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Abstract 

 

In this paper, a 3-dimensional finite element modelling technique developed by the 

author was used to analyse the progressive collapse of multi-storey buildings with 

composite steel frames. The nonlinear dynamic analysis procedure was performed to 

examine the behavior of the building under consecutive column removal scenarios. 

The response of the building was studied in detail and the measures to mitigate 

progressive collapse in future designs were also recommended. 
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1 INTRODUCTION  

Progressive collapse has attracted more and more interest to researchers after the 

event of 11th September 2001. SEI/ASCE 7-05 [1] gives the accurate definition of the 

term progressive collapse as --‘‘the spread of an initial local failure from element to 

element, eventually resulting in the collapse of an entire structure or a 

disproportionately large part of it.” Currently, there are some design procedures to 

mitigate the potential of progressive collapse in both in the UK and US. The UK 

Building Regulations [2] and BS5950 [3] state requirements for the avoidance of 

disproportionate collapse. In the United States, the Department of Defense (DoD) [4] 

and the General Services Administration (GSA) [5] provide detailed guidelines 

regarding methodologies to resist progressive collapse of building structures. Both 

employ the alternate path method (APM). The methodology is generally applied in 

the context of a ‘missing column’ scenario to assess the potential for progressive 

collapse and used to check if a building can successfully absorb loss of a critical 

member. FEMA 2002 [6] and NIST 2005 [7] also provide some general design 

recommendations, which require steel-framed structural systems to have enough 

redundancy and resilience, allow for alternative load paths and additional capacity 

redistributing gravity loads when structural damage occurs. There are four procedures for 

alternate path method: linear elastic static (LS), linear dynamic (LD), nonlinear static 

(NS), and nonlinear dynamic (ND) methods. The last method is also recommended by 

FEMA 274 [8] for seismic analysis and design of structures.  

So far, there are some analytical studies on the progressive collapse behaviors of 

buildings. Kaewkulchai et al [9] proposed a beam element formulation and solution 

procedure for dynamic progressive collapse analysis, which provide guidance for 

further study on the modeling of progressive collapse. Powell [10] reviewed the 

principles of progressive collapse analysis for the Alternate Path method. Khandelwal 

et al [11] studied the progressive collapse resistance of seismically designed steel 

braced frames with validated two dimensional models. The simulation results show 



 3

that the eccentrically braced frame is less vulnerable to progressive collapse than the 

special concentrically braced frame. Kim et al [12] studied the progressive collapse-

resisting capacity of steel moment resisting frames using alternate path methods 

recommended in the GSA and DoD guidelines. It was observed that the nonlinear 

dynamic analysis provided larger structural responses and the results varied more 

significantly. However the linear procedure provided a more conservative decision for 

progressive collapse potential of model structures. Using the commercial program 

SAP2000, Tsai et al [13] conducted the progressive collapse analysis following the 

linear static analysis procedure recommended by the US General Service 

Administration GSA. Liu [14] investigated the methods to prevent progressive 

collapse by strengthening beam-to-column connections. Shi et al proposed a new 

method for progressive collapse analysis of RC frames under blast loading [15].  

Rather than using sudden column removal methods, Shi et al directly applied the blast 

load on the structure.  Mohamed et al used the direct element removal method to 

model the progressive collapse in reinforced concrete buildings [16].  They present a 

novel analytical formulation of an element removal algorithm based on dynamic 

equilibrium and the resulting transient change in system kinematics. 

As mentioned above, for the research undertaken so far, most have involved 2-D 

models and are based on bare steel frames without considering the contribution of the 

floor systems which reduces the accuracy of the model.  Recent studies by the author 

and other researchers found the importance of accounting for three dimensional 

effects and that the concrete floor slabs also play a crucial role in the progressive 

collapse response. To solve the above problem, Fu [18], using ABAQUS [17], 

proposed a 3-D finite element model to investigate the progressive collapse of multi-

storey buildings in different column removal scenarios.  Fu then extended his study of 

progressive collapse of the multi-storey buildings and found that, with normal column 

spacing, the beams may still be in the elastic stage after one column removal on the 

condition that they are designed with the current design code [19]. Plasticity is 

normally observed in more than two column removal scenarios. As plasticity is very 
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important in absorbing the energy caused by the columns removal, so, in this paper, 

two columns removal scenarios are studied in detail and the plasticity developed in 

the steel member and the response of the slabs are studied in detail.  In the previous 

study, the columns were removed simultaneously, which is a conservative approach. 

However, in reality, the chance for two columns to be damaged at the same time is 

rare. When attacks like car bomb or an aeroplane impact happen, it will hit one 

column first, then another. The columns are normally destroyed consecutively. The 

structural behavior will be different. Therefore, the consecutive column removal 

scenarios are studied and presented here.  

In this paper, using the 3-D finite element modeling techniques developed by the Fu 

[18], several 3-D finite element models representing 20 storey composite steel frame 

buildings were built to perform the progressive collapse analysis under two column 

removal scenarios. The lateral stability of the model is achieved by using concentric 

bracing. In the analysis, except for case 3, the columns were removed consecutively 

rather than simultaneously. Based on the analysis, the structural behavior of the multi-

story buildings under consecutive column removal scenarios was investigated in detail. 

Throughout the study, measures to mitigate progressive collapse were also 

recommended. 

2  3D FINITE ELEMENT MODEL 

2.1 Description of the prototype structure 

As shown in Fig 1, a three-dimensional finite element model was created using the 

method of Fu [18] with ABAQUS [17]. The model simulates the structural framing of 

typical high-rise buildings in the current construction industry with composite slabs. 

The model replicates a 20-storey steel composite frame building with the major grid 

spacing of 7.5m in both directions as shown in Fig 1. The floor height is 3 m for each 

level. The floor system is a full shear interaction metal deck with a slab thickness of 

130 mm; the shear studs are evenly distributed along the steel beam. The steel rebar 
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mesh in the slabs is A252. All the steel beams are British universal beam 

UB305x102x25 sections with the spacing shown in Fig 1. The columns are British 

universal column with UC356x406x634 from ground floor to level 6, 

UC356x406x467 for level 7 to level 13 and UC356x406x287 for level 14 to level 19. 

The main lateral stability is provided by cross bracing in the four elevations as shown 

in Fig.2. The cross bracings are British Circular Hollow section CHCF 273x12.5. The 

above structural steel member sizes are determined based on the current BS design 

guidance. 

 2.2 Modeling techniques and validation  

Detailed modelling techniques were explained in Fu [18]. For the convenience of the 

reader, a brief introduction is given here. All the beams and columns are modelled 

using *BEAM elements. The slab are modelled using the four node *Shell element. 

Reinforcement was imbedded in each shell element using the *REBAR element as in 

smeared layers. The beam and shell elements are coupled together using rigid beam 

constraint equations to give the composite action between the beam elements and the 

concrete slab. The model also incorporates nonlinear material characteristics. The 

material properties of all the structural steel components were modelled using an 

elastic-plastic material model from ABAQUS. The incorporation of material 

nonlinearity in an ABAQUS model requires the use of the true stress ( ) versus the 

plastic strain ( pl  ) relationship; this must be determined from the engineering stress-

strain relationship. The classical metal plasticity model defines the post-yield 

behaviour for most metals. ABAQUS approximates the smooth stress-strain 

behaviour of the material with a series of straight lines joining the given data points to 

simulate the actual material behaviour. The material will behave as a linear elastic 

material up to the yield stress of the material. After this stage, it goes into the strain 

hardening stage until reaching the ultimate stress. As ABAQUS assumes that the 

response is constant outside the range defined by the input data, the material will 

deform continuously until the stress is reduced below this value. The concrete 
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material was modelled using a concrete damage plasticity model. The shell elements 

are integrated at 9 points across the section to ensure that the concrete cracking 

behaviour is correctly captured. The models are supported at the base of the ground 

floor columns. The mesh representing the model has been studied and is sufficiently 

fine in the areas of interest to ensure that the developed forces can be accurately 

determined. The steel beam to column connections is assumed to be fully pinned. The 

continuity across the connection is maintained by the composite slab acting across the 

top of the connection. A pin connection is also assumed for the brace to simulate the 

conventional gusset plate connection. 

In order to valid the proposed model, in Fu [18], a two-storey composite steel frame 

model was built using ABAQUS. The model replicated the full scale testing of a 

steel-concrete composite frame by Wang et al [20]. Comparison between the tests 

result and the modelling result were made. The comparison of the results shows that 

good agreement was achieved.  

3 DYNAMIC RESPONSE OF THE BUILDING  

The response of the building under sudden column loss is assessed here using a 

nonlinear dynamic analysis method with 3-D finite element technique. Rather than 

remove two columns simultaneously, in the analysis, one column was removed first, 

and then a second column was removed. This is to simulate the scenario of a large 

vehicle or aeroplane to impacting the building.  

The loads are computed as dead loads plus 25% of the live load in accordance with 

the acceptance criteria outlined in Table 2.1 of the GSA [5]. The self-weight of the 

structure is calculated in ABAQUS, the super-imposed dead load is taken as 1 kN/m2 

and the live load is 1.5kN/m2. Firstly the gravity load was applied to the model in the 

static step. After the static step, the dynamic step followed, and the columns were 

removed over a period of 20 milliseconds following the requirement of GSA [5]. The 
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simulations were conducted with 5 % mass proportional damping. The maximum 

forces, displacements for each of the members involved in the scenario were recorded. 

Table 1 shows the list of analysis cases considered in this study. To facilitate the 

following discussion, related to the grid line shown in Fig1, the columns and beams 

are named as follows: for instance, Column C1 stands for the column at the junction 

of grid C and grid 1. Beam E1-D1 stands for the beam on grid 1 starting from grid E 

to grid D. 

3.1 Case 1 column A1 and A2 at ground level removed 

As shown in Fig.3, in case 1, the column A1 at ground floor was first removed. It is 

shown in Fig.5 that, node A1 reached a peak vertical displacement of 58 mm, and 

then continued to vibrate. At step 2, with the removal of column A2, the vertical 

defection of A1 started to increase again and reached a peak vertical displacement of 

118 mm. It can also be seen that, after column A2 was removed, node A2 reached a 

peak displacement value of 100mm and started to vibrate with the balance position of 

70mm.  

When the first column was removed, a redistribution of major moments in the 

adjacent beams was observed, as seen in Fig. 6.  It can be seen that, the moment at the 

end B1 of beam B1-A1 reached a peak value after the removal of column A1. 

However, the moment change at the same location of beam A3-A2 is smaller as it is 

far from column A1. The force in beam A3-A2 increased dramatically after the 

removal of column A2, however, the peak value is smaller than with beam B1-A1. 

In ABAQUS, the plastic strain is obtained by subtracting the elastic strain which is 

defined as the value of true stress divided by the Young’s modulus, from the value of 

total strain. This relationship is written  

Eteltpl /   

pl    Is the true plastic strain 
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t      Is the true total strain 

el   Is the true elastic strain 

    Is the true stress, and  

E   Is Young’s modulus  

Fig. 7 shows the vlaue of plastic stain due to the resultant axial force for beams B1-

A1 and A3-A2. It can be seen that, when the first column was removed, no plasticity 

was observed in any of the beams. Beam B1-A1 went into the plastic range shortly 

after the removal of the second column; however, beam A3-A2 remained elastic.  

Fig.4 shows the tensor distribution of plastic strain in the concrete slab.  It can be seen 

that due to the hanger effect, large tensile plastic strain (shown in red) is observed in 

the slab near the region of the removed column on each floor, which indicates a crack 

forming in the slab.  However, it is evident that for the remaining part of the structure, 

cracks are not observed. So this is more or less a localized behaviour. As the slab 

cracks are concentrated near the removed column area, it would be sensible to put 

more mesh in the slabs to help prevent progressive collapse. 

3.2   Case 2 column A1 and A2 at ground level 14 removed 

To further investigate the behaviour of the structure, as shown in Fig.8, in case 2, 

column A1 at level 14 was removed first.  Similar to case 1, from Fig.10 it can be 

seen that when the first column was removed, node A1 vibrated and reached a peak 

vertical displacement and continued to oscillate. At step 2, with the removal of 

column A2, the vertical defection of A1 started to increase again and reached a peak 

vertical deflection.  In the mean time, A2 also reached a peak value and started to 

oscillate. A redistribution of forces was observed to take place as shown in Fig. 11 

and Fig 12.  It can be seen that, in case 2, similar behaviour to case 1 was observed.  

Fig.13 and Fig.14 show the comparisons between case1 and case 2. It can be seen that 

case 2 exhibited lower major bending moments and developed less plastic strain in the 

adjacent beams. This is because when the columns were removed at the higher level, 
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only the storeys above are affected.  Because the column loads at the ground level are 

greater than the higher levels, so, when columns are removed at ground level, more 

force has to redistribute into the adjacent beams. Hence, larger internal forces were 

observed.  

Fig.9 shows the plastic strain tensor distribution in the ncrete slab. It is evident that, 

unlike Fig.4, large plastic strain is observed mainly on the floor above the removed 

column.   

3.3 Case 3 column A1and A2 at ground level removed (two column 
removed simultaneously) 

In order to clearly understand the behaviour of the building, in case 3, the columns A1 

and A2 were removed simultaneously at ground level as shown in Fig.15. Compared 

with case 1, a different structural behaviour was observed. It can be seen from Figs 17 

and 18 that, for both case 1 and case 3, the force in beam A3-A2 is smaller than the 

force in B1-A1.  However, in case 3, both A3-A2 and B1-A1 went into the plastic 

stage.  In case 1, only B1-A1 went into plastic stage. Fig.16 shows the plastic strain 

tensor distribution in the concrete slab.  It can be seen that, compared with Fig.4, large 

tensile plastic strain is observed for the slab near the removed column however, only 

on the floor above the removed column.  

It can be concluded that using a different column removal sequence will cause a 

different force redistribution path.  Most researchers prefer to rely on the catenary 

effect to help resisting progressive collapse. However, as discussed in Fu [19] the 

catenary effect can only be triggered when plasticity is adequately formed in the 

relevant beams.  Different column removal scenario will produce different plasticity 

forming paths, which needs to be taken into the consideration in the plastic design of 

the composite frame buildings in resisting progressive collapse.   
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3.4 Case 4 column A5, Bracing A5-A6 at ground level removal scenario 

In order to investigate the effect of the bracing removal, in case 4, the column A5 is 

first removed at ground floor (as shown in Fig.19). It can be seen from Fig. 21 that, 

the internal force in beams A6-A5 and B5-A5 has increased substantially and reached 

a peak value. The force then started to oscillate. In step 2, Bracing A5-A6 was 

removed (as shown in Fig.19). The internal force started to increase again and reached 

a peak value. Compared with case 1, 2 and 3, the moment is quite small, and no 

plasticity is observed in the corresponding beam. This is because only one column is 

removed and the affected loading area is smaller than with the two column removal 

scenarios, and therefore the response is smaller. 

Fig.20 shows the plastic strain tensor distribution in the concrete slab.  It can be seen 

that large plastic strain was observed in the slab near the removed column. However, 

the value is dramatically smaller than with the first three cases. 

3.5 Case5 column A5, Bracing A5-A6 at level 14 removal scenario 

In case 5, as shown in Fig.22, the column of A5 at level 14 was first removed. In step 

2, bracing A5-A6 at level 14 was removed.  No plasticity was observed as well in this 

case. It can be also seen from Fig.24 that, case 5 exhibits a similar structural 

behaviour to case 4.  Fig. 25 and Fig.26 are the comparison of these two cases.  It can 

be seen that the case with columns removed from the lower level exhibit less dynamic 

vertical displacement but higher internal force, the reason is explained in the previous 

sequal.  

Fig.23 shows the tensor distribution of plastic strain in the concrete slab.  It can be 

seen that, compared with Fig.20, large plastic strain is mainly observed in the slab 

near the removed column several storeys above the removed column. The value is 

dramatically smaller than with the first three cases. 

From the analysis results of case 4 and 5, it can be concluded that the building is less 

vulnerable to progressive collapse in the case of bracing removal unless the removal 
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is accompanied by strong wind, earthquake or very large lateral impact loads such as 

that arising from an aeroplane inpact. But the chance that these loads happen together 

is very low. As the function of the bracing is mainly for resisting lateral force, most 

gravity load is transferred to the foundation through the columns. So when the bracing 

is removed, the gravity load can still find a direct path to the foundation.  

3.6 Case6 column A2 and A3 at ground level removal scenario 

In case 1, the column A1 at the corner was first removed.  Different to case 1, in case 

6, as shown in Fig.27, the column A2 was first removed at ground floor. At step 2, the 

column A3 at ground level was removed. Fig. 28 to 31 show the response of the 

structure. Compared to case 1, where column at A1 was first removed, Case 6 exhibits 

less response in the term of vertical deflection, moment and plastic strain. Therfore, 

the building is more vulnerable in the corner column removal scenarios.   

4 CONCLUSIONS 

In this paper, the behaviour of a 20 storey steel composite frame building under 

consecutive column removal scenarios was investigated using a 3-D finite element 

modelling approach.  

Below are main findings:  

1. The removal of the selected columns does not always produce the development 

of the plasticity. The formation of plasticity is also related to the different 

column removal scenarios. Different column removal sequences will also 

make different plasticity formations, which directly affect the triggering of the 

catenary effect. This should be taken into the consideration in the plastic 

design of composite frame buildings when resisting progressive collapse. 

2.  After the removal of the columns, the force are mainly redistributed to the 

adjacent beams, the beams situated more remote from the removed column 

were less affected. 
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3.  To resist progressive collapse, the beams in the lower level should be designed 

with stronger sections than those in the upper levels. This is because the beams 

will withstand more force redistribution from the columns removed at a lower 

level than the columns removed at a higher level. 

4. The building is more vulnerable in the corner column removal scenarios.   

5. As the slab cracks are concentrated near the removed column area, it would be 

prudent to increase the steel reinforcement in the slabs to help prevent 

progressive collapse. 
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FIGURES  

 

 

 

               Fig. 1 Typical plan of 20-story prototype building 

 

 

Fig 2 elevation of 20-story prototype building  
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Fig .3 Vertical displacement of case 1 (deformation scale factor 10)  

 

 

Fig.4 Tensor distribution of plastic strain of concrete slab  
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Fig.5 Displacement of the node at A1 and A2 of Case 1 

 

 
Fig.6 Major Moment of Beam B1A1 and A3A2 at ground level of Case 1 

   

 

 
Fig.7 Plastic strain of Beam B1A1 and A3A2 at ground level of Case 1 

 

 

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.5 1 1.5 2 2.5 3 3.5

Time(s)

U
3(

m
)

A1

A2

-10000

0

10000

20000

30000

40000

50000

60000

70000

0 0.5 1 1.5 2 2.5 3 3.5

Time(s)

M
om

en
t(

N
.m

) B1A1

A3A2

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 0.5 1 1.5 2 2.5 3 3.5

Time(s)

P
la

si
c 

st
ra

in

B1A1

A3A2



 4

 
Fig.8 Vertical displacement contour of case 2 

 

Fig.9 Tensor distribution of plastic strain of concrete slab   

 

Fig.10 Displacement of the node at A1 and A2 at ground level of Case 2   
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Fig.11 Major Moment of Beam B1A1 and A3A2 at level 14 of Case 2 

 

 

Fig.12 Plastic strain of Beam of B1A1 and A3A2 at level 14 of Case 2 

 

 

Fig.13 Comparison of Major Moment of Beam B1A1 at ground level of CASE1 and Beam B1A1 at 

level 14 of CASE2 
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Fig.14 Comparison of Axial Plastic strain of beam B1-A1 at ground level for case 1 and at level 14 for 

case 2  

 

 
Fig.15 Vertical displacement contour of case 3  

 

Fig.16 Tensor distribution of plastic strain of concrete slab   

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 0.5 1 1.5 2 2.5 3 3.5

Time(S)

P
la

st
ic

 s
tr

ai
n

CASE1

CASE2



 7

 
Fig.17 Major moment of Beam B1A1 and A3A2 at ground level of Case 3 

 

 

 
Fig.18 Plastic strain of Beam B1A1,A3-A2 at ground level of Case 3 

 

 

 

Fig .19 Von mises stress contour of case 4 
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Fig.20 Tensor distribution of plastic strain of concrete slab   

 

 

Fig.21 Major bending moment of Beam A6A5,B5A5 at Ground level of Case 4 

 

 

 
Fig .22 Von mises stress contour of case 5 
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Fig.23 Tensor distribution of plastic strain of concrete slab   

 

 

Fig.24 Major bending moment of Beam A6A5,B5A5 at level 14 of Case 5 

 

 

 

Fig.25 displacement of the node A1 at ground level of case 3 and node A1 at level 14 of case 5 
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Fig.26 Major bending moment of beam B1A1 at ground level for case 3 and at level 14 for case 5  

 

 
Fig .27 Vertical displacement contour of case 6 

 

Fig.28 Tensor distribution of plastic strain of concrete slab   
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Fig.29 Displacement of the node at A2 and A3 of Case 1 

 

 
Fig.30 Major Moment of Beam A1A2 and A4A3 at ground level of Case 1 

   

 
 

Fig.31 Plastic strain due to axial force of Beam A4A3 and A1A2 at ground level of Case 1 
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TABLE 
Table 1 different column removal scenarios  

 Level of removal  First column  Second column or bracing  

CASE1  Ground level A1 A2 
CASE2  Level 14  A1 A2
CASE3  Ground level A1 A2
CASE4  Ground level A5 Bracing A5A4
CASE5  Level 14  A5 Bracing A5A4
CASE6  Ground Level   A2 A3
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