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A�������: We provide exact analytical solutions for a two dimensional explicitly time-

dependent non-Hermitian quantum system. While the time-independent variant of the

model studied is in the broken PT-symmetric phase for the entire range of the model pa-

rameters, and has therefore a partially complex energy eigenspectrum, its time-dependent

version has real energy expectation values at all times. In our solution procedure we com-

pare the two equivalent approaches of directly solving the time-dependent Dyson equation

with one employing the Lewis-Riesenfeld method of invariants. We conclude that the lat-

ter approach simplifies the solution procedure due to the fact that the invariants of the

non-Hermitian and Hermitian system are related to each other in a pseudo-Hermitian

fashion, which in turn does not hold for their corresponding time-dependent Hamiltoni-

ans. Thus constructing invariants and subsequently using the pseudo-Hermiticity relation

between them allows to compute the Dyson map and to solve the Dyson equation indi-

rectly. In this way one can bypass to solve nonlinear differential equations, such as the

dissipative Ermakov-Pinney equation emerging in our and many other systems.

1. Introduction

In the context of non-Hermitian time-independent quantum mechanics many systems are

known to posses real spectra in a certain parameter regime that becomes spontaneously

broken when some coupling constants are driven beyond the exceptional point [1, 2, 3,

4]. Unlike their optical analogues [5, 6, 7], where the spontaneously broken regime is

of great interest, in quantum mechanics this regime is usually discarded on grounds of

being nonphysical since it leads inevitably to infinite growth in energy due to the fact

that the energy eigenvalues emerge as complex conjugate pairs. In [8] we demonstrated

that the introduction of an explicit time-dependence into a non-Hermitian Hamiltonian

can make the spontaneously broken PT -regime physically meaningful. The reason for this
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phenomenon is that the energy operator becomes modified due an additional term related

to the Dyson operator and hence its expectation values can become real. Here we extend

the previous analysis of the broken PT -regime from a one dimensional two-level system [8]

to a two-dimensional system with infinite Hilbert space.

In addition, we show that technically it is simpler to employ Lewis-Riesenfeld invariants

[9] instead of directly solving the time-dependent Dyson map or the time-dependent quasi-

Hermiticity relation. All approaches are of course equivalent, but the invariant method

splits the problem into several more treatable steps. In particular, it can be viewed as

reformulating the nonpseudo-Hermitian relation for the Hamiltonians involved, i.e. the

time-dependent Dyson relation, into a pseudo-Hermitian relation for the corresponding

invariants. The latter quantities are well studied in the time-independent setting and are

far easier to solve as they do not involve derivatives with respect to time. Loosely speaking

the time-derivative in the time-dependent Dyson relation acting on the Dyson map has been

split up into the two time-derivatives acting on the invariants ensuring their conservation.

Besides this aspect related to the technicalities associated to the solution procedure we also

provide the first explicitly solved time-dependent system in higher dimensions.

Our manuscript is organized as follows: In section 2 we recall the key equations that

determine the Dyson map and hence the metric operator. In section 3 we introduce our two-

dimensional model. As first we demonstrate how it may be solved in a time—independent

setting. Subsequently we determine the time-dependent Dyson map in two alternative

ways, comparing the direct and the Lewis-Riesenfeld method. In addition, we compute the

analytical solutions to the time-dependent Schrödinger equation and use them to evaluate

instantaneous energy expectation values. Our conclusions are stated in section 4.

2. Time-dependent Dyson equation versus Lewis-Riesenfeld invariants

The central object to compute in the study non-Hermitian Hamiltonian systems is the

metric operator ρ that can be expressed in terms of the Dyson operator η as ρ = η†η.

Unlike as in the time-independent scenario a non-Hermitian Hamiltonian H(t) �= H†(t)

can no longer be related to a Hermitian counterpart h(t) = h†(t) in a pseudo-Hermitian

way, that is via a similarity transformation, but instead the two Hamiltonians are related

to each other by means of the time-dependent Dyson relation

h(t) = η(t)H(t)η−1(t) + i�∂tη(t)η
−1(t). (2.1)

When the Hamiltonian h(t) is observable, this relation implies immediately that the Hamil-

tonian H(t) is not observable [10, 11, 12, 13] as the latter is not a self-adjoint operator with

regard to the standard or modified inner product. The Hamiltonians are understood to be

the operators governing the time-evolution of the systems satisfying the time-dependent

Schrödinger equations

H(t)ΨH(t) = i�∂tΨH(t), for H = h,H. (2.2)

— 2 —
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The Hamiltonian is only identical to the observable energy operator in the Hermitian case,

but different in the non-Hermitian setting where it has to be modified to

H̃(t) := η−1(t)h(t)η(t) = H(t) + i�η−1(t)∂tη(t). (2.3)

The two wavefunctions in (2.2) are related to each other by the Dyson map

Ψh(t) = η(t)ΨH(t). (2.4)

Besides the time-dependent Dyson relation also the time-dependent quasi-Hermiticity re-

lation is then modified, by acquiring an additional derivative term in the metric operator

H†(t)ρ(t)− ρ(t)H(t) = i�∂tρ(t). (2.5)

It was demonstrated [13, 14, 15, 16, 8] that the equations (2.1) and (2.5) can be directly

solved consistently for η(t) and ρ(t), respectively. Alternatively, but completely equivalent,

one may also employ the standard Lewis-Riesenfeld approach [9] of computing invariants

as argued in [17, 18]. This approach requires to compute the two conserved time-dependent

invariants Ih(t) and IH(t), i.e. dIh/dt = dIH/dt = 0, from the evolution equations

dIH(t)

dt
= ∂tIH(t)− i� [IH(t),H(t)] = 0, for H = h = h†,H �= H†. (2.6)

Using these two equations together with the Dyson relation (2.1) it is straightforward to

derive that the two invariants are simply related by a similarity transformation

Ih(t) = η(t)IH(t)η
−1(t). (2.7)

Since the invariant Ih is Hermitian, the invariant IH is its pseudo-Hermitian counterpart.

When Ih and IH have been constructed, (2.7) is a much easier equation to solve for η(t),

than directly the Dyson relation (2.1). At this point one has therefore also obtained the

metric operator simply by ρ = η†η. Next one may also employ the invariants to construct

the time-dependent eigenstates from the standard equations [9]

IH(t) |φH(t)� = Λ |φH(t)� , |ΨH(t)� = ei�α(t) |φH(t)� , (2.8)

α̇ = 	φH(t)| i�∂t −H(t) |φH(t)� , Λ̇ = 0 (2.9)

for H = h and H = H. Below we compare the two approaches and conclude that even

though the approach using invariants is more lengthy, it dissects the original problem into

several easier smaller steps when compared to solving the Dyson equation directly. Of

course both approaches are equivalent and must lead to the same solutions for η(t), as we

also demonstrate.

In what follows we set � = 1.

— 3 —
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3. 2D systems with infinite Hilbert space in the broken PT -regime

3.1 Two dimensional time-independent models

We set up our model by considering at first a PT -symmetric system that we then slightly

modify by going from a model with partially broken PT -symmetry to one with com-

pletely broken PT -symmetry1. We commence with one of the simplest options for a

two-dimensional non-Hermitian system by coupling two harmonic oscillators with a non-

Hermitian coupling term in space

Hxy =
1

2m

�
p2x + p

2
y

�
+
1

2
m
�
Ω2xx

2 +Ω2yy
2
�
+ iκxy, m, κ,Ωx,Ωy ∈ R. (3.1)

This non-Hermitian Hamiltonian is symmetric with regard to the antilinear transformations

[19] PT ± : x → ±x, y → ∓y, px → ∓px, py → ±py, i → −i, i.e. [PT ±, Hxy] = 0. Using

standard techniques from PT -symmetric/quasi-Hermitian quantum mechanics [1, 2, 3], it

can be decoupled easily into two harmonic oscillators

hxy = ηHxyη
−1 =

1

2m

�
p2x + p

2
y

�
+
1

2
m
�
ω2xx

2 + ω2yy
2
�
, (3.2)

by a simple rotation using the angular momentum operator Lz = xpy − ypx in the Dyson

map η = eθLz and constraining the parameters involved as

ω2x =
Ω2x cosh

2 θ +Ω2y sinh
2 θ

cosh 2θ
, ω2y =

Ω2x sinh
2 θ +Ω2y cosh

2 θ

cosh 2θ
, tanh2θ =

2κ

m
�
Ω2y −Ω2x

� .

(3.3)

By the last equation in (3.3) it follows that one has to restrict |κ| ≤ m
�
Ω2y −Ω2x

�
/2 for

this transformation to be meaningful. Thus as long as the Dyson map is well defined, i.e.

the constraint holds, the energy eigenspectra

En,m =

�
n+

1

2

�
ωx +

�
m+

1

2

�
ωy. (3.4)

of h and H are identical and real. The restriction on κ is the same as the one found in [20,

21], where the decoupling of H to h was realized by an explicit coordinate transformation

instead of the Dyson map. In fact, identifying the parameter k in [20] as k = cosh 2θ, and

somewhat similarly in [21], the coordinate transformation becomes a rotation realized by

the similarity transformation acting on the coordinates and the momenta, i.e. we obtain

H → h with the coordinate transformation

v → ηvη−1 =

�
cosh θ i sinh θ

−i sinh θ cosh θ

�

v, for v =

�
x

y

�

,

�
px
py

�

. (3.5)

Such a scenario is mostly well understood and in analogy to the case studied in [8], solving

the time-dependent Dyson equation for η(t) will allow to make sense of the regime for

κ→ κ(t) beyond the exceptional point.

1We use here the standard terminology, referring to the situation [PT ,H] = 0, PT φH = φH as PT -

symmetric, [PT ,H] = 0, PT φH �= φH as spontaneously broken PT -symmetric and [PT ,H] �= 0, PT φH �=

φH as completely broken.

— 4 —
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Let us now slightly modify the model above by modifying some of the constants and by

adding a term that also couples the two harmonic oscillator Hamiltonians in the momenta

Hxyp =
a

2

�
p2x + x

2
�
+
b

2

�
p2y + y

2
�
+ i
λ

2
(xy + pxpy) , a, b, λ ∈ R. (3.6)

Clearly this Hamiltonian is also symmetric with regard to the same antilinear symmetry

as Hxy, i.e. we have [PT ±, Hxyp] = 0. Thus we expect the eigenvalues to be real or to be

grouped in pairs of complex conjugates when the symmetry is broken for the wavefunctions.

It is convenient to express this Hamiltonian in a more generic algebraic fashion as

HK = aK1 + bK2 + iλK3, (3.7)

where we defined Lie algebraic generators

K1 =
1

2

�
p2x + x

2
�
, K2 =

1

2

�
p2y + y

2
�
, K3 =

1

2
(xy + pxpy) , K4 =

1

2
(xpy − ypx) . (3.8)

Besides the generators already appearing in the Hamiltonian we added one more generator,

K4 = Lz/2, to ensure the closure of the algebra, i.e. we have

[K1,K2] = 0, [K1,K3] = iK4, [K1,K4] = −iK3,
[K2,K3] = −iK4, [K2,K4] = iK3, [K3,K4] = i(K1 −K2)/2.

(3.9)

Notice that K†
i = Ki for i = 1, . . . , 4. In what follows we mostly use the algebraic for-

mulation so that our results also hold for representations different from (3.8). We report

that the Hamiltonian Hxy in (3.1) requires at least a ten dimensional Lie algebra when

demanding xy to be one of the Lie algebraic generators, which is the reason we consider

first the more compactly expressible Hamiltonian Hxyp.

Using the same form of the Dyson map η = eθLz as above, albeit with θ = arctanh[λ/(b−
a)], this Hamiltonian is decoupled into

hK = ηHKη
−1 =

1

2
(a+ b) (K1 +K2) +

1

2

�
(a− b)2 − λ2 (K1 −K2) , (3.10)

for |λ| < |a− b|. So clearly for a = b we are in the spontaneously broken PT -regime2. That

choice is in addition very convenient as it allows for a systematic construction of the eigen-

value spectrum ofHK(b = a). Since the following commutators vanish [HK(b = a),K1 +K2] =

[HK(b = a),K3] = [K1 +K2,K3] = 0, one simply needs to search for simultaneous eigen-

states of K3 and K1+K2 to determine the eigenstates if HK(b = a), due to Schur’s lemma.

Indeed for the representation (3.8) we obtain for HK(b = a) the eigenstates

ϕn,m(x, y) =
e−

x2

2
− y2

2

2n+m
√
n!m!π

�
n	

k=0

�
n

k

�
Hk(x)Hn−k(y)


�
m	

l=0

(−1)l
�
m

l

�
Hl(y)Hm−l(x)




,

(3.11)

2We use here the standard terminology, referring to the situation [PT ,H] = 0, PT φ
H
= φ

H
as PT -

symmetric, [PT , H] = 0, PT φ
H
�= φ

H
as spontaneously broken PT -symmetry and [PT ,H] �= 0, PT φ

H
�=

φ
H

.
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with corresponding eigenenergies

En,m = E
∗
m,n = a(1 + n+m) + i

λ

2
(n−m). (3.12)

HereHn(x) denotes the n-th Hermite polynom in x. The states are orthonormal with regard

to the standard inner product
�
ϕn,m

��ϕn′,m′



= δn,n′δm,m′ . The reality of the subspectrum

with n = m is explained by the fact that the PT ±-symmetry is preserved, i.e. we can

verify that PT ± ϕn,n = ϕn,n. However, when n �= m the PT ±-symmetry is spontaneously

broken and the eigenvalues occur in complex conjugate pairs.

Hence this Hamiltonian should be discarded as nonphysical in the time-independent

regime, but we shall see that it becomes physically acceptable when the parameters a and

λ are taken to be explicitly time-dependent.

3.2 A solvable 2D time-dependent Hamiltonian in the broken PT -regime

We solve now the explicitly time-dependent non-Hermitian Hamiltonian

H(t) =
a(t)

2

�
p2x + p

2
y + x

2 + y2
�
+ i
λ(t)

2
(xy + pxpy) , a(t), λ(t) ∈ R. (3.13)

According to the above discussion, the instantaneous eigenvalue spectrum of H(t) belongs

to the spontaneously broken PT -regime.

3.2.1 The time-dependent Dyson equation

Let us now compute the right hand side of the time-dependent Dyson relation (2.1). For

that purpose we assume that the Dyson map is an element of the group associated to the

algebra (3.9) and take it to be of the form

η(t) =
�4

i=1
eγi(t)Ki , γi ∈ R. (3.14)

As η is not a unitary operator by definition, we have taken the γi to be real to avoid

irrelevant phases. Using now (3.14) and (3.13) in (2.1), the right hand side will be Hermitian

if and only if

γ1 = γ2 = q1, γ̇3 = −λ coshγ4, γ̇4 = λ tanhγ3 sinhγ4, (3.15)

for some real constant q1 ∈ R. The Hermitian Hamiltonian results to

h(t) = a(t) (K1 +K2) +
λ(t)

2

sinh γ4
coshγ3

(K1 −K2) . (3.16)

For the representation (3.8) these are simply two decoupled harmonic oscillators with time-

dependent coefficients. The energy operator H̃ as defined in equation (2.3) becomes

H̃(t) = a(t) (K1 +K2)+
λ(t)

4
sinh(2γ4) (K1 −K2)−iλ(t)

�
sinh2 γ4K3 − sinhγ4 tanh γ3K4

�
.

(3.17)

— 6 —
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The constraining relations (3.15) may be solved directly for γ3 and γ4, but not in a

straightforward manner. We eliminate λ and dt from the last two equations in (3.15), so

that dγ4 = − tanhγ3 tanh γ4dγ3, hence obtaining γ4 as a function of γ3

γ4 = arcsinh (κ sech γ3) (3.18)

with integration constant κ. Defining χ(t) := coshγ3 we use (3.15) and (3.18) to derive

that the central equation that needs to be satisfied is the Ermakov-Pinney equation [22, 23]

with a dissipative term

χ̈− λ̇
λ
χ̇− λ2χ = κ

2λ2

χ3
. (3.19)

This equation is ubiquitous in the context of solving time-dependent Hermitian systems,

even in the Hermitian setting, see e.g. [24]. While some solutions to this equation are

known, we demonstrate here that solving this nonlinear differential equation can be com-

pletely bypassed when employing Lewis-Riesenfeld invariants instead and computing η from

the pseudo-Hermiticity relation (2.7) for the invariants instead.

3.2.2 The time-dependent Dyson map from pseudo-Hermiticity

It is natural to assume that the invariants IH , Ih as well as the Hermitian Hamiltonian

h(t) lie in the same algebra as the non-Hermitian Hamiltonian H(t). Furthermore we note

that Ih(t) needs to be Hermitian, so that we make the Ansätze

IH(t) =
4	

i=1

αi(t)Ki, Ih(t) =
4	

i=1

βi(t)Ki, h(t) =
4	

i=1

bi(t)Ki, (3.20)

with αi = αri + iα
i
i ∈ C, bi, βi, α

r
i , α

i
i ∈ R.

The Lewis-Riesenfeld invariant IH(t): Substituting the expressions for IH(t) and

H(t) into the equation in (2.6) and reading off the coefficients of the generators Ki we

obtain the four constraints

α̇1 =
i

2
λα4, α̇2 = −

i

2
λα4, α̇3 = 0, α̇4 = iλ(α2 − α1). (3.21)

These equations are easily solved by

α1 =
c1
2
+c3 cosh



c4 −
t�

0

λ(s)ds



 , α2 = c1−α1, α3 = c2, α4 = 2ic3 sinh



c4 −
t�

0

λ(s)ds



 ,

(3.22)

with complex integration constants ci = cri + ic
i
i, c

r
i , c

i
i ∈ R. At this point we have two

options, we may either compute directly the invariant Ih(t) for the Hamiltonian h(t) as

given in (3.16) by using the evolution equation (2.6) or the similarity relation (2.7) instead.

— 7 —
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The Lewis-Riesenfeld invariant Ih(t): Denoting the coefficients ofK1 andK2 in (3.16)

by b1(t) and b2(t), respectively, as defined in the expansion for generic h(t) in (3.20), the

relation for the invariants (2.6) leads to the constraints

β̇1 = 0, β̇2 = 0, β̇3 = β4(b2 − b1), β̇4 = β3(b1 − b2). (3.23)

These four coupled first order differential equations are easily solved by

β1 = c5, β2 = c6, β3 = c7 cos

�
c8 −

� t

0
(b1 − b2)ds

�
, β4 = −c7 sin

�
c8 −

� t

0
(b1 − b2)ds

�
.

(3.24)

Next we invoke the pseudo-Hermiticity relation for the invariants (2.7).

Relating IH(t) and Ih(t): So far we have treated the Hermitian and non-Hermitian

systems separately. Next we relate them using the Ansätze (3.14) for η(t) and (3.20)

for the invariants in the expression (2.7). We obtain eight equations by reading off the

coefficients and separating the result into real and imaginary parts. We can solve the

resulting equations for the real functions

β1 =
1

2

�
αr1 + α

r
2 − αi4 sinh γ3 + αi3 sinh γ4 cosh γ3 + (αr1 − αr2) cosh γ3 cosh γ4

�
, (3.25)

β2 =
1

2

�
αr1 + α

r
2 + α

i
4 sinh γ3 − αi3 sinh γ4 cosh γ3 − (αr1 − αr2) cosh γ3 cosh γ4

�
, (3.26)

β3 =
�
αi2 − αi1

�
sinh γ4 + α

r
3 cosh γ4, (3.27)

β4 =
��
αi1 − αi2

�
coshγ4 − αr3 sinhγ4

�
sinhγ3 + α

r
4 coshγ3 (3.28)

with the additional constraints

αi1 + α
i
2 = 0, αr3α

i
3 + α

r
4α
i
4 = 2α

i
1(α

r
2 − αr1), (3.29)

tanh γ3 =
αi4�

(αr1 − αr2)2 − (αi3)2
, tanh γ4 =

αi3
αr2 − αr1

. (3.30)

We also used here γ1 = γ2.

Next we compare our solutions in (3.22), (3.24) and (3.25)-(3.30). First we use the

expressions for the αi from (3.22) in (3.25)-(3.30). The constraints (3.29) imply that

ci1 = 0 and 4cr3c
i
3 = −cr2ci2 so that the time-dependent coefficients in the Hermitian invariant

Ih result to

β1 =
cr1
2
± 1
2

�
4(cr3)

2 − (ci2)2, (3.31)

β2 =
cr1
2
± 1
2

�
4(cr3)

2 − (ci2)2, (3.32)

β3 = ± c
r
2

2cr3

�
4(cr3)

2 − (ci2)2
�

�

4(cr3)
2 − (ci2)2 sech2

�
cr4 −

� t

0
λ(s)ds

� , (3.33)

β4 = ±c
r
2c
i
2

2cr3

�����
4(cr3)

2 − (ci2)2

4(cr3)
2 − (ci2)2 sech2

�
cr4 −

� t

0
λ(s)ds

� tanh
�
cr4 −

� t

0
λ(s)ds

�
, (3.34)

— 8 —
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with the constraint 2 |cr3| >
��ci2
��. These expressions need to match with those computed

directly in (3.25). It is clear how to identify the constants c5 and c6 in (3.24) when

comparing to (3.31) and (3.32). Less obvious is the comparison between the β3 and β4.

Reading off b1 and b2 from (3.16) and using (3.30), we compute

� t

0
(b1 − b2)ds = arctan



 ci2�
4(cr3)

2 − (ci2)2
tanh

�
cr4 −

� t

0
λ(s)ds

�

 . (3.35)

Setting next the constants c8 = 0, c7 = ±cr2
�
4(cr3)

2 − (ci2)2/(2cr3) the solution in (3.24)

matches indeed with (3.33) and (3.34).

We can now assemble our expressions for η by using the results for γ3 and γ4 from

(3.30) together with the expressions in (3.22) obtaining

γ3 = arctan






tanh

�
q2 −

� t

0
λ(s)ds

�

�

1− q23 sech
�
q2 −

� t

0
λ(s)ds

�2





, (3.36)

γ4 = − arccot
�
1

q3
cosh

�
q2 −

� t

0
λ(s)ds

��
, (3.37)

with the identification q2 = cr4 and q3 = ci2/(2c
r
3).

We convince ourselves that the function

χ(t) = cosh γ3 =

�����cosh2
�
q2 −

� t

0
λ(s)ds

�
− q23

1− q23
(3.38)

computed with γ3 as given in (3.36) does indeed satisfy the dissipative Ermakov-Pinney

equation (3.19) when identifying the constants as κ = q3/
�
1− q23. We also express the

Hamiltonian (3.16) explicitly as

h(t) = f+(t)K1+f−(t)K2 with f±(t) = a(t)±
q3
�
1− q23λ(t)

1 + cosh

�
2q2 − 2

� t

0
λ(s)ds

�
− 2q23

, (3.39)

which is evidently Hermitian for |q3| < 1.

3.2.3 Eigenstates, phases and instantaneous energy expectation values

We note that the computation of the Dyson map did not require the knowledge of any

eigenstates, neither when using Lewis-Riesenfeld invariants nor in the directly approach

of solving the time-dependent Dyson relation. This also means that so far we have not

solved the time-dependent Schrödinger equation nor did we use the eigenstate equations

(2.8) and (2.9). Let us therefore carry out the final step and determine all eigenstates,

including relevant phases, and use them to evaluate the energy expectation values.
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The exact solution to the time-dependent Schrödinger equation for the harmonic os-

cillator with time-dependent mass and frequency is well known for twenty years [25]. Since

the Hamiltonian h(t) in (3.39) are two decoupled harmonic oscillators it suffices to con-

sider the Hamiltonian h̃(t)[25] a(t)K1, with a(t) being any real function of t. Adapting the

solution of [25] to our notation and situation, it reads

ϕ̃n(x, t) =
eiαn(t)
�
κ(t)

exp

��
i

a(t)

κ̇(t)

κ(t)
− 1

κ2(t)

�
x2

2

�
Hn

�
x

κ(t)

�
, (3.40)

with phase

αn(t) = −
�
n+

1

2

� � t

0

a(s)

κ2(s)
ds, (3.41)

and κ(t) being restricted to the dissipative Ermakov-Pinney equation

κ̈ − ȧ
a
κ̇ + a2κ =

a2

κ3
. (3.42)

Thus while we could bypass to solve this equation in the form of (3.19) for the determination

of η when it involved λ, it has re-emerged for the computation of the eigenstates involving a

with a different sign in front of the last term on the left hand side. Using the wavefunction

(3.40) we compute here the expectation value for K1 and a normalization factor

	ϕ̃n(x, t)|K1 |ϕ̃m(x, t)� = 2n−2n!(2n+ 1)
√
π
a2(1 + κ4) + κ2κ̇2

a2κ2
δn,m, (3.43)

	ϕ̃n(x, t) |ϕ̃n(x, t)� = 2nn!
√
π := N. (3.44)

Next we notice that the expectation value (3.43) does not depend on time

d

dt

�
a2(1 + κ4) + κ2κ̇2

a2κ2

�
=
2κ̇

a2

�
κ̈ − ȧ

a
κ̇ + a2κ − a2

κ3

�
= 0. (3.45)

by recognizing in (3.45) one of the factors as the Ermakov-Pinney equation in the form

(3.42). It is clear that this constant will dependent on the explicit solution for (3.42). So for

definiteness we compute it by adapting the solution (3.38) to account for the aforementioned

different sign

κ(t) =

�

κ̃ cos

�
2

� t

0
a(s)ds

�
+
�
1 + κ̃2, (3.46)

with integration constant κ̃. For this solution we calculate

a2(1 + κ4) + κ2κ̇2

a2κ2
= 2

�
1 + κ̃2. (3.47)

Thus for the normalized wavefunction ϕ̂n(x, t) = ϕ̃m(x, t)/
√
N involving the solution (3.46)

we find

	ϕ̂n(x, t)|K1 |ϕ̂m(x, t)� =
�
n+

1

2

��
1 + κ̃2δn,m. (3.48)
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Having established the solution for one time-dependent harmonic oscillator, the solution

for the time-dependent Schrödinger equation for the Hermitian Hamiltonian h(t) in (3.39)

is simply

Ψn,mh (x, y, t) = ϕ̂+n (x, t)ϕ̂
−
m(y, t) (3.49)

when the notation replacing a → f±, κ → κ±, κ̃ → κ̃± and αn → α±n in an obvious

manner. We have now assembled all the information needed to compute the instantaneous

energy expectation values

En,m(t) =
�
Ψn,mh (t)

��h(t)
��Ψn,mh (t)



=
�
Ψn,mH (t)

�� ρ(t)H̃(t)
��Ψn,mH (t)



(3.50)

= f+(t)

�
n+

1

2

��
1 + κ̃2+ + f−(t)

�
m+

1

2

��
1 + κ̃2−,

with constants κ±. It is clear that this expectation value is real for any given time-

dependent fields a(t), λ(t) ∈ R and constants κ̃± ∈ R, |q3| < 1. Hence, we have explicitly

shown that one can draw the same conclusion as in the one-dimensional case [8], that

a time-independent non-Hermitian Hamiltonian in the spontaneous spontaneously broken

PT -regime becomes physically meaningful in the time-dependent setting.

4. Conclusions

We have presented the first higher dimensional solution of the time-dependent Dyson re-

lation (2.1) relating a non-Hermitian and a Hermitian Hamiltonian system with infinite

dimensional Hilbert space. As for the one dimensional case studied in [8], we have demon-

strated that the time-independent non-Hermitian system in the spontaneously broken PT -

regime becomes physically meaningful when including an explicit time-dependence into the

parameters of the model and allowing the metric operator also to be time-dependent. The

energy operator (2.3) has perfectly well-defined real expectation values (3.50).

Technically we have compared two equivalent solution procedures, solving the time-

dependent Dyson relation directly for the Dyson map or alternatively computing Lewis-

Riesenfeld invariants first and subsequently constructing the Dyson map from the similarity

relation that related the Hermitian and non-Hermitian invariants. The latter approach was

found to be simpler as the similarity relation is far easier than the differential version (2.1).

The price one pays in this approach is that one needs to compute the two invariants first.

However, the differential equations for these quantities turned out to be easier than the

(2.1). In particular, it was possible to entirely bypass the dissipative Ermakov-Pinney

equation in the computation of η(t). Nonetheless, this ubiquitous equation re-emerged in

the evaluation of the eigenfunctions involving different time-dependent fields and with a

changed sign.
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