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Abstract

This paper proposes an integrated pricing framework for Credit Value Adjustment of equity and

commodity products. The given framework, in fact, generates dependence endogenously, allows for

calibration and pricing to be based on the same numerical schemes (up to Monte Carlo simulation),

and also allows the inclusion of risk mitigation clauses such as netting, collateral and initial margin

provisions. The model is based on a structural approach which uses correlated Lévy processes with

idiosyncratic and systematic components; the pricing numerical scheme, instead, efficiently combines

Monte Carlo simulation and Fourier transform based methods. We illustrate the tractability of the

proposed framework and the performance of the proposed numerical scheme by means of a case

study on a portfolio of commodity swaps using real market data.
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1 Introduction

In a post financial crisis landscape, the correct assessment and management of Counterparty Credit

Risk (CCR) has become a core concern for both market regulators and financial institutions. The

Basel III (Basel 2010) supervisory regime in particular focuses on an enhanced sensitivity of credit

risk measurement, as capital requirements have been linked to sophisticated measures of CCR such

as Credit Valuation Adjustment (CVA), which acknowledges that during the last financial crisis two

thirds of the losses due to CCR were caused by CVA market value changes (see BIS 2011, for example).

The financial crisis highlighted several aspects affecting CCR, such as dependence between default

and exposures and risk mitigation, and the difficulties for market operators to take those consistently

into account; for a detailed guide we refer to Brigo et al. (2013b), Gregory (2015) and references

therein. Consequently, capital charges have been set up for mark-to-market losses associated with

the deterioration of counterparty creditworthiness and any potential correlation with the contracts

underlying financial asset (wrong-way risk).

*Corresponding Author: L.Ballotta@city.ac.uk
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In this paper we focus specifically on CVA originated by equity/commodity derivative contracts

in presence of risk mitigation clauses. CVA calculation - which represents the first block towards an

integrated and comprehensive management of CCR - adds features of optionality and barrier conditions

even to relatively standard contracts such as swaps and forwards; CVA, in fact, quantifies the so called

expected positive exposure of the surviving financial entity, i.e. the positive value - if any - of the

position under consideration which the survivor would lose in case of default of the counterparty. In

this respect, the CVA shares strong similarity with a down-and-in call option, which is activated and

settled only if one counterparty defaults and the other one survives. Thus, in general, the quantification

of the above expectation is not immediate, as it requires a setting recognizing dependence between the

default times of the two counterparties and the value of the overall position. Additional complexity

stems from the presence of a number of important regulatory features, such as collateral agreements,

netting provisions and initial margin. Indeed, in this case, the actual payoff is a package of calendar

spread options on a basket, with additional barrier conditions capturing the triggering of the collateral

agreements.

Our paper contributes to the current literature in a number of ways. Firstly, it offers an enhanced

structural approach to credit modelling by considering driving risk processes with asymmetric and

leptokurtic distributions. The choice of a setting based on the structural model is justified by the fact

that it is the more natural framework for the pricing of equity-credit hybrid products and therefore

for the quantification of CCR in equity products: indeed, as observed by Brigo et al. (2011) for

example, the structural approach allows the introduction of dependence between the underlying and the

counterparties in a natural way. This also facilitates significantly the calibration of the model, mainly

due to the fact that dependence between firm values is reflected by dependence between equities.

Furthermore, Brigo et al. (2011) report a stronger impact of wrong-way risk in a structural setting

than with intensity models. The idea of non-Gaussian distributions stems instead from the need to

properly portray ‘extreme’ events such as default, therefore improving the calibration performance of

the structural approach (see Chen and Kou 2009, for example). A structural approach for valuing

corporate securities, seen as derivatives on the assets of a firm, and computing the term structure of

both yield spreads and default probabilities has been proposed in Ayadi et al. (2016).

Secondly, our structural default model incorporates dependence between the counterparties and the

underlying asset of the contract for which CCR is measured. This feature allows us to endogenously

capture right/wrong-way risk, and quantify their impact on CVA in a straightforward manner. Al-

though other constructions are possible, see for example the review offered in Itkin and Lipton (2015),

in this work dependence is induced using the factor construction of Ballotta and Bonfiglioli (2016), so

that the overall risk is decomposed into a systematic part and an idiosyncratic one. We observe that the

factor model choice is in line with recommendations from the Basel Committee on Banking Supervision

(Basel 2013) for the development of internal models aimed at quantifying default risk charges. Further,

factor constructions allow isolating dependence structure from the marginal distributions, which is an

attractive feature from the practical point of view as market quotes of products required to calibrate

the full correlation matrix might not be available due their lack of liquidity. Finally, as in the adopted

factor construction dependence across entities is induced by a systematic source of risk, whilst the id-

iosyncratic components are independent, the complexity of the CVA pricing equation mentioned above
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can be significantly simplified by means of the conditional independence structure of the model. The

general setup of the CVA problem is offered in Section 2, whilst our framework is proposed in Section

3.

The third contribution offered by this paper is the development of a numerical scheme for the

actual quantification of CVA, which is consistent and ‘integrated’ with the numerical scheme adopted

for the actual model calibration. This is introduced in Section 4. The proposed method proves to be

an efficient alternative to Monte Carlo (MC) simulation, i.e. the method of choice in practice. The

complexity of the exposure in presence of mitigating clauses, the computation of default probabilities

in a first-passage time setting, and the presence of dependence rendering the default barriers both time

and path dependent, significantly increase the computational cost associated with CVA measurement

in a MC setting. In order to adequately capture all the above, MC needs to be extended through nested

structures (see Pykhtin 2011, for example). However, the proposed factor construction allows us to

substitute nested Monte Carlo simulation with state of the art numerical schemes based on Hilbert

transform (Feng and Linetsky 2008) and Fourier cosine series (Fang and Oosterlee 2008), speeding up

considerably the computation of CVA.

Finally, by means of the developed framework, we explore issues of practical relevance, such as

the effect of collateral agreements and initial margin in presence of right/wrong-way risk, and the

quantification of gap risk under modelling assumptions able to generate tail dependence for typical

values of correlation. We illustrate the point in Section 5 by means of a case study involving an energy

sector company; the interest in this sector originates from the wave of credit ratings downgrades that

has recently hit oil and gas companies (see Rodrigues and Crooks 2015, for example). These market

conditions have significantly affected energy prices, forcing oil companies to rethink their spending plans

and squeezing high-cost producers (wrong-way risk) (see Noonan and McLannahan 2015, as well).

We conclude this introduction with a brief reference to the literature closely related to the present

topic. For exact Credit Default Swaps (CDS) calibration, CVA calculation and analysis of wrong-way

risk impact in a structural setting, we refer to the already mentioned work of Brigo et al. (2011), who

offer a framework based on a diffusion model, with either deterministic or stochastic barriers. Although

both the approach in Brigo et al. (2011) and ours rely on the structural framework, our setting differs

in the choice of the underlying risk processes. The flexibility of the underlying distribution offered

by the general class of Lévy processes allows our model to reach the same calibration precision with

less constraints on the overall dynamics of the model. Past work on pricing CCR for different asset

classes, such as oil swaps, interest rate swaps and CDS can be found for example in Brigo and Bakkar

(2009), Brigo et al. (2013a 2014); the case of oil forwards in a simple setting à la Merton (1974) with no

consideration for collateral agreements and initial margin can be found in Ballotta and Fusai (2015).

We note that CVA for oil related products, to the best of our knowledge, has attracted little attention

in the literature, in spite these being very common and natural products for which right/wrong-way risk

effects can be observed. More recently, Brigo and Vrins (2018) have put forward a different approach

to solve the computational issues caused by right/wrong-way risk for unilateral CVA in an intensity

setting; this approach uses a set of equivalent measures named wrong way measures to ‘remove’ the

dependence between the underlying asset and the counterparty default.

Unless otherwise stated, all proofs are deferred to the online supplementary material.

3



2 Preliminaries: CVA and first to default problem

In the following we consider a setting in which S1(t) and S2(t) represent the (risky) counterparties (i.e.

the short and long position respectively) of derivative contract positions on reference names, denoted

as Sl(t), l = 3, · · · , n, and with maturity T . At this stage we ignore default of the reference names,

thus implicitly assuming that either their credit quality is stronger than the one of the counterparties,

or the assets are non defaultable like, for example, an index or a commodity.

Let us further denote by τj the default time of counterparty j = 1, 2. Then, the bilateral CVA

from the point of view of Firm 2 is defined as the present value of the expected loss in which Firm 2

incurs if Firm 1 defaults, Firm 2 survives at the moment in which the default of Firm 1 occurs, and

the derivative positions on the reference names has a positive value to Firm 2, i.e.

CV A1 = (1−R1)E
[
1(τ1≤T )1(τ2>τ1)Ψ

+ (τ1;S3, . . . , Sn, T )
]
, (1)

where R1 is the recovery rate on Firm 1 assets, Ψ(t;S3, . . . , Sn, T ) denotes the discounted value at time

t > 0 of the derivative positions on S3, . . . , Sn with maturity at time T , and Ψ+ = max(Ψ, 0) denotes

its positive part, i.e. the credit exposure to Firm 2. Standard practice in modelling corporate CDS

spreads is to assume a fixed risk-neutral recovery rate. This is indeed a common assumption among

academics and practitioners alike if the contract is priced under the fractional recovery of market value

convention introduced by Duffie and Singleton (1999) and adopted here as well (see also Berndt et al.

2005, Hull et al. 2004, Houweling and Vorst 2005). Possible alternative approaches, allowing stochastic

recovery ratio, not pursued here in order to maintain model tractability, are proposed for example

in Bruche and González-Aguardo (2008). Alternative interpretations of the CVA (compared to the

market value of the expected loss described above) include the cost of replacement of the counterparty

in the given set of financial transactions (see Brigo et al. 2013b, for example), and more recently a

fixed-point problem as in Kim and Leung (2016).

In our formulation (1), the CVA calculation takes into account the credit quality of both coun-

terparties, also highlighting that the CVA materializes if the counterparty (in our case Firm 1) is the

‘first to default’. This formulation of the bilateral CVA traces back to the 2008 preprint version of

Brigo et al. (2012). The correction to the risk of counterparty default due to expected losses resulting

from Firm 2 own default, i.e. Debt Valuation Adjustment (DVA) can be obtained following the same

principle, as DVA is the CVA from the counterparty’s perspective - see Brigo et al. (2012) for fuller

details.

The quantification of CVA as defined in equation (1) requires a joint model for the entities Sj(t),

j = 1, . . . , n, and the default event, which can conveniently accommodate for effects of right/wrong-

way risk. A choice common in the literature is to cast the problem into the setting of the intensity

approach to default risk, with dependence exogenously imposed via a suitably chosen copula (see also

Crépey et al. 2014, Wu 2015, for example). However, such a modelling choice poses in general non

trivial problems in terms of model calibration and CVA calculation as the resulting joint distribution

is not known in closed form. For a more detailed discussion concerning potential issues with intensity

based models we refer to Brigo et al. (2013b) and references therein.

Consequently, in the following of this paper we adopt a setting based on the structural approach to
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default; however, due to the well known shortcomings of standard structural models based on diffusive

dynamics, we enhance the setup by choosing Lévy processes as main risk drivers. The specific details

of the model and the resulting setting are presented in the next section.

3 A Lévy-based structural model to default and CVA pricing

3.1 Lévy multivariate structural model for CVA

Consider a filtered probability space (Ω,F, {Ft}t≥0,P), where P is a risk neutral martingale measure; a

Lévy process X(t) defined on this probability space is a continuous time process with independent and

stationary increments, whose distribution has in general non-zero skewness and excess kurtosis, and is

infinitely divisible. Hence, its characteristic function can be written as E
(
eiuX(t)

)
= etϕX(u) for any

u ∈ R; the function ϕX(u) is the so-called characteristic exponent.

Following the standard structural approach to default, we assume that the firm value of the j-th

financial entity, j = 1, . . . , n, is defined as

Sj(t) = Sj(0)e

(
r−qj−ϕXj (−i)

)
t+Xj(t), j = 1, . . . , n, (2)

where Xj(t) is a Lévy process with characteristic exponent ϕXj (·), r > 0 is the continuously com-

pounded risk-free rate1, qj ≥ 0 is the constant cash flow pay out ratio, and n is the number of firms

in the market. Equation (2) represents the extension to a non-Gaussian setting of the classical firm

value of Merton (1974), Black and Cox (1976). Given the assumption of non-defaultable contract ref-

erence names, the firm values of these entities and their stock prices coincide. Finally, as in general the

market is incomplete due to the fact that Lévy processes can accommodate jumps, we follow standard

market practice and fix the pricing measure through calibration to the prices of suitably chosen traded

derivative contracts.

Dependence between the risk drivers, Xj(t), j = 1, . . . , n, is modelled by the linear structure

X(t) = Y(t) + aZ(t), (3)

for X(t) = (X1(t), ..., Xn(t))>, Y(t) = (Y1(t), ..., Yn(t))>, a = (a1, ..., an)> ∈ Rn, and Y1(t), ..., Yn(t)

and Z(t) mutually independent Lévy processes. The components of the process Y(t) capture the id-

iosyncratic risk of each margin process, whilst Z(t) captures the systematic part of the risk and therefore

generates dependence.We note that in the following of this paper we assume that this systematic risk

process is unique in order to keep the model parsimonious in terms of complexity of the parameter

space; the analysis could though be extended to the multidimensional case. Finally, we assume that all

relevant processes have finite moments of all orders; for full details see Ballotta and Bonfiglioli (2016),

Ballotta et al. (2017).

In this framework default is modelled in the first passage time setting, in the sense that it is triggered

at the first moment the firm value falls below an exogenous threshold, treated here as one of the model

1For ease of illustration, we treat the rate of interest as constant; however, in the practical application it is time-
dependent and suitably calibrated to the LIBOR curve (see Section 5.1 for further details).
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parameters. In addition, we make the realistic assumption that default is monitored at discrete dates,

rather than continuously; this is consistent with industry practice which uses approximately weekly

time steps in the first year to measure exposure with fine granularity at the short end, and quarterly

in the following years (see Davidson 2008, for example).

Thus, let us define the set T = (tl)
N
l=1, then the default time τ is defined as the first time that the

firm value Sj falls below a given level Kj , i.e.

τj = inf {t ∈ T : Sj(t) < Kj} = inf {t ∈ T : Yj (t) + ajZ (t) < lj(t)} , (4)

where lj(t) = hj − µ̂jt, for hj = ln (Kj/Sj (0)) and µ̂j = r− qj − ϕXj(−i). Here tN denotes the expiry

date of the firm’s debt.

Although the use of factor models in the credit risk literature is not new (see, for example, the

celebrated KMV model - Vaš́ıček 1987), our setup differs for its generality in terms of underlying

distribution within the first passage time approach. Our model is, in fact, developed with respect to a

generic Lévy process, and its implementation only requires the process to have a known characteristic

function and finite moment of all orders. The early default feature does not introduce any particular

computational difficulty as, by suitably conditioning, the CVA problem reduces to the well studied

barrier option problem. Further, for calibration purposes we use market quotes of credit spreads rather

than generally unavailable balance sheet data. Detailed description and justification of the calibration

procedure is deferred to Section 5.1.

In order to motivate the choice of a Lévy process as a driving process, we assess the improvements

offered by a non-Gaussian structural model in capturing default probabilities and credit spreads com-

pared to an equally calibrated structural model based on the Brownian motion (i.e. the traditional

model of Black and Cox 1976). This is shown in Figure 1, in which we plot the fitting errors of the two

models calibrated to market credit spreads on a corporate firm (see Sections 4 - 5 for full details about

the relevant modelling assumptions and the dataset). The most significant improvement is observable

over the short period, i.e. for the case in which the traditional Gaussian-based model is known to

perform poorly. This better performance of the Lévy process is due to its ability to capture, through

the occurring of sudden jumps, changes in the firm rating over the short period, and the non zero credit

spread.

In relation to solving the CVA problem (1), consistently with the assumptions set above, let us

assume that the default event can only occur on a time grid {tj : 0 ≤ j ≤ N} for t0 = 0, tN = T ;

note that we assume, without loss of generality, that the contract expires before the firm’s debt, i.e.

tN ≤ tN . Then

CV A1 = (1−R1)

N∑
j=1

E
(

1(tj−1<τ1≤tj)1(τ2>tj)Ψ
+ (tj ;S3, . . . , Sn, T )

)
. (5)

The adopted factor structure implies that, conditioned on {Z(t), 0 < t ≤ T}, the only relevant sources

of risk are the idiosyncratic processes Y1(t), . . . , Yn(t), which are independent by construction. Con-

sequently, once the trajectory of the systematic risk process Z(t) is fixed, the default times and the
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Figure 1: The importance of jumps: Gaussian (G) model vs NIG model. Top panels: probability of
default (left-hand side); fitting error (right-hand side). Bottom panels: credit spreads (left-hand side);
fitting error (right-hand side). Underlying asset: ENI. NIG model - parameter set: Table 3. Gaussian
model - parameter set: σ = 14.25%, K = 0.01.

contract payoff become independent of each other. Therefore equation (5) leads to

CV A1 = (1−R1)
N∑
j=1

E
[
PZ (tj−1 < τ1 ≤ tj)PZ (τ2 > tj)EZ

(
Ψ+ (tj ;S3, . . . , Sn, T )

)]
, (6)

where EZ (·) ,PZ (·) denote respectively the (risk neutral) conditional expectation and conditional prob-

ability with respect to the trajectory of the systematic risk process Z.

The computation of (6) requires on the one hand the exact definition of the exposure which depends

on the payoff function of the contract under consideration - this is discussed in Section 3.2. On the

other hand it also requires an efficient way of recovering the (conditional) default probabilities; this

latter task is somewhat more straightforward as it uses standard techniques in barrier option pricing -

the details of the actual implementation are delayed till Section 4.1.

3.2 The exposure: a general treatment - pricing exotic spread options

In order to present a complete argument, we assume the general case in which the transaction is covered

by margin agreements aimed at limiting the potential exposure of one counterparty to another. Thus,

in this setting, the function Ψ+(t;S, T ) denotes the discounted value at time t > 0 of the so called

collateralized exposure, EC(t), generated by a portfolio of derivative contracts on Sl, l = 3, · · · , n, and
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maturity at time T > t, whose value at time t > 0 is v(t, Sl). The t-value of the portfolio is then

Π(t) =

n∑
l=3

wlv(t, Sl)

where wl, l = 3, . . . , n, are the quantities held in the portfolio of each derivative contract. Further, we

also assume that netting agreements are allowed, on the basis of which, in the event of default of one

of the counterparties, aggregation of transactions before settling is permitted. This is indeed the case

in practice in presence of multiple trades within the same asset class and with the same counterparty

(see Andersen et al. 2017, for example). Thus, netting represents a further risk mitigation mechanism

as the values of all trades are added together, and therefore the resulting portfolio value is settled as

a single trade2 (see also Brigo and Masetti 2006, for example). Under this set of assumptions, the

collateralized exposure can be described as a package of calendar spread options written on a basket

with some exotic features.

To this purpose, let us consider the generic payoff

(AΠ(t)−BΠ(t− δt) + C −DIM(t− δt))+ 1(E<Π(t−δt)<F ), (7)

with

A: the nominal size of the position considered which, without loss of generality, we assume 1.

B: the ‘collateral’ parameter originating the mark-to-market (MTM) value on which the so-called

variation margin is calculated.

C: the threshold determining the amount of variation margin which parties are required to post; it

should be considered as the excess which, if surpassed by the MTM, determines the incremental

amount called for.

D: the ‘initial margin’ parameter, controlling whether or not this form of collateral is to be accounted

for in the CVA calculation; the initial margin is denoted as IM.

E,F : thresholds triggering the call of the variation margin for the two counterparties; they usually

coincide with the excess threshold C augmented by an amount, M > 0, representing the so called

minimum transfer amount (MTA).

In the following we provide some insights regarding the structure (7) in the context of CVA de-

termination. For fuller details we refer the interested readers to Bielecki et al. (2011), Gregory (2015)

for example. The calculation of the exposure generated by any position should take into account the

appreciation/depreciation of the position value as this determines the actual loss for the surviving coun-

terparty in case of default of the other one. Risk mitigation clauses aimed at reducing this exposure

are provided by the so-called collateral agreements, based on which either counterparty is required to

post collateral against a negative (from their point of view) MTM value.

2According to ISDA (2010), netting benefit, measured as the difference between gross mark-to-market value and credit
exposure after netting, was over 85% as of mid-2009. A similar measure for banks chartered in the United States was
even greater, at about 90% of mark-to-market value.
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As hinted above, two types of collateral are usually identified: the variation margin and the initial

margin. The variation margin is collateral reflecting the MTM of the transaction; it is calculated as the

incremental amount of the MTM value compared to the excess C. The mechanism can be described

in general terms as follows. Let t− δt be the date at which the last collateral has been posted before

the next monitoring date t > 0. If at t− δt the MTM is positive, i.e. Π(t− δt) > 0, then Firm 2, who

holds the long position in the portfolio, stands to face losses in case Firm 1 defaults in (t− δt, t]. Thus

Firm 2 calls for collateral in excess of C = H1 > 0 to be posted by Firm 1, if the MTM exceeds the

triggering threshold H1 + M . Consequently, the exposure of Firm 2 at t will be given by the current

MTM value, Π(t), cleared of any collateral posted by Firm 1 at t − δt. Viceversa, if at t − δt the

MTM is negative, i.e. Π(t − δt) < 0, it is Firm 1 which stands to suffer losses in case of default of

Firm 2, and therefore calls for collateral in excess of C = H2 < 0, provided the MTM exceeds the

triggering threshold H2 −M . The quantity M , representing the MTA, is an additional clause aimed

at reducing the collateral frequency of exchange, due to the expensive nature of this operation for the

counterparties. We note that throughout the paper collateral is defined as cash amount which does

not earn any interest3.

The second form of collateral in place is the initial margin, IM. This is an amount of additional

buffer which both counterparties are required to post irrespectively of the MTM value of the underlying

position. Because of this, the initial margin can be considered as the first line of defence for risk

mitigation. For these reasons, its calculation should be based on extreme, but plausible, movements in

the underlying position MTM at a p = 99% confidence level as measured by the Value at Risk (VaR).

For a portfolio of derivative contracts, the VaR is equivalent to

IM(t− δt) = Π(t− δt)−Πp(Π(t− δt+ ∆t))

where Πp(·) denotes the worst case scenario (i.e. the quantile of the distribution) of the position at a

(1 − p)% confidence level, expressed as a function of the portfolio value, over a ∆t-day time horizon

(usually 10 days).

Based on the general description given above, the collateralized exposure with initial margin for

Firm 2 at time t is

EC(t) = (Π(t)− IM(t− δt))+1(H2−M≤Π(t−δt)≤H1+M) (8a)

+ (Π(t)−Π(t− δt) +H1 − IM(t− δt))+ 1(Π(t−δt)>H1+M) (8b)

+ (Π(t)−Π(t− δt) +H2 − IM(t− δt))+ 1(Π(t−δt)<H2−M). (8c)

In detail EC(t) is decomposed in three components that can be reconducted to the general payoff (7).

The term (8a) in the above represents the ‘uncollateralized’ exposure (up to the initial margin) which

originates from the MTM at t − δt not exceeding any of the triggering thresholds. The second term

(8b) is the exposure after the collateral is called by Firm 2 and posted by Firm 1; the final term (8c)

3According to ISDA (2014 2015a), estimated collateral for non-cleared OTC derivatives is around $3.2 trillions at the
end of 2013; there is small decline over the last few years due in part to a continued shift to central clearing. Indeed, 90%
of all OTC derivatives was subject to collateral agreement at the end of 2013. Cash and government securities account
for 90% of non-cleared OTC derivatives collateral.
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Payoff A B C D E F

Uncollateralized Exposure 1 0 0 1 E → −∞ F →∞
Unilateral eq. (8a) 1 0 0 1 E → −∞ H1 +M
Collateralized eq. (8b) 1 1 H1 1 H1 +M F →∞
Exposure eq. (8c) − − − − E → −∞ F → −∞
Bilateral eq. (8a) 1 0 0 1 H2 −M H1 +M
Collateralized eq. (8b) 1 1 H1 1 H1 +M F →∞
Exposure eq. (8c) 1 1 H2 1 E → −∞ H2 −M

Table 1: Parameter setting of payoff (7) when modelling collateralized exposure in eq. (8a) - eq. (8c).
Note. If the initial margin is not applied, D = 0.

originates instead in the opposite situation in which the collateral is called by Firm 1 and posted by

Firm 2. Each term corresponds to (7) for the parameter settings given in Table 1, which also reports the

setting for the case of the ‘crude’ exposure, and the collateralized exposure under unilateral agreement.

Finally, we note that this general formulation of the exposure corresponds broadly to the ‘classical

model’ of Andersen et al. (2017).

The above shows that the actual calculation of the expected (discounted) exposure

EZ
(
Ψ+ (tj ;S3, . . . , Sn, T )

)
(9)

in (6) can be reduced to the calculation of the expectation of the discounted payoff (7), based on the

corresponding contract setting. Bearing in mind that we condition on the trajectory of the systematic

process Z(t), the task of obtaining (9) can be further simplified by also conditioning on the information

available at time t−δt. However, the actual solution of (9) depends on the specification of the contract

payoff function; in this work we focus on the case of linear derivatives such as swaps and forwards

(which are a particular case of swaps) on equity and commodity as illustrated in the following sections.

3.3 Swap contracts: single trade

Assume a single swap contract on S3, with maturity T , payments dates T1, T2, ..., TNS = T and swap

rate K3 (if NS = 1 the swap reduces to a forward contract). Then

v(t, S3) =
∑
j:Tj>t

(
S3 (t) e−q3(Tj−t) −K3e

−r(Tj−t)
)

(10)

and Π(t) = v(t, S3). In this case the solution to (9) simplifies significantly. Due to the factor structure

of the driving process, in fact, (10) can be written as

v(t, S3) = α3(t)β(t; a3Z)S3(0)e(r−q3−ϕY3 (−i))t+Y3(t) − K̄3(t), (11)

α3(t) =
∑

j:Tj>t
e−q3 (Tj−t), β(t; a3Z) = e−ϕZ(−a3 i)t+a3Z(t) and K̄3(t) = K3

∑
j:Tj>t

e−r(Tj−t). Hence,

the pricing of the collateralized exposure can be linked directly to the idiosyncratic component Y3.

For what concerns the initial margin, in this simplified setting the worst case scenario Πp(·) reduces

to a monotonic function of the position at the last monitoring date t − δt and the worst increment

of the margin process X3 over the monitoring period ∆t. As the increments of Lévy processes are

10



independent, we can compute the quantile Xp
3 (∆t) of these increments separately from the rest.

Under the assumptions leading to the CVA equation (6), specifically by conditioning on the trajec-

tory of the systematic process Z(t), the following result holds for (9).

Proposition 1 The market consistent value (9) for Π(t) = v(t, S3) and v(t, S3) given by (11) has

expression

α3(t)β(t; a3Z)

∫ UB

LB
EZ
(
e−rt

(
AG(t− δt; y)e(r−q3−ϕY3 (−i))δt+(Y3(t)−y) − K̃(y)

)+
)
fY3(t−δt)(y)dy,

with fY3(t)(·) denoting the probability density function of the idiosyncratic process Y3(t),

G(t;Y3) = S3(0)e(r−q3−ϕY3 (−i))t+Y3(t),

K̃(Y3) =
1

α3(t)β(t; a3Z)

[
AK̄3(t)− (B +D)K̄3(t− δt) +DK̄3(t− δt+ ∆t)− C

−β(t− δt; a3Z)G(t− δt;Y3)
(
Dα3(t− δt+ ∆t)e(r−q3−ϕX3

(−i))∆t+Xp
3 (∆t) − (B +D)α3(t− δt)

)]
,

LB = ln

(
E + K̄3(t− δt)

α3(t− δt)β(t− δt; a3Z)S3(0)

)
− (r − q3 − ϕY3(−i))(t− δt),

UB = ln

(
F + K̄3(t− δt)

α3(t− δt)β(t− δt; a3Z)S3(0)

)
− (r − q3 − ϕY3(−i))(t− δt),

and Xp
3 (∆t) denoting the worst case scenario (quantile) at (1− p)% confidence level of the process X3

over a ∆t-day time horizon. We set LB → −∞ if E + K̄3(t− δt) ≤ 0.

Proposition 1 highlights that by conditioning on the information available at time t−δt, the problem

of the calculation of the expected (discounted) exposure reduces to the well understood calculation of

the price of a plain vanilla European call option. Consequently, from the practical point of view, the

pricing equation in Proposition 1 can be solved firstly by computing the inner conditional expectation,

and secondly by performing (numerical) integration with respect to the density function of the Lévy

process Y3 of choice. As the inner conditional expectation corresponds to the price of a plain vanilla

European call option, pricing can be achieved by a suitably chosen Fourier inversion method. The

quantile Xp
3 (∆t) is computed by (numerical) inversion of the distribution function of X3. Further

details are provided in Section 4.1.

We notice that in case of restrictions on netting agreements, the expected exposure of a portfolio of

derivative contracts is the sum of each single expected collateralized exposure as given, for the example

of swaps, in Proposition 1.

As documented for example by Brigo et al. (2014), although in presence of collateral agreements,

counterparties are required to periodically mark to market their positions, these risk mitigation clauses

do not completely eliminate counterparty credit risk, as sudden movements can increase both the

exposure since the time of the last collateral exchange, and the probability of the relevant default

event. This originates the so called gap risk and gap event, which is the event in which at time t > 0

the counterparty, S1(t), defaults, the investor, S2(t), survives and the contract on the underlying asset,

S3(t), moves in the money, given that at time t−δt, the counterparty was solvent and the exposure was

either out-of-the money or perfectly collateralized. In the proposed structural model, the probability

11



of this event (seen from the point of view of Firm 2) can be written as

PGap = P (S1(t) < K1, S2(t) ≥ K2, v(t, S3) > 0|S1(t− δt) ≥ K1, S2(t− δt) ≥ K2, v(t− δt, S3) ≤ 0) . (12)

As the collateral posting is by regulation operated with high frequency, (12) expresses a measure

of extreme co-movement of the three random quantities involved over a very short period, i.e. it is a

measure of tail dependence for the joint distribution of the three risk drivers (see McNeil et al. 2015, for

example, for more details on tail dependence). This observation leads us to the following considerations.

Firstly, in the structural framework, gap risk can only be properly generated if the joint sources of risk

have sufficient probability mass in the tails. This rules out the Gaussian distribution due to the very

fast decay rate of its tails (see Embrechts et al. 2002, for example). Lévy processes other than the

Brownian motion can cater for slower decay rate of the distribution tails, offering the possibility of a

more realistic quantification of the probability of a gap event. Secondly, the initial margin has become

a compulsory regulatory element aimed at precisely reducing gap risk; indeed, in presence of initial

margin in (12), the value of the contract would have to exceed the actual value of the initial margin

for the gap event to be triggered. Finally, our factor construction (3) allows for a straightforward way

of obtaining (12) in closed form by using the same argument as in Oh and Patton (2017), i.e. the

probability of sums of random variables all exceeding some diverging threshold is driven completely by

the common component of the sums. In the interest of readability, we offer the analytical result in the

online supplementary material.

3.4 Swap contract: portfolio of trades

In this case

Π(t) =
n∑
l=3

wl

(
αl(t)β(t; a3Z)Sl(0)e(r−q

l
−ϕYl (−i))t+Yl(t) − K̄l(t)

)
; (13)

then, the solution of the general pricing equation (9) is more complex due mainly to two reasons. The

first reason is the calculation of the worst case scenario for the portfolio, i.e. Πp. Given that Lévy

processes have independent increments, this issue is resolved by obtaining the increments of the relevant

margin processes over the monitoring period ∆t at the start of the computation procedure and then

considering them as fixed. This implies that the portfolio’s worst case scenario can be considered as a

function of the portfolio value at the last reset date and the monitoring period, i.e. Πp(Π(t− δt),∆t).
The second reason is the lack of analytical form for the density function of a basket of exponential

Lévy processes. This latter issue can be tackled by means of a bivariate Edgeworth expansions (see

Polley 2016, for example, and references therein). This approach is justified by the fact that, conditioned

on the trajectory of the systematic risk process Z, the portfolio value is determined by a sum of

independent exponential Lévy process, as highlighted by (13).

To the purpose of the application of Edgeworth expansion, we require some preliminary definitions

and results. Let α = (α1, α2) be a multi-index, i.e. pair of non-negative integers, and define |α| =

α1 + α2, α! = α1!α2! and xα = xα1
1 xα2

2 for x ∈ R2. Further, let

fN,Σ(ξ) =
1

2π
√

1− ρ2
e
− ξ

2
1−2ρξ1ξ2+ξ

2
2

2(1−ρ2)
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be the bivariate standard normal distribution. Finally, we define the 2-dimensional Hermite polynomials

as

Hα

(
ξ,Σ−1

)
= (−1)αfN,Σ(ξ)−1 ∂|α|

∂ξα1
1 ∂ξα2

2

fN,Σ(ξ).

The explicit expression of these polynomials up to order six is given in Barndorff-Nielsen and Pedersen

(1979).

Consider the bivariate process (Π(t),Π(t− δt)) and let us denote m1 = EZ(Π(t)), m2 = EZ(Π(t−
δt)), σ2

1 = VarZ(Π(t)), σ2
2 = VarZ(Π(t−δt)), σ12 = CovZ(Π(t−δt),Π(t)). Let ξ1 = (Π(t)−m1)/σ1, ξ2 =

(Π(t− δt)−m2)/σ2 be the standardized versions of the values of the portfolio (for ease of notation we

suppress dependence on time of all relevant quantities). Then the Edgeworth expansion of the joint

density of ξ = (ξ1, ξ2) is

fξ(ξ) = fN,Σ(ξ)

1 +

∞∑
|α|=3

Kα
ξ

α!
Hα

(
ξ,Σ−1

) , (14)

with Kα
ξ denoting the co-cumulant of order α of ξ = (ξ1, ξ2), i.e.

Kα
ξ = K

(α1,α2)
ξ = (−i)|α| ∂|α|

∂uα1
1 ∂uα2

2

lnE(eiu1ξ1+iu2ξ2)

∣∣∣∣∣
u1=0,u2=0

.

For practical purposes we truncate the summation in (14) to |α| = 4, so that (14) reduces to the

bivariate version of the so-called Gram-Charlier A expansion (see Mardia 1970, for example).

In virtue of the properties of the bivariate normal distribution and the nature of the 2-dimensional

Hermite polynomials, the following holds.

Proposition 2 The market consistent value (9) for the general portfolio Π(t) =
∑n

l=3wlv(t, Sl) and

v(t, Sl) given by (11)), under the Gram-Charlier A approximation, has expression

e−rt
∫ F

E
g(y)dy + e−rt

4∑
|α|=3

1

α!

Kα
Π

σα

|α|∑
i,j=0

hαi,j

∫ F

E
gi(y)

(
y −m2

σ2

)j
dy,

for

g(y) =
1

σ2

√
2π
e
− (y−m2)

2

2σ22

(
A
σ1|2√

2π
e−

1
2
d(y)2 +

(
Am1|2(y)− (B +D)y + C +DΠp(y,∆t)

)
N (d(y))

)
,

gi(y) =
1

σ2

√
2π
e
− (y−m2)

2

2σ22 (Aσ1m̄i+1(y) + (Am1 − (B +D)y + C +DΠp(y,∆t)) m̄i(y)) ,
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m̄k(y) =
σ12

σ1σ2

(
y −m2

σ2

)
m̄k−1(y) + (k − 1)

σ2
1|2

σ2
1

m̄k−2(y)

+
σ1|2

σ1

(
−Am1 − (B +D)y + C +DΠp(y,∆t)

Aσ1

)k−1 1√
2π
e−

d(y)2

2 ,

m̄0(y) = N (d(y)) , m̄−1(y) = 0,

d(y) =
m1|2(y)− (B +D)y/A+ (C +DΠp(y,∆t))/A

σ1|2
,

m1|2 (y) = m1 +
σ12

σ2
2

(y −m2) , σ2
1|2 = σ2

1 −
σ2

12

σ2
2

,

N (·) denotes the standard normal cumulative distribution function, σ = (σ1, σ2), Kα
Π denotes the co-

cumulant of (Π(t),Π(t − δt)) of order α, and hαi,j denotes the ij coefficient of the terms ξi1ξ
j
2 in the

2-dimensional Hermite polynomial of order α.

The pricing equation of Proposition 2 can be read as the price of the calendar spread option in a

(bivariate) Bachelier market model corrected for the non-Gaussianity present in our setting.

We note that in the case of equally weighted and homogeneous portfolio of swaps, i.e. for which

wl = 1/(n − 2), al = a3, l = 3, · · · , n, and Yl(t) are independent copies of the idiosyncratic process

Y3(t), the following holds.

Corollary 3 The market consistent value (9) for an equally weighted large portfolio of swaps with

value function (11) on homogeneous assets has expression

e−rt
∫ F

E

1

σ2

√
2π
e
− (y−m2)2

2σ22

(
A
σ1|2√

2π
e−

1
2d(y)2 +

(
Am1|2(y)− (B +D)y + C +DΠp(y,∆t)

)
N (d(y))

)
dy + o(n−1/2).

In other words, for (asymptotically) large portfolios the contribution to the price coming from the

correction for non-Gaussianity observed in Proposition 2 becomes negligible.

We conclude this section by noting that the ‘crude’ CVA without any collateral agreement can be

recovered from the previous results by setting B = C = D = 0, E ↓ −∞, F ↑ ∞. In the interest of

space, the full argument is provided in the online supplementary material.

4 Numerical implementation and testing

This section discusses the numerical computation of the quantities appearing in the CVA equation (6),

based on the model features and the exposure functions introduced in Section 3. For the purpose of the

numerical analysis, we choose as a relevant Lévy process the Normal Inverse Gaussian (NIG) process

introduced by Barndorff-Nielsen (1995). In more details, the NIG process is a normal tempered stable

process obtained by subordinating a Brownian motion by an (unbiased) independent Inverse Gaussian

process. Its characteristic exponent reads

ϕX(u) =
1

k
(1−

√
1− 2iuθk + u2σ2k), u ∈ R.

It follows that the first four cumulants of the process are K(1) = θt, K(2) =
(
σ2 + θ2k

)
t, K(3) =

3θk
(
σ2 + θ2k

)
t, and K(4) = 3k

(
σ4 + 6σ2θ2k + 5θ4k2

)
t. Hence, θ ∈ R controls the sign of the skewness
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of the process distribution, σ > 0 affects the overall variability and k > 0 controls the kurtosis of the

distribution. Moreover, the tails of the distribution are characterized by a power-modified exponential

decay, or semi-heavy tail (see Cont and Tankov 2004, for example).

All numerical experiments refer to swap contracts with 1 year maturity and weekly payment dates

(NS = 52), which we assume to coincide with the default monitoring dates (i.e. N = NS). The model

parameters are obtained through calibration as described in details in Section 5.1 and reported in Table

3. The numerical schemes are implemented in Matlab R2015a and run on a computer with an Intel

i7-3.20GHz CPU, and 4GB of RAM.

4.1 Implementation

‘Outer Analytics’. Monte Carlo

We recall that the pricing equations obtained in Section 3 have been derived by conditioning first on the

trajectory of the systematic process Z, in order to exploit the properties of the factor model adopted

in this paper. This paves the way for Monte Carlo (MC) simulation applied to the outer expectation of

(6). To this purpose, we assume that the points on the time grid {tj : 0 ≤ j ≤ N} for t0 = 0, tN = T ,

are equally spaced so that tj = t0 + jδ, j = 1, . . . , N with δ = T/N . Then (6) is computed as

(1−R1)
N∑
j=1

1

MC

MC∑
m=1

PZ(m) ((j − 1)δ < τ1 ≤ jδ)PZ(m) (τ2 > jδ)EZ(m)

(
Ψ+ (jδ;S3, T )

)
, (15)

where MC is the total number of simulations trials, and Z(m), m = 1, . . . ,MC , is the m-th simulated

path of the process Z(t). Efficient Monte Carlo algorithms for the NIG process can be based on its

representation as subordinated Brownian motion as detailed in Cont and Tankov (2004).

We observe that extensions to the case of a multidimensional model for the systematic risk factor

would impose only a limited additional computational cost if the factors are assumed independent:

these would only affect, in fact, the Monte Carlo part, and therefore the cost would increase linearly

with the number of systematic risk factors in the model.

‘Inner Analytics’. Default probabilities

Given the assumptions above and the setting of Section 3.1, the conditional (risk neutral) probabilities

in (15) refer to a conditional default time

τ (m) = inf
{
t ∈ T : Y (t) < l(t)− aZ(m)(t)

}
, m = 1, . . . ,MC ,

for T = δ, . . . , jδ, . . . , Nδ = T (for ease of exposition, we suppress the firm specific index).

The most intuitive approach to the computation of the given probabilities would be MC simulation

again, which would be in this case nested in the MC simulation of the systematic process Z - hence, we

label this method as FullMC(k), where k ∈ N denotes the number of nested simulation trials for the

trajectory of Y , per each trajectory of Z (FullMC(100) denotes the classical unnested MC). However,

due to both the time and path dependent barrier defining the default event, we expect the FullMC(k)
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method to be particularly time consuming for any desired level of accuracy, as it would require MC ×k
simulation trials.

As alternative we consider the Hilbert transform method of Feng and Linetsky (2008). This choice

is motivated by the similarity of the computational problem of the survival probabilities with the

pricing of discretely monitored barrier options; further, the method shows a computational cost of

order O(NP logP ), for N the number of monitoring dates and P the number of grid points, and

exponentially decaying error. This makes the approach superior to other Fourier transform based

methods (see Feng and Linetsky 2008, and references therein for further details). More precisely, we

apply the Hilbert method to compute the survival probability via the following recursion: let p(m)(x, j)

be the probability that Y (jδ) = x given that the lower barrier b(m)(t) = l(t)− aZ(m)(t) has never been

touched by the process Y in t = {δ, 2δ, · · · , jδ}. Then, given that P(Y (0) = 0) = 1, we have that

x→ p(m)(x, 0) = P(Y (0) = x) is the Dirac delta function centered in 0. Moreover, it holds

p(m)(x, j) =

∫ ∞
−∞

f(x− x′, δ)p(m)(x′, j − 1)dx′ 1(x≥b(m)(jδ)), j = 1, · · · , N, (16)

where the transition probability that Y (t + δ) = x when Y (t) = x′ has density f(x − x′, δ) for any

t > 0. We refer to Fusai et al. (2016) for details. The survival probability in jδ is therefore given by

PZ(m) (τ > jδ) =

∫ ∞
−∞

p(m)(x, j)dx.

We label this method as MC+Hilbert(P ).

‘Inner Analytics’. Expected exposures

For ease of computation, but without loss of generality, we assume that the margining dates coincide

with the time points on the partition {tj : 0 ≤ j ≤ N} for t0 = 0, tN = T . As far as the length of the

margining period is concerned, it depends on the frequency with which the collateral is re-adjusted; in

the following we assume for illustrative purposes and without loss of generality δt = δ, i.e. 1 week4.

Thus, in the case of Proposition 1, we choose the COS method introduced by Fang and Oosterlee

(2008) for the efficient computation of both the European vanilla options and the density function of

Y3, exploiting its exponential accuracy in the number of grid points. Hence, for fixed value of Y3(t−δt),
we first obtain the conditional values by means of the COS method, then, we integrate with respect to

the density function of Y3(t − δt), using the quad routine in Matlab. In the case of Proposition 2,

due to the analytical nature of the integrand functions, we only require the numerical integration part.

In both cases, though, the full collateralized exposure is a package of basket options with prices as

in Propositions 1 and 2. Therefore, in order to speed-up the MC+Hilbert algorithm, we pre-compute

the values of the integrals on a two-dimensional array and use these values to interpolate the required

quantities. In practice, given a simulated path of the common factor, at each time step t, we proceed

4It is worth, for reason of clarity, pointing out the different time periods entering the computation of CVA and related
quantities: δt denotes the length of the margining period, i.e. the frequency with which the collateral is readjusted; δ
is the length of the default monitoring period, i.e. the frequency with which the survival of the companies entering the
given transaction is monitored; finally ∆t is the VaR time horizon for the IM computation, set to 2 weeks (10 working
days). In general, δt, δ,∆t are different and depend on contracts clauses and supervisory requirements.
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Method CPU PS1 s.e. CVA (bps) s.e. (bps) CPU

FullMC(100) 85 0.707340 0.001838 829.39 9.04 92
FullMC(101) 699 0.706736 0.001278 818.38 2.96 711
FullMC(102) 965 0.706867 0.001261 822.20 1.36 976
FullMC(103) 1799 0.706811 0.001259 820.12 1.07 1831
FullMC(104) 10525 0.706792 0.001259 820.17 1.03 10541
MC+Hilbert(29) 286 0.706865 0.001259 819.83 1.03 295
MC+Hilbert(210) 632 0.706795 0.001259 820.05 1.04 645

Table 2: FullMC vs Hybrid Method: Testing. CVA (in bps), survival probabilities of S1 (PS1
) at time

t = 0.5 (six months), and execution time (CPU in seconds). Parameters: Table 3. Other parameters:
S1(0) = S2(0) = S3(0) = 1, T = 1 year; weekly monitoring. FullMC(k): Monte Carlo with k simulations
for each trajectory of Z. MC+Hilbert(P ): Hilbert method implemented with P grid points. MC = 105

simulation trials. CVA computation: (conditional) expected exposure computed using the COS method
with 29 grid points and truncation range set for L = 15.

as follows.

- Construct a grid of M̂ points Z−j = minm=1,··· ,M Z(m)(t − δt) + j∆̂, j = 0, · · · M̂ − 1, with ∆̂ =
1

M̂−1

(
maxm=1,··· ,M Z(m)(t− δt)−minm=1,··· ,M Z(m)(t− δt)

)
.

- Construct a grid of M̂ points Z+
j = minm=1,··· ,M Z(m)(t) + j∆̂, j = 0, · · · M̂ − 1, with ∆̂ =

1

M̂−1

(
maxm=1,··· ,M Z(m)(t)−minm=1,··· ,M Z(m)(t)

)
.

- Compute the integrals in both Proposition 1 and 2 on the bidimensional array of Z.

- For each simulated trajectory Z(m), evaluate the expected exposure via linear interpolation on the

bidimensional grid (Z(m)(t− δt), Z(m)(t)).

Finally, with reference to Proposition 2, under the assumption of equally weighted and homogeneous

portfolio, the worst case scenario of the portfolio is

Πp(Π(t− δt),∆t) = α3(t− δt+ ∆t)β(t− δt; a3Z)S3(0)e(r−q3−ϕY3 (−i))(t−δt)Y(t− δt)e(r−q3−ϕX3
(−i))∆tX p(∆t)

− K̄3(t− δt+ ∆t),

for

Y =
1

n− 2

n∑
l=3

eYl , X =
1

n− 2

n∑
l=3

eYl+alZ , (17)

and X p(∆t) is the worst case scenario at (1 − p)% confidence level of the process X over a ∆t time

horizon. X p can be easily computed once the distribution of X is known. This can be achieved by first

conditioning with respect to the systematic risk process, Z, and then integrating the Gram-Charlier A

expansion of the density of the sum of the (exponential) idiosyncratic processes. In the special case of

an equally-weighted homogeneous portfolio, computations can be simplified by convolving the density

of the systematic process and the (log of the) Gram-Charlier A expansion.

4.2 Benchmarking and Testing

Numerical tests for the swap contract considered in this analysis are reported for the case of single

trade in Table 2, in which we compare the unconditional survival probabilities obtained with both the
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Figure 2: Computation of the CVA comparing Full Monte Carlo and Hybrid Method. FullMC(k):
Monte Carlo with k simulation trials for each trajectory of the systematic process Z; MC = 105

simulation trials. Hilbert and COS methods: P = 29 grid points, L = 15. Parameter set: Table 3.
Other parameters: S1(0) = S2(0) = S3(0) = 1, T = 1 year; weekly monitoring.

FullMC approach and the hybrid MC+Hilbert method for MC = 105 simulation trials. Moreover, we

also report the uncollateralized CVA obtained using both methods. In the interest of a fair comparison,

both methods employ the COS scheme for the computation of the option prices. We observe that the

computational cost of the expected exposure is negligible; for example, the MC+Hilbert method with

P = 29 grid points estimates the CVA in 295 seconds, but the computation of the expected exposure

takes only 9 seconds. The largest part of the CPU time is imputable, in fact, to the computation

of survival probabilities. The hybrid MC+Hilbert algorithm exhibits a very good trade-off between

accuracy and computational cost: Figure 2 shows that the curve of the CVA profile over time produced

by our algorithm is very close to the one obtained by the FullMC(103) method; Table 2 shows though

that the hybrid MC+Hilbert(29) approach is more than six times faster.

The quantification of the CVA becomes more computationally intensive in presence of the collateral

agreements; our numerical tests show that, for MC ∈ {105, 5 × 105, 106} the choice M̂ = 102 for the

bi-dimensional grid appears to provide the best trade-off between accuracy and computational cost.

Indeed, this choice of M̂ does not affect the first six significant digits of the CVA, but it allows an

important reduction of the computational cost. For example, for MC = 105 simulation trials of the

paths of the common factor Z, we have to evaluate the integrals at most M̂2 times, instead ofMC times5;

computational time: 1,526 seconds instead of 21,421 seconds for the case with unilateral agreement

without MTA and initial margin.

Finally we consider the approximation of the CVA of a portfolio of swaps based on the Gram-

Charlier A expansion. To test this approximation, we assume an equally-weighted homogeneous port-

folio. These assumptions imply that (13) can be rewritten as

Π(t) = α3(t)β(t; a3Z))S3(0)e(r−q3−ϕY3 (−i))tY(t)− K̄3(t),

5As we exploit linear interpolation, we evaluate the integrals on the node (Z−
j1
, Z+

j2
), j1, j2 = 0, · · · M̂−1, if there exists

m such that (Z(m)(t− δt), Z(m)(t)) belongs to the cell (Z−
j1−1, Z

+
j2−1) × (Z−

j1+1, Z
+
j2+1),m = 1, · · · ,MC .
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Figure 3: Netting: Convolution vs Gram-Charlier A Approximation (GCA). Uncollateralized (left) and
Collateralized (right, unilateral collateral, H1 = 1, M = 0) Expected Exposure computed for a basket
of 4, 7, 12 homogeneous assets. Uncollateralized exposure: Corollary C.2 in the online supplementary
material. Collateralized exposure: Proposition 2. Asymptotic portfolio: expected exposure in Corollary
C.3 in the online supplementary material (uncoll. exposure) and Corollary 3 (coll. exposure). Parameter
set: Table 3. Other parameters: S1(0) = S2(0) = S3(0) = 1, T = 1 year; weekly monitoring.

for Y as in (17). Therefore, the (conditional) independence of the terms in this summation suggests

that, as alternative to the Gram-Charlier A expansion, the distribution of Y can be obtained by

convolution through the characteristic function of Yl, so that the basket option can be priced via

numerical integration. However, as this characteristic function is in general not available in closed

form, convolution needs to be performed numerically as well. The steps are as follows. Given the

characteristic function of Yl, which for Lévy processes is in general available in closed form, the inverse

FFT is used to recover the density function of Yl; the density function of eYl follows by change of variable.

Then, application of the direct FFT returns the characteristic function φeYl (u; t) computed on a discrete

grid u1, · · · , uP where P is the number of Fourier points. Consequently, the characteristic function of Y
follows by (conditional) independence of the terms in the summation as φY(u; t) = 1

n−2

∏n
l=3 φeYl (u; t),

which is equal to 1
n−2φeY3 (u; t)n−2 due to homogeneity. Finally, the density of Y is recovered using

Fourier inversion once more.

The numerical tests show that the convolution procedure is very efficient if the number of assets

in the portfolio is not too large (in our numerical experiments this happens if we have less than 20

assets), otherwise numerical errors accumulate and no reliable result is possible; on the other hand the

Gram-Charlier A approximation works very well even for a small portfolio size. The left-hand panel of

Figure 3 illustrates the expected exposure for an equally weighted and homogeneous portfolio of swap

contracts in the uncollateralized case for MC = 105, and portfolio size equal to 4, 7, 12. Even in the

case of 4 assets, the distance in L∞ norm between the expected exposure computed using convolution

and the Gram-Charlier A approximation is 0.01; this distance reduces to 0.003 (0.005) for 7 (12)

assets. Moreover, the computational cost of the Gram-Charlier A approximation is half the one of the

convolution method.
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5 Case study: CVA of an oil commodity swap

In this Section, we use the developed framework to quantify the CVA originated by the swap contract

analysed in Section 3.2, assuming that the relevant dynamics are given by the NIG process.

As mentioned in Section 1, we build a case study in the energy sector. Thus, for the specific example

of our application, we initially consider a swap contract written on Brent Crude Oil. Further, we identify

as counterparties in the swap a financial firm (‘counterparty’) and a corporate firm (‘investor’) in the

energy sector. For illustrative purposes only, we have chosen Deutsche Bank (DB) as representative

financial firm, and ENI as representative corporate firm.

In second instance, we explore the case of an equally weighted portfolio of swaps on homogeneous

underlying assets.

All swap contracts are USD denominated and have 1 year tenor with weekly settlements corre-

sponding to the difference between the index price at the closing of the week and the fixed swap price.

For the case of Brent, the notional is 1 barrel of oil. The fixed swap price has been set to its no-arbitrage

value and it has been computed according to the term structure of quoted index futures prices, linearly

interpolating the missing maturities. DB is paying the fixed leg and receiving the floating leg.

5.1 Calibration

The most recent consultative paper Basel (2015ab) and the subsequent response ISDA (2015b) rec-

ommend the calibration of internal models to be based on the joint use of credit spreads and equity

data. Moreover, information on the default correlations should be based on either credit spreads or

listed equity prices (see Laurent et al. 2016, as well). This is consistent with the dominant use of

equity data among financial institutions to calibrate the default correlations. For this reason, we follow

these recommendations and calibrate the model default probability to market credit spreads, whilst

the default correlations are calibrated using historical equity market prices. The factor construction in

(3) facilitates the calibration of the model in a relatively efficient way by means of a straightforward

two steps calibration procedure.

In the first step, we obtain the parameters of the process chosen to model the margins Xj(t),

j = 1, . . . , n, by direct calibration to market data. In the setting of Section 3, this is achieved by

solving the following independent minimization problems

min
hj ,λj

N∑
i=1

(
CDSmktj (0, Ti)− CDSmodel (0, Ti;hj , λj)

)2
, j = 1, 2, (18)

min
λj

M∑
i=1

N∑
ι=1

(
Omkt (Ki, Tι)−Omodel (Ki, Tι;λj)

)2
, j = 3, . . . , n. (19)

In details. The minimization problem (18) is solved with respect to the unknown log-leverage hj =

ln(Kj/Sj(0)) and the parameter set λj of the margin process Xj , j = 1, 2 (for example λj ≡ (θj , σj , kj)

in the case of the NIG process). Further, CDSmktj (0, T ) denotes the market credit default spread of

counterparty j for maturity T , whilst CDSmodelj (0, T ;hj , λj) denotes the one computed according to

the chosen model. The spread can be expressed in terms of marginal survival probability according to
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(see formula 6.5 page 107 in O’Kane 2015)

CDS(0, T ) =
(1−R)

2

∑N
k=1 αk−1,k (P (τ > tk−1)− P (τ > tk)) (P (0, tk−1) + P (0, tk))∑Np

n=1 αn−1,n (P (τ > tn−1) + P (τ > tn))P (0, tn)
,

with P (0, T ) denoting the LIBOR discount curve6 anchored to the credit default swap effective date,

tn, n = 1, ..., Np, the premium payment dates, tk, k = 1, ..., N , the discrete default times and αi−1,i

the period tenors.

The minimization problems (19) - one per each position in the portfolio - are solved with respect to

the parameter set of Xj , j = 3, . . . , n; Omkt(K,T ) is the market price of options on futures with strike

K and time to maturity T , with the convention that we are using only out-of-the-money call and put

options. Omodel(K,T ;λj) denotes the corresponding model price.

As mentioned in Section 4, the theoretical survival probability of the two counterparties is computed

using the Hilbert transform as in (16) where f is now the density of the margin Lévy process X. The

theoretical option prices are obtained using the COS method. As the quantities are therefore known in

closed form (up to inversion), the procedure is fast and accurate. We randomize 100 times the initial

parameter set around sensible starting values, and we select as starting value for the final calibration

the average result obtained from the best 5 calibrations.

In the second step, we recover the parameters of the common factor and the idiosyncratic compo-

nents given the parameter set of the margin processes obtained in the first step. The aim is to ensure

that the loadings a, and the parameter set λZ and λYj of the processes Z(t) and Yj(t), j = 1, . . . , n,

respectively, are consistent and plausible with respect to the market quotations related to the mar-

gin processes. This procedure is subject to matching both the observed covariance matrix using the

loading coefficients aj , j = 1, . . . , n, and the cumulants K
(α)
s , s = X,Y, Z, of the margin processes by

controlling for the parameters of the idiosyncratic components. Thus, we solve

min
λZ ,a,λY

n∑
j=1

∫ ∣∣φXj (u)− φYj (u)φZ(aju)
∣∣2 du (20)

s.t Covmarket − Covmodel(a) = 0 (21)

K
(α)
Xj
− aαjK

(α)
Z −K(α)

Yj
(λYj ) = 0 α = 1, ..., 4, j = 1, . . . , n. (22)

The objective function in (20) requires the match between the characteristic functions of the margin

process and the one of the factor model (3). This choice is based on the extensive econometric literature

on spectral estimation, where model parameters are estimated by fitting the theoretical characteristic

function to the empirical one, see for example Feuerverger and Mureika (1977).

The constraint in (21) imposes the matching of the market and model covariance matrices. As proxy

for the market covariance, Covmarket, we use the sample historical covariance; the model covariance

matrix for the adopted linear structure (3), instead, is Covmodel(a) = aa′Var(Z(t)). The use of the

historical covariance is mainly due to the fact that in general products capable of providing information

on the full covariance matrix are illiquid. The constraint in (22) ensures the matching between the

cumulants of the idiosyncratic process implied by the factor model (3), once all other parameters are

6The relevant term structure of interest rates is bootstrapped using LIBOR and swap rates.
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a) Margin Processes X(t)

Name K q θ σ k Std. Dev Skew Exc. Kurt. RMSE
DB 0.3324 0.0050 -0.2196 0.2460 0.5459 0.2947 -1.0972 2.4804 1.33E-03
ENI 0.5611 0.0136 -0.1846 0.0999 0.3361 0.1981 -0.8713 1.1435 1.29E-03

BRENT - 0.0016 0.0683 0.1871 0.0796 0.1881 0.0866 0.2487 2.18E-03

b) Idiosyncratic and systematic components

Correlation Matrix Parameters
DB ENI BRENT Process β γ ν a

DB 1.0000 - - -0.0917 0.1768 1.5826 0.3091
ENI 0.6468 1.0000 - Y (t) -0.0427 0.0157 1.5239 0.2040

BRENT 0.2151 0.2858 1.0000 0.1123 0.1761 0.0780 0.0871
Z(t) -0.7288 0.4719 0.4140

Table 3: Calibrated parameters.Panel (a). Calibrated NIG model parameters. DB and ENI:
calibrated to credit spreads. Brent Crude Oil: calibrated to option prices - settlement date:
August 11, 2014; underlying futures quotation: 113.76 USD per barrel. Data Source: Markit,
Chicago Mercantile Exchange. Observation date: June 26, 2014. Standard deviation, skewness
and excess kurtosis (see Section 4) calculated using the reported parameters. RMSE: root mean
squared error between market quotation and model price.
Panel (b). Correlation matrix and parameters of the idiosyncratic and systematics processes.
Correlation matrix estimated using historical log-returns of DB, ENI and Brent Crude Oile (spot)
over a 2 years period up to and including the observation date. Source: Yahoo! Finance and
U.S. Energy Information Admin.
Components processes with characteristic exponent of the form ϕYj (u) = (1 −√

1− 2iuβjνj + u2γ2
j νj)/νj , j = 1, 2, 3, ϕZ(u) = (1−

√
1− 2iuβZνZ + u2γ2

ZνZ)/νZ .

given. We bear in mind that fitting the cumulants amounts to fitting the characteristic function and

its derivatives up to the maximum cumulant order considered but only at the origin. If the distribution

to be recovered is fully determined by its moments, this is a plausible choice. A different motivation

for using this procedure is given in Eriksson et al. (2009). We note that at single trade level, i.e. n = 3,

with NIG dynamics, conditions (21)-(22) can be solved analytically with respect to (a, λY), which

reduces the optimization problem to an unconstrained minimization with respect to λZ only (see the

online supplementary material for full details). However, the general optimization problem (20)-(22)

applies regardless of the number of assets and/or the actual process used for modelling the relevant

quantities.

For the single swap case, the calibrated parameters are reported in Table 3 together with the

calibration performance as measured by the Root Mean Square Error (RMSE). We show the quality of

the fitting in Figure 1 for the case of ENI; results relative to the other names are available upon request.

We will use the same calibrated parameters at portfolio level under the assumption of homogeneous

underlying assets, based on the fact that in this case the n− 2 idiosyncratic processes are independent

copies.
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Figure 4: Uncollateralized CVA - Right-way Risk and Wrong-way Risk. Swap contract. Parameter set:
Table 3. Other parameters: S1(0) = S2(0) = S3(0) = 1, T = 1 year. Weekly monitoring. MC+Hilbert:
106 simulation trials, 210 grid points. COS: 29 grid points, L = 15.

5.2 CVA, netting, Collateral and Wrong-Way Risk

In the following, we take the point of view of the corporate firm, so that the CVA is given by (6) in

which the investor (Firm 2) is ENI and the counterparty (Firm 1) is DB. Particular emphasis is given

to the sensitivity of the CVA to the level of correlation between the counterparty and the underlying

asset, with the aim of analysing the effects of wrong-way risk. This can be defined as the impact on the

CVA of positive dependence between the counterparty probability of default and the marked to market

value of the position. In our framework, this occurs when ρ13 < 0. If, instead, ρ13 > 0, we observe

effects of right-way risk. The analysis is carried out by perturbing ρ13 about its estimated value, re-

fitting the model parameters according to the new correlation matrices following the procedure given

in Section 5.1, and re-computing the CVA.

In Figure 4, we report the profiles of the uncollateralized CVA (in absence of IM) for a single swap

contract obtained in correspondence of different values of the correlation coefficient ρ13. The right-hand

side panel shows the effect of positive correlation: the higher ρ13, the lower the corresponding CVA.

Higher positive correlation, in fact, implies a higher probability that the exposure moves out-of-the-

money as the credit quality of counterparty deteriorates, reducing the counterparty credit risk for the

investor (right-way risk effect). The left-hand side panel instead shows the wrong-way risk effect as the

CVA increases the more ‘anti-correlated’ the counterparty and the underlying assets are. The more

negative ρ13 is, in fact, the higher the probability of an adverse movement in both the exposure and

the credit quality of the counterparty. We note the shape of the CVA profile which is originated by

the payment schedule of the product under consideration. The swap contract, in fact, is a multiple

cash-flow product; consequently after an initial period in which the exposure increases, i.e. the so-

called diffusion effect is predominant, the exposure decreases as the amount left to settle decreases

(‘amortization’ effect). Similar considerations hold for other contracts, although the shape of the

CVA profile would change according to the contracts payment schedule (see the online supplementary

material for an example based on a forward contract).

The total CVA faced by Firm 2 corresponding to the profiles of the swap contract shown in Figure
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a) Single Trade Right-way Risk Wrong-way Risk
scenario: s 1 2 3 4 5 6

Uncoll. CVA (bps) 820.2608 600.4706 368.9231 1458.0926 2590.5305 4119.8749
95% C.I. 819.8556 599.8578 368.0877 1455.6966 2581.9565 4105.7774

820.6660 601.0834 369.7585 1460.4887 2599.1046 4133.9723

Collateral agreement impact -78.05% -77.13% -76.75% -66.76% -44.89% -31.84%

Initial Margin impact without Collateral -77.64% -78.20% -80.89% -71.14% -64.61% -57.64%
Initial Margin impact with Collateral -98.41% -97.94% -97.08% -97.24% -88.72% -79.64%

b) Portfolio of Trades (25 homogeneous assets)
s 1 2 3 4 5 6

Uncoll. CVA (bps) 176.3765 98.7591 27.6611 817.8735 2094.3232 3847.7627
95% C. I. 176.2083 98.6604 27.6263 814.6361 2081.3423 3826.1269

176.5448 98.8577 27.6960 821.1108 2107.3042 3869.3985

Collateral agreement impact -62.32% -52.40% -21.63% -53.44% -34.85% -27.35%

Initial Margin impact without Collateral -94.36% -95.88% -97.06% -38.90% -26.30% -21.97%
Initial Margin impact with Collateral -99.50% -98.85% -96.08% -75.02% -53.84% -45.44%

Table 4: CVA, Righ/Wrong-Way Risk, Collateral & Initial Margin. Right-Way Risk Scenarios - s = 1:
ρ13 = 0.2151 (benchmark); s = 2: ρ13 = 0.3; s = 3: ρ13 = 0.4. Wrong-Way Risk Scenarios -
s = 4: ρ13 = −0.2151 (benchmark); s = 5: ρ13 = −0.3; s = 6: ρ13 = −0.4. Other correlations:
Table 3. Other parameters: S1(0) = S2(0) = S3(0) = 1, T = 1 year. Weekly monitoring. Impact of
collateral and IM agreements computed as (Coll.CV As − Uncoll.CV As)/Uncoll.CV As or ((Coll.+
IM)CV As − Uncoll.CV As)/Uncoll.CV As. Thresholds: H1 = H2 = M = 0. MC+Hilbert: 106

simulation trials, 29 grid points. COS: 29 grid points, L = 15.

4 is reported in panel (a) of Table 4, together with the corresponding 95% confidence interval. We

notice that for the case under consideration, the uncollateralized CVA can be reduced by up to 55%

due to right-way risk, whilst it can increase by more than 4 times due to wrong-way risk.

In Table 4 - panel (a) we also report the impact of the bilateral agreement for collateralization on the

CVA, computed as the (percentage) difference between the collateralized CVA and the corresponding

uncollateralized one, together with the impact of the Initial Margin (computed in a similar way). In this

analysis we set the triggering thresholds H1, H2 to their tighest possible level, and we ignore mitigation

effects due to MTA. This specification corresponds to the latest Uncleared Margin Rules for bilateral

trading (see, for example, Andersen et al. 2017, and references therein). For a fuller analysis of the

impact of the thresholds, we refer the interested reader to the online supplementary material.

We notice that in all cases, the CVA reduces compared to the uncollateralized case; the collateral

agreements are particularly effective in presence of right-way risk. Wrong-way risk on the other hand

reduces the effectiveness of the collateralization as, when ρ13 < 0, increases in the value of S3 are more

likely to be associated with a worsening of the counterparty probability of default, which counteracts

the mitigation effect offered by the collateral posting in the investor’s favour. For what concerns the

impact of the initial margin on both uncollateralized and collateralized CVA, we observe the very strong

‘smoothing’ effect of the initial margin on CVA regardless of the correlation scenario and the collateral

scheme in place. Indeed the initial margin manages to mitigate a large percentage of the residual risk

generated by situations of strong wrong-way risk. In this respect, the initial margin and collateral play

a complementary role in the reduction of the CVA, with the initial margin becoming the main player

especially in presence of wrong-way risk. Consequently, the initial margin is fundamental in controlling
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Figure 5: Gap Risk - Swap Contract. Gap Probability: Proposition B.1 in the online supplementary
material. Two weeks lag. Wrong-Way Risk scenarios. NIG Margin Parameters: Table 3. Gaussian
Margin Parameters: σ1 = 13.95%, σ2 = 14.25%, σ3 = 18.03%.

gap risk.

This form of residual risk is illustrated in Figure 5, in which we report the probability of a gap

event given in (12) for different levels of possible variations in the underlying variables. As in presence

of initial margin the percentage variation in the stock necessary to trigger the gap event has to be

quite consistent, Figure 5 highlights that the higher the initial margin, the lower the probability of

the gap event. Figure 5 also confirms the need of a distribution with slowly decaying tails for an

accurate quantification of this risk in a structural framework. Although the NIG process chosen for this

experiment satisfies this property, models based on the Gaussian distribution would return a (almost)

zero probability of gap risk even in presence of significant wrong-way risk (we note the different y-axis

scale between the plot on the left-hand side of Figure 5 and the one on the right-hand side).

We turn now our attention to the portfolio case, under the assumption of equal weights and homo-

geneous underlyings, as in Section 4.2. Under these simplifying assumptions, the case in which netting

agreements are not permitted coincides with the single trade one considered above (without collateral

clauses). Results are reported in Table 4 - panel (b), in which we consider an illustrative case with 25

assets. The impact of different portfolio sizes is illustrated - for the benchmark scenario - in Figure 3,

in which we observe that the risk mitigation with respect to the situation of no netting is significant

already for as few as 4 contracts, and it improves by further increasing the size of the portfolio. By

comparing the two panels of Figure 3 we notice the significant reduction in the portfolio CVA due to

collateralization, to the extent that the impact of netting is now significantly reduced, and the marginal

benefit of adding contracts in the portfolio is diminishing. In Figure 3 we also show the case of the

asymptotic portfolio, as from Corollary 3. Panel (b) in Table 4, though, shows that the netting mitiga-

tion is significantly affected in presence of strong wrong-way risk. We also notice the relatively reduced

effectiveness of collateralization, due to the compensation provided by the aggregation of trades. The

initial margin, on the other hand, still proves to be a strong risk mitigation tool.

The choice of the underlying assets of the contracts included in the portfolio is important as to

maximize the effect of netting clauses, as shown in Figure 6. In the cases of both ‘crude’ CVA and
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Figure 6: Netting: Swap on a basket of homogeneous assets. Diversification induced by varying
correlation amongst assets in the portfolio for the uncollateralized case (left), unilateral collateral case
(H1 = M = 0, center), both without IM, and the uncollateralized case with IM (right). Parameter
set: Table 3. Other parameters: S1(0) = S2(0) = S3(0) = 1, T = 1 year, H1 = 1, M = 0. Weekly
monitoring. MC+Hilbert: MC = 106 simulation trials, 29 grid points.

collateralized CVA (without initial margin) reported in the left-hand and centre panels of Figure 6,

netting is more effective the more decorrelated the assets, whilst in presence of high levels of linear

correlation, there is almost no mitigation effect on the exposure offered by increasing the portfolio size.

However, the initial margin can provide support to the aggregation of trades: the right-hand panel of

Figure 6 shows in fact that in presence of initial margin, even without collateral, the expected exposure

becomes almost insensitive to the level of diversification as the portfolio size increases. Hence, the initial

margin provides mitigation even towards residual risk due to low diversification. One final consideration

though is in order. As the initial margin depends on the portfolio composition, it is affected as well

by the smoothing action of the netting mechanism. This explains why the asymptotic portfolio is no

longer able to offer the maximum possible reduction in presence of low levels of diversification. Hence,

the right-hand panel of Figure 6 shows that, in presence of high levels of linear correlation between the

underlying assets, netting might not be the most convenient tool for risk mitigation.

6 Conclusion

We proposed a general framework for the quantification of CVA in the setting of a structural model

based on multivariate Lévy processes, with wrong/right-way risk captured endogenously. By means

of fast and accurate numerical strategies for model calibration and CVA computation in presence

of several mitigating clauses such as collateral, initial margin and netting, we have shown that the

proposed approach can deal with the complex CVA design. We used this setting to gain insights into

the delicate interactions between several aspects of the CVA calculation.

Nevertheless, the proposed approach shares with the other ones mentioned in the literature a few

shortcomings. One of these is due to market incompleteness. Hedging CVA is per se a non trivial

task also due to the inherent incompleteness of credit markets. The degree of incompleteness is though

exacerbated by assumption of purely discontinuous driving processes. A more general shortcoming
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is related to the information quality on input and data: often the implementation of CVA valuation

models faces obstacles generated for example by lack of a liquid credit curve for the counterparties,

and uncertainty in recovery rates (see Brigo et al. 2013b, for example). However, these difficulties are

intrinsic in the general counterparty risk valuation and management issue.

A promising route for further research could be the pairing of our approach with the wrong way

set of equivalent measures developed by Brigo and Vrins (2018) for (unilateral) CVA in an intensity

setting. Brigo and Vrins (2018) approach allows to ‘remove’ dependence - so to speak - so that the

Monte Carlo simulation stage of the CVA computation can be bypassed. Thus, it would be very

interesting to study the possible extension of this change of measure approach to bilateral CVA in the

context of the structural model, in order to tackle the open issue of lack of analytical tractability of

CVA in presence of dependence, and improve its practical use. Finally, the proposed model could be in

principle extended to deal with interest rate derivatives in a defaultable setting following the approach

proposed in Fanelli (2016).

Acknowledgments

The Authors would like to thank two anonymous Referees, Stéphane Crépey, Ernst Eberlein, Geneviéve Gau-
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catholique de Louvain, Université libre de Bruxelles, Imperial College London, Prometeia in Bologna, Banca IMI

in Milan, and the Nomura Centre for Mathematical Finance in Oxford. We thank all the participants for their

helpful feedback. Usual caveat applies.

References

Andersen, L.B.G., Pykhtin, M., Sokol, A., 2017. Credit exposure in the presence of initial margin. Available at

SSRN.

Ayadi, M.A., Ben-Ameur, H., Fakhfakh, T., 2016. A dynamic program for valuing corporate securities. European

Journal of Operational Research 249, 751–770.

Ballotta, L., Bonfiglioli, E., 2016. Multivariate asset models using Lévy processes and applications. The European

Journal of Finance 22, 1320–1350.

Ballotta, L., Deelstra, G., Rayée, G., 2017. Multivariate FX models with jumps: triangles, quantos and implied

correlation. European Journal of Operational Research 260, 1181–1199.

Ballotta, L., Fusai, G., 2015. Counterparty credit risk in a multivariate structural model with jumps. Finance,

Revue de l’Association Française de Finance 36, 39–74.

27



Barndorff-Nielsen, O., Pedersen, B.V., 1979. The Bivariate Hermite Polynomials up to Order Six. Scandinavian

Journal of Statistics 6, 127–128.

Barndorff-Nielsen, O.E., 1995. Normal inverse Gaussian distributions and the modeling of stock returns. Research

report 300. Department of Theoretical Statistics, Aarhus University.

Basel, 2010. Basel III: A global regulatory framework for more resilient banks and banking systems.

Basel, 2013. Regulatory Consistency Assessment Programme (RCAP) - Second report on risk-weighted assets

for market risk in the trading book.

Basel, 2015a. Fundamental review of the trading book: Outstanding issues (consultative paper 3).

Basel, 2015b. Instructions for Basel III: monitoring - version for banks providing data for the trading book part

of the exercise.

Berndt, A., Douglas, R., Duffie, D., Ferguson, M., Schranz, D., 2005. Measuring default risk premia from default

swap rates and EDFs. BIS Working Paper 173. Bank for International Settlements - Monetary and Economic

Department.

Bielecki, T., Brigo, D., Patras, F., 2011. Credit Risk Frontiers: Subprime Crisis, Pricing and Hedging, CVA,

MBS, Ratings, and Liquidity. Wiley Finance/Bloomberg Book.

BIS, 2011. Basel Committee finalises capital treatment for Bilateral Counterparty Credit Risk.

Black, F., Cox, J., 1976. Valuing corporate securities: some effects of bond indenture provisions. Journal of

Finance 31, 351–367.

Brigo, B., Buescu, C., Morini, M., 2012. Counterparty risk pricing: impact of closeout and first-to-default times.

International Journal of Theoretical and Applied Finance 15.

Brigo, D., Bakkar, I., 2009. Accurate counterparty risk valuation for energy-commodities swaps. Energy Risk 6,

106–111.

Brigo, D., Capponi, A., Pallavicini, A., 2014. Arbitrage-free bilateral counterparty risk valuation under collater-

alization and application to credit default swaps. Mathematical Finance 24, 125–146.

Brigo, D., Capponi, A., Pallavicini, A., Papatheodorou, V., 2013a. Pricing counterparty risk including collateral-

ization, netting rules, re-hypothecation and wrong-way risk. International Journal of Theoretical and Applied

Finance 16, 1350007.

Brigo, D., Masetti, M., 2006. Risk neutral pricing of counterparty risk, in: Pykhtin, M. (Ed.), Counterparty

Credit Risk Modelling: Risk Management. Risk Books London. chapter 11.

Brigo, D., Morini, M., Pallavicini, A., 2013b. Counterparty Credit Risk, Collateral and Funding. Wiley John &

Sons.

Brigo, D., Morini, M., Tarenghi, M., 2011. Credit calibration with structural models and equity return swap

valuation under counterparty risk, in: Bielecki, T, R., Brigo, D., Patras, F. (Eds.), Credit Risk Frontiers: Sub-

prime Crisis, Pricing and Hedging, CVA, MBS, Ratings, and Liquidity. Bloomberg Financial Series. chapter 14,

pp. 457–484.

Brigo, D., Vrins, F., 2018. Disentangling wrong-way risk: pricing credit valuation adjustment via change of

measures. European Journal of Operational Research 269, 1154 – 1164.

28
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