a maximum expected return rule that leads to a portfolio allocation on 

the efficient frontier for a given target volatility 𝜎𝑝
∗ and (ii) a minimum volatility rule that leads 
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to the best mean-variance allocation for a given target return µ𝑝
∗ . The investor’s problem and its 

solution, deliver the following optimum asset weights, for (𝑖) and (𝑖𝑖), respectively: 

 

 (𝑖) max
𝑤𝑡

{µ𝑝,𝑡+1 = 𝑤𝑡
′µ𝑡+1|𝑡 + (1 − 𝑤𝑡

′𝟏)𝑟𝑓};  𝑠. 𝑡.  (𝜎𝑝
∗)

2
= 𝑤𝑡

′𝐻𝑡+1|𝑡𝑤𝑡,  

𝑤𝑡 =
𝜎𝑝

∗ 𝐻𝑡+1|𝑡
−1 (µ𝑡+1|𝑡−𝑟𝑓𝟏)

√(µ𝑡+1|𝑡−𝑟𝑓𝟏)
′
𝐻𝑡+1|𝑡

−1 (µ𝑡+1|𝑡−𝑟𝑓𝟏)

;        (18) 

 

(𝑖𝑖) min
𝑤𝑡

{(𝜎𝑝
∗)

2
= 𝑤𝑡

′𝐻𝑡+1|𝑡𝑤𝑡} ;  𝑠. 𝑡.  µ𝑝
∗ = 𝑤𝑡

′µ𝑡+1|𝑡 + (1 − 𝑤𝑡
′𝟏)𝑟𝑓, 

𝑤𝑡 =
(µ𝑝

∗ −𝑟𝑓)𝐻𝑡+1|𝑡
−1 (µ𝑡+1|𝑡−𝑟𝑓𝟏)

(µ𝑡+1|𝑡−𝑟𝑓𝟏)
′
𝐻𝑡+1|𝑡

−1 (µ𝑡+1|𝑡−𝑟𝑓𝟏)
.       (19) 

 

The investor’s realized utility in period 𝑡 + 1 can be written as 𝑊𝑡𝑅𝑝,𝑡+1 −

0.5𝜆𝑊𝑡
2(𝑅𝑝,𝑡+1)

2
, where W is the investor’s wealth, 𝑅𝑝 the gross portfolio returns and λ an 

absolute relative risk aversion coefficient. To estimate the expected utility, �̅�, generated by a 

given level of the initial wealth 𝑊0, we hold  𝛿𝑡 = 𝜆𝑊𝑡 (1 − 𝜆𝑊𝑡)⁄  equal to a fixed value 𝛿 so 

that �̅� = 𝑊0 ∑ 𝑅𝑝,𝑡+1 − 0.5𝛿(1 + 𝛿)−1(𝑅𝑝,𝑡+1)
2𝑇

𝑡=1  (West et al., 1993; Fleming et al., 2001, 

2003). Our evaluation focuses on the fee, 𝛷, an investor is willing to pay for switching from one 

modelling strategy to another. This is equivalent to finding the value of 𝛷 that satisfies: 

 

∑ {(𝑅𝑝,𝑡+1
∗ − 𝛷) −

𝛿

2(1+𝛿)
(𝑅𝑝,𝑡+1

∗ − 𝛷)
2

}𝑇
𝑡=0 = ∑ {𝑅𝑝,𝑡+1 −

𝛿

2(1+𝛿)
(𝑅𝑝,𝑡+1)

2
} ,𝑇

𝑡=0      (20) 

 

where 𝑅𝑝,𝑡+1
∗  is the gross portfolio return constructed using the expected return, volatility and 

correlation forecasts from a certain model and 𝑅𝑝,𝑡+1 a benchmark’s gross return.  

Finally, we set out to incorporate transaction costs, as their impact is indispensable from 

assessing the profitability of trading rules. In particular, if any gain does not cover the extra cost, 

less accurate but less variable weighting strategies would prove superior. Following Marquering 

and Verbeek (2004), we subtract transaction costs from the net portfolio return ex-post. Although 

mean-variance portfolios are no longer optimal in the presence of transaction costs, this 
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approximation remains simple and tractable in the mean-variance setting. The net of transaction 

costs return, 𝑅𝑝,𝑡+1
∗,𝑛𝑒𝑡

, is calculated as (see also DeMiguel et al., 2009):  

 

𝑅𝑝,𝑡+1
∗,𝑛𝑒𝑡 = 𝑅𝑝,𝑡+1

∗ (1 − 𝑡𝑐 ∑ |𝑤𝑖,𝑡+1 − 𝑤𝑖,𝑡|𝑁
𝑖=1 ),         (21) 

 

where, 𝑡𝑐 is the proportional transaction cost. The cost of each trade over 𝑁 assets can be 

represented by the portfolio turnover 𝑡𝑐 ∑ |𝑤𝑖,𝑡+1 − 𝑤𝑖,𝑡|𝑁
𝑖=1 ; the fraction of the liquidated or 

reallocated portfolio value at rebalancing points. Once the return is adjusted, 𝛷 is re-calculated.  

 

5.2. Asset Allocation Results  

 

We consider the univariate MxN models examined so far with the Semi-Parametric 

Conditional Correlation (SPCC) approach described in Section 2.1.1. Figure 3 displays the 

correlation dynamics between pairs of shipping portfolios (TS, DS, CS and GS). These are in-

sample estimates based on the period October 2003 – October 2016. The figure depicts the total 

conditional correlation obtained from the MxN(3)-SPCC with corresponding upper and lower 

bounds estimated from the 𝐾𝑁 (=81) component correlation processes. For comparison, 

correlation estimates of the Dynamic Conditional Correlation GARCH (N(1)-DCC) are also plotted. 

Aslanidis and Casas (2013) note that the semi-parametric approach improves on the DCC for 

gradual, rapid changes and structural breaks in correlations. We can see that MxN(3)-SPCC is a 

smoother estimator for N(1)-DCC. Moreover, when the financial crisis started towards the third 

quarter of 2007, there was a strong momentum in correlations across all cases until the end of 

2009. This confirms the results of extreme risk causality and bear market contagion in Section 

4.2. This pattern is the same across all pairs. In general, correlations fluctuate from approximately 

15% to 85% indicating strong dependence with two local lows in 2011 and 2014.  

 

[INSERT FIGURE 3] 

 

Next, we assess the economic value of volatility and correlation timing by analysing 

dynamically rebalanced portfolios at daily, weekly and monthly frequencies, constructed using 

the set of candidate multivariate models and 𝑁 = 4 risky assets, i.e., TS, DS, CS and GS indices. 

Portfolio weights are calculated on an out-of-sample basis for the period 3 November 2008 to 12 
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October 2016, i.e., 2,000 sets of optimum weights. The benchmark against which we compare the 

MxN specifications is the single component GARCH model with either semi-parametric 

correlations or the DCC parameterization of Engle (2002). The static-covariance (R Vol) is also 

considered, where optimal weights will vary across models only because of re-estimation at each 

step of the out-of-sample period.  

 

[INSERT TABLE 6] 

 

In Table 6, we consider two ‘conservative’ strategies, i.e., maximum expected return with 

target conditional volatility 𝜎𝑝
∗ of 10% (Eq. 18); and minimum volatility with target return µ𝑝

∗  of 

10% (Eq. 19). We also examine two ‘aggressive’ strategies where 𝜎𝑝
∗ = 20% (maximum return) 

and µ𝑝
∗ = 20% (minimum volatility). At a quick look, for the maximum expected return rule, 

return is maximized for MxN(2) whereas volatility target is closer to the GARCHDCC. For the 

minimum volatility rule, volatility is minimized for MxN(3) and return target is closest to the 

MxN(3). In general, the annualized Sharpe Ratios (SR) calculated from MxN approaches with 

SPCC correlations (MxN-SPCC), across all rebalancing frequencies, are higher than the benchmark 

R Vol and GARCH models, i.e., 0.695 to 0.913 (0.507 to 0.940) for the maximum expected return 

(minimum volatility) rules, compared to 0.438 to 0.752 (0.068 to 0.532) for the alternative 

specifications; note that SRs do not change with different target multipliers.  

However, SRs can be misleading (Marquering and Verbeek, 2004; Han, 2006) and are not 

able to quantify exact economic gains. Thus, we compute the Modigliani and Modigliani (1997) 

measure which evaluates the abnormal return a strategy would have earned if it had the same risk 

as a benchmark, i.e., 𝑀2 = 𝜎𝑏𝑒𝑛𝑐ℎ(𝑆𝑅𝑝 − 𝑆𝑅𝑏𝑒𝑛𝑐ℎ), with 𝜎𝑏𝑒𝑛𝑐ℎ and 𝑆𝑅𝑏𝑒𝑛𝑐ℎ  the volatility and 

SR of the benchmark (R Vol), respectively. 𝑀2 results in Table 6 (annualized fees in bps) suggest 

that MxN outperforms R Vol and GARCH models; Panel A, 90-675 vs. 282-1036 bps, and Panel 

B, 323 -1314 vs. 657-2447 bps (across all rebalancing frequencies).  

Table 6 shows also the maximum utility performance fee, 𝛷δ=6 (Eq. 20), for switching 

from R Vol benchmark to the different model specifications. We set 𝛿 = 6 (Marquering and 

Verbeek, 2004; Han, 2006) and report 𝛷 in annualized bps. The maximum return (Panel A) and 

minimum volatility (Panel B) strategies display similar results, but fees are more pronounced for 

minimum volatility strategies. In Panel A (daily rebalancing), the fees for switching from R Vol 
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to the N(1) approaches are 113-167 bps for 𝜎𝑝
∗ = 10%, and 215-337 bps for 𝜎𝑝

∗ = 20%. For MxN 

models, fees rise to 280-467 bps when 𝜎𝑝
∗ = 10%, and 561-933 bps when 𝜎𝑝

∗ = 20%. In Panel B 

(daily rebalancing), the corresponding fees for switching from R Vol to the N(1) models are 400-

641 bps for µ𝑝
∗ = 10%, and 664-1168 bps for µ𝑝

∗ = 20%. Again, MxN models have higher fees; 

595-807 bps for µ𝑝
∗ = 10%, and 1217-1688 bps for µ𝑝

∗ = 20%. Further comparisons across the 

different rebalancing frequencies imply that, although portfolio volatilities increase, fees improve 

for weekly and monthly rebalances, while SRs are superior at weekly rebalancing intervals. To 

this point, the general conclusion is that the MxN model improves the ability to construct optimal 

shipping portfolios, irrespective of the rebalancing frequency. Market fluctuations that do not 

conform to normal distributions can have an adverse effect on the investors’ wealth who make 

portfolio management decisions under uncertainty and impose real economic costs. Therefore, to 

the extent that our modelling approach can mitigate these effects, this offers additional 

justification for the proposed modelling framework as it has the potential of providing market 

participants with improved tools to support asset allocation decisions. 

As a robustness check, we also assess the impact of transaction costs on portfolio choice. 

We consider the conservative case of transaction costs equal to 50 bps per trade (see Eq. 21), also 

assumed in DeMiguel et al. (2009), among others. Table 6 shows the relevant performance fees, 

𝛷δ=6
𝑡𝑐 . Note also that this experiment ignores that R Vol benchmark has nonzero turnover and 

therefore also involves rebalancing costs (as weights are also updated each period), i.e., 

transaction costs for the R Vol is set to zero. The re-calculated performance fees of the dynamic 

strategies are still positive, with few exceptions for the N(1) model. The general reduction in the 

fees is of the magnitude, approximately, -35% on average, -22% for the conservative and -47% 

for the aggressive strategies. Still, MxN models involve lower cost of rebalancing. Results show 

a fee reduction of 20% compared to the single component GARCH models which is almost 50%; 

this is, 15% versus 30% for the conservative strategies. Yet, the notion of our results remains 

unchanged and there is evidence that, in addition to the considerable economic value associated 

with volatility and correlation timing, there is also high value specifically due to modelling 

volatility as a state dependent process. 

 

[INSERT FIGURE 4] 
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Figure 4 shows the weights based on the MxN(3)-SPCC after daily optimizations using the 

portfolios TS, DS, CS and GS. These correspond to the maximum return (a) and minimum 

volatility (b) strategies of the ‘conservative’ scenarios (see Table 6). Shaded areas show the 

implicit weights in 𝑟𝑓. The sign and magnitude of each of the weights depends on the expected 

returns and the conditional volatility and correlation forecasts. Given the volatility of the industry, 

swings in the weights seem to be pronounced. For example, the weight assigned to DS (TS) is 

generally negative because the average return on DS is negative (Table 1). The size of this 

position may decrease as DS volatility increases (correlation with other stocks drops).  

The assessment of stock volatility and correlation dynamics are critical issues for efficient 

dynamic portfolio management and firm valuation, thus of importance to private and institutional 

investors who are in search of different investment styles. Overall, our empirical findings confirm 

the elevated levels of risk which match the industry’s fundamentals, such as capital intensity and 

cash flow uncertainty. The framework we propose has implications for portfolio construction and 

risk management practices. It allows for conditional skewness and kurtosis, as well as differing 

persistence volatility levels and volatility clustering. It also takes into account non-parametric 

dynamic correlations - that do not require prior assumptions on the joint returns’ distribution – 

which tend to increase during market downturns (see also Section 4.2). Therefore, our approach 

facilitates the much-needed dynamic flexibility to the asset allocation process in a risky but yet 

indispensable sector of the economy. By doing so, it provides decision-makers with improved 

tools to make better investment decisions, while also enhancing their risk monitoring capability. 

It is important to note that shipping stocks is just one sectorial equity class among the 

several equity classes that nowadays international equity traders (and funds) are holding among 

different sectors. The importance of shipping stocks is highlighted by the fact that they offer a 

“natural diversification” in global equity portfolios with relatively lower correlations with stocks 

from other sectors. For example, for the period under investigation, U.S. shipping stocks generate 

relatively lower correlation with S&P500 (73.8% for SS and 56.6%-70.8% for the segments), 

whereas other sectors of the U.S. economy exhibit stronger linkages with S&P: correlations range 

from 76.1% (utilities) to 95.4% (industrials); calculations refer to the period under investigation. 

Previous research documents that shipping stock portfolios appear to be superior to standard 

market benchmarks but are associated with higher risk level (Syriopoulos and Roumpis, 2009). 

Moreover, augmenting a portfolio of stocks and bonds with shipping stocks can enhance 
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performance in terms of Sharpe ratios, yet the alleged diversification gains are unstable over time 

(Grelck at al., 2009). Drobetz et al. (2010) argue that the risk-return profile of the shipping 

industry is distinct and shipping stocks should be regarded as a separate asset class, suggesting 

that, an investor, whose goal is to maximize diversification gains, could further enhance the risk-

return spectrum by investing in shipping stocks. Furthermore, besides the shipping equity market, 

international investors have more diverse investment options, such as real estate, travel and 

leisure, aviation, mines, construction and infrastructure, among others. Having said that, equity 

investors in shipping also enjoy a diversification effect, as a result of typically low (or negative) 

correlation with other asset classes, such as bonds, commodities, real estate, hedge funds and 

private equity, among others. Creating diversified portfolios of different asset classes and 

measuring their performances, albeit an important research question, is left for future research. 

Finally, another promising research path avenue is to create different types of market 

segmentation based on the area of trading or operation, spot vs. time-charter intensity, or even 

vessel size, fleet age, etc.14 Therefore, we note that a different market segmentation than the one 

adopted here might lead to reasonable differences in asset allocation performance; potentially 

improved, depending on the alleged diversification benefits and correlation dynamics of the 

resulting indices. Yet, model performance is expected to be robust and qualitatively similar. 

 

6. Conclusion 

 

This paper provides a comprehensive analysis of shipping stock price volatility dynamics, 

risk transmission function and portfolio allocation. We measure exposure to the shipping segment 

of the transportation industry by a portfolio of tanker, dry bulk, container, gas U.S. stocks to 

examine tail behavior and tail risk dependence. Accurate volatility forecasts and VaR is useful 

for organizations to understand their limitations regarding risk exposures, use stress testing to 

gauge their vulnerabilities to “tail events” and help improve portfolio holdings. To this end, we 

consider a general class of state volatility models where the error term follows a normal mixture 

                                                           
14 Such information though might be a challenging task due to data limitations and lack of sufficient historical time 

series that could find fit to our research purpose (model calibration and out-of-sample testing using daily frequency), 

e.g., individual company details on the type of fixed assets and fleet, trade areas and geographical locations of 

operation, contracts and fixtures. Still, potential segmentation would be difficult to quantify as most companies operate 

a diversified fleet in different trade areas using a mixture of time-charter and spot contracts. Instead, segmentation to 

tanker, dry, containers and gas is a convenient categorization of shipping markets directly observable for any investor. 
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distribution (MxN). The rationale behind the use of these models stems from the fact that the 

volatility may be characterized by different components that can differentiate between different 

market conditions. Given that the excess kurtosis, skewness and volatility clustering are 

prominent features of stock price changes, mixture distribution models are attractive candidates 

for modelling and forecasting risk. Our empirical results corroborate that MxN models tend to 

perform better on an out-of-sample basis in terms of VaR forecasts. In particular, models with 

three states are the most consistent ones passing the back-testing tests. Further investigation by 

employing regulatory and firm related loss indicate that, by identifying different volatility 

components, both regulators and companies may benefit in terms of accurate quantification of 

risk as this is reflected in VaR forecasts. We find that shipping economists and financial analysts 

should consider the features of the postulated volatility models. The latter, have the capacity to 

provide an efficient risk calculation framework that enables portfolio managers and investors to 

measure market risk accurately. At the same time, it allows regulators to effectively supervise 

globally active firms having a consistent and comparable quantitative standard. Moreover, senior 

management gains useful information on risk analytics to address the risk management 

weaknesses at enterprise level and, therefore, set out the governance framework through effective 

monitoring, assess resilience to “tail events” and implement risk management policy decisions.  

We further test for predictability in co-movements in the tails of shipping equity returns. 

Quantifying tail spillovers is useful as a straightforward way to rank, assess and monitor the 

evolution of related risks over time. How a shock transmits across the shipping sectors is vital to 

policy coordination, to alleviate its adverse impact on a firm (diversified or not) and implement 

stabilization policies. The main findings suggest that large losses are strongly correlated, 

supporting asymmetric transmission processes for financial contagion in bear markets. From a 

practical perspective, this evidence confirms concerns regarding systemic risk and justifies the 

importance of risk monitoring, as extreme losses in a particular sector convey useful information 

to anticipate equivalent shocks in the other segments of the shipping industry. Thus, 

diversification strategies aiming at limiting the impact of negative shocks would be more efficient 

during relatively volatile periods, whereas it would be less beneficial in regular times. This also 

implies that portfolio risk managers and policy makers should take caution in investing 

simultaneously in different shipping sectors or diversifying using a market proxy (such as S&P 

500), i.e., decision-makers should possess the necessary information on the directions of 
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spillovers in order to take preventative measures. Moreover, understanding the mechanism of 

spillovers helps organizations distinguish more clearly between risks they can mitigate versus 

risks they cannot control or otherwise influence. Clearly such scenarios are low probability 

events, but it is precisely risk assessments along such lines that are needed in policy analysis. 

Finally, we propose a flexible multi-component semi-parametric approach for conditional 

correlations and assess the economic value of volatility and correlation timing in asset selection. 

In general, correlations between shipping equity returns will change over time due to variation in 

global and regional fundamentals as well as other factors that are specific to the sectors, such as 

the intervention of policy makers aimed at influencing particular types of commodities and 

aspects of trade. In practice, ranking models is useful to an investor only if it leads to tangible 

economic gains. In this setting, the out-of-sample gains of the proposed models are sizeable, in 

terms of performance fees, and thus provide economically significant utility gains to a mean-

variance investor. These findings have obvious implications for the manner in which volatility 

and correlation timing is undertaken in a portfolio allocation context. Overall, our findings have 

important implications for market participants who use risk measures of water transportation firm 

stocks to inform their decision-making process. They also provide useful insights for managers 

wishing to adopt a dynamic approach for stock selection and allocation purposes. 
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Table 1 

Preliminary data statistics. This table summarizes the main descriptive statistics for 

the five US shipping stock indices’ log-returns from 30 October 2003 to 12 October 

2016; a total of 3,260 daily observations. The capitalization weighted indices consist 

of an aggregate index of all shipping stocks (SS) and four sector indices:  Tanker (TS), 

Dry bulk (DS), Container (CS) and Gas (GS). We report the % annualized (p.a.) mean 

and standard deviation, as well as skewness, excess kurtosis, minimum and maximum 

values. Q(k) and Q2(k) are the Ljung and Box (1978) test statistics for the kth order 

sample autocorrelation of returns and squared returns, respectively. Asterisks ∗ 

indicate statistical significance at the 5% level. 

 SS TS DS CS GS 

Mean (p.a.) 0.722 -0.945 -8.693 1.509 5.510 

Std (p.a.) 32.46 33.41 49.06 29.73 33.08 

Skewness -0.634* -0.451* -0.069 -0.759* -0.375* 

Kurt (Exc) 6.579* 6.411* 5.524* 7.682* 11.45* 

Min -13.744 -14.030 -19.412 -14.368 -21.782 

Max 15.795 17.997 19.018 10.704 20.554 
      

Q(1) 11.604* 4.603* 49.900* 12.662* 13.519* 

Q(5) 29.143* 19.251* 58.052* 24.686* 26.046* 

Q(10) 40.749* 28.745* 68.933* 28.236* 43.296* 

Q(20) 84.826* 65.906* 112.96* 63.908* 55.723* 

Q2(1) 180.18* 126.92* 414.43* 273.11* 34.476* 

Q2(5) 1437.2* 1133.7* 1442.4* 1515.6* 223.09* 

Q2(10) 2703.5* 1995.7* 2417.0* 2659.3* 334.36* 

Q2(20) 4659.5* 3269.1* 4530.1* 4556.3* 500.97* 
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Table 2 
Calibration results (30 October 2003 to 12 October 2016). This table presents the maximum likelihood parameter estimates of the GARCH(1,1) model, N(1) and the normal mixture GARCH models 

with two, MxN(2), and three MxN(3), components. �̅�𝑖𝑡 denotes the % annualized unconditional state volatilities (see Section 2.1). lnL is the in-sample log-likelihood function (Eq. 5); �̅�𝑡 is the % 

annualized unconditional volatility. Asterisks ∗ indicate statistical significance at the 5% level. Standard errors are in parentheses (·).  

  SS   TS   DS   CS   GS  

 N(1) MxN(2) MxN(3) N(1) MxN(2) MxN(3) N(1) MxN(2) MxN(3) N(1) MxN(2) MxN(3) N(1) MxN(2) MxN(3) 
μ1 0.0540* 0.2144* 0.3449* 0.0298 0.1979* 0.3366* 0.0156 0.0775 -0.2810* 0.0614* 0.1213* 0.1250 0.0694* 0.0579* 0.0506 

 (0.024) (0.040) (0.103) (0.026) (0.044) (0.088) (0.032) (0.044) (0.109) (0.023) (0.030) (0.073) (0.025) (0.026) (0.032) 

ω1 0.0599* 0.0010 0.0000 0.0735* 0.0001 0.0596 0.0886* 0.0101 0.0000 0.0833* 0.0127* 0.0263 0.0903* 0.0139* 0.0035 

 (0.008) (0.002) (0.004) (0.009) (0.004) (0.031) (0.012) (0.006) (0.028) (0.010) (0.005) (0.021) (0.006) (0.004) (0.004) 

α1 0.1157* 0.0440* 0.0211* 0.1084* 0.0247* 0.1014* 0.1128* 0.0640* 0.1936* 0.1296* 0.0403* 0.0572* 0.1145* 0.0357* 0.0280* 

 (0.008) (0.008) (0.007) (0.008) (0.007) (0.028) (0.006) (0.008) (0.060) (0.009) (0.007) (0.021) (0.007) (0.005) (0.004) 

β1 0.8631* 0.9372* 0.9642* 0.8705* 0.9486* 0.7602* 0.8737* 0.9264* 0.6928* 0.8402* 0.9364* 0.8707* 0.8656* 0.9434* 0.9552* 

 (0.008) (0.009) (0.010) (0.007) (0.011) (0.064) (0.006) (0.008) (0.074) (0.010) (0.009) (0.052) (0.007) (0.007) (0.006) 

π1 1 0.6854* 0.4384* 1 0.5045* 0.4303* 1 0.8514* 0.2960* 1 0.8342* 0.4558* 1 0.9127* 0.7873* 

  (0.059) (0.099)  (0.059) (0.090)  (0.042) (0.072)  (0.035) (0.167)  (0.014) (0.048) 

𝜎1𝑡 26.71 20.37 22.30 29.66 22.96 22.67 40.74 38.29 44.63 26.38 23.54 21.20 33.85 31.19 43.46 

μ2  -0.3600* -0.1143  -0.1647* -0.2950*  -0.3098 0.2911*  -0.3413* 0.1195  -0.0002 0.1109 

  (0.116) (0.135)  (0.070) (0.150)  (0.245) (0.105)  (0.155) (0.135)  (0.246) (0.167) 

ω2  0.2752* 0.0000  0.1046* 0.0000  1.3000* 0.0000  0.4074* 0.0004  1.0331* 0.7975* 

  (0.101) (0.027)  (0.033) (0.015)  (0.431) (0.007)  (0.184) (0.011)  (0.350) (0.241) 

α2  0.1962* 0.1950*  0.1682* 0.0694*  0.3122* 0.0444*  0.6487* 0.0400*  1.0836* 0.5418* 

  (0.044) (0.088)  (0.025) (0.017)  (0.087) (0.009)  (0.175) (0.014)  (0.447) (0.195) 

β2  0.7955* 0.7698*  0.8729* 0.9390*  0.6827* 0.9535*  0.6844* 0.9618*  0.7137* 0.5923* 

  (0.046) (0.072)  (0.017) (0.014)  (0.083) (0.008)  (0.075) (0.013)  (0.079) (0.088) 

π2  0.3146 0.3078*  0.4955 0.4673*  0.1486 0.5716*  0.1658 0.3804*  0.0873 0.1966* 

  - (0.106)  - (0.101)  - (0.076)  - (0.169)  - (0.046) 

𝜎2𝑡  30.03 26.77  40.70 34.86  51.51 54.97  44.28 30.74  79.89 66.81 

μ3   -0.2659*   0.1704   -0.4505   -0.3374   -0.5113 

   (0.128)   (0.289)   (0.296)   (0.192)   (1.317) 

ω3   0.2375*   0.7972   1.0001*   0.4846   0.0000 

   (0.082)   (0.492)   (0.436)   (0.252)   (0.001) 

α3   0.2510*   0.4579   0.5386*   0.7535*   3.0000 

   (0.071)   (0.237)   (0.187)   (0.231)   (4.442) 

β3   0.8222*   0.7236*   0.6842*   0.6001*   0.7678* 

   (0.039)   (0.103)   (0.100)   (0.122)   (0.351) 

π3   0.2538   0.1024   0.1324   0.1638   0.0161 

𝜎3𝑡     39.12     49.96     78.68     44.74     196.45 

lnL -6,168.1 -6,106.4 -6,096.1 -6,431.5 -6,361.5 -6,356.4 -7,462.8 -7,399.9 -7,383.1 -5,946.5 -5,854.1 -5,848.9 -6,470.9 -6,282.9 -6,273.0 

𝜎𝑡 26.71 24.21 29.08 29.66 33.09 32.68 40.74 40.59 56.23 26.38 28.20 30.00 33.85 38.03 54.66 
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Table 3 
Value-at-risk (VaR) results. The table reports percentage violations corresponding to 1-day VaR estimates over the out-of-

sample period (3 November 2008 to 12 October 2016; 2,000 obs) for different univariate models. Superscipt a denotes 

rejection of the null of correct unconditional coverage (LRUC); superscript b implies rejection of the joint null of correct 

unconditional coverage and independence (LRCC) (Eq. 9). To consolidate information, each empirical coverage rate �̂� is 

translated into a percentage relative to the theoretical coverage rate 𝑐, 𝜉𝑐 = |�̂� 𝑐⁄ − 1|. 𝜉𝑐’s are then averaged, across all VaR 

estimates for both tails of the distribution, to obtain a coverage-based ranking criterion. Numbers in squared brackets [·] 

pertain to the Regulatory Loss Function (RLF, Eq. 10; average quadratic loss of violations). To obtain a consolidated measure 

of loss, each model’s RLF is translated into a percentage relative to the minimum achieved loss (across models) for a specific 

confidence level 1-c, i.e., adj. RLF𝑖
𝑐 = RLF𝑖

𝑐 min{RLF1
𝑐 , … , RLF𝑗

𝑐} − 1⁄ ; where RLF𝑖
𝑐 is the ith model and j the number of 

models. Then, adj. RLF𝑖
𝑐’s are averaged, across all VaR estimates for both tails of the distribution, to obtain an RLF-based 

ranking criterion. Note that, coverage-based ranking criterion is in absolute form as 𝑐 ∈ [0,1], �̂� 𝑐⁄ ∈ [0, ∞); whereas 

RLF𝑖
𝑐 min{RLF1

𝑐 , … , RLF𝑗
𝑐} ∈ [1, ∞).⁄  

  Left Tail    Right Tail   

Models 1% 5% 10% 10% 5% 1% Rank 

Panel A: SS 

R Vol 1.35b 5.05b 9.10b 10.2b 5.40b 1.10 4 

 [0.128] [0.500] [0.815] [0.426] [0.250] [0.056] [4] 

N(1) 1.00 5.05b 10.4b 8.90b 4.55b 0.75 1 

 [0.025] [0.176] [0.400] [0.131] [0.051] [0.006] [3] 

MxN(2) 1.10 4.70 10.0b 9.65 4.40 0.70 3 

 [0.027] [0.146] [0.339] [0.102] [0.034] [0.003] [2] 

MxN(3) 1.05 4.80 9.70 9.40 4.40 0.75 2 

 [0.027] [0.146] [0.342] [0.098] [0.031] [0.002] [1] 

Panel B: TS 

R Vol 1.20b 4.95b 9.50b 10.2 b 4.95b 0.80b 1 

 [0.110] [0.444] [0.726] [0.397] [0.219] [0.038] [4] 

N(1) 0.80 4.65b 9.40b 9.05b 4.45b 0.70b 4 

 [0.032] [0.183] [0.386] [0.185] [0.066] [0.007] [3] 

MxN(2) 0.90 4.90 10.0 9.75 4.65b 0.65b 2 

 [0.034] [0.171] [0.365] [0.160] [0.053] [0.005] [2] 

MxN(3) 0.85 4.85 9.70 9.70 4.65b 0.65b 3 

 [0.031] [0.157] [0.344] [0.149] [0.047] [0.005] [1] 

Panel C: DS 

R Vol 1.40b 5.65b 10.7b 10.1 b 5.35b 1.75ab 4 

 [0.256] [0.962] [1.675] [1.688] [1.067] [0.369] [4] 

N(1) 0.85 3.80ab 8.20ab 8.00ab 4.10b 0.90b 3 

 [0.021] [0.246] [0.597] [0.743] [0.377] [0.094] [3] 

MxN(2) 1.25 5.20 10.7b 9.50 b 5.15b 1.35 2 

 [0.032] [0.241] [0.575] [0.639] [0.305] [0.072] [2] 

MxN(3) 1.10 5.15 10.3 9.20 b 4.70b 1.05 1 

 [0.023] [0.221] [0.556] [0.598] [0.277] [0.066] [1] 

Panel D: CS 

R Vol 1.20b 5.15b 9.50b 9.55b 4.45b 1.35b 4 

 [0.119] [0.529] [0.813] [0.465] [0.278] [0.064] [4] 

N(1) 1.60ab 5.35 10.1b 9.40 4.80 0.95 3 

 [0.031] [0.217] [0.443] [0.168] [0.068] [0.015] [3] 

MxN(2) 1.15 5.05 9.65 9.40 4.10 0.75 2 

 [0.025] [0.149] [0.369] [0.130] [0.057] [0.014] [2] 

MxN(3) 1.15 5.00 9.25 9.40 4.30 0.85 1 

 [0.023] [0.140] [0.337] [0.126] [0.055] [0.013] [1] 

Panel E: GS 

R Vol 1.45b 6.25ab 11.95ab 11.45ab 5.85b 1.40b 4 

 [0.300] [0.681] [0.981] [0.633] [0.411] [0.184] [4] 

N(1) 1.75ab 6.25ab 12.65ab 12.3ab 5.75 1.00 3 

 [0.243] [0.519] [0.731] [0.352] [0.193] [0.073] [3] 

MxN(2) 1.20 5.10b 10.85 10.65 5.10 0.75 2 

 [0.213] [0.461] [0.663] [0.308] [0.166] [0.051] [2] 

MxN(3) 1.05 4.90 10.05 9.85 4.70 0.75 1 

 [0.194] [0.427] [0.624] [0.276] [0.146] [0.045] [1] 
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Table 4 

Risk management loss function. The table reports the Firm’s Loss Function (FLF, Eq. 11; 

average predictive quantile loss) based on the 1-day VaR estimates over the out-of-sample period (3 

November 2008 to 12 October 2016; 2,000 obs). To obtain a consolidated measure of loss, each model’s 

FLF is translated into a percentage relative to the minimum achieved loss (across models) for a specific 

confidence level 1-c, i.e., adj. FLF𝑖
𝑐 = FLF𝑖

𝑐 min{FLF1
𝑐 , … , FLF𝑗

𝑐} − 1⁄ ; where FLF𝑖
𝑐  is the ith model and 

j the number of models. Then, adj. FLF𝑖
𝑐’s are averaged, across all VaR estimates for both tails of the 

distribution, to obtain an FLF-based ranking criterion. Asterisks ∗ indicate that the FLF of the 

corresponding model is statistically higher than that of the competing models at the 5% 

significance level; the p-values are provided from the Hansen (2005) test using 10,000 

(stationary) bootstrap simulations. 

 

 Left Tail   

Right 

Tail   

Models 1% 5% 10% 10% 5% 1% Rank 

Panel A: SS 
R Vol 0.1016* 0.2902* 0.4167* 0.3661* 0.2390* 0.0779* 4 

N(1) 0.0625 0.2219* 0.3665* 0.2969* 0.1727* 0.0442 3 

MxN(2) 0.0623 0.2177 0.3565 0.2916 0.1695 0.0441 2 

MxN(3) 0.0624 0.2186 0.3564 0.2914 0.1693 0.0438 1 

Panel B: TS 
R Vol 0.0926* 0.2773* 0.4123* 0.3652* 0.2365* 0.0742* 4 

N(1) 0.0642 0.2259 0.3697* 0.3122* 0.1879* 0.0494 3 

MxN(2) 0.0642 0.2244 0.3611 0.3073 0.1831 0.0489 2 

MxN(3) 0.0642 0.2233 0.3594 0.3067 0.1818 0.0495 1 

Panel C: DS 
R Vol 0.1434* 0.4192* 0.6143* 0.6238* 0.4164* 0.1479* 4 

N(1) 0.0875 0.3198* 0.5223* 0.5402* 0.3355* 0.0996* 3 

MxN(2) 0.0854 0.3116 0.5119 0.5237 0.3183 0.0902 2 

MxN(3) 0.0844 0.3127 0.5143 0.5234 0.3175 0.0899 1 

Panel D: CS 
R Vol 0.0956* 0.2753* 0.3963* 0.3466* 0.2292* 0.0790* 4 

N(1) 0.0625 0.2220* 0.3504* 0.2989* 0.1725 0.0473 3 

MxN(2) 0.0600 0.2153 0.3454 0.2901 0.1718 0.0482 2 

MxN(3) 0.0604 0.2132 0.3435 0.2907 0.1732 0.0480 1 

Panel E: GS 
R Vol 0.1003* 0.2774* 0.4072* 0.3768* 0.2423* 0.0789* 4 

N(1) 0.0855 0.2429* 0.3745* 0.3255 0.1956 0.0575 3 

MxN(2) 0.0825 0.2364 0.3663 0.3238 0.1962 0.0585 2 

MxN(3) 0.0826 0.2366 0.3669 0.3229 0.1968 0.0582 1 
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Table 5 

Granger causality in risk. The table reports test statistic HS(L) of Hong et al. (2009) for testing the null hypothesis that the ith stock index 

does not Granger-cause the jth index at the levels 0.01 and 0.05 (for both tails of the distribution of log-returns). HS(L) is computed for L 

= {5, 10, 15} based on the Daniell kernel. The test has an asymptotic standard normal distribution under the null of no Granger causality 

in risk. i → j indicates one-way causality in risk from i to j. 

 Left Tail Right Tail 

 L=5 L=10 L=15 L=5 L=10 L=15 

 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 

Panel A: Market wide spillover effects 

S&P→ SS 4.781* 0.688 4.014* 0.452 2.925* -0.126 0.642 0.419 0.894 -0.047 1.240 -0.565 

S&P → TS 6.740* -0.471 5.999* -0.488 4.840* -0.814 -0.978 -1.067 -1.333 -0.718 -1.537 -0.777 

S&P → DS 4.355* 5.238* 2.722* 4.884* 2.297* 3.913* -0.155 1.521 -0.280 1.586 -0.383 0.923 

S&P → CS 9.350* -0.323 7.451* -0.336 5.821* -0.179 1.529 0.279 1.008 -0.091 1.440 -0.025 

S&P → OS 2.090* 1.077 0.602 1.496 0.097 1.508 -0.590 -0.956 -0.672 -1.072 -0.704 -1.029 

SS→   S&P 3.667* -0.164 3.587* -0.037 2.800* 0.031 -0.626 1.162 -0.520 0.828 -0.716 0.394 

TS →   S&P 5.056* 1.374 5.121* 1.100 4.923* 1.389 -0.155 1.485 -0.469 1.262 -0.711 0.853 

DS →   S&P 3.713* 0.606 3.863* 1.101 3.018* 0.862 1.364 -0.406 1.494 0.098 1.534 -0.349 

CS →   S&P -0.168 0.485 -0.052 0.205 -0.108 0.031 -0.246 -0.942 0.141 -1.263 -0.005 -1.529 

GS →   S&P -0.085 1.330 -0.439 0.393 -0.430 0.144 -0.842 -1.026 -0.497 -1.394 -0.729 -1.443 

Panel B: Industry wide spillover effects 

SS→ TS 6.330* -0.723 6.907* -0.551 6.350* -0.452 0.568 -1.087 0.088 0.103 -0.184 -0.030 

SS→ DS 5.613* 0.512 5.429* 0.939 4.513* 0.661 0.865 3.930* 0.839 4.498* 0.463 4.132* 

SS→ CS 11.12* -0.085 10.98* 0.907 9.122* 1.498 0.622 2.458* -0.035 1.142 -0.194 0.897 

SS→ GS 4.950* 1.053 4.875* 1.320 3.933* 1.450 -0.450 2.873* 0.156 1.214 0.147 0.338 

TS → SS 6.212* 1.829* 6.822* 0.979 6.044* 0.401 -0.542 20.39* -0.763 15.24* -0.246 12.46* 

DS → SS 4.274* 1.302 4.669* 1.337 4.024* 1.872* -0.148 1.478 -0.273 1.085 -0.441 0.752 

CS → SS 1.670* -0.891 3.719* -1.032 4.108* -0.922 -0.870 -1.044 -1.219 -1.353 -1.372 -1.361 

GS → SS 0.855 0.346 1.121 -0.206 2.422* -0.537 -0.196 -0.330 0.044 -0.853 0.317 2.411* 

Panel C: Inter-sector spillover effects 

TS → DS 7.747* 0.695 7.670* 0.698 6.692 0.435 0.445 2.981* 0.426 2.895* 0.381 1.333 

TS → CS 14.43* 1.470 14.36* 2.262* 12.13 2.749* 4.871* 3.188* 3.255* 1.710* 1.409 1.502 

TS → GS 6.621* 1.677* 6.580* 2.483* 5.300 2.234* 1.102 3.694* 0.596 1.873* 0.855 0.856 

DS → TS 7.770* 5.795* 8.232* 4.942* 7.391 4.656* 0.279 -1.040 -0.094 -0.573 -0.405 -0.573 

DS → CS 3.669* 0.951 3.623* 1.342 2.751 1.700* 0.072 -0.903 -0.019 -1.247 0.314 -0.613 

DS → GS 2.044* 0.768 2.419* 0.915 2.600* 1.223 -0.628 -1.047 -0.405 -1.463 -0.309 -1.735 

CS → TS 1.024 -0.780 4.286* -0.104 6.080 0.595 -0.879 -1.013 -0.423 -1.303 -0.470 -1.247 

CS → DS 0.314 0.128 2.574* 0.094 2.870 -0.172 -0.879 0.379 -1.053 0.540 -1.251 0.616 

CS → GS 0.806 1.528 1.013 1.525 1.016 1.083 -0.283 -0.935 -0.478 -1.346 -0.803 -1.659 

GS → TS 0.896 1.312 0.812 0.520 2.575 0.250 -0.101 -0.916 0.101 -1.453 0.159 -0.346 

GS → DS 1.785* -0.522 1.442 -0.312 1.315 -0.015 1.869* 0.667 1.820* 1.048 1.584 1.145 

GS → CS 3.911* -0.504 3.427* -0.577 1.482 -0.726 -0.031 -0.955 0.133 -0.887 0.313 -0.071 
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Table 6 
Portfolio allocation. The table reports on the performance of different models. Annualized % means, volatilities and Sharpe ratios are denoted 

by 𝜇𝑝, 𝜎𝑝 and SR, respectively; SR is reported only once (last column) as it is constant to different target multipliers. The dynamic strategies 

use the maximum return (Panel A) or minimum volatility (Panel B) rules to construct a portfolio by investing in the return of the four sector 

indices (TS, DS, CS and GS) using the model forecasts. 𝜎𝑝
∗ and 𝜇𝑝

∗  correspond to the target annualized volatilities (Panel A) and returns (Panel 

B), respectively. The performance fee 𝛷𝛿=6 denotes the amount an investor with quadratic utility and degree of relative risk aversion 𝛿 equal 

to 6 is willing to pay for switching from R Vol to one of the dynamic models. 𝛷𝛿=6
𝑡𝑐  is the fee when proportional transaction costs of 50 bps 

per trade are incurred. M2 is the Modigliani and Modigliani (1997) measure of the abnormal return a dynamic strategy would have earned if 

it had the same risk as the R Vol benchmark. Both 𝛷 and M2 are measured in annualized basis points. VaR0.05 is the realized 5% Value-at-

Risk. Results are provided for daily, weekly and monthly rebalancing strategies. 

 𝜇𝑝 𝜎𝑝 𝛷𝛿=6 𝛷𝛿=6
𝑡𝑐

 M2  𝜇𝑝 𝜎𝑝 𝛷𝛿=6 𝛷𝛿=6
𝑡𝑐

 M2  SR 

Panel A: Maximum return rule  

Daily Rebalance 

Target: (𝑎)  𝜎𝑝
∗ = 10% (𝑏)  𝜎𝑝

∗ = 20%  
R Vol  5.01 11.12     9.92 22.24     0.441 

N(1)-DCC 6.66 10.94 167 107 176  13.23 21.89 337 93 352  0.600 

N(1)-SP 6.19 11.64 113 44 90  12.27 23.28 215 -62 181  0.523 

MxN(2) 9.68 11.13 467 404 466  19.26 22.27 933 683 932  0.860 

MxN(3) 7.81 11.08 280 219 282  15.51 22.17 561 315 565  0.695 

Weekly Rebalance 

Target: (𝑎)  𝜎𝑝
∗ = 10% (𝑏)  𝜎𝑝

∗ = 20%  
R Vol  5.11 11.16     10.12 22.31     0.449 

N(1)-DCC 7.94 11.09 284 222 288  15.78 22.17 568 318 576  0.707 

N(1)-SP 9.06 11.92 387 315 337  18.01 23.83 759 467 675  0.752 

MxN(2) 10.40 11.27 527 464 518  20.69 22.55 1053 796 1036  0.913 

MxN(3) 9.23 11.28 410 347 401  18.35 22.57 818 564 802  0.809 

Monthly Rebalance 

Target: (𝑎)  𝜎𝑝
∗ = 10% (𝑏)  𝜎𝑝

∗ = 20%  
R Vol  5.02 11.24     9.94 22.48     0.438 

N(1)-DCC 8.00 11.89 291 220 255  15.90 23.77 570 277 509  0.665 

N(1)-SP 7.25 12.33 211 134 159  14.39 24.66 400 84 318  0.579 

MxN(2) 10.22 12.01 512 439 455  20.33 24.01 1008 714 909  0.843 

MxN(3) 9.82 12.25 469 394 399  19.53 24.49 918 611 799  0.793 

Panel B: Minimum volatility rule 

Daily Rebalance 

Target: (𝑎) µ𝑝
∗ = 10% (𝑏) µ𝑝

∗ = 20%  
R Vol  1.09 14.04     2.08 28.27     0.070 

N(1)-DCC 8.10 18.32 641 477 514  16.19 36.97 1168 510 1033  0.435 

N(1)-SP 5.77 18.85 400 225 323  11.50 38.03 664 -41 649  0.300 

MxN(2) 6.96 13.29 595 506 625  13.90 26.78 1217 848 1259  0.515 

MxN(3) 8.85 11.15 807 746 1003  17.70 22.46 1688 1439 2016  0.783 

Weekly Rebalance 

Target: (𝑎) µ𝑝
∗ = 10% (𝑏) µ𝑝

∗ = 20%  
R Vol  1.17 14.05     2.22 28.29     0.075 

N(1)-DCC 7.96 17.76 628 472 514  15.88 35.85 1158 521 1033  0.440 

N(1)-SP 8.68 19.21 677 496 520  17.35 38.79 1211 473 1046  0.445 

MxN(2) 6.88 13.30 579 489 609  13.70 26.82 1182 806 1222  0.507 

MxN(3) 10.98 11.53 1008 942 1218  21.94 23.23 2083 1817 2447  0.940 

Monthly Rebalance 

Target: (𝑎) µ𝑝
∗ = 10% (𝑏) µ𝑝

∗ = 20%  
R Vol  1.09 14.06     2.04 28.32     0.068 

N(1)-DCC 9.93 18.36 824 658 654  19.83 37.08 1535 858 1314  0.532 

N(1)-SP 7.40 19.52 552 365 427  14.77 39.41 952 186 861  0.372 

MxN(2) 7.34 13.46 632 540 657  14.56 27.19 1279 896 1312  0.532 

MxN(3) 10.72 12.10 985 912 1135  21.39 24.37 2024 1733 2280  0.873 
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Figure 1. Volatility of shipping sector stock indices (TS, DS, CS and GS) and total shipping index (SS). The 

figure depicts the total daily volatility (black solid line) obtained from the three component GARCH model, 

MxN(3). Dashed red lines correspond to the upper and lower bounds as estimated from the high, medium and low 

GARCH volatility processes. At the bottom, the figure shows the differences between volatility estimates of the 

MxN(3) and the benchmark single component GARCH(1,1), N(1). For comparison, differences between the two 

component GARCH, MxN(2) and N(1) are also shown. All figures are in-sample annualized estimates, based on 

the period October 2003 – October 2016.  
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Figure 2. Conditional skewness (a) and conditional excess kurtosis (b) for the five shipping stock indices (SS, 

TS, DS, CS and GS) estimated via the MxN(3) and MxN(2) models (red and black solid lines, respectively). All 

figures are in-sample estimates, based on the period October 2003 – October 2016.  
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Figure 3. Conditional correlation dynamics between pairs of shipping sector stock indices (TS, DS, CS and GS). 

The figure depicts the total conditional correlation obtained from the three component GARCH model combined 

with non-parametric correlation estimators (MxN(3)-SPCC). Dashed red lines correspond to the upper and lower 

bounds as estimated from the ‘local state’ correlation processes. The figure shows also conditional correlation 

estimates of the GARCH model with Dynamic Conditional Correlation (N(1)-DCC). All figures are in-sample 

estimates, based on the period October 2003 – October 2016.  
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 Figure 4. Optimum weights. Subplots ‘(a) Maximum expected return’ and ‘(b) Minimum volatility’, show the 

results of daily portfolio optimizations using the shipping sector stock indices TS, DS, CS and GS. The estimates 

are obtained using the MxN(3) model and we estimate the daily correlation matrix using the semi-parametric 

approach described in Section 2.1.1. (a) shows the weights that maximize expected return while setting the 

conditional volatility equal to 10 percent and (b) shows the weights that minimize conditional volatility while 

setting the expected return equal to 10 percent. Weights are calculated on an out-of-sample basis for the period 

from 3 November 2008 to 12 October 2016; total of 2000 daily observations.  

 


