
              

City, University of London Institutional Repository

Citation: Vouros, G., Vlachou, A., Santipantakis, G., Doulkeridis, C., Pelekis, N., Georgiou,

H., Theodoridis, Y., Patroumpas, K., Alevizos, E., Artikis, A., et al (2018). Increasing 
maritime situation awareness via trajectory detection, enrichment and recognition of events. 
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), 10819, pp. 130-140. doi: 10.1007/978-3-
319-90053-7_13 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/20034/

Link to published version: https://doi.org/10.1007/978-3-319-90053-7_13

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Increasing Maritime Situation Awareness via Trajectory 

Detection, Enrichment and Recognition of Events 

G.A. Vouros1, A. Vlachou1, G. Santipantakis1, C. Doulkeridis1, N. Pelekis1, H. Geor-

giou1, Y. Theodoridis1, K. Patroumpas1, E. Alevizos2, A. Artikis1,2, G. Fuchs3, M. 

Mock3, G. Andrienko3, N. Andrienko3, C. Claramunt4, C. Ray4, E. Camossi5 and A.-

L. Jousselme5 

1 University of Piraeus, Greece 
2 IIT, NCSR ‘D’, Greece 

3 Fraunhofer Institute IAIS Sankt Augustin, Germany 
4 Naval Academy Research Institute, France 

5 CMRE, La Spezia, Italy 

Abstract. The research presented in this paper aims to show the deployment 

and use of advanced technologies towards processing surveillance data for the 

detection of events, contributing to maritime situation awareness via trajecto-

ries’ detection, synopses generation and semantic enrichment of trajectories. 

We first introduce the context of the maritime domain and then the main princi-

ples of the big data architecture developed so far within the European funded 

H2020 datAcron project. From the integration of large maritime trajectory da-

tasets, to the generation of synopses and the detection of events, the main func-

tions of the datAcron architecture are developed and discussed. The potential 

for detection and forecasting of complex events at sea is illustrated by prelimi-

nary experimental results. 

Keywords: Big Spatio-temporal Data, Moving Objects, Trajectory Detection, 

Data Integration, Events Recognition/Forecasting. 

1 Introduction 

The maritime sector is growing and currently employs around 5.4 million people in 

Europe, with a value estimated in 500 billion Euros at year for Blue Growth activities. 

Maritime traffic is constantly increasing, likewise the exploitation of sea resources. 

To improve safety of navigation and sustain the development of the so-called Blue 

economy, maritime surveillance systems should support authorities in processing 

larger amount of heterogeneous data and monitoring efficiently larger areas. Indeed, 

existing systems are not able to fully support Maritime Situation Awareness (MSA), 

which requires the correlated use of large, heterogeneous and uncertain data sources. 

The amount of data to be correlated, as well as their variety in formats and character-

istics, is unsustainable for traditional systems, which are now required to face all the 

challenges of Big Data at once. 



The datAcron project considered and defined maritime scenarios [2] that address 

operational concerns regarding fishing activities, highlighting the need for continuous 

(real-time) tracking of fishing vessels and surrounding traffic, as well as contextually 

enhanced offline data analytics. The secure fishing scenarios are designed to demon-

strate our ability to detect and foresee situation indicators regarding collisions be-

tween ships and vessels in distress optimizing rescuing operations. In addition to 

these, we are particularly interested on maritime sustainable development scenarios, 

where we aim at monitoring the impact of fishing activities, including the illegal ones. 

In particular, the protection of areas from fishing scenario tackles Illegal Unreported 

Unregulated (IUU) fishing, which is a global threat to the preservation of maritime 

ecosystems and could potentially undermine the sustainable development in large 

areas of the world that depend on maritime resources. In this scenario, we aim to sup-

port authorities dealing with real-time monitoring of protected areas and areas where 

fishing is restricted, by predicting and detecting vessels entering the surveyed areas. 

The user needs to forecast whether and when a vessel enters, exits, sails or spends 

time in such areas.  

This paper aims to show the deployment and use of advanced technologies devel-

oped by the datAcron project (www.datacron-project.eu) towards events’ recognition 

in the protection of areas from fishing scenario. The objective is to demonstrate the 

part of the overall datAcron architecture that processes surveillance data for the detec-

tion of events, contributing to maritime situation awareness via trajectories’ detection, 

synopses generation and semantic enrichment of trajectories.  The rest of the paper is 

organized as follows. First, section 2 describes the overall datAcron big data architec-

ture. Next, the trajectory enrichment and detection, as well as events’ forecasting: 

Technologies to be demonstrated are described in sections 3 and 4. Finally Section 5 

draws the conclusions and outline further work.  

2 A Big Data Architecture for Time Critical Mobility 

Forecasting 

Time critical mobility operations in the maritime domain require integrating data that 

stems from a wide variety of diverse data sources, both archival (data-at-rest) and 

online (data-in-motion), which is also voluminous and produced at high rates. During 

data acquisition, various tasks need to be performed, including data cleaning, com-

pression, transformation to a common representation model, data integration and in-

terlinking. Besides real-time operations that must be supported with minimum latency 

requirements (i.e., in real-time), there exists a need for offline analysis to extract use-

ful knowledge. 

The datAcron system architecture, depicted in Figure 1, can be considered as a Big 

Data architecture for processing both real-time and archival data. While it bears simi-

larities with the Lambda architecture [9], since it encompasses both a real-time and a 

batch processing layer, these layers exist for different purposes (e.g., online trajecto-

ry/events forecasting vs offline trajectory clustering and visual analytics over archival 

data).  



The real-time layer, which is the subject of this paper, involves feeding into the 

system streaming surveillance data describing the positions of moving objects, col-

lected from terrestrial and satellite receivers. While consuming this data, statistics 

(min/max/avg) are computed over properties, such as speed and acceleration, in an 

online fashion; online data cleaning of erroneous data, and trajectory compression, are 

performed. Then, compressed trajectories (i.e., trajectory synopses) generated are 

transformed to RDF, according to the datAcron ontology [12], thereby facilitating the 

computation of links with relevant data originating from other sources. To this end, 

spatio-temporal link discovery is performed that discovers relations between surveil-

lance data and archival data (e.g., weather, contextual data), resulting in enriched 

trajectories. Further online analysis of enriched trajectories is performed, aiming at: 

(a) deriving predictions of the future location of a moving object, and (b) complex 

event recognition and forecasting. Finally, real-time visualizations support human 

interaction with the datAcron system. 

 

Fig. 1. The overall datAcron system architecture and the demonstrated components indicated 

by the cover (red) polygon. 

In the batch layer, both the enriched trajectories as well as data from other sources 

that have been transformed in RDF are collected for persistent storage, in order to 

support offline data analytics. Due to the immense data volume, parallel data pro-

cessing is performed over RDF data stored in a distributed way. On top of the distrib-

uted RDF store, high-level data analysis tasks run, in order to perform trajectory anal-

ysis as well as building models for complex event forecasting using machine learning 

techniques. Visual analytics provide the ability to discover hidden knowledge and 

patterns, by means of interaction with a domain expert or a data analyst. 

The big data technologies employed for the implementation of the architecture in-

clude a blend of state-of-the-art solutions that are used in production environments 

successfully: Stream processing components have been developed in Apache Flink, 



harnessing the scalability and low latency offered. For batch processing and analysis, 

we have selected Apache Spark which is the most popular batch processing frame-

work to-date, achieving scalability, high performance, and exploiting in-memory 

processing. The stream-based communication between components is achieved by 

means of Apache Kafka. 

This article concerns the streaming layer and describes the processing stages per-

formed from congesting surveillance data to visualizations of trajectories detected and 

of events recognized and forecasted. However, it is separated in two parts: trajectory 

detection and complex events recognition and forecasting. 

3 Trajectory Detection 

 The section describes the functionalities of components involved in the data inte-

gration and enrichment part of the overall framework: (a) The in-situ processing com-

ponent for cleansing and enrichment of surveillance data with derived information 

(e.g. average speed), as well as for the detection of low-level events; (b) trajectories’ 

synopses generation from raw streaming surveillance data via the detection and tag-

ging of critical points, and (c) RDF generation of trajectory synopses and their linking 

to other data sources for the provision of enriched trajectories.  

 

3.1 In-situ Processing and Low-level Events Detection 

The low-level event detection component is aiming at enriching the raw-data gen-

erated by the moving entities with basic derived attributes that serve as input for high-

er-level processing. A major consideration in this low level is to achieve enrichment 

with low-latency, preferably by so-called “in-situ” processing.  In-situ processing 

refers in general to the case of processing streaming data as “downwards” in-stream 

as possible. Processing streaming data close to data source provides a number of in-

herent advantages, such as decreased communication delays, savings in communica-

tion, and reduced overhead in sub-sequent evaluation steps.  The low-level events 

refer to two basic datAcron tasks to be performed in real-time on the trajectories: 

generating metadata on incoming raw data for detection of erroneous data and ensur-

ing data quality, and enriching the data stream with contextual information for further 

analysis. For supporting the data quality assessment, attributes of min/max, medi-

an/average of properties (e.g. speed, acceleration, etc.) are generated on a per trajecto-

ry basis. In addition to that, raw position data are enriched with low-level events of 

entering or leaving of moving entities from one area to another one, by processing the 

real-time stream of moving entity positions.  

 

3.2 Synopses Generation 

Detecting important mobility events along trajectories has to be carried out in a 

timely fashion against the streaming positional updates received from a large number 

of vessels. Instead of retaining every incoming position for each object, we have im-

plemented a Synopses Generator module that drops any predictable positions along 



trajectory segments of “normal” motion characteristics, since most vessels usually 

follow almost straight, predictable routes at open sea. Indeed, a large amount of raw 

positional updates may be suppressed, while only retaining locations that signify 

changes in actual motion patterns [15]. We opt to avoid costly trajectory simplifica-

tion algorithms like [6][7] operating in batch fashion, online techniques employing 

sliding windows [8], or safe area bounds for choosing samples [7], as well as more 

complex, error-bounded methods. Instead, emanating from the novel trajectory sum-

marization framework introduced in [11] for online maritime surveillance, but signifi-

cantly enhanced with additional noise filters, the Synopses Generator applies single-

pass heuristics for achieving succinct, lightweight representation of trajectories. We 

prescribe that each trajectory can be approximately reconstructed from judiciously 

chosen critical points of the following types: 

- Stop: It indicates that an object remains stationary (i.e., not moving) by checking 

whether its instantaneous speed is lower than a threshold (e.g., 0.5 knots) over a peri-

od of time.  

- Slow motion: It signifies that an object consistently moves at low speed (e.g., < 5 

knots) over a period of time.  

- Change in Heading: Once there is an angle difference in heading of more than a 

given threshold (e.g., > 5) with respect to the mean velocity vector (computed over 

the most recent course of a given object), its current location should be emitted as 

critical.  

- Speed change: Such critical points are issued once the rate of change for speed 

exceeds a given threshold (e.g., > 25%) with respect to its mean speed over a recent 

time interval.  

- Communication gaps: These occur when an object has not emitted a message 

over a time period, e.g., the past 10 minutes.  

Critical points can be emitted at operational latency (i.e., within milliseconds) and 

high throughput. Hence, this derived stream of trajectory synopses can keep in pace 

with the incoming raw streaming data. This module can also achieve dramatic com-

pression over the raw streaming data with tolerable error in the resulting approxima-

tion. At lower or moderate input arrival rates, data reduction is quite large (around 

80% with respect to the input data volumes), but in few cases of very frequent posi-

tion reports, compression ratio can even reach 99% without harming the quality of the 

derived trajectory synopses.  

 

3.3 RDF Generation and Data Integration 

The next step of the data processing workflow is to convert the synopses generated 

to RDF and integrate them to archival data into a knowledge graph. Since several 

different sources are blended into our domain, we designed and implemented a gener-

ic RDF generation framework. Triples generated from the RDF generators are di-

rected to a group of Link Discovery components.  

The proposed method stands on two main components: a) the data connector, and 

b) the triple generator. The data connector is responsible to connect to a data source 



and accept the data provided. It applies naive data cleaning, computes and converts 

values, applies simple filters, and generates values from the incoming entries, e.g. 

extracting the Well-Known-Text representation of a given geometry in a Shapefile. 

The output of these connectors is directed to instances of the triple generator compo-

nent. 

The triple generator is responsible to convert all the data coming through the data 

connector, into meaningful triples w.r.t. the datAcron ontology [12]. This component 

depends on the use of graph templates and variable vectors. The variables vector ena-

bles transparent reference to variables and use of their values. The graph template on 

the other hand, uses these variables into triple patterns, i.e. triples where any of the 

subject or object can be either a variable or a function with variable arguments.  

In contrast to other RDF generators, the proposed method needs no further 

knowledge of a specific vocabulary (e.g. compared to RML [3]), and it can be used by 

anyone who can write simple SPARQL queries. Furthermore, it requires no underly-

ing SPARQL engine, and it inherently supports parallelization and streaming data 

sources (e.g. compared to SPARQL-Generate [5] and GeoTriples [4]). In addition to 

these, the variables vector enables the RDF generation method to establish mappings 

to data “to-be-generated”, and they are not explicitly available in the source (e.g., the 

MBR or the WKT of a geometry).  

 

3.4 Link Discovery 

The output of the RDF generators is further exploited for the detection of associa-

tions between entities, or the enrichment of the generated RDF graph with additional 

information from any of the sources available.  

The link discovery component detects spatio-temporal and proximity relations such 

as “within” and “nearby” relations between stationary and/or moving entities. It is 

noteworthy that there is not much work on the challenging topic of spatio-temporal 

link discovery, nor on link discovery over streaming datasets. State of the art ap-

proaches such as [10], [13], [14] focus on spatial relations in static archival datasets 

only. In particular RADON [13] employs optimizations that can be only applied if the 

datasets are a-priori accessible as a whole, which cannot be assumed for streaming 

datasets. Our work addresses explicitly proximity and spatio-temporal relations in 

both archival and streaming data sources. 

The implemented component continuously applies SPARQL queries on each RDF 

graph fragment produced by an RDF generator, to filter only those triples relevant to 

the computation of a relation. It applies a blocking method to organize entities (either 

being moving or stationary entities), and a refinement function to evaluate pairs of 

entities in any block.  

Aiming to discover spatio-temporal relations among entities, methods use an equi-

grid which organizes entities by space partitioning. The temporal dimension is not 

partitioned: given a temporal distance threshold, we can safely clean up data that are 

out of temporal scope, i.e. entities that will never satisfy the temporal constraints of 

the relations. To effectively prune candidate pairs of entities, the proposed method 



computes the complement of the union of those spatial areas that correspond to enti-

ties in a cell and intersect with the cell’s area: This cell area is called the mask of cell. 

Thus, for each new entity we identify the enclosing cell, and then we evaluate that 

entity against the spatial mask of the cell. If it is found to be in the mask, we do not 

need to further evaluate any candidate pair with entities in that cell. In addition to 

masks, the link discovery component uses a book-keeping process for cleaning the 

grid, towards identifying proximity relations among entities when dealing with 

streamed data. 

4 Complex Events Recognition and Forecasting 

This section shows the on-line recognition and forecasting of events which are visual-

ized together with the visualization of enriched stream of trajectories. This involves 

the Complex Events’ Recognition and Forecasting module consuming the enriched 

stream of trajectories’ synopses and streaming out events. Besides the critical points 

generated by the synopses generator, this module also consumes, in the form of 

events, extra information provided by the link discovery component, especially the 

spatial relations between vessels and areas. 

Given the enriched stream of synoptic trajectories (i.e. streams of trajectory critical 

points linked with low level events, weather features and contextual information) and 

a set of patterns defining relations between low-level events, operational constraints 

and contextual information, we need to detect, in a timely manner, when patterns’ 

relations (involving temporal and spatial aspects) are satisfied. Whenever this hap-

pens, a high-level (complex) event has been detected. In addition, we need to forecast 

the occurrence of complex events. 

 

4.1 Event Detection and Forecasting 

As a first step, event patterns in the form of regular expressions are converted to de-

terministic finite automata (DFA). A detection occurs every time the DFA reaches 

one of its final states. As an example, Figure 2.a depicts the DFA constructed for the 

simple sequential expression R=acc, where events that may be encountered are 

Σ={a,b,c}.  For the task of forecasting, a probabilistic model need to be built for (the 

behavior of) the DFA. We achieved this by converting the DFA to a Markov chain. 

Assuming the input stream provides Independent and Identically Distributed (IID) 

low-level events, then it can be shown that we can directly map the states of the DFA 

to states of a Markov chain as well as the transitions of the DFA to transitions of the 

Markov chain. The probability of each transition would then be equal to the occur-

rence probability of the event that triggers the corresponding transition of the DFA. 

However, if we relax the assumption of  IID events, then a more complex transfor-

mation is required, in which case the transition probabilities equal the conditional 

probabilities of the events.  Figure 2.b shows the Markov chain derived from the DFA 

illustrated in Figure 2.a., assuming that the input events are generated by a 1st-order 

Markov process (refer to [1] for details). We call such a derived Markov chain a Pat-

tern Markov Chain (PMC). 



 

2(a)                                                  2(b) 

Fig. 2. (a) DFA and (b) corresponding Markov Chain. 

Once we have obtained the PMC corresponding to an initial pattern, we can com-

pute certain distributions that are useful for forecasting. At each time point the DFA 

and the PMC will be in a certain state, the question we need to answer is the follow-

ing: how probable is it that the DFA will reach its final state (and therefore a complex 

event will be detected) in k time steps from now (waiting-time distribution)?  

Forecasts are provided in the form of time intervals, like I=(start, end). Such a 

forecast specifies that the DFA is expected to reach a final state in the future between 

start and end with a probability of at least a given constant threshold θ (provided by 

end-user). These intervals are produced by a single-pass algorithm that scans a wait-

ing-time distribution and finds the smallest (in terms of length) interval that exceeds 

this threshold. This method has been implemented in the Scala programming lan-

guage in a system called Wayeb.  

 

4.2 Use Cases 

Several maritime scenarios and related events have been defined in [2] and event 

patterns have been formalized and implemented. We evaluated event detection and 

prediction using real vessel data obtained through the Automatic Identification Sys-

tem (AIS). The dataset includes approximately 18 million of AIS positions transmit-

ted by about 5,000 vessels sailing in the Atlantic Ocean around the port of Brest, 

France, between October 2015 and March 2016. Moreover, several navigation fea-

tures such areas of interest, coastlines, ports locations… have been considered. 

Amongst experiments realized, Figure 3 illustrates events from one pattern applied 

to a single vessel and one area of interest. The aim is to predict when the vessel is 

expected to enter the area. This “within” event is of crucial importance for the early 

detection and prevention of possible collisions: Maritime experts need to know 

whether a cargo vessel is heading towards a fishing area, since this indicates a possi-

bility of collision.  

We implemented this functionality by creating a pattern with a single event, name-

ly the “within” event of the link discovery component. We subsequently set a high 

order for the derived PMC and we let this PMC learn by itself which sequences of 

events have a high probability of leading to a “within” event. For instance , a se-

quence of “close”, “close”, “very close”, “very close” events (w.r.t. quantitative 



thresholds defined with experts), have a high probability of leading to a “within” rela-

tion (the vessel steadily approaches the area).  

Figure 3 shows an area (red rectangle) and vessels (enlarged arrows) along two 

similar routes. The arrow informs us (left Figure) that the vessels are expected to enter 

the area in 5 to 7 minutes with a probability at least 32% (resp. 5 to 8 minutes, 32 %). 

The other arrow in between has no such interval because it is on a route that does not 

cross the area (the vessel’s identities have been erased for privacy reasons). Results 

showed that, the closer the vessel is to the area, the higher the precision becomes and 

the smaller the forecast intervals (Figure 3, left). Additionally, when the vessel fol-

lows a route that does not normally cross the area, the forecasting module refrains 

from producing intervals, indicating that it has learnt that this route doesn’t involve 

any “within” events. 

 

Fig. 3. Visualization of events forecasting [Google earth V 7.1. Mer d'Iroise, France, 

48°23'08.76"N, 4°51'37.54"W. SIO, NOAA, U.S. Navy, NGA, GEBCO.  Digital-

Globe 2015. http://www.earth.google.com, September, 2017]. 

 

The real-time layer of the datAcron architecture described in Figure 1 includes a visu-

alization interface supporting human interaction (on-going work). The aim of the 

interface is to provide visualization of low-level event (section 3.1), critical points 

(section 3.2) and complex events (section 4). The visualization of events has been 

designed as a web-based interface showing the ships' tracks, real and predicted events. 

Figure 4 shows this interface and few detected critical points.  

 

http://www.earth.google.com/


 

Fig. 4. Visualization dashboard for maritime events. 

5 Conclusion 

The research presented in this paper presents some preliminary results of the 

datAcron project whose objective is to advance the management and integrated ex-

ploitation of voluminous and heterogeneous data-at-rest (archival data) and data-in-

motion (streaming data) sources, so as to significantly advance the capacities of sys-

tems to promote safety and effectiveness of critical operations for large numbers of 

moving entities in large maritime areas.  

We introduce our current progress and achievements towards the real-time pro-

cessing and analysis of big data for improving the predictability of trajectories and 

events regarding moving entities in maritime domain. There are still many challenges 

ahead to be addressed such as discovery of a interactions among moving ships in a 

timely manner, efficient query answering of very large knowledge graphs for online 

and offline analytics tasks, cross-streaming synopses generation at the data integration 

level, long-term online full trajectory predictions and improvements in forecasting 

complex events together with learning/refining their patterns by exploiting examples 

are amongst some of major challenges ahead we still plan to address. 
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