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ABSTRACT: Seismic accelerograms are inherently nonstationary signals since both the intensity and fre-
quency content of seismic events evolve in time. The adaptive chirplet transform is a signal processing tech-
nique for joint time-frequency representation of nonstationary data. Analysis of a signal via the adaptive chir-
plet decomposition in conjunction with the Wigner-Ville distribution yields the so-called adaptive
spectrogram which constitutes a valid representation of the signal in the time-frequency plane. In this paper
the potential of this technique for capturing the temporal evolution of the frequency content of strong ground
motions is assessed. In this regard, simulated nonstationary earthquake accelerograms compatible with an ex-
ponentially modulated and appropriately filtered Kanai-Tajimi spectrum are processed using the adaptive
chirplet transform. These are samples of a random process whose evolutionary power spectrum can be repre-
sented by an analytical expression. It is suggested that the average of the ensemble of the adaptive chirplet
spectrograms can be construed as an estimate of the underlying evolutionary power spectrum. The obtained
numerical results show, indeed, that the estimated evolutionary power spectrum is in a good agreement with
the one defined analytically. This fact points out the potential of the adaptive chirplet analysis for as a tool for
capturing localized frequency content of arbitrary data- banks of real seismic accelerograms.  
 
Keywords: chirplet decomposition, joint time-frequency analysis, non stationary random process, evolution-
ary power spectrum, earthquake accelerograms  

 
 

1 INTRODUCTION 

The non-stationary features of strong ground mo-
tions have long been recognized by the earthquake 
engineering community by studying accelerograms 
pertaining to actual seismic events. The dispersion 
of the propagating seismic waves reflects on the 
evolving frequency composition and intensity of 
seismic signals in time. Ordinary Fourier analysis 
provides only the average spectral decomposition of 
a signal, and thus cannot adequately represent the 
time- dependent frequency content of seismic sig-
nals. Clearly, the use of a joint time- frequency 
analysis is a more reliable approach for the study of 
such signals, and leads to a better capturing of their 
non-stationary nature.  

    In recent years the wavelet transform has be-
come a potent signal processing tool that can be used 
to yield valid time-frequency representations of non-
stationary signals; see for instance Mallat (1998) and 
Spanos and Failla (2005). However, a more special-
ized signal analysis scheme for the purpose is the so-
called adaptive chirplet transform (ACT) (Qian, 

2001). The latter method resembles the standard 
wavelet transform in the sense that it also utilizes 
oscillatory analyzing functions of localized energy 
in time, namely Gaussian chirplets, for the decom-
position of signals. Nevertheless, the ACT is capable 
of representing a greater variety of signals since 
Gaussian chirplets are more versatile functions in-
corporating more than wavelets “degrees of free-
dom” (Baraniuk and Jones, 1996). It is also more ef-
ficient enabling more economical representations of 
signals with fewer terms. This is due to the fact that 
Gaussian chirplets form frames, and thus a set of 
these functions is over-determined (Chen et al., 1998 
and Qian, 2001). Different subsets from a collection 
of Gaussian chirplets are chosen for the representa-
tion of different signals that echoes on the adaptive 
character of the method. 

Furthermore, the ACT scheme circumvents the 
obscure, in many practical cases, signal representa-
tion on the time-scale domain (scalogram), which is 
interwoven with the wavelet transform. Instead, it 
directly leads to the adaptive chirplet spectrogram: 
an amenable to physical interpretation distribution of 



the energy of the original signal on the time-
frequency plane (Qian, 2001 and Wang et. al., 
2002). This is achieved by exploiting the appealing 
mathematical properties of the Wigner-Ville distri-
bution (Cohen, 1995). 

In light of the above, the main motivation of the 
present study is to assess the appropriateness of the 
ACT for capturing the localized frequency content 
of strong ground motions, and for tracing the tempo-
ral variation of their spectral composition. To this 
end, a uniformly modulated non-stationary stochas-
tic process as introduced in Priestley (1965) is con-
sidered. It is characterized by an analytically defined 
evolutionary filtered Kanai-Tajimi power spectrum 
(Clough and Penzien, 1993). Non-stationary time 
histories representing artificial seismic accelero-
grams compatible with this evolutionary power 
spectrum are generated and analyzed via the ACT. 

To extend the applicability of the ACT for the 
study of random processes, it is proposed to treat the 
average of the adaptive chirplet spectrograms of the 
individual simulated accelerograms as an estimate of 
the underlying evolutionary power spectrum. Obvi-
ously, a comparison of the analytic evolutionary 
power spectrum with its estimate provided by the 
averaged adaptive chirplet spectrograms serves as an 
indication of the effectiveness of the ACT for the 
undertaken purpose. 

2 THE ADAPTIVE CHIRPLET TRANSFORM 

The adaptive chirplet transform (ACT) is a signal 
analysis technique specifically developed for joint 
time-frequency representation of nonstationary data. 
The process of any finite energy non-stationary sig-
nal via this method is performed in two stages. In the 
first stage, the signal is decomposed onto a set of 
analyzing functions of special structure, the Gaus-
sian Chirplets. This is accomplished by making use 
of a special numerical procedure, the Matching Pur-
sue (MP) algorithm. Subsequently, the Wigner-Ville 
distribution (WVD) of the decomposed signal is 
computed to yield the so-called Adaptive Spectro-
gram (AS). The AS constitutes an image of excep-
tional resolution of how the energy of the signal is 
distributed on the time-frequency plane (Qian, 
2001). The remainder of this section discusses 
briefly the most pertinent of the mathematical details 
of the ACT. 

2.1 Signal decomposition via the Matching Pursue 
Algorithm 

Consider the Gaussian function of unit energy and 
standard deviation, centered at t= 0. That is,  
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The Gaussian chirplet  is a four- parametered 
function described by the equation 

( )kh t

( )

( ) ( )2

2

- -
2

k
k k ki t t t t

π

β ω

⎩
⎫⎛ ⎞+ ⎬⎜ ⎟

⎝ ⎠⎭

2
4 exp - -k k

k k
a ah t t t⎧= +⎨

   (2) 

It is constructed by introducing four successive 
transformations on the Gaussian function namely: 
scaling in time by αk, shifting in time and in fre-
quency by tk and ωk, respectively, and multiplying 
by a linear frequency modulation signal of chirprate 
βk (Mann and Haykin, 1995). Gaussian chirplets at-
tain finite effective support both in the time and in 
the frequency domain as illustrated in Figure 1. 
Thus, they are capable of capturing the local charac-
teristics of highly non-stationary signals in both do-
mains. 

 
 

 
Figure 1. Wigner-Ville distribution of a Gaussian Chirplet with 
parameters αk= 0.8; tk = 10; ωk = 10; βk = 3 

 
 
Consider a non-stationary signal ( )x t of finite en-

ergy satisfying the condition  

( ) ( )2 2
E x t x t dt
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∞
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where E is the total energy of the signal. Developed 
independently by Mallat and Zhang (1993), and 
Qian and Chen (1994), the matching pursue (MP) 
algorithm, allows the decomposition of any signal 
satisfying Equation 3 into a linear combination of 
any set of analyzing functions (dictionary) (Chen et 
al., 1998). Employing a dictionary consisted of 
Gaussian chirplets the MP algorithm yields the fol-
lowing decomposition of the signal ( )x t : 

( ) ( ) ( )k k
k
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where Ak are the expansion coefficients determined 
sequentially by solving the optimization problem  
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and r(t) is the final residual.  
For k=0 the original signal k( ) ( )x t x t=  is pro-

jected onto all the functions of the dictionary, and 
the coefficient A0 is determined from Equation 5. 
The residual ( )1kx t+  is then computed by the equa-
tion   

( ) ( ) ( )1k k k kx t x t A h t+ = − .          (6) 

The same procedure is repeated for the residual it-
eratively, and the algorithm terminates when the en-
ergy of the final residual drops below a predefined 
level.  

By considering unit energy functions as in Equa-
tion 2, that is 
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it can be readily proved that the energy of the signal 
can be expressed as (Qian, 2001) 
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This fact shows that the previously described algo-
rithmic process conserves the energy of the signal.  

The algorithm outlined in Equations 4~6 is based 
on a prescribed dictionary, whose size suggests a 
trade-off between the achieved accuracy of the rep-
resentation of the original signal, and the computa-
tional cost. Clearly, more accurate representations 
require larger dictionaries, and thus excessive com-
putations. In the present study an efficient refine-
ment scheme introduced by Yin et al. (2002), is 
adopted.  

 

2.2 Wigner-Ville distribution of the decomposed 
signal 

The WVD of an arbitrary signal ( )x t   is defined by 
(Cohen, 1995) 
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The Gaussian chirplet is the most general form of 
function whose WVD  
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is non-negative everywhere (Cohen, 1995). Thus, 
the WVD leads to a physically meaningful distribu-
tion of the energy of the Gaussian chirplet on the 
time-frequency domain (Figure 1).  

Assuming the energy of the final residual to be 
negligible, application of the WVD in both sides of 
Equation 4 yields 
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where the first summation corresponds to the auto-
WVD terms of the analyzing chirplet functions, and 
the second summation corresponds to their cross-
WVD terms. Making use of the energy conservation 
properties of the MP algorithm and of the WVD 
(Cohen, 1995), it can be proved that the energy of 
the cross-WVD terms in the above equation vanishes 
(Qian, 2001). That is, 
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Hence, the cross-term free adaptive spectrogram 
(AS) of the decomposed signal ( )x t  using the MP is 
defined as (Qian and Chen, 1994) 

( ) (2,
kx k h

k
AS t A WVD t ),ω ω=∑ .      (13) 

The AS is always non-negative, Equation 10, and 
preserves the energy of the original signal. Clearly, 
it is a powerful tool of representing any signal in the 
joint time-frequency domain. 

3 EVOLUTIONARY FILTERED KANAI-
TAJIMI POWER SPECTRUM 

Under the assumption of a slowly-varying time-
dependent modulation (envelope) function A(t), the 
evolutionary power spectrum S(t,ω) of a uniformly 
modulated non-stationary random process yns(t) can 
be analytically expressed as (Priestley, 1965) 

( ) ( ) ( )2
,S t A t Sω ω= ,           (14) 



where S(ω) is the power spectrum of a stationary 
random process y(t). Then, the underlying separable 
non-stationary random process is given by the equa-
tion (Priestley, 1965) 

( ) ( ) ( )nsy t A t y t=  .            (15) 

It is noted that the preceding definition of the non-
stationary process implies that all frequency compo-
nents exhibit exactly the same temporal variation. 
This a special form of the more general case where 
the modulation function varies both in time and in 
frequency.  

Herein, the commonly used Bogdanoff-Golberg-
Bernard (BGB) envelope function (Bogdanoff et al., 
1961) 
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is adopted, where tp is the time instant for which the 
function attains its peak value and c is a normaliza-
tion parameter such that A(tp) = 1. 

The stationary part y(t) of the non-stationary 
process of Equation 15 is defined by an appropri-
ately filtered Kanai-Tajimi power spectrum. It is ex-
tensively used for ground motion spectral represen-
tation (Clough and Penzien, 1993). According to this 
model the seismic fault is assumed to be a source of 
stationary seismic waves, with unbiased frequency 
content, statistically described by a band-limited 
white noise power spectrum. The propagating seis-
mic waves are first filtered by a high-pass filter 
which is meant to capture the impact of the geologi-
cal formations of the crust of the Earth (the so-called 
bedrock). Then the Kanai-Tajimi filter is used in 
cascade to account for the relatively soft surface soil 
deposits (Kanai, 1957 and Tajimi, 1960).  

Mathematically, the resulting spectrum is given 
as the product of the previously discussed filters 
with white noise input of intensity So and cut-off fre-
quency ωb. That is, 
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where the ωf and ζf are the natural frequency and 
damping ratio of the bedrock, while the ωg and ζg are 
the respective parameters for the soil deposit.  

4 ARMA SIMULATION 

A discrete stationary stochastic process  compati-
ble with a predefined (target) power spectrum with 
cut-off frequency ω

y

b can be generated as the re-
sponse of a linear time-invariant autoregressive 
moving average (ARMA) digital filter subject to 
band-limited white noise excitation (Spanos and Mi-
gnolet, 1986). In this respect, the r-sample of an 
ARMA(p,q) process is computed as a linear combi-
nation of the previous p samples plus a convolution 
term involving the white noise input as follows 

[ ] [ ] [ ]
1 0

k l
k l

y r b y r k c w r l
= =

= − − +∑ ∑ −      (18) 

where the bk and cl are the coefficients of the ARMA 
filter. The symbol w denotes a discrete white noise 
process band-limited to ωb with autocorrelation 
function 

[ ] [ ]{ } 2 b ijE w i w j ω δ=            (19) 

where E{·} is the operator of mathematical expecta-
tion and δij is the Kronecker delta. To avoid aliasing 
the sampling period of the discrete process T should 
be related to the cut-off frequency through the Ny-
quist relation 

b

T π
ω

=                  (20) 

The objective is to determine the filter coeffi-
cients bk and cl such that the squared modulus of the 
frequency response of the filter  

( ) ( ) 2i T
yyS H e ωω =             (21) 

matches the target spectrum. In this equation H is 
the transfer function of the ARMA filter which in Z-
transform notation reads as 
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In the ensuing analysis the auto/cross-correlation 
matching (ACM) procedure was used to determine 
the unknown coefficients. The main idea is to first 
construct a relatively long autoregressive (AR) filter, 
in the context of the standard linear prediction the-
ory, to closely approximate the target spectrum. 
Then, matching of both the output auto-correlation 
and the input/output cross-correlation functions be-
tween this preliminary AR and the final ARMA 
model is enforced. Eventually, the bk and cl coeffi-
cients are calculated by solving a p+q by p+q system 
of linear equations. More details on the ACM proce-
dure can be found in Spanos and Zeldin (1998). 

5 NUMERICAL RESULTS 

To demonstrate the effectiveness of the ACT for 
capturing the temporal evolution of the frequency 
content of earthquake accelerograms, artificial non-
stationary time histories compatible with an appro-
priately defined evolutionary power spectrum were 
generated and processed. 

Specifically, the ARMA method discussed in the 
previous section was used for the simulation of a 
discrete stationary random process taken to be com-
patible with the filtered Kanai-Tajimi spectrum 
(hereafter target spectrum), as given by Equation 17. 
The adopted values of the required parameters for 
the complete definition of the target spectrum were 
ωf = 0.40Hz, ωg = 4.0Hz and ζf = ζg = 0.60 which 
correspond to relatively stiff soil conditions. The in-
tensity of the white noise So was taken equal to 
398cm2/sec3 so that the variance of the target spec-
trum to be 104cm2/sec4 and the cut-off frequency 
was taken equal to 40π rad/sec. The thus defined 
target spectrum is shown in Figure 2. Note that the 
maximum spectral value is attained at approximately 
3.3Hz. 

 

 
Figure 2. Target filtered Kanai-Tajimi power spectrum for stiff 
soil conditions and its ARMA(40,40) filter approximation 

 
An ARMA model of order (40,40) provided vir-

tually perfect matching between the target spectrum 
and the frequency response of the ARMA filter as is 
seen in Figure 2.  

A collection of 250 stationary time histories of 
25sec duration each were generated using Equation 
18 sampled at T= 0.025sec as Equation 20 requires. 
The associated non-stationary simulated seismic ac-
celeration records were synthesized by the discrete 
form of Equation 15 adopting the BGB modulating 
function discussed earlier. For the purposes of the 
present study tp was chosen equal to 4sec, and the 
resulting shape of the BGB envelope is shown in 
Figure 3. 

 

 
Figure 3. The Bogdanoff-Golberg-Bernard modulating function 
for tp= 4sec 
 

The acquired non-stationary time histories are 
compatible with the evolutionary power spectrum 
which is mathematically expressed by the closed 
analytic formula of Equation 14. Shown in Figure 4 
is the three-dimensional surface of this theoretically 
obtained spectrum along with its contour plot.  

Subsequently, the adaptive spectrograms (ASs) of 
the non-stationary records considered were calcu-
lated by Equation 13. Obviously, if the ACT is ca-
pable for providing valid representations of seismic 
accelerograms in the time-frequency plane, one 
should expect that the average of the ASs of the in-
dividual non-stationary samples should constitute an 
adequate approximation of the analytically known 
underlying evolutionary power spectrum. Implicit in 
this claim is the assumption that the number of the 
records processed (250) is sufficiently large to yield 
statistically dependable results. Indeed, the average 
of the above mentioned ASs together with its corre-
sponding contour plot presented in Figure 5 is found 
to be in a good agreement with the analytically ob-
tained evolutionary power spectrum of Figure 4. 

In Figure 6, cross-sections of the surfaces of Fig-
ures 4 and 5 along the frequency axis at various time 
instants (instantaneous spectra) are superimposed to 
facilitate the comparison. A relatively small discrep-
ancy between the analytical instantaneous spectra 
and those obtained from the averaged ASs of the 
simulated records at times when the maximum am-
plitude of the time histories is expected (around the 
4th second), can be observed. In particular, it is 
noted that in the second case the peak values are at- 



 
 
 
 

Figure 4. Evolutionary filtered Kanai-Tajimi power spectrum as obtained by equation 14 

Figure 5. Estimated evolutionary filtered Kanai-Tajimi power spectrum given by the average of the adaptive spectrograms of the 
simulated non-stationary accelerograms  

 



 
Figure 6. Instantaneous power spectra of the simulated non-stationary accelerograms and of the analytically defined evolutionary 
filtered Kanai-Tajimi power spectrum  

 
Figure 7. Position of the maximum attained values of the estimated evolutionary filtered Kanai-Tajimi power spectrum on the time-
frequency plane (Ridgeline of the surface of Figure 4) 



 
Figure 8. Estimated modulating envelopes for various frequency levels plotted together with the analytically defined Bogdanoff-
Goldberg-Bernard modulating envelope  

tained at slightly higher frequencies than the theo-
retically predicted 3.3Hz where the analytically de-
fined filtered Kanai-Tajimi spectrum attains its 
maximum value at all times. This observation is con-
firmed by examining the “ridgeline” of the surface 
of Figure 5 as provided in Figure 7 (highly oscillat-
ing dotted line), which fluctuates around a mean 
value of approximately 3.3 Hz. To facilitate the in-
terpretation, Figure 7 also provides a smooth (con-
tinuous) line obtained by low-pass filtering the 
highly oscillating ridgeline. Clearly, the maximum 
deviation of this smoothed ridgeline from the mean 
value of 3.3Hz is exhibited between the 3rd and the 
6th second. After the 12th second the observed peak 
values of the averaged ASs occur at lower frequen-
cies than  3.3 Hz.  However,  this last part of the plot 
is not crucial in the sense that the accelerograms 
have already decayed significantly and most of the 
energy of the signal has already been released.    

Furthermore, by considering cross-sections of the 
surface of Figure 5 along the time axis the modulat-
ing envelopes at various frequency levels as esti-
mated by the averaged ASs are obtained, as shown 
in Figure 8. The same figure accommodates the 
theoretical modulating envelope ( ) 2

A t  (continuous 
line), which remains the same at all frequencies. In 
general, the estimated envelopes are reasonably 
close to the BGB modulating function used in defin-
ing the non-stationary stochastic process under con-
sideration. Nevertheless, there is a noticeable shift to 

the right of the lower frequency components during 
the first 5 seconds while the higher frequency com-
ponents tend to delay after the 9th second. These 
trends suggest that although the simulated records 
were generated as samples of a uniformly modulated 
non-stationary random process, there is a certain fre-
quency dependence of the actual modulating enve-
lopes. It is not a coincidence that this occurs at the 
time intervals where the rate of change of the 
adopted modulating function becomes significant 
and the assumption of the slowly-varying function 
becomes less reliable. 

 

6 CONCLUSIONS 

Earthquake accelerograms are inherently non-
stationary as their intensity and frequency content 
evolve with time. An effort to capitalize on recent 
advances in the field of joint time-frequency analysis 
for the representation of such signals has been made. 

 Specifically, the adaptive chirplet transform 
(ACT) has been employed for processing a collec-
tion of simulated seismic accelerograms character-
ized by an evolutionary power spectrum which ad-
mits a known analytical expression. It has been 
suggested that the average of the obtained adaptive 
chirplet spectrograms of the individual accelero-
grams can be viewed as an estimate of the underly-



ing evolutionary power spectrum. In general, beyond 
minor discrepancies, the shape of the averaged adap-
tive spectrograms has been found to be adequately 
close to the analytical expression of the evolutionary 
power spectrum. In this manner, the appropriateness 
of the adaptive chirplet analysis for capturing the 
evolutionary nature of the spectral content of appro-
priately simulated artificial seismic signals is par-
tially confirmed. Obviously, this assessment can be 
extended to include real recorded strong ground mo-
tions, as well. 

Furthermore, it has been noted that although the 
signals considered were realizations of a uniformly 
modulated random process, the numerical results in-
dicate slight frequency-dependent deviations of the 
actual modulating envelopes from the adopted theo-
retical one. The latter suggests that caution should be 
exercised when adopting the Priestley (1965) model 
for the simulation of non-stationary data as realiza-
tions of separable (uniformly modulated) non-
stationary random processes. In cases which the as-
sumption of a slowly-varying time envelop is 
severly violated the proposed analytical expression 
for the evolutionary power spectrum is not valid; It 
cannot effectively represent the temporal evolution 
of the frequency content of the process. Clearly, the 
ACT can serve as a validation tool to assess the 
“slowly-varying” feature of certain modulation en-
velopes which have been extensively used over sev-
eral years for the definition of separable non-
stationary stochastic process models in earthquake 
engineering.  
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