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Abstract 

Conventional optical interferometry systems driven by highly coherent light sources have a very 
short unambiguous operating range, a direct consequence of the flatness of the interference fringes 
visibility profile at the output of the system. 
The range can be extended by using a white-light interferometer (WU), which is driven by a low­
coherence source and produces a Gaussian visibility profile with a unique maximum in 
correspondence of the central fringe. 
Due to system and/or measurement noise, however, the position of the maximum (from which an 
accurate measurement of the measurand - displacement, temperature, pressure, flow, etc. - can be 
derived) is not easily detectable, and can lead to large measurement errors. This is especially true in 
a multiplexing scheme, where the source power is distributed evenly among various sensors, with a 
corresponding drop in the overall signal-to-noise ratio. The inclusion of a signal processing scheme 
at the receiver end is thus a necessity. 
As the fringe pattern at the output of a WLI system is basically a noisy sine wave amplitude 
modulated by a Gaussian envelope, it can be classified as a non-stationary, narrow-band, linear but 
non-Gaussian signa\. So far, no attempt has been made to apply digital filtering techniques, as 
understood in the signal processing community, to the output signal of a WLI system. This thesis 
constitutes a first step in that direction. 
Since the only measurable information given by the system is contained in the output signal, the 
system is modelled as a "black box" driven by the system and measurement noise processes and 
containing an unknown set of parameters. Standard least squares techniques can then be applied to 
estimate the parameters of the model, as is usually done in the field of system identification when 
only noisy output measurements are available. 
It is shown that identification of the model parameters is equivalent to finding a set of coefficients 
for an inverse filter which takes the WU signal at its input and delivers the unknown noise process 
at the output. 
The non-stationarity of the signal is accounted for by allowing for time variations of the model 
parameters; this justifies the use of adaptive filters with time-varying coefficients. A new central 
fringe identification scheme is proposed, based on a modification of the standard least mean square 
(LMS) adaptive filtering algorithm in combination with amplitude thresholding of the fringe 
pattern. The new scheme is shown to offer considerable improvement in the identification rate 
when tested against current schemes over comparable operating ranges, while retaining the 
computational simplicity and operational speed of the standard LMS. Its performance is also shown 
to be largely independent of the step-size parameter controlling the rate of convergence and 
tracking in the standard LMS, which is known to be the main obstacle for a successful application 
of the algorithm in a practical setting. 
The non-Gaussianity of the signal is explored and an attempt is made to apply higher-order 
statistics (HOS) algorithms to central fringe identification. The effectiveness of Gaussianity tests on 
pilot Gaussian data is seen to depend not only on the number and length of records available but, 
perhaps more importantly, on the bandwidth of the process. Violation of the stationarity assumption 
is shown to lead to mis-classification of a seemingly non-Gaussian signal into a Gaussian one, as 
the visibility profile may alter the distribution of the underlying sinusoid making it appear 
Gaussian, even when beam diffraction and wavefront aberrations combine to produce a non­
Gaussian profile. HOS-based adaptive algorithms may still be of some benefit, however, if 
processing is confined to that region of the fringe pattern where sufficient non-Gaussianity is 
allowed to develop. 
Non-linear adaptive filters based on the Volterra theories are finally applied to compensate for 
possible non-linearities introduced by mismatches in optical components, chromatic aberrations, 
and analogue-to-digital converters. It is shown that although a Volterra filter is able to reproduce 
the low-amplitude distortions of the fringe pattern better than a linear filter does, the identification 
rate does not improve. Reasons are given for such behaviour. 

ill. 



Chapter 1 

White-Light Interferometric 

Systems 

1.1 Introduction 

This chapter explains the two main properties of light which are exploited in optical 

measurement systems, i.e., interference and coherence. The advantages of white­

light over monochromatic sources which are responsible for the recent interest in a11-

optical-fibre white-light interferometric systems are also described, before examining 

the central fringe identification problem and the techniques that have been proposed 

to ease it. 

In Chapter two it is shown how a physical system, in this case an optical inter­

ferometer, can be approximated by a statistical model consisting of a "black-box" 

driven by an unknown random process and containing an arbitrary number of pa­

rameters. Identification of the central fringe is then formulated as an inverse filtering 

problem, and known off-line or batch schemes are presented to solve for the filter 

coefficients. 

Adaptive filters, which give rise to on-line schemes, are introduced in Chapter 

three. A preliminary evaluation of off and on-line filtering algorithms for central 

fringe identification is presented, using simulated data. An appreciation of ill­

conditioning and finite-precision effects caused by round-off errors is also included. 

Chapter four discusses the effects of filter order and properties of the measured 

output fringe pattern (such as degree of non-stationarity and additive noise level) on 

the convergence and tracking performance of two of the most widely used adaptive 
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filtering algorithms, the standard least mean squares (LMS) and the recursive least 

squares (RLS). 

A novel scheme using a modified version of the LMS is presented in Chapter five, 

which offers a much higher identification rate than that possible with the standard 

version, at no extra computational cost. The novel scheme is shown to approach 

the performance limit imposed by the matched filter, which is the ideal solution for 

the detection of a known signal in additive white noise, and makes the choice of the 

step-size parameter which controls the convergence and tracking rates in the LMS 

practically redundant. A comparison between the most commonly used methods for 

white-light central fringe identification and some of the schemes presented here ends 

the chapter, with greater emphasis being put on performance and computational 

complexity. 

Chapter six contains a round-up of adaptive filtering algorithms that have not 

been considered in this thesis but may nevertheless be capable of improving the 

identification rate offered by the novel LMS scheme, on condition that they are 

modified along the lines of the novel LMS. 

Linear filters based on higher-order statistics are examined in the first part 

of Chapter seven. Non-linear filters based on the Volterra theories follow, to ac­

count for non-linearities introduced by the optical system and by data-acquisition 

or recording instruments. It is shown that there is at present no reason to prefer a 

non-linear to a linear filter in current white-light interferometry measuring systems, 

and the advantage of using higher-order statistics for linear filtering is also doubtful. 

Chapter eight is a summary of what has been achieved in the field of white-light 

interferometry by this thesis, and suggests possible extensions that may be worth 

of further study. 

1.2 Optical Interferometry 

Optical interference is the phenomenon which can be observed when coherent light 

from a source is divided into two beams which are then superposed. In the region 

of superposition, the resultant intensity at different points varies between maxima 

which exceed the sum of the component intensities, and minima which may be zero. 

If the light source is divided by passage through apertures placed side by side we 
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have division of wave-front; if, instead, the beam is split at one or more surfaces, 

at which part of the light is transmitted and part reflected, we have division of 

amplitude. The first method is only useful with small aperture sources, hence the 

second method is in general preferable since it gives greater interference effects [1]. 

Irrespective of the method used, optical interferometry exploits the fact that, 

for an ideal monochromatic source with wavelength in air Ao, the phase difference 

between the two beams in the region of superposition is 

0= ko6L (1.1) 

where ko = 271"/ Ao is the wave number and 6L is the difference between the optical 

paths through which the two beams have travelled before being recombined 1. 

If I is the intensity of the light source, the resultant intensity after recombination 

can be expressed as [1] 
I 

Ires = '2(1 + cos 0) (1.2) 

Hence, when 6L is an integral multiple of the source wavelength Ao, 0 is an integral 

multiple of 271" and Ires reaches its maximum value; conversely, when &L is an odd 

multiple of half the wavelength, Ires goes through minima equal to zero. 

The variation of the output intensity Ires with 0 is often referred to as a fringe 

pattern because when observed visually it appears as a succession of evenly spaced 

white and dark fringes. 

1.3 Interferometric Systems as Sensors 

Optical interferometers come in various forms and shapes, but they all share the 

same principle. 

Those based on amplitude division usually consist of an extended source which 

is divided into two beams of equal intensities at a beam splitter. The two beams 

are recombined after reflection at two plane mirrors, and sent to a detector which 

responds to Ires. If both mirrors are fixed, 8L is constant and so is Ires, but if one 

of the mirrors is allowed to move, &L varies and Ires with it. 

The Michelson interferometer is most often used for the accurate measurement of 

displacements. The movable mirror is attached to the measurand, and if a displace­

lThe wave number is defined as 1/>'0 in [2], and is the number of waves/em path in vacuum, 

ranging from 15000 to 25000 em-1 in going from red to violet. 
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ment of the fringe pattern by m orders has occurred, the movement has introduced 

an optical path difference (OPD) equal to mAo in air, or mAo/n in a medium such 

as an optical fibre with refractive index n. The displacement of the measurand, d, 

is given directly as 
d= ~mAo 

2 n 
(1.3) 

Displacements of up to one-fiftieth of a fringe can be detected, making it possible to 

perform measurements with an accuracy of one-hundredth wavelength, correspond­

ing to 5 nm for green light [2]. 

The Jamin, Mach-Zehnder, and Rayleigh interferometers may be used to mea­

sure variations of density in gas flows, exploiting the dependence between gas density 

and refractive index. If t is the thickness of the gas flow traversed by the beam in 

one arm of the interferometer and the refractive index of air is taken to be unity, 

{n - l)t/Ao extra waves are introduced by the passage of the gas. Hence, if a 

displacement of the fringe pattern by m orders has occurred, n is obtained from 

(n - l)t = mAo (1.4) 

from which the gas density can be derived. 

The main advantage of optical sensors over electrical sensors is their immunity 

to electromagnetic interference. Their use is increasing all the time and includes 

such diverse fields as air temperature monitoring, torque measurements, and inho­

mogeneity observations in glasses. A detailed account is beyond the scope of this 

thesis and is widely available in the literature (see, e.g. [3]). 

1.4 Temporal Coherence and Coherence Length 

In a practical setting, the theory of interference effects as described by Eq. 1.2 is still 

valid, but one has to allow for some variability, due to the impossibility of realising a 

perfectly monochromatic light source with a single wavelength Ao. When more than 

one wavelength is present, at zero tSL all the component wavelengths from one arm 

of the interferometer interfere constructively with the corresponding wavelengths 

from the other arm, resulting in maximum output intensity. As the OPD increases, 

however, the different wavelengths produce fringes of slightly different spacing, so 

that the fringe visibility is gradually reduced and finally disappears when they no 

longer overlap. 
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Another way of explaining this phenomenon is to think of the source as consisting 

of wave trains of finite length. If, after division at the glass plate the OPD between 

the two halves of each wave train is greater than this length, there is no interference 

because the two halves being combined are no longer derived from the same wave 

train, and have lost any correlation to each other [2]. 

The need for partially monochromatic light is called the temporal coherence 

requirement for interference [4], and the maximum 8L over which interference effects 

can be observed is called coherence length. It turns out that the sharper the line 

width of the source, 8,X, the more monochromatic the light, and the greater the 

coherence length Le, according to the equation 

(1.5) 

where AO is the mean wavelength [1]. 

What is more, the fringe profile is the Fourier transform of the spectrum of the 

light source [5], and this gives a quick tool for predicting interference effects. 

1.5 

1.0 

>-
I-
~ 

Ul 0.5 
z 
LU 
I-
Z 
~ 

0.0 
0 
LU 
(J) 
~ 

-l 
< -0.5 
I: 
~ 
a 
z 

-1.0 

-1.5 

OPTICAL PATH DIFFERENCE 

Fig. 1.1 Output intensity with a He-Ne laser source. Lc = 1000 m, corresponding to 1.58 x 109 

fringes. 

In single-mode He-Ne gas lasers the spectrum consists of a very sharp line at a 

wavelength of 632.8 nm [6], and the coherence length may be about 1000 metres 

[7]. When 8L between the two arms of the interferometer reaches ±Le/2, the fringe 
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visibility reduces to lie of its maximum [8]. Hence, the visibility as a function of 

8L decays very slowly, giving an output intensity as in Fig. 1.1, which in practice 

can be approximated by Eq. 1.2. 

)0-
I-

c.n 0.75 
z 
UJ 
I-
Z 

L 
< 0.50 UJ 
CD 

0 
UJ 
c.n 
--I 
< 0.25 L 
O! 
a 
z 

WAVELENGTH < nm) 

Fig. 1.2 Typical spectrum of an AIGaAs LED, emitting at a central wavelength of 840 nm with 

a spectral half-width of 49.4 nm. 

c.n z 
UJ 
I­
Z 

o 
UJ 
c.n 
--I 

1.5 

1 .0 

0.5 

0.0 f..-------""""fI/\/\ 

;§ -0.5 
0:: 
o 
Z 

-1.0 

OPTICAL PATH DIFFERENCE 

Fig. 1.3 Output intensity of an interferometer with a LED source, obtained by adding 201 

wavelengths spaced by 1 nm and in phase at 6L = 0, with intensities as in Fig. 1.2. Lc = 14.3 

J.lm, corresponding to 17 fringes. The dashed line delimits the lIe intensity points. 
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In contrast, light-emitting diodes (LEDs) and multimode laser diodes operated 

below threshold are polychromatic sources with a broad-band Gaussian spectral 

distribution and a spectral half-width ranging from 20 to 80 nm [9], as in Fig. 1.2. 

As the Fourier transform is a linear operation, the fringe visibility is also a Gaussian 

function, as in Fig. 1.3, and the coherence length may only reach a few p,m. 

1.5 White-Light Interferometry 

The apparent inconvenience caused by polychromatic light sources can be turned 

to advantage by exploiting the following limitations associated with the use of high­

coherence laser devices [10]: 

• Unambiguous operating range corresponding to only one wavelength, which in 

the case of position and distance measurements allows a maximum movement 

of the measurand by half a wavelength ( Eq. 1.3 ) . 

• The inability to identify the interference order when the interferometer is 

switched off and on. 

These limitations are due to the long coherence length of a laser source, which 

generates a very flat visibility profile and makes it extremely difficult to monitor 

the movement of the fringes, unless complex and expensive fringe-counting methods 

are used [11]. 

When using a source with a short coherence length, the input spectrum is ap­

proximately Gaussian, hence the output fringe pattern is the cosine function in 

Eq. 1.2 modulated by a Gaussian visibility profile. There is then a central white 

fringe corresponding to the monochromatic fringe of order zero, with a few coloured 

maxima and minima on either side. The central fringe will remain identified if the 

power supply is suspended temporarily, either accidentally or on purpose. 

A white-light interferometer (WLI) is an interferometric system which uses a 

polychromatic source and usually consists of two interferometers in series [12, 13]. 

Referring to Fig. 1.4, the interferometer on the left (called the sensor) can be 

preset to introduce a path difference c5L1 between its two arms much greater than 

the coherence length Lc of the source S, by adjusting the movable mirror M2• With 

this, the two output wave trains from the beam-splitter Bl do not overlap and 
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cannot interfere. Upon reaching the interferometer on the right (the reference or 

scanner) wave train Ll is split into L13 and L14 at the beam-splitter B2, while L2 is 

split into L23 and L24 . Although the two wave trains reflected from the fixed mirror 

M3 cannot interfere, and neither can the two wave trains from the movable mirror 

M4, L13 can interfere with L14 and L23 can interfere with L24 if the path difference 

8L2 between the two arms of the reference is within Le. The real advantage of using 

such an arrangement, however, is that L13 can interfere with L24 (or L23 interfere 

with L 14 ) when 8L2 is equal to 8L1 to within Le. This allows to operate over a 

range much larger than that imposed by Le , and which is now dictated only by the 

scanning range of the reference interferometer. 

~s 

1 L13 + +L23 
Af2 M4 

L2 L24 - ... 
- ... 
Ll L14 

t 

Fig. 1.4 Schematic diagram of a WLI system consisting of two Michelson interferometers. 

During the calibration phase, the reference is adjusted to match 8L2 to 8L1• 

During the measurement or sensing phase, the interference fringes will disappear 

from the detector D whenever the change in 8L1 induced by the measurand in the 

sensing interferometer is greater than Le. By scanning the reference, the change 

in 8L1 can be matched by an equal change in 8L2 , thus restoring the interference 

pattern. 

The system can be viewed as an optical delay line in which the two incoherent 

signals in the two arms of the sensing interferometer are brought together and 

become coherent. 
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The scanning can be either temporal, using a mechanical or piezo-electrical 

device, or spatial, using an electronic scanner [14]. With the latter, the reference 

interferometer produces the fringes by expanding and overlapping the beams from 

the two arms at an angle on a charge-coupled device (CCD) array. Compared 

with mechanical scanners, electronic scanners are much faster, more accurate and 

stable, and have smaller size. Compared with piezo-electric scanners they have a 

much larger operating range and do not need a high voltage driver [15]. Since no 

mechanical moving parts are present, their compactness and rigidity makes them 

especially useful for applications in harsh environments [8]. 

1.6 Fibre-Optic Interferometric Sensors 

An additional advantage of white-light interferometry is that only the sensing unit 

needs to be in the sensing area, as long as the optical signal can be transmitted 

back to the reference interferometer. This makes it possible to take measurements 

in hazarduous and hostile environments, and is one of the reasons for the recent 

interest in fibre-optic sensors, which offer more safety, reduced weight, and are more 

resistant to high-temperatures [9]. 

Such sensors exploit the fact that the OPD in a fibre is affected by its temper­

ature, and also changes with pressure and stretching, or when an electric or mag­

netic field is applied. Fibre optic sensors using white-light interferometry have been 

developed, among others for the measurement of absolute displacement [13, 16], 

refractive index [17], pressure [9], and temperature [18]. In particular, with an 

all-fibre arrangement, where the beam splitters are replaced by optical-fibre cou­

plers, high sensitivity can be obtained, as it is possible to have very long paths in a 

small space. A considerable reduction in noise can also be achieved because of the 

immunity of the system to perturbations in the transmission medium [10]. 

The peak wavelengths emitted by semiconductor light sources (LEDs and laser 

diodes) correspond to the minimum attenuation wavelengths of commercially avail­

able fibres, allowing easy coupling of the light to the transmission link and eliminat­

ing the need for high driving voltages and currents typical of high-coherence sources 

[6]. In addition, an all-fibre arrangement gives the possibility of making multipoint 

measurements by sending light to different sensing interferometers through a com-
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mon optical bus bar and back onto the same busbar to one reference interferometer, 

where the individual interference patterns can be recovered by coherence multiplex­

ing [19, 20]. If the optical delays from each sensor are sufficiently spaced so that no 

mixing of the light beams occurs in the busbar, in fact, each individual signal can 

be recovered in turn by scanning the reference over its full range. 

1.7 Digital Signal Processing 

The normalised fringe pattern at the output of a WLI system can be expressed, 

after sampling, as follows [8] 

sin] = exp [- (k:~,8,) }OS(kn -8,) (1.6) 

where n denotes a sample point, Os and kn are the phase differences in the sensing 

and reference interferometers, respectively, with k being equal to 211" /b, where b is 

the number of samples per fringe or fringe width, and Lc is the number of fringes 

within the coherence length. 

When kn = Os, a perfect matching between the OPDs of the two interferometers 

is achieved, giving maximum interference contrast. 

For a given system setup, Lc and b are fixed parameters; on the other hand, Os 

may change from one scan to the next according to the measurand, like a random 

variable uniformly distributed across the scanning range. Hence, the output at an 

arbitrary point n is a particular realisation of a random process {s[n]}. Neverthe­

less, having observed the sample function s[n] one has no difficulty in determining 

the unknown Os from Eq. 1.6; all that is needed is to look at the sample point 

corresponding to the maximum value, and equate Os with kn. In this respect, Eq. 

1.6 provides a deterministic description of the system. 

In the presence of noise, however, the explicit mathematical relationship between 

system output and phase difference works but with a certain level of error, and it is 

the uncertainty in deriving the latter that will justify referring to the WLI system 

as a stochastic system in this thesis. 

In addition to shot noise and oscillations in the electrical supply characteristic 

of LED sources, in laser diodes resonance effects and variations of the optical length 

in the laser cavity produce frequency variations in the light source which appear as 

amplitude variations of the visibility profile [1]. 
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Misalignment and offset between the axis of the measurement transducer and the 

target displacement, optical mixing between the polarisation states of the source 

caused by imperfect or tilted components, diffraction and wavefront aberrations, 

changes in refractive index induced by temperature and pressure [21], and shot and 

thermal noise at the detector all contribute to make identification of the central 

fringe a difficult task. 

These problems are exacerbated in fibre-optic systems because of the low power­

coupling between the source and the fibre. Furthermore, vibrations during scan­

ning bring the overall signal-to-noise ratio (SNR) down to 40-60 dB in temporally 

scanned systems [8]. For electronically scanned systems, on the other hand, the lim­

ited spatial coherence of the source reduces the visibility profile as the two beams 

are brought together at an angle on the CCD array, pushing the SNR further down 

to 20-40 dB [20]. 
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Fig. 1.5 Simulated output intensity of a WLI system with additive noise at 20 dB. The arrows 

point at the central fringe. 

In the following, the SNR (in dB) is defined as 20Iog(A/0'), where A is the 

amplitude of the noise-free central fringe and 0' is the root mean square of the 

noise, assumed stationary [22]. A SNR of 20 dB, for example, means that noise and 

central fringe amplitude are in the ratio 1:10. 

Fig. 1.5 shows a simulated fringe pattern corrupted by pseudo-random white 
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Gaussian noise at 20 dB. The coherence length corresponds to 17 fringes and a CCD 

array consisting of 1024 pixels was assumed for the detector. 

Fig. 1.6 shows the percentage of successful sub-fringe identifications from direct 

observation of the visibility profile, out of 300 computer simulations with the central 

fringe in the middle of the scanning range. The sampled intensity at pixel n is 

compared to that at pixel n + 1 in the computer, and the global maximum in 

the fringe pattern is reported at the end of the scan. The central fringe has been 

identified to sub-fringe level when the pixel corresponding to maximum intensity in 

the noise-free central fringe is recovered correctly in the presence of noise. 
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Fig. 1.6 Success rate from direct observation of the visibility profile for various SNRs. 

Clearly, the identification rate degrades rapidly as the SNR falls below 40 dB. 

Down to around 26 dB the fringe and sub-fringe rates were the same, but below 

26 dB the fringe rate was 1.5-2 times higher than the sub-fringe rate. If using a 

coherence multiplexing scheme or a light source with a longer coherence length, the 

identification rate would be even lower than that shown in Fig. 1.6. 

Several signal processing operations have been proposed recently in an attempt 

to increase the success rate [8, 22, 23, 24, 25, 26, 27, 28, 29]. 

The methods reported in [8, 22, 23] use centre of gravity or centroid algorithms 

which exploit the symmetry of the pattern on the two sides of the central fringe. 

Although very simple to implement, these methods fail when the central fringe 
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moves just enough from the middle point on the CCD detector that the symmetry is 

lost. Asymmetries in the spectral profile of the source and any system misalignment 

will also increase the failure rate. 

Multiple-wavelength combination sources, in which two [24, 25, 26] or three [27] 

low-coherent sources with different central wavelengths are superposed incoherently 

to produce a pattern with an enhanced central fringe, have shown considerable 

promise, but the cost and system alignment difficulty are high. This is because more 

optical components are needed, and techniques for finding the optimum wavelength 

combination of the sources have to be used [28, 29]. 

A simple solution for noise reduction would be to average together successive 

patterns, which can be easily done with the help of a portable computer. If the 

number of averaged traces is N, the root mean square of the noise is reduced by 

the factor ..(N [30]. However, such approach increases the system delay time by N, 

and relies on the quite unrealistic assumption that the central fringe remains still 

throughout. 

1.8 Aims and Objectives of the Thesis 

The main aims and objectives of this thesis can be listed as follows: 

• Model the output of a white-light interferometric system by a suitable time­

series model with a finite set of parameters. 

• Exploit the connection between model identic at ion and inverse filtering to 

evaluate the behaviour and performance of existing batch and recursive filters 

in processing the output fringe pattern. 

• Improve on the central fringe identification rate of the centroid method by 

devising a novel scheme based on an adaptive digital filtering algorithm. 

• Analyse the effects of non-linearities and evaluate the need for higher-order 

statistics and non-linear filtering in central fringe identification. 
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1.9 Summary 

In this chapter white-light interferometry (WLI) was introduced as a means of over­

coming the operating range limitation imposed by classical optical interferometers 

which use highly monochromatic sources. The problem of central fringe identifi­

cation in the presence of noise was then explained, before concluding with a brief 

description of the techniques currently available to ease it. 

In the next chapter the WLI pattern will be treated as the output of a "black­

box" model consisting of a finite set of unknown parameters. Methods for the 

estimation of the model parameters will be described, and the central fringe identi­

fication task will be formulated as an inverse filtering problem, where the coefficients 

of the filter can be related to the parameters of the model. 
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Chapter 2 

Time Series Modelling of WLI 

Systems 

2 .1 Introduction 

In this chapter the WLI system will be represented by a parametric linear model 

driven by an unobservable white noise sequence. It will be shown that the recovery 

of the central fringe can be treated as either a system identification problem or, 

equivalently, as an inverse filtering problem. Current techniques for estimating the 

model order and parameters will also be described. 

2.2 Autoregressive-Moving Average Models 

Parametric modelling of a time series is based on the assumption that the measured 

data under investigation evolves from a stochastic process that can be represented 

by a selected model with a suitable set of parameters. 

The initial motivation for parametric models was the possibility of obtaining 

power spectrum estimates with higher frequency resolution than those produced by 

the more classical methods [1, 2] while reducing sidelobe leakage caused by spectral 

smoothing or windowing [3, 4]. 

Due to the fact that a continuous frequency spectrum can be approximated 

closely by a suitable rational function with a large number of parameters [5], the 

autoregressive-moving average (ARMA) model [6] has received the most attention 

in the literature. 
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The underlying idea is that a random stationary time series y[n] can be ex­

pressed in terms of its past p values and the present and past q values of a sequence 

of uncorrelated shock or disturbance terms v[n] drawn randomly from a fixed prob­

ability distribution with zero mean 1 [7]. Successive values of the series are related 

through the linear difference equation 

p q 

y[n] = - ~ aky[n - k] + v[n] + ~ b,v[n - l] (2.1) 
k=1 1=1 

Taking the discrete z transform the ARMA equation in the z domain is obtained 

[] B(z) [] 1 + b1z- 1 + ... + bqz-l [] yn = --vn = vn 
A(z) 1 + alr1 + ... + apz-1 (2.2) 

The time series y[n] is thus the output of a linear discrete dynamical system driven 

by a white noise input and possessing a rational pole-zero transfer function H(z) = 
B(z)/A(z). Fig. 2.1 is a block diagram of an ARMA process. 

v[nl --1 Be.} ~~=A-(-Z)-=--~~· y[n] 

y[n]A(z) = v[n]B(z) 
v[n] = white noise sequence yrn] = output sequence 
AR model: B(z) = 1 MA model: A(z) = 1 

A(z) = 1 + alz-1 + ... + apz-1 
B{z) = 1 + b1z-1 + ... + bqz-1 

Fig. 2.1 ARMA process driven by white noise. 

Setting the ak parameters to zero gives an all-zero or moving average (MA) 

model, whereas setting the b, parameters to zero gives an all-pole or autoregressive 

(AR) model. The MA model corresponds to a finite impulse response (FIR) filter 

[8], whereas the AR and ARMA models correspond to infinite impulse response 

(IIR) filters [9]. 

The spectral density of an ARMA process at a discrete frequency f can be 

expressed as a function of its parameters as follows 

P (f) = T 211 + El=l b, exp( -j27rlfT) 12 
ARM A a v l""P (. T) +LJk=lakexp -J27rkf 

(2.3) 

1 Such a sequence is also known as white noise. 

19 



where T is the sampling period and O"~ is the variance of the driving noise. 

Eq. 2.3 provides a useful tool at the model selection stage. Since AR models are 

able to reproduce sharp spectral peaks at those frequencies where the denominator 

term approaches zero, they may be particularly useful for the modelling of processes 

with narrow-band spectra, whereas MA models may be better at representing broad­

band processes. The more general ARMA models can account for both narrow- and 

broad-band behaviour, a feature which may make them preferable when dealing 

with processes with mixed spectra. 

2.3 Parametric Modelling of WLI Systems 

Second order differential equations of the form 

s(t) + as(t) + f3s(t) = 0 (2.4) 

are often used to describe an oscillating system. If s(t) represents the amplitude 

of an oscillation at time t, Eq. 2.4 with a = 0 describes simple harmonic motion, 

whereas with a > 0 it describes damped harmonic motion [10]. 

In discrete time n, a sampled process consisting of one harmonic can be expressed 

by the second order difference equation [11] 

s[n] = -a1s[n - 1]- a2s[n - 2] (2.5) 

A sampled process consisting of p/2 harmonic components can similarly be ex­

pressed as [12] 
p 

s[n1 = - E ais[n - i] (2.6) 
;=1 

Given initial conditions s[I], ... , s(P], Eq. 2.6 represents a deterministic process, 

since future behaviour is known with certainty from present and past values. How­

ever, in the presence of an external or internal noise source v[n], the additive process 

p 

y[n] = s[n] + v[n] = - E ais[n - i] + v[n] (2.7) 
;=1 

is random (or stochastic), since there is some degree of uncertainty before it actually 

occurs. Rewriting Eq. 2.7 as 

p p 

y[n] = - E aiy[n - i] + v[n] + E aiv[n - i] (2.8) 
i=1 ;=1 
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this represents an ARMA process with identical AR and MA parameters. 

As shown in Section 1.4, the pattern at the output of a WLI system is derived 

from the interference effect of a continuous spectrum of frequencies lying within 

the bandwidth of the light source. Thus, the sampled intensity s[n] expressed by 

Eq. 1.6 in Section 1.7 groups together an infinite number of harmonic components, 

and the fringe width b times the sampling period T can be viewed as the discrete 

equivalent of the mean wavelength >'0 of the source. The frequency spectrum of s[n] 

is therefore a Gaussian function with width inversely proportional to the coherence 

length of the source and centred at the mean frequency l/{Tb). 

In practice, it is not necessary to consider an infinite number of harmonics, 

as Fig. 1.3 demonstrated. If the sampled fringe signal can be represented quite 

accurately by the sum of a finite number of frequency components plus an additive 

noise term, the WLI system can be well approximated by an ARMA(p,p) process 

with identical A(z) and B(z) terms, with the measurement noise providing the 

driving sequence. 

Given that the noise is physically found at the output end, this may seem some­

what odd. What one is trying to fit here, though, is not a physical model but a 

stochastic one. By regarding the WLI system as a "black-box" driven by an unob­

servable random process, one is dispensed with the impossible task of unravelling 

the hidden and complex mathematical relationships governing the system, and can 

concentrate on finding a suitable set of parameters which account for the internal 

system behaviour and its output in statistical terms. 

2.4 Inverse Filtering and the Wiener Solution 

Having chosen a suitable model for the generation of the fringe pattern, the next 

step is to find the set of parameters which provide the best fit between the system 

and the model. From Eq. 2.8, a reasonable estimator for s[n] would be 

Jl Jl 

s[n] = - :E Ctiy[n - i] + :E Ctiv[n - i] (2.9) 
i=l i=l 

where v[n - i] = y[n - i] - s[n - i] would be a reasonable estimator for v[n - i]. The 

most often used measure of fit is the mean square error (MSE), originally formulated 

for the Wiener filter [13]. If x[n] is a zero-mean stationary input sequence to a linear 
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system and d[n] is a desired response, the filter which minimises the function 

(2.10) 

where ern] is the error signal between d[n] and the filter output, and E denotes 

expectation, is the Wiener filter, whose impulse response ho is given by the Wiener­

Hopf equations [14] 

Rxxho =~x (2.11) 

where Rxx is the autocorrelation matrix of the filter input and Rdx is the cross­

correlation vector between input and desired response 2. 

Letting y[n] be the desired response and s[n] the filter output it follows that 

J[n] = E{v2[n]} + E{(s[n] - s[n])2} + 2E{v[n](s[n] - s[n])} (2.12) 

Since v[n] is uncorrelated with s[n] and with past values of the desired response and 

error signals, the last term on the right-hand side of Eq. 2.12 is zero 3. Minimising 

J[n] is thus equivalent to minimising the second term on the right-hand side. As 

this term is quadratic, J[n] has a unique minimum with value E{ v2[n]}. If this 

minimum is achieved, the filter is said to be optimum in the MSE sense, because 

its output and error signals become equal to the noise-free fringe and measurement 

noise sequences, respectively, as s[n] - s[n] = ern] - v[n]. 

ARMA modelling of the WLI system can therefore be seen as either a system 

identification from only output data problem [15], where it is assumed that the 

system and the IIR filter that models it are excited in parallel by the same noise 

sequence, and the task is to estimate the system parameters or transfer function in 

order to reduce the mismatch between system and model output, or as an inverse 

filtering problem, where the system and an inverse IIR filter are connected in series 

and the task is to find the inverse filter that is able to reproduce the driving noise 

sequence at its output end 4. 

In the following, the WLI system willbe treated as an ARMA(p, q) model with 

B(z) in general different from A(z). This is to take account not only of computa­

tional errors which may arise during the estimation phase, but especially of model 

2In this thesis, correlation is used for both normalised and unnormalised covariance. 

3E{xy} = E{x}E{y} = 0 if x and y are zero-mean uncorrelated random variables. 

4Such a filter is also called a whitening filter because it decorrelates its input [16]. 
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order mispecification and parameter mismatches that may be caused by inaccurate 

modelling assumptions (eg., can multiplicative internal system noise, if present, be 

translated and add to the measurement noise at the system output, and is the noise 

itself white or coloured). 

2.5 Estimation of the Model Parameters 

The various methods used to estimate the parameters of an ARMA process all start 

from an auto- and cross-correlation formulation of Eq. 2.1. Multiplying both sides 

by y[n - m] and taking expectations one obtains 

p q 

r[m] = - L akr[m - k] + L b,rvy[m -I] (2.13) 
k=l '=0 

where r[m] and rvy[m] are the autocorrelation of the output and the cross-correlation 

between input and output at lag m, respectively. 

Eq. 2.13 for various lags gives a set of non-linear Wiener-Hopf equations, known 

as the ARMA Yule-Walker (ARMA Y-W) equations [7, 17]. From here one of two 

sets of techniques is chosen: optimum or sub-optimum. 

The first use an iterative approach based on maximum likelihood estimation to 

solve the equations directly [18, 19,20,21], but they are computationally demanding 

and may converge to the wrong solution [22]. 

The second reduce the problem to a linear one by estimating the AR and MA 

parameters separately [23, 24, 25, 26], and as they allow to keep the computational 

load to levels compatible with real-time processing, they will be considered next. 

To evaluate the AR parameters use is made of the fact that for a causall) system 

the second summation term in Eq. 2.13 drops out for m > q. Hence, a set of p linear 

equations in p unknowns, commonly referred to as the modified Y -W equations, can 

be formed for q + 1 ~ m ~ q + p and solved by Gaussian elimination. 

With N data, this would require O(Np) operations to estimate the autocorre­

lation terms, plus O(p3) operations to invert the autocorrelation matrix. As this 

is Toeplitz, however 6, it is possible to invert it with only O(p2) operations using 

the Levinson-Durbin [27, 28] or the Schur [29] algorithms, either in their original or 

I) A system is causal if the output does not depend on future input values. 

6 A matrix is Toeplitz if all the elements along any of its diagonals are identical. 
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more computationally efficient split-forms [30, 31], with the added advantage that 

the storage space is reduced from O(P2) to O(p) memory cells. 

To decrease parameter hypersensitivity, an over-determined system with t > p 

equations can be formed [32], resulting in a product-of-Toeplitz autocorrelation 

matrix which can be solved with O(t2 ) operations [33]. 

To complete the ARMA modelling it is necessary to estimate the MA compo­

nent. This can be done by first computing the residual time series, defined as 

p 

y[n] = y[n] + E tlky[n - k] (2.14) 
k=1 

for n = p + 1, ... , N, using the AR parameters just estimated. Since 
q 

y[n] = A(z)y[n] ~ B(z)v[n] = v[n] + E b1v[n -l] (2.15) 
1=1 

approximate estimates of the MA parameters can be obtained by solving the system 

in Eq. 2.13 for 0 :5 m :5 q, with p = 0 and y replaced by y. Rather than using 

computationally difficult spectral factorisation techniques [34] a preferred approach 

is to approximate the MA(q) residual process with a high order AR(r) process [35], 

with r » q, exploiting the Wold decomposition theorem [6], which states that a 

finite-order MA process can be represented as a unique AR model of possibly infinite 

order. 

The solution to the high order AR approximation requires O(Nr + r2) opera­

tions to estimate the autocorrelation matrix and invert it with the Levinson-Durbin 

algorithm. A further O(rq + q2) operations is needed to derive the MA from the 

AR parameters using the same algorithm [36]. 

The Wold decomposition theorem can be taken one step further to approximate 

the whole ARMA process by an AR process of higher order. The quality of the MA 

estimate from the residual time series, in fact, depends heavily on the accuracy of 

the AR estimate from the modified Y-W equations, which is of poor quality if the 

process contains spectral regions with small values [37], or if the choice of the AR 

order is incorrect [36]. Using an over-determined system of equations, the variance 

of the AR estimate is reduced but its quality is now dependent on the location of 

the process poles and zeros, with maximum degradation when the poles are away 

from the unit circle and the zeros are close to it [38]. 

If the WLI output can be regarded as a harmonic process in additive white 

Gaussian noise, its poles and zeros will tend to cluster on the unit circle [39]. The 
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narrow-band nature of the process will also ensure that spectral regions with very 

small content abound. Hence, use of the modified Y-W equations may not result 

in good AR estimates. 

Fig. 2.2 compares the power spectral density of the noisy fringe pattern of Fig. 

1.5 with that of a computer-generated zero-mean white Gaussian process. The data 

were normalised to have unit variance and the estimates were computed using the 

classical Blackman-Tukey approach [1]. 
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Fig. 2.2 Estimated spectrum of the central 500 samples of the fringe pattern in Fig. 1.5, 

smoothed with the Parzen window [40] and averaged over 30 independent realisations. The 

broken line represents the spectrum of a pseudo-random white Gaussian process. 

0.5 

The narrow-band property of the interferometric signal is clearly evident, and 

does not seem to require the mixed-spectrum representation of the more flexible 

ARMA model. 

Fig. 2.3 shows estimates of the autocorrelation sequence (ACS) and the partial 

autocorrelation sequence (PACS) of the fringe pattern. The PACS estimate was 

computed with the Durbin method [28]. 

The ACS of an AR(P) process and the PACS of an MA(q) process are mix­

tures of damped exponentials and/or damped sine waves, whereas the PACS of an 

AR(p) process and the ACS of an MA(q) process cut off after lags p and q, respec­

tively. Moreover, the ACS and PACS of an ARMA(p, q) process are mixtures of 
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damped exponentials and/or damped sine waves after the first q - p and p - q lags, 

respectively [34]. 
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Fig. 2.3 Estimated ACS (continuous line) and PACS (broken line) of the central 500 samples of 

the fringe pattern in Fig. 1.5, averaged over 30 independent realisations. The dashed lines 

denote the 95 % confidence limits of the estimates [41, 42, 43]. 

From Fig. 2.3 it appears that the WLI output of Fig. 1.5 can be represented 

either by an ARMA process of equal but unknown AR and MA orders, or by an 

AR process of order between 10 and 16. Deciding on the model order from a simple 

visual examination of the ACS/PACS estimates is not very sensible though, as the 

confidence bounds rely on the large sample, stationarity, and whiteness assumptions. 

Many criteria have been proposed for order selection, the final prediction error 

[44,45], the information theoretic criterion [46, 47, 48], the Bayes information crite­

rion [49, 50], the autoregressive transfer function [51], and the minimum description 

length [52, 53] to name but a few. 

These are all closely related to earlier x2-tests of significance for AR models, 

where the order p is tested against p + 1 [54, 55]. Although shown to work well for 

simulated processes, results have been mixed when applied to actual data. There 

is a general tendency to underestimate the model order [56, 57, 58, 39, 59] or 

to overestimate it [60]. Among the alternatives one has to mention testing for 

whiteness of the error sequence [61, 62] or checking the rank of the autocorrelation 

matrix [63, 64, 65] using the singular value decomposition [66]. 
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One major motivation for preferring AR models is that they provide natural 

inverses for FIR filters, with the poles corresponding to the zeros of the filter. FIR 

filters do not introduce phase distortion and satisfy the bounded-input bounded­

output property, whereas IIR filters become unstable when one or more of the poles 

stray outside the unit circle. 

Although the Levinson-Durbin algorithm forces the zeros of the ARMA model 

(and hence the poles of the inverse filter) to lie inside the unit circle, the poles may 

cross to the other side in a digital implementation because of coefficient quantisation 

and round-off errors, which increase in severity as the bandwidth of the filter is 

reduced [67]. 

The choice between an AR, MA, or ARMA representation for a particular pro­

cess is still a very complex one [68, 22]. 

2.6 Least Squares Filtering and Linear Prediction 

The estimation of the parameters of an AR process follows similar lines to that of 

the AR parameters of an ARMA process. One can solve the AR Yule-Walker (AR 

Y-W) equations 
p 

r[m] = - 2: akr[m - k] 1 $ m $ p (2.16) 
k=l 

derived from Eq. 2.13 with q = 0 and 1 $ m $ p. The Levinson algorithm can be 

used to invert the resultant Toeplitz autocorrelation matrix with O(p2) operations, 

after estimating the autocorrelation terms with O(Np) operations. 

An alternative derivation of Eq. 2.16 is provided by linear prediction analysis, 

which is a special case of least squares (LS) filtering [69] and gives a natural inverse 

for AR models by focusing directly on the available data sequence rather than on 

the statistics of the underlying process. 

The LS filter minimises the sum of squares of the errors over the given data, 

replacing the Wiener ensemble averaging over all possible realisations of the process 

with time averaging across the observed realisation, leading to a solution which 

depends on the number of data. 

The impulse response of the LS filter is obtained from the least squares Wiener­

Hopf equations 

(2.17) 
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where X is a N x p matrix whose columns are shifted versions of the data vector. 

The linear prediction problem is to find an estimate of the current sample of a 

random process from only previous samples, i.e. 

p 

y[n] = - L wky[n - k] (2.18) 
k=l 

for n = p + 1, ... , N. Defining the forward error 7 as 

p 

ef[n] = y[n]- y[n] = y[n] + L wky[n - k] (2.19) 
k=l 

and minimising the resultant sum of squares 

(2.20) 

by setting its partial derivative with respect to the Wk coefficients to zero, the least 

squares Wiener-Hopf equations for the linear predictor are obtained. 

Since the elements of XTX are of the form 

n 

Ly[n - k]y[n - m] O~m-k~p (2.21) 

these equations are structurally identical to the AR Y-W equations, with the un­

normalised estimates in Eq. 2.21 replacing the autocorrelation terms in Eq. 2.16. 

In particular, if the summation range in Eq. 2.20 is chosen as 1 ~ n ~ N + P and 

biased estimates are used in Eq. 2.16, the two sets become identical 8. 

Choosing instead the range p+ 1 ~ n ~ N in Eq. 2.20, AR estimates with lower 

variance may be obtained, since only the available data y[I], ... , y[N] are used to 

construct the data matrix X. This is known as the covariance method of least 

squares linear prediction [69, 71]. As XTX is a product of two Toeplitz matrices, 

the fast algorithm for the solution of the over-determined system in Section 2.5 can 

be used to keep the total operation count down to O(Np + p2). 

2.7 Conclusion 

In this chapter it was shown that the fringe pattern of a white-light interferometric 

system in the presence of noise may be modelled as the output of an autoregressive-

7 Forward in the sense that the prediction for the current sample is a function of previous 

samples only. 
8 Biased estimates are preferred to unbiased ones because as the lag increases the larger bias is 

more than compensated for by a smaller variance [70]. 
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moving average (ARMA) process driven by unobservable white noise. Several esti­

mation schemes were briefly described, before showing that an autoregressive (AR) 

approximation to the full ARMA process may offer several advantages. 

If an AR model is chosen, its order is possibly infinite (the Wold decomposition 

theorem). The closer the zeros of the moving average (MA) polynomial are to the 

unit circle, the larger the order of the AR model has to be for it to be a good 

approximation to the ARMA process. The estimated parameters will not converge 

to the true process parameters, as they have to compensate for the missing section. 

The level of compensation required will also depend on the level of the obser­

vation noise. For high SNRs the best choice is usually a low-order AR model, but 

as the SNR decreases the order must necessarily increase to achieve adequate flex­

ibility. This is one reason why signal processing applications make use of a large 

number of filter weights [72]. Indeed, virtually every time series encountered in 

practice can be approximated by a finite AR model of sufficiently high order [5]. 

Thus, it may be more sensible to consider the recovery of the noise-free pattern 

as an inverse filtering rather than as a system identification problem, in view of 

the fact that the error function minimises the deviation of the model error signal 

from the system driving noise, instead of the deviation between model and system 

parameters. 

In the next chapter adaptive finite impulse response filters will be considered, 

which provide inverses for AR models whose parameters need to be re-estimated as 

frequently as possible. The performance of such filters in central fringe identification 

will be compared with that of the batch-processing filters introduced in this chapter. 

The impact of the statistical properties of the fringe pattern data on the nu­

merical accuracy of the estimates and the dependence of these on SNR and model 

order will also be examined. 
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Chapter 3 

Adaptive Filtering of WLI Fringe 

Patterns 

3.1 Introduction 

In Chapter 2 a general autoregressive-moving average (ARM A) model and an au­

toregressive (AR) approximation were proposed for describing the generation of the 

WLI system output. 

In this chapter three popular FIR adaptive filtering algorithms will be intro­

duced, whose coefficients are recursively updated as soon as new information be­

comes available. 

Simulations will be carried out on a typical WLI system, in order to compare 

their performance with that of the batch filters described in Chapter 2. 

A final section on numerical accuracy and stability ends the chapter. 

3.2 Adaptive Finite Impulse Response Filters 

With the filtering techniques described in Chapter 2 the coefficients of the filter are 

chosen by an algorithm from a given set of data to minimise the error between a 

desired response and the filter output. With the arrival of a new set of data the 

coefficients are automatically recomputed in order to adjust the centre frequency 

and bandwidth of the filter, if necessary, so as to keep the error down to a min­

imum. This is in stark contrast to a constant-coefficient filter design, where the 

designer first specifies a set of fixed filter characteristics, and then proceeds with an 
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implementation in analog or digital form, on the assumption that the statistics of 

future data will be the same as those upon which the design is based. 

Nevertheless, in the literature the term "adaptive" is usually reserved for the 

sort of estimation in which the filter coefficients need to be updated within the 

same data set. The terms "recursive", "sequential", or "on-line" are also often 

used. Hence, the techniques of Chapter 2 will be referred to as "block", "batch", 

or "off-line" from now on. 

Assuming for simplicity that the characteristics of the light source (mean wave­

length, spectral width etc.), those of the optical system (refractive index of medium, 

angular alignment and physical properties of the mirrors, etc.), and the measure­

ment conditions do not change over time, the statistics of the fringe pattern remain 

the same from scan to scan and one would be tempted to conclude that the mea­

sured signal is stationary. It is evident, though, that between the appearance of 

one pattern and the next there are periods in time (or in space, if an electronic 

scanner is used) when no interference occurs and what is observed and recorded is 

just noise; this situation is analogous to that encountered with electrocardiogram 

(ECG) signals, where the timing of the main R wave changes with the heart rate, 

and its centre frequency and bandwidth are very different from those of the signal 

between two R waves. 

If stationarity can be rejected on this basis, the WLI output can at least be 

classified, like the ECG output, as cyclo-stationary, i.e., exhibiting statistical be­

haviour which is repetitive but not necessarily with a fixed period [1]. On this basis, 

if filtering was restricted to the interference region, the average of the least squares 

solutions of a block-processing filter over an increasing number of patterns would 

ultimately converge to the Wiener solution, as would the updated sample-to-sample 

solution of an adaptive filter that was processing one pattern after the other in a 

continuous manner. 

However, both ECG and WLI outputs are non-stationary when a smaller time 

scale than beat-to-beat or peak-to-peak are considered. With the ECG, the centre 

frequency of the P and T waves is much smaller than that of the R wave in between; 

if a constant-coefficient filter is used with a high cut-off frequency, not enough noise 

may be filtered, making it difficult to extract the P and T waves. Reducing the 

cut-off frequency will reduce the noise content but distortion of the ECG may occur 
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as the R wave starts to be filtered [2]. An adaptive filter, on the other hand, may 

be able to track all of the P, R, and T waves if the degree of non-stationarity 

(DNS) is not too high, i.e., if the frequency variations are sufficiently slow relative 

to the sampling rate and the speed of adaptation of the filter coefficients. A block­

processing filter will instead make a compromise and deliver a solution which tries 

to recover the P, R, and T waves contemporaneously. 

A similar, although different, situation occurs with the WLI output considered 

over the interference region. Here, the centre frequency and bandwidth of the inter­

ference signal do not change, but the bandwidth of the output gradually increases 

moving away from the central fringe because, as the signal becomes weaker and 

weaker, the noise contribution to the output spectrum becomes larger and larger. 

It was shown in [3] that the bandwidth of the 'Wiener filter depends not only on 

the bandwidth of the signal to be estimated but also on the SNR. As this decreases 

the frequency response of the filter, H(f), shrinks so as to restrict the amount 

of noise passed through, according to the formula H(f) = Ps(f)/(Ps(f) + Pn(f)), 

where Ps (f) and Pn (f) are the spectra of signal and noise, respectively. A constant­

coefficient filter has a frequency response which is fixed at the design stage and 

cannot be changed afterwards. A block-processing filter, instead, can handle scan­

to-scan variations of the SNR (arising from changes in signal and/or noise power 

between scans) by adjusting its frequency response accordingly, if the approximate 

Wiener solution computed for the latest pattern is not averaged with the solutions 

from previous patterns but is used on its own. An adaptive filter can handle not 

only scan-to-scan but also intra-scan variations if these are not too fast, i.e., if the 

DNS, defined as the rate of change of the SNR along the fringe pattern, is not too 

high. 

Two important advantages of adaptive algorithms over batch algorithms are fast 

operational speed and limited memory requirements. Instead of having to store the 

whole data set before the estimation phase can start, estimation can be undertaken 

while a new data sample is being acquired and the old data discarded. 

Adaptive filtering of WLI fringe patterns is attractive not only in temporally 

scanned systems (due to the large number of samples to be processed) but also in 

spatially scanned systems, as the CCD clock can transform spatial information into 

a pulse train suitable for on-line processing. 
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Fig. 3.1 is a block diagram of a digital adaptive transversal finite impulse re­

sponse (FIR) filter [4]. 

y[n] 

y(n - 1] 

y(n] 

y[n - p] 

ern] 

Fig. 3.1 FIR adaptive transversal filter. 

At sample n the filter uses the input vector y(n - 1] containing the previous 

p samples -y[n - 1], ... , -y[n - p] from a tapped-delay line to produce the pre­

dicted output y[n] = yT(n - l]w(n], where w[n] is the vector containing the filter 

coefficients Wl,"" wp; the error term ern] between the current sample y[n] and 

its prediction y[n] is fed to an adaptive algorithm which updates w[n] in order to 

minimise a specified error function, usually the MSE criterion of Eq. 2.10. 

A filtered output may be computed at this point using the coefficients just up­

dated, before proceeding to the prediction for y[n + 1]. Although the difference 

between the two estimates is in general negligible in environments requiring low 

adaptation rates, it may be worth considering the latter when dealing with a highly 

non-stationary process, where the filter has to respond quickly to the rapid time 

variations of the process parameters, although the computational cost increases by 

p multiplications and additions. 

3.2.1 The Standard Least Mean Square (LMS) Algorithm 

Rewriting Eq. 2.10 as 

(3.1) 

the MSE becomes a quadratic function of the filter weights, with a unique minimum 

found by setting the gradient 

dE~:[n]} = -2E{y[n - l](y[n]- yT[n - l]w[n]}} (3.2) 
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to zero. This gives the Wiener-Hopf equations 

1:) w-R 
.&"Y-1Y-l - YY-l (3.3) 

where Ry-1Y-l is the autocorrelation matrix of the filter input vector and RyY-l 

is the cross-correlation vector between the current fringe sample y[n] and the filter 

input vector. 

Initialisation 
w[l] = 0 

n=l 

Read y[n] from ADC 

Predicted output 
y[n] = yT[n -l]w[n] 

If y[n] > y[n - 1] then 
maximum at sample n 

Compute error 
ern] = y[n] - y[n] 

Compute factor 
pe[n] 

Update weight vector 
w[n + 1] = w[n] + pe[n]y[n - 1] 

n=n+1 

Fig. 3.2 Flowchart for on-line prediction of the WLI output with the LMS algorithm. 

The LMS algorithm [5, 6] is a stochastic implementation of the method of steep­

est descent [7, 8] which is a gradient search technique in which the weights at n + 1 
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are equal to the weights at n plus a change proportional to the negative gradient. 

This amounts to descending along the p-dimensional error surface in a zig-zag fash­

ion towards its bottom, where the Wiener solution lies. Choosing <5e2 [n]/<5w as an 

unbiased estimate of the unknown gradient the weight update equation becomes 

w[n + 1] = w[n] + ILe[n]y[n - 1] (3.4) 

with initial condition w[l] = O. The constant JL is an amplification factor which 

controls the rate of descent or convergence. 

A flowchart for on-line prediction of the fringe pattern with the LMS algorithm 

is shown in Fig. 3.2. At sample n the predicted output y[n] is formed, and if this 

is greater than the predicted output at sample n - 1, nand y[n] are recorded and 

n - 1 and y[n - 1] are discarded. If the fringe position and intensity are sampled 

together by the analogue-to-digital converter (ADC), the sample number retained 

at the end of the scan gives the estimated central fringe position directly. 

The total number of operations amounts to 2p+ 1 multiplications and additions 

per iteration, plus p - 1 shifts of the elements of the input vector. 

The performance of the LMS is heavily dependent on the choice of the step-size 

IL, which sets a compromise between rate of convergence of the weights and excess 

MSE or misadjustment after convergence [9]. With IL small the descent towards the 

bottom of the error surface is slow but smooth, leaving a small amount of noise in 

the weights and a small gradient error after convergence. With JL large the rate of 

descent is faster but leaves a higher gradient error; if JL is too large the algorithm 

may also become unstable and diverge [10]. 

In a non-stationary environment where the statistics of the signal or system 

under examination may change continuously, the orientation and curvature of the 

error surface may move, and the weights must be able to track these variations after 

convergence. Again, a large JL value means faster adaptation, reducing a second 

contribution to the excess MSE, the lag error, caused by the time lag between the 

onset of the variation and the response of the weights. 

3.2.2 The Recursive Least Squares (RLS) Algorithm 

With the steepest descent method convergence is linear and independent of the 

starting approximation. With Newton's method, instead, quadratic convergence 

can be obtained when the iterates are getting close to the minimum [11]. 
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Newton's method uses extra information from the curvature of the error function 

to adapt the step length at each iteration; computation and inversion of the second 

derivative matrix, or Hessian, 

o2E{e2[nn _ R 
owowT - Y-IY-l 

which defines the curvature requires, however, O(p3) operations at each step. 

(3.5) 

The RLS algorithm [12, 13] is a Gauss-Newton procedure, where the exact in-

verse of the Hessian is substituted by an approximation P[n] propagated in time 

by means of the matrix inversion lemma [14], thus replacing the formal inversion 

with a simple scalar division. This makes it possible to contain the total number 

of operations to O(p2) at the expense of super-linear rather than quadratic con­

vergence, and of propagation of round-off errors from one iteration to the next. 

Introducing a forgetting factor A < 1 into the recursions allows to give greater im­

portance to recent error terms than to older ones, effectively replacing the uniform 

LS error criterion in Eq. 2.20 with an exponentially weighted criterion of the form 

En AN - ne2 [n]. 

A flowchart for on-line prediction of the fringe pattern using the RLS approach 

is shown in Fig. 3.3. In order to avoid having to compute the inverse of XTX 

as soon as this becomes invertible (i.e., at sample n = 2p + 1) the approximated 

inverse Hessian is generally set equal to cI at initialisation, where I is the identity 

matrix and c is a positive constant larger than 100/(1~, with (1~ being the variance 

of the data, so as to guarantee that P[n] remains positive-definite during repeated 

applications of the matrix inversion lemma [15]. 

If c is large the initial value of the time-varying gain vector G[n] will also be 

large, leading to fast but noisy convergence, whereas if c is small convergence will 

also be slow but smoother. 

The factor A allows to track slow time variations and hence reduce the lag error 

in a non-stationary environment after convergence, by keeping G[n] larger than 

in the case of no forgetting. Since the length of data effectively used during the 

estimation phase is reduced, this amplifies the accumulation and propagation of 

numerical errors, and with it the noisiness of the predictor weights. Hence, the 

compromise between weight and lag errors characteristic of the LMS algorithm 

applies also to the RLS algorithm, although the reason for the weight error is 

different. 
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Initialisation 
w[O] = 0, prO] = cI 

n=l 

Read y[n] from ADC 

Compute 
L:[n] = yT[n - l]P[n - l1y[n - 1] + '\a~ 

Compute gain vector 
G[n1 = P[n - l]y[n - 1] L:-1[n] 

Predicted Output 
y[n1 = yT[n - l1w[n -1] 

Compute error 
ern] = y[n] - y[n1 

Update weight vector 
w[n] = w[n - 1] + G[n]e[n] 

Compute 
P[n - 1] = G[n]yT[n - l]P[n - 11 

Update P[n - 1] 
P[n] = ,\-1 (P[n - 1] - P[n - 1]) 

n=n+l 

Fig. 3.3 Flowchart for on-line prediction of the WLI output with the RLS algorithm. 

The parameter a~ is an estimate of the measurement noise variance, which if 

not available can be set to one. 
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A full derivation of the algorithm is found in, e.g. [16]. 

3.2.3 The Kalman Algorithm 

The Wiener formulation leads to the optimum MSE predictor for stationary pro­

cesses. Extension of the Wiener filter theory to non-stationary processes led to the 

development of the Kalman filter [17, 18]. 

The system under observation is represented by a general multi-dimensional 

dynamic model defined in state-space form by a process and a measurement equation 

x[n + 1] - ~[n + 1, n1x[n] + vdn] 

y[n] - C[n]x[n] + v2[n] 

(3.6) 

(3.7) 

where x[n] and y[n] are the state and measurement vectors, ~[n + 1, n] is the 

state-transition matrix relating the states of the system at time n to the states at 

time n + 1, C[n1 is the measurement matrix relating the states at time n to the 

observations at time n, and vdn] and v2[n] are the process and measurement noise 

vectors, usually assumed to be mutually independent, zero-mean and white, with 

covariance matrices 

n=k i = 1,2 
(3.8) 

n#k 

A Kalman filter for the WLI system can be obtained by representing this as a 

dynamic AR model driven by the measurement noise 

y[n] = yT[n - l1a[n] + v[n] (3.9) 

with the non-stationarity of the output attributed to the variation of the system 

parameters with time, according to the first order Markov process [19] 

i=I, ... ,p (3.10) 

where the ¢>i and aai terms account for deterministic and random fluctuations, 

respectively. Putting Eq. 3.10 into matrix form gives 

a[n + 1] = ~[n]a[n] + aa[n] (3.11) 

Eqs. 3.11 and 3.9 are state-space equations for the time-varying AR process. If no 

prior information is available on the ¢>i terms, these are usually set to a constant 

f3 ~ 1 for all i and n, simplifying the state-transition matrix to f3I. 
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Ini tialisation 
w[O] = 0, K[1, 0] = cI 

n=1 

Read y[n] from ADC 

Compute 
E[n] = yT[n - 1]K[n, n - 1]y[n - 1] + O"~ 

Compute gain vector 
G[n] = K[n, n - 1]y[n - 1] E-1[n] 

Predicted Output 
y[n] = ,ByT[n -1]w[n - 1] 

Compute error 
ern] = y[n] - y[n] 

Update weight vector 
w[n] = ,Bw[n - 1] + G[n]e[n] 

Compute 
K[n] = G[n]yT[n - 1]K[n, n -1] 

Update K[n, n - 1] 
K[n + 1, n] = ,B2(K[n, n - 1] - K[n]) + qI 

n=n+1 

Fig. 3.4 Flowchart for on-line prediction of the WLI output with the Kalman filter. 

The ~ai terms can also be assumed to be mutually independent, zero-mean white 

processes with constant variance q and diagonal covariance matrix qI [20]. 
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A flowchart for on-line prediction of the fringe pattern with the Kalman filter is 

given in Fig. 3.4. K[n, n -1] is the p x p covariance matrix of the predicted estimate­

error vector a[n] - w[n -1]. By minimising the trace of this matrix recursively the 

optimum estimate of the time-varying state vector is determined. 

It can be shown that the RLS algorithm is a special case of the Kalman algorithm 

for the dynamic AR model considered here. The state-transition matrix and the 

process noise vector describe how fast the states of the system are expected to vary 

in time following deterministic and random changes within the system, a role which 

is exercised by >. in the RLS algorithm; similarly, the measurement noise vector 

describes the degree of confidence in the various components of the measurement 

vector, taking into account all sources of randomness at the measurement end, and 

corresponds to (j~ in the RLS. 

In fact, with>. = 1 and (3 = 1, q = 0 the two algorithms become identical for the 

one-dimensional case, i.e. the RLS method for a stationary AR process assumes a 

time-invariant state-space process equation. In a non-stationary environment the 

Kalman reduces to the RLS on setting (3 = 1 and q ex (1- >')1>' [16]. 

Having said this, the Kalman algorithm allows more flexibility as it allows to 

model deterministic and random variations of the system parameters independently; 

it is also possible to choose <P[n] and 6a[n] to have unequal entries, which may be 

convenient for describing different time variations of the parameters. Hence, one 

would expect the Kalman to perform at least as well as the RLS, if not better. 

Against this goes the higher computational cost, which reaches O(p3) operations 

per iteration. 

3.3 Simulation Results 

In order to obtain first-hand information on the sort of performance attainable by 

the adaptive filtering techniques presented in the previous section, some preliminary 

results from computer-generated fringe patterns will now be presented. 

The simulations considered the output of an electronically scanned system with 

a CCD array detector consisting of 1024 pixels. To achieve a high degree of non­

stationarity and thus provide a challenging situation for the algorithms, a short 

coherence length and fringe width were chosen, corresponding to 17 fringes and 
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12.7 pixels, respectively, so as to have a fast variation of the SNR along the fringe 

pattern. Scan-to-scan SNR fluctuations were not considered; instead, stationary 

white Gaussian noise was added at different levels, and for each level 500 scans 

were carried out with the central fringe in the middle of the scanning range. The 

filter weights were reset to zero at the beginning of each scan in order to test the 

convergence rate. 

A typical output of an electronically scanned system in additive noise was shown 

in Fig. 1.4. The white noise assumption is a good approximation to reality in 

electronically scanned systems, although the noise at adjacent pixels of the CCD 

detector may be slightly correlated, adding a broad-band MA component. In tem­

porally scanned systems, on the other hand, vibration of the moving scanner results 

in narrow-band AR noise centred at a frequency close to the mean frequency of the 

output pattern. 

Fig. 3.5 compares the sub-fringe identification rate that can be achieved by 

batch and adaptive algorithms for a given filter order. An AR(lO) process for the 

generation of the fringe pattern was assumed. The identification rate from direct 

fringe visibility is also shown. 
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Fig. 3.5 Sub-fringe success rate with batch and adaptive algorithms out of 500 scans. 

For the adaptive methods the filtered output of Section 3.2 was used as an 

estimate of the noise-free signal at pixels n = 1, ... ,1024. With the predicted ouput 
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the performance dropped by 2-3 % on average. 

The performance of the LMS filter was highly dependent on its step-size, with 

maximum identification rate obtained for smaller and smaller values as the SNR 

was decreased, suggesting that the contribution of the gradient error becomes more 

important as the SNR is reduced. 

The noise variance (T~ in the RLS filter was assumed unknown and set to one; 

the constant c was set to 104 , but smaller values produced identical results, possibly 

meaning that the transient phase was well over by the time the central portion of 

the fringe pattern was met. At high SNRs the best performance was obtained with 

.,\ between 0.9 and 1, but as the noise level was increased .,\ had to be kept very 

close to or equal to one, suggesting stationarity of the environment, although one 

has to remember that with .,\ < 1 the gain vector stays larger and induces a more 

noisy adaptation. 

Inverting XTX at pixel 2p + 1 by Gaussian elimination would allow to compute 

the exact LS solution, eliminating any transient phenomena. With this, the algo­

rithm became unstable for SNRs above 50 dB, although the performance was only 

slightly affected for lower values. 

With the fringe pattern at the centre of the scanning range the input data matrix 

contains only noise initially; hence, when the noise level is low the inversion of XTX 

becomes prone to round-off errors if single precision arithmetic is used, making it 

an ill-conditioned problem. Given that formal inversion requires O(p3) operations, 

it will not be considered further. 

With the Kalman filter the best performance was achieved with the parameters 

q and f3 at zero and one, respectively, although small deviations from these values 

were not critical at high SNRs. The Kalman filter was not included in Fig. 3.5 

because its success rate was identical to that of the RLS filter. In fact, with q = 0 

and f3 = 1 the Kalman output was the same as the output from the RLS with .,\ = 1 

down to 4 or 5 decimal points. 

The square-root Kalman algorithm [21, 22] propagates the Cholesky square-root 

matrix Kl/2[n, n - 1] in place of K[n, n - 1], doubling the numerical precision of 

the Kalman filter and making it more robust to round-off errors. In fact, when 

computing in base i arithmetic with m significant digits, numerical difficulties can 
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be expected as the condition number 1 X of K[n, n - 1] approaches im. Since 

X(Kl/2[n, n-l]) = (x(K[n, n_l]))l/2, using the square-root algorithm is equivalent 

to using double precision arithmetic. 

The difference between the outputs from the standard and square-root imple­

mentations was within 0.2 % over the central portion of the fringe pattern, i.e. less 

than 8 % of the difference between the noise-free central and 1st-order fringe am­

plitudes, and clearly not enough to change the success rate. Running the standard 

version with double instead of single precision had the same effect. Therefore, the 

square-root Kalman algorithm will not be considered further, as it increases the al­

ready high computational cost 2, although with longer data lengths its use in WLI 

may become more attractive as the chances of ill-conditioning increase. 

As for the block-processing methods, the covariance algorithm for AR models 

of Section 2.6 was tested against the modified covariance method [25, 26], Burg 

method [27, 28], and the sub-optimum ARMA procedure of Section 2.5. 

The modified covariance differs from the covariance method in that the sum of 

squares of the forward error defined in Eqs. 2.19 and 2.20 is minimised together 

with the sum of squares of the backward error 3 

, 
eb[n] = y[n - p] - y[n - p] = y[n - p] + E wky[n - p + k] (3.12) 

k=l 

according to 
N 

fIb = E (e}[n] + e~[n]) (3.13) 
n=,,+l 

so as to have twice the number of error terms involved in the minimisation task and 

reduce the variance of the estimates. Since the resultant autocorrelation matrix is 

the sum of two Toeplitz products, its inversion is possible with O(p2) operations 

[29, 30]. 

Whereas the modified covariance solves for the parameters ai, i = 1, ... , p of the 

assumed AR(p) model directly, Burg method solves for the reflection or PARCOR 

[31] coefficients a~, i = 1, ... ,p, of a lattice-equivalent model [32], with a{ being 

1 An accepted measure of ill-conditioning of a matrix A is its condition number X, defined as 

the ratio between its largest and smallest singular values [23]. 
2With the increasing use of rotational coordinate, or CORDIC, arithmetic [24] in VLSI chips 

though, there may be no computational advantages in using square-root free algorithms [4]. 
3 Backward in the sense that the prediction for the current data sample is a function of future 

samples only. 
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parameter ai of an AR(j) model. Both modified covariance and Burg methods pro­

duced nearly identical coefficients and the same identification rate as the covariance 

method, hence they are not shown in Fig. 3.5. 

Using the covariance method with backward instead of forward prediction in­

creased the misidentification rate by 7-8 % at medium and low SNRs. The loss in 

performance was only due to the different data that the two filters use to produce 

their output; in fact, the two coefficient vectors were nearly identical, and swapping 

them between filters left the performance unchanged. This is in agreement with 

the result that the forward and backward solutions to the linear prediction problem 

may be different because the data read forward and backward are not in the same 

order, but equally valid because their statistical properties are the same [33]. 

For the ARMA sub-optimum procedure an ARMA(p,p) process was assumed 

and an AR(5p) approximation was chosen for the MA process. The best results 

were obtained using an over-determined system of t = 5p equations during the 

estimation of the AR parameters, with p = 2 at high and medium SNRs and p = 4 

at low SNRs. Increasing p further the estimated error variance became negative (a 

sure sign of ill-conditioning) and the algorithm was exited before undertaking the 

MA analysis on the residual time series. 

The hypothesis that the WLI system can be better represented by an ARMA 

model with identical AR and MA parameters was tested by setting the MA esti­

mates equal to the AR estimates from the sub-optimum procedure. The identifi­

cation rate was practically zero at all SNRs. This does not necessarily mean that 

the hypothesis is incorrect; what is certain is that if an optimum procedure is not 

adopted that solves for the two sets of parameters simultaneously, estimation errors 

will cause the two solution vectors to be different. 

The batch techniques were also tested with the processing restricted to a central 

fraction of the fringe pattern. Apart from being attractive from a computational 

point of view, data-windowing reduces the degree of non-stationarity by restricting 

the SNR variation. However, the only beneficial effect of windowing was that it 

allowed to increase the model order for SNRs above 50 dB before ill-conditioning 

set in, an advantage which may not be of any practical use as far as central fringe 

identification is concerned, given that the success rate from the direct fringe vis­

ibility method is already as high as 100 % when employing a light source with a 
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typical coherence length equivalent to 17 fringes (Fig. 1.6). At lower SNRs the 

improvement in stationarity was apparently not enough to offset the degradation 

of the estimates brought about by the reduction in data availability. 

3.4 Ill-Conditioning and Finite Precision Effects 

Ill-conditioning is an approach towards singularity or non-invertibility [34]. There 

are two causes of ill-conditioning in the WLI output. 

The first cause is the high degree of temporal dependence or correlation between 

the data points making up the zero and low-order fringes, due to the fact that 

the SNR is at its highest over this region, which induces near-exact relations or 

collinearity among adjacent columns of the data matrix, which are just shifted 

versions of one another and are therefore very similar. This results in uncertainty 

in determining how much each of the past p data points contributes separately 

to the present one, as there is little explanatory power unique to any of them; 

consequently, the estimating procedure does not have enough information to use in 

calculating the parameters, just as though it had a very small sample size. Any 

estimate based on little information cannot be held with much confidence, i.e. it 

will have a high variance [35]. 

The second cause is the insufficient dynamic range away from the interference 

region. Here, the interferometer output is at a constant level, and if the SNR is 

too high finite wordlength effects take over and result in loss of significance in the 

digital number representation of the computer. There is a danger that all data 

points are rounded to the same value, which is collinearity at its extreme. 

The concept of ill-conditioning is closely related to the permanent input excita­

tion condition. An input to a system is persistently exciting if it excites all natural 

frequencies or modes of the system [36]. Similarly, a sequence y[n] is persistently 

exciting a filter with order p if the spectral density of the signal is non-zero at 

at least p equally spaced points [37]. In the time domain, the latter condition is 

satisfied if the p x p autocorrelation matrix R Y_1Y_1 of y[n] is non-singular. 

As the SNR increases the WLI interference signal becomes less persistently 

exciting because its bandwidth is reduced and the frequency content becomes zero 

at more and more points; away from the interference region the same effect can 
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be observed as signal quantisation takes its toll on the dynamic range and shrinks 

the signal down to its dc component. Similarly, increasing the filter order makes it 

less easy to maintain the spectral density non-zero requirement at p equally spaced 

frequencies. 

Tables 3.1 and 3.2 show the condition numbers of the data matrix X used by 

batch and adaptive algorithms during the computer simulations of the previous 

section, averaged over the 500 scans. In both cases there is a high correlation 

between condition numbers, SNR, and filter order. 

The data matrix considered in Table 3.1 contained only the fringes within the 

coherence region. Expanding the window width to include the low-coherence and 

finally the non-coherence data, collinearity was reduced and the condition numbers 

with it, unless the noise level was so low that the data could not be represented 

accurately in the computer. 

The condition numbers for Table 3.2 were calculated at several positions along 

the scanning range. Since the singular values of X are the positive square roots of 

the eigenvalues ofXTX, the condition number at pixel n was computed as the square 

root of the eigenvalue ratio Amax/ Amin of the p x p ensemble-average autocorrelation 

matrix Ry-1Y-l = E{y[n - l]yT[n - In. 
Just what is to be considered a large condition number can be an empirical mat­

ter. In econometrics, e.g., moderate to strong dependencies between the columns 

of the data matrix are associated with condition numbers between 30 and 100 [38]. 

For the error function to have a unique minimum it is essential that its Hessian be 

positive-definite 4. If the Hessian becomes negative-definite the paraboloid defining 

the error surface turns upside down, causing the algorithm to "blow-up". With the 

adaptive RLS algorithm in particular, the stabilising effect of P[O] is not permanent 

but decreases exponentially with time when A < 1 [39]. If the data sequence ceases 

to be persistently exciting numerical problems will eventually arise, as by the matrix 

inversion lemma P[n] is updated as the difference of two matrices which tend to 

become near-singular [40]. The same problem has been observed with the K[n, n-1] 

matrix in the Kalman algorithm [41]. 

By effectively halving the condition number, square-root algorithms should se-

4The matrix R is positive-definite if the quadratic form xTRx is positive for all vectors x =F O. 
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cure a search direction that points downwards when normal versions fail. 

2 3.9 3.9 3.5 2.2 1.2 

10 107.1 43.1 15.2 5.1 2.0 

16 132.1 56.7 20.3 6.7 2.5 

32 175.4 89.1 32.8 10.7 3.8 

Table 3.1 Condition numbers of data matrix used by batch algorithms. 

I pixel (p = 2) I SNR = 30 dB 120 dB 110 dB I 0 dB I 
250 1.0 1.0 1.0 1.0 

404 11.6 3.8 1.5 1.1 

436 21.2 6.8 2.3 1.2 

512 32.8 10.4 3.4 1.4 

(p = 10) 30 dB 120 dB 110 dB 10 dB I 
250 1.0 1.0 1.0 1.0 

404 21.9 7.0 2.4 1.2 

436 38.1 12.1 3.9 1.6 

512 65.5 20.7 6.6 2.3 

(p = 16) 30 dB I 20 dB 110 dB I 0 dB I 
250 1.0 1.0 1.0 1.0 

404 27.1 8.6 2.9 1.3 

436 47.6 15.1 4.9 1.8 

512 85.6 27.1 8.6 2.9 

(p = 32) 30 dB I 20 dB 110 dB I 0 dB I 
250 1.0 1.0 1.0 1.0 

404 34.2 10.9 3.6 1.5 

436 61.4 19.4 6.2 2.2 

512 123 38.9 12.3 4.0 

Table 3.2 Condition numbers of data matrix used by adaptive algorithms. 
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3.5 Conclusion 

In this chapter the LMS, RLS, and Kalman algorithms were used to update the pa­

rameters of an assumed time-varying AR model for the WLI output fringe pattern. 

It was shown that for this application the Kalman algorithm reduces to the RLS. 

The difference between LMS and RLS is in the search direction, stochastic gra­

dient in the former and Gauss-Newton in the latter. The Gauss-Newton direction 

gives near-quadratic convergence but results in an algorithm which requires at least 

2p2 + 6p adds and multiplies per iteration, whereas the stochastic gradient direction 

gives only linear convergence but the corresponding algorithm requires just 2p op­

erations. Numerical problems from ill-conditioning of the data matrix also become 

more serious with the Gauss-Newton direction, as round-off errors accumulate and 

propagate from one iteration to the next. 

From preliminary simulations it appears that the LMS is capable of performing 

as well as the RLS and batch algorithms of Chapter 2 when its step-size has been 

successfully optimised. 

It also appears that the AR model assumption leads to an identification rate 

comparable to that obtainable with the more general ARMA assumption, except 

perhaps at low SNRs, where the absence of the MA term begins to be felt. 

In the next chapter the comparison between LMS and RLS algorithms will be 

extended to cover convergence and tracking behaviours, and the influence of these 

on the identification rate will be examined together with their dependence on the 

filter design parameters and statistical properties of the data. 
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Chapter 4 

Convergence and Tracking 

Problems in WLI Filtering 

4.1 Introduction 

In the previous chapter adaptive algorithms were seen to be capable of achieving 

the same identification rate as batch algorithms, provided the step-size parameter 

was chosen appropriately. 

This chapter concentrates on adaptive algorithms for the obvious advantages 

they offer (see Section 3.2), and especially on the LMS because of its simplicity of 

operation and fast computational speed, which are the reasons for it having become 

the benchmark against which all other adaptive algorithms are tested. 

The sensitivity of the success rate to the step-size tL will be linked to the con­

vergence and tracking properties of the algorithm and to the nature of the data at 

hand, and a comparison with the RLS algorithm will be made throughout using 

both simulated and experimental data. 

4.2 Identification Rate and Filter Parameters 

Fig. 4.1 shows that there exists an inverse relationship between noise level and 

optimum step-size tLo for maximum identification with a given filter order. The 

central fringe was kept in the middle of the CCD array throughout the simulations. 

Fig. 4.2 shows that there exists a direct relationship between filter order and 
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success rate, but an inverse one between filter order and optimum step-size. 
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Fig. 4.2 Maximum success rate (out of 500 trials) against filter order at 20 dB. 

As shown in Fig. 4.2, the identification rate improved by an absolute 9 % (13 %) 

when the filter order p was increased from 16 to 32 (64). For comparison, the success 
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rate with the covariance method went up 3 % (down 2 %). Just by increasing the 

filter order it is thus possible to beat the batch schemes, assuming J-Lo is available. 
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Fig. 4.3 shows the identification rate as a function of the step-size for six values 

of the SNR in the range 0-32 dB. 
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with p = 32 and I' optimised for the central pixel on the CCD array. 
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The sub-fringe identification rate was between one-third and one-half of the 

fringe identification rate for SNRs below 10 dB, otherwise the two rates were equal, 

as opposed to the 26 dB limit of the direct fringe visibility method (see Section 1.7). 

Whereas with the latter method the rate did not change when the central fringe 

moved to the bottom end of the scanning range, that of adaptive algorithms was 

badly affected, as shown in Fig. 4.4 (fluctuations at pixels away from the bottom 

of the range were only caused by the randomness of the local noise amplitude, and 

should die out as the number of trials increases). 

A set of simulations was performed with the central fringe moving continuously 

from pixel 262 through to pixel 761 during 500 consecutive scans. The identification 

rate of the direct visibility and covariance methods remained the same in the two 

halves of the scanning range separated by the central pixel, whereas that of the 

LMS was comparable to that in Fig. 4.2 only in the second half, being more than 

10 % lower in the first half. Hence, optimising J.l when the central fringe is in the 

middle of the array does not guarantee the best performance at other positions. 

Another set of simulations was performed with the central fringe fixed at pixel 

100 and a SNR of 20 dB. The optimum step-size was still an inverse function of the 

filter order but was on average 2.5-3 times higher than when the central fringe was 

kept in the middle of the array. Even then, the identification rate shown in Fig. 

4.2 dropped by a relative 13 % (18 %) with p = 16 (32 or 64). With the covariance 

method the rate remained at the previous level with p = 16 and increased by as 

much as 6 % with p = 32 and 64. The rate with the direct visibility method 

also increased by 4 %, meaning that the performance of the LMS should not have 

suffered but, if anything, should have improved as a result of the fluctuations in the 

noise amplitude. 

With the step-size optimised at pixel 100 and the central fringe at the centre of 

the array, the success rate also dropped by 8-9 % (15 %) with p = 16 or 64 {32}. 

In conclusion, the performance of the LMS filter in a practical setting will be 

influenced not only by the algorithm parameters p and J.l but also by the operating 

range. A large J.l accelerates convergence and may help to improve the performance 

when the operating range includes the lower portion of the scanning range, although 

a lower value may lead to smaller misadjustment over the central portion. 
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4.3 Time-Evolution of MSE and Filter Weights 

Figs. 4.5-4.7 show the square of the LMS algorithm error signal e[n] (as from 

flowchart in Fig. 3.2) during convergence and tracking, averaged over 500 consecu­

tive scans with the central fringe in the middle of the array detector. 
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With the amplitude of the central fringe set arbitrarily at 0.5, a noise level of 

2.5 % (32 dB SNR) corresponds to a noise variance of 1.56 x 10-4, or -3.8 on a log 

scale; similarly, noise levels of 10 % (20 dB) and 31 % (10 dB) correspond to noise 

variances of 2.5 x 10-3 and 2.5 x 10-2, or -2.6 and -1.6 on a log scale, respectively. 

The step-size was optimised for each SNR but the filter order was kept fixed at 

sixteen. 

The region delimited by tl in Figs. 4.5-4.7 corresponds to that portion of the 

array where no interference takes place and the normalised output signal from the 

detector, y[n], consists solely of system and measurement noise v[n]. Here, the 

weights remain at zero because the algorithm cannot find any sufficiently strong 

correlation between successive samples. 

Let's consider the updating of the weight vector w in Eq. 3.4. In the mean, 

E{w[n + In = E{w[nn + J.lE{e[n]y[n - In (4.1) 

At the beginning of the scan, the predictor output y[n] is zero because w is zero, and 

the error signal e[n] is thus equal to y[n], which contains no useful signal but only 

v[n]. As the scan proceeds, the filter input vector y[n -1] becomes filled with past 

v[n] values, and the last term on the r.h.s of Eq. 4.1 remains at zero because v[n] 

65 



is uncorrelated with its past. Hence, there is no weight adaptation, the predictor 

output stays at zero, and the MSE remains equal to its minimum possible value, 

the noise variance. 

The region delimited by t2 is where convergence takes place, and includes the 

effective fringe pattern up to the central fringe; the width of t2 shrinks in passing 

from Fig. 4.5 to Fig 4.7 because as the noise level increases more of the small 

fringes remain buried under the noise. In this region, the weights start adapting 

since both error signal and input vector contain signal components, but the MSE 

initially increases with the signal level because of the inertia of the weights, which 

causes y[n] to lag behind y[n]. As convergence proceeds, however, the error signal 

starts to decrease, although the signal level is still increasing. An optimum value of 

the step-size will ensure that convergence is completed just before the central fringe 

is met, so that all is left to do after that is to track possible movements of the error 

surface caused by the non-stationarity of the fringe pattern. 

Smaller values may extend the convergence region beyond the central fringe, 

while larger values may upset the balance between gradient and lag errors during 

tracking, producing a higher misadjustment over the fringes. 
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Fig. 4.8 LMS weights with a SNR of 32 dB. The dashed lines delimit the coherence region. 

When the fringes are left behind, adaptation continues because past noise terms 

remain common to error signal and input vector in Eq. 4.1. Given sufficient time 
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the weights will return to zero, since in 

(4.2) 

the last term on the r.h.s. becomes zero and the only way to reduce the MSE further 

is by shrinking the second term. 

0.30 
SNR=20 dB 
mu=O.055 

0.15 

Ul 
g 

l-
S 4 I 

(!) 
~ 

ill 9 3 3 0.00 
~ 10 ill 
I- 2 
....J 
~ 1 LL 

-0.15 

PIXEL NUMBER 

Fig. 4.9 LMS weights with a SNR of 20 dB. 

0.30 
SNR=lO dB 
mu=O.05 

0.15 

Ul 
I- § I 
(!) 

4 ~ 

ill 9 3 3 0.00 
~ 1°2 
ill 
I- 1 
....J 
~ 

LL 

-0.15 

PIXEL NUMBER 

Fig. 4.10 LMS weights with a SNR of 10 dB. 

67 



Figs. 4.8-4.10 show the behaviour of the first ten weights during convergence 

and tracking. The /-Lo values from Fig. 4.3 were used. Figs. 4.11 and 4.12 show MSE 

and weight updating with the RLS filter; A was set to one and c to fourty times 

less than the minimum recommended in Section 3.2.2 (with (7~ equal to 2.5 x 10-3 

in the region delimited by tl! the minimum would be 40 X 103). 
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Even though this choice of parameters is far from ideal when speed of adaptation 

is crucial, it can be seen by comparing with Figs. 4.6 and 4.9 that the RLS algorithm 

is far superior to the LMS in terms of convergence. 

With the central fringe at pixel 100 and both J1. and A optimised, however, the 

identification rate of the RLS was only as high as that of the LMS with p = 16, and 

7 % worse with p = 32. One reason for this may be that A had to be reduced to 0.98 

in order to make the algorithm converge in time, thus increasing the noisiness in 

the weights. Although the LMS suffers the same disadvantage when J1. is increased, 

it may be that the injection of extra noise in the weights is a more serious problem 

with the RLS than with the LMS. This would explain why A kept at one guaranteed 

the highest identification rate in the simulations of Section 3.3. 

Another reason for failing to beat the LMS may be due to the influence of 

prO] at the lower end of the scanning range, clearly visible in Figs. 4.11 and 4.12. 

Although the effect of prO] decays quickly with time as A takes over the updating 

role [1], the fact remains that the choice of c affects the behaviour ofthe RLS during 

this transient period. With a SNR of 20 dB, for example, central fringe and noise 

amplitude are in the ratio 1:10, so their variances are in the ratio 1:100; this means 

that the variance of the data, O'~, when the RLS comes into operation is about 100 

times higher when the central fringe is at the bottom end of the range than when it 

is in the middle. It follows that a c value which was relatively low for the mid-range 

may now be too high, causing wild fluctuations in the filter weights and in the MSE 

before the change-over between prO] and A takes place. 

In fact, fluctuations in the MSE during the transient period were seen to in­

crease with c. Thus, faster convergence alone is not a sufficient condition for higher 

identification at the bottom end of the CCD array, as the noisiness of adaptation 

can playa major role. 

4.4 Time-Evolution of Filter Output 

The fringe pattern in Fig. 4.13 is one of a set of measurements performed in 

the laboratory using a temporally-scanned WLI system. The light source was a 

LED with a nominal wavelength of 840 nm and a spectral half-width of 50 nm, 

corresponding to a coherence length of 14.1 x 104 nm or approximately 17 fringes. 
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The light beam was collimated by a 10 x objective lens before being divided into 

two by the beam splitter of a Michelson interferometer, whose mirrors were fixed 

to piezo-electric transducers incorporating capacitive displacement sensors with a 

maximum range of ±50 J-Lm. After recombination of the beams at the beam splitter, 

the interference signal was detected with a PIN photodiode/amplifier and displayed 

on an oscilloscope, before being recorded with 12 bits accuracy on a floppy disk 

via the serial port of a digital storage adaptor connected to the oscilloscope and 

a personal computer. The output from the displacement sensors was also stored 

digitally on the computer, but with 14 bits accuracy, so as to give an ultimate path 

difference resolution of 100/214 J-Lm, or 6 nm. 
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Fig. 4.13 Experimentally obtained white-light fringe pattern using a broad-band source and a 

mechanical scanner (after pre-processing). 

The two mirrors were initially balanced to give zero OPD, and one of them was 

then moved to create an OPD much larger than the coherence length. The second 

mirror was at this point scanned through its range in steps of ~ 13 nm, and the 

output intensity was detected by the photodiode. To increase the noise level, a 

white-noise generator was attached to the parallel port of the storage device. 

Due to vibrations induced by the movement of the scanner and the surroundings, 

the number of samples at the end of each scan was higher than expected. To 

ensure the monotonicity of the path difference, redundant information was discarded 
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through the use of a simple pre-processing operation incorporated into the adaptive 

filtering schemes, which consisted of skipping a sample if the path difference from 

the dispa1cement sensors was greater than that at the previous sample. 

In Fig. 4.13 only the path difference between ±15 J.Lm is shown. Over the full 

scanning range from 40 J-Lm to -40 J-Lm a slow baseline drift was noticeable to the 

naked eye, possibly caused by misalignment between the optical components or by 

a temperature rise in the detectors during the two-minute measurement period, 

although the ambient temperature stayed at 25°C throughout. 

Comparing the signal power at 0 and ±40 J.Lm gave an estimate for the SNR 

at the central fringe of nearly 40 dB, a slightly higher figure than that obtained 

from the error variance estimated by the covariance method on the first few low­

order fringes. The fringe width and coherence length of the source were found by 

inspection to correspond to ~ 33.4 pixels (0.43 J.Lm) and 17 fringes, respectively. 
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Fig. 4.14 The fringe pattern in Fig. 4.13 filtered by the LMS with p = 32 and JL = 0.1. 

Figs. 4.14 and 4.15 show the output of the LMS filter with the step-size J.L 

equal to 0.1 and 0.01, respectively. Adaptation of the weights starts when the path 

difference is about 8.3 J.Lm in the first case, but is delayed until 6.7 J.Lm in the second 

case. The difference in shape of the two patterns clearly demonstrates that as the 

step-size is reduced convergence may become a problem, even though a relatively 
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large number of samples are available before the central fringe is met. 
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Fig. 4.15 The fringe pattern in Fig. 4.13 filtered by the LMS with p = 32 and /J = 0.01. 

Figs. 4.16 and 4.17 show the output of the RLS filter with>' equal to 1 and 0.8, 

respectively, and the constant c set at the recommended minimum 13 x 105 (with 

O'~ estimated at around 7 x 10-5 at the beginning of the scan). 
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Fig. 4.16 The fringe pattern in Fig. 4.13 filtered by the RLS with p = 32 and A = 1.0. 
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Fig. 4.17 The fringe pattern in Fig. 4.17 filtered by the RLS with p = 32 and oX = 0.8. 

Adaptation of the weights is delayed until 9.8 p,m in Fig. 4.16, but starts almost 

immediately in Fig. 4.17; in both cases it is faster than with the LMS algorithm, 

and in the latter case it is so fast that it would be difficult to spot any difference 

between the patterns in Figs. 4.17 and 4.13. 

This leaves no doubt about the superior convergence of the RLS. As far as 

tracking is concerned, though, the stationary choice seems to have caused quite a 

large lag error after convergence, and the non-stationary choice seems not to have 

been able to separate the signal component from the noise component. 

As in temporally scanned systems vibration noise may have a centre frequency 

close to that of the interference signal [2], the RLS algorithm should not be blamed 

if it was interpreting the noise as part of the signal and was trying to track it. 

However, in computer simulations where the additive noise was a pseuso-random 

sequence with a flat spectrum, the RLS filter was tracking both signal and noise if 

;\ was allowed to get below a certain value. With the noise variance at 2.5 x 10-3 

(SNR 20 dB) the MSE over the interference region dropped to 10-8 with ;\ = 0.8, 

although it was close to 2.5 x 10-3 with ;\ = 1. The MSE of the LMS over the 

fringes was also seen to decrease to 10-5 as p, was increased, before the algorithm 

became unstable. 
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Therefore, there is a limit on the tracking rate of both algorithms, determined 

by J.1 and -X, beyond which external noise sources can be interpreted as genuine 

signal variations. 

4.5 Convergence and Tracking Aspects 

One may ask at this point whether there is one single factor relating SNR and filter 

order to the behaviour of the two algorithms during convergence and tracking. The 

answer lies with the eigenvalues -Xl! ••• , -Xp of the data autocorrelation matrix. 

A necessary and sufficient condition for stability (convergence) of the steepest 

descent method is [3] 

i=l, ... ,p (4.3) 

This follows after transforming the difference equation for the weight error vector 

v[n] = w[n] - wo , where Wo is the optimum (Wiener) weight vector, into a set of 

uncoupled scalar equations [4] 

i=l, ... ,p (4.4) 

Hence, v[n] decays exponentially to zero when 0 < J.1 < 2/ Amax, irrespective of the 

initial conditions. 

In practice, the gradient is estimated from the data and v[n] consists of a mixture 

of p noisy exponentials which are coupled together, with w[n] executing a random 

motion with amplification factor J.1 around the Wiener solution after convergence. 

Eq. 4.3 is thus referred to as the convergence in the mean condition for the LMS 

weights to the Wiener solution. 

The convergence in the mean square condition [5] 

t (J.1/2)-Xi < 1 
i=l 1 - J.1-Xi 

(4.5) 

ensures convergence of the MSE to a constant value, usually in excess of the MSE 

achievable by the Wiener filter by an amount equivalent to the gradient error. 

Although both convergence conditions rely on the independence theory [6], so 

that the statistical dependence between successive gradient estimates can be ignored 

and the uncoupling in Eq. 4.4 may be considered valid, they have been shown to be 

reliable even for highly dependent data sequences [7,8], provided J.1 is small enough 
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to make the gross temporal variation of the weight vector far slower than that of 

the input vector 1. This is important because the data containing the fringe pattern 

are highly correlated and therefore far from being independent. 

Restating Eq. 4.5 as 

{4.6} 

and since 

{4.7} 

it follows that if convergence in the mean square is ensured, convergence in the 

mean is also ensured. In [5] it was shown that both conditions are satisfied when 

p, < 2/{3Amax}. 

If Ti" is the time required for Vi to decay to lie of its initial value, then [9] 

or Ti" = -l/ln{l - P,Ai} {4.8} 

which for small p, can be approximated as 

(4.9) 

The time required for the ith component of the excess MSE to decay to l/e is Tt /2, 
since the MSE is a sum of squares of the Vi terms [3]. 

Eq. 4.9 shows that the smaller an eigenvalue is, the bigger its associated time 

constant Tt. Eq. 4.3, on the other hand, shows that the smaller the eigenvalue, 

the bigger the step-size can be. This means that if p separate step-sizes could be 

used, the values P,i = 1/ Ai would ensure convergence of all the weights in one step. 

With a common step-size instead, the largest eigenvalue gives an upper bound for 

it. Thus, since T~ax = l/(P,Amin) and p, < 1/ Amax, it follows that T~ax > Amax/ Amin, 

i.e., the larger the eigenvalue ratio (or spread) of the input autocorrelation matrix 

the longer the weights will take to converge. The eigenvalues may be considered to 

be highly disparate when the ratio is greater than ten [10]. 

Since the eigenvalues of XTX are the squares of the singular values of X in 

Table 3.2, this limit can be easily passed as the filter order and/or the SNR are 

increased. This conclusion can also be reached by noting that the eigenvalues can be 

approximated by uniformly spaced samples of the process spectrum for p sufficiently 

IThe small-JL assumption, JL« l/>"moz, has been used extensively in the past to derive most 

of the results listed in this and the next sections. 
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high, and are bounded by the minimum and maximum values of the spectrum as p 

tends to infinity [11]. For a narrow-band process with spectral shape as in Fig. 2.2, 

decreasing the noise level decreases the spectral minimum and .xmin with it, whereas 

increasing the spectral resolution by increasing the number of parameters of the AR 

model increases the sharpness of the peak and .xmax• Adopting the spectral view 

it is also easy to see the connection between ill-conditioning and eigenvalue ratio, 

through the persistent input excitation condition of Section 3.4. 

It has been shown [12, 13] that the LMS convergence in the mean square is 

affected less than the convergence in the mean. In other words, the filter output 

converges more rapidly than the weights, since those components associated with 

frequency regions having little power, i.e. small eigenvalues and therefore large 

time constants, do not contribute significantly to the excess MSE. This means that 

the damage caused by the eigenvalue spread during convergence is less severe in 

prediction and filtering than in system identification or spectral estimation, if JL is 

small enough to assume that the various components are uncoupled. 

The RLS algorithm, on the other hand, uses a Gauss-Newton procedure, which 

is insensitive to the eigenvalue distribution of the data autocorrelation matrix [14]. 

As such, its behaviour during convergence should remain independent of the filter 

order, noise level, and degree of correlation of the input data. 

As far as tracking is concerned, the behaviour of both algorithms is essentially 

the same as during convergence. The time constants of the LMS are still defined 

by Eq. 4.9 [10], whereas those of the RLS remain independent of the eigenvalue 

spread and can be approximated by 1/(1-.x) [14]. However, the gain vector of the 

RLS is smaller than the initial gain G[O]. Hence, the response of the RLS to sudden 

changes in the weight vector is slower during tracking than during convergence [15]. 

Indeed, with the step-size optimised in both algorithms, the LMS has been found 

to exhibit less misadjustment at steady-state in some non-stationary environments 

with low SNR when both weight and lag error contributions to the excess MSE 

are considered [16], although it is the general opinion that the RLS is able to track 

faster (see, e.g. [14, 17]). 
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4.6 Choice of Filter Parameters 

Unlike with batch processing schemes, where the filter order is generally high if the 

noise level is high but the block width is decreased if the degree of non-stationarity 

is high, in adaptive schemes the different impacts that step-size, filter order, SNR, 

DNS, and eigenvalue spread have on the convergence rate and tracking make the 

choice of the filter parameters a difficult task. 

Zooming in on the LMS algorithm, it follows from Eq. 4.4 that as long as J.L < 

1/ Amax the rate of decay of all weight error components increases with J.L. Once J.L = 
1/ Amax the component associated with Amax begins to slow down again, switching 

from over - to underdamping. The choice J.L = 1/ Amax is therefore generally accepted 

as being the one that provides the fastest convergence in the mean [18], although in 

practice the convergence in the mean square condition J.L < 2/{3Amax ) may dictate 

otherwise. 

To avoid computing Amax, a rule of thumb is to use the following relationship 

between the trace 2 and the eigenvalues of the autocorrelation matrix R 

p 

tr{R) == L Ai > Amax (4.10) 
i=l 

Since tr{R) = pr[O] and r[O] = O'~, where O'~ is the variance of the data, convergence 

in the mean square is guaranteed as long as J.L < 2/{3pO'~), with J.L values close to 

this upper bound providing the fastest convergence in the mean. 

Eq. 4.10 provides an approximation which is p times more conservative than 

the exact expression over the region delimited by tl in Figs. 4.5-4.7, since in this 

region all eigenvalues are equal. Over the fringes, however, the ratio between left 

and right-hand sides of Eq. 4.10 decreases quickly. With p = 32 and a SNR of 10 

dB the ratio was 32 over the tt region, 3.1 at the lie intensity points, and 1.2 at 

the central fringe; with a SNR of 30 dB Amax was so dominant over the fringes that 

the ratio was already 1.0 at the lie points. 

In [5] the misadjustment at steady-state due to the gradient error alone was 

derived as 
M = Ef=t(J.L/2)Ai/(1 - J.LAi) 

1 - Ef=l (J.t/2}Ai/{1 - mUAi) 
(4.11) 

2The trace of a square matrix is the sum of the elements on its leading diagonal. 

77 



which with the small-J-L assumption reduces to 

M ~ (J-L/2~ Lf=l Ai ~ (J-L/2) t Ai = (J-L/2)pa; 
1 - Li=l (J-L/2) Ai i=l 

(4.12) 

a result previously obtained in [3]. Eq. 4.12 shows that the misadjustment increases 

with the step-size and is dominated by the largest eigenvalue. 

The misadjustment of the RLS at steady-state (neglecting the lag error) can 

instead be approximated as 
I-A 

AI ~ 1 + AP (4.13) 

for A very close to one [19], thus increasing with P and decreasing with A but being 

independent of the eigenvalue spread. 

To ensure fast convergence of the LMS followed by small misadjustment at 

steady-state, it has been suggested to choose a large Jl initially, and then decrease 

it in discrete steps in time [18, 20]. Similarly, A in the RLS can be made to ap­

proach one exponentially [21]. Such approach may only work well in a stationary 

environment, as the lag error increases linearly with J-L- 1 and with the DNS if non­

stationarity causes random time variations of the system parameters [10, 14], and 

quadratically with J-L-1 and the DNS if the induced variations are deterministic 

[22, 23, 24]. This applies also to the RLS [14, 24]. 

Deterministic variations can be expected when dealing with a time-varying sys­

tem or signal with a trend, such as a frequency-modulated narrow-band signal whose 

centre frequency drifts slowly in time; in this case the DNS is constant and given 

by the drift rate or 'chirp'. As the amplitude of the fringe pattern is described 

by a well-behaved Gaussian function, it may be justified to assume deterministic 

variations of the WLI system parameters; in this case the DNS is given by the rate 

of change of the SNR within the Gaussian envelope, which is not constant even if 

the coherence length of the source and the fringe width are. 

As for the filter order p, keeping it low reduces not only the weight but also 

the lag error [10, 19], since fast time variations can be tracked more easily as the 

memory of the filter is shortened [25]. On the other hand, in general the AR model 

matches the system more accurately with increased model order [26]. 

Attempts have been made to derive an expression for the optimum LMS stpp­

size as a function of the filter order and some or all of signal power, noise power, 

eigenvalue ratio, and DNS (see, e.g. [27, 10, 28, 16, 29]). In practice, its search may 

need to be made by trial and error [10]. 
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From simulations conducted on synthetic WLI fringe patterns the following re­

sults are worth mentioning: 

1. On average over 8 values of the SNR in the range [0,32 dB], 110 was inversely 

proportional to p over the range of p considered. 

2. 110 increased slightly with the SNR. 

3. Increasing p the identification rate improved markedly, especially for low p, 

as a result of better model fitting. 

4. As the coherence length was reduced to increase the slope of the Gaussian pro­

file and the DNS with it, /-to also had to increase to provide faster convergence 

and tracking. 
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90 

Fig. 4.18 shows that as the coherence length increases the identification rate 

degrades, as a consequence of the visibility profile becoming flatter around the cen­

tral fringe. As the fringe pattern becomes more stationary the need for convergence 

and tracking decreases and so does 110. It appears that 110 and Lc obey an inverse 

square or exponential law. 
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For the RLS algorithm, on the other hand, similar simulations have confirmed 

that .A is quite insensitive to changes in the filter order [14], and that its choice in 

general is less crucial than that of JL [1]. The identification rate is a much smoother 

function of .A than of JL, especially at high SNRs, where weight and lag errors seem 

to compensate each other during tracking. At lower SNRs instead, a reduction in 

lag error may be counteracted by a slightly larger increase in weight error, since 

the identification rate falls steadily as .A is decreased from one, although never as 

dramatically as with the LMS. 

4.7 Discussion 

In this chapter the convergence and tracking behaviour of the LMS and RLS algo­

rithms during the filtering of the \VLI fringe pattern have been examined. 

It was shown that decreasing the noise level reduces the minimum value of 

the spectrum of the process and with it the smallest eigenvalue of the input data 

autocorrelation matrix. On the other hand, increasing the filter order increases the 

spectral resolution and with it the largest eigenvalue. In both cases the increased 

spectral range results in a large eigenvalue spread and slow convergence of the LMS. 

The convergence of the RLS is not influenced by the eigenvalue spread, but the 

latter will take its toll on the numerical precision of the algorithm. This, coupled 

with a slower response to signal variations during tracking than during convergence, 

may give the LMS a slight performance advantage in non-stationary environments, 

on condition that its step-size is chosen appropriately. 

Unfortunately, the choice of the step-size is not an easy one, as its optimum 

value depends not on the filter order alone but on its interplay with such envi­

ronmental variables as signal power, noise power, signal bandwidth and degree of 

non-stationarity, some of which change continuously during scanning. The forget­

ting factor in the RLS is less influenced by the filter order and the SNR, as these 

affect the eigenvalue distribution of the data but not the convergence and tracking 

speed of the algorithm. 

In the next chapter a simple scheme which tries to ease the convergence problem 

will be presented and analysed. 

Alternative versions of the LMS that have been claimed to offer faster conver-
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gence and/or tracking will then be assessed, before introducing a modification to the 

weight update equation in the standard version that leads to superior performance 

at no extra computational cost with next-to-nothing dependence on the step-size. 

A final round-up of methods for central fringe identification in WLI systems 

with their pros and cons concludes the chapter. 
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Chapter 5 

ANew WLI Central Fringe 

Identification Scheme 

5 .1 Introduction 

In Chapter 4 it was shown that although the LMS algorithm has a clear disadvantage 

over the RLS in terms of convergence, its identification rate may equal that of the 

RLS because of comparable, if not better, behaviour during tracking. For this to 

happen, however, the choice ofthe step-size has to be made with extra care in order 

to end the convergence phase as soon as possible without leaving an unnecessary 

high misadjustment afterwards. 

In this chapter a simple scheme will be introduced, which tries to reduce the 

convergence disadvantage. A few alternative versions of the LMS algorithm will 

then be described and compared with the standard one, before moving on to an 

implementation which offers a very high identification rate without sacrificing com­

putational speed and operating range. 

A final assessment of the main methods that can be used at present for fringe 

order identification in WLI systems ends the chapter. 

5.2 Towards Faster Convergence 

One way to reduce the eigenvalue ratio and the chance of ill-conditioning is to add a 

small constant a to the elements on the leading diagonal of the input autocorrelation 

matrix [1]. By doing so .Amin is increased by a relatively larger amount than .Amax , 
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since Ai(R + aI) = Ai(R) + aAi(I) = Ai(R) + a. 

The technique was introduced as a means of finding a least squares solution 

which could reduce the variance of the estimates at the expense of some bias in 

linear regression problems suffering from collinearity [2, 3], and is also known as 

regularisation by weight decay in the neural network community [4], as it is equiv­

alent to adding a penalty term allw[n]112 to the error function in Eq. 2.10, so as 

to penalise large weight values. The same effect can also be obtained by adding a 

white noise sequence of variance a to the input time series [5]. 

The leaky LMS [6] is an adaptive implementation of this idea applied to the 

LMS algorithm. The weight vector is updated as 

w[n + 1] = (1 - ap)w[n] + pe[n]y[n - 1] (5.1) 

where 1 - ap is the leakage factor. Although it introduces some bias, the leaky 

LMS stabilises digital implementations; in particular, it counteracts weight drift 

when working with narrow-band signals by nudging the weights towards zero [7]. 

The identification rate in Fig. 4.3 became progressively flatter as a was in­

creased, but unfortunately its peak decreased at the same time. Leakage might 

be more useful in digital implementations of the RLS or of the batch schemes in 

Chapter 2 when the noise level is very low, given that errors along the eigenvec­

tor corresponding to Amin are increased in magnitude by the factor 1/ Amin during 

inversion of the input autocorrelation matrix [8]. 

A more effective way of decreasing the eigenvalue ratio is by flattening or 

prewhitening the power spectrum [9] in order to increase Amin and reduce Amax. 

This has the opposite effect of prefiltering, which enhances the SNR by suppressing 

frequency components outside the passband of the filter, increasing the spectral 

dynamic range and the eigenvalue spread [1]. 

Prefiltering of the fringe pattern using either low or bandpa.<;s constant-coefficient 

digital FIR or IIR filters resulted in some improvement in fringe identification when 

using the direct visibility method with SNRs in the range 0-10 dB. Above 10 dB 

the performance degraded rapidly as a result of amplitude and phase distortion. 

The effect on the LMS filter was catastrophic; the combination of signal distortion 

and increased eigenvalue spread caused its performance to degrade considerably 

throughout the range 0-40 dB. 

The error sequence of a low-order predictor has been proposed for the prewhiten-
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ing of narrow-band sequences [10]. The technique tries to decorrelate the signal with 

a low-order predictor, before the main LMS is applied. Faster convergence in a sta­

tionary environment has been observed as a result of the reduction in eigenvalue 

spread. Although one has to deal with two step-sizes and hence two sources of 

gradient error, it is claimed that the overall MSE does not increase because the 

eigenvalues of the prewhitened signal are smaller than those of the original signal 

and so smaller step-sizes can be used in both prewhitener and main LMS [11]. 

When applied to the WLI output signal, a five-weight batch prewhitener was 

necessary to bring down the eigenvalue ratio 1 from 400 to under 10. The eigenvalue 

ratio at the input of the prewhitener itself was still as high as 100. It is thus expected 

that a rather large step-size has to be used with aLMS prewhitener. The impact 

of two sources of lag error on the MSE also needs to be considered. For these 

reasons and the difficulty of optimising two step-sizes contemporaneously, adaptive 

prewhitening was not attempted. 

A different idea is to restrict the use of the LMS to that region of the fringe 

pattern where the signal power is above a certain threshold, and save the weights 

at the end of each scan for the following one. This can be seen as an extreme 

example of the use of the time-sequenced adaptive filter for cyclo-stationary signals 

[12], where each of a set of adaptive filters is updated in turn, depending on the 

local characteristics of the signal. 

As Figs. 4.8-4.10 showed, once the convergence phase is over the weights hover 

about their optimum settings as long as good fringe data are present, after which 

they start to drift at a rate proportional to the step-size and the noise level. If it can 

be assumed that the step-size required for optimum convergence is higher than that 

required during tracking, by confining weight updating to the thresholded region a 

smaller step-size can be used, which may increase the lag error over the fringes but 

hopefully reduce the gradient error by a relatively larger amount. Processing speed 

will also increase, allowing faster scan rates. 

1 In Table 3.1, with p = 16 and a SNR of 20 dB. 
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5.3 Threshold Pre-processing 

In the following, the threshold used is the signal power at the points of inflexion of 

the fringe visibility profile, although other values may be chosen. At these points the 

slope of the profile is at a maximum; hence, the rate of change of the signal power, 

and the DNS with it, are also maximum. During tracking, it is to be expected that 

the error term e[n] between the signal and the LMS output increases rapidly, and 

that the lag error reaches its peak; this, in turn, speeds up the rate of adaptation 

of the weights to try and reduce the error. As one does not want to disturb the 

weights too much from one scan to the next, it would therefore be advisable not to 

update them outside the inflexion points. In practice, these points can be derived 

as follows. 

If m and a are the mean and standard deviation of a Gaussian process x, the un­

derlying probability density function (PDF) peaks at m and has points of inflexion 

at m ± a. This is easily verified by setting the 1st and 2nd-derivatives of 

1 [ (x - m)2] 
PDF{x) = ~exp - 2 2 

27ra2 a 
(5.2) 

to zero. Since PDF{m±a) = PDF(m)exp(-1/2), the density at m±a is live of 

its maximum value at m. Translating this to WLI, if the Gaussian visibility profile 

peaks at sample m, its points of inflexion are at samples m ± a. 

The value of a is easily found from Eq. 1.6. The cos term can be neglected 

because it does not enter the expression for the visibility profile; one can then 

equate as follows 

k m ± a - 0 km - Os 
exp - ( 7rLl 8 =exp - 7rLc exp(-1/2) [ ( )2] [( )2] (5.3) 

and as km = 08 with zero OPD at sample m, a is equal to 7rLc/{kV2). 

Since the amplitude of the visibility profile is live of its maximum at the 

inflexion points, the average signal power will be lie of its maximum. For example, 

with a coherence length equivalent to 17 fringes (delimited by the lie intensity 

points) and a sampling rate of 12.7 samples per fringe, a = 76.3 and the inflexion 

points delimit the central 12 fringes or 152 samples. 

As regards the choice of window used to estimate the signal power during scan­

ning, a moving rectangular window of fixed length allows for fast updates, whereas 

an exponential window smooths out the effects of noise. Long windows reduce 
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the variance of the estimate, whereas short windows reduce the bias and the delay 

between the occurrence of the inflexion points and their detection. If A is the am­

plitude of the central fringe, A 2/2 its power, and O'~ is the noise variance, the power 

at the central fringe is A 2/2 + 0'; and that at the inflexion points is A 2 /2e + O'~. In 

simulations with a coherence length of 17 fringes, a sampling rate of 12.7 pixels per 

fringe, and a SNR of 20 dB, a rectangular window spanning two full fringes over 

or under-estimated the power at the central fringe and inflexion points by 2.3 % 

and 1.9 % on average, respectively, whereas a window length covering five fringes 

always under-estimated them, by 4.2 % and 4.3 % on average. 

The overhead is only two multiplications, one addition and one subtraction per 

sample to update the current power in the moving window and compare it with the 

threshold. Clearly, since the threshold can only be derived from a previous estimate 

of the maximum signal power, its quality will depend on the stability of both signal 

and noise. The latter, in particular, causes the power at the inflexion points to be 

always greater than l/e of that at the central fringe. The fractional power at the 

inflexion points is, in fact, 

(~; + O'~) / (~2 + O'~) = et~2+:~:~) (5.4) 

As the noise level increases so does the fractional power. With a SNR of 20 dI3 it 

only equals 1.03/e, but at 0 dB it is as high as 2.15/e. If an estimate of O'~ can 

be obtained during the calibration phase, e.g. by averaging the signal power at 

one or both ends of the array while the central fringe is in the middle, it can be 

subtracted from the maximum signal power and current power estimates to reduce 

the discrepancy. The average square error of the LMS algorithm at steady-state 

could also be used to update the O'~ estimate on-line, should the noise level change 

during continuous measurements. 

Once 0'; is estimated, automatic detection and truncation of large isolated noise 

peaks becomes possible. A single outlier may have a dramatic influence on the 

short-term behaviour of the filter weights. Since the probability that Ivl > 2.60'v 

is less than 1/100 for a random sample v drawn from a Gaussian distribution with 

zero mean and standard deviation O'v, and becomes less than 1/1000 for Ivl > 3.30'v, 

any data with absolute value greater than, say, A + 30'v can be treated as an outlier 

and truncated or substituted with its predicted value, without having to resort to 

an algorithm specifically designed to cope with additive impulsive noise, such as 
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the median LMS [13]. 

Slow changes in the signal mean caused by baseline drift or 1/ f noise can instead 

be monitored on-line as follows 

_[ 1] -[] y[n + 1]- y[n + 1 - L] yn+ =yn+ L (5.5) 

where y[n] is the estimated mean of the signal at sample n, computed using the 

present sample and L - 1 previous samples. As an alternative, a bias weight can be 

added to the coefficient vector [14], making the filter capable itself of following the 

changes. Since with zero-mean measurement noise fringe pattern and filter output 

have the same mean only if the error sequence ern] has zero mean, a simple t-test 

on ern] would reveal whether bias compensation was needed. If ern] and CTe denote 

the mean and standard deviation of ern] computed over L samples, VLe[nl/CTe is 

t-distributed with L - 1 degrees of freedom under the null hypothesis that ern] is 

drawn from a Gaussian distribution with zero mean [15]. 

5.4 Simulation Results 
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Fig. 5.1 Success rate with the thresholded technique against JA and SNR, with p = 32. The 

horizontal lines refer to the direct visibility method. 

Fig. 5.1 shows the sub-fringe identification rate as a function of the step-size 

when the LMS algorithm with p = 32 weights was only used within the thrcsholdcd 
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region. For each value of the step-size and of the SNR considered, the following 

procedure was carried out. 

Five preliminary scans were first taken with the central fringe in the middle of 

the CCD array, in order to obtain averaged estimates of u~ from the first and last 

100 pixels, and of the maximum signal power, central fringe amplitude, and l/e 

power threshold using the first 25 elements of the 32-long LMS input vector as a 

rectangular window. The LMS itself was not used at this stage. 

Ten scans were then performed with the LMS algorithm turned on/off as soon 

as the signal power in the input vector went above/below the threshold, saving the 

weights each time round instead of resetting them to zero, thus allowing approx­

imately 10 x 150 iterations in all for convergence. Finally, the identification rate 

was recorded over 500 consecutive trials with the central fringe at the centre of the 

CCD array; the LMS weights were never reset to zero. The truncation level for 

impulsive noise was set at A + 4uv , but was never exceeded during the trials. 

Comparing with Fig. 4.3, which referred to the LMS without thresholding, it 

appears that the identification rate is a smoother function of J1. for all IL < /Lo; in 

particular, small deviations from /Lo have become less critical. However, J1.o itself 

has not decreased significantly, and performance has improved slightly at low SNRs 

but has degraded by the same amount at high SNRs. 
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Fig. 5.2 Success rate with the thresholded technique against central fringe position, with p = 32 

and It optimised for the central pixel on the CCD array. 
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This can also be seen by comparing Fig. 5.2 with Fig. 4.4. Although the identi­

fication rate stays high for a few dozen more pixels as the central fringe approaches 

the bottom of the scanning range, at the very best it reaches the level of the LMS 

without thresholding as the central fringe moves away from it. 

Therefore, thresholding may have helped the initial convergence, but in practice 

has done little to improve the overall performance. An additional source of non­

stationarity has been introduced, caused by the sudden slope reversal of the visibility 

profile between scans. As a result, the DNS may even be higher at the inflexion 

points, and the large eigenvalue ratio there 2 means that the step-size has to be 

kept quite high for effective tracking after convergence. 

5.5 Enhanced LMS Algorithms 

Several variations of the standard LMS algorithm have been proposed in an attempt 

to provide faster convergence with lower misadjustment and/or faster tracking ca­

pability. Both fixed and variable step-size alternatives will now be examined briefly 

for the case where weight updating is confined to the thresholded region. 

5.5.1 Fixed Step-Size LMS 

With the leaky LMS of Section 5.2 the maximum identification rate at 32 dO in 

Fig. 4.3 was recovered with J-L = Po in Fig. 5.1 and a in the range 0.01 to 0.05. At 

lower SNRs, however, a = 0 remained the best choice. 

In the 'Y-LMS [16) the current value of the weight vector in the update equation 

is scaled by the factor 'Y = 1 + P(,~, where (,~ is an estimate of the noise variance. 

This is equivalent to removing the noise contribution from the diagonal elements of 

Ry _1y_ 1 , in order to reduce the bias of the AR estimates. 

As a single sinusoid in noise can be modelled by an ARMA(2,2) process with 

poles and zeros tending to the unit circle [17), unbiased estimates of the poles 

would be obtained only if the two zeros of an inverse filter were positioned, "on the 

average", at the pole locations. With an AR(2) approximation, the coefficients of 

a two-weight FIR inverse filter cannot be expected to provide unbiased estimates, 

as they have to compensate for the missing MA(2) term; they should, however, 

2This is the square of the condition number at pixel 436 in Table 3.2. 
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recede on radials from the unit circle as more noise is added and the MA part 

becomes more significant, in order to maintain the complex conjugate property so 

characteristic of pseudo-periodic processes. 

A non-radial trajectory from the unit circle inward has instead been observed as 

the SNR is reduced [18], meaning a general degradation in the estimation capability. 

Similar behaviour was also found here with the WLI output signal. Results with 

the data within the lie power threshold points are shown in Fig. 5.3. The AR 

estimates were computed with the covariance method, and the algorithm in [19] 

was used to solve for the poles, with modifications from [20]. 
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Fig. 5.3 Position of AR(2) model poles against SNR. The SNR = 00 CR.'IC is shown with bullets. 

It can be seen that as the SNR falls below 20 dB the complex conjugate poles 

lose symmetry and start wondering about the unit circle; in this case they actually 

land on the real line. A positive real pole causes the autocorrelation function of the 

process to decay smoothly to zero, whereas with a negative one the autocorrelation 

function alternates in sign as it decays [21]. In both cases the pseudo-periodic 

behaviour is lost. 

The 'Y-LMS may help counteract this problem, although the amount of correction 

needed will depend not only on the underlying SNR but also on the order of the 
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filter, as its zeros will position themselves so as to match the overall transfer function 

of the process. Convergence will also slow down as a result of the higher eigenvalue 

spread [22]. In fact, noise removal as used in the "Y-LMS and noise injection as used 

in the leaky LMS are opposite operations. 

Applied to the central fringe identification problem in WLI, the performance of 

the "Y-LMS was the same as that of the standard LMS at high and medium SNRs, 

and slightly worse at low SNRs, which is where convergence can be affected most 

by changes in the noise level. 

The signed LMS [23] replaces ern] with its sign in the weight update equation, 

where the sign is one if ern] ~ 0 and minus one otherwise. This amounts to adopting 

the absolute error instead of the usual squared error criterion. One reason for 

considering nonmean-square cost functions is the presence of non-Gaussian noise. 

Since system and measurement noise are prevalently Gaussian in well-controlled 

WLI applications, this version was not considered. 

Replacing the elements of the input vector, rather than the error term, by their 

sign leads to the clipped LMS algorithm [24], which offers fast operational speed 

when implemented in hardware, and fast convergence in the presence of highly 

deterministic signals. In fact, the optimum step-size was reduced by a factor of 

four at all SNRs with respect to the standard LMS, and the success rate shown in 

Fig. 5.2 was increased by 4.6 % on average at 32 dB, although the advantage was 

quickly lost at lower SNRs, with the standard outperforming the clipped LMS by 

2.2 % at 20 dB and 3.7 % at 10 dB. This algorithm is therefore a simple option to 

be kept in mind when the SNR is high and very fast updates are needed. 

The two-sided LMS was first proposed in [25] as the adaptive implcm('ntation 

of the modified covariance algorithm of Section 3.3, and was later reformulated as 

the forward-backward LMS (FB-LMS) in [26, 27]. Minimising the sum of squares 

of both the forward and backward errors as in Eq. 3.13 leads to the following 

augmented update equation for the weight vector [25] 

w[n + 1] = w[n] + /LeJ[n]y[n - 1] + ILeb[n]Yb[n - p + 1] (5.6) 

where the backward input vector Yb[n - p + 1] contains -y[n - p + 1], ... , -y[n]. 

Although it was shown in [27] to achieve half the misadjustment of the standard 

LMS for an equal rate of convergence, the success rate with the FB-LMS dropped 

by 8 % on average, for SNRs between 10 and 32 dB, with /Lo values only slightly 
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smaller than with the standard LMS. The computational complexity also doubles, 

although storage requirements remain the same. 

5.5.2 Variable Step-Size LMS 

Since J-Lo depends, among others, on DNS, signal power, SNR, and eigenvalue ratio, 

none of which is a constant even within the inflexion points of the visibility profile, 

it would be preferable to adopt a variable step-size rather than a fixed one. Here, 

methods that constrain the step-size to be the same for all the weights will be 

reviewed before some of the more complicated alternatives that allow a separate 

one for each weight. 

The normalised LMS algorithm [28, 29] divides the fixed step-size by the current 

signal power in the input vector. This is an attempt to avoid a gradient error 

amplification problem which could occur when the input vector becomes large. It 

also makes the algorithm more robust to outliers [30], and decreases convergence 

time for a given level of noise in the weights [31]. Within the inflexion points the 

range of the signal power is so restricted, however, that such amplification problem 

is very unlikely to ever occur; more interesting, perhaps, is the fact that whereas 

the signal power is maximum over the central fringe and minimum at the inflexion 

points, the DNS is maximum at the inflexion points and minimum over the central 

fringe, where the slope of the visibility profile is zero. Hence, the extra gradient 

error which is to be expected when the central fringe is approached (as predicted 

by Eq. 4.12) can be offset without incurring in a large penalty from the lag error. 

Unfortunately, the performance of the normalised LMS was equal to that of the 

standard LMS at all SNRs. The strict dependence of the identification rate on Jt 

was not removed and the curves obtained were similar to the ones in Figs. 5.1 and 

5.2. The only advantage to be gained by normalisation in this application is that the 

algorithm is scale-invariant, which may prove useful should the signal power change 

between scans. In fact, normalising the data to lie in the range [-1,1] instead of 

[-0.5,0.5] caused considerable degradation in the performance of the standard LMS, 

unless It was decreased by a factor of four, in which case the original performance 

was recovered. This would be in agreement with Eq. 4.12. 

The gradient adaptive lattice (GAL) algorithm [32, 33] is formulated around a 

lattice structure [34]. Lattice filters suffer less from round-off errors arising during 
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computation and from quantisation errors in the filter weights [35, 36], although 

they require more computation and storage space; their performance is also less 

sensitive to the eigenvalue spread of the input autocorrelation matrix. Unlike with 

transversal filters, where the error term enters the update equation of each coeffi­

cient, the natural stage-by-stage decoupling which occurs in the lattice structure 

between the error term from each stage and the corresponding reflection coeffi­

cient means that neither the value nor the accuracy of anyone coefficient esti­

mate is affected by any of the other estimates. Moreover, the common step-size is 

scaled at each stage by the estimate of signal power entering that stage. Using the 

eigenvalue-spectrum decomposition of Section 4.5 it follows from Eq. 4.9 that the 

time constants at each stage are approximately equal [37]. 

In practice, the dependence on the input autocorrelation matrix which affects 

the LMS is also found with the GAL, although in a lesser degree [38, 39]. The 

central fringe identification rate was only as high as 73 % at 32 dO, 27 % at 20 dO, 

and 12 % at 10 dB. The optimum step-size also grew much faster with the SNR 

than in the standard LMS, questioning the ability to reduce the eigenvalue spread 

and increase the convergence rate. 

The momentum LMS adds a small fraction a of the previous weight change 

8w[n] to the usual correction term in the weight update equation, in an attempt 

to accelerate convergence and tracking. In [40] it was shown that with a negative 

the performance degrades because whenever w,[n] - w,[n - 1] is positive for some 

i, it would be more appropriate to add a positive fraction of that amount in order 

to improve the convergence rate. On the other hand, a positive a is equivalent 

to increasing the step-size, i.e. convergence is faster but the misadjustment is 

larger. The authors suggest setting a = 0 near convergence, taking one back to the 

standard LMS. The only advantage of including a momentum term in the weight 

update equation may be a smoothing effect, which can be useful in applications 

where error bursting is a problem. 

In the variable step size (VSS) LMS [41] the step-size depends on the squared 

error as follows 

(5.7) 

where 0 < a ~ 1 provides exponential forgetting and 'Y > 0 controls the level of 

misadjustment. A large prediction error will increase JL in order to provide faster 
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tracking, while a small prediction error will decrease J.1. to reduce the misadjust­

ment. The authors suggest typical values of 0.97 for a and 10-4 for 'Y. To prevent 

divergence problems and ensure a minimum tracking ability, J1. is restricted to the 

bounded interval [J.1.I, J.1.L], with J.1.L $ 2/(3p(7~). 

The VSS algorithm was very sensitive to the choice of a and 'Y, and its perfor­

mance was at the very best equal to that of the standard LMS, provided J.1.1 and 

J.1.L were chosen close enough to the optimum J.1. values in Fig. 5.1 and a was kept 

above 0.99; as for 'Y, this depended on the SNR, optimum values being close to 1.0 

at 32 dB and 0.1 at 20 dB. There was also a tendency for J.1. to decrease rapidly 

from J.1.L towards J.1.1 during the initial convergence phase and remain there during 

tracking, thus replacing the problem of finding J.1.o in the standard LMS by that of 

finding optimum values for a, 'Y, and J.1.1. 

Another variable step-size LMS is the VS algorithm [42]. Here, a different ILi 

is assigned to each weight Wi at time n, with J.1.i[n + 1] set to a-llLi[n] or aJ.1.i[n] 

depending on whether the sign of the i-th component of the gradient estimate, .::ii, 
has changed mo consecutive times or has remained the same ml consecutive times. 

The rationale behind this is that when the i-th component of the MSE reaches 

the bottom of the error surface along the i-th dimension, .::ii k('eps changing sign 

as it oscillates back and forth; lLi should then be decreased in order to reduce the 

gradient error. On the other hand, away from the bottom JL; should be increa.'ied 

to accelerate the rate of descent. Suggested values for mo and ml are 2 or 3, and a 

can be set to two for ease of hardware implementation. As with the VSS algorithm, 

J.1.i is restricted to lie within [J.1.I, J.1.L]. The authors claim a reduction in convergence 

time from a factor of 10 at high SNRs up to 50 at low SNRs over the st.andard 

LMS, with considerable non-stationary tracking potential. 

However, the performance of the VS algorithm was highly d('pendent on the 

choice of both (mo, ml) and (J.1." J.1.L), and was generally inferior to that of the 

standard LMS. The success rate of the latter was only approached when both JLI 

and ILL were pushed close to the lLo values in Fig. 5.1, as wa.<; the ca..,c with the VSS 

algorithm. The reason for this may be due to dependencies between the components 

of the gradient estimates. In the standard LMS the result is a coupling between 

weight updates, since the correction to weight i is proportional to Ai, which is 

correlated with Lij for all j =f. i. This may not be serious as long as the small 
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J-L approximation is valid, as remarked in Section 4.5. In the VS LMS, however, 

additional coupling is present between the step-size updates, as these depend on 

past signs of the estimated gradient. Under these circumstances it becomes difficult 

to accept the independence theory and the authors' claim that the VS algorithm 

speeds up convergence and is less sensitive to the eigenvalue spread. 

These remarks apply equally well to the VSA algorithm in [43]. Indeed, both 

VS and VSA are sensitive to parameters selection, and may perform poorly when 

the individual step sizes are chosen unwisely [44]. 

Two more variable-step LMS algorithms ([45, 46]) also failed to improve on the 

standard LMS, and achieved their best when the respective variable gain controls 

were kept fixed. 

5.6 A Modified Forward-Backward LMS 

Replacing ef[n] by ef[n - p] and y[n - 1] by y[n - p - 1] in Eq. 5.6 the weight 

update equation becomes 

w[n + 1] = w[n] + J-Le,[n - p]y[n - p - 1] + peb[n]Yb[n - P + 1] (5.8) 

This is equivalent to minimising the sum of square errors between yIn - p] and both 

of its forward and backward predictions, made at time n using the past 2p samples, 

rather than the sum of square errors between y[n] and its forward prediction, and 

between y[n - p] and its backward prediction. The schematic diagram in Fig. 5.4 

should make the difference clear. 

...... -.-;...YJ.....[n_-_l~] __ I~~ I [n] 

y[n - p] y[n] 
I I I I 

• y[n-p-l] I~,[n-l)] 

y[n - 2p] y[n - p] 
I I I I 

y[n] 
I I 

Fig. 5.4 Schematic diagram showing the difference between the original FD-LMS (left) and the 

modified form (right). 

The two input vectors can be treated as one vector of length 2p, containing 

-y[n], ... , -y[n - p + 1], -y[n - p - 1], ... , -y[n - 2p]. 
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Such formulation can be seen as an adaptive solution to the fixed data length 

smoothing problem [47]. The optimum linear smoother is the combination of two 

optimum linear filters, one of which works forward from the beginning of the data 

to some time n, while the other works from the end of the data backward to time 

n. It also corresponds to the delay form of a finite non-causal filter. A non-causal 

filter is not computationally realisable in software and not physically realisable 

in hardware, since its output at time n depends on future values of the input. 

However, by delaying the computations until the future values have occurred the 

filter is transformed into a computationally realisable form [48]. 

The computational complexity amounts to 5p + 2 (4p + 2) multiplications per it­

eration for the filter (predictor) version, and 6p (4p+l) additions/subtractions, plus 

2p-l shifts of the elements of the input vector. The forward-backward LMS requires 

the same number of multiplications and 5p+ 1 (4p+ 1) additions/subtractions, plus 

p - 1 shifts, whereas the standard LMS requires 3p + 1 (2p + 1) multiplications and 

additions/subtractions, plus p - 1 shifts. As for the operating range, this will be 

restricted to [p+ 1, N -p] instead of [p+ 1, N] of the standard and forward-backward 

LMS, because of the necessity of having both past and future p samples available 

when making a prediction for sample n. 

The modified forward-backward LMS (MFB-LMS) algorithm of Eq. 5.8, coupled 

with the thresholding scheme introduced in Section 5.3, gave large improvements 

in fringe identification rate at all SNRs, with near-maximum performance being 

maintained for a very large range of the step-size parameter. The advantage was 

apparent even when the filter order p was set to half of that in the standard LMS. 

With this, the predictor versions ofthe two algorithms have the same computat.ional 

complexity, and the filter version of the MFB-LMS requires less multiplications than 

the filter version of the standard LMSj the operating range, expressed in number of 

pixels, is also the same, and storage space is reduced by 25 %. 

5.6.1 Simulation Results 

Fig. 5.5 shows the performance of the thresholdcd MFB-LMS scheme with p = 16. 

Comparing with Fig. 5.1, which showed the performance of the standard LMS 

scheme with p = 32, the difference between the two algorithms is evident. 

With the central fringe at ten different positions within pixels [40, 1000] the 
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MFB-LMS achieved a 99.7 % sub-fringe identification rate against 85.3 % at 32 dD, 

67.5 % against 50.5 % at 20 dB, and 32.4 % against 24.1 % at 10 dD 3, In addition, 

whereas the success rate of the LMS decayed exponentially as I' was reduced from 

/-Lo, degradation with the MFB-LMS was restricted to 2.2 % at 10 dD, 3.6 % at 20 

dB, and 0 % at 32 dB, for any I' < /-Lo in Fig. 5.5. 
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Fig. 5.5 Success rate with the thresholded MFD-LMS against ~ and SNR out of 500 simulated 

scans with p = 16. 

Neither the superior performance nor the insensitivity to the step-size were lost 

when using the predictor or the clipped-predictor versions, or when the filter or 

system parameters were changed. For example, at 20 dD the identification rate 

of the MFB-LMS filter, averaged over 3000 trials with the central fringe at ten 

different positions within pixels [40,985] and 1'0 derived at pixel 512, went from 

67.5 % with p = 16 to 88.6 % with p = 32 and to 98.6 % with p = 38, with 

maximum degradation of 3.6, 3.0, and 0.7 %, respectively, for any value of Jt less 

than 10-2
, 10-3 , and 10-4• With the MFD-LMS predictor the rate went from 66.4 

% to 88.0 % and to 98.6 %, respectively, with maximum drgradation of 2.1, 1.5, 

and 0.7 %, whereas with the clipped-predictor it went from 63.2 % to 83.9 % and 

to 97.3 %, with maximum degradation of 2.0, 0.4, and 0 %. 

30ut of a total of 3000 trials with ~ = Jl.o in Figs. 5.1 and 5.5. 
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Still at 20 dB, but with a coherence length of 75 fringes and a fringe width 

of 8 pixels, the minimum success rate of the MFB-LMS predictor was 41 % with 

p = 8, 44 % with p = 16, and 50 % with p = 32, for all J.L values equal to or below 

5 x 10-2,5 X 10-3, and 104, respectively, whereas the maximum rate of the LMS 

predictor (Le., with J1. = J.Lo) was only as high as 31 % with p = 16, 34 % with 

p = 32, and 38 % with p = 64. 

What is the reason for the apparent insensitivity to the step-size in the MFB­

LMS algorithm? When not using the thresholding technique the peak identification 

rate fell remarkably (e.g., from 67.5 % to 58.5 % at 20 dB with p = 16) in contrast 

to that of the standard LMS, which stayed approximately the same (e.g., 50 ± 0.5 

% at 20 dB with p = 32). The identification rate in general also fell rapidly for 

J.L =1= J.Lo, as with the standard LMS. This, coupled with the fact that Ito was higher 

than when thresholding was used, would suggest that thresholding is critical in 

helping the MFB-LMS to converge. 

Even assuming this to be correct, it is still puzzling to see that the identification 

rate remains the same for such a large spread of J.L values used during convergence. 

Is it possible that the weights have all reached their steady-state values after the 

first ten passes within the 1/ e power threshold points, irrespective of whether J1. is 

10-3 or a thousand times smaller? The answer must be negative, as the weights 

rose from zero to 0(10-1) or 0(10-2) when J.L was 10-3 , but only to 0(10-4) when 

J.L was 10-6
, throughout the range from zero to 32 dB. 

Figs. 5.6-5.7 show the MSE across the CCD array when the MFI3-LMS algo­

rithm is operated only within the l/e power threshold points (pixels 436 to 588). 

The noise variance was set at 2.5 x 10-3 (-2.6 on a log scale), to give a SNR of 20 

dB. The MSE was averaged over 100 scans with the central fringe at the centre of 

the array, after allowing ten preliminary scans for convergence of the weights. The 

step-size was kept at 10-3 in Fig. 5.6 and at 10-6 in Fig. 5.7. 

Although the algorithm is in tracking mode in Fig. 5.6 but is not in Fig. 5.7, 

the difference in identification rate between the two cases was only 2 %, and became 

zero when J.L was changed from 10-6 to zero after the ten preliminary scans. 

It was observed that the rate of increase of the MSE as Jt was reduced from Jto 

was the same as in the no-threshold case, although the identification rate decreased 

only very slowly. This means that, as with the standard LMS, thresholding does 
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not help to speed up convergence but, unlike with the standard LMS, it ensures 

that the weights remain symmetric and invariant under scaling for alllL < lLo. 
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Fig. 5.6 MSE across the CCD array with the thresholded MllF-LMS algorithm and I' = 10-3• 
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Fig. 5.7 MSE across the CCD array with the thresholded MllF-LMS algorithm and I' = 10-8 • 

With both the standard and the MFB-LMS, when IL = Po the filtrr output is 

already of the same order of magnitude as the interference signal after ten scans, and 
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remains so afterwards; when /-t is less than /-to, it takes longer for the filter output 

to grow and reach the signal level. However, whereas with the standard LMS a 

small step-size gives distorted patterns as long as convergence is not completed, 

with the MFB-LMS perfectly symmetric scaled-down patterns are produced almost 

immediately. Tracking is thus made a non-issue, if it is understood that tracking 

only starts once convergence is over, and the computational complexity can be 

halved by failing to update the weights altogether after a few preliminary scans, 

without sacrificing performance. 

In conclusion, with /-t < /-to during the preliminary scans, the coefficients and 

output of the thresholded MFB-LMS in the scans that follow are scaled replicas of 

the coefficients and output with J.L = /-to, with the scaling factor tending to unity as 

the measurements go on and the MSE is reduced. A step-size below the optimum 

value slows down convergence of all the weights uniformly, affecting the MSE but not 

the identification rate. Trying to induce faster convergence by decreasing the step­

size steadily from 0.1 to 10-10 during the course of ten preliminary scans resulted 

in a very noisy adaptation of the weights and a low identification rate. 

5.6.2 Experimental Evaluation 

The comparison between standard and MFB-LMS predictors was extended to in­

clude lab measurements. The experimental set-up was the same as that described 

in Section 4.4, with the LED source replaced by a multimode laser diode with a 

nominal wavelength of 780 nm and an output power of 3 m lV, being operated br}ow 

threshold in order to give broad-band light with a coherence length corresponding 

to 75 fringes. A 1.2 metre length of multimode fibre with a core diameter of 200 

/-tm was inserted between the source and the interferometer in order to reduce the 

intensity of the light falling on the photodiode. The fibre was designed for use at a 

wavelength of 633 nm, so the launch efficiency was poor and the attenuation high. 

The noise generator was also turned on to push the SNR down to 20 dll. Nine 

sets of measurements were recorded, each set consisting of 36 consecutive scans. 

The sampling rate was approximately 8 samples per fringe, for a total of 20·l!) data 

points per scan. Since the scans were performed at different times of the day and 

on different days, the position of the central fringe was checked before the start of 

each set using the two-wavelength method [49] with the noise generator turned off. 
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It was clear from the start that a reliable threshold estimate could not be ob­

tained from a few preliminary scans, but had to be updated continuously from scan 

to scan. The diode driving current being supplied by a Ni-Cd battery, the source 

intensity was gradually reduced as the measurements went on, and both output 

mean and power dropped uniformly within each set, as from Eq. 1.2. The power 

decreased by as much as 2.7 % on average between scans, and at the end of a set 

the mean and central fringe amplitude could be as low as 57 % and 42 % of their 

initial values, respectively. As a consequence, the SNR normally dropped from 20 

dB to 16 dB from the beginning to the end of a set. 

Hence, the first scan of each set was reserved for the estimation of the mean 

and maximum power, and the battery was left to recharge at the end of each set. 

The first fifteen scans of the first set were also reserved for convergence of the 

weights; hence, the comparison between the two algorithms involved 300 scans in 

all. The instantaneous mean and power were updated using rectangular windows 

with arbitrary lengths of 128 and 64, respectively, and the mean was subtracted 

recursively from each sample. A bias weight was not used. The threshold for each 

scan was set to two-fifths of the maximum power estimated during the previous scan, 

limiting the weight update to fourty fringes per scan on average. Since a slight drift 

of the central fringe was expected within each set, sub-fringe identification was not 

attempted. 

The standard LMS predictor achieved a maximum success rate of 23 % with 

p = 16 weights, 27 % with p = 32, and 29 % with p = 64. The corresponding 

figures for the MFB-LMS predictor were 31 % with p = 8, 36 % with p = 16, and 

38 % with p = 32. The identification rate of both algorithms was lower than in the 

simulations, and was not a smooth function of the step-size with a global maximum, 

as in Figs. 5.1 and 5.5; with the standard LMS the function was quite rugged and 

full of local maxima, whereas with the MFB-LMS the characteristic plateau beyond 

J-Lo was characterised by a few minor peaks and valleys. 

This sort of behaviour is not surprising, given that both output power and SNR 

change during measurements. Even if J-L was normalised by the power in the input 

vector, the dependence on the SNR would still remain. 

Furthermore, the intensity of the diode injection current affects not only the 

output power but also the refractive index of the laser medium, changing the op-
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tical frequency being generated and the central wavelength with it [50]. Thermal 

fiuctations in the cavity length also contribute to change the optical frequency; it is 

estimated that the central wavelength varies along with the operating temperature 

at a rate of 0.2 nm/oC [51]. Although this does not affect the position of the central 

fringe, it does affect the fringe width and the coherence length. 

For all these reasons it appears that the DNS remains higher when processing 

measured rather than simulated data. With the thresholded MFD-LMS in partic­

ular, setting I-' to zero to stop the weight adaptation after the convergence phase is 

over is not a good idea, as it may result in a large performance penalty. 

It is envisaged that with proper offset/baseline correction and power/frequency 

stabilisation schemes, all of which are widely available, the success rate of both 

algorithms can only increase. 

5.7 Matched Filter Detection 

Consider the sum-of-products 

p 

r[n] = Ly[n - i]z[P - i + 1] (5.9) 
i=l 

between the input vector and a vector of the same length containing the central 

fringe data. Eq. 5.9 represents a matched filter, with weight Wi equal to the noise­

free and time-reversed central fringe data z[p - i + 1], i = 1, ... ,p [52, 53]. 

In the absence of noise r[n] is maximum when the two vectors superimpose 

exactly. This property is exploited in the correlation detection implementation of 

the matched filter. The method can be applied to 'VLI by computing the (unnor­

malised) cross-correlation r[n] between the fringe pattern and a "clean" template 

stored in computer memory. As the template is moved across the CCD array, r[n] 

will peak at the pixel corresponding to the best match between the two signals, and 

the position of the central fringe can be read off directly. 

The computational complexity being only p multiplications and additions per 

data point, plus p-l shifts of the elements of the input vector, this method can be as 

fast as the MFB-LMS with no weight updating after the convergence phase 4, unless 

the cross-correlation is smoothed using a window function [55, 56]; the dependency 

4 An alternative to cross-correlation is the average magnitude cross-difference [54]. where mul­

tiplications are replaced by additions and subtractions. 
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on a step-size parameter is also removed, together with convergence and tracking 

issues. Its efficiency, however, depends on the quality of the template used. Since 

the position of the central fringe is only known exactly during calibration, this is 

also the only time to obtain a reliable template before the sensing phase begins. 

With a template covering the two and a half central fringes (p = 32) averaged 

over ten preliminary scans in order to smooth out the noise, and processing being 

restricted to the region within the lie power threshold points, the technique gave 

an identification rate 5 of 100 % at 32 dB, 65.1 % at 20 dB, and 26.4 % at 10 dB. 

The rate at 20 dB went up to 89.1 % with p = 64, and to 98.1 % with p = 76. 

From these results it is clear that a matched filter of order p is equivalent to 

the MFB-LMS filter of order p/2. In fact, the two filters are able to deliver the 

same performance over the same operating range and with equal computational 

cost. Given that a matched filter is the optimum solution for the detection of a 

known signal buried in additive white noise, one may ask why bother with adaptive 

filters. 

The first point to note is that the two approaches can be combined into a single 

one, although the computational complexity will be the sum of the two and the 

operating range will be reduced by p samples. The adaptive filter can be used 

to remove most of the unwanted noise from the data before computing the cross­

correlation. There is evidence that such schemes can be particularly effective in the 

presence of non-stationary noise [57, 58], as may be the case with, e.g., photoelectron 

noise of photosensing devices and speckle noise in laser interferometry. 

The thresholded MFB-LMS scheme with p = 16, followed by the matched filter 

with p = 32, took the identification rate from 65.1 % of the matched filter alone 

to 88.3 % at 20 db, and from 26.4 % to 42.3 % at 10 dD, with only 0.4-0.8 % 

maximum degradation for any /-L below /-Lo, and irrespective of whether the filter, 

predictor, or clipped-predictor version of the MFD-LMS was used. \Vith p = 32 in 

the MFB-LMS and p = 64 in the matched filter, the rate was as high as 99 % for all 

/-L < 10-3 at 20 dB, instead of 89.1 %. Replacing the MFD-LMS with p = 16 by the 

standard LMS filter with p = 32 took the identification rate from 65.1 % to only 

67.2 % at 20 dB, and from 26.4 % to 31.8 % at 10 dB. Given that the drpendcnce 

on /-L remained as high as when using the LMS alone, there are no real advantages 

50ut of a total of 3000 trials, with the central fringe at ten positions within pixels [40,1000]. 
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in combining the matched filter with the standard LMS algorithm. 

The second point to note is that the quality of the cross-correlation estimate is 

only as good as the template from which it is calculated. If a good template cannot 

be obtained initially or becomes useless thereafter because one or more of sampling 

rate, mean wavelength, and source spectral width change during measurements, the 

technique loses its appeal. In this instance a multipoint measurement scheme, in 

which the light source is sent not to one but to two sensing units, could be used to 

generate an on-line template for one of the units by holding the other unit locked 

at the position corresponding to zero OPD. This would amount to a proper time­

delay estimation problem, and a parametric approach based on the LMS or RLS 

algorithm [59, 60, 61] could be an alternative to the cross-correlation method. 

Two disadvantages of such a scheme are, first, that the SNR over the fringes is 

reduced because of the sharing of the source power between the two sensors, and, 

second, that it does not become possible to smooth the template by averaging. 

Perhaps even more important is the fact that the central fringe can only move very 

slowly between scans for effective tracking of the time delay, and that the operating 

range has to be kept very low as the number of coefficients needed is twice the 

maximum of the integer delay. 

In the next section a final assessment of central fringe identification techniques 

will be made in terms of success rate and speed of operation. 

5.8 Comparison of Methods 

The evaluation was carried out by recording the total processing time and the 

number of correct sub-fringe identifications at the end of a sensing phase which 

consisted of processing 1000 noisy patterns of the kind in Fig. 1.5, with the central 

fringe allowed to move randomly across the whole operating range between scans. 

The latter was dictated by the order p of batch and adaptive algorithms. \Vith 

the fringe width used, the achievable resolution was 8 % of a fringe. A SNR of 20 

dB was used for the comparison, as this is the current limit for an electronically 

scanned WLI system when no multiplexing is used [51]. 

Before the sensing phase started, five scans 6 were carried out to estimate the 

6This operation was skipped for the centroid method. 
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threshold, followed by another ten scans 7 to allow for convergence of the adaptive 

algorithms or for the generation of the template needed by the matched filter. The 

reader is referred to Sections 5.4 and 5.7 for details. 

Artificially generated data were preferred to real data for the following two 

reasons. First, unless the central fringe is kept locked throughout the measurements, 

there is no other way to know its precise position before each scan but to stop data 

acquisition, increase the SNR by increasing the output intensity, and locate the 

maximum point either through direct visibility alone or in conjunction with the 

multiple-wavelength method. Second, if an electronic scanner is not used, slow 

drifting of the central fringe with time means that the comparison has to be limited 

to fringe rather than pixel identification. Baseline and power drifts, if not corrected, 

will also influence the success rate of all the methods, but not necessarily in the 

same manner; an adaptive algorithm will always be affected in the long run, whereas 

the centroid will be affected only when the intra-scan variations are fast enough to 

tilt or shift the centre of symmetry. The degradation with an adaptive algorithm 

will also depend on whether or not JL-normalisation is used and, if a bias weight is 

not included, on the window length used for updating the mean level. 

The use of a standard electronic correction scheme as suggested at the end 

of Section 5.6.2 may be the best way of preparing the acquired signal for further 

processing, as it allows to uncouple the contribution of offsets and drifts to the suc­

cess/failure rate from that of the particular algorithm used for fringe identification. 

The centroid method has been one of the first and most successful batch proce­

dures for WLI fringe identification. Exploiting the symmetry of the output pattern 

on the two sides of the central fringe, a high success rate can be achiev£'d by using a 

simple algorithm which makes extensive use of logical and comparison ol)('rators but 

enjoys a low arithmetic count, and which remains largely unaffected by occa..<.;ional 

bursts of impulsive noise [51]. More specifically, the algorithm sorts through the 

batch of data and detects the width of each group of adjacent data that have the 

same sign; if this width is either greater than b/2 + t or less than b/2 - t, where b is 

the fringe width and t is a tolerance, the data are not considered to constitute half 

a fringe, and are set to zero. The centroid or 'centre of gravity' of the sorted data 

is then calculated and used as an estimate for the position of the central fringe. 

7This operation was skipped for the centroid and covariance methods. 
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As shown in Fig. 5.8, the algorithm was quite sensitive to t. When t is large, 

more fringes take part in the identification process, resulting in better estimation if 

the symmetry of the fringe pattern is maintained. Not surprisingly, large t values 

gave a very high identification rate when the central fringe was in the middle of 

the scanning range, but very low otherwise, while small values ensured a smoother 

decline in performance at the expense of reduced identification in the middle. 
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Fig. 5.8 Success rate (out of 300 trials) with the centroid method against central fringe position. 

Fig. 5.9 shows the success rate achieved by the centroid method with t = 2 over 

the lOOO-long trial session considered in this section. As t was increased the higher 

number of correct identifications around the middle of the scanning range was offset 

by an even higher number of failures away from the middle. The choice of a second 

tolerance parameter T, which should be set close to the coherence length [62], was 

not found to be critical. 

Results using the covariance method with p = 16 and 32 are also shown in 

Fig. 5.9, for the case where forward and backward predictions for the same da.ta 

sample are averaged together to produce a smoother estimate. This case is the 

batch equivalent of the MFB-LMS filter (the modified covariance method is, in­

stead, the batch equivalent of the FB-LMS filter). Although the result is a higher 

identification rate than when either forward or backward prediction are used alone, 

p had to be halved in order to retain the original operating range. Upon doing this, 

109 



the performance advantage was almost completely lost, although there remained a 

substantial computational saving, as the number of operations per sample is O(p2). 
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Fig. 5.10 shows the success rate of the LMS predictors. Whereas the standard 

and FB-LMS depend strongly on the step-size, the MFB-LMS gives constant, supe­

rior performance for a very large range of j-t, without increasing the computational 

cost of the standard LMS and using only half the number of filter weights. 

Fig. 5.11 shows that the MFB-LMS gets better as the filter order is increased, 

whereas the standard LMS does not and becomes even more sensitive to small 

changes of the step-size. The MFB-LMS is not affected if the weights are not 

updated during the sensing phase; as the operation count is halved, the algorithm 

becomes computationally equivalent to a matched filter. 
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Figure 5.11 Success rate with the LMS predictors over an operating range of 960 pixels. In 

circles is the rate with weights fixed during the sensing phase. 

The performance of the standard RLS algorithm is shown in Fig. 5.12. Com­

paring with the standard LMS in Figs. 5.10-5.11 it is clear that the RLS with the 

stationary assumption (,\ = 1) offers a serious challenge to the LMS with Jt = Jto, 

as was the case before introducing the thresholding technique. 

Apart from its computational complexity, the standard RLS without forgetting 

may thus be a safer choice than the standard LMS, unless the noise level is low 

enough to cause ill-conditioning problems. With weights fixed during the sensing 

phase the RLS may actually perform much better than the LMS, on condition that 

>. is set to a value slightly less than one during the initial convergence phase. A 
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modified forward-backward RLS scheme is also a possibility. 

The performance of the matched filter is shown in Fig. 5.13. Also shown is the 

case where the template is matched against the output of the MFD-LMS predictor. 
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In order to retain the operating range and the computational spced of rith('r 

method when used alone, the filter order and the template le'ngth we're halv(ld, and 

the weights were kept fixed during the sensing phase. 

The matched filter on its own is more successful because the le'ngth of its input 

vector can be double that of the combined scheme for a given operating range. The 

lead, however, gradually disappeared as the operating range was reduced further 

by increasing the template length. 

Table 5.1 reports the time taken by the different algorithms for the processing of 

one full fringe pattern 8. Time for signal/noise generation and storage into a tem­

porary data file was not included, but that for on-line retrieval of the data from the 

same file was. Two operating ranges were considered and, for the adaptive predic­

tors, the fixed weights case is also given in brackets. Since on time-sharing machines 

the elapsed time may not be a reliable measure of the sl)('ed of an algorithm, the 

figures in the table are given as averages over 3000 consecutive scans. 

Algorithm 992 Pixels 960 Pix(lls 

LMS 103.3 (98.2) 111.9 (105.2) 

FB 104.2 (98.8) 114.2 (105.4) 

MFB 103.1 (96.7) 110.7 (102.8) 

RLS 324.6 (99.7) 986.4 (105.7) 

Corr 96.4 102.8 

LMS+Corr 101.7 (98.7) 105.8 (101.6) 

MFB+Corr 106.1 (105.5) 109.6 (108.3) 

Covariance 95.1 10·t.5 

Centroid 85.3 85.4 

Table 5.1 Computer time (in rns) for sub-fringe identification of a WLI output wit.h Lc == 17 

fringes, b = 12.7 pixels/fringe, and N = 1024 CCD array dat.a. 

The centroid was the fastest of all, follow(ld in s('cond plaec by the covariancc 

algorithm with combined forward and backward predictions and by the match('d 

filter, which were about 12 % slower over 992 pixels and 21 % slower ov('r 9GO pix('ls. 

With the standard LMS, however, the weight update equation account('d for only 

8 Corr refers to the matched filter algorithm. 
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4.9 % of the total processing time when p = 32, and for 6.0 % of the time when 

p = 64; similar figures were obtained with the two forward-backward LMS schemes. 

Moreover, the matched filter with p = 32 was 1 % slower than the covariance 

algorithm with p = 16, and only 2 % faster when the filter orders were doubled, 

although the latter required O(np + p2) more operations if n was the number of 

samples above the threshold. The FB-LMS scheme with weight updating was also 

just 1 % slower than the other two LMS schemes with p = 32, and 2 to 3 % slower 

with p = 64, although it required twice the number of operations. 

It seems that with all the algorithms in the table but the centroid most of the 

computer time is spent on shift operations rather than on additions and multi­

plications. Adaptive algorithms need to shift the elements of the input vector to 

accomodate a new sample and discard an old one; of the two batch algorithms in 

the table, the covariance also needs updating of the pow('r level if its operation is 

to be confined to the thresholded region. Arithmetic operations are mainly con­

fined to the region within the points of inflexion of the visibility profile whrn the 

thresholding technique is used, whereas shifting has to be carried out at all times. 

It is only with the RLS algorithm that the main slowing factor b('comes the weight 

update equation, which requires a total of O(np2) operations and accounts for ov<'r 

69 % of the total processing time when p = 32 and 89 % wh('n p = 64. 

With a longer coherence length and/or fringe width more of the total time will 

be spent on real calculations and relatively less on shift operations. In fact, although 

the RLS with p = 32 is only 3 times slower than the LMS in Table 5.1, it was 27 

times slower 9 when processing whole temporally-scanned pa.tterns like the one in 

Fig. 4.13 with p = 16. 

As a batch algorithm can only start after all the data have b('en digitally stOrt'ti, 

adaptive algorithms can offer a real speed advantage, but this is only possible if 

the processing time per sample remains within the scanning and annlog-to-digitll.l 

conversion rates. From this point of view, the advantage is ef\.<;ily realisable but 

may not be apparent when using a mechanical scanner, as it may not be important 

having to wait a few ms longer to obtain the position of the c('ntral fringe when the 

scanning itself has taken several seconds. 

For applications requiring higher scan rates, on the other hand, an electronic 

9The Kalman algorithm was 40 times slower than the LMS. 
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scanner is normally used. Read-out time of many common CCD arrays is around 

100 J-lS, which translates in a scan time of just over 100 ms for a 1024-pixrlline array. 

Although the centroid algorithm is the fastest in the table, an adaptive algorithm 

can deliver its answer 85 ms earlier. Obviously, in this case the advantage is more 

apparent but it may not be easily realisable. 

For very fast and repeated measurements of critical parametrrs such as temp<'r­

ature, pressure or strain, read-out speeds of 1 J-ls/pixel are available, although the 

read-out noise also tends to increase. At these levels none of the algorithms in the 

table can cope, unless implemented on a single-chip digital signal proc('ssor (DSP). 

These programmable hardware devices are excellent at processing real-time sig­

nals, whereas general-purpose microprocessors found on a p<'rsonal computer are 

much more effective at processing database and spreadsheet-type applications. Ad­

ditions and subtractions can be performed as a single-cycle instruction on the latter, 

but mUltiply functions may take several hundred cycles if, as usual, thry are imple­

mented in software or micro-code as a series of add instructions. On the contrary, 

DSPs have an on-chip hardware multiplier capable of completing a multiply-and­

accumulate operation (MAC) in a single cycle. The multicycle loop input-vector 

shift operations are also implemented as a single-cycle instruction on a DSP, while 

the inclusion of on-chip data and program memory reduces delays caus('d by ac­

cessing external memory. 

Additionally, a Harvard-type architecture with s('parate program and data 1>U8(,S 

allows program fetch instructions to overlap data f(ltch, avoiding the bottl<'lH'ck of 

Von Neumann-type general-purpose archit('ctur('s, whrre in order to accrss some 

data, the instruction must be fetched first, and only then can the processor f(,t.ch the 

data. Pipelining is an additional method of speeding up the instruction throughput 

of a DSPj instructions are broken down into stagrs such as f('tching the instruct.ion, 

decoding it, fetching data, executing the instruction, and storing the r<,sult. Many 

DSPs also have a direct memory access (DMA) controll<'r which r('lievrs the CPU 

from transferring data to and from memory. 

The increasing use of DSP systolic array archit('ctures mak(ls it more ('ffid<'nt 

to perform vector computations over matrices or arrays of dataj in this cn.,,<', a 

synchronous array of parallel processors consisting of multiple arithmetic logic units 

(ALUs) under the supervision of one control unit (CU) can handle singl(>-inst.ruction 
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and multiple-data (SIMD) streams, i.e., all the ALUs receive the same instruction 

from the CU but operate on different data sets at the same time. 

As a result of such innovations, a 64-weight FIR filter can now be computed in 

21 J-LS on a low-performance 16-bit fixed-point processor such as the T~IS320CI0 

from Texas Instruments (6.25 Mips - millions of instructions per s('cond - version), 

in 5.8 J-LS on the TMS320C20 (12.5 Mips version), in 2.6 J-LS on the TMS320C50 (28.6 

Mips version), and in half this time on the 24-bit DSP56300 from Motorola (80 Mips 

version) [63, 64]; the same computation takes 4.4 J-Ls/2.7Jls on the 32-bit floating­

point TMS320C30/C40 processors (16.7 and 25 Mips vE'rsions, respectivE'ly). 

Naturally, at such high speeds one should become concerned with the analog­

to-digital conversion aspect, as ADCs/DACs can nowadays be a major bottlm('ck 

in many real-time nsp applications [65]. It is true that currE'nt 16 and IS-bit 

ADCs can only convert at sampling rates up to 48 Ksps (Kilosampl('s p('r second) 

corresponding to 20.8 Jls/sample, and anything above a TMS320CI0 could th('n be 

a waste. Similarly, most devices in the 8 to 12-bit range can convrrt at up to 66-75 

Ksps (13-15 Jls/sample). However, there is now a whole array of high-spr('(l 8, 10 

and 12-bit ADCs on the market that offer sampling rates in the ~fsps (~f('gasampl('s 

per second) region and sell for 10 US dollars or less. The 8-bit TLC55·tO from Texas 

Instruments, for example, can convert at 40 Msps (25 ns/samplE'); similarly, the 10-

bit TLC876 can convert at 20 Msps (50 ns/sample), and the 12-hit TLC80·1·t at 6 

Msps (167 ns/sample). 

On the DSP side itself, advances in VLSI circuit design and fabrication are 

continually reducing cost, space and power requirrmrnts, driving the drvrlopmmt 

of higher and higher performance devices. The new C62x gf'nf'ratioll of 16-hit 

fixed-point DSPs from Texas Instruments is fabricat('d using only 550 thousand 

logic transistors (in contrast, Intel's Pentium requirrs about 5 million transist.ors), 

can deliver 1600 Mips, execute 400 million MACs prr srcond (i.e., OM ~fAC in 2.5 

ns), perform a 1024-point complex fast Fourier transform in 70 ItS, and rompute 6·' 

outputs of a 24-weight FIR filter in 3.9 JlS [66], thanks to a Il<'W ardlit('ct.ure that 

consists of multiple execution units running in parallel, which allow to p('rform up t.o 

eight instructions in one single cycle; US pricing is just ovrr 100 dolla.rs. Simila.rly, a 

new C67x generation of 32-bit floating-point DSPs can currrnt.ly delivrr 1000 Mflops 

(millions of floating-point operations per second), and are exprct('d to deliv('r 3000 
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Mflops by the end of the decade 10, at a cost of less than 50 US dollars [67]. Ind('<,d, 

it may not be far the day when the scan rate will be limited only by CCD t('dmology. 

5.9 Discussion 

In this chapter it was shown that the slow response of the LMS algorithm, which 

may preclude its use in spatially-scanned WLI systems because of the small numb('r 

of samples available and reduce the operating range unn<'cessarily in t('mporally­

scanned systems, cannot be overcome by simply switching the algorithm off when­

ever the signal power falls below a preset threshold. 

The thresholded MFB-LMS scheme introduced in Section 5.6 was able to achieve 

the performance limit imposed by the matched filter without added compl('xity 

and with very little dependence on the step-size, making it v<'ry attractive wtwn 

a template is either not available initially or becom('s unr('liable l)('cause of slow 

variations of the system parameters such as wavelength or sampling rate drifts. 

Combining the matched filter with the MFI3-LMS algorithm may also raise the 

identification rate of either method. 

Batch filtering schemes performed worse than adaptive schem('s and stoPI)('(1 

improving quite early as the order of the filter was incr('asc<i, even ",h('l1 forward 

and backward predictions were combined to obtain not only parnm('t('r <'stimat.<'s 

with lower variance but also smoother estimates of the fringe pattrrn. 

The centroid method would be an ('asy choice if the c('ntral fringe was con­

strained to remain in the middle of the scanning rang<', but for cont.inuous lll('a­

surements where the central fringe can move at will from scan to scan, high('r hlm­

tification rates can be achieved with either the threshohhl MFll-L~lS algorit.hm, 

the matched filter, or the two methods combined. 

Asymmetries in the output pattern caused by asymnwtri(\s of the Sl)(\('trnl profil(~ 

of the source or by difficulties in system alignm('nt aff<'Ct not ollly the ('('ntroi<l but 

also the adaptive filters and the multiplc-wav(\length ll1('thod. Simulations show(\(1 

that the identification rate of the MFll-LMS falls below that of the st.andard LMS 

for sharp changes of the visibility profile from the r('gion b(\fore the c(,lIt.ral fringe 

to the one immediately after it caused by, e.g. chromatic ab('rratiolls. Tlu\sc are 

10 As a comparison, the TMS320C30/C40 can deliver up to 60 Mflops. 
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due to dispersion, i.e. to the change of the refractive index n of a material with the 

wavelength in air Ao. Since n can be approximated by an inverse function of CV('l1 

powers of Ao, according to the Cauchy equation [68] 

B C 
n = A+ A~ + A~ (5.10) 

where A, Band C are fixed for a given material, the symmetric distribution of the 

source spectrum becomes skewed in any transmissive medium which is not air (e.g., 

an optical fibre), as shorter wavelengths are reduced more than longer ones. 

With the multiple-wavelength method asymmetries may be more acute b('cause 

more than one source is involved [69]. The use of two or more wid('ly spaced 

wavelengths also means that the effects of dispersion become more severe if an 

all-optical-fibre arrangement is used, unless the length of the fibre is limitrd to a 

few metres [70]. Another shortcoming of the method is that if the two sources do 

not have the same coherence length, the effects on the optimum wavelength com­

bination and the minimum attainable SNR can be significant [71]. The numrrical 

determination of the minimum SNR which guarantees a 100 % idrnt.ifiration rate in 

[71] is also based on the assumption that the noise level in the systrlll can be as high 

as the intensity difference between the central fringe in the crntral fringe-pa('krt, 

100 , and the first side fringe in the central fringe-packet, 101 , or the crntral fringe in 

the first side-packet, lto. In practice, the probability for white Gaussia.n noise to be 

contemporaneously negatively-valued at 100 and positively-valurd at rith('r or hoth 

of 101 and 110 is slightly less than 0.44; this means that, on av<'rag<', the assumption 

is too optimistic in at least 43 out of 100 scans 11. 

The next chapter will take a brief tour into alternative algorithms based on t.he 

LMS and RLS approaches that have not been tested in this th<,sis but (~()1l1d rC'sult 

useful from an implementation or a performance point of vi<,w. 

11 If peA) is the probability that an event A occurs, n denot('s logical AND, U dl'llot.('s logical 

OR, and A, B and e are independent events, PtA n (B U C)] = PleA n B) U (A n e)] = peA 

n B) + peA n C) - PleA n B) n (A n e)1 = peA) x PCB) + peA) x p(e) - [peA) x P(B)] x 

[peA) x P(C»). In our case, peA) = P(B) = P(C) = 0.5. 
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Chapter 6 

Alternative LMS and RLS 

Schemes for WLI 

6.1 Introduction 

In Chapter 5 a few non-standard versions of the LMS algorithm were tried in an 

attempt to accelerate convergence and/or tracking while kc('ping the stC'ady-state 

error at a minimum. 

This chapter presents a brief round-up of LMS and RLS-based algorithms that 

were not applied here but may still be attractive for \VLI central fringe idl'ntifkation 

either because they are easier to implement or execute fast.rr than the st.andard 

version, or because they are more complex but also more stable and robust to 

numerical errors. 

6.2 Algorithms for AR Modelling 

In block LMS algorithms [1] the instantaneous gradimt estimates are avrrng('d ov('r 

p samples before the weight vector is updated, producing a less noisy adaptation. 

Performance advantages have been claimed (see, e.g. [2, 3]) although the tracking 

speed may be affected. Fast LMS filters [4, 5] using the complex LMS algorithm [6] 

allow faster execution by replacing convolution operations in the time domain with 

multiplications in the frequency domain using the fast Fourirr transform [7]. Ex­

ploiting the eigenvalue-spectrum decomposition, each frequmcy bin can be upciatC'd 

independently using a normalised step-size to equalise the time constants [8, 9, 10]. 
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As with the GAL in Section 5.5.2, however, residual coupling betw('en components 

may also be present in the frequency domain [11]. 

The sliding window RLS algorithm [12] is more effective than the exponentially 

weighted RLS in dealing with sudden changes in the statistics of the data and with 

impUlsive noise. It may therefore recover more quickly from signal discontinuities 

at the power threshold points, although at a computational cost of around 5p2 + 6p 

adds and multiplies per iteration. 

QR-decomposition recursive least squares (QRD-RLS) algorithms [13, 14] re­

place the normal equations based on the autocorrelation matrix R by a set of 

equations based on an orthogonal transformation of the data matrix X [15]. As the 

condition number is square-rooted, the solution is numerically very stable and l('ss 

susceptible to round-off errors. The use of matrix operations in the form of GiV<'llS 

rotations during the decomposition [16] allows for a high degree of parallelism, 

which can be exploited by a systolic array architecture [17], whose modularity and 

pipelined mode of operation makes it especially suitable for fast VLSI implcmrnta­

tion [18]. Early hardware realisations [19, 20] seem to offer outstanding numrrical 

performance. 

Fast RLS algorithms update the gain vector by exploiting the shifting prop('rty 

of the input vector and the redundancy in the Toeplitz structure of the da.ta matrix, 

reducing both computational load and memory storage from O(]J2) to O(p). The 

introduction of redundancy assumptions, however, mak('s th('m more vulnrrnhle to 

round-off errors. 

The RLS predictors in [21, 22] require only 8p operations hut are unst.abln for 

>. < 1 [23, 24, 25, 26], with numerical errors increasing ('xpollrntially at the rat.e 

1/>.. The fast transversal filters (FTF) in [27, 26, 28] are rrlativrly more st.able and 

require from 5p to 9p operations in their predictor form, drlwllciing 011 the imple­

mentation; sliding-window forms have been derived in [28]. R('scuing pro('(\dur(\s to 

stop the build-up of round-off errors and eventual div('rgrncc can be incorporat.('d, 

such as periodic resetting of some critical int.ernal variahl('s to 2('ro while updat.ing 

the weights with a LMS algorithm [24, 26, 29], or comp('nsatioll using ('rror f(\('d­

back to reintroduce computational redundandy with extra p op('rntions [30, 31]. 

Although unlikely to raise the identification rate above that of the standard IlLS, 

fast algorithms should be considered when computational const.raints would dirtate 
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the use of a LMS algorithm. 

Fast QRD-RLS algorithms [32, 33, 34, 35] combine the numerical stability and 

modularity of QRD algorithms with the low operation count of fast algorithms. 

Lattice filters are numerically more robust than transversal filters, and due to 

their modular structure they are highly suitable for fast VLSI implementation. As 

they yield all lower-order solutions by default [36] they can be made to self-adjust 

the number of weights according to the magnitude of the prediction error in real­

time, without having to run a bank of filters of different orders in parallel. 

Fast least squares lattice (LSL) algorithms [37, 38, 39] are the lattice counter­

part of FTF algorithms. Although the derivation of the AR parameters from the 

reflection coefficients requires O(p2) operations, their explicit computation is not 

needed if a power spectrum estimate is not required; computation of the prediction 

errors and updating of the reflection coefficients for prediction is thus possible with 

twice the number of operations required by the FTF algorithms, challenging the 

GAL algorithm, which requires from 6p to lOp operations depending on the imple­

mentation. In fact, LSL filters have been shown to offer better p('rformance than 

the GAL in some applications [40, 41]. 

Fast QRD-LSL algorithms [42, 43, 44] also require only O(p) op('rations. 

6.3 Algorithms for ARMA Modelling 

It was shown in Chapter 2 that an ARMA model should providc at l('ast as good 

a representation of the fringe pattern as the AR approximation, if not beUer. Al­

though an AR polynomial of high order can compensate for the absence of the ~IA 

polynomial, allowing the latter to be different from unity may InNl.n that the same 

estimation capability could be achieved with fewer param('ters. In fact, rath('r than 

increasing the AR order until a white error sequence is producl'<i, one could use t.he 

information contained in this sequence directly, as in Eq. 2.9. 

All of the filtering algorithms considered in Chapter 5 W('fC able to produce ('rror 

sequences with flat power spectra and with no significant autocorrelat.iolls [45] for 

moderately high orders. However, increasing the filter order increas('s the amount 

of ill-conditioning and the danger of numerical probl('ms for RLS schelll(,s, while 

decreasing the speed of adaptation of the parameters for LMS scheml's. \Vith t.he 
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LMS, in particular, more scans were needed before a satisfactory white s(,(}u('nce 

could be obtained. 

Adaptive algorithms that solve for the ARMA parameters include the recur­

sive extended least squares (RELS) [46, 47] and the recursive maximum likelihood 

(RML) [48,49], which can also be simplified to produce generalisedLMS algorithms. 

Alternatively, the recursive instrumental variable (RIV) method [50, 51, 52, 53] 

provides unbiased AR estimates, but the MA parameters have to be estimated 

separately (see, e.g. [54]). 

Lattice predictors have also been derived (see, e.g. [55, 56, 36, 57]). As a final 

warning, however, it remains difficult to ensure robust performance of adaptive IIR 

filters in many applications [58], although they provide natural inv£'rses for ARMA 

models. In particular, instability during adaptation and the presence of a non­

unimodal error surface are still open problems [59, 60], as are the effects of model 

order mismatch between true and assumed system [61]. 

6.4 Modelling with Coloured Noise 

The white noise assumption led to the development of a stochastic AR~lA(]>,l» 

model for the generation of the observed fringe pattern in Chapt£'r 2. Although 

shot and thermal noise in electronic components are believed to be white Gaussian, 

vibrations during scanning in temporally scanned syst.ems are r£'sponsible for the 

appearance of narrow-band noise [62]. Similarly, measur£'ment noise such as that 

at the CCD detector can be described as a broad-band Gaussian proc{'ss. 

Assuming, eg., that the noise is the MA(1) process w[n] + C'\w[11. - 1], wit.h 

w[n] white, expanding Eq. 2.8 one obtains an ARMA(p, p + 1) pro('{'ss dri\'<'U by 

w[n].This is equivalent to inserting a C(z) block with transft'r function 1 + ('IZ- 1 

between w[n] and the B(z) block in Fig. 2.1. In grneral, if the noise follows an 

ARMA process of order (Pb ql), the output will be ARMA(p + IJ\tmax(lJ\tp + ql» 

[63]. An inverse filter implemented as a whitening filt£'r will au'£'mpt to r£'('oV<'r 

the white noise creating the coloured process. Testing for whit£'ness of t.he £'rror 

sequence would not be a sound diagnostic procedure in this ca..,e, 

The same conclusion can be reached by noting that E { v [n.].~ [n]} in Eq. 2.12 is 

not necessarily zero anymore, as some of the y[n - i] t£'rms that form 8[n] in Eq. 
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2.9 depend on those same w[n - i] terms that generated v[n]. Hence, the MSE 

criterion in Eq. 2.12 is still quadratic with a unique minimum point, but reaching 

this point does not guarantee the equality between the noise-free fringe signal and 

its estimate. 

Replacing white noise with the broad-band MA(3) noise process 1 v[n] = w[n] + 
w[n - 1] + w[n - 2] + w[n - 3], the behaviour of all the algorithms considered in 

Chapter 5 deteriorated. The success rate of the thresholded MFD-LMS scheme 

with weights fixed after ten preliminary scans went down 2 from 97.8 % to 88.7 

%. Similarly, the success rate of the matched filter with p = 76 went down from 

98.1 % to 85.9 %. Even greater degradation was observed when adding the narrow­

band AR(2) process v[n] = 1.83v[n -1] - 0.97v[n - 2] + w[n]. This would simulate 

narrow-band noise centred at 60 Hz and with a 3-dD bandwidth of 5 liz. 

The RELS, RML, and RIV algorithms of the previous section can be used if 

one assumes that the fringe pattern is an AR process to which MA noise has brrn 

added. For an MA{m) noise process one could also replace the usual one-strp 

prediction with multi-step prediction, a special case of the recursive instrum<'ntal 

variable method which exploits the fact that the optimum prediction st<'p for noise 

suppression lies somewhere between the correlation distance of the nois<', m, and 

that of the signal [64]. Replacing Eq. 2.9 by 

p p 

s[n] = - L iiiy[n - (i + l)] + L iiiv[n - {i + l}] (6.1) 
i=l i=l 

v[n] is uncorrelated with s[n] in Eq. 2.12, for any 1 ~ m. Improv<,d frequC'ncy 

estimation for narrow-band signals in coloured noise has b('('n r<'port<,d in, e.g. 

[65, 66]. 

Unfortunately, multi-step prediction did not give any prrforman('c improvrIllmt 

over one-step prediction. The identification rate of the thr<,sholdpd MFD-LMS 

scheme went down from 88.7 % to 76.0 % when 4-st<'p instrad of 1-strp prrdictiou 

was used to deal with the broad-band MA{3} noise proc<'ss ahove. The pro1>I(,111 by 

going back in time is that, although the correlation bctw('<'n prrsrnt and past noise 

values fades away, that between present and past signal values also d('t,rriorat<'s 

1 With, e.g. 12.7 samples per fringe and a sampling rate of 1 K II %, the int('rC('r(,II('e signal would 

be centred at 79 Hz, while the noise spectrum would be approximately constant oVl'r (0,250) liz, 

with a secondary lobe with cut-offs at 250 and 500 II %. 

2With p = 38, a SNR of 20 dB, and for all '" < 10-2• 
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rapidly when the signal is non-stationary. In addition, it may be difficult to d('ci<ie 

a priori on the correlation distance of the noise. 

The technique will also work less well with narrow-band AR noise, as in such 

case the autocorrelation sequence of the noise is a mixture of damped exponentials 

and/or damped sine waves, with no definite cut-off for the correlation distance 

(see Section 2.5). It is clear, however, that as the second-order statistics of the 

noise process become more and more similar to those of the interference signal, any 

filtering algorithm based on second-order statistics alone will find it increasingly 

difficult to discern and separate the signal from the noise. 

As an aside, multi-step prediction has been shown to improve the estimation 

capability of an adaptive filter even in the white noise case (m = 0), as for complete 

cancellation of the sinusoidal components of a noisy signal from the error term 

ern] it is necessary that such components appear at the filter output with not 

only the same amplitude, but especially with the same phase as the corresponding 

components in the signal [67]. According to the theoretical analysis and practical 

formulae in [68, 69, 70], 4-step or 10-step prediction should be optimum for a \VLI 

interference signal with a fringe width of 12.7 pixels per fringe. The identification 

rate of the LMS-based algorithms in Chapter five, however, declined progressively as 

the prediction step was increased from one. The highest degradation was observed 

at high SNRs, where the convergence and tracking capability are lea.<;t and the most 

recent information is desperately needed. 

In the next chapter the assumption that the \VLI output can be compl('t('ly 

described in terms of its second-order statistics will be questioned, and the linear­

ity and Gaussianity constraints will be relaxed to take into account higher-ord{\r 

properties characteristic of linear non-Gaussian or non-linear prOC(,SSNI. 
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Chapter 7 

Non-Gaussian and Non-Linear 

Modelling and Filtering 

7.1 Introduction 

The modelling and filtering techniques of Chapters 2-6 wt're bast'(l on tilt' fustol1lnry 

assumption in signal processing that the observNi data originat(' from a rnnlillm 

process which is linear in nature and has Gaussian statistics. 

In this chapter the statistical properties of the WLI fringe pall ('m will ht' 1\111\1. 

ysed in order to verify the validity of such assumption, aud h'sts 111\,'\('(1 on hot h 

the second and higher-order statistics (cumulants) of til(' dl\ta will Iwlp to tl,'('hh' 

Whether there is any advantage in using linear non-Gaussbm or Ilon·lillt'nr mOlle'lIiug 

and filtering techniques for the purpose of identifying th(' fl'nt rnl frin~('. 

7.2 Non-Gaussian Modelling 

In Chapter 2 the observed fringe pattern y[n] was mo(h'lIt'tl as tht' ()utput of" lilll'l\r 

dynamical system driven by the Gaussian systt'm/mt'IL'iUf('I1U'llt lIobt' t,[PI). Thi~ 
came as a result of expressing a sampled harmonic pn)('t'SS in (tifft'H'url' ('(llll\tilln 

form. Since a linear operation on a Gaussian random vl\rinblt' pmduc'('M anotllt'r 

GaUSSian random variable [1], ifv[n) is Gaussian y[n) must ht· Gllus. .. il\u; th., olltPlit 

and error sequences of a linear filter must also he Gaussian, as thl' flht'r input \'t'('lor 
co . t 

nS1S s of delayed samples of y[n). 

In the event that y[n] is non-Gaussian, it has to be nSSlllllt'll t'il hc'r I hnt tilt' 
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process generating y[n] from v[n] is non-linear, or that v[n] is not the driving force. 

The first possibility will be investigated in Section 7.3. The second possibility 

implies that y[n] results from adding v[n] to the output of a linear system driven 

by an unobservable source. If v[n] is non-Gaussian, the source mayor may not be 

Gaussian; this case will not be considered because most of the noise in a WLI system 

is believed to be Gaussian 1. If v[n] is Gaussian, the source must be non-Gaussian; 

this case will be investigated in this section. 

Non-Gaussian signals abound in the real world. Seismic reflectivities, radar re­

turns from the ocean surface, and wind velocity data may have Bernoulli-Gaussian, 

Laplace, Rayleigh, Lognormal, or Weibull probability distributions [3, 4]. Commu­

nication signals passing through a fading channel may be Rayleigh or Rician [5]. 

Sonar signals are also non-Gaussian [6]. The property of most interest here is the 

fact that the cumulants of the sum of two statistically independent random processes 

are equal to the sum of the cumulants of the two processes [7]. Since the cumu­

lants of a Gaussian process are identically zero (skewness and kurtosis included), 

cumulants should do a better job at drawing Gaussian measurement noise out of a 

non-Gaussian signal than second-order statistics (correlations) do, especially when 

the SNR is low and/or the measurement noise is coloured. 

7.2.1 Gaussianity Tests 

Probability density and Normal quantile-quantile plots [8] of the error sequence 

e[n] from the batch and adaptive filtering schemes of Chapter five supported the 

Gaussian assumption. The Jarque-Bera (JB) test for joint skewness and kurtosis [9] 

was consistently passed at the 99 or 95 % confidence level. Third and fourth-order 

cumulant estimates were of the same order of magnitude as those of computer­

generated Gaussian sequences of the same length and variance. 

As for the WLI interference signal itself, the distribution of both simulated and 

measured patterns between the lie power threshold points exhibited the character­

istic convex shape of a sinusoidal density [10] at high SNRs. Hence, the skewness 

was zero but the kurtosis was negative, and the data failed the JD test. As more 

fringes were included the convex was gradually filled by low-amplitude data until 

IThe Gaussian source, non-Gaussian measurement case can be handled by an algorithm based 

on order statistics [2]. 
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the distribution became peaked in the centre. Accordingly, the skewness remained 

at zero but the kurtosis became positive, and the JB test was failed again. De­

tween these two extremes the kurtosis approached zero and the JD test was passed 

with a very high level of confidence. This happened when the data covered the 

lie intensity points (delimiting the coherence region) but not the whole pattern. 

An example of the resultant good match between fringes and Gaussian densities is 

shown in Fig. 7.1, which refers to the measured WLI output of Fig. 4.13 within the 

path difference ±5.5t-tm. As the noise level was increased the Gaussian assumption 

was accepted for an increasing range of fringes included in the estimates. 

1.00 

0.75 

~ 0.50 
a.. 

0.25 

0.00 ~~~~~~~~~~~~~~~~~~~~~~~ __ ~~ 
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 

INTENSITY 

Fig. 7.1 Density of the central 26 fringes of Fig. 4.13, smoothed using a Gaussian window [11}. 

The dashed curve shows the density of a Gaussil\tl sequence of the same It'ngth and vnrianrt~. 

Still at high SNRs, third-order sampled cumulants were several ord('rs of mag­

nitude smaller than those of Gaussian noise sequences of the same length, a dif(~('t 

consequence of the high degree of symmetry between the positive and nrgative por­

tions of the fringe pattern. Fourth-order cumulants of the data betw('en the lie 

power points were on average one order of magnitude larger than t.he correspond­

ing cumulants of Gaussian sequences, although the latter could easily be as high as 

0(10-1
) for a sampled variance of 1 ± 0(10-2). Given that the kurtosis of lOOO-long 

Gaussian sequences was also 0(10-1) but the JI3 test was consistently passed at the 

99 % level, this should not be a concern. In fact, the sampled kurtosis of Gaussian 
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data fell to 0(10-2) upon increasing the sequence length ten-fold, by which time 

the sampled variance was within 1 ± 0(10-3). 

This explains the general reluctancy to the use of cumulants in signal processing; 

apart from being computationally more intensive to estimate than correlations, 

longer data sequences are needed in order to reduce the variability of the estimates, 

which can only be achieved by splitting the data into separate records and average 

over these [12]. In fact, many sampled fourth-order cumulants wrre smaller for 

the fringe pattern than for Gaussian data if averaging was not performed, and the 

additive property of cumulants of independent processes did not hold as well as for 

correlations, being totally unreliable for data lengths of 0(103 ) or less. 

The difference between fringe pattern and Gaussian fourth-order cumulants de­

creased as white Gaussian sequences were replaced by narrow-band AR sequences 

with progressively shorter bandwidth, to end up with spectral proprrti('s similar to 

those of the fringe pattern. The diagonal cumulant slice [13] replicated the oscilla­

tory behaviour of the autocorrelation function with the same period, and could be 

mistaken for the diagonal slice ofthe fringe pattern, apart from a small amplification 

factor (this was, e.g. less than three with the data betwe('O the lIe pow('r points 

and a SNR of 20 dB). Other one-dimensional slices [13] behav('d similarly. It thus 

appears that fourth-order cumulant estimates are affected not only by the l('ngt.h 

but also by the second-order statistics of the sequence. Third-order cumulltnts are 

not affected because sampled autocorrelations are not subtractrd from the samplrd 

moments during computation, unlike in the fourth-ordpr cnse. 

Probability density and time-domain tests wpre supplrIllruted by fn'qumcy­

domain tests using higher-order spectra, as in previous work hy the author [14]. 

The nth-order spectrum of a process is the n-dimensional Fourier transform of 

its nth-order cumulants [7]. As all cumulants contribute dire(·t.ly to its rN"} part., 

whereas its imaginary part is only due to those slic('s not symm('t.ric ahout t.he 

origin which push the process towards time-irreversibility [15], the magnit.ude of 

the higher-order spectrum of a process gives an overall measure of its <h'pnrture 

from Gaussianity 2. 

Third and fourth-order spectra, known as bispcct.rum and trisprctrum, were 

2 A process is time-reversible if its statistics do not dl'pmd on the dir{'('tion In whkh 18 Is 

analysed. An ARMA process is time-reversible if and only if it is Gaussian [16, 17]. 

142 



estimated using both classical (non-parametric) and modern (parametric) methods 

of spectral analysis. The conventional direct and indirect methods [18, 7] are multi­

dimensional extensions of the smoothed periodogram and correlogram [19], while 

the third-order recursion (TOR) method [20] calculates the bispectrum after solving 

for the parameters of a non-Gaussian white noise driven AR model using a set of 

higher-order normal equations based on the diagonal third-order slice, and can be 

easily adapted for the trispectrum using the fourth-order slice [21]. 

Two sets of WLI output data in white Gaussian noise were obtained, for a givE'n 

SNR, from one hundred simulated scans between the lIe power points (100-by-150 

set) and from thirty simulated scans between the zero intensity points (30-by-500 

set) in order to trade off variance reduction and stationarity for frE'quE'ncy resolution, 

and to test the algorithms with either negative kurtosis (100-by-150 set) or positive 

kurtosis (30-by-500 set). White and narrow-band AR Gaussian data SE'ts of the 

same size and length were also obtained by computer simulation. 

The Daniell, Parzen, and Sasaki 2-D and 3-D lag windows [22] with diffE'rcnt 

widths were used in turn in the indirect method, and various sizes of DaniE'll (rect­

angular) spectral windows were employed in the dirE'ct met.hod for smoot.hing in 

the frequency domain. Narrow windows in the time domain correspond to wide 

windows in the frequency domain, and give lcss variance at the expense of more 

bias and loss of resolution; the Daniell window off('rs the highest resolution for a 

fixed width, but the Parzen and Sasaki windows give 10wcr variance and bias, re­

spectively 3. Similarly, different model orders WE're considE'red in the TOR met.hod. 

The main findings are summarised bclow. 

With the white Gaussian data sets all thrE'c met.hods 8ll('('('('<1('d in producing 

fiat and approximately zero higher-ordcr spectra. The Daniell window was the 

worst, as expected, offering the highest resolution but also the highest varian('e, 

and resulting in spurious peaks along the edges of the spectral domains. Mo<i{'l 

orders between ten and twenty in the TOR method w('re acc('ptable, although it 

became clear that the best order for the bispectrum wn • ., not necessarily the \>('st 

order for the trispectrum. 

With the narrow-band AR Gaussian data sets none oCthc mrthods had difficult.y 

3See, e.g. [23] for I-D lag windows design guidelines, and (24, 25] for choke of windows width 

in higher dimensions. 
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in estimating the bispectrum correctly, with the direct method being the most 

consistent. As for the trispectrum, the direct method was still the most consistent, 

giving estimates of the same magnitude as those obtained with the white Gaussian 

data sets. The TOR method was most successful with a model order of around 

twenty for the 100-by-150 set and around fifteen for the 30-by-500 set; othE'r choices 

produced spurious peaks which increased the magnitude of the imaginary part, 

although not excessively. There was some dependency of the "best" ordrr on the 

bandwidth of the simulated AR process. The indirect method was the worst of the 

three, giving dubious estimates of the real part for both sets. Doubling or trebling 

the number of records in order to decrease the variance red uced the numb('r of peaks 

and their average amplitude but not dramatically. 

With the WLI output data sets the bispectrum vanish('d, as exp('ct('d. The 

trispectrum estimated with the indirect and TOR methods was great('r than that 

for the AR Gaussian data sets, the magnitude differE'nce d('p('uding on which Sf't, 

window function, window width, and model order was us('d, but suffiri('nt to acc('pt 

non-Gaussianity comfortably down to 20 dB in all cas('s. However, wh('r('as the 

real part of the trispectrum accounted for 90 % of its magnitude with the in<iir<,(,t 

method, the ratio between real and imaginary parts was close to one with the TOR 

method. If one is inclined to believe that the proc('ss g('n£'rating the WLI output 

signal is time-reversible (this would be supported by bot.h the g(,Il£'nl.1 app('arnnce 

of the fringe pattern and by the observed symmetry of the 1·D cUIllulant slic('s), 

one should also accept that the overall estimate with the TOR m('thod was not 

significantly different from zero. The direct method est.imate was also of t.he same 

order of magnitude or even smaller than that for the Gaussian data s('ts, h'nving 

one with no clear conviction about the d('gr('c of non-Gaussianit.y of the int,('rf<'r('nre 

signal of a WLI system. 

Probably the best way to decide on the effectiv('ness of high('r-ord('r statistics in 

WLI is to apply them directly to the central fringe i<irntifkation prohh'lll. This is 

carried out in the next section. 
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1.2.2 Linear Non-Gaussian Filtering 

Tables 7.1-7.3 report the sub-fringe success rate 4 when batch second and higher­

order algorithms were applied to simulated patterns of the kind shown in Fig. 1.5. 

I Method I SNR = 40 dB I 30 dB 20 dB 15 dB 10 dB 

Direct 98.3 64.3 24.5 16.3 7.7 

2nd-order 99.7 (98.0) 85.7 (82.0) 48.4 (49.9) 35.0 (31.3) 22.7 (21.0) 

3rd-order 86.7 (67.0) 48.3 (40.0) 19.5 (16.5) 13.7 (13.7) 9.7 (8.7) 

4th-order 91.0 (94.0) 56.7 (50.0) 32.3 (27.6) 22.0 (22.7) 14.0 (14.3) 

Table 1.1 Success rate in white Gaussian noise. 

Method I SNR = 40 dB I 30 dB 20 dB 15 dB 10 dO 

Direct 97.3 56.7 22.0 16.7 8.7 

2nd-order 99.7 (99.0) 76.7 (81.0) 27.6 (32.3) 20.0 (21.3) 13.7 (15.0) 

3rd-order 83.7 (56.7) 42.7 (35.3) 19.3 (17.0) 16.3 (14.0) 13.0 (11.0) 

4th-order 86.0 (87.0) 48.3 (43.7) 25.4 (22.6) 16.3 (19.3) 11.0 (12.7) 

Table 1.2 Success rate in broad-band MA(5) Ga\lSSilUl noise (as ill [30]). 

Method I SNR = 40 dO I 30 dB 20 dO 15 dB 10 dn 

Direct 98.0 62.3 25.4 16.7 10.3 

2nd-order 99.0 (98.0) 72.0 (71.7) 29.8 (31.6) 19.3 (19.3) 13.0 (14.3) 

3rd-order 82.3 (62.0) 41.0 (3·t.7) 20.1 (17.7) 13.7 (12.3) 9.3 (8.7) 

4th-order 84.3 (86.7) 41.3 (42.3) 20.7 (20.1) 16.7 (15.3) 11.3 (12.7) 

Table 1.3 Success rate in narrow-band AR(2) Gaussilm noise (118 in [3(1). 

The numbers in brackets refer to the case wh('n the proc('ssing was restrictl'd to 

the lIe intensity points or coherence region (216 samples). The success rat.e from 

direct observation of the visibility profile is also shown. 

4In percent, out of 1000 trials with the central fringe in the middle of the CCD array. 
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The second-order algorithm in the tables is the modified covariance method 

of Section 3.3. The higher-order algorithm is for a general non-Gaussian ARMA 

model [26], and includes singular value decomposition for AR rank-order dl'termi­

nation, solution of an over-determined set of modified higher-ordl'r ll'ast squares 

Yule-"Walker equations, and estimation of the MA section using the residual time 

series and the GM-Method in [27]. 

In order to avoid a possible singularity during the MA phase, the G~I-Method 

was combined with the T-Method in [28], as previously implemented by the author 

in [29] following the advice in [12]. 

The double C(q,k) method in [30], which does not use a residual time series but 

works with the cumulants of the fringe pattern throughout, performed more poorly. 

The performance of all three algorithms in the tables was aff('cted more by 

coloured than by white noise, but the modified covariance remained on top in all 

cases, although with no noise added they all managed to id('ntify the central fringe 

correctly and produced very similar sets of AR parameters. 

The rank-order from the singular value decomposition was rqual to two ovrr 

the range 40 to 10 dB, jumping to above twent.y at 0 dB; thus, the algorithms 

were compared for fixed model orders greater than two, as this guarantrrd brtter 

performance. On the other hand, the residual time seri('s always pll."s('d the high('r­

order whiteness test and the MA ord('r was set to zero. 

The tables show the identification rate for an assum('d AR mod ('I orcl('r of trn 

only, but are quite representative of the results obtain('d for ot}l('r moel('l or<i('rs. 

In terms of speed, the third and fourth-ordrr algorithms wrre slow('r than th(~ 

second-order by factors of four and trn ovrr 1024 data, f('sl)('ct.iv('ly. R('st.rkt.ing 

the processing to the coherence rrgion decrea.,,('d th('se fact.ors to 1.25 anel 3.3. 

Table 7.4 reports the success rate of s('cond and fourt.h-ordc'r algorit.hms in t.he 

hypothetical case that the spectral distribution of the light sourre is r('d,nngular 

inst.ead of Gaussian; the resulting fringe visibilit.y profile is not Gal1ssinu hut a 

I sin(x}/xl function [31]. 

Although the tests described above reveal('d a slight.ly grrat,rr d('IHut.l1rc of the 

fringe data within the I sin(x}/xl profile from Gaussianity, this was not rnough t.o 

tip the balance in favour of the fourt.h-ordl'r algorithm. A bimodal Gaussian source 

spectrum, on the other hand, may result in a visibility profile that forc('s eV('Il more 
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Gaussianity into the fringe data, by providing a higher percentage of valu('s close to 

zero. Identification rates for some typical profiles in [31] followed similar patterns 

to those in Tables 7.1-7.3. 

r Method I SNR = 40 dB I 30 dB 20 dB 15 dB 10 dB 

Direct 100 86.0 44.7 27.7 15.3 

2nd-order 100 (100) 96.0 (92.0) 74.7 (72.3) 59.0 (54.7) 37.7 (35.0) 

4th-order 100 (95.7) 79.7 (77.7) 46.7 (49.0) 35.0 (33.3) 22.7 (15.3) 

Table 7.4 Success rate in white Gaussian noise with a I sin(x)/xl profile. 

As for adaptive algorithms, the standard LMS and the least m('an kurtosis 

(LMK) [32] were taken as representative of second and fourth-order mrthods t;. The 

LMK is a modified gradient descent method in which the n('gated kurtosis of the 

error signal is minimised, rather than the m('an square. This I('ads to an algorithm 

which requires only four operations more than the LMS p('r itrration. The MFD­

LMS of Chapter 5 was not considered because a ~IFD-LMK is also possible. 

The LMK outperformed the LMS in Figs. 5.10-5.11 by 0.6 % with p = 32 

and by 1.7 % with p = 64, in absolute terms; a slower d('cny of the sllC'crss rate 

was also noticed as J-t was increased from Po (the latt('r was the same for t.he two 

algorithms) but because of this divergence orcurr('d sudd('nly without t.he warning 

signs of reduced performance, a consequ('nce of the fact that wh(,tl high('r-orci('r 

moments of the error are considered, the drgr('e of st.ability of LMS-typ<, algorithms 

decreases and a stricter bound on II. must be impos('d [35]. 

Although the performance advantage of the LMK may not b(~ significant, th(\ 

fact that it was able to achieve at l('a8t as high a succ('ss rate us the L~1S mny m('nn 

that long data sequences are an essential r('quirrlllent wh('l1 working wit.h cUlllulnnt­

based batch algorithms. Since higher-order st.at.ionarity is also implidtly lu\sllJlwll 

by these, their applicability to WLI systems is doubtful, unlrss a long-cuh('rrn('c 

source is used together with temporal scanning. On the cont.rnry, cumulant-Im .. -;('ll 

adaptive algorithms may be beneficial bot.h in temporally and spatially s('anIu'd 

6The adaptive cross-correlation and paranll'tric time-dl'lay ('stimatioll apprO/whl's of Sl'('tioll 

5.7 can also be implemented with fourth-order cumul!ults. S('C [33] for the first RIll 1 [3·'] for the 

second approach. 
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systems, if fringe width and coherence length allow to restrict processing to those 

few central fringes where negative kurtosis can develop. 

7.3 Non-Linear Modelling 

The use of a linear model for the WLI system is justified only if the fringe pattern 

is generated by a linear process. Since a Gaussian process is linear, the Gaussianity 

tests of the previous section should have proven the validity oCt he linear assumption. 

In fact, in the Gaussian case the Wiener and Kalman filters provide the optimum 

stationary and non-stationary solutions, respectively, within the class of all linear 

and non-linear filters [36]. 

In a practical interferometric system there are many subtle sources of non­

linearity, arising either in the system itself or in the associated detection and am­

plification circuitry. The most important are mentioned here. 

Optical mixing arises from the impossibility of separating completely the optical 

components into the two arms of the interferometer. Angular misalignment between 

the source and the optics causes leakage and a non-linear, p('fiodic relation betwt'en 

the phase of the interference fringes and the displacement appears, with a pt'rio(l 

of one fringe. A typical figure for the peak-to-peak phase error in a good system is 

5.4° [37], corresponding to a maximum OPD error of ±2.~, which is much small('r 

than other errors occurring during measurements. \Vith a fringe widt.h of 13 pixels, 

for example, this error is contained to within 10 % of a pix('l. 

The effects of beam diffraction on linearity are difficult to id('lltify and qUllntify 

[38], and are therefore not considered here. On the other hand, thromnt,ic ahrrra­

tions, introduced in section 5.9, result in a non-linrn.r r('lnt.ioll bet.wI'('1l wavI'll'ngths 

in air and in a refractive material like glass or an optical fibre; alt.hough t.he posit.ion 

of the central fringe remains unaffected, the visibility profile b('('oll1rs sk('wrd. 

ADCs/DACs and amplifier circuitry implemented in lll('taJ-oxide srlllicoll<iuct.or 

technology possess a non-linear transfer charactrristic, with a syst.ematic compo­

nent due to diffusion concentration gradi('nts and a random COmpOIH'llt due to 

photolithographic mismatches [39]. The random compon('nt can be t.mnslnt.('d to 

the output of the circuit and added to the mea.'iurrment noisr, but the syst.rmatic 

component distorts the visibility profile without sk('wing it. 
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The CCD detector could be another potential source of non-linearity, but in 

modern-day CCD technology this is limited to just a few parts per million. 

The question to be answered in the following is thus: how strong do systrm 

and measurement non-linearities have to be in order to justify the adoption of a 

non-linear model for the generation of the WLI output? 

7.3.1 Linearity Tests 

Two common DACs systematic non-linearities are the signed and cubic types 

(7.1) 

for a general input x, with a=1.01333 and b= -0.01333 [39]. Since one is more inter­

ested in the effects of an ADC on the analog WLI output signal prior to any digital 

processing operation, the non-linearities considered here will be of the quadratic or 

cubic type, as shown in Fig. 7.2 and expressed by 

< 
t-
< a 
I­
:J 
a.. 
I­
:J o 

d[n] = fNdy[n]) = ay[n] + by2[n] or d[n] = ay[n] + by3[n] (7.2) 
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Fig. 7.2 Two common ADC non-lincariti('s: q) quadrat.ic; c) cubic. 

Eq. 7.2 represents low-order polynomial approximations to ADCs systrmntic 

non-linearities [39], with y[n] and d[n] denoting the fringe pattern brfore and aft('r 

distortion, respectively. Quadratic distortion introduces s('cond-ord('r harmonics in 
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addition to a dc term, whereas cubic distortion introduces third-order harmonics 

only. Their effect on a fringe pattern corrupted by Gaussian white noise can be 

seen in Figs. 7.3 and 7.4. The parameters a and b in Eq. 7.2 were set to 1 and 0.5. 
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Fig. 1.3 A noise-corrupted fringe pattern distorted by a quadratic non-linearity. 
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Fig. 1.4 A noise-corrupted fringe pattern distorted by a cubic non-lil\('arity. 
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If sin(27rfon) is the fundamental component of the linear fringe pattern, purely 

quadratic and cubic non-linearities produce the following outputs 

d[n] - sin2 (27rfon) = ~ - ~cos(47rfon) 

d[n] - sin3 (27r fon) = ~ sin(27r fon) - ~ sin(67r fon) (7.3) 

With typical values for a and b of 0.987 and 0.013, respectively, the transfer charac­

teristics still looked very much linear, and neither classical nor AR power spectrum 

estimators were able to detect the secondary harmonics, which remained buried 

underneath the noise level. If A is the amplitude of the central fringe before dis­

tortion, it can easily be shown that the output power contributed by the linear 

term is (aA)2/2 and that from the quadratic term is (3/8)b2 A4, of which (1/4)b2 A4 

goes to the dc component. The power ratio between fundamental and second-order 

harmonic thus becomes 4(a/bA)2 in correspondence of the central fringe, and e2 

times this value at the l/e intensity points. With a and b as above and A equal to 

one, the ratio is 23 x 103, or 43.6 dB. Clearly, in a practical environment where the 

SNR is below this limit the effects of signal distortion are masked by the noise and 

become undetectable. The same conclusion can be reached for a cubic non-linearity. 

With A and a at one and noise at 20 dB added after the distortion process, 

the third-order harmonic became visible only as b approached one, although the 

second-order harmonic was revealed sooner. Hence, the linearity tests described 

next were carried out with 'this set of values. 

Third-order cumulants and bispectrum of both lOO-by-150 and 30-by-500 s('t.s 

of quadratically distorted patterns were non-zero, as would be exp('cted following 

the loss of symmetry between the positive and negative halves of the data; how­

ever, non-Gaussianity does not necessarily imply non-linearity. The squared mag­

nitude of the normalised bispectrum and trispectrum, also known as bicoh('rellee 

and tricoherence, can be used to determine the degree of quadratic and cubic pha .... e 

Coupling between harmonically related components 6. The nth-order cohrrcnce is 

zero for a Gaussian process and non-zero but constant over all frequ('ncies for a 

linear non-Gaussian process [7]; otherwise peaks will appear where joint statistical 

dependencies between spectral components are introduced by non-linearities [401. 

6Three frequencies are harmonically related if one of them is the sum of the other two. 
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Test statistics for zero or constant bicoherence using the sampled bispectrum 

alone [41] or exploiting some asymptotic properties of the bispectrum estimator [42] 

are available as computer programs [43, 44], but were not considered because they 

are based on distributional results for stationary data and do not carryover easily 

to the trispectrum domain 7. Alternatives based on suitable ratios of higher-order 

spectra or directly on cumulants are also possible [47, 48], as are time-domain tests 

for specific types of non-linearity (see, e.g. [49, 50, 51]). 

Perspective views and contour maps of the bicoherence estimated with the TOIl 

method showed a visible peak at the frequency pair (fo, fo), indicating the presence 

of quadratic coupling as a direct result of the non-linearity, as opposed to a spon­

taneously excited independent mode at frequency 2fo. The conventional methods 

were also successful, although the degree of coupling was not as strong as with the 

TOR method, in accord with the view that conventional estimators are better as 

quantifiers of phase coupling, whereas AR methods are better as detectors [20]. 

With cubic distortion the fringe pattern remains symmetrically distributed; 

therefore, third-order cumulants and bispectrum should vanish like in the linmr 

case, and no quadratic phase coupling should appear. This was ind('ed confirmed 

by the tests. Fourth-order cumulants, on the other hand, were slightly larger than 

in the linear case for the 30-by-500 set but slightly smaller fOf the 100-by-150 set; 

with the latter set and a SNR of 20 dB, e.g., diagonal and other I-D slicl's fl'sembhl 

the slices of AR Gaussian processes of similar bandwidth, amplified by a factor of 

two and slightly distorted at the peaks and troughs. A non-zero ('stimate of the feal 

part of the trispectrum with the indirect method, and of real and imaginary parts 

with the TOR method, were sufficient to rl'ject Gaussianity, although the ov('rnll 

magnitude was slightly smaller than in the linear case with the in<iir('ct m('tho<i, 

and either slightly smaller or larger with the TOR Inrthoci, d<'I)(,IHling on the mOth'1 

order; the estimate was also slightly larger than in the linrar case with the dir('(·t 

method, but still not larger than with AR Gaussian dat.a sets. 

Both the indirect and the TOR methods managl'd to find the t.hird-ordrf har­

monic, prodUCing a peak at the frequency triplet (fo, fo, fo), although t.he d('gr('(~ 

of COupling, as measured by the indirect method, was quite w('ak at 20 dB. The 

direct method was not successful, even when resolution and detl'ct.ion capnhiliti<'s 

7Confidence intervals for the sampled tricohcrence have been dcrivcd only v('ry rN'('utiy [45, 4GJ. 
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were pushed to the limit by progressively reducing the amount of frequency smooth­

ing down to zero or by setting the threshold for peak detection to just above the 

sampled tricoherence mean. 

In conclusion, quadratic and cubic distortions have to be quite strong in order to 

influence the statistics of the fringe pattern and make it reasonably non-Gaussian 

and non-linear. Cubic distortion, in particular, makes the data density appear more 

Gaussian by raising the kurtosis towards zero when negative, although inflating it 

when positive. As kurtosis and, in general, all fourth-order moments influence the 

real part of the trispectrum, results of any Gaussianity or linearity tests based on 

fourth-order statistics will depend on the proportion of the interference region used 

in the test. Although this may not be critical at low SNRs, where Gaussianity 

prevails anyway, it emphasises the importance of the stationarity assumption \\'h('n 

implementing the tests. 

Chromatic aberration effects were simulated by delaying the wavelengths by dif­

ferent amounts in one arm of the interferometer, in order to obtain skewed visibility 

profiles as in [52], an example of which is shown in Fig. 7.5. 
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Fig. 7.5 A noise-free fringe pattern modified by chromat.ic ab('rratioIlH. 

Although the distribution of the data around their mran value rrmains sym­

metric, the process tends to become less Gaussian as the time-reversibility prop('rty 

is lost. Nonetheless, the spectrum and linearity tests failed to reveal the presrnre 
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of higher-order harmonics, stressing the fact that a dispersive medium does not 

introduce non-linear relations between the different wavelengths in the medium, 

although it causes a non-linear relation between wavelengths in air and the same 

wavelengths in the medium. 

The next section presents the main conclusions drawn upon a comparison of 

the standard LMS predictor with non-linear versions based on a truncated discrete 

Volterra series expansion [53, 54]. 

7.3.2 Non-Linear Volterra Filtering 

If d[n] is the output of a linear dynamical system with rational transfer function 

in cascade with a zero-memory non-linearity fNL as in Eq. 7.2, the overall process 

conforms to a particular kind of finite-memory non-linear system known as the 

Wiener model [55]. If fNL is onto and one-to-one, the inverse function fNt can be 

expanded as a power series in d[ n], 

1 b 2b2 5b3 

y[n] = -d[n] - -d2 [n] + -. d3 [n] - -7 d4 [n] + ... a a3 au a (7.4) 

for a non-linearity of the quadratic type, or 

1 b 3 [1 3b
2 
d5 [ ] y[n] = -d[n] - -d n + -7 n - ... 

a a4 a 
(7.5) 

for a non-linearity of the cubic type. 

On the top left of Fig. 7.6 is an AR model for the generation of y[n), the fringe 

pattern in noise. This signal goes through the non-linear function f N L to produce 

the distorted pattern d[n] shown in Figs. 7.3 and 7.4. The polynomial, or Voltrrrn, 

processor on the bottom right is a non-linear adaptive FIR filt('r which can take not 

only delayed samples of d[n], as a linear filter, but also their powers and all possihle 

combinations of higher-order products. 

If s[n] represents the noise-free pattern and the An approximation is valid, thrll 

s[n] = -aly[n - 1] - ... - apy[n - p] (7.6) 

Le., s[n] = f(y[n-l], ... , y[n- p]). Hence, from Eqs. 7.4 and 7.5 it follows t.hat s[n] 

can be expressed as an infinite expansion in odd and even powers of dclay<,d d[n) 

samples for a quadratic non-linearity, and of odd powers for a cubic non-linrarity 

(see work by the author in [56]). Since, in practice, a is close to one and b is small, 
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the infinite expansion can be replaced by a third-order approximation with terms 

up to the cubic 

s[n] = f{d[n -1], ... ,d[n - p], d2 [n -1], ... ,d2 [n - p], d3 [n -1], ... , d3 [n - p]) (7.7) 

for a quadratic non-linearity, or 

s[n] = f{d[n - 1], ... , d[n - p], d3 [n - 1], ... , d3 [n - p]) (7.8) 

for a cubic non-linearity. Therefore, including square and/or cubic terms at the 

filter input, in addition to the linear terms used by a linear filter, may help to give 

a better estimate of s[n]. 

v[n] 

y[n] 

D 
E 
L 
A 
Y 

d[n] 

d[n] 

ern] 

Fig. 7.6 AR model signal generator and FIR adaptive nOll-lincar filt,(lring. 

As the filter weights are updated by the adaptive algorithm in order to minimise 

the MSE between the filter output and either the quadratic signal 

d[n] = as[n] + bs2 [n] + av[n] + bv2 [n] + 21)s[n]v[n) (7.9) 

or the cubic signal 

d[n] = as[n] + bs3 [n] + av[n] + bv3[n] + 3bs2 [n]v[n] + 3bs[n)v2 [n) (7.10) 
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it may also be useful to include terms for the direct estimation of s2[n] or s3[n]. 

From Eq. 7.6 

s2[n] == f(y2[n - 1], ... , y2[n - p], y[n - l]y[n - 2], ... 

... , y[n - p + 1]y[n - p]) (7.11) 

s3[n] _ f(y3[n - 1], ... , y3[n - p], y2[n - l]y[n - 2], y[n - l]y2[n - 2], ... 

. .. , y2[n - p + l]y[n - p], y[n - p + l]y2[n - p]) (7.12) 

and from Eqs. 7.4 and 7.5 

s2[n] = f(d2[n - 1], d3[n - 1], ... , d2[n - p], d3 [n - p], d[n - l]d[n - 2], 

d[n - l]d2[n - 2], d2[n - l]d[n - 2], ... , d[n - p + l]d[n - p], 

d[n - p + l]d2[n - p], d2[n - p + l]d[n - p]) (7.13) 

s3[n] _ f(d3[n - 1], ... , d3[n - p], d2[n - l]d[n - 2], d[n - 1]d2[n - 2], ... 

... , d2[n - p + l]d[n - p], d[n - p + l]d2[n - p]) (7.14) 

neglecting terms higher than the third. 

Hence, a Volterra filter with a linear, quadratic, and possibly a cubic section 

may be able to provide all the necessary flexibility when dealing with a non-linearity 

of the quadratic type, while a linear plus a cubic section should suffice for a nOIl­

linearity of the cubic type. 

As the squares and cubes of the delayed d[n] samples are used for the simult.a­

neous estimation of s[n] and s2[n], and the cubes for the simultaneous estimation of 

s[n] and s3[n], the linear and non-linear estimates are not separable and will remain 

coupled at the filter output. This was verified by computer simulations. The main 

objective being the detection of the central fringe and not the separation of t.he 

signal into its linear and non-linear constituents, howev('r, such coupling mny not 

have any negative consequences on the identification process. 

Although the computational complexity becomes O(p2) for a s('cond-order and 

O(p3) for a third-order LMS Volterra filter implemented as in [57), it is possible to 

reduce the total operation count and memory storage considerably by exploiting 

some symmetry conditions on the coefficients. 

Each double product of the form d[n - i]d[n - j] in the quadratic section, with 

i =f=. j, is repeated twice; hence, only the updating of the upper triangular part of 
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the p x p weight matrix is needed, reducing the number of quadratic coefficients 

from p2 to p(p + 1) /2. 

Similarly, the number of triple products of the form d[n - i]tP[n - j] in the cubic 

section, with i =1= j, is 3p(P-l), but each arrangement is repeated three times. The 

number of triple products of the form d[n - i]d[n - j]d[n - k] is p(p -l)(p - 2) and 

could also be reduced sixfold, but are left out altogether as they are not containf'd in 

the series expansion of either s2[n] or s3[n]. The overall number of cubic coefficients 

can be reduced from p3 to p + p(p _ 1) = p2. 

Extensive computer simulations on noisy patterns, with the central fringe am­

plitude normalised to one before the distortion process, indicated that aLMS-based 

Volterra filter may not be able to add any value in terms of identification rate, even 

when the non-linearity parameter b is as high as one and different subsets of the 

quadratic and cubic weight sections are considered. 
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Fig. 7.7 Performance of linear and Volterra filters for the nOIl-lillelU' signal in Fig. 7.3. 

Fig. 7.7 shows the sub-fringe identification rate of the linear LMS filtrr (with 

only the linear terms in Eq. 7.7), that of the quadratic LMS (with the additional 

second-order terms in Eqs. 7.7 and 7.13), and that of the quadratic-cubic L!\1S 

(with all the terms in Eqs. 7.7 and 7.13) for the non-linear signal in Fig. 7.3. The 

horizontal dotted line refers to the identification rate from direct fringe visibility. 

The filter order p was set at 32 and, for each value of the step-size It, the 
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central fringe was allowed to move at random between pixels 33 and 1024 during 

1000 consecutive scans. The thresholding method of Chapter five was used to 

restrict the updating of the filter weights to the region within the lIe power points. 

Although some discrepancy from the linear case would be expected, because of the 

non-Gaussian shape of the fringe visibility profile, the points thus calculated still 

delimited the central twelve fringes. 

The linear filter outperformed the quadratic filter by 1.5 % in absolute terms 

(with /-t = /-to in both filters) while the quadratic-cubic filter outperformed the linear 

filter by just 0.4 %. 

Fig. 7.8 shows the identification rate of the linear LMS filter (with only the 

linear terms in Eq. 7.8) and that of the cubic LMS (with all the terms in Eqs. 7.8 

and 7.14) for the non-linear signal in Fig. 7.4. Here, the difference betwccn the two 

filters was contained to within 0.1 % (with p = po in both filters) . The inclusion of 

a quadratic section in the cubic filter caused a slight deterioration in performance. 
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Fig. 7.8 Performance of linear and Volterra filters for the non-linear signal in Fig. 7.4. 

-6 

Possible reasons for the relatively poor success of the Volterra approaeh are 

outlined below. 

When both signal and additive noise v[n] undergo distortion, not only v[n] and 

its square (cube), but also multiplicative terms ofthe form d[n-i]v[n] (d[n-i]v2[n]) 

are propagated through a linear filter and the linear section of a Volt('rra filt('r for 

158 



a quadratic (cubic) non-linearity; multiplicative terms of the form cP[n - i]v[n] 

(d3 [n - i]v[nD also pass through the quadratic (cubic) sections for a quadratic 

non-linearity, and d3 [n - i]v2 [n] terms pass through the cubic section for a cubic 

non-linearity. Using powers of delayed d[n] samples thus increases the number of 

noise terms interfering with the estimation process. 

This possibility was investigated by adding the noise after distortion of the clean 

signal had taken place, as was done with the linearity tests in the previous section. 

Although unrealistic in practice if ADC and amplifier circuitry are the main sources 

of systematic non-linearities, such assumption allows to drop all the multiplicative 

noise terms. 

The identification rate of both linear and Volterra LMS filters improved by the 

same amount. With a SNR of 20 dB and a cubic non-linearity parameter of one, 

the rate went up from 46.1 % to 60.4 % with the linear LMS and from 45.8 % to 

58.2 % with the third-order Volterra without a quadratic section. The improv('m('nt 

may have been partly due to the absence of the multiplicative noise terms, but it 

cannot be ignored that the non-linear additive noise term is now also not propagat('d 

through the filters. 

A second reason can be traced back to the various sources of coupling in and 

between linear, quadratic, and cubic sections. Non-linear operations increase the 

eigenvalue spread of the input autocorrelation matrix, as this becomes augmented 

with third and fourth (fourth and sixth) order moments sub-matric('s int.ro(iuc('d 

by the quadratic (cubic) section, inducing non-uniform conv('rg('ncc l)('hnviour in 

the non-linear weights even if the input was white [58]. \Vith correiat.('d dat.a the 

coupling between linear weights caused by statistical d('pend(\neies of t.he grn<ii<'llt 

estimates extends to the non-linear weights, making coupling across s('ct.ions caus(\(1 

by dependencies between the update equations more serious. A Volt.em\ L!\IS filt,('r 

implemented in the frequency domain (the non-linear equivalent of the f(l .. ~t LMS 

filters mentioned in Section 6.2) may help dccorrclate the input data and give fast.er 

convergence [59]. 

Coupling between linear and quadratic sections would not occur if t.he input 

data were Gaussian or, more generally, had zero t.hird-order mOJn<'l1ts [GO], and 

s[n] alone was estimated; in this case it would be possible to optimise the two s('c­

tions separately using two individual step-sizes, with the linear part of t.he optimum 
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second-order filter being equal to the optimum linear filter [61]. A second-order fast 

RLS Volterra filter, which would normally require O(p3) operations [62], could then 

be implemented in O(p2) operations [63]. Coupling between linear and cubic sec­

tions, on the other hand, would still remain [64], as fourth-order Gaussian moments 

are non-zero. 

Another explanation for the poor behaviour of the Volterra filter, which would 

apply to a quadratic but not to a cubic non-linearity, is that the power series 

expansion for fNl is only valid as long as the mapping between y[n] and d[n] is 

one-to-one, i.e. as long as y[n] > ;:. Violating this condition did, in fact, affect 

the performance of the Volterra LMS in greater degree than the linear LMS. 

Finally, a non-linear filter may be better at following the underlying distortions 

of the fringe pattern, but this is not essential for fringe order identification, as the 

ultimate aim is to recover the intensity peaks, and a linear filter may be able to 

model the linear signal just as well. This was tested by comparing the excess MSE 

of linear and Volterra LMS thresholded schemes over the second half of 1000-10ng 

sensing phases with the noise added after the distortion process and the st('p-size 

optimised for maximum identification rate. The error was defined as the diff('r­

ence between the predicted output and the noise-free distorted pattern, in ord('r to 

consider only the MSE in excess of the noise variance. 

It became apparent that a Volterra filter can indeed rrproduce the non-lin('ar 

pattern better than a linear filter. For example, with unit cubic distortion and 

additive noise at 20 dB (noise variance equal to 0.01) the excess MSE within the lie 

power points (innermost twelve fringes) averaged over the 500 scans was 2.73>< 10-3 

(27.3 % misadjustment) for the Volterra LMS with linear and cubic sections, and GO 

% larger (43.7 % misadjustment) for the linear LMS, although the identification rate 

over the same scans was 53.2 and 56.6 %, respectiv('ly. Over the four inn('rmost 

fringes the misadjustment was 27.5 % for the Volt('rra LMS and 39.5 % for the 

linear LMS. Superimposing predicted traces to the noise-fr('e pattern revealed that 

a Volterra filter is able to follow the low-amplitude distortions of the amplitlule­

modulated sinusoid more closely, although it may approximate the peaks less w('ll. 

The Volterra LMS was also capable of modelling the linear pattern as w('ll as 

the linear LMS. With zero distortion parameter and additive noise at 20 dO t.he 

misadjustment between the lie power points was 25.7 % for the Volt('rra LMS wit.h 
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linear and cubic sections, and 35.0 % for the linear LMS, although the identification 

rate was much higher for the latter (46.6 % against 35.2 %). Over the four innermost 

fringes the two filters had comparable misadjustment, this being 26.2 % for the 

linear LMS and 29.7 % for the Volterra LMS. 

7.4 Discussion 

This chapter has tried to answer the following question: is the fringe pattern of a 

WLI system evolving from a Gaussian process and, if not, can more appropriate 

modelling assumptions lead to higher identification rates ? 

If a linear dynamical system is driven by a Gaussian process, the system out­

put is also a Gaussian process and its higher-order statistics (cumulants) vanish. 

Cumulant-based algorithms thus only work for non-Gaussian processes. Ev('n then, 

third-order cumulants are only useful for non-symmetric processes, otherwise fourth­

order cumulants become necessary. 

The symmetry and time-reversibility properties characteristic of Gaussian pro­

cesses were easy to establish for the fringe pattern. Fourth-order cumulants and 

trispectral estimates, on the other hand, were seen to d{'pend not only on the numo{'r 

and length of the data sets used but, perhaps more importantly, on the bandwidth 

of the process under examination, even when the process itself was Gaussian. 

Moreover, the non-stationarity induced by the visibility profile wa.s rcsponsible 

for shaping the probability density of a sine-wave into a Gaussian function, eV{,1l 

when irregularities in the emission spectrum of the light source combincd to produce 

a non-Gaussian profile. 

Similarly, the violation of the higher-order stationarity condition assull1('d hy 

higher-order estimators played its part in classifying a non-stationary non-Gaussian 

signal as a stationary Gaussian one. 

The linearity tests described in this chapter assumed that the Gaussian noise 

was additive at the system output. If the non-linearity is camwd hy the ADC or 

amplifier circuitry, measurement noise goes through the non-linear process t.og('th<'r 

with other system noise. As the principle of superposition is not applicable, this 

internal noise cannot be translated to an additive, possibly COIOllf<'d, output noise 

Source as is normally assumed in linear identification [65]. IIence, it oeeomes Illurh 
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more difficult to separate the signal from the noise contribution, as any non-linear 

operation on a Gaussian process produces a non-Gaussian process; narrow-band 

noise will also be subjected to phase coupling. These tests tend therefore to be on 

the optimistic side when applied to real measurements. 

In addition, recent results on higher-order spectra suggest that extreme care 

must be exercised before drawing final conclusions from both Gaussianity and lin­

earity tests, even in the tacitly assumed additive noise case. It has been shown that 

the bispectrum of a sampled signal band-limited to [It,h] is zero if 2/1 ~ 12 and 

either Is > 3/2 or Is < 3/1 are satisfied, where Is is the sampling frequency [47]. 

Both conditions can easily be met in WLI systems, as Fig. 2.2 showed. The bieo­

herence of a linear non-Gaussian process has also been shown not to be a constant 

when coloured Gaussian noise is present [66]. These results will obviously carry 

over to the fourth-order spectrum. 

The next and final chapter presents a summary of the main results obtain('d in 

this thesis, and gives the interested reader some directions for further work. 
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Chapter 8 

Summary and Directions for 

Future Work 

8.1 Summary 

In this thesis a new approach to the central fringe identification problem in white­

light interferometry (WLI) systems has been proposed, based on batch and adaptive, 

linear and non-linear digital filtering algorithm schemes. 

The main motivation for the use of a digital filter in \VLI is the fact that 

the interference signal at the output of the system has long m('mory (Fig. 2.3), 

whereas the various noise sources arising in the system or at the det.ector have 

either very short memory or no memory at all. A filter can exploit this information 

and reconstruct a version of the signal which is less noisy than the original. 

The common assumption that the information is only linear and is fully COIl­

tained in second-order statistics (correlation) was relaxed by analysing non-lin('ar 

Volterra filters and linear filters based on higher-order statistics (cumulant.s). It 

was shown that an adaptive non-linear Volterra filter does not guarant('c a highcr 

identification rate than an adaptive linear filter, even when non-lin('ar distortion of 

the signal has taken place (Figs. 7.7-7.8); similarly, a batch cumulant-hased filt('r 

does not improve upon a batch corre1ation-ba.c;;cd filter (Table's 7.1-7.4) ('V('ll wh('n 

the fringe visibility profile does not have the usual Gaussian shape. Rm.'Ions for 

failing were given, corroborated by linearity and Gaussianity t('sts on the fringe 

pattern. 

Among the linear, correlation-based filters, it was found that ba.t.ch algorit.hms 
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(covariance, Burg, etc.) and adaptive algorithms (LMS, RLS, Kalman) were able to 

achieve the same identification rate for a given filter order (Fig. 3.5). Because of the 

possibility of operating in real-time, it became desirable to concentrate on adaptive 

algorithms, and especially on the LMS, the simplest and least computationally 

demanding of them all. To guarantee a competitive identification rate with the 

LMS, its step-size had to be finely tuned according to the filter order, signal-to­

noise ratio, and degree of non-stationarity (Figs. 4.1-4.3, 4.18). The forgetting 

factor in the RLS was much less influenced by changes in the filter order or in the 

external environment. Much effort was spent in analysing the LMS and RLS during 

convergence and tracking (Figs. 4.5-4.12,4.14-4.17). 

A thresholding technique was proposed to alleviate the slow convergence problem 

affecting the LMS, but failed in the task of increasing the identification rate and/or 

reducing the sensitivity to the step-size (Figs. 5.1-5.2). A novel forward-backward 

LMS algorithm, named MFB-LMS (Fig. 5.4) also failed. Combining the MFB-LMS 

with the thresholding technique did, however, succeed extremely well (Figs. 5.5, 

5.10-5.11). 

The new thresholded MFB-LMS scheme offered the following advantages: 

1. The identification rate (to sub-fringe level) was much higher than with other 

LMS-based schemes (Figs. 5.10-5.11), RLS-based schemes (Fig. 5.12), or 

batch correlation-based schemes (Fig. 5.9). 

2. The identification rate increased with the filter order p. lIence, the centroid 

method can be beaten with a moderate value of p (Figs. 5.8-5.9, 5.11). 

3. The unusable scanning range was approximately 2p samples or pixels, trans­

lating into a usable operating range of more than 90 % for a 1024-pixcl CCD 

array and a moderate value of p. The corresponding operating range with the 

centroid method may only be as high as 75 % (Fig. 5.8), as it is nee('ssary 

to maintain a minimum of symmetry between the two halves of the fringe 

pattern separated by the central fringe. 

4. Computational simplicity, limited memory requirements, and real-time mode 

of operation make it especially suitable for implementation on a single-chip 

DSP for fast and continuous measurements. 
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Possible disadvantages follow: 

1. Although the thresholding technique offers some protection against impul­

sive noise, the MFB-LMS was designed to handle additive white Gaussian 

noise. Modifications in the form of generalised LMS or order statistic LMS 

algorithms would be necessary when optimising the scheme for the coloured 

Gaussian case or to minimise the effects of occasional bursts of impulsive 

noise. The centroid method, on the other hand, is alleged to resist a certain 

amount of coloured Gaussian and impulsive noise. 

2. The addition of a standard electronic scheme for offset/baseline correction 

and power/frequency stabilisation of the light source is highly advisable; base­

line and power drifts, in particular, introduce non-stationarities which may 

adversely affect the identification rate. The centroid method, on the other 

hand, is only affected when the variations are fast enough to tilt or shift the 

centre of symmetry of the fringe pattern. 

3. The identification rate will also be affected, like in the centroid method, by 

asymmetries in the fringe pattern caused by asymmetries in the power spec­

trum of the source or by difficulties in system alignment. 

8.2 Directions for Future Work 

In addition to considering some of the alternative models and methods suggested 

in Chapter six, here are a few proposals which, in the author's opinion, could form 

an interesting extension to this thesis. 

• All the simulations conducted here assumed that the central fringe in a prac­

tical WLI system is always sampled precisely at its peak, which corresponds 

to the position of zero OPD. This allowed to control the SNR, defined as 

the ratio of the central fringe amplitude to the root mean square or standard 

deviation of the noise. Moreover, the fringe width was never an exact integer 

number of samples, which meant that the first fringe on either side of the 

central fringe was never sampled at its peak. In practice, the central fringe 

will rarely be sampled at its peak; each pixel on a CCD array, for example, 

stores an amount of charge proportional to the average light intensity falling 
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inside its area. There is thus an artefact when performing computer sim­

ulations with the above assumption, concerning the difference between the 

central fringe and first side fringe amplitudes, whose significance for practical 

measurements could be analysed. 

• Although shot and thermal noise in electronic components are thought to 

be white Gaussian, and measurement noise in general is broad-band Gaus­

sian, vibrations during scanning in temporally scanned WLI systems can be 

described as a narrow-band, probably non-Gaussian process. Speckle and im­

pulsive noise are also non-Gaussian. It would therefore be worth studying 

the characteristics of the noise in practical WLI systems, and to apply linear 

filters based on order statistics [1] when a certain amount of non-Gaussian 

noise corrupts the system output . 

• Implementation of a digital filtering algorithm on a single-chip DSP will ul­

timately involve an analysis of finite precision effects, including quantisa­

tion and round-off errors. LMS-based schemes are, in general, less s('nsi­

tive to finite wordlength and ill-conditioning than RLS-based schemes. LMS 

algorithms update the weights using instantaneous estimates of auto and 

cross-correlation, whereas RLS algorithms use implicit matrix inversion. 111-

conditioning of the data matrix is thus a more serious problem with the latter, 

as round-off errors accumulate and propagate from one iteration to the next. 

In one experiment, for example, the LMS algorithm could operate properly 

with as few as 7 bits, whereas fast RLS algorithms needed at least 10 bits [2]. 

Round-off errors in a 32-bit floating-point DSP should follow the same pattern 

as on a personal computer or workstation using the IEEE standard format for 

single precision representation (23-bit mantissa, 8-bit exponent, and one sign 

bit), which was the format used throughout this thesis, and can th('refore he 

easily anticipated. Quantisation errors caused by limited precision and over­

flow brough about by a small dynamic range in a fixed-point implementation 

may be harder to predict. 

Quantisation errors of the LMS filter weights are proportional to JL- 1 both 

during convergence [3] and steady-state [4, 5]. Quantisation errors in the 

correction term of the update equation may also take the algorithm to the 
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edge of stability [5]. It may well be that such effects are hardly felt by a 24-

bit or 16-bit fixed-point DSP, but it would be interesting to know the number 

of bits that can be excluded before the performance of the algorithm in a 

practical setting degrades . 

• On the modelling side, one may investigate time-lag dependencies and the 

minimum embedding dimension (see, e.g. [6, 7]) in order to improve pars i­

monity of representation . 

• On the signal processing side, one may try de-noising with wavelets [8]. 

Whereas the discrete Fourier transform uses basis functions (sines and cosines) 

which are infinite in extent, and thus loses all reference of time, the discrete 

Wavelet transform uses a set of basis functions derived from a prototype func­

tion which is finite in time. Dilations and translations of this prototype allow a 

representation of the signal at different time-scales and frequency resolutions, 

which is particularly useful for the analysis of both smooth and abrupt non­

stationarities. Of particular interest is the problem of choosing the type and 

amount of thresholding to be applied to the wavelet coefficients for optimum 

noise removal and signal reconstruction. 

As the Wavelet transform can be used iteratively to represent finer and fin('r 

details in the data, it may also be interesting to use various decomposition 

levels and combine estimates from each inverse 'Wav('let transform into an 

overall estimate for the reconstructed signal. A lot of research is going on at 

the moment into trying to find optimum combinations of models outputs (see, 

e.g. [9, 10]) . 

• Time series prediction with Support Vector learning machines is anoth('r re­

search possibility. The Support Vector (SV) method' was discov('reci in 19G5 

for constructing separating hyperplanes that minimise the numb('r of classifi­

cation errors in pattern recognition problems, and has now become a g('n('ral 

approach to function approximation, regression estimation and signal pro­

cessing problems [11]. The basic idea is to map the low-dimensional data 

vectors of the input space non-linearly onto high-dimensional vectors of a 

feature space, and use linear regression or classification in this space to con­

struct the optimum separating hyperplane. Vectors in the feature space that 
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lie closest to the separating hyperplane are called support vectors because if 

all other vectors were removed, the separating hyperplane would remain the 

same. Support vectors in regression can be interpreted as pulling the esti­

mate towards the response, and good experimental results have already been 

obtained in time series prediction [12]. 

• A Volterra expansion is the most general way of representing a non-linear 

time series model in terms of powers of its input sequence [13]. The finite­

parameter AR version used in Chapter seven was a special case, derived in 

order to provide a parsimonious approximation through the use of an FIR 

filter. 

Another special case is the class of bilinear models [14] which constitute the 

simplest non-linear extension to linear AR and ARMA models, and can ap­

proximate to an arbitrary degree of accuracy any "reasonable" Volterra ex­

pansion over a finite time interval [15]. 

An alternative parsimonious representation is offered by the threshold autore­

gressive (TAR) models [16], which make use of a piecewise-linear approxima­

tion to functions which are not analytic at all points because of discontinuities, 

and can therefore overcome the convergence difficulties experienced by the 

Volterra series when non-linear systems are modelled that include saturating 

elements 1. 

A non-parsimonious representation is instead offered by real-time recurr('nt 

neural networks [18], which have the ability to perform highly non-linear time­

varying input-output mappings by feeding the output of every neuron in the 

network back to the input, and are therefore well suited for non-lim'ar adaptive 

filtering or prediction of non-stationary signals. To cut down on the very high 

computational cost, which is of O(N4), where N is the number of neurons in 

the network, a modular pipelined structure consisting of AI small('r r('current 

networks in cascade may be used [19, 20], which necessitates a much low('r 

number N M of neurons per module and O(/lf Nt) operations per iteration. 

Critics of neural networks argue that it may be extremely difficult to know 

precisely what has been extracted from the data, as the relationships that 

1 See, e.g. [17] for a review of TAR models and related linearity tests. 
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take place inside the network are so complex that they are as yet not fully 

understood. There is also some fear among practitioners that they may not 

be sufficiently powerful to solve temporal tasks effectively, as the impact of 

changing a weight in the network - even if appropriate - is likely to be masked 

by other weights if their values are inappropriate, resulting in an error surface 

full of local minima [21]. On the contrary, the output of a Volterra filter is a 

linear function of its coefficients, and the MSE is a quadratic function with 

one global minimum. 
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Appendix A 

Glossary of Terms 

ADC analogue-to-digital converter 

AR autoregressive time-series model. AR models correspond to IIR filters 

ARMA autoregressive-moving average time-series model. ARMA models corre­

spond to IIR filters 

broad-band random process characterised by a smooth power spectral dmsity. 

Also known as wide-band 

CCD charge-coupled device detector which responds to the intensity of light 

central fringe fringe with the highest intensity in a WLI interference pattern. Its 

highest point corresponds to zero OPD 

coherence length maximum OPD within which interference effects can be ob­

served. Often expressed in number of interference fringes after sampling 

coloured noise random noise process consisting of a sequence of corrdated ran­

dom variables. Can be either broad-band or narrow-band 

convergence phase during which the initialised weights of an adaptive filter are 

updated to minimise an error function 

DAC digital-to-analogue converter 

DNS degree of non-stationarity. For a WLI output signal, it is high/low if the 

variation of signal power or SNR along the scanning axis is fast/slow rdative 

to the sampling rate or fringe width 
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driving noise the unobservable process which excites a discrete dynamical system 

DSP digital signal processing or processor 

dynamic range range of values that a device can process without overflow or 

distortion 

error function any function of the error signal or filter weights. Also called error 

surface when more than one weight is involved 

error signal difference between the observed signal and its estimate by a filter 

excess MSE difference between steady-state MSE and MSE of an optimum filter 

FB-LMS forward-backward LMS adaptive filtering algorithm 

FIR finite impulse response filter. The current output is a combination of the 

present input and a finite number of past inputs 

fixed-point number format in which a quantity is represented in computer hard­

ware as an integer 

floating-point number format in which a quantity is represented in computer 

hardware as a real number. Gives greater dynamic range than fix('d-point but 

creates round-off errors 

forgetting factor parameter controlling the speed of adaptation of the IlLS filt('r 

weights during convergence and tracking 

fringe identification the task of identifying the central fringe wh('n the int('rf('r­

ence pattern is corrupted by noise 

fringe visibility a function which provides amplitude-modulation of the light in­

tensity at the output of an optical interferometer. Well approximat,('d by a 

Gaussian profile in a WLI system 

fringe width number of samples forming a fringe after sampling 

gradient error the weight error in the LMS algorithm 
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IIR infinite impulse response filter. The current output is a combination of the 

present input and a finite number of past outputs, plus possibly a finite num­

ber of past inputs 

ill-conditioning a problem is ill-conditioned if its solution is very sensitive to small 

changes in the data 

inflexion points points at which the second derivative of the Gaussian fringe vis­

ibility profile becomes zero 

lag error the steady-state contribution to the MSE which is additional to the 

weight error and is only due to the non-stationarity of the environment 

LED light-emitting diode light source 

linear process any process which results as a linear combination of its elementary 

constituents. In an ADC or DAC, linearity is the precision with which the 

digital output/input tracks the analog input/output 

LMS least mean square adaptive filtering algorithm 

LS least squares filter or error criterion 

MA moving average time-series model. MA models correspond to FIR filters 

MFB-LMS modified forward-backward LMS adaptive filtering algorithm 

misadjustment ratio between excess MSE and MSE of an optimum filter 

MSE mean square error. A quadratic function of the filter weights when the filt('r 

is a linear function of its weights 

narrow-band random process characterised by a peaked power sp('ct.ral d(,Ilsity 

OPD optical path difference between two light beams in an optical int('rf('romet('r 

power spectral density the distribution of power/energy as a funct.ion of fre­

quency. Also called frequency, power or energy spectrum 

PDF probability density or distribution function. The dist.ribution of signal valu('s 

generated by a deterministic or random process 
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process deterministic or random mechanism responsible for the generation of the 

observed signal or data sequence 

quantisation error error introduced by the computer hardware when storing a 

continuous quantity with a finite wordlength 

RLS recursive least squares adaptive filtering algorithm 

round-off error error introduced by the computer hardware when performing op­

erations between real numbers. Accumulates with increasing amounts of cal­

culation, and determines the stability or instability of a numerical algorithm 

SNR Signal-to-noise ratio. Usually expressed in decibels (dB) 

stability a system is stable if its output remains bounded in response to a bounded 

input. An algorithm is stable if round-off errors introduced at one stage of the 

computation do not propagate through later stages with increa..c:;ing magnitude 

stationary random process whose statistics are time-invariant 

steady-state phase following convergence in a stationary or non-stationary envi­

ronment 

step-size parameter controlling the speed of adaptation of the LMS filtE'r weights 

during convergence and tracking 

sub-fringe identification the task of identifying the sample closest to the highest 

point in the central fringe, when the interference pattern is corrupt('d by noise 

tracking steady-state phase during which the weights of an adaptive filtrr have to 

be readjusted in response to non-stationaritics 

truncation error error introduced by an algorithm when calculating a discrete 

approximation to a continuous function 

weight error steady-state contribution to the MSE of an adaptive algorithm in a 

stationary environment. Also called gradient error wh('n rcf('rring to the L?\IS 

white noise random process consisting of a sequence of uncorrelated random vari­

ables. Characterised by a flat power spectral density 
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WLI White-light interferometer. An optical interferometer which uses a broad­

band light source 

wordlength number of bits or bytes used to store a quantity in the computer 

hardware 
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Appendix C 

List of Software Tools 

The covariance and modified covariance algorithms, Burg method, and the sub­

optimal ARMA procedure of Section 3.3 were implemented in Fortran code as 

supplied in 1. 

The algorithms for Tables 3.1-3.2 and for Figs. 5.3 and 7.1 were written in 

S-Plus 2 (a registered trademark of Mathsoft, Inc.). 

All other algorithms were derived from the relevant literature (where applicable), 

written in Fortran by the author and run on a Sun-Spare (a trademark of Sun 

Microsystems, Inc.) workstation under the Unix operating system (a registered 

trademark of UNIX Systems Laboratory, Inc.) in a time-sharing environment. 

The text was typeset in LaTeX 3, a special version of TeX (a trademark of the 

American Mathematical Society). 

All figures were produced with Gino for Fortran (a registered trademark of 

Bradly Associates Ltd.), with the exception of Figs. 1.4, 2.1, 3.1-3.4, 5.4 and 7.6, 

which were produced directly with LaTeX commands. 

1. S. L. Marple, Jr., Digital Spectral Analysis with Applications. Englewood 

Cliffs, NJ: Prentice-Hall, 1987. 

2. S-PLUS Guide to Statistical and Mathematical Analysis, Version 3.3. Seattle, 

WA: Statsci, a division of Mathsoft, Inc., 1995. 

3. L. Lamport, l!)'J'E'(: A Document Preparation System. Reading, MA: Addison­

Wesley, 1986. 
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