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Foreword

The idea of this document is to provide the reader with an intuitive in-
troduction to the main tools in risk analysis. Large part of this material
has been used in MSc courses (30 hours) in quantitative finance on risk
analysis at Università del Piemonte Orientale and Cass Business School.

We would like to emphasize that this document is very much work in
progress and we would like to encourage readers to get in touch with us
with feedback, comments, suggestions for additions and, of course, correc-
tions of typos. All of these will be gratefully acknowledged in the future
releases of this document.

A companion A Gentle Introduction to Default Risk and Counterparty Credit
Modelling by Ballotta, Fusai and Marena [4] is also available on the SSRN
web site.

Laura Ballotta and Gianluca Fusai

This Version: 1.1
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1 Introduction

Uncertainty about commodity prices, foreign markets, new technologies,
government policies, and even weather conditions can affect significantly
firm earnings, so that a sound risk management plays an important role in
many business decisions. This is important not only for banks, for which
quite stringent rules are already at work, but also for corporate firms. Aca-
demic finance literature identifies at least three relevant issues associated
with unpredicted earnings volatility: (1) higher expected costs of financial
distress; (2) higher expected payments to corporate stakeholders (includ-
ing higher rates of return required by owners of closely-held firms); and
(3) lower tax payments due to reduction in the fluctuations of taxable in-
come through suitable risk management policies1. From the management
point of view, the decision about which risks to keep and which to hedge
requires a comprehensive risk-audit review, see Stulz [25]. The aim of this
chapter is to present a modern approach to the risk measurement of a fi-
nancial position through statistical techniques which allow to describe the
profit and loss (henceforth P&L) distribution of the firm’s portfolio over
some predetermined horizon. In particular, market practice has nowa-
days adopted Value at Risk (VaR) as standard risk measure2. Very often,
this measure is supported by stress testing analysis aimed at understand-
ing the effect of extreme movements in market variables on the portfolio’s
firm. For more details on the main uses of VaR at corporate level see Jorion
[22].

This paper is an introduction devoted to the measurement of market
risk in financial markets, with examples mainly drawn from commodity
markets. In particular, we present the concept of VaR, its limits, the prob-
lems related to its estimation and backetesting. This is done at the single
asset and at the portfolio level. Issues related to the measurement of port-
folio risk contribution and how to cope with derivative positions are also
considered. Other important issues like liquidity, operational and credit
risk will not be dealt here. For a gentle introduction to the measurement
of counterparty credit risk see the companion paper by Ballotta, Fusai and
Marena [4].

1For a detailed discussion on these themes, see Stultz [25].
2VaR was introduced by J.P. Morgan to monitor the exposure created to financial insti-

tutions by their trading activities. For this reason they set up the RiskMetrics group that
soon proposed VaR as a benchmark risk measure.
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2 Value at Risk (VaR)

The starting point to VaR computation is the probability distribution of
the P&L. If estimated properly, the P&L distribution reflects the netting
and diversification effects and can be compared across portfolios.

The idea behind VaR is to build the P&L probability distribution of the
bank or corporate portfolio at a given time horizon and compute the worst
case loss at a given confidence level.

In order to do this, first we need to understand how our portfolio is
affected by unexpected shocks in risk factors. Hence we have to decide
which quantity to model: prices or returns. The advantage of using re-
turns is that in this case the stationarity assumption, very needed to per-
form statistical estimates, is more realistic than in the case of prices. In the
following, we let P(t) be the t-value of the corporate portfolio. We also
define T to be the corporate horizon, so that the P&L over the period [t, T]
is defined as

P&L(t, T) = P(T)− P(t).

A related quantity is the so called holding period log-return, defined as

r(t, T) = ln
P(T)
P(t)

.

For a variety of reason, we prefer to work with logarithmic returns rather
than arithmetic (simple, linear) ones3.

Notice that there is also an inverse mapping between prices and log-
returns through the relationship

P(T) = P(t)er(t,T),

so that any modelling assumption on returns will imply a correspond-
ing model for prices and viceversa. For example, assuming that the log-
returns distribution is Gaussian implies that prices have a log-normal dis-
tribution.

In the following we introduce the standard definition of VaR.

3The main advantage of using log-returns versus simple returns is that log-returns
satisfy the addivitiy rule, i.e. the cumulative log-return over 1 week, say, is given by
the sum of five 1 day log-returns. In addition, a common assumption in finance is that
returns are distributed according to a Gaussian distribution. Log-returns can take values
over the real line, i.e. the same support of the Gaussian distribution, whilst linear returns
are defined on the region (−1,+∞).
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Definition 1 (Value at Risk) VaR in monetary terms4 is the maximum loss
over a target horizon such that the probability that the actual loss is larger is
equal to 1− α, where α is the confidence level, i.e.

Pr
(

P (T)− P (t) < −VaRP&L
α (t, T)

)
= 1− α. (1)

We can also define the VaR using the cumulative distribution function (CDF) of
log-return

Pr (r (t, T) < −VaRr
α (t, T)) = 1− α.

Given that P (T) = P (t) er(t,T), the P&L VaRP&L and the return VaRr are
related by

VaRr
α (t, T) = − ln

(
1− VaRP&L

α (t, T)
P (t)

)
VaRP&L

α (t, T) = P (t)×
(

1− e−VaRr
α(t,T)

)
.

An approximated transformation is

VaRP&L
α (t, T) ∼ P(t)×VaRr

α(t, T).

Example 2 (Meaning of VaR (Dollar terms)) The 10 day VaR at the confi-
dence level of 90% is 5ml USD means that

• with probability 90%, the bank will not loose more than 5ml USD over a
10 days period,

• with probability 10%, the bank will loose more than 5ml USD over a 10
days period.

Example 3 (Meaning of VaR (returns terms)) The 1 day VaR at the confi-
dence level of 99% is 3% means that

• with probability 99%, the bank will realize a return higher than -3% over a
1 day period,

• with probability 1%, the bank will realize a return lower than -3% over a 1
day period.

4In the following, we use the notation VaRP&L and VaRr or simply VaR to distinguish
between VaR in monetary terms and VaR in return terms.
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Given the VaR and the current portfolio value of 1ml of USD, the portfolio VaR
(expressed as amount of USD) is

VaRP&L
α

(
t, t +

1
250

)
= 1×

(
1− e−0.03

)
ml = 29, 554$,

i.e. we will loose less than 29, 554$ in 1 day with a 99% probability. There is still
a 1% probability to loose more than 29, 554$.

In Figure 1 we plot the cumulative distribution function (CDF) of the
P&L. If the CDF is continuous and strictly increasing, the VaR number
is found as the intersection between the CDF and the horizontal line at
the height 1− α. Given that the CDF (at least for the case of a continu-
ous random variable) is nothing else than the cumulative integral of the
probability density function (PDF), the VaR number can also be found by
looking for the abscissa such that the area under the PDF is equal to 1− α.
This is illustrated in Figure 2. Therefore, if we define Fr and fr to be respec-
tively the cumulative and the density probability functions of log-returns,
the VaR can be defines as the number that solves one of the two following
equations

Fr(−VaRα) = 1− α,

and ∫ −VaRα

−∞
fr(x)dx = 1− α.

Example 4 (Estimating VaR for a continuous r.v.) Let us suppose that the P&L
of an interest rate swap is assumed to be uniformly distributed on the interval -1
ml, 1 ml. Then the probability density function (pdf) is

fP&L (x) =
1
2

,

if −1 < x < 1 and 0 elsewhere. The cumulative density function is

FP&L (x) = Pr (P&L ≤ x) =


0 i f x ≤ −1,

x−(−1)
2 i f −1 < x ≤ 1,
1 i f x > 1.

The α-VaR solves

Pr (P&L ≤ −VaRα) = 1− α,
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Figure 1: For a continuous r.v., the VaR is determined by the abscissa at which the CDF
equals the level 1− α.
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Figure 2: For a continuous r.v., the VaR is determined by the abscissa at which the area
below the PDF equals the level 1− α.
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i.e.
−VaRα − (−1)

2
= 1− α

and therefore
−VaRα = 2× (1− α)− 1,

i.e.
VaR = 2α− 1.

The 95% VaR is VaR0.95 = 0.9ml USD.

For any discrete distribution, the VaR is instead defined as follows

VaRα (t, T) = − inf
x
{x ∈ <, Pr (r (t, T) ≤ x) ≥ 1− α} .

i.e. it corresponds to the smallest value of the P&L such that the CDF is
above (or equal) to the level 1− α.

Example 5 (VaR of a discrete r.v.) Let us compute the 85% VaR for a discrete
r.v. having distribution as in Table 1. Therefore, we have that

inf
x
{x ∈ <, Pr (r (t, T) ≤ x) ≥ 0.15} = −0.5ml $,

so that
VaR0.85 (t, T) = 0.5ml $.

This is illustrated in figure 3.

P&L (Ml $) PDF CDF Is CDF ≥ 0.15 ?

-2 0.04 0.04 no
-1 0.05 0.09 no

-0.5 0.2 0.29 yes
0 0.3 0.59 yes

0.5 0.2 0.79 yes
1 0.12 0.91 yes

1.5 0.07 0.98 yes
2 0.02 1 yes

Table 1: For a discrete r.v. the VaR is obtained by searching the smallest value at which
the CDF is greater than 1− α. In this example, α = 0.85.
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Figure 3: Computation of the VaR for a discrete r.v.

Three remarks

1. VaR can be against portfolio diversification.

2. The VaR does not describe the maximum loss.

3. VaR does not describe the losses in the left tail.

Remark 1 Given two portfolios P&L described by the random variables
X and Y, we would expect to have:

VaRX+Y < VaRX + VaRY,

i.e. combining risks is less risky than treating the risks separately. This
means that there has to be some gain from diversification. However, it is
possible to present examples for which

VaRX+Y > VaRX + VaRY,

i.e. we say that the VaR measure is violating the subadditivity property.

Example 6 (VaR is not subadditive) Let us consider the following example
taken from Acerbi et al. 2008, w.p. Consider bonds A and B with non overlapping
default probabilities. This means that if one defaults the other will not and vice

9



Event A B A+B Prob.
A looses 30 70 100 170 3%
A looses 10 90 100 190 2%
B looses 30 100 70 170 3%
B looses 10 100 90 190 2%
No Loss 100 100 200 90%

Table 2: Payoffs of the portfolio invested in the two defaultable bonds.

Prob. Distribution of A and B Prob. Distribution of A+B
P&L -28.9 -8.9 1.1 -27.8 -7.8 2.2
PDF 3% 2% 95% 6% 4% 90%
CDF 3% 5% 100% 6% 10% 100%

VaRA
0.95 = VaRB

0.95 = 8.9 VaRA+B
0.95 = 27.8

Table 3: Payoffs of the portfolio invested in the two defaultable bonds.

versa. The two bonds have two different default states each with recovery values
at 70 and 90 and probabilities 3% and 2% respectively. Otherwise they will re-
deem at 100. The possibile states of the world and the corresponding probabilities
are given in table
The market price of the two bonds is the expected value of their payoffs

0.03× 70 + 0.02× 90 + 0.95× 100 = 98.9.

The portfolio is worth
98.9× 2 = 197.8.

The VaR computation and violation of subadditivity is shown in table 3. In par-
ticular, the portfolio VaR (27.8$) is greater than the sum of the individual VaR
(17.8$). Therefore, in this example, the VaR is not subadditive.

Artzner et al. [2] and [3] introduced the concept of coherence for any risk
metric that satisfies four axioms, including the diversification (or subaddi-
tivity) one. VaR turns out to be coherent only under special assumptions
on the distribution of returns. For example, the coherence of VaR occurs
when returns are normally distributed, see example 12 below, or, more
in general, when they have an elliptical distribution. Artzner et al. [2]
also show that a possible coherent risk metrics is the expected shortfall (or
conditonal VaR or conditional tail expectation). Expected Shortfall (ES) av-
erages the P&L scenario returns beyond the VaR threshold, so it provides
additional information as to how severe the losses can be.
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Definition 7 (Expected Shortfall) ES in monetary terms is the average of the
(1− α)% worst losses, i.e.

ESP&L
α (t, T) = −E

(
P&L (t, T)

∣∣∣P&L (t, T) ≤ −VaRP&L
α (t, T)

)
.

ES can be defined in log-returns terms

ESr
α(t, T) = −E (r (t, T) |r (t, T) ≤ −VaRr

α (t, T) ) .

Given that the ES is the average of the worst losses, whilst the VaR is the
best of the worst losses, we always have

ESα (t, T) ≥ VaRα (t, T) ,

Both quantities are increasing functions of α (i.e. the higher the confidence
level, the higher the exposure). In general, the difference between ES and
VaR depends on how thick is the left tail of the relevant distribution

Fact 8 (Expected Shortfall for continuous random variables) If log-returns
admit a continous probability density function fr, the Expected Shortfall can be
computed according to

ESr
α (t, T) = −

∫ −VaRr
α(t,T)

−∞ x fr (x) dx∫ −VaRr
α(t,T)

−∞
fr (x) dx︸ ︷︷ ︸

Pr(r(t,T)<−VaRr
α(t,T))=1−α

= − 1
1− α

∫ −VaRr
α(t,T)

−∞
x fr (x) dx.

(2)
If we are interested in the ES expressed in monetary terms, we have to compute

ESP&L
α (t, T) = − 1

1− α

∫ −VaRP&L
α (t,T)

−∞
x fP&L (x) dx. (3)

Notice that, differently from VaR, there is no simple rule to transform
the ES defined in log-return term in the ES defined in monetary terms. An
approximated transformation is given by

ESP&L
α (t, T) ∼ P(t)× ESr

α(t, T).

Example 9 (Computing the Expected Shortfall) Consider a swap position.
The initial value of the swap is 0. The 1 month swap P&L is assumed to be
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uniformly distributed in the range [-1, 1] million USD. The PDF of the P&L is
given by

fP&L(x) =


0 i f x ≤ −1
1
2 i f − 1 ≤ x ≤ 1
0 i f x > 1

Therefore the CDF is given by

FP&L(x) =


0 i f x ≤ −1

x+1
2 i f − 1 ≤ x ≤ 1
1 i f x > 1

and the VaR is solution of the equation

−VaR + 1
2

= 1− α,

so that
VaRP&L

α = 2α− 1.

The expected shortfall ESP&L
α (t, T) is

− 1
1− α

∫ 1−2α

−1
x

1
2

dx = − 1
1− α

x2

4

∣∣∣∣1−2α

−1
= − 1

1− α

(
(1− 2α)2

4
− 1

4

)
.

For example if α = 0.95, then VaRP&L
0.95 = 0.9 and

ESP&L =
1

1− 0.95

(
(−0.9)2

4
− 1

4

)
= 0.95.

This means that by entering into the swap we can lose no more tha 0.9 millions
with 95% probability. But if we lose more than this amount, in average we lose
0.95 millions.

Example 10 (Expected Shortfall calculation for a discrete random variable)
Consider example 5. The P&L distribution conditional to have a loss larger than
0.5 is given by

P&L|P&L ≤ −0.5 -2 -1 -0.5
Cond. Prob. 0.04

0.04+0.05+0.2
0.05

0.04+0.05+0.2
0.2

0.04+0.05+0.2

The ES is given by(
4

29
× (−2) +

5
29
× (−1) +

2
29
× (−0.5)

)
=

21
29

= 0.7241.
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Example 11 (Expected Shortfall is subadditive) With reference to example
6 on the defaultable corporate bonds A and B, we can compute the 95% Expected
Shortfall. We obtain, using the P&L distribution in table 3 with reference to the
two bonds taken separately

ESA
0.95 = ESB

0.95 = − (−28.9)× 0.03 + (−8.9)× 0.02
0.05

= 20.9$.

With reference to the portfolio expected shortfall, we have

ESA+B
0.95 = 27.8$.

If we use ES as risk-measure, the subadditivity holds:

ESAB
0.95 = 27.8$ ≤ ESA

0.95 + ESB
0.95 = 41.8$.

The subadditivity is a desirable property: it creates incentives to portfolio di-
versification, since it appears to have less risk. The subadditivity of ES holds
always, as shown in Artzner et al. [2].

Example 12 (VaR is subadditive if returns are Gaussian) As we will see short-
hly, under normality, the VaR depends on the volatility of the log-return. If the
portfolio is made of two assets, we have

σ2 (X + Y) = σ2 (X) + σ2 (Y) + 2ρσ (X) σ (Y) ,

where ρ is the correlation coefficient between the two risky asset. Assuming, with-
out loss of generality, zero expected return, the VaR of the individual positions and
of the portfolio is

VaRX = −z1−α

√
σ2 (X), VaRY = −z1−α

√
σ2 (Y),

VaRX+Y = −z1−α

√
σ2 (X) + σ2 (Y) + 2ρσ (X) σ (Y).

Subadditivity holds if

VaRX+Y ≤ VaRX + VaRY

i.e.√
σ2 (X) + σ2 (Y) + 2ρσ (X) σ (Y) ≤

√
σ2 (X)+

√
σ2 (Y) = σ (X)+σ (Y) ,

i.e. iff

σ2 (X) + σ2 (Y) + 2ρσ (X) σ (Y) ≤ σ2 (X) + σ2 (Y) + 2σ (X) σ (Y) ,

and this is true if and only if the correlation coefficient ρ between the two risky
asset is ≤ 1, that is always the case.

13



Remark 2 The VaR does not describe the maximum loss, but the max-
imum loss at a given probability level. This means that there is a 1 − α
probability of having losses larger than the VaR. This is illustrated in the
top panel of Figure 4, in which we notice that the 95% VaR is 15 ml USD,
but the maximum loss is 30 ml USD.

Remark 3 VaR does not describe the losses in the left tail. In Figure 4
we have plotted two probability distributions having the same 95% VaR
equal to 15 ml USD, but with a very different behavior of the tails. The
distribution in the top panel has a probability mass of 5% concentrated
at -30 and -15, whilst the distribution in the bottom panel has a left tail
slowly decaying. This means that if our loss is larger than 15, this loss will
be equal to 15 or 30 USD. In the second case, it can assume values 15 or 20
USD. The different behavior of the tails is captured by the ES. In the first
case, if the loss is larger than 15, the expected loss equals to

2
5
× 30 +

3
5
× 15 = 21mlUSD.

In the second case

2
5
× 20 +

3
5
× 15 = 17mlUSD.

There are three elements in VaR (and ES) calculations.
First, the probability of losses exceeding VaR, 1− α, needs to be speci-

fied, with the most common probability level being 1%. Theory provides
little guidance about the choice of α. VaR levels of 1%–5% are very com-
mon in practice, but less extreme higher numbers (e.g., 10%) are often used
in risk management on the trading floor, and more extreme lower num-
bers (e.g., 0.1%) may be used for applications like long-run risk analysis
for pension funds.

Second, the holding period (i.e., the time period over which losses may
occur). This is usually one day, but can be longer or shorter depending on
particular circumstances. Those who actively trade their portfolios may
use a one-day holding period, but longer holding periods are more real-
istic for institutional investors and non-financial corporations. Many pro-
prietary trading desks focus on intraday VaR, from one hour to the next.

Third and final step is identification of the probability distribution of
the profit and loss of the portfolio. This is the most difficult and important
aspect of risk modeling. The standard practice is to assume a probability
model generating the data and then estimate it by using past observations.
The two most common approaches are the parametric and non parametric
methods. Among the parametric approaches, the most well known is the

14



−30 −25 −20 −15 −10 −5 0 5 10 15 20

0

10

20

2%
3%

12%

20%

25%

20%

10%

5%

3%

P&L

PD
F

−20 −15 −10 −5 0 5 10 15 20

0

10

20

30

2%
3%

12%

20%

25%

20%

10%

5%
3%

P&L

PD
F

Figure 4: Top Panel: the distribution has a 95% VaR equal to 15. The maximum loss is
30. Bottom Panel: the distribution has a 95% VaR equal to 15. The maximum loss is 20.
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Gaussian one. Among the non-parameteric approaches, the most com-
monly used is the so called historical simulation or bootstrap approach.
We briefly review them in the following sections.

3 The P&L Distribution

In the VaR definition, the most important element is the profit and loss (or
log-return) distribution at the time horizon T− t. We concentrate now the
attention on the construction of the P&L distribution in general terms and
then we will cover specific examples related to energy markets.

The two simplest approaches for linear positions (such as commodi-
ties) are

1. The parametric approach. In this case we require an assumpton re-
garding the distribution of log-returns. For example, we can assume
that they are distributed according to a Gaussian distribution. There-
fore, the estimation of the probability distribution requires the esti-
mation of the parameters (mean and standard deviation in the Gaus-
sian case) of the population. Cleary, other parametric distributions
can also be considered.

2. The non-parametric approach. In this case, we do not make any model
assumption and we estimate the unknown population distribution
using the empirical distribution (by example using histograms).

Clearly, combinations and improvements of these two basic approaches
are also possible.

3.1 Parametric VaR under the normality assumption

If we assume that log-returns have a Gaussian distribution, so that

r (t, t + ∆) ∼ N
(

µ∆, σ2
∆

)
, (4)

where µ∆ = E (r(t, t + ∆)) is the expected return of ∆-period log-return
and σ2

∆ = Var (r(t, t + ∆)) is the variance, it can be easily shown that the
following result holds.

Fact 13 (Gaussian log-returns, VaR and ES) If log-returns over a period of
length ∆ follow a Gaussian distribution, then the VaR with horizon ∆ is

VaRα (t, t + ∆) = − (µ∆ + z1−ασ∆) , (5)
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where zα is the α% quantile of the standard Gaussian distribution, i.e.

Φ (z1−α) = 1− α.

The Expected Shortfall is given by

ESr
α (t, t + ∆) = −

(
µ∆ − σ∆

φ (z1−α)

1− α

)
, (6)

where φ (x) is the standard Gaussian PDF, i.e.

φ (x) =
1√
2π

e−
x2
2 .

If ∆-period log-returns have zero-autocorrelation5, it follows that cumulative
log-returns are also Gaussian

r (t, t + n∆) ∼ N
(

µ∆n, σ2
∆n
)

,

so that the corresponding VaR is

VaRα (t, t + n∆) = −
(
µ∆n + z1−ασ∆

√
n
)

. (7)

and similarly the ES is

ESr
α (t, t + ∆) = −

(
µ∆n− σ∆

√
n

φ (z1−α)

1− α

)
. (8)

An example of computation of VaR and ES under the parametric Gaussian
approach for typical parameter values and for varying confidence level α
is given in Table 4. Notice that the Expected Shortfall is always larger than
the VaR at the same confidence level.

In the left panel of Figure 5 we plot the so called term structure of VaR
and ES, i.e. the values of the two risk-measures at different time horizons.
Notice that if µ > 0, there is an horizon at which the VaR is maximum
and is given6 by n? = (σ∆z1−α/(2µ∆))

2. This is due to the fact that the
expected return grows linearly with the horizon, whilst the volatility in-
creases according to the much slower rate of the square root rule. This is
shown in the right panel of Figure 5. In Figure 6 we plot the VaR and ES
for different confidence levels.

5This assumption, sometimes also called zero serial correlation, means that there is no
linear dipendence between past returns and current returns.

6The horizon at which the ES is maximized is given by the same formula, except for
z1−α being replaced by φ(z1−α).
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µ σ α z1−α VaRα ESr
α

4% 20% 90% -1.2816 22% 31%
4% 20% 93% -1.4395 25% 34%
4% 20% 95% -1.6449 29% 37%
4% 20% 98% -1.96 35% 43%
4% 20% 99% -2.3263 43% 49%
4% 50% 90% -1.2816 60% 84%
4% 50% 93% -1.4395 68% 90%
4% 50% 95% -1.6449 78% 99%
4% 50% 98% -1.96 94% 113%
4% 50% 99% -2.3263 112% 129%

Table 4: Computing VaR and ES under the Gaussian assumption. Typical annualized
values for the expected return and the volatility are used.
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Figure 5: Left panel: Term Structures of (Gaussian) VaR and ES versus time horizon
(Parameters: µ = 1%, σ = 30%, α = 95%). Right panel: Gaussian VaR and ES versus
confidence level (Parameters: µ = 1%, σ = 30%, n = 1 year).
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Figure 6: VaR and ES as function of the confidence level α in the parametric Gaussian
model (µ = 0.04 and σ = 0.3).

Estimating µ and σ In practice, to make formula (7) and (8) operational,
we need to estimate the population mean and standard deviation. The
simplest approach is to use the sample mean µ̂∆ and the sample standard
deviation σ̂∆ of a sample of log-returns. Given a sample of historical log-
returns r0, ..., rT−1, where (rj = r (j∆, (j+)∆), the sample mean and the
sample variance7, referred to a period of length ∆, are computed according
to

µ̂∆ =
1
T

T−1

∑
j=0

rj, and σ̂2
∆ =

1
T

T−1

∑
j=0

(
rj − µ̂∆

)2 .

Then the sample standard deviation is obtained as the square root of the
sample variance. So instead of using formula (5) we use

V̂aRα (t, t + ∆) = − (µ̂∆ + z1−ασ̂∆) . (9)

Formula (9) can be computed in Excel according to
=-(Mean+Volatility*NORMSINV(1-Confidence)).

Here Mean is computed using the Excel function Average and Volatility

using the square root of the sample variance that is obtained via the Excel
function VAR.P. In Excel, the ES formula can be computed via

=-Mean+Volatility*NORMDIST(NORMSINV(Confidence),0,1,FALSE)/(1-Confidence).

7In the definition of the sample variance below, we divide by T rather than by T − 1,
because we prefer to use a biased estimator, but with a smaller mean square error. In
addition, for the sample sizes used the difference is negligible.

19



Example 14 (Estimating VaR via the Gaussian parametric approach) Let us
consider the price series of New York Harbor Conventional Gasoline Regular Spot
Price FOB (Dollars per Gallon) in August 2015 reported in Table 5 and the corre-
sponding daily log returns series. Assuming Gaussian daily returns, we estimate

Date Price Log-return Date Price Log-return

Aug 03, 2015 1.751
Aug 04, 2015 1.764 0.0074 Aug 18, 2015 1.644 -0.0151
Aug 05, 2015 1.674 -0.0524 Aug 19, 2015 1.56 -0.0524
Aug 06, 2015 1.655 -0.0114 Aug 20, 2015 1.537 -0.0149
Aug 07, 2015 1.631 -0.0146 Aug 21, 2015 1.556 0.0123
Aug 10, 2015 1.705 0.0444 Aug 24, 2015 1.485 -0.0467
Aug 11, 2015 1.713 0.0047 Aug 25, 2015 1.456 -0.0197
Aug 12, 2015 1.772 0.0339 Aug 26, 2015 1.386 -0.0493
Aug 13, 2015 1.729 -0.0246 Aug 27, 2015 1.464 0.0548
Aug 14, 2015 1.699 -0.0175 Aug 28, 2015 1.524 0.0402
Aug 17, 2015 1.669 -0.0178 Aug 31, 2015 1.651 0.0800

Table 5: Data for Example 14. Source: www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm

the population mean using the sample mean

µ̂∆ =
0.0074− 0.0524− 0.0114 + · · ·+ 0.0402 + 0.0800

20
= −0.0029,

and the population variance using the sample variance

σ̂2
∆ = 0.00742+0.05242+0.01142+···+0.04022+0.08002

20 − (0.0029)2

= 0.03652.

Therefore, the estimated 95% VaR at 1 day horizon is obtained using the plug-in
estimate

V̂aR(t, t + ∆) = −(−0.0029− 1.6448× 0.0365) = 0.0630.

The estimated ES is

ÊS(t, t + ∆) = −

−0.0029− e−
(−1.6448)2

2
√

2π(1− α)
× 0.0365

 = 0.0783.

This means that we cannot lose more than 6.30% over the next day at a confidence
level of 95%. If we lose more than 6.30%, the expected loss is 7.83%. If we are
interested in the 10 days VaR, we obtain

V̂aR(t, t + 10∆) = −
(
−0.0029× 10− 1.6448× 0.0365×

√
10
)
= 0.2194,

20

www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm


i.e. we cannot lose more than 22% over the next 10 days at a confidence level of
95%.

3.1.1 Parametric VaR and estimation risk

As illustrated in last example, the reported VaR number is a an estimate of
the true VaR and therefore it is affected by the so called estimation error, i.e.
it has a sampling variability due to the limited sample size. The issue is
how large the sampling error is. Indeed, from the viewpoint of VaR users,
it is useful to assess the degree of precision in the reported VaR.

Assuming that the population is Gaussian with zero mean and un-
known variance σ2, it can be shown that, for large sample sizes T, the
standard error, which is a measure of the quality of an estimator, of the
sample standard deviation estimator approaches

lim
T→∞

s.e. (σ̂∆) = σ∆
1√
2T

,

(this is called asymptotic (i.e. for large T) standard error of the sample
standard deviation). Therefore the accuracy of the VaR estimator can be
assessed as

lim
T→∞

s.e.
(

V̂aR∆

)
= σ∆|z1−α|

√
n

2T
. (10)

This means that the accuracy of the VaR estimate deteriorates8 for

• large absolute values of z1−α, i.e. for very high or very low values of
the confidence level;

• long horizon n: it is more difficult to forecast at longer horizons than
at shorter ones;

• large population volatility σ∆: the larger the volatility of returns, the
lower the quality of the VaR estimate;

• small sample size T: we have less information to estimate accurately
the unknown parameters.

The above formula also allows us to build confidence intervals around the
VaR estimate. For example, a 95% confidence interval for VaR is given by

V̂aRα ± 1.645× σ̂∆|z1−α|
√

n
2T

.

8Similar remarks hold for the ES.
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We note that particular caution should be used when comparing VaR fig-
ures at different confidence levels α, for a given sample size T, because
they are not estimated with the same accuracy. For example, let us assume
that the population is Gaussian with zero mean and unknown variance σ2

and that we have a 90% VaR estimate obtained using 250 daily observa-
tions. According to formula (10), the accuracy of the 90% VaR estimate is
given by

σ̂∆|z1−0.9|
√

1
2× 250

.

If we want to estimate the VaR at a different confidence level, but with the
same level of accuracy, we should have a sample of size Tα such that

σ̂∆|z1−0.9|
√

1
2× 250

= σ̂∆|z1−α|

√
1

2× Tα
,

or equivalently

Tα = 250×
(
|z1−α|
|z1−0.9|

)2

. (11)

For example, in Table 6 we compute the sample sizes Tα at different con-
fidence levels so that the accuracy of the VaR estimator is the same as the
one of the VaR estimator at α = 90% confidence level given above. The
disappointing point is that if for example we use 250 observations for es-
timating the 90% VaR, we should use a sample with 412 observations to
estimate the 95% VaR at the same level of accuracy. This size increases to
1,454 (i.e. approximately 6 years of data) for the 99.9% confidence level.
This should raise some awareness in blindly believing the accuracy of the
VaR estimate at very large confidence levels. The danger here is obvious: if
VaR estimates are too inaccurate and users take them seriously, they could
take on much bigger risks and lose much more than they had bargained
for.

α z1−α |z1−α| |z1−α|
|z1−0.9|

(
|z1−α|
|z1−0.9|

)2
Tα

0.9 -1.2816 1.2816 1.0000 1.0000 250
0.95 -1.6449 1.6449 1.2835 1.6473 412
0.99 -2.3263 2.3263 1.8153 3.2952 824

0.999 -3.0902 3.0902 2.4113 5.8145 1454

Table 6: Computation of Tα in formula (11) for different confidence levels.
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The advantage of the Gaussian parametric model is that its implemen-
tation requires the estimation of only two parameters, so that the accuracy
of the VaR estimate turns out to be much higher than for competing mod-
els, such as the historical simulation method. The main problem is that the
Gaussian parametric approach is a model-dependent procedure, so it pro-
vides misleading indications if the model is poor. In addition, it is not able
to capture “fat-tailed” and skewed distributions. In Figure 7 we compare
the Gaussian density with the empirical one of Gasoline prices. A similar
comparison is also given in Figure 8 for the crude oil WTI prices. In both
cases, using the Jarque-Bera test9 we can reject the Gaussian assumption
of log-returns of these commodity price series.

3.1.2 Issues in volatility estimation

The estimation procedure adopted in the Gaussian approach for estimat-
ing the population volatility is questionable, because it assigns the same
weight to old and recent observations. We say that the sample variance
represents an unconditional estimator of the population volatility. In sim-
ple terms, the volatility estimate does not depend on the ordering with
which we have registered historical returns: reshuffling the sample does
not change the variance estimate. Recent information receives the same
weights as older information, although intuition suggests that recent data
should be more relevant. Therefore, the term structure of volatility fore-
casts, i.e. the plot of the future 1-period expected volatility against the time
horizon, is flat. Instead, a non flat volatility term structure can be related to
seasonality effects in volatility. For example, Figure 9 illustrates the annu-
alized volatility of natural gas prices at Henry Hub for different months.
The highest volatility levels tend to occur from October to February, which
in general are the coldest months of the year. Moreover, fluctuations in de-
mand for heating due to unpredictable weather conditions cannot always
be met with storage volumes, because the natural gas in storage has to

9The Jarque and Bera [21] test measures departure from normality in terms of the
skewness and kurtosis. The Jarque-Bera JB statistic is defined as

ĴB =
T
6
× ŝk

2
∆ +

T
24
×
(

k̂∆ − 3
)2

,

where, ŝk and k̂ refer to the sample estimators of the skewness and kurtosis. Under the
null hypothesis of normally distributed errors, ĴB has an asymptotic chi-square distribu-
tion with 2 degrees of freedom. Large values of the Jarque-Bera statistic compared to the
critical level of the chi-square distribution with 2 degrees of freedom indicate departures
from normality.
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Figure 7: Top panel: Histogram of daily returns on the NY Gasoline prices in the period
Jan 4th, 2010 to Aug 31st 2015 (number of observation: 1427), compared to the normal
distribution with same mean and standard deviation as the historical one. Lower left
panel: Left tail of histogram and Gaussian PDF. Lower right panel: Right tail of his-
togram and Gaussian PDF. Skewness coefficient in the data is equal to -0.65 whilst the
kurtosis is equal to 5.16. The Jarque-Bera test rejects the null hypothesis that the sample
data is originated by a Gaussian distribution.
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Figure 8: Top panel: Histogram of daily returns on the Cushing WTI Spot Price FOB (Dol-
lars per Barrel) prices in the period Jan 4th, 2010 to Aug 31st 2015 (number of observation:
1427), compared to the normal distribution with same mean and standard deviation as
the historical one. Lower left panel: Left tail of histogram and Gaussian PDF. Lower
right panel: Right tail of histogram and Gaussian PDF. Skewness coefficient in the data
is equal to -0.04 whilst the excess of kurtosis is equal to 6.70. The Jarque-Bera test rejects
the null hypothesis that the sample data is originated by a Gaussian distribution.
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Figure 9: Annualized historical volatility by month of Henry Hub Natural Gas Prices.
Observation period: January 2007 to September 2015.

serve the entire winter season. Hence, in this period we also register more
erratic price movements.

In the case in which, we expect a predictable movement in volatility,
the model in formula (4) has to be replaced with

r (t, t + ∆) ∼ N
(

µ∆, σ2
∆(t)

)
, (12)

and therefore, again assuming zero serial correlation in returns,

r (t, t + n∆) ∼ N
(

µ∆,
n−1

∑
j=0

σ2
∆(t + j∆)

)
. (13)

Therefore in the VaR (and ES) formula, instead of using the square root
rule to extrapolate the 1-period volatility to an n-period horizon, we com-
pute the so called integrated variance over the period and then we take
its square root. For example, if we expect the daily volatility of Natural
Gas in January to be 4.70% and in February 7.12%, and on December 31st
we require a VaR horizon of 40 days the integrated variance is computed
according to

31× (4.70%)2 + 9× (7.12%)2 = 0.1140,

Then the VaR formula is applied using the square root of 0.1140, i.e. 33.76%.
Another possibility is to use in the VaR formula the implied volatility

forward curve, i.e. the market’s volatility estimate extracted from quoted
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Figure 10: Term Structure of at-the-money implied volatility of Natural Gas Options (Eu-
ropean) quoted at CME. Trade Date: Friday 18th, 2015.

prices of call and put options. Whilst the historical volatility is computed
from historical prices of the underlying commodity and therefore it yields
information about how prices have moved in the (recent) past, the implied
volatility, eventually interpolated to the VaR horizon, provides a market
expectation of future volatility. Figure 10 illustrates the term structure of
at-the-money implied volatility extracted from quoted prices of natural
gas options, as of September 2015. Its seasonal shape is evident. We recall
that, assuming that log-returns evolve according to an arithmetic Brow-
nian motion, the square of the implied volatility is an estimate of the in-
tegrated variance of the log-returns from the trade date up to the option
expiry. Therefore, implied volatility provides a direct input to be used in
the VaR formula. Unfortunately, not all commodity markets have reliable
options data.

Another possibility is to use an exponential-weighted moving average
(EWMA) scheme, or some kind of conditional volatility model. In this ap-
proach, the volatility at time t is dependent on the recent return history.
This approach is able to capture the so called clustering (or persistence)
in volatility, i.e. high (low) volatility periods are followed by high (low)
volatility periods, a typical feature of financial returns as shown by the
large autocorrelation of squared returns. An unconditional volatility esti-
mator like the sample variance cannot capture this feature. In the EWMA
model, the Gaussian assumption of ∆ period return in (12) is augmented
by a so called variance equation that describes how the next period vari-
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Figure 11: The Figure illustrates the behavior of the weighting function (1− λ)× λj for
different values of λ. Lower values of λ imply a fast decay of this function, so that only
recent observations contribute to the formation of the variance forecast.

ance is related to the recent past.
In particular, given a smoothing parameter λ, 0 < λ < 1, the EWMA

model assumes that the variance forecast for the next period is time vary-
ing according to the rule

σ2
∆ (t) = (1− λ)

∞

∑
j=0

λjr2 (t− (j + 1)∆, t− j∆) ,

i.e. it is an exponentially weighted average of past squared returns. There-
fore, the EWMA approach has the appealing property that the influence of
any observation declines over time at a stable rate, according to the rule
(1− λ)× λj. In practice, as we lower the value of λ, we give more weight
to the most recent observations. Viceversa, as we increase the value of λ
we assigns equal weight to all observations. The sample variance estima-
tor is recovered in the limiting case of λ = 1. This is illustrated in Figure
11, where we plot the weighting function for different values of λ.

It is useful to rewrite the EWMA variance equation according to the
following updating rule

σ2
∆ (t)︸ ︷︷ ︸

today forecat

= (1− λ)× r2 (t− ∆, t)︸ ︷︷ ︸
yesterday squared market shock

+ λ× σ2
∆ (t− ∆)︸ ︷︷ ︸

yesterday forecast

.

(14)
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This means that

• the higher λ, the higher the persistence in the variance through the term
λσ2 (t− ∆);

• the lower λ, the higher the reaction to market shocks through the term
(1− λ) r2 (t− ∆, t).

Example 15 (Updating Variance estimate using EWMA recursion) Let us
consider the return series in the second row of Table 7. Assuming λ = 0.9, in the
third row we implement the recursive updating of the daily variance forecast,
starting from an hypothetical initial value of 3. In the fourth row, we have the
daily volatility forecast. Computations proceed as follows

Days k 0 1 2 3 4 5 6 7 8 9 10
rk∆ 2 5 5 -1 5 -5 5 -5 3 -4 -2
σ2
(k+1)∆ 3 3.1 5.29 7.26 6.63 8.47 10.12 11.612 12.95 12.56 12.9

σ(k+1)∆ 1.73 1.76 2.3 2.69 2.58 2.91 3.18 3.41 3.6 3.54 3.59

Table 7: The updating procedure of the variance in the EWMA scheme. Numbers are
purely illustrative to simplify the recursive computation.

• Given an initial value for σ2 (0) = 3, and given the return r(0, ∆) = 2,
the variance forecast for the following day is computed via

σ2
∆ (∆) = 0.9× 3 + 0.1× 22 = 3.1

and the volatility forecast is
√

3.1 = 1.7607.

• Then 3.1 together with the squared return on the second day provides a
variance forecast at the end of the second day

σ2
∆ (2∆) = 0.9× 3.1 + 0.1× 52 = 5.29.

The volatility forecast is
√

5.29 = 2.3.

• If we proceed in a similar way up to the last day of the sample, the variance
forecast on the last day of our sample is obtained via

σ2
∆ (10∆) = 0.9× 12− 6 + 0.1× (−2)2 = 12.9.

• If on day 10, we are interested in the 1-day VaR, we can use the square root
of 12.9 to forecast the VaRα measure according to the formula

VaRα (10∆, 11∆) = −z1−α ×
√

12.9.
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As shown in the last example, in order to use the EWMA procedure we
need

• the starting value of the recursion, i.e. σ2
∆ (0); in the example, this

value was set arbitrarily at 3.

• an estimate of the parameter λ; in the example, this value was set
arbitrarily at 0.9.

Common practice is to set λ = 0.94 if we are dealing with daily returns,
and estimate the starting value of the recursion σ2(0) by using the sample
variance relative to additional K observations occurring before the day in
which we start the recursion.

Another possibility it to estimate both parameters by maximum likeli-
hood. Let us suppose that we have collected T past daily return starting
from time 0

sample = {r0, r1, ..., rT−1} ,

where we write rj to denote r (j∆, (j + 1)∆) . The sample likelihood, i.e.
the probability of observing the sample, is

L
(

r0, r1, ..., rT−1

∣∣∣λ, σ2
∆ (0)

)
=

T−1

∏
j=0

1√
2πσ2

∆(j∆)
e
− 1

2

( rj
σ∆(j∆)

)2

,

where σ2
∆(j∆) = V (r (j∆, (j + 1)∆))) and it is calculated recursively ac-

cording to the recursion in (14). It is convenient to consider the log-likelihood

logL
(

r0, r1, ..., rT−1

∣∣∣λ, σ2
∆ (0)

)
=

T−1

∑
j=0

(
−1

2
ln (2π)− 1

2
ln
(

σ2
∆ (j∆)

)
− 1

2

(
rj

σ∆ (j∆)

)2
)

.

Now we can maximize this expression with respect to the unknown pa-
rameters λ and σ2

∆ (0). This can be done easily in Excel using the Excel
Solver.

Example 16 (Computing the log-likelihood) Let us consider the returns of
Example 15. The daily likelihood relative to the first observation is

e−
(2)2
2×3

√
2π3

= 0.11826.

The daily likelihood relative to the second observation is

e−
(5)2

2×3.1
√

2π3.1
= 0.00402.
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Figure 12: Computing the sample likelihood of the EWMA model in Excel.

Figure 13: Log-likelihood of the EWMA model with reference to Gasoline prices for the
period January 4th, 2010 to August 31st 2015.

If we consider the full sample of 10 observations, the sample log-likelihood given
the starting values for the unknown parametes is obtained as

ln(0.11826) + ln(0.00402) + · · ·+ ln(0.0951) = −35.2109.

In practice, we consider a much longer sample and we optimize over the values
of λ and σ2

∆(0). Notice that the daily likelihood can be computed in Excel using the
built-in function NORM.DIST(return;0;volatility;FALSE), where return

is the observed return and volatility is the square root of the EWMA estimate
of the variance. This is shown in Figure 12.

Figure 13 illustrates how the log-likelihood changes for different val-
ues of λ. The point at which it achieves its largest value provides the max-
imum likelihood estimate of λ.

In the EWMA model, returns are serially uncorrelated (but not inde-
pendent). Therefore the variance of the cumulative n−periods returns still
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Time Variance Updating Simulated Return

t σ̂2
∆(t) (known) r∆,0 =

√
σ̂2

∆(t)× ε1

t + ∆ σ̂2
∆,1 = λ̂σ̂∆,0 +

(
1− λ̂

)
r2

∆,0 r∆,1 =
√

σ̂2
∆,1 × ε2

t + 2∆ σ̂2
∆,2 = λ̂σ̂2

∆,1 +
(
1− λ̂

)
r2

∆,1 r∆,2 =
√

σ̂2
∆,2 × ε3

... ...

t + i∆ σ̂2
∆,i = λ̂σ̂2

∆,i−1 +
(
1− λ̂

)
r2

∆,i−1 r∆,i =
√

σ̂2
∆,i × εi+1

... ...

n− 1 σ̂2
∆,n−1 = λ̂σ̂2

∆,n−2 +
(
1− λ̂

)
r2

t+(n−2)∆ r∆,n−1 =
√

σ̂2
∆,n−1 × εn−1

Table 8: Implementing Monte Carlo simulation to simulate the one period variance and
the one-period log-return in the EWMA model. We use σ̂2

∆,i to denote σ̂2
∆(t + i∆), r∆,i

to denote r(t + i∆, t + (i + 1)∆) and εi is a sequence of iid standard Gaussian random
variables. The simulated 2-period cumulative returns is r∆,0 + r∆,1. The simulated n-
period cumulative returns is r(t, t + n∆) = ∑n−1

i=0 r∆,i.

follows the square-root rule,

σ2 (t, t + n∆) = n× σ2
∆ (t) .

where σ2
∆ (t) is the variance forecast of the last sample period. With refer-

ence to Example 15, in order to obtain a forecast of the 5 days variance, we
compute 12.9× 5.

However, if we have to compute a n-period VaR, we cannot use for-
mula (7). Indeed, in the EWMA model only 1-period returns are Gaus-
sian. Moreover, they are uncorrelated, but not independent, because they
are characterized by a serial dependence through the variance dynamics.
This implies that the cumulative n-periods log-return is no longer Gaus-
sian. The reason is that the conditional volatility EWMA scheme gener-
ates stochastic volatility in the returns series: given different return paths,
we have different volatility paths. The main effect of stochastic volatil-
ity is to generate fat tails in the distribution of cumulative returns, even
if 1-period returns are Gaussian. Unfortunately, the distribution of cumu-
lative returns is not known, and therefore the VaR formula (7) does not
apply to the EWMA model. In this case, VaR estimation can be obtained
only by Monte Carlo simulation. We proceed as follow. Let us suppose
that we have estimated the two unknown parameters and let us call λ̂ the
estimated value for λ and σ̂2

∆ (t) the variance forecast for the next period.
Table 8 illustrates how to simulate returns given these estimates.
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In practice, at each time step we have to draw, independently from
the previous extractions, a new random number ε (t + i∆) according to
a standard normal random variable. We use this random draw and the
variance computed according to the EWMA scheme to simulate 1-period
log-return. The simulated cumulative return is obtained by the sum of the
simulated one-period log-returns, given in the last column of Table 8.

Example 17 (Monte Carlo simulation of the EWMA model) Let the estimated
value of λ be 0.94. The variance estimate for the period (t−∆, t) is 0.000585 and
the corresponding log-return is -0.0087. The variance of the return over the fol-
lowing period is

0.94× 0.000585 + (1− 0.94)× (−0.0087)2 = 0.000555.

In order to simulate the log-return over (t, t + ∆), we draw a pseudo-random
number ε from a standard Gaussian r.v.. Let us suppose that ε (t) =0.2272. The
simulated return for the period (t, t + ∆) is

√
0.000555× 0.2272 = 0.0054.

The variance for the second period is updated according to

0.94× 0.000555 + (1− 0.94)× (0.0054)2 = 0.000523.

If the simulated Gaussian draw for the second period is -0.6542, the simulated
one-period return for the time window (t + ∆, t + 2∆) is

√
0.000523× (−0.6542) = −0.0150.

The simulated two-days cumulative return is 0.0054− 0.0150 = −0.0096. Ad-
ditional steps are given in Table 9.

Fact 18 (Monte Carlo Simulation and VaR in the EWMA model) The cor-
rect approach for VaR estimation in the EWMA model is as follows

1. Run M simulations to obtain M simulated values of r (t, t + n∆) .

2. Estimate the VaR using the empirical percentile of the simulated log-returns
at the desired confidence level 1− α.

Simulated paths of the EWMA model are illustrated in Figure 14. A
comparison between the simulated distribution and the Gaussian one with
same variance is given in Figure 15.
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EWMA Monte Carlo Simulation
Day i ε(t) Variance Log-return Cumulative return

0 0.000585 -0.0087

1 0.2272 0.000555 0.0054 0.0054
2 -0.6542 0.000523 -0.0150 -0.0096
3 -1.0886 0.000505 -0.0245 -0.0341
4 0.7960 0.000511 0.0180 -0.0161
5 -1.1254 0.000500 -0.0252 -0.0412

Table 9: A simulated path of daily and cumulative log-returns.

Figure 14: Simulated Paths of the EWMA Model.
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Figure 15: Simulated distribution of the EWMA Model and superimposed Gaussian dis-
tribution with same variance.

Due to the fat tails generated by the stochastic volatility effect, if we
compare VaR computed using the square-root formula and Monte Carlo
simulation, we can verify that for large values of the confidence level, the
EWMA VaR estimate is larger than in the Gaussian case. For low values
of α, the VaR computed by Monte Carlo simulation of the EWMA model
is lower than in the Gaussian case

In conclusion, the EWMA is a parsimonious model able to capture the
relative importance of recent returns in the volatility estimate. In addi-
tion, it also generates fat tails distribution through the conditional stochas-
tic volatility effect. Moreover, its estimation via the maximum likelihood
procedure is straigthforward. On the other side, given that innovations
are Gaussian, the model is not able to generate skewed distributions. Fur-
ther, it provides counterfactual longer-horizon forecasts: shocks will per-
sist for a long time. Possible improvements to the EWMA scheme, al-
lowing for non Gaussian innovations and generating skewed distributions
via the negative relationship between variance and returns, are provided
by the class of Generalized autoregressive conditional heteroskedasticity
(GARCH) models. Applications of GARCH models to oil, natural gas, and
electricity price are discussed in Efimova and Serletis [18].
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3.2 Non-parametric VaR: Historical Simulation

Historical Simulation provides an important alternative to the paramet-
ric approach presented in the previous section, having as main advantage
that no assumption is made on the model generating returns. Given a
sample of size T of daily returns, (r1, ..., rT), the non-parametric approach
consists in estimating the probability density function by the histogram
(empirical distribution) of observed returns. The empirical cumulative
distribution function is a step function that moves up by steps of size 1/T,
T being the sample size, at each one of the T data points. If some of the
ri coincide, then that common value will receive the appropriate multiple
probability mass. If (r1, ..., rT) is the sample of iid returns, the empirical
CDF is defined as follows

F̂T(r) =
1
T

T

∑
i=1

1ri≤r,

where 1A is the indicator function, ie it returns 1 if the event A is true, 0
otherwise. The VaR is then estimated by looking for the point at which the
empirical CDF crosses the (1− α)-percentile of this empirical distribution.
Given that the empirical CDF is a step function, sometimes an interpo-
lation between adjacent points is necessary (different softwares employs
different interpolation). In practice, the VaR is estimated by the empirical
quantile, ie by sorting the observed returns in increasing order and select-
ing the one in position (1− α)T.

Fact 19 (Computing the VaR using historical simulation) Let (r1, ..., rT) be
a sample of independent and identically distributed ∆-period returns. Consider
the ordered returns

r(1) ≤ r(2) ≤ ...r(T−1) ≤ r(T),

with r(1) being the sample minimum and r(T) the sample maximum. The empiri-
cal VaR estimator at the desired confidence level is the ordered return in position
(1− α) T

−V̂aRα (t, t + ∆) = r((1−α)T).

If (1− α) T is not an integer number, we use linear interpolation with weights
1− γ and γ

−V̂aRα (t, t + ∆) = (1− γ)× r(b(1−α)Tc) + γ× r(b(1−α)Tc+1),

where bαTc is the integer part of αT and γ = (1− α) T − b(1− α) Tc .
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Position Sorted Return Position Sorted Return

1 -5.245% 11 -1.461%
2 -5.237% 12 -1.141%
3 -4.927% 13 0.468%
4 -4.670% 14 0.740%
5 -2.457% 15 1.229%
6 -1.972% 16 3.386%
7 -1.782% 17 4.017%
8 -1.750% 18 4.437%
9 -1.509% 19 5.475%

10 -1.485% 20 8.004%

Table 10: Sorted log-returns of New York Harbor Conventional Gasoline Regular Spot
Price FOB (Dollars per Gallon) in August 2015.

Example 20 (VaR via Empirical Quantile) Let us consider the same sample
as in Example 14. The ordered returns of Gasoline are given in Table 10. If we
are interested in the 90% VaR, we have to consider the ordered return in position
(1− 0.9) × 20 = 2, so that the empirical VaR estimator is the second smallest
return, ie

V̂aR0.90 (t, t + ∆) = 5.237%.

If we are interested in the 92.5% VaR level, we observe that (1− 0.925)× 20 =
1.55 is not an integer number. Hence, we use linear interpolation of the ordered
return at position 1 and 2 with weights 1− γ and γ, with

γ = (1− 0.925)× 20− b(1− 0.925)× 20c = 1.5− 1 = 0.5,

so that

V̂aR0.925 (t, t + ∆) = (1− 0.5)× 5.245% + 0.5× 5.237% = 5.241%.

If the confidence level is larger than 95%, we set the negative VaR equal to the
smallest registered sample value.

Unfortunately, in this case there is no simple procedure to extrapolate
a n-period VaR from the 1-period one. Indeed, the square root rule is valid
only for extrapolating the standard deviation under the zero autocorrela-
tion assumption, and it is a not valid rule to project the 1-period quantile
to n-periods. A possibility is to perform the above estimation looking at n-
period returns, but this implies a loss of data. For example, in a sample of
250 daily returns we have only 12 monthy returns, so that the estimation
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of the monthly VaR is very inaccurate. A different possibility is to estimate
the VaR via Bootstrap, also known as Historical Simulation.

The bootstrap technique draws a sample of the same size as the original
data set and records the VaR from the simulated sample. This procedure
is repeated over and over to obtain multiple sample VaRs. In practice, this
procedure is like sampling with replacement. The best VaR estimate from
the full data set is the average of all sample VaRs.

If we are interested in the VaR for a n-period horizon, the procedure
works as follows

1. Create a T × 1 database of historical returns r on a stock.

2. Randomly select a date t ∈ [1, T] and use the return for that date to
generate a possible future return.

3. Repeat n times and obtain a simulated cumulative return as sum of
the n values of the simulated 1-period returns.

4. Repeat steps 2-3 to generate T paths to obtain an estimate of the re-
turn distribution of the portfolio.

5. Compute the VaR as empirical quantile of the T simulated values.

6. Repeat steps 2-5 M times and then take the average of all sample
VaRs.

This procedure relies on the independence of successive returns. How-
ever, this basic scheme can be improved in order to take into account both
serial dependence and varying volatility, as well as seasonal components.

Example 21 (Bootstrap Simulation) Let us suppose that our sample consists
of 10 daily observations, see Table 11, and we are interested in simulating the
cumulative return over the next 3 days.

1. As we have 10 daily log-returns, let us randomly draw an integer uniform
in the interval [1:10],

day ∼ U([1, 10]),

say 8. We collect the return at position 8 in Table 11, ie -0.0246.

2. Let us make an additional extraction from the interval [1:10] and assume
this is 4. Therefore, from Table 11, the simulated return on the second day
is -0.0146.
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Day Price Log-ret.

Aug 03, 2015 1.751
Aug 04, 2015 1.764 0.740%
Aug 05, 2015 1.674 -5.237%
Aug 06, 2015 1.655 -1.141%
Aug 07, 2015 1.631 -1.461%
Aug 10, 2015 1.705 4.437%
Aug 11, 2015 1.713 0.468%
Aug 12, 2015 1.772 3.386%
Aug 13, 2015 1.729 -2.457%
Aug 14, 2015 1.699 -1.75%
Aug 17, 2015 1.669 -1.78%

Table 11: Sample of daily log-returns used to perform historical simulation in Example
21.

3. If we make a third extraction and we obtain 7, the simulated return on the
third day is 0.0339.

4. Therefore, the simulated 3-days return is

−0.0246− 0.0146 + 0.0339 = −0.0053.

5. Let us repeat steps 1-4 as many times as the number observations in our
sample, ie 10 times. Given that we need to simulate 3 returns in order to
generate each return paths, in total we have to extract 3× 10 = 30 integer
random numbers.

6. We end up with a simulated series of returns, as reported in Table 12. The
first column refers to the number of simulations that has to be equal to the
sample size T. Columns 2-4 refer to the simulation of 30 integer numbers
in the range [1:10]. Columns 5-8 refer to the boostrapped daily returns. In
particular, column 5 refers to simulated returns for the first day. Column 6
refers to simulated returns for the second day. Column 7 refers to simulated
returns for the third day. The last column refers to the simulated three day
returns that is obtained by summing the three 1-day returns. If we are
interested in the 90% VaR, we consider the smallest return among the T
simulated 3-day returns. It is given by -9.15%. Therefore the 3 days VaR
is 9.15%.

In general, this procedure is repeated a few times, a suggested typical num-
ber falls between 500 and 1000. Each simulation returns an estimated VaR
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Sim. 1 2 3 r(t, t + ∆) r(t + ∆, t + 2∆) r(t + 2∆, t + 3∆) r(t, t + 3∆)

1 9 9 8 -1.75% -1.75% -2.46% -5.96%
2 7 1 5 3.39% 0.74% 4.44% 8.56%
3 8 2 4 -2.46% -5.24% -1.46% -9.15%
4 2 5 4 -5.24% 4.44% -1.46% -2.26%
5 6 4 9 0.47% -1.46% -1.75% -2.74%
6 3 3 7 -1.14% -1.14% 3.39% 1.10%
7 10 9 1 -1.78% -1.75% 0.74% -2.79%
8 3 6 3 -1.14% 0.47% -1.14% -1.81%
9 10 4 3 -1.78% -1.46% -1.14% -4.38%

10 4 3 10 -1.46% -1.14% -1.78% -4.38%

Table 12: Implementing historical simulation to generate a n-periods simulated distribu-
tion.

number and the bootstrap estimate is the average of the simulated VaRs.
For example, in Table 13 we report 500 simulated VaR. The average of the
simulated VaR is 8.32% which represents the bootstrap estimate of the 3
days VaR.

Simulation 1 2 ... 499 500

VaR 3.26% 7.84% ... 5.67% 8.16%

Table 13: Simulated 3 days VaR out of 500 historical simulations.

We can also use the 500 simulated VaR to build a confidence interval around
the point estimate. For example, if we want to consider a 99% confidence
interval for VaR90%, we sort the 500 simulated values, and consider the
one at position 0.01× 500 = 5 and the one at position 0.99× 500 = 495.
In our simulation, those values are 12.93% and 3.26%. In conclusion, the
99% confidence interval for the bootstrap estimate is (3.26%, 12.93%). The
length of this interval appears quite large due to the limited sample size,
just 10 observations.

In general, for a given sample size, the confidence interval length is
much larger than in the parametric Gaussian case. Indeed, it can be shown
that the asymptotic standard error of the sample quantile is given by

s.e.
( ˆVaR1−α

)
=

√
α(1− α)

T f̂ 2
r (− ˆVaR1−α)

,
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Figure 16: Left panel: Simulated 1-day log-return distribution. Middle panel: Simulated
10-days log-return distribution. Right panel: VaR term structure.

Figure 17: Asymptotic standard error of bootstrap estimator of the quantile: analytical
formula vs Monte Carlo based estimate.

where f̂r is the (estimated) density of log-return. This result, stated for
example in Jorion’s book, can be verified by using the bootstrap simulation
approach as follows

1. Resample M times a sample of size T from the original sample;

2. For each sample compute the VaR at the desired confidence level;

3. Compute the standard deviation of the M estimates.

This standard deviation provides the accuracy of the bootstrap estimate
and if the sample size is large enough it should agree with asymptotic
standard error given above, see figure 17. If T is small, the above proce-
dure provides a valid alternative to the asymptotic estimate.

The above formula also provides an useful tool to compare to the ac-
curacy of the parametric Gaussian VaR. Figure (18) compares the accuracy
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Figure 18: Comparion of the asymptotic standard error of bootstrap and parametric esti-
mators of the quantile.

of the non parametric estimate with the Gaussian parametric one.

a We can see that for a given confidence level and a given sample size,
the parametric Gaussian estimate suffers less from the sampling er-
ror problem.

b The non parametric one turns to be very inaccurate at very low and
very high confidence levels, in practice the most interesting cases
from a risk management point of view.

α s.e.(HS) s.e.(G) THS

0.9 0.002337 0.000826 4000
0.95 0.002746 0.00106 3355
0.99 0.008112 0.001499 14642
0.999 0.009676 0.001992 11797

Table 14: Standard errors of the bootstrap estimate and of the Gaussian estimator. The
bootstrap simulation has been repeated 100 times, generating samples of size 500. Last
column gives the sample size so that the HS estimate has the same accuracy as the VaR.

On the other side, the bootstrap approach is not exposed to the model
risk affecting the Gaussian approach. It capture aspects like kurtosis and
skewness of the data, that is not possible adopting the Gaussian approach.

The historical simulation procedure is very simple to implement, very
easy to present and is a model-free procedure. In addition, it allows the
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inclusion of “fat-tailed” outcomes, although only those registered in the
past. In fact, this method assumes the future will be like the past.

Finally, this approach does not capture changes in volatility, ie it only
provides an unconditional distribution. However, the model can be im-
proved as to rescale recent returns to take into account recent more volatile
periods. A possibility is the so called Time Weighted Historical Simula-
tion: instead of using equal probability weights set to 1/T on each simu-
lated return, we can use probabilities which decline as we look backward
in time. This method takes into account the fact that more recent observa-
tions are more relevant than old ones. It consists of the following steps.

1. The sample of the T past returns is assigned a weight w (i) declining
exponentially as

w (i) = ηi−1 (1− η)

1− ηT , i = 1..., T

with 0 < η < 1. Typical values for η are in the range 0.95-0.99.

2. The observations, along with the assigned weights, are sorted in as-
cending order.

3. The VaR at the α confidence level is the sorted return corresponding
to a cumulative weight equal to (1− α)%, interpolating if necessary.

The following numerical example aims at clarifying the procedure.

Example 22 (Weighted Historical Simulation) We proceed as follows

1. Assigning weigths. Let us consider a sample of 20 observations and let us
set η = 0.95, so that the weight of observation i (i=1 is the most recent one)
is

w (i) = 0.95i−1 (1− 0.95)
1− 0.9520 , i = 1..., 20.

The observations and the corresponding weigths are given in the Table 15.

2. Computing VaR. We sort the returns in increasing order and compute the
cumulate weights. This is illustrated in columns 3-6 of Table 15. If we are
interested in the 90% VaR, we interpolate between −1.75% (cum. weigth
6.53%) and −0.83% (cum. weigth 10.14%) to obtain

VaRwhs
0.90 (t, t + ∆) = −

(
−1.75

100
× 10.14− 10

10.14− 6.53
+
−0.83

100
× 10− 6.53

10.14− 6.53

)
= 0.8656%.
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Returns Weights Sorted Returns Weights Cum Weights

20 0.95% 2.94% -2.46% 3.43% 3.43%
19 -1.75% 3.10% -1.75% 3.10% 6.53%
18 0.44% 3.26% -0.83% 3.61% 10.14%
17 -2.46% 3.43% -0.51% 4.43% 14.57%
16 -0.83% 3.61% -0.24% 4.67% 19.24%
15 1.11% 3.80% -0.24% 6.35% 25.59%
14 0.20% 4.00% -0.20% 5.44% 31.03%
13 0.84% 4.21% -0.08% 6.03% 37.06%
12 -0.51% 4.43% 0.10% 7.40% 44.46%
11 -0.24% 4.67% 0.20% 4.00% 48.46%
10 1.27% 4.91% 0.44% 3.26% 51.72%
9 2.29% 5.17% 0.45% 6.68% 58.41%
8 -0.20% 5.44% 0.63% 7.03% 65.44%
7 0.76% 5.73% 0.76% 5.73% 71.17%
6 -0.08% 6.03% 0.77% 7.79% 78.96%
5 -0.24% 6.35% 0.84% 4.21% 83.17%
4 0.45% 6.68% 0.95% 2.94% 86.12%
3 0.63% 7.03% 1.11% 3.80% 89.92%
2 0.10% 7.40% 1.27% 4.91% 94.83%
1 0.77% 7.79% 2.29% 5.17% 100.00%

Table 15: Implementing the weighted historical simulation.
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Another alternative is the stationary block bootstrap proposed in Poli-
tis and Romano [23], that randomly extracts blocks of returns having a
variable length. This allows to mimic the stationary properties of the orig-
inal time series and, at the same time, avoid the strong assumption of in-
dependence between successive returns. Another possibility is to combine
a parametric model with bootstrap simulation to get the so called Filtered
boostrap. This procedure is summarized as follows

1. Assume a particular parametric model for the return series, eventu-
ally allowing for time varying volatility, e.g. GARCH effects.

2. Resample from the standardized returns using the estimated condi-
tional volatility.

3. If the volatility is correctly specified, these standardized returns are
asymptotically independent and, resorting to the law of large num-
bers, the bootstrap estimate converge to the true value of the quantity
to be estimated.

The estimation of the expected shortfall can be summarized as follows.

Fact 23 (Non parametric estimation of ES) 1. Estimate VaR using empir-
ical quantile. Let p = (1− α).

2. Find the number of observations lower than or equal to −VaRα

T

∑
i=1

1(ri≤−V̂aRα).

3. Sum those observations

T

∑
i=1

ri1(ri≤−V̂aRα).

4. The empirical ES estimate is obtained by taking the ratio of the quantities
in steps (2) and (3), ie

ÊSα (t, t + ∆) = −

T
∑

i=1
ri1(ri≤−V̂aRα)

T
∑

i=1
1(ri≤−V̂aRα)

.
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Example 24 (Expected Shortfall via Historical Simulation) Let us consider
the sorted daily returns in Table 10. The 80% VaR is the order statistics of position
4, ie 4.670%. The 80% Expected Shortfall is therefore

5.245% + 5.237% + 4.927% + 4.670%
4

= 5.02%,

ie the average return loss greater than 4.67% is 5.02%.

4 Assessing a VaR Model

This section introduces the problem of backtesting a VaR model. To do
this we first define the concept of VaR violation. Then, using the observed
number of violations over a given time horizon, we can statistically eval-
uate if the adopted VaR model is adequate or not.

Let us suppose that on day t we have estimated a 90% 1-day VaR equal
to 4%. If the log return between day t and day t + 1, is equal to -4.3%, we
have a VaR violation, ie the realized loss (4.3%) is larger than the forecasted
one (4%) at the assigned confidence level.

Specifically, the VaR violation It+∆ is defined comparing the loss on a
portfolio and the reported VaR, VARα(t, t + ∆) as follows

It+∆ (α) =


1 i f r (t, t + ∆) < −VaRα (t, t + ∆)

0 i f r (t, t + ∆) > −VaRα (t, t + ∆)

If we consider the series It for different dates t, the hit sequence, e.g.,
(0, 0, 1, 0, 0,. . . , 1), tells us the history of whether or not a loss in excess of
the reported VAR has been realized.

Example 25 Table 16 reports a series of realized daily returns and the VaR fore-
cast of the previous day. Comparing the realized return with the VaR forecast we
can detect that there are three VaR violations (coloured in cyan) over 15 days.

4.1 VaR backtesting

The problem of determining the accuracy of a VAR model can be reduced
to the problem of determining whether the hit sequence, It (α) , t = 1, ..., n∆,
satisfies two key properties.
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Day Daily return -VAR(90%) Violation

1 -0.0237 -0.0241 0
2 -0.0129 -0.0241 0
3 -0.0081 -0.0241 0
4 -0.0049 -0.0241 0
5 0.0022 -0.0241 0
6 0.0017 -0.0241 0
7 0.0283 -0.0241 0
8 -0.0267 -0.0241 1
9 -0.0052 -0.0241 0

10 0.0084 -0.0241 0
11 -0.0331 -0.0241 1
12 0.0214 -0.0241 0
13 -0.0271 -0.0241 1
14 0.0215 -0.0241 0
15 -0.0107 -0.0241 0

Table 16: Detecting violations of the VaR90% comparing realized returns with the VaR
forecast.

• Unconditional coverage property. The probability of realizing a loss
in excess of the reported VaR must be precisely (1− α) × 100%, or,
in terms of the previous notation,

Prt(It+∆(α) = 1) = 1− α.

If the number of violations occurs more frequently than (1− α) ×
100% of the time, this would suggest that the reported VAR measure
systematically understates the portfolio’s risk. Also a small number
of VAR violations is a signal of an overly conservative VAR measure.
Both cases suggest that the VaR model is either unable to predict
losses or too conservative.

• Independence property. This means that any two elements of the hit
sequence, (It+j∆(α), It+k∆(α)), k 6= j, must be independent random
variables. In other words, the past observed VAR violations do not
convey any information about whether or not an additional VAR vi-
olation will occur in the future.

The above are natural requirements which an accurate VaR system
must satisfy. A statistical test for unconditional coverage is the Kupiec
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Test, which looks only at the number of violations without examining if
they cluster in time, ie if the independence assumption is satisfied. The
Kupiec test is also called probability of failure (POF) test.

Let us define p (j) the probability of having j hits given the sample of
size n, ie

p (j) = Pr

(
n

∑
i=1

Ii∆ (α) = j

)
.

Given that 1− α is the theoretical probability of having a violation in
each trial, and that ∑n

i=1 Ii∆ (α) is a binomial (sum of iid Bernoulli’s) ran-
dom variable, it follows that the theoretical probability of having j viola-
tions out of n trials is

L (j, n, α) =

(
n
j

)
× (1− α)j × αn−j.

Let 1− α̂ be the observed violation frequency, i.e.

1− α̂ =
n

∑
i=1

Ii∆ (α) /n.

It follows that the estimated probability of having j violations out of n
trials is

L (j, n, α̂) =

(
n
j

)
× (1− α̂)j × α̂n−j.

Let us now construct the log-likelihood ratio

LRuc = −2 ln
L (j, n, α)

L (j, n, α̂)
= −2

(
j ln
(

1− α

1− α̂

)
+ (n− j) ln

(α

α̂

))
.

The above expression is valid if 0 < j < n. If j = 0, then we set LRuc =
−2n ln (α). If instead j = n then LRuc = −2n ln(1− α). Under the null hy-
pothesis that the VaR model is good, α̂ should not be too different from α,
or equivalently the LRuc should have values near 0. For n large and under
the null hypothesis H0: α̂ = α, it can be found that the asymptotic distribu-
tion of LRuc is chi-square with 1 degree of freedom. Therefore the model
is well calibrated if LRuc is less than the critical value of the chi-square
distribution with 1 degree of freedom. The critical level is assigned on the
basis of the significance level of the test. Alternatively, we can calculate
the P-value defined as the probability of getting a sample with a higher
LR than the one observed

Pvalue = 1− Fχ2
1
(LRuc) ,
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where Fχ2
1

is the CDF of a χ2 random variable with 1 degree of freedom.
If the P-value is less than the significance level, we reject, otherwise we
accept.

Example 26 Let us suppose that the sample size used to detect VaR violations
is n = 255, the VaR confidence level is α = 0.99, the probability level of the
coverage test is p = 0.95, (i.e. the significance level of the test is 0.05). Therefore,
the quantile at the 95% level of the chi-square distribution with 1 degree of fredom
is equal to 3.84. We cannot reject the model if the number of violations j =
∑n

i=1 Ii∆ (α) satisfies

−2

(
j ln

(
0.01

j
255

)
+ (255− j) ln

(
0.99

1− j
255

))
< 3.84,

or, with some algebra, if
0 < j < 7.

Otherwise we have to reject the VaR model at the 5% level. For example, with 10
violations we reject the fact that the model is accurate, indeed

LRuc = 12.65 > 3.84,

and the P-value of the test is

1− Fχ2
1
(12.65) = 3.8× 10−4 < 0.05;

On the other hands, if we observe 3 violations, the model is deemed to be accurate,
indeed

LRuc = 0.07591 < 3.84,

and the P-value is

Pvalue = 1− Fχ2
1
(0.07591) = 0.78290 > 0.05.

In general, the Kupiec’s test requires a sample consisting of a large
number of data (approximately 10 years of daily data) in order to be able
to generate truly reliable results. In addition, the Kupiec test is affected by
a low power problem, i.e. it has a relatively high probability of missclassi-
fying inaccurate VaR estimates as acceptably inaccurate. The lack of power
is related to the difficulty of estimating correctly quantiles at high confi-
dence levels, as we already saw in reference to the estimation risk of the
VaR. A high confidence level generates too few exceptions for conducting
a reliable test. Indeed this problem is considerably reduced if we lower
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the VaR confidence level. A possibility to increase the power of the test is
to increase the sample size.

Another limitation of the Kupiec’s test is that it focuses only on the
number of exceptions generated by a VaR model, without considering the
time distribution of these exceptions. In this sense, the test is uncondi-
tional: the quality of a model is evaluated independently of its ability to
promptly respond to new market conditions. To cope with this problem,
an independence test has been proposed by Christoffersen [13], who ex-
tended the Kupiec statistic to test that exceptions are serially independent.

All of the mentioned backtests procedures focus on the adequacy of a
VaR model at a given confidence level. But, in principle this is not nec-
essary. The unconditional coverage and independence property should
hold for any level of confidence. Crnkovic and Drachman [14], Berkowitz
[5], Diebold et al [16] have all suggested backtests based on multiple VaR
levels. For a review of these, see Campbell [10].

5 Introduction to Portfolio Modelling

Aim of this second part is to introduce the main tools for assessing the
relevant risk measures, as VaR and ES, at portfolio level. The main issue
is how to specify the joint distribution of the log-returns of the portfolio
components. In addition, the inclusion of non-linear derivative positions
in the portfolio makes it difficult to obtain the portfolio distribution. In
this case, Monte Carlo simulation is of great help. Concrete examples from
energy markets are also considered.

As we move from exposure at a single asset level to exposure at portfo-
lio level, non trivial issues arise because we need to be able to capture the
dependence structure among the portfolio components. A possible solu-
tion is the so called top-down approach, i.e. the porfolio P&L distribution
is assigned without reference to the portfolio constituents. Then the com-
putation of the portfolio VaR can be done by referring to the approaches
previously presented, treating the portfolio return series as a univariate
series. The limit of this approach is that it does not allow us to identify
the assets contribution to the portfolio exposure: a large loss can occurr
at portfolio level, but it is not possible to identify the asset that most con-
tributed to it. In the top down approach the dependence structure among
constituents is implicit in the specification of the portfolio distribution.
Alternatively, we can adopt a bottom-up approach in which we model the
complex interactions at the level of individual instruments and the porfo-
lio exposure is an aggregate of the constituent. Diversification effects are
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captured by modelling directly the dependencies among the different as-
sets. Therefore, if the number of commodities is large and the sample size
is limited, the model estimation in the bottom-up approach can be quite
problematic. In general, the bottom-up approach is feasible in the context
of the parametric approach, specifically if we assume that commodity re-
turns are jointly Gaussian, because in this case the dependence structure
is entirely captured by the covariance matrix. In this section, we illustrate
the bottom-up approach in the non parametric and in the parametric case.

We recall that if we have N commodity positions in the portfolio with
weigth wi and each commodity has a log-return ri (t, t + ∆), the portfolio
log-return rp (t, t + ∆) is given by

rp (t, t + ∆) = ln

(
N

∑
i=1

wieri(t,t+∆)

)
= ln

(
w′er(t,t+∆)

)
, (15)

where r is the Nx1 random vector having as components the random log-
return of the different commodities and w is the N × 1 vector containing
the weights wi.

In general the distribution of rp is not known in closed form, even if
the log-returns are jointly Gaussian.

5.1 Historical Simulation

The application of Historical Simulation to a portfolio context is straigth-
forward.

1. For each period in the sample, we compute the log-return of the dif-
ferent assets, ri (t, t + ∆) for all i = 1, · · · , N.

2. Then for each period we compute the portfolio return via (15).

3. We resample from the past the portfolio returns and we build M sam-
ples each having the same size T as the original one.

4. Out of each simulated sample we compute the portfolio VaR and
then we average the M values to obtain the bootstrap estimate of the
VaR.

5. If needed, we can use the simulated VaR values to compute a confi-
dence interval around the bootstrap VaR estimate.
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Example 27 (Porfolio P&L via Historical Simulation) Let us consider three
energy products: Europe Brent Spot Price FOB (Dollars per Barrel), New York
Harbor Conventional Gasoline Regular Spot Price FOB (Dollars per Gallon) and
New York Harbor No. 2 Heating Oil Spot Price FOB (Dollars per Gallon). Their
daily returns in August 2015 are given in columns 2-4 of Table 17. In the fifth
column, for each day of the sample, we compute the portfolio return according
to formula (15), assuming that the weights are equal to 1/3. Then we run the
bootstrap simulation randomly sampling over the 20 historical portfolio returns.
This is done in the remaining columns. In column 6, we randomly extract in-
teger numbers in the range [1,20] and in the adjacent column we resample the
corresponding portfolio returns. This is also done in the last columns of the same
Table. In the bottom line, for each simulated sample we compute the portfolio 90%
VaR. If we repeat the simulation M = 500 times, we obtain M simulated VaR
estimates that convey the same information as the original sample, if the i.i.d. as-
sumption is satisfied. By averaging these estimates we obtain the bootstrapped
estimate of the VaR. A confidence interval can also be constructed. The results
are shown in Table 18. A similar procedure can be followed in order to obtain the
boostrap estimate of the ES.

5.2 The Gaussian covariance approach

In this approach, we assume that the log-returns of the different commodi-
ties have a joint normal distribution. We express this using the notation

r (t, t + ∆) ∼ N (µ∆,Σ∆) , (16)

where µ∆ is the mean vector of the expected return of the different assets
over the period of length ∆,

µ∆ =


µ1
...

µi
...

µN

 =


E (r1(t, t + ∆))

...
E (ri(t, t + ∆))

...
E (rN(t, t + ∆))

 .

Σ∆ is the N×N covariance matrix. It has to be symmetric and positive def-
inite10. It has on the main diagonal the N variances of the different assets
and out of the main diagonal the N(N − 1)/2 cross-covariances (denoted

10A matrix Σ is positive definite if x
′
Σx > 0 for all x ∈ RN , x 6= 0.
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t Brent Gasoline Heating Oil Port. Ret. Sim. nr. 1 Sim. nr. 500

U rp,U U rp,U
1 -0.0083 0.0074 0.0149 0.0047 8 -0.0141 · · · 19 0.0587
2 -0.0008 -0.0524 -0.0099 -0.0210 12 -0.0346 · · · 12 -0.0346
3 -0.0256 -0.0114 0.0078 -0.0097 4 -0.0105 · · · 11 -0.0114
4 -0.0055 -0.0146 -0.0114 -0.0105 16 -0.0092 · · · 1 0.0047
5 0.0159 0.0444 0.0275 0.0293 20 0.0442 · · · 20 0.0442
6 -0.0203 0.0047 -0.0126 -0.0094 3 -0.0097 · · · 2 -0.0210
7 0.0201 0.0339 0.0161 0.0233 5 0.0293 · · · 8 -0.0141
8 -0.0058 -0.0246 -0.0119 -0.0141 4 -0.0105 · · · 1 0.0047
9 -0.0046 -0.0175 -0.0134 -0.0118 8 -0.0141 · · · 7 0.0233

10 -0.0004 -0.0178 0.0078 -0.0035 3 -0.0097 · · · 14 -0.0157
11 -0.0163 -0.0151 -0.0028 -0.0114 2 -0.0210 · · · 19 0.0587
12 -0.0270 -0.0524 -0.0244 -0.0346 19 0.0587 · · · 7 0.0233
13 -0.0026 -0.0149 -0.0168 -0.0114 13 -0.0114 · · · 15 -0.0493
14 -0.0400 0.0123 -0.0194 -0.0157 17 -0.0162 · · · 19 0.0587
15 -0.0527 -0.0467 -0.0486 -0.0493 18 0.0674 · · · 11 -0.0114
16 0.0065 -0.0197 -0.0143 -0.0092 20 0.0442 · · · 16 -0.0092
17 -0.0024 -0.0493 0.0032 -0.0162 2 -0.0210 · · · 11 -0.0114
18 0.0627 0.0548 0.0849 0.0674 11 -0.0114 · · · 8 -0.0141
19 0.0760 0.0402 0.0598 0.0587 14 -0.0157 · · · 16 -0.0092
20 0.0000 0.0800 0.0525 0.0442 10 -0.0035 · · · 11 -0.0114

90% VaR 0.0210 · · · 0.0346

Table 17: Historical Simulation of the portfolio distribution. Columns labelled with U
refer to simulated integer uniform numbers in the interval 1-20. Adjacent columns refer
to resampled portfolio returns from column 5.

VaR VaR 95% Confidence Interval

Estimate 2.82% 1.38% 4.93%

Table 18: Bootstrap VaR estimate using 500 simulations. A 95% confidence interval
aroung the point estimate is also given.

53



by σij with σij = σji).

Σ∆ =


σ2

1 · · · σ1,N
σ2

2
... . . . ...

σ2
N−1

σN,1 · · · σ2
N


where

σ2
i = V (ri(t, t + ∆)) ; σij = Cov

(
ri(t, t + ∆), rj(t, t + ∆)

)
.

The portfolio return is a non-linear function of the component return, see
formula (15), so it does not have a Gaussian distribution, even if the com-
ponents do. Therefore, it is convenient, from the analytical point of view,
to replace (15) with the following linear approximation

rp (t, t + ∆) '
N

∑
i=1

wiri (t) = w′r(t). (17)

This approximation is in general invalid over long time horizon (e.g. longer
than 1 year), or in the case in which volatilities are large or short positions
are allowed. Using the approximation (17) and exploiting the properties of
the expectation and of the variance, it follows that the portfolio expected
return and variance are

E
(
rp (t, t + ∆)

)
= E

(
w′r (t, t + ∆)

)
= w′E (r (t, t + ∆)) = w′µ∆,

and

V
(
rp (t, t + ∆)

)
= V

(
w′r (t, t + ∆)

)
= w′V (r (t, t + ∆))w = w′Σ∆w.

In addition, we have the following result on the portfolio distribution.

Fact 28 (Portfolio log-return and its distribution) Under the modelling as-
sumption (16), and using (17), it follows that

rp (t, t + ∆) = w′r (t, t + ∆) ∼ N
(
w′µ∆, w′Σ∆w

)
,

i.e. the portfolio log-return is Gaussian. In addition, for a generic time horizon
composed of n periods, and assuming zero serial-correlation, we have

rp (t, t + n∆) = w′r (t, t + n∆) ∼ N
(
w′µ∆n, w′Σ∆wn

)
.
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We can now use the VaR and ES formulae we gave in the univariate case. The
portfolio VaR in return terms is

VaRr
α (t, t + n∆) = −

(
w′µ∆n + z1−α

√
w′Σ∆w×n

)
. (18)

The portfolio VaR in dollar terms is

VaRP&L
α (t, t + n∆) = P (t)

(
1− e−VaRr

α(t,t+n∆)
)

,

where P (t) is the current portfolio value. The portfolio Expected Shortfall is

ESr
α (t, t + n∆) = −w′µ∆n +

φ (z1−α)

1− α

√
w′Σ∆w×

√
n, (19)

ESP&L
α (t, t + n∆) ' P (t) ESr

α (t, t + n∆) , (20)

where φ (z1−α) is the density of the univariate standard Gaussian random vari-
able.

Example 29 (Computing portfolio VaR) Let us consider the following inputs

w′ =
[ 1

3
1
3

1
3

]
,

µ′∆ =
[

0.01 0.02 0.04
]

,

Σ∆ =

 0.1230 0.1290 0.1420
0.1290 0.1940 0.1670
0.1420 0.1670 0.1840

 .

We can compute

1. The portfolio expected return

w′µ∆=
[ 1

3
1
3

1
3

]  0.01
0.02
0.04

 =
0.07

3
.

2. The portfolio variance

w′Σ∆w=
[ 1

3
1
3

1
3

]  0.1230 0.1290 0.1420
0.1290 0.1940 0.1670
0.1420 0.1670 0.1840

 1
3
1
3
1
3

 =
1.377

32 .
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3. The 10 days portfolio VaR (return terms)

VaRr
α (t, t + n∆) = −

(
0.07×10 + z1−α

√
1.377× 10

)
× 1

3
.

4. The 10 days portfolio Expected Shortfall (return terms)

ESr
α (t, t + n∆) = −

(
−0.07× n +

e−
1
2(z2

1−α)
√

2π(1− α)

√
1.377×

√
n

)
1
3

.

The implementation of the VaR formula requires the estimation of the
mean vector and the covariance matrix. As in the univariate case, the sim-
plest approach is to use unconditional estimators, i.e. the sample mean
vector and the sample covariance matrix. This is presented in the next
example.

Example 30 (Portfolio VaR via the Gaussian Covariance Method) Let us
consider an equally weighted portfolio made of three commodities (Brent, Gasoline
and Heating Oil) whose log-returns are given in Table 17. We can estimate the
expected returns

• for Brent

µ̂brent =
1

20

20

∑
i=1

rbrent(i∆) = −0.0016;

• for Gasoline

µ̂gas =
1

20

20

∑
i=1

rgas(i∆) = −0.0029;

• for Heating Oil

µ̂ho =
1

20

20

∑
i=1

rho(i∆) = 0.0045.

In addition, we can estimate the second moments using the corresponding sample
estimates

µ̂brent,brent =
1

21

21

∑
t=1

rbrent(i∆)rbrent(i∆) = 0.0008,

µ̂brent,gas =
1

21

21

∑
t=1

rbrent(i∆)rgas(i∆) = 0.0006,
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µ̂brent,ho =
1

21

21

∑
t=1

rbrent(i∆)rho(i∆) = 0.0007,

and

µ̂gas,gas =
1

21

21

∑
t=1

rgas(i∆)rgas(i∆) = 0.0013,

µ̂gas,ho =
1

20

20

∑
i=1

rgas(i∆)rho(i∆) = 0.0009,

µ̂ho,ho =
1

21

20

∑
t=i

rho(i∆)rho(i∆) = 0.0010.

The sample variances and covariances are:

σ̂2
brent = µ̂brent,brent − (µ̂brent)

2 = 0.0008− (−0.0016)2 = 0.0008,

σ̂2gas = µ̂gas,gas − (µ̂gas)
2 = 0.0013− (−0.0029)2 = 0.0013,

σ̂2
ho = µ̂ho,ho − (µ̂ho)

2 = 0.0010− (0.0045)2 = 0.0010,

σ̂2
brent,gas = µ̂brent,gas− µ̂brentµ̂gas = 0.0006− (−0.0016)(−0.0029) = 0.0006

σ̂2
brent,ho = µ̂brent,ho − µ̂brentµ̂ho = 0.0007− (−0.0016)(0.0045) = 0.0007,

σ̂2
gas,ho = µ̂gas,ho − µ̂gasµ̂ho = 0.0009− (−0.0029)(0.0045) = 0.0009.

Notice that in practice, using the means in the above formula does not affect the
estimates of the covariances. For this reason, it is common practice to set at zero
the estimated daily means.

By collecting sample means, sample variances and covariances we have the
estimated sample mean vector and the sample covariance matrix.

Asset Mean Vector Covariance Matrix

Brent -0.0016 0.0008 0.0006 0.0007
Gasoline -0.0029 0.0006 0.0013 0.0009
Heat. Oil 0.0045 0.0007 0.0009 0.0010

Table 19: Sample mean vector and sample covariance matrix.

We can now compute
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1. The portfolio expected return

E(rp) =
[ 1

3
1
3

1
3

]  −0.0016
−0.0029
0.0045

 = 0.

2. The portfolio variance

V(rp) =
[ 1

3
1
3

1
3

]  0.0008 0.0006 0.0007
0.0006 0.0013 0.0009
0.0007 0.0009 0.0010

 1
3
1
3
1
3


so that V(rp) = 0.0008.

3. Finally the estimated portfolio VaR at the 95% confidence level is

V̂aR0.95 = −(0× 10− 1.64485×
√

0.0008× 10) = 0.1515.

The (estimated) maximum loss on the portfolio over the next 10 days hori-
zon at 95% confidence level is 15%.

5.3 Issues in estimating the covariance matrix

The remarks about the limits of the sample variance observed in the uni-
variate case also apply to the estimation of the covariance matrix using the
sample estimator. This is an unconditional estimator.

Unfortunately, it is difficult to find liquid market products that can be
of some help in extracting the implied covariances. An example are Crack
Spread Options traded on CME since 1992; the underlying asset of these
contracts is the spread of futures on the crack spread, which represents
the theoretical refining margin between the refined products (gasoline or
diesel) and crude oil. They are American-style options, i.e. they allow for
early exercise before maturity. Given a pricing model, these options can
provide information for the implied correlation between the two underly-
ing, see Caldana and Fusai [8] and Caldana et al. [9] for recent advances
in pricing spread and basket options. However, this can be of limited help
in a large portfolio including very different energy products.

Another possibility is to extend the EWMA recursion, and its GARCH
variations, to the multivariate case. This allows to capture a time-varying
effect in the conditional volatility and in the conditional covariances. The
extension is relatively simple for the EWMA model, more cumbersome for
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GARCH models. We assume that returns are conditionally Gaussian with
time-varying covariance matrix

r (t, t + ∆) |Ft ∼N (0,Σ∆ (t)) ,

where the conditional covariance matrix follows the recursion

Σ∆ (t) = λΣ∆ (t− ∆) + (1− λ) r (t− ∆, t) r′ (t− ∆, t) . (21)

Notice that here we have a unique value of λ that applies to all entries
of the covariance matrix. This guarantees that the covariance matrix to be
positive definite. λ can be estimated again via ML.

Example 31 (The Multivariate EWMA model) Starting from an initial co-
variance matrix

Σ∆(0) =
[

9 8
8 16

]
and given the sequence of returns

Day r’

1 -3 0
2 0 -3
3 1 -2
4 -3 -6

we can perform the following calculations.

• Step 1

Σ∆(∆) = 0.9×
[

9 8
8 16

]
+ 0.1×

[
−3
0

] [
−3 0

]
=

[
9 7.2

7.2 14.4

]
.

• Step 2

Σ∆(2∆) = 0.9×
[

9 7.2
7.2 14.4

]
+ 0.1×

[
0
−3

] [
0 −3

]
=

[
8.1 6.48

6.48 13.86

]
.

• Step 3

Σ∆(3∆) = 0.9×
[

8.1 6.48
6.48 13.86

]
+ 0.1×

[
1
−2

] [
1 −2

]
=

[
7.39 5.632
5.632 12.874

]
.
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• Step 4

Σ∆(4∆) = 0.9×
[

7.39 5.632
5.632 12.874

]
+ 0.1×

[
−3
−6

] [
−3 −6

]
=

[
7.551 6.8688

6.8688 15.1866

]
.

In conclusion, we have

r(4∆, 5∆) ∼ N
([

0
0

]
,
[

7.551 6.8688
6.8688 15.1866

])
.

So if we are interested in the 1-period VaR, we have to compute

V̂aRα(4∆, 5∆) = −z1−α

√
w′Σ∆(4∆)w.

VaR for longer horizons can be estimated using Monte Carlo simulation.

6 Hot spot: Measuring the risk contribution of
the portfolio components

Given a portfolio composition w and the corresponding risk measure ρα(w),
for example either the VaR or the ES, what is the change in ρ (w) given
a change in ∆w in the current portfolio allocation? We can define three
metrics that help us to identify the true sources of risk in our portfo-
lio: Marginal Risk (MRisk), Incremental Risk (IRisk) and Component Risk
(CRisk).

Let ρα(w) be our preferred risk measure given a portfolio allocation w.
We have the following definitions.

Definition 32 ( Marginal Risk) MRisk is a N× 1 vector collecting the change
in the portfolio risk from an additional dollar of exposure to a given component.
It is defined as the gradient vector, i.e. the vector collecting the partial derivatives
of the risk-measure with respect to the component portfolio

MRisk =
∂ρα(w)

∂w
.

Definition 33 (Incremental Risk) IRisk is a number that represents the change
in the portfolio risk due to an additional change of exposure to a given component.
It is defined as

IRisk = ρα(w + ∆w)− ρα(w);
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using the first-order Taylor’s formula, it can be approximated via the vector mul-
tiplication

IRISK ∼ MRisk′∆w.

Definition 34 (Component Risk) CRisk is a N× 1 vector whose elements indi-
cate the contribution of each portfolio’s component to the overall risk. It is defined
as

CRisk = w. ∗MRisk.

The sum of the vector components is equal to the portfolio risk11

ρ = 1′CRisk =
n

∑
i=1

CRiski.

6.1 Hot Spot in the Gaussian case

If we assume that portfolio components and portfolio returns have a joint
Gaussian distribution we have the following result.

Fact 35 (Computing MVaR, IVaR, CVaR in the Gaussian setting) If we as-
sume that returns are jointly Gaussian, from formula (18) we obtain

MVaR =
∂VaRr

α (t, t + n∆)
∂w

= −µ∆n− z1−α
Σ∆w√
w′Σ∆w

√
n.

Consequently, the IVaR is

IVaRα (w) =
N

∑
i=1

∆wi MVaRi︸ ︷︷ ︸
Marginal VaR︸ ︷︷ ︸

Incremental VaR due to asset i

.

The CVaR in absolute terms is

CVaR =

 −w1µ1n− w1
z1−α
√

ncov(r1,rp)√
w′Σ∆w

...

−wNµNn− wN
z1−α
√

ncov(rN ,rp)√
w′Σ∆w

 ,

and in percentage terms is

CVaRi% =
CVaRi

VaRα (w)
.

11This last fact holds if the risk measure is a homogeneous risk function. This property
is satisfied by VaR and ES.
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It is easy to verify that the sum of Component VaRs returns the portfolio VaR, i.e.

VaRα =
N

∑
i=1

wi MVaRi︸ ︷︷ ︸
Marginal VaR︸ ︷︷ ︸

Component VaR

.

Indeed

VaRr
α (t, t + ∆) = 1′CVaR = w′MVaR =−w′µ∆n− z1−α

w′Σ∆w√
w′Σ∆w

√
n.

Notice in the above expressions the appearance of the term Σ∆w which
represents the covariance of the portfolio return with the different compo-
nents12. Therefore, in the Gaussian framework we have the simplifying
result that the risk contribution of an asset is measured by its covariance
with the portfolio. Being the covariance a measure of linear dependence,
non linear dependences cannot be captured in the Gaussian framework.

Example 36 (Marginal, Incremental and Component VaR in the Gaussian framework)
Let assume a zero-mean vector and a covariance matrix as estimated in Example
30

Σ∆ =

 0.000847 0.000596 0.000744
0.000596 0.001335 0.000902
0.000744 0.000902 0.000953

 .

Let us consider the case of a trading company which is investing in the following
portfolio

w′ =
[ 1

2
1
3

1
6

]
.

We have

Σ∆w=

 Cov
(
r̃p, r̃1

)
Cov

(
r̃p, r̃2

)
Cov

(
r̃p, r̃3

)
 =

 0.000746
0.000893
0.000831

 .

The portfolio variance is

σ2
p = w′Σ∆w = 0.000810.

12Indeed

Cov
(
r̃p, r̃j

)
= Cov

(
n

∑
i=1

wi r̃i,r̃j

)
=

n

∑
i=1

wiCov
(
r̃i,r̃j

)
=

n

∑
i=1

wiσij,

and in vector form we have Cov
(
r̃p, r̃

)
= Σ∆w.
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The portfolio VaR is

VaRw
α = −z1−α

√
n
√

0.000810 = −z1−α

√
n× 0.028452.

The Marginal VaR is

MVaR = −z1−α

√
n

 0.026232
0.031398
0.029223

 .

The Component VaR is

CVaR = −z1−α

√
n

 1
2 × 0.026232
1
3 × 0.031398
1
6 × 0.029223

 = −z1−α

√
n

 0.013116
0.010466
0.004870

 .

The sum of the Component VaR is

−z1−α

√
n (0.013116 + 0.010466 + 0.004870) = −z1−α

√
n× 0.02845,

i.e. exactly the portfolio VaR. So we can use the CVaR to measure the percentage
contribution of each asset to the overall portfolio risk

CVaR% =
CVaR
VaR

=

 46.10%
36.78%
17.12%

 .

The issue is now how to rebalance the portfolio among the different commodi-
ties in order to reduce the overall VaR. To understand this, we have to examine
the MVaR vector: it signals that the largest VaR reduction can be achieved by
reducing the investment in the second commodity (Gasoline) and increasing the
investment in the first one (Brent). Therefore, if we decide to increase by 5% the
weigth allocated to Brent to 55%, and to decrease by the same amount the weigth
allocated to Gasoline, we can use the IVaR to estimate the effect on the portfolio
VaR. We have

IVaR = MVaR′

 5
100
− 5

100
0

 = −z1−α

√
n× (−0.00026)

This means that the effect of this trade on the VaR of the trading firm’s portfolio
can be approximately estimated as

VaRw+∆w
α ∼ VaRw

α − z1−α

√
n× (−0.00026),
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i.e. we can reduce the portfolio VaR (recall that z1−α < 0). This procedure is
much faster to implement because the MVaR vector is a by-product of the initial
VaR computation, and does not require a new estimate of the P&L distribution at
the given new portfolio composition.

Another consideration arises from the CVaR vector. Brent has the largest
CVaR, mainly due to the large weight allocated to it. Therefore, if the firm needs
to decide which commodity exposure to hedge, the best strategy is to hedge the
Brent exposure. By hedging it, the trading firm can reduce the portfolio VaR by
46.10%.

In conclusion, IVaR can be relevant to understand the effect on the portfolio
VaR of a rebalance of the weight allocated to the different assets. CVaR is useful
to understand which position to hedge, so that we can achieve the largest VaR
reduction. Finally, we notice that these metrics have been computed using only
first order approximation.

6.2 Hot Spot in the non Gaussian case

If we need to compute portfolio risk contribution when returns are not
jointly Gaussian, or when we have non-linear products in the portfolio,
so that the portfolio distribution is not Gaussian, we have to resort to the
following results for the VaR and ES.

Fact 37 (Marginal VaR & VaR decomposition) Let rp to be the portfolio re-
turn. The Marginal VaR for a general distribution is computed according to

MVaRi =
∂VaRα

∂wi
= −E

(
ri
∣∣rp = −VaRα

)
, i = 1, ..., N.

The following VaR decomposition

VaRα =
N

∑
i=1

wiE
(
ri
∣∣rp = −VaRα

)︸ ︷︷ ︸
Marginal VaR︸ ︷︷ ︸

Component VaR

.

still holds.

Fact 38 (Marginal Expected Shortfall & ES decomposition) The marginal
contribution to ES of a single asset is given by

∂ESα

∂wi
= −E

(
ri
∣∣rp < −VaRα

)
. (22)
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We can decompose the ES as

ESα (w) =
N

∑
i=1

wiE
(
ri
∣∣rp < −VaRα

)︸ ︷︷ ︸
Marginal ES︸ ︷︷ ︸

Component ES

.

In other words, the MVaR for a given asset is the asset conditional ex-
pected return given that the portfolio loss is at VaR level. In practice, it can
be shown that these formula agree with those given in the previous sub-
section where asset and portfolio returns are assumed jointly Gaussian.
In the non Gaussian case, the computation is performed via Monte Carlo
simulation. Given that, mainly for large values of α, as it is very unlikely
to find a significant number of instances of the event rp = −VaRα, the
computation of the conditional expectation via Monte Carlo simulation
requires a large number of simulations. In practice, the event rp = −VaRα

is replaced with
−VaRα − ε < rp < −VaRα + ε,

where ε is a small number, i.e. we compute the (conditional) expectation
using a small interval around -VaR. Consequently

MVaRi ∼ −E
(
ri
∣∣−VaRα − ε < rp < −VaRα + ε

)
.

Example 39 Let us consider the following portfolio weights

w′ =
[

20% 30% 10% 5% 35%
]

Let us also suppose that the portfolio 90% VaR and ES are respectively

VaR0.90 = 1.99%; ES0.90 = 2.81%

In the first column of Table 20 we consider portfolio returns sorted in increasing
order and we focus the attention on portfolio returns near to -1.99%, the VaR
level. The remaining columns refer to the returns of the different assets. In order
to estimate the MVaR, we compute the expected return of each asset conditional
on the portfolio VaR falling in the interval−VaRα − ε < rp < −VaRα + ε,
where ε is a small number. In our numerical example, we set ε = 0.001, so that
we have to compute the expected returns on the different stocks conditional on the
portfolio return falling in the interval

−2.09% < rp < −1.89%.
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rp r1 r2 r3 r4 r5

· · · · · · · · · · · · · · · · · ·
-2.09% -1.91% -2.10% -1.85% -2.14% -2.25%
-2.09% -2.11% -2.69% -1.47% -1.81% -1.77%
-2.08% -2.85% -1.64% -1.94% -1.45% -2.16%
-2.08% -1.71% -2.64% -1.52% -2.28% -1.94%
-2.06% -1.45% -3.91% -0.63% 0.02% -1.55%
-2.02% -1.82% -1.47% -1.84% -2.36% -2.62%
-2.02% -1.71% -2.78% -1.87% -2.28% -1.56%
-2.01% -1.93% -1.98% -1.51% -2.02% -2.22%
-2.01% -1.59% -2.34% -2.30% -2.05% -1.87%
-2.00% -2.72% -2.07% -2.22% -2.59% -1.40%
-2.00% -1.80% -3.59% -1.90% -1.05% -0.94%
-2.00% -2.62% -0.95% -2.58% -2.97% -2.24%
-1.99% -1.66% -2.82% -1.57% -0.93% -1.75%
-1.98% -2.58% -1.62% -1.54% -1.27% -2.19%
-1.98% -2.52% -1.18% -2.53% -1.52% -2.28%
-1.93% -2.03% -3.21% -1.56% -1.50% -0.94%
-1.92% -2.09% -1.98% -2.45% -2.82% -1.50%
-1.92% -1.82% -1.71% -2.29% -1.74% -2.09%
-1.90% -2.62% -1.72% -1.91% -2.17% -1.61%
-1.88% -2.96% -1.13% -2.21% -2.66% -1.70%
-1.86% -0.76% -4.20% -1.78% -0.70% -0.71%
· · · · · · · · · · · · · · · · · ·

Table 20: In the first column we have the sorted simulated portfolio returns. In the other
columns we have the returns of the different assets. Gray cells refer to the simulations
for which the portfolio return falls inside the small interval around the VaR level. The
corresponding returns of the other assets are averaged in order to compute the Marginal
VaRs.
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Asset 1 2 3 4 5

MVaR 2.09% 2.21% 1.89% 1.82% 1.82%
w 20% 30% 10% 5% 35%
CVaR 0.42% 0.66% 0.19% 0.09% 0.64%
CVaR % 21% 33% 9% 5% 32%

Table 21: MVaR and CVA for the different assets given simulated returns in Table 20.

For example, for stock 1, we have

MVaR1 =
2.85% + 1.71% + 1.45% + · · ·+ 2.09% + 1.82% + 2.62%

17
= 2.09%.

Similar computations can be done for the remaining assets. Results are given in
Table 21. Notice that

5

∑
i=1

CVaRi = (0.42+ 0.66+ 0.19+ 0.09+ 0.64)% = 1.997% ∼ VaR = 1.985%.

In addition, we can consider the effect on the portfolio VaR of a change in the
portfolio weights. Let us suppose we want to reduce the exposure to assets 1,
2 and 5 and to increase the exposure to stock 3 and 4 (the choice is related to the
CVaR% numbers that show that 1, 2 and 5 are the riskiest assets in our portfolio.)
Let us consider the following vector of changes to the different components of the
portfolio

∆w =
[

-5% -5% +5% +10% -5%
]

We can compute the change in the portfolio VaR computing the Incremental VaR.
We have

IVaR = (−5%× 2.09− 5%× 2.21 + 5%× 1.89 + 10%× 1.82− 5%× 1.82)%
= −0.03%,

i.e. we can reduce the portfolio VaR to 1.99%-0.03%=1.96% (larger reductions
are possible with larger changes).

7 Estimating VaR for derivative positions

Different approaches are available to measure the exposure of a portfolio
including derivative positions. It is often the case that in commodity port-
folios we have very complex derivatives, whose pricing can be very time

67



Incremental Risk

Asset 1 2 3 4 5

∆w -5% -5% 5% 10% -5%
MVaR 2.09% 2.21% 1.89% 1.82% 1.82%
∆wi ×MVaRi -0.10% -0.11% 0.09% 0.18% -0.09%
IVaR -0.03%

Table 22: Computing Incremental Risk. -0.03% is obtained by computing ∑5
i=1 ∆wi ×

MVaRi.

consuming. The main trade off is between computational effort and ac-
curacy. Therefore, the two most common approaches are full revaluation
of the derivative positions or delta-gamma approximations. The first con-
sists in repricing the derivative positions in the simulated scenarios. The
second approach consists in approximating the derivative pricing function
using a quadratic function of the risk drivers. Sometimes, linear approxi-
mations are also used but in general they turn out to be very inaccurate.

7.1 Full Revaluation

VaR can be estimated by combining Monte Carlo simulation with full
revaluation as follows. Let C(P, t) be the pricing function that relates the
risk factor P to the derivative price at time t.

1. We price the derivative position using the current value of the mar-
ket factors. This requires the computation of C(P(t), t).

2. We simulate log-returns via our preferred model, either parametric
Gaussian distribution or Historical Simulation or some other more
advanced model. So we obtain M simulated scenarios

ri(t, t + n∆)

where i = 1, ..., M refers to the simulation number.

3. We obtain the simulated risk-factor price at the VaR horizon t + n∆

Pi(t + n∆) = P(t)× eri(t,t+n∆).

4. We revaluate the derivative position at the time horizon under each
simulated scenario

Ci
t+n∆ = C

(
Pi(t + n∆), t + n∆

)
.
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5. We compute the M simulated P&L on the derivative position

P&Li = Ci
t+n∆ − C (P(t), t) .

6. The VaR is calculated as the appropriate quantile of the M simulated
P&L.

Notice that the model used for pricing the derivatives can be different
from the one used for simulating the risk factor. In particular, the one
used for pricing has to be an arbitrage-free model and specified under the
so called risk-neutral measure. The model used in scenario generation has
to be specified under the so called real world measure. If the VaR horizon
is short, such as a few days or weeks, this distinction is negligible for most
markets, except those characterized by extremely volatile returns or severe
price jumps.

Example 40 (VaR computation via MC simulation and full revaluation)
Let us consider a plain vanilla call option with strike 300. Let us assume that the
underlying annualized volatility is 25%, the option time to maturity is 0.33 years
(4 months), the interest rate is 8% and the convenience yield is 3%. The current
option premium, according to the Black-Scholes formula, is 22.468. We are in-
terested in the 10-days 95% VaR. Let us assume that percentage prices change is
distributed according to a Gaussian distribution with zero mean and 25% annu-
alized volatility, so that

ri(t, t + n∆) = 0.25×
√

n∆× εi(t),

where εi refers to a standard Gaussian random variable.
In Table 23 we report: in the first column the simulation number, in the second

column the simulated standard Gaussian random variable, in the third column
the simulated cumulative return, in the fourth column the simulated price, in the
fifth column the simulated call option price (taking into account that the option
has a maturity shorter of 10 days), and in the last column the simulated derivative
P&L. For example, with reference to the first simulation.

Simulation step. The simulated asset return is

r1(t, T) = 0× 10
250

+ 0.25×
√

10
250
× 0.2314 = 0.0116,

so that the simulated underlying price is

P(1)
(

t +
10

250

)
= 305e0.0116 = 308.5493
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Sim. i εi ri(t, T) Pi(T) C(Pi(T); T) P&Li

1 0.2314 0.0116 308.5493 23.3629 0.8949
· · · -0.3198 -0.0160 300.1618 18.2836 -4.1844
· · · -0.8860 -0.0443 291.7836 13.8803 -8.5878

5000 0.8892 0.0445 318.8661 30.4500 7.9820

Table 23: Monte Carlo and full revaluation.

Revaluation Step. We reprice the call option using the Black-Scholes for-
mula, given that the underlying price is now at 308.5493 and the option time to
maturity is 0.33 − 10

250 . The simulated option price in 10 days turns out to be
equal to

C
(

P(1)
(

t +
10

250

)
, t +

10
250

)
= 23.3629,

so that the option profit and loss is

P&L(1) = 23.3629− 22.4681 = 0.8949.

We repeat the simulation 5000 times. The simulated P&L of the derivative posi-
tion is given in Figure 19. Using the simulated P&L distribution we can compute
the desired VaR measure via the sample quantile of the simulated P&L. The 10
days VaR and ES for different confidence levels are given in Table 24. In this Ta-
ble we also give the exact VaR of the option position. Indeed, the call price being an
increasing function of the underlying price, the exact VaR computation requires
only two evaluations: (1.) pricing the option at the current market situations;
(2.) repricing the option at the VaR horizon, assuming a loss in the underlying
stock equal to the desired VaR level. The option VaR is then computed taking the
difference of (1) and (2). We can see that the Monte Carlo estimate agrees quite
well with the exact one.

α 90 95 99

MC+ Full Rev. VaR 11.14 13.24 16.34
Exact VaR 11.19 13.25 16.36

Table 24: VaR for a 10 days horizon on a long position on a call option.

The main limit of the above procedure is that the revaluation step can
be very costly, especially for complex derivatives in the portfolio. A pos-
sible solution is to replace the repricing step by a linear or a quadratic
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Figure 19: Simulated P&L of the derivative position.

approximation, according to the Taylor’s formula. This allows a fast com-
putation of the the derivative price change. This is discussed in the next
section.

7.2 VaR and Derivatives: Taylor’s Formula & Monte Carlo
simulation

The Taylor’s formula allows us to approximate the derivative price change
according to a polynomial function. In general, a first order (so called
delta approximation) or a second order (so called delta-gamma approxi-
mation) polynomial are used. Provided we know the distribution of the
risk-factors, the Taylor’s formula completely defines the distribution of the
portfolio P&L and allows us to considerably speed up the repricing step.

If we have several risk factors, it is convenient to denote C = C(P, t)
to be the pricing function of the derivative position with respect to the N
risk factors appearing in the vector P, and time. Then we compute

• Theta, i.e. the derivative with respect to time

Θ =
∂C
∂t

,

• All Delta exposures in the vector called the dollar gradient vector

∇C = [∆1P1, · · · , ∆NPN]
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where
∆i =

∂C
∂Pi

• All Gammas exposures in a matrix called the dollar-Hessian matrix

HC =


Γ11P2

1 Γ12P1P2 · · · Γ1NP1PN
Γ21P1P2 Γ22P2

2 · · · Γ2NP2PN
· · · · · · · · · · · ·

ΓN1P1PN ΓN2PNP2 · · · ΓNNP2
N


where

Γi,j =
∂C

∂Pi∂Pj
, i, j = 1 · · · , N.

• The portfolio P&L is estimated using the second order Taylor for-
mula

P&L = Θ∆t +∇C
dP
P

+
1
2

(
dP
P

)′
HC

dP
P

.

This procedure is called Delta-Gamma method. If in the above approxi-
mation we consider only first order derivatives, we say we are using the
Delta approximation.

Example 41 (Univariate Delta-Gamma Approximation) Let us consider a
call option with time to maturity of 1 year and strike at 300. Further, let us assume
the underlying commodity has spot price 305 and volatility 25%. The interest
rate is set at 8% and the convenience yield is 3%. If we adopt as pricing model
the Black-Scholes model, and assume that the only risk-factor is the percentage
change in the underlying price, we can compute the following Greeks

Θ = −20.2030, ∆ = 0.63287, Γ = 0.00470.

Consequently, we can approximate the option P&L according to

∆C(P(t), t)

= −20.2030× dt + 0.63287× 305× dP(t)
P(t)

+
1
2
× 0.00470× 3052 ×

(
dP(t)
P(t)

)2

.

Then, we can replace in the above expression the simulated values of dP(t)
P(t) and

the simulation of the P&L is immediate. For example, if the simulated percentage
price variation is -1%, the simulated P&L is

∆C(P(t), t) = −20.2030× dt + 0.63287× 305× (−0.01) +
1
2
× 0.00470× 3052 × (−0.01)2 .
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Example 42 (Multivariate Delta-Gamma Approximation) Let us assume that
the dollar gradient vector is given by:

∇C = [2, 4,−3] ,

the dollar-Hessian matrix is

HC =

 2 0 1
0 1 3
1 3 −2

 ,

and the portfolio theta is -0.25. Given a 3 days horizon and a percentage shock to
the risk factors equal to

dP
P

=

 1
−3

2

 ,

we can estimate the portfolio P&L as

P&L = −0.25× 3
250

+ [2, 4,−3]

 1
−3

2

+
1
2
[1,−3, 2]

 2 0 1
0 1 3
1 3 −2

 1
−3

2


= −0.003− 16 +

1
2
(−29)

= −30.503.

A Delta approximation is obtained neglecting the second order term, i.e.

P&L = −0.25× 3
250

+ [2, 4,−3]

 1
−3

2

 = −0.003 + (2× 1 + 4× (−3)− 3× 2)

= −16.003.

Example 43 (Montecarlo VaR and Delta-Gamma Approximation (univariate case))
Let us consider the data of Example 40, and the following quantities

Option Price 22.4680
Option Delta 0.61258
Option Theta -32.46252
Option Gamma 0.00857

In Table 25 we report the results of different Monte Carlo simulations of the
derivative P%L.

73



Sim. i εi ri(t, T) dPi(t)
Pi(t) Delta Appr. Delta-Gamma App. Full Rev.

1 0.2314 0.0116 0.0116 0.8757 0.9297 0.8949
2 -0.3198 -0.0160 -0.0159 -4.2623 -4.1619 -4.1844
· · · -0.8860 -0.0443 -0.0433 -9.3946 -8.6459 -8.5878

5000 0.8892 0.0445 0.0455 7.1956 8.0196 7.9820

VaR95% 16.029 13.551 13.242

Table 25: Simulating the derivative P&L using first order (Delta) approximation, second
order (Delta-Gamma) approximation and full revaluation. Last row provides the VaR of
the derivative position. The exact VaR on the call option is 13.255.

With reference to the first simulation we have that the Delta-Gamma approx-
imation to the option profit and loss is

P&L(1) = −32.4625× 10
250

+ 0.61258× 305× 0.0116 + 0.5× 0.00857× 3052 × 0.01162

= 0.9297.

The first-order (Delta) approximation is simply

P&L(1) = −32.4625× 10
250

+ 0.61258× 305× 0.0116 = 0.8757.

In conclusion, in order to estimate the portfolio VaR, we proceed as
follows

1. Pre-compute Theta, Gradient and Hessian.

2. Simulate M scenarios of the risk factors according to a multivariate
risk model

dPi

P
, i = 1, · · · , M.

3. In each scenario, revaluate the portfolio according to

P&Li = Θ∆t +∇C
dPi

P
+

1
2

(
dPi

P

)′
HC

dPi

P
.

4. Given the M simulated P&L’s, P&L1, · · · , P&LM, we estimate the
VaR using the empirical quantile at the desired confidence level.
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Example 44 (Multivariate Delta-Gamma Approximation) Let us consider
a portfolio containing options on three commodities (Brent, Gasoline and Heating
Oil). The characteristics of these options are given in Table 26. Notice that those
are options on futures, so they are priced according to the Black formula, rather
than to the Black-Scholes formula. Given the market information, we can compute

Commodity Brent Gasoline Heating Oil

Trade Date 29/9/15 29/9/15 29/9/15
Type Call Put Call
Option Expiry Nov, 1st 2016 Nov. 24th 2015 Jan. 26th 2016
Days to Expiry 105 57 120
Time to Maturity (years) 0.2877 0.1562 0.3288
Futures Price 49.41 1.3052 1.5609
Strike 45.5 0.92 1.66
Implied Volatility 41.35% 45% 33.45%
US LIBOR 0.3266% 0.2591% 0.3266%
Disc. Factor 0.99905 0.99959 0.99891

Premium 6.42383 0.00180 0.07966
Delta 0.68466 -0.01990 0.41053
Gamma 0.03237 0.20772 1.29785
Theta -6.75671 -0.03583 -0.17691

Units 3 4000 150

Table 26: Market Prices and Greeks of options on three commodites. Option premiums
and Greeks are computed using the Black formula. Trading date: Sept. 28, 2015.

the portfolio Greeks

• Theta of the portfolio is

Θ = −6.75671× 3− 0.03583× 4000− 0.17691× 150 = −190.11357.

• The Dollar Gradient Vector is

∇C =
[

101.48743 -103.90143 96.11865
]

,

where the first component has been computed as

0.68466× 3× 49.41 = 101.48743.
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• The Dollar Gamma Matrix is

H =

 237.10046 0 0
0 1415.44917 0
0 0 474.31453


where 237.10046 = 0.03237× 3× (49.41)2.

Covariance Matrix

Brent 0.000847 0.000596 0.000744
Gasoline 0.000596 0.001335 0.000902
Heating Oil 0.000744 0.000902 0.000953

Table 27: Covariance matrix of daily log-returns.

Let us suppose that log-returns of the three commodities are jointly Gaussian
with zero mean and covariance matrix as reported in Table 27. In addition, let us
suppose that the VaR horizon is 10 days. We perform a Delta-Gamma approxima-
tion via Monte Carlo simulation13. To this purpose, we notice that the Cholesky
decomposition of the covariance matrix is given in Table 28. The simulated per-

Cholesky Decomposition

0.0291117 0 0
0.0204735 0.030261 0
0.0255482 0.012533 0.011962

Table 28: Cholesky Decomposition of the covariance matrix in Table 27.

centage price changes in the first simulation are given in the third column of Table
29. The first column refers to a vector of independent Gaussian random variables
with mean 0 and variance equal to the VaR horizon. The second column refers to
the simulated returns on the three commodities. It has been obtained by multiply-
ing the Cholesky decomposition by the vector of independent Gaussian random
variables.

The simulated portfolio P&L according to the Delta-Gamma approximation is

13Monte Carlo simulation in the multivariate Gaussian case is presented in Appendix.
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N
(

0, 10
250

)
r
(

t, t + 10
250

)
dP/P

-0.16019 -0.00466 -0.00465
-0.44117 -0.01663 -0.01649
-0.03469 -0.01004 -0.00999

Table 29: Example of simulation of percentage price changes on the three given com-
modities. First column: vector of simulated independent Gaussian random variables
with zero mean and variance equal to 10/250. Second column: simulated returns ob-
tained by the product between the Cholesky matrix in Table and the first column of the
present Table. Third column: simulated percentage price changes.

therefore obtained as

= −190.11357× 10
250

+
[

101.48743 -103.90143 96.11865
]  -0.465%

-1.649%
-0.999%


+

1
2
[

-0.465% -1.649% -0.999%
]  237.10 0 0

0 1415.45 0
0 0 474.31

 -0.465%
-1.649%
-0.999%


= −7.233.

If we repeat the simulations 100,000 times in all, we can compute the empirical
quantile of the simulated P&L. In our example, the 99% VaR turns out to be
191.89$. The simulated P&L distribution arising from the Delta-Gamma approx-
imation is illustrated in Figure 20.

7.3 Issues with the Delta-Gamma approximation

The main issues related to the Taylor’s approximation are related to the
accuracy of the Taylor’s formula and to the computation of the Greeks. On
the other hand, one of the main advantages of this approximation is that it
can be used independently of the assumed model for the risk-drivers and
it requires very little computational resources.

In general, the Delta-Gamma approximation is valid only for fairly
small changes. This is shown in Figure 21 where we plot the Black-Scholes
option price as function of the underlying asset price and its approxima-
tion to the first and second order. Due to the convexity of the option price,
here the linear approximation overestimates the variation in the option
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Figure 20: Simulated P&L distribution in the Delta-Gamma approximation of Example
44. The red asterisk gives us the 99% VaR level.

Option VaR (α = 95%) and Time Horizon (in days)

Days 1 5 10 20 50 82.5

Linear 4.98 11.21 16.20 22.88 38.06 49.72
Quadratic 4.71 9.94 13.66 18.18 26.66 32.05
Full 4.70 9.83 13.34 17.25 22.09 22.47
Exact 4.66 9.83 13.25 17.35 22.07 22.47

Table 30: 95%-VaR for a call option for diffent time horizons and under different methods:
linear approximation, quadratic approximation, full revaluation via Monte Carlo (10,000
simulations) and exact VaR number. Figures are in dollar terms.

P&L. This is confirmed by looking at the the option VaR in Table 30, vary-
ing the time horizon. Further, in the case of short maturity at-the-money
options and options with discontinuous payoffs like digitals and barriers,
the Greeks can change abruptly near the discontinuity points. In these
cases, the second-order approximation can be often unsatisfactory and the
full revaluation is the only reliable alternative. Important contributions on
how to improve and speed up the delta-gamma approximations include
Cardenas et al. [12] and Rouvinez [24].

Concerning the computation of the Greeks, for plain vanilla products,
there exist analytical pricing function so that the Greeks can be also com-
puted in analytical way. If the analytical computation of the Greeks is too
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Figure 21: Relation between true option price (using the Black-Scholes formula), linear
and quadratic approximation.

Figure 22: Density of the option P&L using the exact density, linear and quadratic ap-
proximation. (10 days horizon).
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complicated, a possible alternative is to estimate the option Theta, Delta
and Gamma numerically, using finite difference approximations as fol-
lows

Θ ' C (P, t + dt)− C (P, t)
dt

,

∆i '
C (Pi + dPi, t)− C (Pi − dPi, t)

2dPi
,

Γii '
C (Pi + dPi, t)− 2C (Pi, t) + C (Pi − dPi, t)

(dPi)
2 .

Example 45 (Computing Greeks by Finite Difference) Let us consider the
call option of Example 40.

• The Theta can be estimated by shortening the time to maturity by a small
amount, 10−5 say

C
(

P, t + 10−5)− C (P, t)
10−5 =

22.467728− 22.46805
10−5 = −32.463,

which is comparable to the true Theta of -32.4625.

• The Delta and Gamma can be computed by shifting up and down the cur-
rent level price by a small amount, 10−5 say, so that

C (P + dP, t) = 22.468059, C (P− dP, t) = 22.468047.

• Therefore

∆ =
22.468059− 22.468047

2× 10−5 = 0.612577,

Γ =
22.468059− 2× 22.468053 + 22.468047

(10−5)2 = 0.009094,

which can be compared to the exact values 0.612577 and 0.00857, respec-
tively.

The computation of the Greeks is more problematic when the pric-
ing function is not analytical, but it requires approximation via numerical
method, like Monte Carlo simulation. In this case, the use of finite differ-
ence can return quite inaccurate results so that the use of more advanced
procedures is required. Suitable techniques include the pathwise method
and likelihood ratio method, both of which are reviewed in Chapter 7 of
Glasserman [19]. The recent adjoint method seems well suited to applica-
tions requiring sensitivities to a large number of parameters, see Giles and
Glasserman [20] and Capriotti and Giles [11].
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A Monte Carlo simulation of Gaussian random
variables

There are several methods to simulate a standard Gaussian random vari-
able Z. A very well known method is based on the inverse CDF of the
standard Gaussian distribution and on the generation of a Uniform ran-
dom variable, as follows

• Simulate a Uniform U;

• Use the inverse cumulative density function Φ0,1 (x) of the standard
normal random

Z = Φ−1
0,1 (U) .

The procedure is illustrated in Figure 23 and can be easily implemented in
Excel by inputing in a cell the formula

=NORMSINV(RAND())

If we need to simulate a Gaussian random variable with mean µ and
standard deviation σ, we apply to the simulated standard Gaussian ran-
dom variable the linear transformation

µ + σZ.

In the multivariate case if we need to simulate a random vector

X ∼ N (µ, Σ) ,

we proceed as follows

1. Given the covariance matrix Σ, we compute its Cholesky decompo-
sition, i.e. a lower triangular matrix A such that

Σ = AA′.

2. We simulate a vector of standard indepedent Gaussian random vari-
ables Z. The components of this vector can be obtained by simulating
N standard Gaussian random variables.

3. We simulate from the desired multivariate Gaussian random vari-
able by setting

X = µ + AZ.
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Figure 23: Scheme of the simulation of a standard Gaussian random variable via the
inverse method.

Example 46 (Cholesky decomposition of a 2x2 matrix) Let

Σ =

[
0.04 0.024
0.024 0.09

]
.

In order to find its Cholesky decomposition, we need to look for a 2x2 lower trian-
gular matrix A such that[

0.04 0.024
0.024 0.09

]
=

[
a11 0
a21 a22

] [
a11 a21
0 a22

]
=

[
a2

11 a11a21
a11a21 a2

21 + a2
22

]
,

i.e. we have to set
a2

11 = 0.04
a11a21 = 0.024

a2
21 + a2

22 = 0.09
=⇒


a11 =

√
0.04 = 0.2

a21 = 0.024
0.2 = 0.12

a22 =
√

0.09− (0.12)2 =
√

0.0756 = 0.27495

and therefore

A =

[
0.2 0

0.12 0.2749545

]
.

It can be verified that if

Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
,
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then

A =

[
σ1 0

ρσ2 σ2
√

1− ρ2

]
.

This means that in order to perform Monte Carlo simulation, we need to simulate
Z1 and Z2 independently and according to a standard normal random variable,
and then to set (if the means are not zero)

X1 = µ1 + σ1Z1,

X2 = µ2 + ρσ2Z1 + σ2

√
1− ρ2Z2.

In our numerical example, correlated Gaussian r.v’s are simulated according to

X1 = µ1 + 0.2× Z1,

X2 = µ2 + 0.4× 0.3× Z1 + 0.3×
√

1− 0.42 × Z2.

If µ1 = 1, µ2 = 2, and the simulated standard unit Gaussian random num-
bers are Z1 = 0.5376, Z2 = 1.8338, the simulated correlated Gaussian random
numbers are

X1 = 1 + 0.2× 0.5376 = 2.0752,

X2 = 2 + 0.4× 0.3× 0.5376 + 0.3×
√

1− 0.42 × 1.8338 = 2.5687.

In the case of a N × N covariance matrix, the Cholesky decomposition
has entries

Ajj =

√√√√σ2
j −

j−1

∑
k=1

σ2
jk,

Aij =
1

Ajj

(
σij −

j−1

∑
k=1

σikσjk

)
, for i > k.

The expression under the square root is always positive if Σ is real and
positive definite.
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