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A B S T R A C T

The on-chip scale microring circuit is proposed to numerically investigate the supercontinuum (SC) generation of
light power. The device is formed by the chalcogenide Panda-ring resonator with the nanoscale planar wave-
guide using Ge11.5As24Se64.5 chalcogenide glass channel waveguide, air-clad and MgF2 glass for lower cladding.
The waveguide is designed to exhibit normal dispersion along with a low-energy pumped at 1.55 μm using a
short pulse, which has the duration of 50 fs and peak power ranging from 1W to 100W. The numerical result
obtained has shown a good-quality SC generation of both the spectral bandwidth and high output peak power.
All SC spectral extended to more than 13 μm by cumulative Kerr nonlinearities. The obtained results can be
useful for developing new experimental work in the important area of SC generation on compact chip broadband
sources, which can be used in both infrared and radio wave applications.

Introduction

Supercontinuum (SC) generation is an important spectrum width
that simultaneously covers a wide spectral range of applications in
molecular fingerprint spectroscopy, optical coherent tomography,
broadband sources and spectroscopy [1–3]. One of the applications has
received a lot of interests that has increasingly become a focus for re-
search is the broadband mid-infrared (MIR) SC generation. This is be-
cause the amplitudes of bond vibration increase when absorbing MIR
light of the same frequency due to oscillation frequencies of bright MIR
light sources that match the frequencies of characteristic vibrations of
molecular bonds. A nonlinear material as chalcogenide glass (ChG) has
recently emerged as a special material with unique properties to pro-
vide MIR transparency with selenides transmitting 0.7–33 μm [4]. This
material has a large ultra-fast nonlinearity amongst other glass mate-
rials, which make them attractive for the real device fabrications and
applications in SC generations [5]. High optical and thermal stability
can be obtained, where the intense illuminations are applied by using

the Ge11.5As24Se64.5 glass which has the excellent film-forming prop-
erties [6]. Also, it was used in the design and optimizing planar wa-
veguides for SC generations with suitably designing GVD tailored to fall
in the zero-dispersion wavelength (ZDW) region close to the central
wavelength of the pump [7,8].

The nonlinear materials play an important role in photonic crystal
fibers, optical waveguide and optical ring resonators [9–12], which has
experienced a revolutionary development on the variety of applications
such as optical filters, optical sensing, modulators, laser, broadband
sources, telecommunications, SC generation and so on [13–15]. In these
studies, a Kerr nonlinearity is assumed in such a way, the refractive
index varies in response to the optical intensity instantaneously
[16–18]. Due to compactness and suitability of the ring resonator wa-
veguides, these devices have recently attracted considerable attention
for the integrated photonics circuit applications. Recently several ex-
perimental and theoretical investigations were reported such as, in the
case of the optical waveguide for SC generation in silicon nanowire,
As2S3 chalcogenide planar waveguide, ChG planar waveguides [19–21]
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etc. SC generations were generated by launching a femtosecond pulse
polarized (soliton) in the nonlinear waveguide. The input pulse excites
the fundamental mode, which can propagate in the forms of either self-
phase modulation in normal dispersion regime or higher-order soliton
fission in anomalous dispersion regime. This means, that the resulting
spectral output range depends on high input peak power, but the output
peak is low in the time domain. In addition, intensity-dependent non-
linear ring resonators have been experimentally demonstrated by
making use to enhance their effects with cumulative nonlinearities
[22–28].

In our study, we have demonstrated the PANDA ChG ring resonator
made of optical ChG waveguide consists bus waveguides and ring re-
sonators as shown in Fig. 1(a). It can be used to create a good-quality SC
generation of both spectral bandwidth and high output peak power
which it can be generated by cumulative nonlinearities. The ChG wa-
veguide geometries were designed from a dispersion-engineered
Ge11.5As24Se24.5 glass rectangular channel waveguide with air on top
and MgF2 glass. MgF2 glass is used as a lower cladding material. In
order to obtain the ZDW close to the pump wavelength with FDE, the
dispersions were tailored. Consequently, the numerical simulation of
both the bus waveguides was performed. The GNLS with SSFM has been
used for the computations [29,30]. The ring resonators analyses ana-
lysis has been performed under the Kerr nonlinearity conditions uti-
lizing the iterative method [31–34]. The ChG Panda-ring resonator is
created on both principles that the dynamic transmission properties can
be calculated. Thus, the ChG Panda-ring resonator is an important key
to combine ultrafast optics and to apply compact on-chip ultra-wide
optical broadband SC technologies.

Numerical analysis of nonlinear Panda ring resonators

Fig. 1(a) shows the schematic diagram of the ChG Panda-ring re-
sonator made of the Ge11.5As24Se64.5 Chalcogenide glass rectangular
channel waveguides designed with air on top, where the MgF2 glass is
used as the lower cladding material. The bus waveguide has a length of
Lb (= nλ), where the ring waveguide has a length of LR (= 2πR=nλ),
and the right and left rings have length of Lr,l (= 2πr= nλ/4), where R
and r are the ring radius, n is an integer, λ is the pumped wavelength
and κ is the coupling coefficient. To generate the SC, the dispersion of
the waveguide play an important role due to its specific geometry that
can be tailored to fall in the near ZDW with a suitable design on a
material dispersion. The wavelength-dependent linear refractive indices

of Ge11.5As24Se64.5 and MgF2 [35] glasses were obtained using the
Sellmeier equation over the ranges of wavelength applied in the si-
mulation. The finite difference Eigenmode solver was used to calculate
the mode dispersion of the ChG waveguide over the wavelength range.
The effective mode index is neff= λβ(ω)/2π where β(ω) is the propa-
gation constant and the effective mode area is

̂ ̂∫ ∫= × ×∗ ∗A | ( E H )·zdA| /| ( E H )·z| dAeff
2 2 at the pump wavelength.

Subsequently, the used parameter for numerical calculation of GVD is D
(λ)=−(λ/c) (d2neff/dλ2) (ps nm−1 km−1) curve. This is fitting the
dispersion data regarding the Taylor series expansion of up to 10th
dispersion as shown in Fig. 1(b).

The coupling mechanism is used to access the looped optical wa-
veguide which is part of the Panda-ring resonator. The constructive
interference occurs if the wave round-trip the loop and the phase shift
will reach an integer times 2π, so that the cavity is in resonance. The
refractive index can be given by

= + = + = +n n n I n n n |E|
2η

n n P
A0 2 0

0 2
2

0
0

2

eff (1)

where n0 and n2 are the linear and nonlinear refractive indexes, re-
spectively. I is the optical intensity and P is the optical power. Aeff is
the effective mode core area of the device.

The linear and nonlinear refractive indices are defined as n0 and n2
respectively [36,37], the optical electric field is E and the optical power
propagating within the waveguide is P, where the wave impedance in a
vacuum is defined as η0. The propagation in the bus waveguides of
length Lb of the Panda-ring resonator is generated by launching a so-
liton pulse. Its evolution is governed by the GNLSE with SSFM solve.
The cavity fields at the end, for the case, if the pulse has slowly varying
envelope [1,5,21], can be expressed by
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where Eb(z,T) and α are the electric field amplitude and the linear
propagation loss, respectively. The retarded time frame which is de-
fined as T= t− z/vg is moving with the group velocity vg= 1/β1(ω0)
at the pumped frequency ω0. The βm(ω0) (m≥ 2) is mth order dis-
persion parameter. The nonlinear parameter is δ=2πn2/
λ0Aeff+ iβTPA/2Aeff. Here the two-photon absorption coefficient is

Fig. 1. (a) Schematic diagram of the Ge11.5As24Se64.5 Chalcogenide Panda-ring resonator and the definition of electric fields (b) Simulation result, where (Color
online) dispersion and nGe11.5As24Se64.5 (dashed curve). The vertical dotted line denotes wavelength of 1.55 μm, (inset) the ridge waveguide geometry. For the
fundamental TE mode, It denotes the mode field of the waveguide with W=1.1 μm, H=0.4 μm.
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βTPA. The material response functions are the instantaneous electronic
response R(t)= [(1− fR)δ(t)+ fRhR(t)] and the delayed Raman re-
sponses = + − −h (t) [(τ τ )/(τ τ )exp( t/τ )sin( t/τ )]R 1

2
2
2

1 2
2

2 1 where the para-
meter of ChG glass are the fractional contribution fR= 0.148, the de-
layed Raman response τ1= 23 fs and τ2= 164.5 fs [21,38]. At the
coupling point between the ring and the bus waveguides, the complex
electric field can be shown in Fig. 1(a). The field amplitudes of incident
wave Ein(t) transmitted wave Etrough(t) and the field amplitudes of in-
cident wave Eadd(t) transmitted wave Edrop(t), and circulating cavity
wave Ec1(L1= 0,t) and Ec5(L5= LR/2,t), respectively, satisfy the fol-
lowing equations.

= = − − = −t iE ( z 0, t) 1 γ [ 1 κ E ( z L , ) κ E (L , t)]through 1 in b1 1 c8 R (3)

= = − − = + −γE ( z 0, t) 1 [ i κ E ( z L , t) 1 κ E (L , t)]inc1 1 b1 1 c8 R (4)

= = − − = −γE ( z 0, t) 1 [ 1 κ E ( z L , t) i κ E (L /2, t)]drop 2 add b3 2 c4 R (5)

= = − − = + −E ( z 0, t) 1 γ [ i κ E ( z L , t) 1 κ E (L /2, t)]c5 2 in b3 1 c4 R (6)

where κ is the intensity coupling coefficient of the coupler and γ is the
fractional intensity loss. In the following formulation, we have ignored
the group-velocity dispersion effect because the length of the ring is
short. Moreover, recently, several experimental and theoretical in-
vestigations were reported a micro-ring optical to generate robust op-
tical frequency comb, a key process behind frequency comb formation
is related to the Kerr micro-ring father than GVD. This is supported by
the appearance of signal and idler terms for four-wave mixing (FWM)
[39,40]. The ChG glasses have response time 10–20ms with respect to
their slow nonlinearity. This is attributed to photostructural changes
inherent rather than free-carrier effects or thermal effects [41–43].
There are a low nonlinearity and waveguide dispersion for the ChG
materials due to owning a large effective area. Including low two-
photon absorption and absence nonlinear losses of the ChG glass due to
free-carriers [44].

The cavity field inside the quarter ring Ec2(L2= LR/4, t),
Ec4(L4= LR/2, t), Ec6 (L6= 3LR/4, t) and Ec8(L8= LR, t) at the end of
each ring range can be expressed by the prior cavity field Ec(n−1)(Ln−1,
t− τR) at the entrance by considering the instantaneous Kerr effect and
the linear loss of the ring, where n=2, 4, 6, 8, correspondingly, satisfy
the following equations

= − −
− + −

− −

−

αE (L ) E (L , t τ )exp( ( /2)
(L )exp[ i(ϕ ϕ (t τ )]

c(n) n,t c(n 1) n 1 R
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The propagation distance is defined as L, the quarter round-trip time
in the cavity is τR=n0c(LR/4), the amplitude attenuation coefficient of
the ring is α, the nonlinear phase shift is ϕN(t− τR), where the linear
phase shift is ϕ0 (= n0k0LR/4, k0= 2π/λ0). Therefore,
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The cavity field inside the right-left quarter ring cavity Ec3(L3= LR/
4, t) and Ec7(L7= 3LR/4, t), respectively. Ec2(LR/4, t) is the incident
wave field amplitudes, where the transmitted wave is Ec3(LR/4, t);
Ec6(3LR/4, t) is the field amplitudes wave, where Ec7(3LR/4, t) is the
transmitted wave; Er1(Lr1= 0, t) and Er3(Lr3= 0, t) are the circulating
cavity waves, which satisfy the following conditions

= − − −iE (L /4, t) 1 γ [ 1 κ E (L /4, t) κ E (L , t)]rc3 R 3 c2 R 3 2 r (9)

= = − − + −iE (L 0, t) 1 γ [ κ E (L /4, t) 1 κ E (L , t)]r1 r 3 c2 R 3 r2 r (10)

= − − −iE (3L /4, t) 1 γ [ 1 κ E (3L /4, t) κ E (L , t)]c7 R 4 c6 R 4 r4 r (11)

= = − − + −i κE (L 0, t) 1 γ [ κ E (3L /4, t) 1 E (L , t)]r3 r 4 c6 R 4 r4 r (12)

The fields inside the right and left ring in the cavity of the round-trip
time are the Er2 (Lr2= Lr, t) and Er4(Lr4= Lr, t), respectively, the
nonlinear phase shifts is ϕNr(m-1)(t− τR) where m=2, 4, respectively,
which are given by
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From Eqs. (3) and (5), the c Ethrough (t) and Edrop (t) are simply an
iteration of the cavity fields Ec1(t) and Ec5(t), respectively, regarding the
cavity round-trip time. Therefore, if the optical pulse of arbitrary
temporal profile input into the nonlinear Panda-ring resonator, the
dynamic properties of the system can be calculated.

Simulation results and discussion

The numerical simulations for the dynamic properties of SC gen-
eration in our optimized ChG Panda-ring resonator were carried out by
solving the Eqs. (2) to (14) with both SSFM and iteration method for the
bus waveguides and the ring resonator, respectively. The SC generation
requires a dispersion of channel waveguides exhibiting a near zero-
dispersion. The waveguide core can be determined easily by knowing
the dimensions of the waveguide such as the W (width) and the H
(height). We have investigated the GVDs for three different structures
for the fundamental TE mode by using the Sellmeier equation, where
the numerical results are presented. For the pump near 1550 nm, using
the Lumerical software the curve fitted the dispersion data with respect
to the Taylor series expansion which was calculated for up to 10th
dispersion. This is shown in Fig. 1(b). The parameter D=−(2πc/
λ0)β2, where for the specific pump power, the W and H have been se-
lected to satisfy the condition as normal GVD, β2 > 0. The ChG wa-
veguide has the lowest threshold damage near ZDW regime, where the
mode dispersion is normal, therefore SC spectra can simply be broa-
dened by the self-phase modulation. This is shown in Fig. 4 (green
online). Thus, we have focused on the ChG waveguide with
W=1100 nm and H=400 nm. The inset in Fig. 1(b) is presenting the
TE mode. We consider the ChG waveguide containing a core of di-
mensions W=1100 nm and H=400 nm with air and MgF2 glass as
upper and lower claddings, correspondingly, the numerical result was
obtain using the FDE, where the ZDW point is found to be 1.573 μm,
while the normal dispersion D=−24.80 ps nm−1 km−1,
Aeff=0.39 μm2, β2= 0.03156 ps2 m−1, β3= 1.7472× 10−3 ps3 m−1

at the pump wavelength is 1.55 μm, where the second and third-order
dispersion are shown by β2 and β3 respectively.

The parameters are a sech-shape input pulse of 50 fs duration
(FWHM) with peak power between 1W and 100W, the nonlinear re-
fractive index n2= 8.6×10−18 m2/W [45]. At the pump wavelength
of 1.55 μm, the parameters as a linear refractive index and the loss are
presented and equal to n0= 2.63 and α=3.2 dB/cm respectively [46].
The fractional intensity loss γ=0.1 and the intensity coupling coeffi-
cient κ1= κ2= 0.5 and κ3= κ4 between 0.1 and 0.9. The Panda-ring
resonator consists of the bus waveguide of length
Lb= 2R=49.338 μm, the ring radius R= nλ0/
2π=100×1.55× 10−6/2π≈ 24.669 μm, the right-left ring radius
r=R/4, where n is the integer, which is shown in Fig. 1(a).

Fig. 2 shows the temporal power and SC spectral profiles of the
output Ethrough and Edrop port with a sech input pulse. The pulse has
duration of 50 fs and a peak power of 5W, where
κ1= κ2= κ3= κ4= 0.5, which is incident in nonlinear ChG Panda-ring
resonator at 500 round-trips. The SC generation is many short pulses
generated through the cumulative nonlinearity by Kerr nonlinearity in
the cavity of ChG Panda-ring resonator as shown in both Fig. 2(c) and
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(d), which is both the same. The SC spectrum extends over more than
13 μm (from 0.7 μm to 14 μm) at a −35 dB with the coverage wave-
length range from 0.7 µm to 14 µm in Fig. 2(c) and (d). The similarities
of both outputs of Ethrough and Edrop port can be used as a reference port,
which will make for the more diverse applications. For the output bus
waveguide length of Lb shows the green online in Fig. 2 due to the
dispersion is normal and the bus waveguide is shot. Thus, on solitonic
behavior, the temporal and spectral profiles are simply broadened by
self-phase modulation.

The numerical result can clearly confirm that the effect to the cu-
mulative nonlinearity for the temporal evolution inside the cavity ring
of EC1 to EC8 and the output Ethrough and Edrop port and right and left
ring of Er1 to Er4 for the 1st round-trip, the 2nd round-trip and the 3rd
round-trip corresponding to Fig. 2 are shown in Fig. 3(a)–(d). The
feature seen here can be understood that the cumulative nonlinearity
into the cavity Panda-ring resonator had generated both cases of the
many short pulses and the cumulative power in the cavity by the
nonlinear phase shift and the resonator of the cavity, a key process for
efficient full SC formation. In case the absence of the cumulative non-
linearity (n2= 0), the temporal profiles are unchanged in simple pro-
pagation, which is shown in Fig. 3(e) to (f). Clearly, the primary non-
linear process driving SC generation is cumulative nonlinearity for Kerr
response, which differentiates from most of previously reported SC
generations that generated by soliton fission, self-phase modulation,
four-wave mixing and Cherenkov radiation in both of anomalous and
normal dispersion regime.

Fig. 4(a) shows the SC spectra for the ChG Panda-ring resonator,

which is presenting the results for the pump power at 1.55 μm for four
different power levels. In the case of 1W the SC spectrum extends
around from 0.7 μm to 14 μm, producing a −35 dB bandwidth over
more than 13 μm. After increasing input power level between 5W and
100W, the SC spectrum broadened the same input power. Spectral
density varies to follow the input power between 1W and 100W, where
the magnitude of the variations is limited to around 50 dB (from 10 dB
to −40 dB), 48 dB (from 10 dB to −38 dB), 55 dB (from 10 dB to
−44 dB) and 58 dB (from 10 dB to −48 dB) in Fig. 4(a), respectively.
Fig. 4(b) the SC spectra at various coupling coefficients (κ3= κ4) of
right-left ring of radius r with a pump wavelength of 1.55 μm at peak
power 5W, all SC spectra extend from 0.7 μm to 14 μm, producing a
−40 dB bandwidth over more than 13 μm. Spectral density varies to
follow the coupling coefficients of κ3= κ4 (κ1= κ2= 0.5) between 0.1
and 0.9, where the magnitude of the variations is limited to around
48 dB (from 10 dB to −38 dB), 61 dB (from 10 dB to −50 dB), 53 dB
(from 11 dB to −43 dB) and 55 dB (from 10 dB to −45 dB) in Fig. 4(b),
respectively. The result is also shown in Fig. 4. Clearly, the various
parameters of both the input power and coupling coefficients (κ3= κ4)
not affect much of its bandwidth but affect much of its flatness due to
the cumulative nonlinearity. The best results are obtained for the SC
spectrum with the input power of 5W and coupling coefficients of 0.5
dotted curves shown in Fig. 4. The noise properties of the flatness SC
generation for ChG Panda-ring resonator generated during the process,
which can be effectively improved in terms of both of the coherence
and intensity stability through the use of a sliding frequency filter.

The Panda-ring resonator can be the efficient full SC generation

Fig. 2. Simulated SC of ChG Panda-ring resonator (a) and (b) Temporal profiles, (c) and (d) SC spectral profiles at the output Ethrough and Edrop port (red online),
respectively at 500 round-trips for air-clad ChG core employing MgF2 for its lower cladding the ChG waveguide as pumped wavelength of 1550 nm using 50 fs pulses
with 5W peak power (dashed online) and the output of the bus waveguide length of Lb (green online). The dashed and green online show, for comparison, the
corresponding input profiles.
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such as the expansion of the bandwidth and the increase of the output
power (Fig. 2) and the nanostructure. The physical process behind SC
generation is related to the Kerr response. This SC can be compared to
maximun of 18 octaves at similar wavelength, the straight ChG wave-
guide (Fig. 5), Its evolution is governed by the GNLSE (Eq. (2)) with
SSFM solve, SC is generated at the output of 10-mm-long ChG wave-
guide, the spectral were extended over 1165–1860 nm, bandwidth of
695 nm, with a −35 dB and the maximun output 5.6W (Fig. 5(b)), a
key process for SC generation is related to FWM, soliton fission, self-
phase modulation, and Cherenkov radiation. In addition, SC is gener-
ated with the Panda-ring resonator. It can also increase output power
due to the cumulative ring resonator into the three-ring resonator, i.e.
middle and left-right ring resonator, which is different from the straight

waveguide. Moreover, SC generation in ChG using the Panda-ring re-
sonator is consistent with a recent experiment using the chalcogenide
fiber, which was extended to 1.4–13.3 μm.

The simulation parameters were selected close to the practical de-
vice parameters, where the references are given. The use of the chal-
cogenide glass in the experimental work is already given. The nonlinear
effect is induced into the system. However, the saturation of light en-
ergy is balanced by the squeezed energy, which is reported by the au-
thors in reference [47], from which the heat dissipation can be released.
The device scale and parameters are the practical values, where the
references are given. However, this is the simulation work. From the
simulation, the crosstalk signals induced by the two side rings are small
and suppressed by the resonant output signals as shown in Fig. 2(c) and

Fig. 3. (Color online) temporal of the cavity field wave (a), (b), and (c) the inside ring resonator EC1 to EC8 and the output Ethrough and Edrop port (d) the inside right-
left ring of Er1 to Er4 for the 1st round trip, the 2nd round trip and the 3rd round trip, respectively, (e) and (f) the inside ring resonator EC1 to EC8 and the output
Ethrough and Edrop port for the 1st round trip, the 500th round trip, respectively, with n2= 0. The pump wavelength of 1550 nm using 50 fs pulse with the peak power
of 5W is applied.
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(d). This is the cumulative Kerr nonlinearities, in which the higher
order dispersion effect due to the nonlinear existence is already in-
cluded. The wide range of the output wavelengths can be used for both
infrared and radio wave applications.

Conclusion

Generation of SC has been numerically demonstrated by the na-
nostructure ChG Panda-ring resonator. Using a dispersion engineered to
have normal dispersion regime with D=−24.80 ps nm−1 km−1 at a
pump wavelength of 1.55 μm. A sech input pulse of 50 fs duration with
peak powers in the range from 1W to 100W and coupling coefficients
in the range 0.1 to 0.9. The results are obtained for the SC spectrum
with low peak power of 5W (low-energy≈ 1 pJ) and coupling

coefficients of κ1= κ2= 0.5 and κ3= κ4= 0.1, the spectrum is ex-
tended over more than 13 μm with a −40 dB and has high output peak
power. The spectra at various input power and coupling coefficients
κ3= κ4, produced a good-quality SC generation from both the spectral
bandwidth and high output peak power. The physical process of ChG SC
generation is related to the cumulative nonlinearity by Kerr non-
linearity. These studies may have induced new experimental work in
the important area of SC generation, which is useful for practical ap-
plications and realization of a compact on-chip SC broadband source.
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