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Abstract. The present paper focuses on the simulation of the growth and collapse of a bubble in the 

vicinity of a wall. Both liquid and gas phases are assumed compressible and their interaction is 

handled with the Volume Of Fluid (VOF) method. The main interest is to quantify the influence of the 

induced shear stress and pressure pulse in the vicinity of the wall, for a variety of bubble sizes and 

bubble wall distances. Results are validated against prior experimental results, such as measurements 

of the bubble size, induced pressure field and shear stress on the wall. Simulation predictions indicate 

that the wall in  the vicinity of the bubble is subjected both to high shear stresses and large pressure 

pulses, due to the growth and collapse of the bubble. In fact, pressure levels of 10bar or more and 

shear stresses up to 15kPa have been found at localized spots on the wall surface, at the region around 

the bubble. Moreover, the simulations are capable of providing additional insight to the experimental 

investigation, since the inherent limitations of the latter are avoided. The present work may be 

considered as a preliminary investigation in optimizing bubble energy and wall generation distance 

for ultrasound cleaning applications. 

 

1. Introduction 

Ultrasound cavitation applications (known also as sonochemical applications) have extended use 

in biomedical and industrial fields 
1
. Undeniably, the cutting edge of such applications involves 

surface cleaning 
2-4

, material processing 
5
, in vivo treatment of various conditions (mentioning here as 

a non-exhaustive reference, kidney stone lithotripsy 
6
, cancer cell histotripsy 

7
), cell sonoporation 

8
, 

drug or even DNA  
9
 delivery, micro-streaming 

10
 etc. The operating principle is based on forced 

bubble oscillation due to external acoustic fields.  

 The case of surface cleaning has gained popularity lately, since it is considered an attractive 

alternative to using potentially harmful detergents. This applies both in the case of domestic 

applications, e.g. ultrasound washing machines, and to high-tech industry, e.g. in computer chip and 

semiconductor manufacturing industries where organic impurities are removed with very aggressive 

oxidizers 
11

. Additional advantages of cavitation surface cleaning include micro-jetting penetrating in 



surface crevices 
12

, thus achieving deep cleaning and contaminant removal. The violent collapse of 

bubbles is known to produce high temperatures and pressures, resulting to chemical reactions (hence 

the name sonochemical) and the production of free radicals 
13,14

. These free radicals can further 

enhance cleaning capacity, by neutralizing harmful substances or microbes.  

Despite the potential of ultrasound applications and the advances in physical understanding of the 

microscale (selectively 
15,16

), progress at macroscale prediction of ultrasound cavitation and its effects 

has been slow and mainly from the experimental side (selectively 
2,3,14

), due to the complexity and the 

vast disparity of scales of the underlying phenomena. In particular, the bubble spatial scale is on the 

order of micrometers, whereas the cleaned surface dimensions may be in the order of centimetres or 

decimetres. The temporal scale of bubbles may be around microseconds, whereas cleaning takes place 

in the course of minutes if not hours.  

Research on the field of ultrasound cleaning is done using either numerical or experimental 

techniques. On the numerical side, there are many works on the interaction of bubbles with rigid or 

deforming boundaries. Undoubtedly, one of the most influential and pioneering works on the field of 

bubble/wall interaction is the one by Plesset et al. 
17

, who simulated the collapse of an initially 

spherical bubble using the Marker-and-Cell method, demonstrating the micro-jet formation. Over the 

time, alternative methodologies have been employed in tracking non-spherical bubble dynamics. 

Examples are the Boundary Element Method (BEM), which is commonly used in simulations aiming 

to achieve a high quality representation of the bubble shape, though it is somewhat limited in handling 

topological changes of the bubble interface
18

. Indicative works include interaction of bubbles with 

free surfaces and/or walls 
19

,  bubble growth 
20

 and multi-level simulations of bubble dynamics, 

involving coupling of solids/fluids and compressible/incompressible approaches 
21

. Apart from the 

BEM method, alternative techniques involved the integration of 2D/3D Navier-Stokes equations using 

interface tracking techniques 
22

 or interface capturing techniques, such as Level-Set 
23

 and Volume-of-

Fluid (VOF) 
24-26

. In the field of surface cleaning, the only existing contribution of numerical study, is 

the work of Chahine et al. 
15

 where the authors tracked the interaction of a collapsing bubble with a 

cube-shaped object, which was assumed to be a dirt particle, demonstrating a strong flow field which 

can dislodge attached contaminants from surfaces. Before closing this section, it is highlighted that, 

whereas in many computational studies a common simplification for tracking cavitation is to employ 

the Rayleigh-Plesset equation, such an approach is only applicable to spherical bubbles 
27

, thus it 

cannot adequately describe the asymmetries imposed by pressure gradients.   

On the experimental side, there are several works discussing the cleaning effect of cavitation. 

Among them, Rivas et al. 
2
 studied the manipulation of acoustic nucleation by introducing roughness 

elements at selected locations on the cavitating surface. On a similar subject, Bremond et al. 
16,28

 

studied the evolution of bubbles formed at clusters of roughness elements, extending the Rayleigh-

Plesset equation modelling, by taking into account bubble to bubble interactions. Furthermore, in 
3
, 

Rivas et al. have exploited the controlled cavitation formation to achieve surface cleaning of surfaces 

coated with polymers, metals, etc. thus paving the path to efficient techniques for ultrasound cleaning. 

Reuter et al. 
29

 discussed the application of ultrasound cavitation in membrane cleaning, correlating 

the dependence of the membrane sheet distance and arrangement to the cleaning results, quantified in 

terms of material dirt removal. Further works by the same authors 
30,31

 focused more on the 

dependence of the cleaning capacity of ultrasound cavitation on ultrasound characteristics, such as 

frequency and excitation driving power. The listed works so far involved more applied cases, with 

little discussion on fundamental aspects of the flow. On the fundamental side, the only work we are 

aware of is that of Dijking et al. 
32,33

, who employed a Constant Temperature Anemometry (CTA) 

transducer  to measure the shear stress induced by the growth and collapse of laser generated bubbles, 

while also recording the pressure signal with hydrophone and bubble size with a high speed camera. 



Despite the existence of several works on bubble evolution near boundaries, there are limited 

works discussing the induced shear by collapsing bubbles. From the numerical side, only Chahine et 

al. attempted to track the interaction of bubbles with dirt particles, in an idealised and non-validated 

case 
15

. From the experimental side, only the work of Dijkink et al. 
32

 measured bubble induced shear 

stresses due to micro-jet interaction with nearby walls. Even in this case, there have been 

experimental limitations, that prevented a thorough analysis of the physical mechanisms taking place. 

In particular, the spatial and temporal scale of the macroscopic phenomenon under consideration was 

in the order of 0.7mm and 0.1ms respectively; note that these scales correspond to the maximum 

bubble radius and one bubble expansion/collapse cycle. It has to be kept in mind though that these are 

the maximum possible scales, since characteristic flow features may occur at much smaller scales; for 

example the developing jet has a radius of 0.1mm and jet spreading occurs within 50μs. These scales 

are at the borderline of measuring capability of modern equipment, rendering visualization and 

experimentation difficult. Apart from problematic high-speed imaging, it was reported that the 

measurement surface of the shear stress sensor was comparable to the size of the bubble and that shear 

stress measurements were limited by the sensor bandwidth 
32

. Thus, our aim in the present work is to 

extend the aforementioned investigation, employing Computational Fluid Dynamics, to demonstrate 

the capability of predicting bubble-induced shear stresses and demonstrating the fundamental flow 

mechanisms. In this way, many limitations of the experimental techniques are avoided, since the flow 

field is directly accessible. The present work can be then further used for the prediction of bubble wall 

interactions aiming towards a better understanding of surface cleaning applications.   

The present paper is organised as follows: section 2 discusses the numerical methodology, section 

3 the case set-up and justifies the conditions and models used, section 4 is a validation of the 

numerical model against published data 
32

 including shear stress, pressure signal and discussion on 

physical mechanisms. Following, in section 5, there are parametric investigations for different bubble 

configurations, such as smaller/larger bubble to wall distance or different bubble energies. The results 

are discussed and conclusions are presented in section 6.   

 

2. Numerical model 

The numerical model that was used for the CFD simulations is based on the Volume Of Fluid 

(VOF) method, since it is of interest to maintain a sharp interface between the two involved phases, 

with topological changes of the interface. As mentioned, only water and gas are considered, whereas 

vapour presence and mass transfer effects are ignored. The justification of this assumption is the fast 

process of bubble growth and collapse that means there is little time available for effective mass 

transfer.  

Continuity and momentum equations are solved, while thermal effects are ignored. The equations 

solved, based on the viscous form of the Navier-Stokes equations, (for more information, the 

interested reader is addressed to standard CFD textbooks, such as 
34-37

), are as follows: 

- Continuity equation: 

   0

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where u denotes the velocity vector of the flow field. 

 - Momentum equation: 
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where ρ is the density of the fluid, p is the pressure, g is the gravity vector, f are body forces and τ  is 

the stress tensor, defined as follows:  

     Iuuuτ  
T

 (3) 



In eq. 4, I is the identity matrix and μ is the dynamic viscosity of the fluid; for the pure phases it is 

set to 1mPa
.
s and 17.1μPa

.
s for water and air accordingly. The term λ denotes bulk viscosity of the 

fluid which acts only on passing waves 
38

. Its effect is more relevant to sound wave propagation 
39

 and 

thus has been omitted in the present study. The maximum Reynolds number of the flow ranges around 

10000 or less, for the majority of the simulation time, so turbulence modelling has not been used.  

Surface tension effects are included, employing the Continuum Surface Force Model which 

represents surface tension as a volume force in cells where there is an interface, i.e. volume fraction 

varies from zero to unity, see Brackbill 
40

. The value for surface tension coefficient used is 

σ=0.072N/m. In any case, surface tension effects are considered minor, given an indicative Weber 

number of ~7000 for the jet inside the bubble. 

- Volume fraction equation 
41

: 

   0



ug

g
a

t

a



 (4) 

where a represents the volume fraction and ρg the density of the gas phase. In the interface, where a 

varies from zero to unity, volume fraction averaging is performed for determining the value of 

viscosity and density.  

Whereas in the actual experiment there is significant influence of heating effects, due to laser 

interaction with the liquid, the resulting fluid state is not possible to describe with traditional equation 

of states, such as ideal gas or other, since plasma generation and chemical reactions may take place. 

For this reason some simplifications had to be made and the energy equation has been omitted, since 

it is redundant in the thermodynamic closure chosen. Even with the omission of thermal effects, both 

phases are assumed compressible, obeying the following equations of state: 

- for the liquid, the Tait equation of state:  
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where, ρ0 is liquid density, equal to 998.2kg/m
3
, c0 the speed of sound, equal to 1450m/s, at the 

reference state p0=3490Pa. The exponent nl  is set to 7.15, according to relevant literature on weakly 

compressible liquids, such as water 
42

. Choice of the Tait equation of state is justified considering that 

it matches closely the IAPWS liquid water data 
43

, comparing to simple linearized equations (as e.g. in 
44

), especially at extreme pressures, where the deviation in predicted densities may exceed 10%.   

- for the gas, a polytropic equation of state is used: 

 nkp   (6) 

Constant k is case dependent; here it is set assuming a gas density of ~1.2kg/m
3
 (calculated from ideal 

gas for a temperature of 25
o
C) at the ambient pressure of 101325Pa. The exponent n is set close to 

unity, as in the Rayleigh-Plesset equation. For both equations of state, speed of sound c is defined as 

follows 
45

:  

 







d
dp

c  (7) 

Equations (2) and (3) are solved with a pressure-based algorithm, i.e. a pressure correction 

equation is solved. Then the pressure correction is linked to a velocity correction and to a density 

correction through the speed of sound (eq. 8, see also 
34,46

), to satisfy mass balance of fluxes in each 

cell. In order minimise the effect of numerical diffusion, which could affect the development of the 

bubble during the whole process of growth and collapse, second order upwind schemes have been 

used for the discretization of density and momentum, while the VOF phase field has been discretized 

using a compressive differencing scheme 
47

 to maintain a sharp interface. Time stepping is done with 

an adaptive method, to achieve a Courant-Friedrichs-Lewy (CFL) condition 
41

 for the free surface 



propagation of 0.2. This is necessary, to limit as much as possible the interface diffusion and maintain 

solution accuracy at near the free surface 
48

. The solver used is implicit pressure-based and this 

removes any restrictions on the acoustic courant number, which is ~10 (on average) considering the 

minimum cell size and the maximum wave velocity.   

 

3. Case description and set-up 

The general configuration of the cases examined is shown in Figure 1. A bubble is generated at a 

distance, h, from a nearby wall surface, using a focused laser beam (λ=532 nm, pulse duration of 6 

ns). The laser pulse leads to intense heating and plasma formation in the focused region. After the 

bubble generation, the bubble expands rapidly, due to the high pressure gas/plasma, and within a time 

interval of ~75μs it reaches a maximum radius of Rmax ~ 0.7mm. When reaching the maximum bubble 

size, pressure inside the bubble has dropped to sub-atmospheric levels, leading to the collapse process. 

However, the collapse is affected by the pressure gradient induced by the wall and becomes 

asymmetric. In fact, the bubble side opposite to the wall collapses at a faster rate than the rest of the 

bubble. This leads to the well-known mirco-jet formation 
49

, which pierces the bubble, forming two 

toroidal cavities. After piercing the bubble, the micro-jet has enough momentum to continue towards 

the wall, eventually impinging on the wall surface and forming a shear layer in the wall vicinity, 

which is further enhanced by the rebound (i.e. expansion) of the collapsed bubble. The bubble itself, 

dragged by the flow, moves closer to the wall as it is expanding. Thus, later on, after its expansion, 

the bubble collapses again, generating additional shearing.  

 

 
Figure 1. General bubble arrangement for bubble collapse induced shear measurements, see 32. 

 

The whole experiment was conducted in a rectangular liquid container of dimensions  80×80×80 

(W×H×L, in mm), filled up to 25mm with water, while bubbles were generated at a distance of 

~0.8mm from the bottom wall, at the centre of the container. In the experiment 
32

, shear stress is 

measured by a sensor of finite dimensions, placed at a distance, ds, from the projected bubble centre 

on the wall. The sensor has dimensions of 0.2 × 0.75 mm (W × L) and in the experiment it was placed 

at ds=0.25mm. Simulations, on the other hand, provide shear stress at discrete points, thus to get a 

comparable result as the experiment, shear stress averaging is performed over the area that is covered 

by the sensor. By considering the configuration of Figure 1, it becomes apparent that the maximum 

bubble size is comparable to the sensor size. However, it is highlighted that the bubble size varies in 

time, due to gas expansion/collapse. In order to obtain a similar effect in simulations, a spherical 



nuclei of gas, of initial radius R0, is patched in a pure liquid domain, at a high pressure pg0; the 

methodology of determination or R0 and pg0 is explained later on in the present section.    

Since other boundaries are at relatively large distances (40mm, or ~57 non-dimensionalized by the 

maximum bubble radius) from the bubble, the influence of the sidewalls is negligible. Thus, the 

bubble/wall interaction may be simplified as axis-symmetric; as shown in Figure 1, only solving a 

two-dimensional slice, e.g. x-y plane of the complete domain. In this way, the simulation is much 

more efficient in terms of computational time and resources needed, since a full three-dimensional 

simulation would involve a significantly higher computational cost, associated with the increased cell 

number to properly resolved the flow field in all three dimensions.  

A non-dimensional analysis indicates the effect of the pressure gradient asymmetry factors, such as 

gravity and boundary presence. From extensive prior experimental work 
50

, a non-dimensional scaling 

law governing the collapse asymmetry and outcome, has been formulated as follows: 

 

vpp

Rp








max  (8) 

where p  is the pressure gradient due to e.g. gravitational force or boundary presence, Rmax is the 

maximum bubble radius, 
p  is the pressure at cavity level and pv is the vapour pressure. The higher 

the ζ value, the more pronounced the aspherical collapse. In the case of gravity, the pressure gradient 

is related to the acceleration of gravity, g, as: 

 gp  (9) 

where g is the vector of gravitational acceleration and ρ is the liquid density. 

In the case of boundary presence, such as a wall, then the pressure gradient may be found as 
50

: 

 
 

3

max2.0

h

ppR
p v h
   (10) 

where h is the vector from the bubble centre towards the nearest wall surface. For the cases to be 

discussed, Rmax ~ 0.7mm, p∞ = 101325 Pa, pv = 2340 Pa, h ranges from 0.6 to 1 mm. Consequently, for 

all cases examined the ζ parameter due to gravity is  ζG ~ 7.42
.
10

-5
, whereas the ζ parameter due to 

boundary influence ranges between ζB ~ 0.11 - 0.3. The comparison of the non-dimensional ζ 

parameter due to gravity and due to boundary influence demonstrates the importance of the wall 

effect, in relation to gravity. Indeed ζB is, at least, 1500 times larger than ζG. Thus, due to the relative 

insignificance of gravity, its effects are omitted in all simulations to be presented.      

The cases examined consist of a validation case, performed at the conditions of the experiment 

(see 
32

) and several parametric simulations to determine the effect of various parameters, such as 

bubble energy (Eb) and bubble wall distance (h) to the induced shear and pressure on the wall. The 

methodology for setting up the initial bubble conditions is the same as in prior work by the authors 
25,26

. To be more specific, the initial radius of the bubble was assumed to be ~1/100 of Rmax, i.e. R0 ~ 

7.5 μm, based on prior experimental investigations on laser-generated bubbles 
51

. The initial pressure 

is estimated using the Rayleigh Plesset equation, expressed in the standard form as  
27

:  
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where: 

- ρ is the water liquid density, 998.2kg/m
3
 

- R is the bubble radius, 
dt

dRR   and 
2

2

dt
RdR   

- pv is the vapour pressure, which is ignored in the present investigations. 

- p is the ambient pressure, equal to the atmospheric 101325Pa.  



- pg0 is the initial bubble pressure, adjusted to predict a similar maximum bubble radius as the 

experiment. 

- σ is surface tension, equal to 0.072N/m. Note that surface tension plays a minor role in the bubble 

shape evolution, since the phenomenon is mainly inertial. In particular, omission of surface tension 

leads to a change in the collapse time of less than 0.2% and change in the maximum radius of less 

than 0.1%. Besides, the Weber number of the bubble is ~37000 during its generation and drops to 

~7000 during the micro-jet formation at bubble collapse. 

- μ is the dynamic viscosity of water, i.e. 10
-3 

Pa.s 

- n is a polytropic exponent, depending on the thermodynamic process inside the bubble, e.g. for 

adiabatic it is equal to the heat capacity ratio and for isothermal it is unity. In this study a value close 

to unity has been used, since it matches better the experimental data. This is related to the small size 

of the bubble and may be quantified based on the bubble Peclet number, Pe, 
52,53

, as follows:  
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where: τdyn is the dynamic timescale of bubble growth/collapse, τdiff is the thermal diffusion timescale, 

related to the bubble radius R and the gas thermal diffusivity xg. Gas thermal diffusivity is related to 

the gas thermal conductivity kg , gas density ρg and gas heat capacity cp,g. It becomes apparent that 

since the bubble characteristics (radius, density, etc.) change over time, due to the large variations in 

size, the bubble Peclet number also varies. Considering the cases to be examined here (gas values are 

obtained from NIST Refprop 
54

): 

- τdyn ~ 300μs, is the duration of the phenomenon 

- the bubble radius, R, varies from 7.5 to ~700μm 

- gas density, ρg, varies between ~1000 to 0.1kg/m
3 
 

- heat capacity, cp, from ~1600 to 1000J/kg
.
K  

- thermal conductivity, kg, from 0.71 to 0.024W/m
.
K  

thus the bubble Peclet number varies between 0.37 and 9, indicating the strong influence of heat 

transfer and justifying the selection of a polytropic exponent close to unity. Besides, a similar effect 

was found at even larger bubbles in prior studies 
25,26

.     

The Rayleigh-Plesset equation (eq. 11) was used to obtain a quick estimate of the initial bubble 

pressure, as in 
25,26

. Of course, this estimate is not perfectly accurate, since the assumption of spherical 

symmetry, inherent in the classic Rayleigh-Plesset equation, is no longer applicable due to the wall 

presence. Thus, a correction step is needed, by solving the Navier-Stokes equations, as described in 

section 2, in the actual geometry with the wall presence. The benefit of this combined approach is the 

quick estimation of the initial bubble pressure pg0, since only one evaluation of the more accurate 

Navier-Stokes solver is required, to determine the correction factor; after that, the Rayleigh-Plesset 

solution is much more reliable in predicting the actual bubble size.     

The examined cases involve one validation case in comparison with published experimental data 
32

 

and several parametric simulations examining the effect of the bubble-wall distance and the initial gas 

pressure (or max. bubble size / bubble energy) on the induced shear stress. A summary of the 

configurations to be discussed is outlined in the table below: 

 

 



Table I. Conditions for the bubble dynamics cases examined. In all cases R0 = 7.5μm and n = 1.025. 

Rmax is estimated, assuming sphere of Vmax. 

# Case h (mm) p0 (Pa) Vmax (mm
3
) Rmax (mm) ERmax (mJ) τRayleigh (μs) 

1. validation 0.8 8.5
.
10

9
 1.3 0.681 0.12 62 

2. (↓ h) 0.6 8.5
.
10

9
 1.3 0.680 0.12 62 

3. (↑ h) 1.0 8.5
.
10

9
 1.3 0.684 0.12 62 

4. (↓ p0) 0.8 2
.
10

9
 0.31 0.418 0.027 38 

5. (↓↓ p0) 0.8 5
.
10

8
 0.07 0.254 0.006 23 

 

Rayleigh time, τRayleigh, is defined as: 

 
v

Rayleigh
pp

R






 max  (15) 

and bubble energy, E, as the volume of the bubble, Vb, multiplied with the average pressure difference 

between the farfield pressure (p∞ = 101325Pa) and the average bubble pressure. 

The computational domain is shown in Figure 2a; the domain is two-dimensional, axis-symmetric, 

extending from the origin up to 100mm away from the initial bubble generation site (which is more 

than 100 times the maximum bubble radius). In this way, bubble presence is unaffected by the 

pressure boundary condition. Moreover, to prevent any boundary reflections of emitted pressure 

waves from the bubble generation or collapse, the computational mesh is coarsened near the pressure 

farfield, acting as a sponge layer.  The mesh is structured and split in 4 blocks, as shown in Figure 2. 

The mesh in zone (1), which is the area of interest, is purely Cartesian and has a uniform sizing of 

2.5μm (i.e. 280 cells in the bubble radius at maximum size), to ensure accuracy and to prevent 

distortion of the bubble interface. The total cell count is ~ 500000 cells. 

 

 
Figure 2. Mesh blocks, numbered from 1 to 4: (a) complete view, (b) magnified view new the bubble formation site. The 

green lines indicates the block-splitting. All blocks are structured meshes. Block 1 is Cartesian with uniform resolution of 

2.5μm. 
 

4. Validation case 

As a first case to be examined is the configuration denoted with "1" in table I, which serves for 

validation purposes, since experimental data have been published in 
32

. Results will be assessed in 

terms of the general flow pattern, shear stress, pressure signature (hydrophone signal), based on the 

initial pressure, adjusted to achieve a similar maximum bubble size. 

 

 

(a) (b) 



4.1. Indicative instances 

Figures Figure 3 to Figure 9 show indicative instances of the growth and collapse of the bubble, 

for the validation case. Each of the images is split in half by a dashed dotted line, which denotes the 

axis of symmetry. The left part of each figure shows the pressure field, whereas the right part the 

velocity magnitude. A thick black line denotes the isoline of 0.5 gas volume fraction, i.e. the bubble 

interface. In all cases, time is represented in absolute terms (t) and in non-dimensional form (t
*
), as 

time divided by the Rayleigh collapse time τRayleigh = 62μs. 

At the beginning of the bubble expansion the bubble grows explosively, with interface velocities 

reaching even 400m/s or more, see e.g. Figure 3. Bubble interface velocity drops to less than 60m/s 

after 1μs of the bubble generation. At ~ 70μs, the bubble reaches its maximum radius of ~0.7mm, see 

Figure 3. The wall presence has an observable effect on the bubble shape, since it is no longer 

spherical. The bubble obtains a deformed shape, slightly compressed on the axial direction; bubble 

radius deviates from perfectly spherical by ~2.5%. As the bubble collapses, momentum focusing 

occurs at the bubble side opposite to the wall, accelerating the collapse and forming a micro-jet, see 

Figure 4. In short, this effect is induced by the asymmetric flow profile around the bubble, clearly 

shown in Figure 3 at maximum bubble size; the fluid region between the bubble and wall is at low 

pressures, resulting to a very low collapse velocity and a preferential collapse at the side away from 

the bubble. The mechanism has been extensively analyzed in previous works (e.g. selectively  
49

, 
23

, 
55

) and will not be further analyzed here. The microjet radius is Rjet ~ 0.1mm and its velocity is ujet ~ 

75m/s. Later on, the jet pierces the bubble, forming a main toroidal structure, indicated with the 

number 1,  and smaller toroidal structures.  

 

 

 
Figure 3. Left: Initial growth of the bubble. Right: maximum size of the bubble. 



 

 

 

 
Figure 4. Left: formation of the microjet, directed towards the wall. Right: the microjet pierces the bubble, forming detached 

toroidal structures and impacts on the wall surface.  

 

 

Later on, at 158μs, the intense shearing induced by the microjet leads to splitting of the toroidal 

bubble to mainly two toroidal structures, which are indicated with the numbers 1 and 2 in Figure 5. At 

163μs, the rebounding process is observable and the two toroidal structures start to expand. The 

expansion of toroidal bubble 2 is further enhanced by the rotating motion of the liquid, due to the 

imparted momentum of the micro-jet. Toroidal bubble 2 is located in the core of a vortex ring of 

circulation ~0.02 m
2
/s and a radius of ~0.12mm. It is notable that the impinged jet forms a high 

velocity liquid sheet on the wall surface, which causes intense shear stress, as will be demonstrated 

later. This liquid sheet remains attached on the wall up to 0.4mm from the axis of symmetry and then 

separates, see Figure 5 at 163μs. This separation point moves further away from the axis of symmetry 

as the toroidal bubbles expand: at 171μs (see Figure 7) the separation point moves to 0.5mm from the 

axis and at 215μs to 0.7mm from the axis of symmetry. Such unsteady separation patterns of 

impinging jets on walls have been extensively documented in prior works, e.g. 
56

, and are  attributed 

to the formation of primary and secondary ring vortices. Primary ring vortices form around the jet axis 

whereas secondary vortices form between the expanding fluid sheet and the wall surface, leading flow 

detachment and giving the impression of a "rebounding effect" 
57

 of the liquid sheet, as shown in 

Figure 6.   

At ~220μs the bubbly structure has expanded to peak volume after the collapse; both bubbles have 

a toroidal shape and are in close proximity (2.5-5μm) to the wall, or are even in contact with the wall. 

Bubble 2 is the smallest and appears broken (see Figure 7), due to intense shearing and flow 

separation. It has a minor radius of 0.15mm and a major radius of 0.77mm. Bubble 1 is much larger 

with a minor radius of ~0.34mm (though its shape is strongly deformed and deviates from circular) 

and a major radius of ~0.35mm. Note that the remnant of the micro-jet is still observable as a liquid 

column at the axis of symmetry.  

1 



 
Figure 5. Left: Shearing and splitting of the main toroidal bubble. Right: during the course of the rebound process, mainly 

two toroidal structures remain. 

 

  
Figure 6. Demonstration of primary (p) and secondary (s) ring vortices, around the micro-jet and on the wall respectively. 

 

 
Figure 7. Left: The bubbly structures rebound and get sheared along the wall surface.  Right: maximum size of the 

rebounding bubbly formations. 

 

After 230μs, the two toroidal bubbles start to collapse. As shown in Figure 8, at 275μs, toroidal 

bubble 2 has already shrunk significantly and has broken in two smaller, irregular structures. At 

306μs, bubble 2 has entirely collapsed, leaving behind only minor fragments. Later on, at 314μs in 
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Figure 9, toroidal bubble 1 collapses and gets compressed against the wall surface. Finally, at 325μs, 

the bubbly formation expands once more, but now has a highly irregular topology.       

 
Figure 8. After the rebound, the collapse process is repeated. Toroidal structure (2) is the first to collapse.  

 

 
Figure 9. Left: complete collapse of the toroidal structures. Right: second rebounding cycle. 

 

In general, the bubble generation pattern is similar to the one reported in Dijkink et al. (see 

supplementary material of 
32

), i.e. the bubble grows up to a maximum radius of ~0.7mm at ~66μs 

(simulation deviation from experiment ~5%), then collapses and rebounds exhibiting an enlarged 

vertical structure at the middle (see Figure 10, at 165-230μs), which is similar to the toroidal bubble 

configuration in Figure 7. One difference with the experiment is the fact that the second collapse 

occurs delayed in the simulation, at 310μs instead of 253μs in the experiment. The main reason for 

that is the absence of a condensation mechanism, which would dampen the bubble oscillation and 

reduce the maximum bubble size after the rebound.  

 

 
Figure 10. Sequence of images of the bubble expansion and collapse as obtained from the original experimental (see 

supplementary material of 32). 
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4.2. Pressure wave emission and hydrophone signal 

The strong accelerations and decelerations of the bubble interface create intense pressure waves 

that can be tracked in the simulation by performing a Schlieren visualization. The emission of 

pressure waves is shown in Figure 11 to Figure 13; each figure is split in half by the vertical axis of 

symmetry (dashed-dotted line). The left part of the figures shows the pressure field. The right part of 

the figures shows the Schlieren plot, based on the normalized density gradient, calculated as follows 
58

:  

- First, the gradient vector of the density field,   
is calculated. 

- The gradient vector magnitude is used to normalize the gradient vector magnitude:   

 
)max(

'








  (16) 

- The normalized density gradient magnitude is then used to calculate the Schlieren value as: 

 '


k
eSchlieren  (17) 

which is then represented in greyscale. 

The explosive growth of the bubble at the initial stages after its generation cause the propagation 

of an expanding spherical shock wave, see 1 in Figure 11. The shock wave interacts with the wall (see 

2 in Figure 11), which reflects back towards the bubble, obtaining a bow shape (see 3 in Figure 11). 

Later on, the reflected shock wave interacts with the bubble, reflecting once more as a rarefaction 

wave this time (see 4 in Figure 11). 

 

 
Figure 11. Left: pressure field. Right: Schlieren images during bubble growth. The bubble interface is visible as a continuous 

black line. The dashed-dotted line at the middle is the axis of symmetry. 
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Emission of shock waves is observed later on, during the first collapse of the bubble. Jet impact 

and piercing of the bubble generates shock waves, as well as the sudden expansion of the toroidal 

structures after the collapse, see 5 and 6 in Figure 12. Finally, as the main bubbly cavity gets 

compressed against the wall (see 1 in Figure 9) a series of shock waves is emitted, forming a rather 

irregular pattern, due to interaction with dispersed bubble structures in the vicinity of the collapse site 

(see 7, 8, 9, 10 in Figure 13). 

 

 
Figure 12. Left: pressure field. Right: Schlieren images during jet impact. The bubble has broken-up to two toroidal 

structures. 

 

 
Figure 13. Left: pressure field. Right: Schlieren images during the second collapse. 
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The pressure signal away from the bubble was recorded during the experiment and it is directly 

comparable to simulation data, see Figure 14. The pressure signal is zero up to ~10 μs; then the 

spherical shock wave reaches the hydrophone (see 1 in Figure 14), raising locally the static pressure 

by 1.2 bar. It is reminded that the hydrophone is placed 15mm, or ~21.5 maximum bubble radii (Rmax 

~0.7), away from the bubble centre. After that, there are minor oscillations in the pressure signal, due 

to wave reflections, however, absolute pressure remains very close to atmospheric. The next notable 

pressure signal is at ~150-160 μs, after the first collapse of the bubble, see 2 in Figure 14. The peak 

over-pressure at this stage is ~ 0.5 bar and agrees well between the experiment and the simulation. 

Whereas the slope of the pressure signal matches between experiment and simulation, the exact time 

of the peak pressure is slightly shifted in the simulation, by ~ 7μs. After the first bubble collapse, the 

pressure signal becomes noisy, due to the multiple reflections of pressure waves on the irregular shape 

of the bubble. The next peak is found at ~250μs in the experiment and in the simulation at ~300μs; in 

both cases, the second peak is associated to the second bubble collapse, which is predicted later in the 

simulation in comparison to the experiment. Despite the discrepancy in the time, the pressure signal 

amplitude is still comparable even at the second collapse; the simulation predicts a peak overpressure 

of ~0.33bar, whereas in the experiment the peak overpressure is ~0.3bar.  

  

  
Figure 14. Pressure (gauge, i.e. relative to the atmospheric) signal at a distance of 15mm from the bubble generation site. 

Numbers indicate the respective phases of bubble evolution: (1) bubble generation, (2) first bubble collapse, (3) second 

bubble collapse.  Non-dimensional time is expressed in terms of the Rayleigh collapse time (τRayleigh = 62μs). 

 

4.2. Shear stress measurement 

In this section, the shear stress in the region of the stress transducer will be discussed. Since the 

actual transducer has finite dimensions and area (see Figure 1), averaging was performed to calculate 

the average shear stress on the surface area of the sensor. Averaging was performed after sampling the 

shear stress over time in the radial direction in the vicinity of the wall. As demonstrated in Figure 1, 

the placement of the transducer implies sampling over a span of radial distances, starting from 

0.25mm up to 0.45mm. Note that the actual transducer cannot determine the flow direction 
32,59

, thus 

the absolute value of the wall shear stress was recorded from the simulation results to be comparable 

with the experiment. Since intense shearing of the bubble is observed (see e.g. Figure 8), variations of 
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density and laminar viscosity have been taken into account in the shear stress calculation, i.e. the fluid 

is not assumed to have constant liquid properties everywhere.  

Experimental and numerical results of the evolution of the shear stress are shown in Figure 15a 

and numerical results of the parallel to the wall velocity (u// at 2.5μm from the wall) are shown in 

Figure 15b. The first recording of shear stress in the numerical results is at 0.42μs, peaking at value of 

~1kPa; this is related to the induced flow by the initial shock wave emitted by the expanding bubble. 

As the bubble continues to expand at a reducing rate, shear stress gradually reduces to 0kPa at ~60μs. 

Then, as the bubble begins to collapse, shear stress increases again, up to 0.34kPa at ~147μs. In this 

interval the flow is reversed, as clearly demonstrated in Figure 15b, since the radial velocity is 

negative as liquid converges back to the bubble.  At ~154μs there is a short drop in the shear stress, 

followed by a large peak, reaching up to 3kPa, see 2 in Figure 15a. The peak is associated with the 

high shear produced by the high speed liquid sheet, after the impact of micro-jet on the wall, see 

Figure 4 and Figure 5. Shear stress gradually reduces again, reaching zero at ~260μs when the bubbly 

structures reach maximum volume for the second time and then gradually increases again, due to flow 

reversal (see the negative velocity sign in Figure 15b, after 260μs). At the second collapse, a very high 

shear stress is observed, reaching ~5kPa; note that during the second collapse the bubbly structures 

are positioned much closer to the wall, in the vicinity of the stress sensor (see Figure 8), thus the 

induced flow is much stronger, see Figure 15b, where the parallel to the wall velocity reaches even 

13m/s for the second collapse, compared to just 8m/s induced by the first collapse.    

In general, experimental results show similar pattern to the numerical results, however some 

differences are observed. The experimental data do not show any sign of shear stress from 0 up to 

150μs, i.e. till the first bubble collapse. Also, whereas experimental data show a high shear stress of 

~3kPa at ~160μs corresponding to the first bubble collapse, there is not much evidence of shear stress 

induced by the second bubble collapse. According to the experimental data (see Figure 10), the 

second bubble collapse occurs at ~250μs. At this instant, only a minor peak (max. value ~0.29kPa) is 

observed in the measured shear stress. The simulation on the other hand predicts a delayed peak with 

significantly higher magnitude than the first one.  

 

 
Figure 15. (a) Shear stress variation over time, for the sensor placement indicated in Figure 1; continuous line simulation, 

square marks experiment. (b) velocity parallel to the wall at a wall distance of 2.5μm. Numerical results are averaged over 

the equivalent sensor length.  

The discrepancies observed are mainly related to two factors. The first one, concerning the 

numerical simulation, is the already discussed absence of condensation mechanism, which would 

reduce the amount of time needed for the second collapse and potentially its magnitude. The second 
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reason, related to the experimental measurements, has to do with the low sampling bandwidth 
59

 and 

the sensor calibration and type 
32

. The sampling bandwidth of the sensor may lead to excessive 

smoothing of fast changes, which explains why the experimental signal is in general lower than the 

numerical one. The sensor type used is a heavy coating type, model 55R46, which is suitable for 

water. However, as demonstrated in Figure 8, the bubble after the first collapse is sheared across the 

wall surface. Indicatively, the simulation predicts that for radial distances 0.2 to 0.4mm, i.e. in the 

region of the sensor placement, gas volume fraction ranges between 0 to 100% (see Figure 16). This 

means that in reality the sensor may interact with gas/liquid mixture, instead of liquid water that was 

used for calibration and this could greatly affect the magnitude of the second shear stress peak. 

 
Figure 16. Gas volume fraction at the vicinity of the wall, for two indicative distances ds from the bubble epicentre. Note that 

these distances correspond to the sensor location. The vertical dashed lines indicate the collapse time of the bubble.   

 

4.4. Comparison of pressure and shear stresses on the wall surface  

In this section, the induced shear stress and wall pressure are examined, in relation to the radial 

distance.  Results are presented in Figure 17 and Figure 18 at various distances, ds, from the bubble 

formation epicentre, starting from 0.2mm up to 1.2mm. The overall trend of shear stress point 

measurements is similar to the average shear stress recorded by the sensor, especially for the sampling 

points in the 1-1.2mm range. Sampling points closer to the bubble epicentre show a noisy shear stress 

over time, with variation from  1.5kPa (ds = 1.2mm) up to even 36kPa (ds = 0.2mm). A notable 

difference among the sampling points is the induced shear stress of the second bubble collapse, at 

~314μs; for ds = 0.2mm, the induced shear stress is towards the axis of symmetry, whereas for all the 

other sampling points it is towards the opposite direction, away from the axis of symmetry. This is 

directly related to the expansion of the bubble near the wall and its consequent compression against 

the wall, see Figure 8.  

Minimum and maximum shear stress variation over the distance, ds, resembles an inverse square 

variation, see  Figure 15, both as averaged and point measurements, which is similar to published 

experimental results for large radii (non-dimensional radius ds/Rjet > 4, see 
60

, 
61

). Note that the 

variation is non-monotonic, i.e. when considering the induced shear stress of a jet on the wall, shear 

stress is zero at the stagnation point, then increases up to a maximum at ds/Rjet ~ 2 and then decreases, 

however sampling was not performed at distances ds/Rjet  < 2.  

The pressure field on the wall has also a similar pattern as the hydrophone signal, though the 

pressure pulse amplitude is much larger, since the measurement is conducted much closer to the 

bubble.  
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Figure 17. Shear stress variation across the wall, starting at ds = 0.2mm up to 1.2mm from the bubble epicentre. Point 

measurements. 

 

  

 

 
Figure 18. Pressure variation across the wall, starting at ds = 0.2mm up to 1.2mm from the bubble epicentre. Point 

measurements. 
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Figure 19. Shear stress dependence as a function of distance from the epicentre on the wall (symbols): (a) point 

measurements and (b) averaged (sensor) measurements. The inverse-square law trend line is provided as a comparison.  

 

5. Parametric investigations 

The last part of this investigation is to examine the effect of bubble distance from wall, h, and 

initial bubble pressure pg0 (which relates to the bubble energy, Ebmax) to the maximum induced shear 

stress. The cases examined have been summarized in Table 1 and the bubble volume over time is 

plotted in Figure 20. Volume evolution over time exhibits the well-known oscillating behaviour 

(collapse and rebound) for all cases. An observable difference between the cases involve the shorter 

oscillation period for lower initial pressures (cases 1, 4, 5), which in turn results to smaller bubble 

sizes. Bubble to wall distance, h, has a weak influence on the volume evolution (cases 1, 2, 3); in 

general all bubbles reached effectively the same maximum size,  though during collapse there is an 

observable change in the minimum volume. It was noticed that the further a bubble is from the wall, 

the smaller its size during collapse. This is consistent with prior investigations relevant to collapse 

pressures 
23

 and luminescence 
62-64

, indicating that spherically symmetric collapses, which ideally are 

infinitely far from boundaries, reach the minimum size and achieve the highest compression. 

     

 
Figure 20. Bubble volume evolution for the discussed cases, as presented in Table 1. The non-dimensional time 

(t*=t/τRayleigh) is also provided at the instances of collapse.  
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Figure 21 summarizes the induced shear stress on the wall for all examined cases. The 3D graph 

shows the shear stress (z-axis) as a function of non-dimensional time, t*, and measurement distance, 

ds. Since the main interest of shear stress in cleaning applications is to dislocate dirt from wall surface, 

its exact direction is not relevant, thus the absolute value of the shear stress is used. Time is non-

dimensionalized to keep the results in the same time scale.  

The results indicate that the peak shear stress induced by the first bubble collapse is more or less 

the same for a given initial pressure, at least for the wall distances investigated, i.e. h ranging between 

0.6 and 1mm. For example, peak values of shear stress are 28.9kPa (h = 0.6mm), 28.0kPa (h = 

0.8mm) and 28.8kPa (h = 1mm) for an initial pressure of 8.5
.
10

9
Pa. However, the area of effect of 

high shear is larger, when the bubble is closer to the wall, as becomes obvious from the width of the 

shear stress spike in Figure 21a, b, c. In particular, shear stresses higher or equal to 10kPa develop in a 

region of 0.277mm
2
 for h = 0.6mm, 0.226mm

2
 for h = 0.8mm, 0.050mm

2
 for h = 1.0mm. Reduction 

of the initial pressure (and consequently the bubble energy) has a direct effect in the induced shear. 

Maximum shear stress appears to be a logarithmic function of bubble energy, i.e. it has a form τw = 

α
.
ln(Eb)+β, assuming a constant bubble to wall distance h.  

Concerning the second collapse, the correlation is more complicated. Among the bubbles of the 

same initial energy, but different bubble to wall distance, h, the one  producing maximum shear stress 

is the one at h ~ Rmax. Numerical results indicated that when the bubble is close to the wall (h < Rmax), 

then, instead of splitting to two toroidal bubbles, it forms a single toroidal agglomeration which 

spreads over the wall surface. At the second collapse, this toroidal structure collapses mainly in the 

radial direction, converging towards the axis of symmetry and eventually directing the flow away 

from the wall, thus producing less shear than h ~ Rmax. On the other hand, when the bubble is further 

away from the wall (h > Rmax), the effect of the bubble collapse is smaller, due to the increased bubble 

to wall distance.  

 

 
 

 
Figure 21. Absolute value of shear stress over non-dimensional time, t* ( = t / τRayleigh), along the distance, ds, of the bubble 

epicentre to the measurement point. Time is non-dimensionalized according to the respective Rayleigh time, i.e.: (a), (b), (c) 

τRayleigh = 62μs, (d) τRayleigh = 38μs, (e) τRayleigh = 23μs.  
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6. Conclusion 

In this work, a numerical investigation of bubble collapses near wall has been performed, to 

determine the effect of bubble to wall and wall radial distance on the induced shear stress from the 

growth and collapse of a cavitation bubble. The investigation aims to complement and to provide 

further insight to prior experimental studies, oriented towards cleaning applications of cavitation 

bubbles.  

The present investigation indicated that shear stress is produced by both the growth and the 

collapse of the bubble, though the most important contribution comes from the collapsing phase of the 

bubble. Indeed, during bubble collapse, microjet formation directs liquid at high velocity towards the 

wall. The liquid jet spreads as a thin, high-speed layer shearing over the wall surface.  

Considering the different configurations examined, the bubble to wall distance did not alter 

significantly the maximum shear stress, the surface area exposed to high shear stress is inversely 

proportional to the distance though. On the other hand, the maximum shear was found to be related to 

the bubble energy as a logarithmic function.  

Maximum shear is predicted to be produced at the first bubble collapse, after bubble generation. 

Subsequent collapses also produce shear, though the magnitude is decreased despite the fact that 

during the second collapse the bubble is closer to the wall than the first collapse. This is probably 

related to the irregular shape of the bubble after the rebound, which prevents efficient focusing of the 

liquid momentum towards the wall.  
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Nomenclature 

 

ρ Density (kg/m
3
) 

u Velocity vector field (m/s) 

τ Stress tensor (Pa) 

g Acceleration of gravity (m/s
2
) 

f Body/volume forces vector (N/m
3
) 

μ Dynamic viscosity (Pa
.
s) 

λ Bulk viscosity coefficient (Pa.s) 

a Gas volume fraction 

nl Tait equation exponent (for liquid)  (-) 

ρ0 Reference density (kg/m
3
) 

c0 Reference speed of sound (m/s) 

p0 Reference pressure (Pa) 

n Polytropic exponent (for gas)  (-) 

k Constant of polytropic gas process  

  













n
mkg

Pa

3/

 

c Speed of sound (m/s) 

ζ Non-dimensional scaling law (-)  

p  Far-field pressure (Pa) 

pv Vapour pressure (Pa) 



h Bubble-wall distance (m) 

ds Distance from the bubble epicentre on the wall (m) 

R Bubble radius (m) 

R0 Initial bubble radius (m) 

R  Bubble interface velocity (m/s) 

R  Bubble interface acceleration (m/s
2
) 

pg0 Initial gas pressure (Pa) 

σ Surface tension (N/m) 

Pe Peclet number (-) 

τdiff Thermal diffusion time scale (s)  

τdyn Dynamic time scale (s) 

xg Gas thermal diffusivity (m
2
/s) 

kg Gas heat conductivity (W/m.k) 

cp,g Gas heat capacity (J/kg.K) 

τRayleigh Rayleigh collapse time (s) 
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Cavitation bubbles located near walls collapse in a non-symmetric way, giving rise to jetting 

phenomena. This mechanism is one of the causes of cavitation erosion, but is exploited in applications 

of ultrasound cleaning. In this work, the shear stress distribution and pressure signal emissions have 

been investigated during the expansion and collapse of a laser-generated bubble in the vicinity of a 

wall. Moreover, a parametric investigation is performed to correlate the bubble energy and the bubble 

stand-off distance from the wall to the induced shear. The images show: (a) representation of the 

shock wave and jet during the collapse of the bubble (b) pressure signal in comparison to experiments 

(c) shear induced by the jet; results are compared to experiments (hydrophone and Constant 

Temperature Anemometry shear stress measurement). The present work contributes towards a better 

understanding of the cleaning mechanisms in ultrasound cleaning applications.    
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