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Market area analysis under orbital-radial routing with applications 
to the study of airport location 
 
Geoff Hyman and Les Mayhew 
 
Abstract 
The study of market areas provides one indication of the economic and strategic value of a facility or 
attraction and is a commonly used tool in geographical and economic analysis. In this paper we study a 
class of models for use in stereotypical urban regions with an associated orbital-radial  network. The 
aim of the paper is to provide the theoretical and analytical tools needed to understand the shapes, size 
and markets of an attraction as a function of both its location and the speeds of radial and orbital access 
to competing attractions. As a result we need to identify several hitherto unrecognised constructs such 
as eclipsing in which, due to proximity to a fast orbital road, one attraction can eliminate the market of 
another. We outline a facility location methodology in a case study, based on London, concerning 
access to airports serving the metropolis. Among other things we identify inner and outer eclipsing 
envelopes for a new airports, which substantially narrows the area of search for an optimum location.  
 
Introduction 
 
The economic and strategic value of a major facility depends on the 
geographical size of its market. Market area analysis is a commonly used 
geographical technique for identifying the set of locations that can be 
reached in quickest time or lowest cost. Market areas can be subdivided 
to reflect alternative route catchments, which  in turn can be used to 
indicate for example whether the motorway or some alternative route is 
quicker to a given attraction. The properties of route catchments have 
been previously examined in Hyman and Mayhew (2000) and in an 
agricultural context in O'Kelly (1989). In this paper, we are concerned 
primarily with the properties of market areas although, as we shall see, 
route catchments are an important secondary consideration. 
 
Earlier studies, in the tradition of regional science and urban economics, 
tend to adopt models that incorporate only weak differentiation in travel 
or transport costs. The resulting simplified models may hide emergent 
features of many developed urban regions. In contrast, the complex 
network models developed for transportation studies require large and 
expensive data sets. By virtue of their very complexity such models may 
also obscure fundamental morphological characteristics of urban regions.  
 
Important classes of models meriting further study are based on 
continuous space (Angel and Hyman, 1976; Mayhew 1981; Hyman and 
Mayhew 1982) but incorporate certain limited network features (Smeed, 
1963; Vaughan, 1987; Mayhew and Hyman, 2000; Hyman & Mayhew 
2000). Models that permit, for example, only combinations of orbital-
radial routing are examples of this that can be used to represent some of 
the complexity of a real-world urban network.   
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An orbital-radial routing pattern is a common in many towns and cities 
(Ministry of Transport, 1963; Tripp, 1942), and therefore our adoption of 
it here is potentially of wide relevance. In this paper we adopt the term 
‘radial routing’ to mean travel restricted to the transport spokes 
emanating from the centre of a city. We use the term orbital route to 
mean travel that makes use of a ring road for some part of a journey, the 
other legs being accomplished radially.  
 
Our analysis considers the market areas of urban facilities based on this 
kind of routing. The model that emerges predicts conditions under which 
one location ceases to be viable as it becomes ‘eclipsed’ by another - a 
characteristic finding that is not identified using traditional methods. We 
use the model to evaluate the shape, form and pattern of market areas in 
an orbital-radial transport system, and then apply the methods to a 
contemporary problem: the siting of airports serving cities.  
 
The problem of airport location is an ideal illustration of the ideas and 
concepts put forward. Airports are strategic attractions that are typically 
located near the edge of an urban area. They attract passengers from an 
entire region and also provide a major source of employment. As aircraft 
traffic grows and urban areas expand, planning authorities face choices 
about whether to increase the capacity of existing airports, relocate them 
or construct new ones.  
 
Our aim is not to produce a ‘definitive planning study’, but rather to 
apply the technique in a strategic setting so as to see if it gives insights 
into an ongoing planning problem and how that problem is influenced by 
the transport character of the urban area. As a simplification, we initially 
assume all airports have equal attractiveness, in other words each location 
provides equivalent services in terms of cost and quality. Clearly, this 
will not always be the case, for example where one airport concentrates 
on flights to selected destinations, or where there are restrictions in  
aircraft size. We return to the issue of ‘unequal attractiveness’ during the 
case study and associated discussion.  
 
The plan of this paper is as follows. We briefly review a small selection 
of previous relevant work on market areas, provide a general framework 
for extending the analysis of market areas to incorporate the effect of 
alternative types of route, and give some simple illustrations. The concept 
of eclipsing is then defined and illustrated. Up to this point the 
illustrations are limited to two attractions (i.e. facilities), so the next step 
is to extend the notation to an arbitrary number of attractions. This 
extension leads to the notion of an eclipse envelope, which circumscribes 
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the geographical limits at which new market entrants are viable. A 
fundamental geometrical property linking eclipse envelopes and market 
area boundaries is then derived, for a specific class of orbital-radial 
routing models, which greatly simplifies the construction of market areas. 
Details of the software developed for the case study are given in an 
annex. 
 
 
Relevant Previous Work on Market Areas 
 
A particularly valuable review of market area analysis, which describes 
the literature and techniques developed in a number of disciplines, is 
contained in Okabe, Boots and Sugihara (1992). More formally Okabe et 
al define the concept as follows:  
 
"Given a set of distinct isolated points in a continuous space, we 
associate all locations in that space with the closest member in the point 
set. The result is a partitioning of the space into a set of regions" (Boots 
et al 1992, page 1). 
 
Although we use the term market area throughout this paper, its definition 
is equivalent to terms such as Dirichlet or Voronoi regions, named after 
the discoverers. Thiessen (1911) is another who gave his name to the 
construction of polygons with the required properties for undifferentiated 
areas (see also Haggett, 1965, p247).  
 
An important strand in market area analysis is focussed on spatial 
competition (Hotelling, 1929; Okabe et al, pp 385-387) in which firms 
adjust their locations to increase profits until an equilibrium pattern of 
locations is reached. For example, for two competing firms Eaton and 
Lipsey, 1975 obtain a solution where both firms are located at the centre 
of the region. We do not directly address competition issues in this paper, 
at least at the level of the firm, and as noted above, neither do we 
consider differences in attractivity. However, it is clear there are 
significant competitive implications arising out of our work based on new 
concepts introduced such as 'eclipsing' and market area sharing. 
 
Studying the properties of ‘idealized’ urban routing patterns is not new. 
The identification of market areas for Manhattan routing goes back some 
years (for example, see Anjoumani,1981); orbital-radial routing models 
on the other hand are more recent. Klein (1988) considers basic properties 
of the so-called 'Karlsruhe metric' (Karlsruhe’s road network consists 
entirely of rings and spokes), and so his paper provides a starting point 
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for the current work. However, as our previous paper points out, our 
approach is more general and also more realistic (Hyman and Mayhew, 
2000). For example, we use time rather than distance, in order to reflect  
differences in speed. Also, instead of assuming unlimited orbital 
movement we restrict orbital movement to a limited number of strategic 
roads. 
  
 
Market Areas Associated with a Routing Typology 
 
Let U denote a continuous urban region with an associated travel time 
metric t. Consider a finite set L ={L0 … LN} of N+1 fixed attractions 
within the urban region. The market area for a given attraction is defined 
to be the set of all locations in U that have a smaller travel time to the 
given attraction than to any other attraction in L. Formally, this can be 
expressed as: Mn = {x(U | t(x, Ln) < t(x, Lm) ∀Lm∈L, m≠n}.  
 
The geometric properties of market areas is determined by the family of 
break-even sets, that is the locus of points that have equal travel time to 
each of two different attractions. Formally, for each pair of attractions Ln 
and Lm we can write Ynm = {x∈U | t(x, Ln) = t(x, Lm)}. A break even set 
is a series of smooth arcs joined at cusps. As changes in routing produce 
such cusps, the geometry of the break-even set needs to reflect the type of 
route used to each of the attractions. So we let P denote a set of route 
types and let p∈P denote a specific type of route. Let Rte(x, y)∈P 
denotes the type of route used between points x and y. The typology P 
gives rise to a partition Z of each market area into subsets associated with 
the type of route used to access the attraction: Znp = {x∈U | t(x, Ln) < t(x, 
Lm) ∀Lm∈L, m≠n ∧ Rte(x, Ln) = p} 
 
The corresponding break-even sets become extended to include not only 
the break-even arcs and cusps between alternative attractions but also the 
break-even arcs and cusps between alternative types of route. The 
extended break-even set is formally defined by: Ynmpq = {x∈U | t(x, Ln) = 
t(x, Lm) ∧ Rte(x, Ln) = p ∧ Rte(x, Lm) = q}. 
 
Previously (Hyman and Mayhew, 2000), we adopted a fourfold 
operational routing typology:  
 
1. Radial  Travel through the centre, not using an orbital 
2. Inner Orbital Through/strategic travel: inwards/orbital/outwards 
3. Outer Orbital  Local travel: outwards/orbital/inwards 
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4. Cross Orbital Arriving or departing travel, partly on an orbital. 
 
All other types of routing are excluded as only types 1-4 correspond to 
minimum time routes. Routes that involve travel on a single radial leg are 
excluded as this arises only for a negligible proportion of trips.  
 
For the purposes of the current analysis the three types of orbital routing 
will be condensed into a single explicit type, although they will still need 
to be given implicit consideration in the design of the algorithms.  
 
The resulting typology P then reduces to a distinction between radial and 
orbital routing: the simplest practical extension of the break-even set. 
There are thus two types of market area: radial market areas, where the 
attraction is accessed via a radial route, and orbital market areas, where 
the attraction is accessed via an orbital route. This will be illustrated 
shortly, but first we need to specify a simple mathematical model of 
orbital-radial routing. 
 
The KT1 Metric 
 
In the KT1 metric (Hyman and Mayhew, 2000) the city is circular and 
locations are identified using polar co-ordinates, with the city centre as 
the origin. The angular co-ordinate varies between -π and π, with zero 
pointing due north. Travel is either radial at a constant speed VR or along 
a single orbital road, of radius R and constant speed VO. Define the speed 
ratio k=VR/VO. Let (r,θ) be a varying point and let (r1, 0) be a fixed point. 
To obtain the minimum time route between these points we confine 
attention to:  
 
a) radial routes: two radials, meeting at the city centre,  
b) orbital routes: a radial leg to the ring road, followed by an orbital leg 
(along the ring road), followed by a radial leg away from the ring road. 
 
In both cases (a) and (b), the radial legs are at angles 0 and θ. It can be 
sometimes be helpful to visualise these radial legs as two spokes of a 
wheel formed by the ring road. 
 
The minimum travel time between the fixed and varying points is: 
 
KT1 = Min [(r1 + r)/VR, Rθ/VO + (R - r1+R - r)/VR] 
 
where |x| denotes the absolute value of x. There is a critical switching 
angle at which the minimum travel time using an orbital route is equal to 
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that on a radial route. At angular separations less than the switching 
angle, the orbital route takes less time, at greater angles, the radial route 
takes less time. 
 
Table 1 gives the travel times on orbital routes and the corresponding 
switching angles. The results depend on the fixed radius r1, the variable 
radius r, and their relationship between the radius R of the orbital. Under 
certain conditions, discussed later, switching angles may determine the 
orientation of radial legs in the break-even sets.  
 

Domain Travel Time  
 

Switching Angle 
 

r1 < R, r < R (2R – r1 – r + kR|θ|) / VR 2(r1+r-R) / kR 
r1 < R, r > R (r – r1 + kR|θ|) / VR 2r1 / kR 
r1 > R, r < R (r1 – r + kR|θ|) / VR 2r / kR 
r1 > R, r > R (r1 + r – 2R + kR|θ|) / VR 2 / k 

 
Table 1: Orbital Travel Times and Switching Angles for the KT1 metric 

 
 
Initial Illustrations Based on Two Attractions 
 
To help understand the properties of KT1 market areas we start with 
some simple illustrations based on two attractions and then develop the 
associated analysis. Note that only the attraction that is closest to the city 
centre has a radial market area. Such a location will generally have an 
orbital component as well, except when it is precisely at the city centre, in 
which case it is only accessed by radial routes.  
 
 
 
 
 
 
 
 
 
 

 
 

(a): Fast radials   (b): Slow radials 
Figure 1: Market areas with two attractions, A & B. Light shading 

indicates the radial market area. 
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Figure 1 gives illustrations for the most common cases that arise. The 
large circle denotes the orbital road and a small circular symbol the city 
centre. The two attractions A and B are marked by triangles. The market 
areas are shaded, the lighter shading for the radial market area and the 
darker shading for orbital market areas. There is only one radial market 
area. 
 
In a) attraction A is nearer the centre and captures the radial market area, 
plus it also captures an orbital area to south-west. The radial market area 
cuts across the ring road because the radial speed is assumed to be high 
relative to the orbital speed. So, in this case, the orbital market areas are 
completely separated by the radial market area. 
 
The situation is quite different in diagram b), where a lower radial speed 
has been assumed. Now the radial market area no longer cuts across the 
ring road and, as the diagram shows, it is contained entirely within the 
ring road area. The orbital market areas of A and B now share common 
boundaries as they are no longer separated by a radial market area. In 
such cases the orbital market areas are said to ‘collide’. 
 
From the perspective of competition between attractions at different 
locations, there are some interesting limiting cases to consider. Firstly, 
assume that there are two attractions, both with the same radius, but at 
different angular coordinates. These attractions will share the radial 
component of their market areas, since a radial route to either of them 
takes the same time. Secondly, suppose that two distinct attractions are 
equidistant from the ring road, on the same radial leg. (This can only 
happen if the attractions lie on opposite sides of the ring road). In such 
cases the attractions will share their orbital market area. This is because 
the journey times from any point on the ring road to either attraction are 
equal.  
 
Eclipsing 
 
Eclipsing is a major property of the KT metric that sets it apart from 
uniform metrics traditionally used for market area analysis. Suppose that 
there are two attractions A and B, which are on different radials and are at 
different distances from the ring road. Suppose also that the best route 
between them makes use of the ring road. Now imagine two travellers 
starting simultaneously, one going from A to B and the other from B to 
A. At some point on their trip they must pass each other. Is this point on 
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the ring road or is it on a radial? If they pass on a radial then one of the 
attractions will be eclipsed and will have no orbital market area. 
 
Now, more formally, we may note that the orbital route between an 
attraction A and an attraction B consists of three legs: 
 
1) A radial journey leg between B and the ring road taking time t1 
2) An orbital journey leg taking time t2 
3) Another radial leg between A and the ring road, taking time t3 
 
The attraction A is eclipsed by the attraction B whenever t3 > t1 + t2, as 
in figure 2b. Alternatively, if this condition is not met then A is not 
eclipsed, as in figure 2a. 

 

t1

t3

t2

B

A

t3 < t1 + t2

t1

t3

t2

B

A

t3 > t1 + t2

 
 
 

(a) No Eclipsing                      (b) Attraction A eclipsed 
 

Figure 2: Eclipsing of Attractions 
 
If A is eclipsed then an orbital route from any third location to B will 
always take less time than an orbital route from the third location to A.  It 
follows that attractions that are eclipsed by other attractions will have no 
orbital market area. 
  
What are the implications for the location of a new attraction? Should it 
seek to be close to the orbital, close to the centre, close to an existing 
attraction or somewhere else? It is helpful to distinguish the following 
situations: 
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1. If a new attraction locates nearer the city centre than an existing 
attraction then it captures its radial market area. 

 
2. If the new attraction locates farther from the ring road than an existing 

attraction, then depending on their angular separation and routing 
speeds, the new attraction may be eclipsed by the existing attraction 
and therefore have no orbital market area. 

 
3. Conversely, if the new attraction locates closer to the ring road than an 

existing attraction, with an angular separation that is sufficiently 
small, then it may eclipse the existing attraction, capturing its entire 
orbital market area. 

 
 
 
The Market Area Size Function 
 
We now turn to the procedure for calculating the sizes of market areas. 
The size of a market area and the population contained within are key 
indicators of market share. The methodology will be extended to many 
attractions in due course but first we deal with the two-attraction case.  
 
The size of the area that is bounded by a ‘spiral’ arc r(θ)=a+b|θ| and the 
ring road and is within angular sector (0, φ) is given by the integral: 
 

)1(2/}3/||||||){(),,,( 32222

0 )(

φφφθφ
ϕ

θ

babaRdrdrbaRA
R

r

−−−== ∫ ∫
 
Assume now that r(θ) is a break-even curve in the KT1 metric. The value 
of the spiral gradient (dr/dθ) is given by b=kR/2.  
 
Consider just two attractions, numbered in order of increasing distance 
from the centre. The value of the spiral start radii ‘a’ are given by:  
 
a0 = Max(0, R – r0),         (2) 
a1 = (r1 - r0) / 2     If r1 > R 
     = Max(0, R - (r1 + r0) / 2))  If r1 < R    (3) 
 
The parameters a0 and b are identical to those for the radial route 
catchment area for L0, (see Hyman and Mayhew 2000). The radial 
market area can therefore be identified as the radial route catchment area 
associated with the innermost attraction L0. It follows that a sufficient 
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condition for the radial market area to be contained within the ring road is 
that r(π) < R, so that k<2r0/πR. This precludes situations like Figure 1 a). 
 
Example 
Let VR=66.5 kph, VO=95 kph, R=28 km and r0=25 km. Then k=0.558 and 
2r0/πR=0.568, which exceeds k. Hence the radial market area is contained 
within the ring road.  
 
In order to apply equation (1) it is necessary to determine appropriate 
values for the angular limits φ of the integral. This is illustrated in the 
following sections. 
 
The Computation of KT1 Market Area Sizes 
 
The determination of market area sizes involves the following steps: 
 
• Testing for eclipsing.  
• Testing for orbital collisions.  
• Calculation of switching angles. 
 
If an attraction is eclipsed it has no orbital market area. When collisions 
occur between any pair of attractions, there may be one or two collisions 
and both of them need to be identified. When collisions do not occur, the 
orbital market area is bounded by a switching angle.  
 
Traverses and circuits 
 
We can analyse eclipsing behaviour of attractions in several ways. While 
previous illustrations were suggestive of market area analysis in specific 
cases they do not illustrate when eclipsing arises, or the variation in the 
size of the market area. We therefore devised two sensitivity tests: 
traverses and circuits. In both tests attraction A is at a fixed location. In a 
traverse the attraction B is moved along a diameter that extends from one 
edge of the region to the other. In a circuit, B has a fixed radius but is 
rotated in a complete circle around the centre. 
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a) A Traverse 
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Figure 3: A Traverse 

 
Figure 3 shows the percentage market area shares of two attractions split 
into orbital and radial segments. Attraction A is fixed at 25 km due west 
of the centre whereas B varies along a 100 km traverse, west to east. The 
ring road has a radius of 28 kms. The speed ratio k equals 0.55. The radial 
market area is shown separately form the orbital areas and is always 
captured by the attraction nearest the centre.  
 
The following points can be noted: 1) On the western traverse there is a 
short segment where B is closer to the orbital than A and eclipses its 
orbital market area. Discontinuities in market area size occur at both ends 
of this segment; 2) Adjacent to this segment attraction A captures either 
all, or the majority, of the orbital market area; 3) On the eastern traverse, 
B increases its orbital market area continuously until it reaches the ring 
road and then declines; 4) The radial market area is a maximum when the 
variable attraction is at the city centre. It is clear that market areas are 
more equal and stable when the attractions are on opposite sides of the 
city and that competition for the orbital market area is strongest when 
both attractions are on the same side of the city.  
 
 
 
 
 
 
 
 
 
 



 13 

b) A Circuit 
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Figure 4: A Circuit. 

 
In Figure 4, attraction A is fixed (in this case 25 kms due north) whilst B 
is rotated through 360 degrees at a radius of 12.5kms. The points arising 
in this example are that: 1) Attraction B, because it is nearest the centre, 
always captures the radial market area whose size varies over a limited 
angular range. 2) Attraction B's orbital market area is eclipsed whenever 
its radial market share is at its maximum value. 3) Attraction A captures 
the largest orbital market area as it is nearest the orbital and this area is 
greatest when attractions B is eclipsed. 4) The resulting patterns are 
symmetrical. 
 
We conclude that for two attractions there is a rich range of market share 
behaviour and that market shares depends on both which attraction is 
nearest the centre and which is nearest the orbital. When the angular 
separation between attractions is small eclipsing behaviour takes place. In 
summary, the decision on where to locate must take account of both the 
distances from the city centre and the orbital, and also the angle of 
separation with a rival attraction. 
 
Extension to Two Radial Speeds – The XKT1 Metric 
 
So far we have assumed radial speeds are constant both inside and outside 
the orbital. We know however, that speeds inside an orbital are often 
significantly lower due to smaller road capacity and higher congestion. 
This in turn will affect market areas differentially. We adjust for this as 
follows. Let VI denote a constant radial speed within the ring road (of 
radius R), VX a constant radial speed outside the ring road and VO a 
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constant orbital along the ring road. In  subsequent sections this metric 
will be assumed. Let tR(r,s) and tO(r,θ; s, φ) denote radial and orbital 
travel times, respectively. The XKT1 metric is defined by: 
 
t(r,θ; s, φ) = Min(tR(r; s), tO(r,θ; s, φ))     (4) 
 
where tR() and tO() are specified as follows. Define location-specific 
radial speeds by: VR(r) = VI if r<R, VR(r) = VX otherwise. Then the 
radial travel time from an arbitrary location of radius r to the city centre is 
given by tR(r,0) = (r – R) / VR(r) + R / VI. The radial travel time between 
a general location of radius s and a location of radius r is: 
 
tR(r; s) = (r – R) / VR(r) + (s – R) / VR(s) + 2 R / VI  (5)  
 
The orbital travel time between (r,θ) and (s,φ) is given by: 
 
tO(r,θ; s, φ) = |r – R| / VR(r) + |s – R| / VR(s)  + R|θ - φ| / VO (6) 
 
Extending the Number of Attractions: Market Area Boundaries 
 
Thus far we have examined examples with only two-attractions. We now 
extend the notation to deal with any number of attractions. Let L={Ln; 
n=0..N} denote a set of N+1 attractions where Ln = (rn, θn). Number the 
attractions in a clockwise sequence, based on their angular coordinate, so 
that θn+1>θn. Define L0 to be the attraction with the smallest radius. 
Attraction L0 has a market area consisting of a radial and an orbital 
component, separated by a pair of spiral arcs. Every other non-eclipsed 
attraction has a market area with just an orbital component, which shares 
a spiral arc market boundary with the radial component of L0. We define 
radial speeds in the vicinity of any attraction Ln by: 
 
 VRn = VI if rn < R, VRn = VX otherwise.     (7) 
 
Equating radial and orbital times we obtain the following equation of 
such a spiral arc, for attraction Ln: 
 

RrNn
VO
VIR

VR
Rr

VR
rR

VIr
n

n ≤=−+
−

+
−

= ,..0||
2

)
2

||
2

( 0
0

θθ   (8) 
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Switching Angles 
 
If a spiral arc market boundary intersects the ring road, the angle at which 
this occurs is referred to as a switching angle, given by: 
 
θ*

0 = θ0 + Min(π, 2VO r0 / VI R),    r0 < R 
      = θ0 + Min(π, 2VO / VI),     r0 > R  (9) 
 
θ*

n = θn + Max(0, Min(π, (R-an)/b)),    n>0  (10) 
 
These angles form market area boundaries only when radial speeds are 
sufficiently fast and the attractions have a sufficiently wide angular 
spread so that they do no impinge on each other, as in Figure 1 a. Under 
such conditions these angles bound orbital market areas, separated by 
portions of the radial component of the market area for L0.  
 
Collision Angles 
 
As already noted when the spiral arc market boundaries for different 
attractions intersect inside the ring road, the angle at which this occurs is 
referred to as a collision angle and are given by: 
 
θc

n = (θn+1 + θn + (an+1 – an) / b) / 2  0<n<N 
θc

N = (θ0 + θN + (a0 – aN) / b) / 2      (11)  
 
These angles only apply when the pairs of attractions involved have a 
sufficiently narrow angular spread so that they impinge on each other, as 
in fig 1 b). However their angular spread must not be so narrow that one 
attraction eclipses another. It may be verified that: 
 
θc

n = (θn+1 + θn + (|R-r n+1|/VRn+1 - |R-r n|/VRn) VO / R) / 2   ∀n, ∀r0     (12)
          
 
Eclipsing in the XKT1 metric 
 
In an earlier section we analysed eclipsing conditions for just two 
attractions using the KT1 metric. The analysis in this section deals with 
the conditions under which one attraction is eclipsed by another, under 
the XKT1 metric assuming many attractions. Attraction Ln is (orbitally) 
eclipsed by attraction Lm whenever: 
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|rn - R|/ VRn > R|θm - θn | / VO + |rm - R|./ VRm   (13) 
 
or, equivalently, 
 
|θm - θn | < Km, n where Km, n = (|rn - R|./ VRn - |rm - R|./ VRm ) VO / R  (14) 
 
The array Km, n is referred to as the eclipse angle matrix. Using (13) it can 
be verified that the eclipsing relation is transitive, i.e. if L1 is eclipsed by     
L2 but L2 is itself eclipsed by L3 then L1 will be eclipsed by L3.  
The region eclipsed by attraction Lm consists of both an external 
component (outside the ring road) and an internal component (inside the 
ring road). The external eclipsed region is the set of all points (r,θ) such 
that r > rXe

m(θ) where:  

||||)( m
n

me
m VO

VXR
VR

VXRrRrX θθθ −+
−

+=    (15) 

The internal eclipsed region is the set of all points (r,θ) such that  
r < rIe

m(θ) where:  
 

)||||,0()( m
n

me
m VO

VIR
VR

VIRrRMaxrI θθθ −+
−

−=    (16) 

 
The external and internal eclipsed regions are illustrated in Figure 5, for 
an attraction due west of the city centre. If the attraction were located 
outside the ring road at an equal distance the eclipse regions would be 
unchanged. On the radial containing the attraction the outer eclipse radius 
has an inward pointing cusp and the inner eclipse radial has an outward-
pointing cusp.  The maximum radius of the region that is not externally 
eclipsed is on the opposite side of the city to the attraction.  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5: External and Internal Eclipsed Regions for one attraction A 
The circle shows the ring road. 

Market 

Internal 

External 
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The Eclipsing of Candidate Sites for a New Attraction 
 
As eclipsed locations have no orbital market area they would tend to be 
particularly poor sites for the location of a new attraction. In searching for 
good sites the elimination of eclipsed sites will result in a substantial 
reduction in the area of search. It is therefore of interest to construct the 
set of all locations (r, θ) that are eclipsed by one or more attractions from 
an existing set L={Ln, n = 0…N}. Define the External eclipse envelope:
  
RXe(θ) = Max(R, Min(rXe

n(θ), n=0…N))    (17) 
 
and the Internal eclipse envelope:   
 
RIe(θ) = Max(0, Max(rIe

n(θ), n=0,…N))    (18) 
 
Then all locations (r, θ) such that r > RXe(θ) or r < RIe(θ) are orbitally 
eclipsed by at least one attraction in the set L. Usually the external eclipse 
envelope is of greater interest for several reasons. Firstly, the external 
envelope can be expected to eliminate a much wider area of search than 
the internal envelope. Secondly, the internal eclipse envelope may 
contain sites with good radial access and an appreciable local market, so 
such sites may be premature to eliminate. Thirdly, there are more likely to 
be physical, economic or environmental constraints on sites within the 
internal envelope, which would need to be considered in a more detailed 
analysis of options. A program for computing eclipse envelopes is 
described in Annex 1. Figure 6 shows eclipsing boundaries for a 3-
attraction example. 

 
 

Figure 6. Map showing inner and outer eclipse envelopes. 
White areas are non-eclipsed and therefore potential sites. 
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Figure 6 illustrates eclipse envelopes for three attractions (A,B,C). The 
shaded areas are eclipsed – the inner eclipse envelope being the shaded 
area contained inside the ring road.  
 
 
Extreme Locations for a New Attraction 
 
The potential sites for an non-eclipsed new attraction with maximum 
feasible radius form a finite set of locations. These occur at the outer 
cusps of the external eclipse envelope. Similarly, the potential sites for an 
non-eclipsed new attraction with minimum feasible radius occur at the 
inner cusps of the internal eclipse envelope. 
 
To identify sites (RXe

n, θXe
n) and (RIe

n, θIe
n) we equate the radial 

coordinates on the sections of each envelope, for adjacent existing 
attractions Ln and Ln+1. Solving for the angular coordinate we obtain the 
angular coordinate for next the pair of cusps (external and internal) 
clockwise from Ln: 
 
θXe

n  = (θn+1 + θn  + (AXn+1 - AXn) / BX ) / 2   (19) 
 
θIe

n   = (θn+1 + θn  +  (AIn  - AIn+1) / BI ) / 2   (20) 
 
The parameters AX, BX, AI and BI were given in section 3.2, from 
which we obtain the general expressions: (AXn+1 – AXn) / BX = (AIn – 
AIn+1) / BI = Kn, n+1 where, from the definition of K in section 3.2: 

 
Kn, n+1 = (|rn+1 - R|./ VRn+1 - |rn - R|./ VRn ) VO / R   (21) 
 
Hence: 
 
θIe

n = θXe
n = (θn+1 + θn  + Kn, n+1) / 2    (22)  

 
So the internal and external cusp angles are identical. Compare this 
expression with:  
 
θc

n = (θn+1 + θn + (|R-r n+1|/VRn+1 - |R-r n|/VRn) VO / R) / 2 (23) 
 
as given at the end of section 2.5. This is equivalent to: 
 
θc

n = (θn+1 + θn + Kn, n+1) / 2      (24) 
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It can be deduced that:  
 
θc

n = θIe
n = θXe

n.     ∀n, ∀r0   (25) 
 
Equation (25) states that the collision angles are equal to the inner cusp 
angles of the internal eclipse envelope and to the outer cusp angles of the 
external eclipse envelope. This fundamental result both simplifies the 
geometrical constructions and provides checks on computations. 
 
Figure 7 is a 3-attraction example showing the eclipse envelopes and 
radial-orbital market area boundaries and illustrates the results established 
in equation (25). The radials represent the orbital market area boundaries, 
and it is noted that these connect the outward cusps of the radial market 
area with the outward cusps of the outer eclipse envelope and the inward 
cusps of the inner eclipse envelope. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Alignment of envelope cusps along orbital market area 
boundaries. The shaded area shows the radial market area. 

 
Figure 7 illustrates the alignment of cusps of the internal and external 
eclipse envelopes along the market area boundaries. Three attractions 
(A,B,C) are depicted. The circle represents the ring road. The unshaded 
spiral arcs are the inner and outer eclipse envelopes. The three radial lines 
show the position of the orbital market area boundaries. These go through 
cusps of both eclipse envelopes. 
 

Internal 
eclipse 
envelope 

External  
eclipse 
envelope 

Market 
area 
boundary 
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The Maximum Radius for a New Attraction 
 
To derive the radii RXe

n of the outer cusps of the external eclipse 
envelope, we can write: 
 
RXe

n = rXe
n(θXe

n) = AXn + BX (θXe
n - θn)    (26) 

 
From above we have: 
 
θXe

n  = (θn+1 + θn  + (AXn+1 - AXn) / BX ) / 2    (27) 
 
Substituting and simplifying we obtain: 
 
RXe

n = (BX (θn+1 - θn)  + AXn+1 + AXn ) / 2    (28) 
 
Giving a maximum radius of: 
 
RXe

max = Max((BX (θn+1 - θn) + AXn+1 + AXn ) / 2, n=0..N) (29) 
 
where attraction LN+1 is identified with L0. 
 
Example 
Assume R = 20km, kX = 0.5 and 2 existing attractions: L0=(40, 0o) and 
L1=(50, 180o). Then BX = R*kX = 10km, AX0 = 40, AX1 = 50.  
θXe

0  = (θ1 + θ0  + (AX1 - AX0) / BX ) / 2 = 1190 

RXe
0 = (BX (θ1-θ0) + AX1 + AX0 ) / 2 = 61 km.  

The location (61, 1190) is an outer cusp of the external eclipse envelope 
and there is a second cusp symmetrically to the west at (61, -1190), so 
61km is the maximum radius for a new attraction. 
 
Case Study 
 
We now turn our attention to the case study of major civil airports in 
southeast England. As previously noted in our introduction, it is not our 
aim to produce a detailed planning study but rather to provide a test of the 
concepts described above in a real world setting. In particular we begin 
the study by limiting our attention to the question of evaluating the 
market areas of existing airports and examining the potential for new 
sites. Whilst the results are intuitively plausible, there are of course other 
social and operational factors that need to be considered. One or two of 
the more important these are briefly examined to show how the range of 
locational options may be further narrowed down from the initial set of 
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feasible locations. A major assumption is that the airports have identical 
intrinsic attractiveness – that is they offer equivalent services so that the 
only thing differentiating them is their accessibility. It turns out that this 
is sufficient to produce meaningful results when the four major airports in 
Southeast England are considered. 
 
Airport locations provide an interesting illustration for several reasons. 
For example, they tend to be publicly owned and are therefore often the 
subject of public scrutiny. The safety of passengers and local inhabitants, 
and environmental factors are particular concerns. These and the fact that 
airports need large areas of land means that they are normally located at 
the edge of cities rather than in them. On the other hand airports are 
commercially operated, with frequent and intense competition occurring 
between airline operators to attract as much business as possible. The 
combination of these factors puts a premium on the quality of surface 
access to airports. Simply put any existing airport that has poor access 
will tend lose its market to one that has better access. Similarly, a new 
airport in an in a location with poor access will fail to capture a 
significant number of passengers. 
 
South-East and Eastern England contains several international airports, 
and supported 102 million passengers and 876,000 aircraft movements in 
1998.  With year on year growth in traffic there is a need to provide extra 
capacity at some existing sites and new sites are currently under 
consideration for a possible new airport. The region contains a substantial 
conurbation with about 7m people, which can take in excess of an hour to 
cross in typical traffic conditions. London itself has a road network that 
fits reasonably well with the orbital-radial model described here: the M25 
ring road having a radius of about 25kms with up to 30 radial 
intersections. In addition there are fast rail connections linking three of 
the airports to the centre of London. 
  
The region’s civil passenger airports and their locations in polar co-
ordinates are shown in Table 2. Note that two of the airports, Heathrow 
and City fall within the M25 London orbital and rest outside. Because it 
caters for a specialised business market and only accounts for a little over 
1% of passenger traffic, City airport may be considered a special case. To 
begin with we exclude it from our analysis but then return to it later to 
look at the effect that City airport would have had on the model results.  
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 Airport Distance from 
centre (kms) 

Angle θ 

Gatwick 40 180 
Heathrow 25 -90 
City 15 95 
Luton 40 -30 
Stansted 51 40 

 
Table 2: Locations of existing airports in polar co-ordinates. 

 
Data 
 
We used detailed 1998 data published by the Civil Aviation Authority on 
aircraft and passenger movements by airport. Information on residential 
densities was derived from the Post Office Address File for postal areas 
in and around the South East. Travel time data were derived from a 
commercial route finding package called AutoRoute 2000 which uses 
long run journey averages. The fact that it only includes car journey times 
is a weakness although, with the notable exceptions of fast rail routes to 
Heathrow and Gatwick, studies indicate travel times to be broadly 
comparable.  
 
Radial speeds exterior to the M25 were estimated on average to be 
66.5kph, radial speeds on the interior of the M25, 53 kph, and orbital 
speeds (using the M25), 95 kph. To check the accuracy of the speeds we 
made a comparison of actual and observed inter-airport speeds with the 
results shown in Figure 7.  
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Figure 7: Scatterplot showing predicted and observed 

inter-airport travel times (minutes). 
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The best fit equation is (standard errors are shown in brackets): 
 
Observed time = 3.44 + 0.925 x predicted time 

(2.71) (0.045) 
 

R2 = 0.962 
 
In searching for possible locations for a new airport we adopted the 
assumption that the new airport should be of comparable capacity, should 
minimise the impact on other airports, and should maximise accessibility. 
This means that, in the language of the model, it should not be eclipsed 
by its neighbours and nor should it eclipse its neighbours. The range of 
feasible locations meeting these conditions, as defined by the inner and 
outer eclipsing boundaries, is limited, and will be illustrated below. 
 
We now consider a scenario in which there is a new airport. We take, for 
illustrative purposes, a location X at 50 kms from London and at angle of 
95degrees from due north, between Stansted C and Gatwick D.  Figure 8, 
a and b, show the market areas predicted by the model before and after 
the new airport and the associated inner and outer eclipse envelopes. The 
'petal-shaped' radial market area is shown to belong to Heathrow in either 
case, as it is the most accessible airport from the central area. As is seen it 
is fairly small and contained entirely within the M25 orbital, which means 
that for the majority of locations both inside and outside, the M25 is the 
favoured route. 
 
We also compared market area boundaries from our model with those 
that would be directly obtained using travel times from AutoRoute 2000. 
We found that the general shape and orientation of the orbital market 
areas gave a satisfactory match. Comparisons between the modelled 
radial market boundary and Autoroute 2000 were less satisfactory 
particularly for routes between Heathrow and locations west of the city 
centre. This is principally because our model does not take into account 
London's inner but less effective orbital, the North & South Circular 
Roads. Note that these boundary validations are only intended to check 
on the reasonability of the routing predictions. It is not intended to be a 
check on where passengers actually come from. Such an analysis would 
require survey data on the origins of trips to each of the airports. We 
would expect the observed trip patterns to be much less distinct and to 
overlap to a substantial extent at the margins.  
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(a) Four existing airports      (b) Adding a new airport 
 

Figure 8: Market areas for four (a) and (b) five regional airports. The 
shaded sectors show their market areas. 

 
In figure 8 the locations A, B C and D represent Heathrow. Luton, 
Stansted and Gatwick while X represents a potential site for a new 
airport. The circle represents the M25 The shaded sectors show the 
market areas for each airport location, the lightest shading showing the 
radial market area which is captured by attraction A. The inner and outer 
eclipse envelopes are also illustrated. 
 
Numbers of residences, derived from the Post Office Address File, were 
converted to densities, giving: 
 

 Central
/Radial 

Inside M25 Outside M25 

 3100   
North  590 250 
East  890 260 
South  1200 154 
West  1490 330 

 
Table 3: Residential Densities (units no. per sq km) 

 
These densities were used to predict market shares, by multiplying them 
by the predicted market area sizes. 

Radial market 
area 

    M25 
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Airport Name Passenger 

Traffic  
(actual %) 

Flights 
(actual %) 

Passenger 
Market share 
(predicted %) 

Predicted  
Share with 
new airport 

% 
A Heathrow 60  53 51 49 
B Luton   4    6 13 13 
C Stansted   7 13 13   8 
D Gatwick 29 29 23 18 
X 'North Kent' n.a n.a n.a 12 
 

Table 4: Actual and predicted market shares for existing 
airports and a possible new airport. 

 
Table 4 compares the resulting market shares with the actual percentages 
of passengers and aircraft movements. Given the approximate nature of 
the modelling assumptions, an observed market share found to be within 
25% of that predicted was taken to represent a broad correspondence. On 
this basis, the results indicate that: 
 
1. Traffic at Heathrow is broadly in line with predictions. The new 

airport would cause only a small reduction in its market share.  
 
2. Traffic levels at Luton suggest there is a substantial degree of under –

utilisation, compared with the market size predicted by the model. 
Luton’s market would not be seriously affected by the new airport. 

 
3. Passenger traffic levels at Stansted likewise indicate a slight degree of 

under utilisation, although the number of flights are close to model 
predictions. However, the results suggest its market share would fall 
significantly in the presence of a new airport, with the new airport 
capturing the greater market share. Stansted may lose its position as 
the third most important airport in the region. 

 
4. The market share at Gatwick is broadly in line with expectations but 

like Stansted, Gatwick’s market share would be expected to fall 
significantly if a new airport were built. It is predicted that Gatwick 
would still remain the second most important airport in the region. 

 
5. The model’s slight under-prediction of the market shares for Heathrow 

and Gatwick appears to be simply a direct consequence of its joint 
over-prediction of Stansted and Luton.  
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Sensitivity tests using traverse and circuit analysis 
 
a) Traverse 
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Figure 9: Market shares for alternative radii of the new airport. 
 
The results presented are only indicative. It is of interest to assess its 
sensitivity to changes of possible location, either closer to the centre, 
further out or at a different orientation. We therefore used traverse and 
circuit analysis to test the sensitivity of our results, as outlined earlier in 
the paper. The traverse in Figure 9 shows how the radius of the new 
airport affects its market share and the market share of others. Not 
surprisingly North Kent's market share is maximised when it is sited near 
the M25 but then declines until, at around 70 kms, it falls to zero. The 
effect on neighbouring airports shows that Gatwick and Stansted stand to 
gain as the new airport’s radius increases. Heathrow’s market share varies 
as North Kent’s market area boundary is adjacent to Heathrow' radial 
market area. Luton’s market share is not affected as Luton’s  market area 
shares no common boundary with North Kent.  
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b) Circuit 
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Figure 10: Market shares for varying angles of the new airport. 
 
Figure 10 shows how the market share of each airport is affected as the 
location of the new airport is rotated at a 50kms radius between Stansted 
in the north-east and Gatwick in the south.  As is seen Heathrow and 
Luton are barely affected as compared with Gatwick and Stansted. As the 
new airport rotates further towards Gatwick, Stansted's share goes up and 
Gatwick's down as is to be expected.  Note however, that as the new 
airport rotates to within 20 degrees of Gatwick its market area is suddenly 
eclipsed and Gatwick gains as a result. 
 
Travel time from the orbital 
 
We have omitted to discuss why we chose to locate the new airport at 95 
degrees. Figure 11 shows the travel time to the nearest airport from 
different points on the orbital circumference. In the 'before' situation 
travel time is a maximum (37 minutes) at a location 95 degrees from due 
north whereas it is a minimum at -90 degrees due north (corresponding to 
Heathrow).  Following the introduction of the new airport the maximum 
journey time from the orbital falls to 29 minutes. This reduction is 
maximised by locating the new airport at 95 degrees. However this is 
only one of many factors that might bear on the actual location of any 
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possible new airport, so our choice of this particular criterion is only 
given for illustrative purposes. 
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Figure 11: Travel time to nearest airport from a point on the orbital 
before and after introduction of new airport. 

 
 
The Effect of City airport 
 
Earlier we noted that City airport was a special case. Because it is closer 
to the city centre than Heathrow it is a potential threat to Heathrow’s 
dominance. We now examine the effect of including City airport in the 
model, assuming that no new airport is built. For this exercise we can 
realistically assume that City airport enjoys faster radial surface access to 
the centre of London than Heathrow. But we also need to make a less 
realistic assumption: that it would have no limitation in passenger and 
aircraft handling capacity or any substantial environmental constraints on 
expansion . The model predicts that City would then capture the radial 
market area and gain an overall a market share in excess of 40%, whilst 
Heathrow’s market share would halve.  
 
Airspace Design Footprints 
 
In our introduction to the case study we highlighted safety factors. These  
have the effect of introducing additional spatial constraints, so narrowing 
even further the range of feasible airport sites. We illustrate this briefly as 
follows simply to show how, in an actual application, the model would 
need to interface with other planning considerations. Figure 13 shows 
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typical airspace design footprints for take-offs and landings (based on 
DETR, 2000 p21). The footprint for City has been reduced to avoid an 
overlap with Heathrow and may be justified in terms of the smaller 
aircraft that operate from City airport. However, when airport locations 
are so close that their footprints overlap, their takeoff and landing control 
systems would need to be closely integrated.  
 
Of course this is just for illustrative purposes and accuracy is only 
intended to be approximate. However, it can be noted that new airport 
locations to the east of London that are appreciably closer than 48km 
from the centre may need to be ruled out as their airspace footprints 
would overlap that of City airport. The location marked in figure 13, 
which falls within the non-eclipsed area, just avoids this. It is in the 
Medway Towns area, roughly equidistant between Rochester and 
Gillingham.   

 

 
 

Figure 12: Airspace Design Footprints for five existing 
airports and a new airport in North Kent. 

 
Summary and conclusions 
 
In this paper we have developed an analytical framework for determining 
the characteristics of market areas under orbital-radial routing: a common 
feature of many cities. Orbital-radial routing characteristics depend on 
how many alternative ring roads are available. The framework provided 
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is quite general but it has only been elaborated for models with a single 
ring road. This is a sufficiently good first approximation for the level of 
detail required for this case study. The study of airport location is of 
particular interest because airports are becoming increasingly strategic 
features of most cities and exercise their influence beyond city boundaries 
to the whole of a surrounding region, generating demands for both radial 
and orbital access. 
 
Our conclusions therefore fall into three distinct categories. The first is 
the theory itself and the policy implications that arise in terms of planning 
and competition. Here we were able to demonstrate a number of hitherto 
unidentified factors, particularly the conditions under which one 
attraction may eclipse another and therefore capture all or a substantial 
part of its market. A deliberate omission was the incorporation of 
differential attractiveness although there appears to be no fundamental 
problems in extending the analysis to account for such factors. 
This would be worthwhile extension to the theory if, for example, the 
model were to be applied to commercial facilities such as major retail and 
distribution centres.  
 
The second set of conclusions concern the results of the case study. Here 
we are not suggesting that the ideal location for a new airport is the one  
identified in the case study. There are many other economic, financial and 
environmental factors to take into account, whether a new site is built at 
all or existing airports are expanded. However the factors incorporated in 
our analysis are expected to have a significant bearing on strategic airport 
location decisions, and may in themselves be sufficient to rule out a 
number of potential sites.  
 
The third set of conclusions relates to the methods and software. This 
paper has described only basic software tools that can help to implement 
models with low data requirements. It would clearly be dangerous to rely 
on such tools as a substitute for a more complete analysis. However it is 
always of value to use simple methods to give a 'reasonability check' on 
the results of a more complex model and the tools developed here are 
expected to have further applications of this kind. 
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Annex 1: A Market Area Analysis Program  
 
Metric:  XKT1 
Attractions: N+1 
Outputs: Market Area Sizes, Plots of Eclipse Envelopes and Radial 
Market Area 
Assumes: L0 is inside the ring road. All orbital markets collide 
 
Begin 
    Read general fixed inputs: R, VI, VX, VO 
    Calculate derived constants: kI, kX, BI, BX, b 
    Loop over attractions n=0..N 
        Read coordinates of each attraction: (rn, θn) 
        Calculate radial speeds at each attraction: VRn  
        Calculate eclipse envelope start radii AXn , AIn 
        Calculate radial market area start radii an  
        Calculate collision angles and angular limits of orbital markets 
        Output size of market areas 
    End loop 
    Loop over all angles θ 
        Loop over attractions n=0..N 
            Calculate external eclipse projections rXen(θ) 
            Calculate internal eclipse projections rIen(θ) 
            Calculate radial market area projections rMRn(θ) 
        End loop over attractions 
        Output external envelope RXe(θ) 
        Output internal envelope RIe(θ) 
        Output radial market area radius RMR(θ) 
    End loop over angles 
End 
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General Fixed Inputs 
R Radius of Ring Road  Km 
VI Internal Radial 

Speed 
Kph 

VX External Radial 
Speed 

Kph 

VO Orbital Speed Kph 
 
Derived Constants 
kI VI/VO Internal Speed Ratio Pure 

number 
kX VX/VO External Speed Ratio Pure 

number 
BI kI R Internal Eclipse 

Gradient 
Kms/Radia
n 

BX kX R External Eclipse 
Gradient 

Kms/Radia
n 

b BI / 2 Spiral Market Gradient Kms/Radia
n 

 
Inputs for each attraction 
Rn Radius of attraction 

n  
Km 

θn Angle of attraction n Degree 
 
Derived Variables 
VRn If(rn < R, VI, VX) Radial Speed at Attraction n Kph 
AXn R + |rn - R| VX / VRn External envelope start radius n Km 
AIn Max(0, R - |rn - R| VI / VRn) Internal envelope start radius n Km 
an ((R - r0) / VR0 + |rn - R| / VRn) VI 

/ 2 
Start radius of market area 
spiral n 

Km 

θcn  (θn+1 + θn + Deg((an+1 – an)) / b) / 2 Collision angle 0<n<N Degree 
θcN  (θ0 + θN + Deg((a0 – aN) / b)) / 2 Collision angle N Degree 
φnRt Rad(Min(|θcn - θn |, 360 - |θcn - 

θn|))) 
Right angular limit of orbital 
market 

Radian 

φnLt Min(|θcn-1 - θn |, 360 - |θcn-1 - θn|) Left angular limit of orbital 
market n>0 

Radian 

φ0Lt Min(|θcN - θ0 |, 360 - |θcN - θ0|) Left angular limit of orbital 
market n=0 

Radian 

RXen(θ) AXn + BX Rad(Min(|θ - θn|,  
360 - |θ - θn|) 

External eclipse radius 
projected by attraction n at 
angle θ 

Km 

rIen(θ) AIn - BI Rad(Min(|θ - θn|,  
360 - |θ - θn|) 

Internal eclipse radius 
projected by attraction n at 
angle θ 

Km 

rMRn(θ) Min(R, an + b Rad(Min(|θ - θn|, 
360 - |θ - θn|)) 

Radial market area radius 
projected by attraction n at 
angle θ 

Km 
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Outputs 
AIn A(φnLt, R, an, b) + A(φnRt, R, 

an, b) 
Internal area of orbital market Km2 

AR πR2 - ∑n AIn Internal radial market area Km2 

RXe(θ) Max(R, Min(rXen(θ), n=0..N) External eclipse radius at angle θ Km 
RIe(θ) Max(0, Max(rXen(θ), n=0..N) Internal eclipse radius at angle θ Km 
RMR(θ) Min(rMRn(θ), n=0..N) Radial market area radius at 

angle θ 
Km 
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