
              

City, University of London Institutional Repository

Citation: Albarrak, Ahmed I (2003). Modelling methodologies to assess glucose 

metabolism in type 2 diabetes. (Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/20114/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


MODELLING METHODOLOGIES TO ASSESS GLUCOSE 

METABOLISM IN TYPE 2 DIABETES 

by 

Ahmed I. Albarrak 

Thesis submitted in partial fulfilment of the requirements for the degree 

of 

Doctor of Philosophy 

City University 

2003 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 

West Yorkshire, lS23 7BQ 

www.bl.uk 

TWO JOURNAL ARTICLES AT THE 

END OF THIS THESIS HAVE NOT 

BEEN DIGITISED BY 

REQUEST OF THE UNIVERSITY 



Abstract 

The aetiology and pathogenesis of type 2 diabetes (T20) are yet to be fully understood. 
However, there is a degree of agreement that the most important pathological factors of 
T20 are p-cell dysfunction and insulin resistance. Moreover T2D is characterised by 
varying degrees of impaired pancreatic p-cell responsiveness and/or insulin resistance. 
The ability to easily quantify insulin sensitivity is useful for investigating the role of 
impaired insulin secretion and action in the pathophysiology ofT2D. 

The current work provided novel knowledge in both clinical and methodological areas. 
On the clinical side, it provided new information about pathology of T2D. On the 
methodological side, it assessed validity, performance, and/or reproducibility of two 
powerful models to assess insulin responsiveness and sensitivity. 

The aim was to use modelling techniques employing data collected during tolerance 
tests to progress our understanding of pathology of type 2 diabetes. This research 
evaluated and/or validated two approaches namely, the insulin secretion model and the 
minimal model, respectively, to assess pancreatic p-cell responsiveness and insulin 
sensitivity. These methods were then applied to study the aetiology and pathology of 
T2D on its first clinical appearance (newly diagnosed SUbjects). 

The insulin secretion model was assessed with two reduced sampling schemes. The 
model was validated during the oral glucose tolerance test (OGTT). and its performance 
was compared during OGTT and the meal tolerance test (Mm. The reproducibility of 
the model indices was also assessed during MTT and OGTT. The one and two 
compartmental minimal model performance was evaluated and compared to the clamp 
in subjects with T20. The insulin secretion model and the one compartment minimal 
model were then applied to study newly presenting T2D in order to gain more 
understanding of the disease pathology. The output results showed the ability of these 
approaches to explain the inter-individual variability of important glucose clinical 
measures such as FPG and HbA1C• 

In conclusion the insulin secretion model and the one compartment minimal model 
demonstrated their validity and utility in assessing insulin sensitivity and p-cell 
responsiveness to provide better Wlderstanding of type 2 diabetes. 
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1. Introduction 

1.1. Overview 

Diabetes mellitus is a group of metabolic diseases characterised by hypergJycaemia 

resulting from defects in insulin secretion, insulin action, or both. The persistent 

hyperglycaemia of diabetes is associated with long-term complications, and dysfunction 

of various organs, especially the eyes, kidneys, nerves, heart, and blood vessels. The 

estimated global prevalence of diabetes among adults was 7.4% in 1995 and is expected 

to rise to 9% by 2025 (1). However, specific popUlations and subgroups have a much 

higher prevalence of the disease. These subgroups have certain attributes or risk factors 

that either directly cause diabetes or are associated with it. 

In the United Kingdom the estimated number of diabetics in year 2000 was about 1.5 

million (2-3%) (2). In Manchester, the people with prevalence of known and new type 

2 diabetes, detected by oral glucose tolerance test, was 20% in Europeans, 22% in Afro­

Caribbeans, and 33% in Pakistanis (3). These findings provide an idea about the 

potential size of the diabetes epidemic facing the United Kingdom. The epidemic will 

have major implications for the NHS, which will have to provide diabetic services for 

these patients, as a substantial proportion of the total health care budget is spent on the 

care of diabetic patients as well as to deal with the clinical and psychosocial 

complications resulting from diabetes. 

Type 2 diabetes (T20) is the most common metabolic disease in the world and is one of 

the most common chronic diseases. It accounts for about 85--95 % among all diabetes 

(2). It is associated with a number of complications, such as nephropathy, retinopathy, 

arteriosclerotic heart disease, and peripheral neuropathy, which most often result from 

the prolonged exposure to hyperglycaemia. 

Type 2 diabetes mellitus is a heterogeneous syndrome resulting from a combination of 

insulin resistance and p-cell dysfunction. In addition, it is characterised by insulin 

resistance and impaired pancreatic responsiveness (4). Although insulin resistance may 

not be required for the development of T2D (2, 3), defects in insulin sensitivity and 

p-cell function have been demonstrated in most subjects with type 2 diabetes. In 
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addition, insulin resistance is associated with a number of other diseases, including 

obesity, hypertension, dyslipidaemias, and coronary artery disease (5; 6). 

The assessment of insulin sensitivity and p-cell function is essential to investigate the 

pathophysiology and epidemiology of T2D and to foJJow the clinical course of patients 

on various therapeutic regimens. In addition, the ability to easily quantify insulin 

sensitivity in large numbers of subjects will be useful for investigating the role of 

impaired insulin secretion and action in the pathophysiology of these major public 

health problems. 

1.2. Thesis hypothesis 

The aetiology and pathophysiology of T2D are yet to be fully understood and have not 

been fully characterised (7). It has been generally accepted that both insulin resistance 

and deficient p-ce]] function are the primary cause for the development of T2D mellitus 

(8). However a considerable uncertainty exists about the sequence and the nature of the 

earl iest biochemical changes and their relative contributions to the deterioration in 

glucose tolerance and development ofT2D. 

The genera]]y accepted but as yet not confirmed hypothesis is that the glucose tolerance 

tests in a large group of newly diagnosed patients provide a unique insight into the 

dynamic of the glucose/insulin interaction system after meal and iv glucose stimuli. 

This detailed information helps to further examine the natural history of Type 2 diabetes 

and provides a greater understanding of the processes involved in the development and 

progression of diabetes. Furthermore facilitates the estimation of essential indices of the 

whole-body carbohydrate metabolism with aid of model-based approaches. 

The approaches used in investigating glucose metabolism in the present thesis are 

assumed to be valid. However, this validity needs to be further assessed against 

experimental data. 
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1.3. Aims and objectives 

The primary aim of this thesis is to use modelling techniques employing data collected 

during MIT and IVGTT to progress our understanding of pathology of type 2 diabetes. 

The secondary aim is to evaluate the domain of validity ofISM and, in part the minimal 

model. Type 2 diabetic subjects are studied at presentation as they present the end-point 

of the natural development of the disease prior to therapeutic intervention. 

The aims of this thesis can be accomplished by achieving a subset of methodological 

and then clinical objectives. The methodological objectives are: 

- To evaluate indices of pancreatic p-cell responsiveness with two reduced 

sampling schemes and compare them against indices obtained during the full 

sampling scheme 

- To validate the insulin secretion model during OGTT and to compare the indices 

of pancreatic p-cell responsiveness during MTT and OGTT 

- To investigate reproducibility of the quantified measures of the pancreatic p-cell 

responsiveness (Ml and Mo) and glucose, insulin, and C-peptide responses 

during MTT and OGTT 

- To evaluate and compare the performance of I CMM and 2CMM for assessing 

insulin sensitivity in subjects with type 2 diabetes subjects during 

insulin-modified FSWGTT and compare its performance with 1 CMM 

The clinical objectives are: 

To quantify the association between insulin resistance and pancreatic 

responsiveness with (i) HbA1c, FPG, and FPI (ii) the responses of glucose and 

insulin to standardised meal 

- To investigate the ability of WGTT and MIT derived indices to explain the 

inter-individual variability of clinical measures of glucose control such as 
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fasting plasma glucose and insulin, glycated haemoglobin, and the glucose and 

insulin responses to a meal 

1.4. Thesis overview 

A review of the literature and associated approaches used are given in Chapter 2. The 

chapter starts with a background review to diabetes mellitus with more attention to type 

2 diabetes and its main pathological factors. This is followed by a review of the main 

approaches developed and used to assess insulin sensitivity and pancreatic p-cell 

responsiveness with more concentration on the approaches used in the research course 

throughout this thesis. 

In Chapter 3 the pancreatic p-cell responsiveness indices (M. and Mo) are evaluated with 

two reduced sampling schemes (9 samples and 5 samples) and compared against indices 

obtained during the full sampling scheme. 

Chapter 4 provides full details of the validation process of the insulin secretion model 

during OGIT in healthy subjects and subjects with T2D. It also includes the outcome of 

the comparisons between the p-cel1 responsiveness indices, and glucose, insulin. and 

C-peptide responses during MTT and OGTT. 

The reproducibility of the pancreatic p-cell responsiveness indices (MJ and Mo) are 

investigated in Chapter 5. In addition. the reproducibility of glucose, insulin, and 

C-peptide responses to MTT and OGTT are also evaluated by assessing the 

reproducibility of glucose, insulin, and C-peptide incremental area under curve. 

In Chapter 6, an evaluation of the performance of I CMM and 2CMM in type 2 diabetes 

subjects is performed during insulin-modified FSNGTT. The glucose clamp technique 

is used to assess the validity and performance of both I CMM and 2CMM 

measurements, as the glucose clamp is considered the gold standard reference method 

for measuring insulin sensitivity. 

Chapter 7 investigates the ability of the indices of insulin sensitivity and pancreatic 

p-cell responsiveness to explain inter-individual variability of clinical measures of 
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glucose control such as fasting plasma glucose and insulin, glycated haemoglobin, and 

the glucose and insulin responses to a meal. A quantification of the association between 

insulin sensitivity and pancreatic ~-cel1 responsiveness with (i) FPG, FPI, and glycated 

haemoglobin (ii) the responses of glucose and insulin to standardised mea) are also 

considered. 

An overall summary of the thesis and outlined achievements are given in Cllapter 8, in 

addition to recommendations for any possibility of future work and research interest. 

Appendices includes (l) tables relating to chapter 7, (In list of publications derived from 

the work included in this thesis. 
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2. Background 

2.1. Glucose Metabolism 

Glucose is the main energy source for the body cells to carry on with its biological 

activities and survive. The blood glucose level has a normal range which is important 

to maintain. If the blood glucose level exceeds the normal level then the diabetes 

symptoms will starts to appear and if not treated or controlled the diabetes 

complications start to appear with blindness and death are among them. 

2.1.1. Regulation of Blood Glucose 

Glucose is the main energy-supplying molecule of the body. It is used by the body to 

produce ATP (adenosine triphosphate), which is the body ultimate source of energy (9). 

Normally the glucose used by the body is in the blood stream; otherwise it is converted 

to glycogen and stored by the liver if it is not needed immediately (10). Two hormones 

produced and secreted by the pancreas mainly control the glucose level in the blood 

stream; glucagon which increases blood glucose level and insulin, which decreases and 

adjusts blood glucose level. Blood glucose level controls secretion of glucagon and 

insulin via negative feedback systems. 

Low blood glucose (hypoglycaemia) stimulates release of glucagon from alpha cells 

which acts on hepatocytes (liver cells) to accelerate the conversion of glycogen into 

glucose and to promote formation of glucose from lactic acids (11). As a result, the liver 

releases glucose into the blood more rapidly and blood glucose level rises. If the blood 

glucose continue to rise for any reason, or after food ingestion, high blood glucose 

(hyperglycaemia) stimulates release of insulin from beta cells (p-cells). Insulin acts on 

various body cells to accelerate facilitated diffusion of glucose into cells especially 

skeletal muscle fibres, and adipose tissues. and speeds up conversion of glucose into 

glycogen (glycogenesis) and slows and inhibits hepatic glucose production 

(glycogenolysis and gluconeogensis). As a result blood glucose levels falls to a normal 

level (10). 
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2.1.2. Pathology of Glucose Metabolism 

2.1.2.1. Insulin resistance 

Insulin resistance is a pathological condition and a metabolic feature of type 2 diabetes. 

It can be defined as a reduced response to a physiological amount of insulin (12-17). 

Scientists are still searching for the causes of insulin resistance, but they have identified 

two possible causes. The first could be a defect in insulin receptors in cells. There may 

not be enough receptors for insulin to bind to, or a defect in the receptors may prevent 

insulin from binding. Recognition of the insulin molecule by its receptor is a complex 

molecular event and is essential for signal transmission (18). 

A second possible cause involves the process that occurs after insulin plugs into the 

receptor. Insulin may bind to the receptor, but the cells do not read the signal to 

metabolise the glucose. Scientists are studying cells to see why this might happen. 

The cascade of insulin action in vivo involves many steps including transendothelial 

transport of hormone, binding to the insulin receptor, and activation of tyrosine kinase, 

followed by movement ofGLUT4 transporters from the cell interior to the membrane so 

that glucose may enter the cell to be stored or oxidised (19). The insulin action might be 

delayed, the delay may be due to diffusion of insulin throughout the interstitium, and a 

decrease in capillary density in obesity could potentially account for insulin resistance 

because the time necessary for diffusion would be increased (19). 

Current and previous researchers have showed some evidence for a relation between the 

insulin resistance and unhealthy life-style, endocrine abnormalities, and with several 

other abnormalities. Both the quantity and quality of food intake affect insulin binding 

and insulin action at a molecular level (20-23) 

Obesity is the most common cause of insulin resistance in humans and with or without 

the presence of hyperglycaemia, it is almost certainly the most common state of insulin 

resistance (24-27). An important new potential mechanism of insulin resistance in 

obesity has been the observation that fat tissue itself may produce and secrete hormones 

or cytokines that affect metabolism andlor insulin sensitivity (28). In addition, 

prolonged exposure of ~-cells to insulin leads to desensitisation and reduced 
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insulin-stimulated receptor autophosphorylation (29). On the other hand, exercIse 

enhances insulin sensitivity and glucose disposal in normal physiology. This is 

associated with increased insulin binding to muscles (30). Almost all obese subjects are 

showing an exaggerated insulin response to glucose. Being overweight is considered as 

one of the most important prediabetic conditions (9). 

2.1.2.2. ~cell dysfunction 

p-cell dysfunction is the disability of the pancreas to secrete the body needs of insulin. It. 

is defined as an inappropriate reduction in the rate of insulin secretion from the p-cells 

or the abnormality in the rate and pattern at which blood insulin concentration changes 

as a function of time (31). It might be due to the p cells themselves being not able to 

secrete insulin or the decrease in p-cell number because of an infection or an 

autoimmune disease. The pancreatic insulin secretion is regulated by many factors; with 

the plasma glucose level being the most important regulator. 

The alteration in the level and pattern of the p-cell dysfunction can present in different 

ways. It could be the reduction in insulin release to glucose (32). change in the 

pulsatilitiy pattern and oscillatory of insulin secretion (33), defect in first phase insulin 

response to glucose stimulus (34), abnormality in the proinsulin to insulin conversion 

(35), and reduced release of islet amyloid polypeptide (36). 
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2.2. Diabetes 

Diabetes mellitus is a group of metabolic disorders characterised by hyperglycaemia 

(elevation of glucose in the blood). These heterogeneous disorders usually result from 

defects in insulin secretion, and/or insulin action. The persistent hyperglycaemia of 

diabetes is associated with long-tenn complications, and dysfunction of various organs, 

especially the eyes, kidneys, nerves, heart, and blood vessels. The aetiology and 

pathogenesis of diabetes are not fulJy understood and is believed to be a genetic 

inheritance with environmental factors. Several pathogenic processes ranging from 

autoimmune destruction of the p-cells of the pancreas with subsequent insulin 

deficiency to abnonnalities that result in resistance to insulin action are involved in the 

development of diabetes. 

The previous classification of diabetes was based on the extent to which a patient was 

dependent on insulin • Few years ago, both the reports of the American Diabetes 

Association (37) and the World Health Organisation (WHO) (I) recommended changing 

the classification to define four main SUbtypes of diabetes (Table 2-1) reflecting the 

heterogeneity of processes that lead to diabetes which hopefully will lead to more 

precise targeting of speci fie treatments and eventually to better outcomes ... 

Table 2-1. Etiologic classification of diabetes mellitus, adopted from Alberti et al (1). 

I. Type 1 diabetes (~-cell destruction, usually leading to absolute insulin deficiency) 

A. Immune mediated 

B. Idiopathic 

II. Type 2 diabetes (may range from predominantly insulin resistance with relative insulin 
deficiency to a predominantly secretory defect with insulin resistance) 

III. Other specifiC types 

A. Genetic defects of ~-cell function 

B. Genetic defects in insulin action 

C. Diseases of the exocrine pancreas 

D. Endocrinopathies 

E. Drug- or chemical-induced 

F. Infections 

G. Uncommon forms of immune-mediated diabetes 

H. Other genetic syndromes sometimes associated with diabetes 

IV. Gestational diabetes mellitus (GDM) 
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Type 1 includes immune mediated and idiopathic forms of ~-cell dysfunction which 

lead to absolute insulin deficiency. Type 2 diabetes is a disease of adult onset, which 

may range from predominantly insulin resistance with relative insulin deficiency to a 

predominantly secretory defect with insulin resistance. Type 3 disease covers a wide 

range of specific types of diabetes including the various genetic defects of ~-cell 

function, genetic defects in insulin action, and diseases of the exocrine pancreas. Type 

4 disease is gestational diabetes (GDM) which is only found during pregnancy. It 

normally vanishes after the delivery, but those women will have a higher chance to get 

Type 2 (37). The revised criteria for the diagnosis of diabetes are shown in Table 2-2. 

Type 2 will be discussed in more details as it is the scope of research in this thesis. 

Table 2-2. Diabetes mellitus diagnostic criteria, adopted from the report of the Expert 

Committee on the Diagnosis and Classification of Diabetes Mellitus (37). 

J""~'~"";;;~::~":;~~:~'~~~'~';~:"~'~::~';~::~";~':~~~~"~:'~'~~~;~~'~~"~;~~":;~~'('~"~'~'~"'" 
:1 mmolll). Casual is defined as any time of day without regard to time since last meal. . 

1::.'1 The classic symptoms of diabetes include polyuria, polydipsia, and unexplained 

weight loss. 
:, 
! 
i or 
i 
.I 

2. FPG ~126 mgldl (7.0 mmolll). Fasting is defined as no caloric intake for at least 

8h. 

or 

\1 
:I 3. 2-h plasma glucose ~ 200 mg/dl (Il.I nunoVI) during an OGTT. The test should 

be performed as described by the World Health Organization using a glucose load 

containing the equivalent of75 g anhydrous glucose dissolved in water. 

In the absence of unequivocal hyperglycaemia with acute metabolic decompensation, 

these criteria should be confirmed by repeat testing on a different day. The third 

it,=.:::::;.~,~,~:~,.~,~.::~.~,~:::~,~,~:~;;~:~;;~::~~,~,~"~,:~:~::~"::~"".,.,."";"'.""""";;.''';;''' .. ;" .. ,,.'''' .. ,,;; .. 
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2.2.1. Type' Diabetes Mellitus 

Previously called "insulin dependent diabetes mellitus" (IDOM), because there is an 

absolute chronic deficiency of insulin secretion, and regular injections of insulin are 

required to prevent death. Normally it affects children or adolescents only, although it 

can appear at any age. It is commonly developed in young people (under 20 years old) 

and persists throughout life. Type I appears to be an autoimmune disorder, one in which 

a person's immune system destroys the pancreatic beta cells. It is believed that both 

genetic factors and virus infections are responsible. Individuals at increased risk of 

developing type 1 of diabetes could be identified by using immunologic markers to islet 

antigens and serological evidence of an autoimmune pathologic process occurring in the 

pancreatic islets. Up to ten per cent of all diabetes diseases are of Type I. Some of its 

first symptoms are increased needs of sleep, constant hunger and thirst, a bleary vision, 

and a loss of weight (1; 18; 37). 

2.2.2. Type 2 diabetes Mellitus 

Previously known as non-insulin dependent diabetes mellitus (NIDDM). Type 2 

diabetes is a heterogeneous disorder characterised by insulin deficiency due to ~-cell 

failure associated with insulin resistance, which represents more than 90% of all cases 

of diabetes, and most often occurs in people over 40 years and overweight. About 150 

million are estimated to have type 2 diabetes worldwide (38) and the numbers of type 2 

diabetic patients are increasing each year as a result of several factors including 

increased obesity, civilised life style, and other enviromnental factors related to diet and 

nutrition (12; 38). 

2.2.2.1. Pathophysoilogy of type 2 diabetes 

The aetiology and pathogenesis of type 2 diabetes mellitus are not fully understood. It 

can be considered as being a complex interaction of genetic predisposition and 

environmental factors (7). The strong genetic component of type 2 diabetes is clearly 

found in certain families and ethnic groups such as Hispanic, and Pima Indians (39-42). 

There is a degree of agreement that the most important pathological factors of type 2 

diabetes are ~-cell dysfunction and insulin resistance (37). However a considerable 
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uncertainty exists about the sequence and the nature of the earliest biochemical changes 

and their relative contributions to the deterioration in glucose tolerance and 

development of type 2 diabetes. At the same time it is well founded that an intermediate 

stage of impaired fasting glucose (IFG) or impaired glucose tolerance (IGT) predicts 

and precedes the progression ofT2D (37). 

It is well accepted that a substantial loss of p-cell function should be present for a 

hyperglycaemia to appear in type 2 diabetes, and it is implicated that insulin deficiency 

is the proximate cause of the progressive increase in plasma glucose levels (17; 31). The 

p-cell dysfunction could be reduction in insulin release to glucose (32), change in the 

pulsatile and oscillatory of insulin secretion (33), defect first phase insulin response to 

glucose stimulus (34), abnormality in the proinsulin to insulin conversion (35), and 

reduced release of islet amyloid polypeptide (36). However it is still a matter of 

controversy as to whether insulin resistance or p-cel1 dysfunction is the primary 

pathogenic defect in type 2 diabetes. 

Many studies have focused on and reported the insulin resistance as the primary defect, 

where insulin resistance precedes and causes the hyperinsulinaemia and provides a 

stronger signal for p-cell stimulation (31; 43-45). The increase in plasma insulin is 

generally regarded as a compensation mechanism aiming to reverse the effect of insulin 

resistance (46). While the pancreatic p-cell decomposition is caused by the long 

exposure to high concentration of glucose (glucose toxicity) (47), and reflecting ~-cell 

'exhaustion' (48). Overt diabetes appears when the pancreas is not able to meet the 

body's demand for insulin in the face of increasing insulin resistance (49). The above 

aetiology hypothesis was supported by other studies which reported that the majority of 

patients with type 2 diabetes and subjects at risk for diabetes are insulin resistant (41; 

50; 51). and are hyperinsulinaemic even before hyperglycaemia appears (52). 

Others suggested the conception of a defect in insulin secretion to be the major early 

abnormality (53-55). In accordance with this concept, low early insulin response 

predicted diabetes in other studies (56). and the progression from normal glucose 

tolerance to impaired glucose tolerance (57), while insulin resistance predicted the 

transition from impaired glucose tolerance to type 2 diabetes (58; 59). Type 2 diabetes 
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can develop in individuals with nonnal insulin sensitivity with defective p-cel1 function 

(60), and individuals at high risk of diabetes demonstrated a diminished p-cell function 

while maintaining normal glucose tolerance (61-63). 

Part of the United Kingdom Population Diabetes Study (UKPDS) findings and 

suggestions in individuals with established type 2 diabetes is that the onset of p-cell 

dysfunction is present early before the escalation of hyper glycaemia and could exist for 

years before diagnosis (64). This concept was supported by another longitudinal study 

on a group of high risk population with nonnal glucose tolerance, the study reported a 

progressive decrease in insulin secretion in subjects who developed hyperglycaemia, 

whereas insulin sensitivity was similar to those who retained normal glycemia (65). 

Many other studies supported the idea that p-cell dysfunction together with insulin 

resistance predicts the development of type 2 diabetes (8; 65; 66), and the difficulty for 

these defects to be assessed in isolation. Thus, it is generally agreed that type 2 diabetes 

is a broad metabolic heterogeneous disorder and its development and progression is 

associated with and predicted by defects in both insulin secretion and insulin resistance, 

in addition to the genetic factor (56; 67). Other factors such as obesity (68). diet (69). 

physical activity (70), and many other known and unknown factors may interact and 

contribute to the development of type 2 diabetes. 

2.2.2.2. Symptoms and risk factors 

The main symptoms of the type 2 diabetes include polyuria, polydipsia, weight loss, 

sometimes with polyphagia, thirst, frequent urination, weakness and great tiredness, 

lack of ability to contrast, loss of co-ordination, and blurred vision. Impainnent of 

growth and susceptibility to certain infections may also accompany chronic 

hyperglycaemia. Acute, life-threatening consequences of diabetes are hyperglycaemia 

with ketoacidosis or the nonketotic hyperosmolar syndrome (18; 37). 

Although the major cause for diabetes is insufficient insulin produced by the pancreas 

or insulin resistance. There are some factors which increase the risk of diabetes 

incidences, the most important known risk factors are; obesity, stress, pregnancy, use of 
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certain drugs, including oral contraceptives, thiazide diuretics, cortisone or phenytoin, 

and family history of diabetes mellitus (18)(37). 

2.2.2.3. Complications 

Nonnally the diabetes complications are more dangerous than the disease itself. The 

most common and dangerous complications are cardiovascular disease, vision 

impainnent, peripheral vascular disease, with gangrene in legs and feet, and sexual 

impotence in men (18). Long-tenn complications of diabetes include retinopathy with 

potential loss of vision; nephropathy leading to renal failure; peripheral neuropathy and 

foot ulcers. Glycation of tissue proteins and other macromolecules are among the 

mechanisms believed to produce tissue damage from chronic hyperglycaemia. 

Hypertension, abnonnalities of lipoprotein metabolism, and periodontal disease are 

often found in people with diabetes. In addition, the emotional and social impact of 

diabetes and the demands of therapy may cause significant psychosocial dysfunction in 

patients and their families (37). 
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2.3. Assessment of Insulin sensitivity 

Glucose tolerance is an expression of the efficiency with which homeostatic 

mechanisms restore glycaemia to basal levels after a perturbation. Insulin is a key 

regulator of glucose homeostasis.. Insulin resistance (decreased sensitivity or 

responsiveness to the metabolic actions of insulin) is detennined by both genetic and 

environmental factors and plays an important pathophysiological role in diabetes (5). 

The term "insulin resistance" refers to an impaired biological response to either 

exogenous or endogenous insulin. In addition, insulin resistance is associated with a 

number of other diseases, including obesity, hypertension, dyslipidemias, and coronary 

artery disease (5; 6). Therefore, it is of great interest to quantify insulin sensitivity and 

resistance in humans to investigate the pathophysiology and epidemiology of major 

public health problems and to follow the clinical course of patients on various 

therapeutic regimens. In addition, the ability to easily quantify insulin sensitivity in 

large numbers of subjects may be useful for investigating the role of insulin resistance 

in the pathophysiology of these major public health problems. 

The glucose-insulin system is composed of a complex set of metabolic interactions and 

regulatory components. Even if all these were included in the description of a proposed 

system model, it would be still a kind of oversimplification because the system is 

embedded within the entire complex system, which is made up of energy metabolism 

and its honnonal and neural regulation. Many mathematical formulations for the 

glucose system have been made, from the comprehensive to the relatively simple. 

Clinically, the most desired assessment of insulin sensitivity is following an oral 

glucose load, a surrogate for a more physiological meal (71). The homeostatic response 

includes an increase in the insulin levels and, therefore, also the insulin-dependent 

processes that lower glycaemia. ll1eoretically, the oral glucose tolerance test should 

yield an estimate of insulin sensitivity. Many mathematical formulations have been 

developed to estimate insulin sensitivity following an oral glucose load (72-74). 

After oral glucose or meals, the increments in insulin do not depend entirely on glucose, 

but also on other factors such as gut hormones and neural stimulation. Thus the insulin 

response deviates from the purely glucose-dependent pattern. In addition, glucose 

concentrations also change in a manner that is partly dependent on insulin, but also 
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partly on gastric emptying and absorption (75; 76). Therefore, many attempts have been 

made to isolate the glucose-insulin relationship. as much as possible, from other factors. 

A host of methods have been developed to assess insulin sensitivity (or insulin 

resistance) in vivo. These include the hyperinsulinaemic euglycaemic glucose clamp 

(77). minimal model analysis of a frequently sampled intravenous glucose tolerance test 

(FSIVGIT) (78), continuous infusion of glucose with model assessment (CIGMA) (79), 

and various indices derived from an oral glucose and meal tolerance tests (72; 80-83), 

and simple indices based on fasting glucose and insulin levels (84) including 

homeostasis model assessment (HOMA) (85), and QUICKI (86). A number of 

variations on each of these approaches are available. For example, the glucose clamp 

technique can be performed under other conditions such as hyperglycaemic with or 

without infusion of tracer-labelled glucose (87; 88). Similarly, minimal model analysis 

has been extended to analyse tolbutamide or insulin modified FSIVGTT (19; 89) with 

or without infusion of tracer-labelled glucose (90). 

The hyperinsulinaemic eugJycaemic glucose clamp is generally regarded as the "gold 

standard" reference method for assessing insulin sensitivity in humans because it 

directly measures metabolic actions of insulin under steady state conditions. However, 

the glucose clamp is not easily applied in large-scale investigations because intravenous 

(IV) infusion of insulin, frequent blood samples over a 3 to 6h period, and continuous 

adjustment of a glucose infusion are required for each subject studied (77). 

Simple indices of insulin sensitivity based on fasting values such as fasting insulin 

value, IIfasting insulin. and insulin-to-glucose ratio have been used as a surrogate 

measure for insulin resistance (84). In addition, the Bennett index (91), homeostasis 

model assessment (HOMA) (85) and QUICKI (86) are easily obtained during fasting 

(basal) states, and may be useful tools for large epidemiological studies. In the context 

of the current review, some of these methods will be explored with varying degree of 

depth. 
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2.3.1. Hyperinsulinaemic euglycaemic glucose clamp 

The euglycaemic insulin clamp and the frequently sampled IV glucose tolerance test 

with the minimal model analysis are the standard methods of assessing insulin 

sensitivity (SI). The former is considered to be the gold standard in the assessment of 

insulin resistance because it directly measures the effects of insulin to promote glucose 

utilisation under steady state conditions (77). It is a conceptually simple test. although 

technically. somewhat more complex. 

The hyperinsulinaemic euglycaemic glucose clamp is performed by infusing insulin as a 

priming dose followed by a constant infusion rate to achieve and maintain a preset 

hyperinsulinaemic plateau. Simultaneously. glucose is monitored frequently and infused 

at variable rates to maintain near-constant glycaemia. which is equivalent to normal 

fasting glucose levels (or in the isoglycaemic case. the subject's own fasting glycaemia). 

When the glucose infusion rate has stabilised (2-3 h). this rate. divided by the 

incremental insulin level (subtracting basal insulin) and corrected for the ambient 

glucose concentration. is defined as clamp insulin sensitivity index (SI). When a steady 

state is achieved, the exogenous glucose infusion rate equals the glucose disposal rate 

(M) (sum of suppression of endogenous glucose production and the stimulation of 

glucose disposal). If endogenous hepatic glucose production is completely inhibited by 

an intravenous infusion of insulin then the quantity of exogenous glucose required to 

maintain euglycaemia (the M value) is a reflection of the net sensitivity of target tissues 

(mainly skeletal muscle) to insulin (77). 

Sit during the clamp. was derived from the steady-state glucose infusion rate (M value) 

mainly during the 3rd hour of the clamp corrected for the ambient insulin and glucose 

concentrations 

SI.CIamp 
M 

L\JxG 
(2-1) 

where M is the increment in insulin concentration from basal. and G is the clamped 

glucose concentration. 
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However, the clamp is a complicated method to implement because it requires 

simultaneous infusions of insulin, and glucose, multiple blood draws. and an 

experienced operator to adjust the glucose infusion appropriately over a 3- to 6-h time 

period. In addition, the clamp generates insulin levels above those usually experienced 

by subjects and may therefore fail to reveal potential abnormalities of processes 

regulated by lower insulin concentrations. The manner in which insulin sensitivity is 

determined during the hyperinsulinaemic euglycaemic clamp is based upon the 

assumption (unless appropriate tracer techniques are used) that endogenous glucose 

production is completely shut off by the insulin infusion. Moreover, during a clamp, 

insulin is administered as a constant infusion and, therefore, does not reflect the 

variations inherent in endogenous secretion (92). 

2.3.2. Insulin tolerance test 

TIle insulin tolerance test (ITT) was one among the first methods to assess the insulin 

sensitivity in vivo (93). The test consists of an intravenous insulin bolus injection and 

the slope of the decreased blood glucose concentration over the following 60 min is 

used as an index of insulin sensitivity. However the test does not provide a good 

quantitative measure as the hyperinsulinaemic euglycaemic glucose clamp. TIle rate and 

degree of plasma glucose fall in response to ITT are dependent not only on insulin 

sensiti~ty, but also on the presence and magnitude of the counterregulatory hormone 

response (including adrendin, glucagon, and cortisol), thus decreasing the value of ITT 

in assessing insulin sensitivity per se (92). 

2.3.3. HOMA 

The homeostatic model assessment (HOMA) focuses on and estimates insulin resistance 

function from basal fasting glucose and insulin levels. The HOMA method was first put 

forward ill 1985 by Matthews e/ al. (85). This mathematical model is based on the 

theory of a negative feedback loop between the liver and ~-cells that regulates both 

fasting glucose and insulin concentrations which can be used to estimate pancreatic 

~-cen function and degree of insulin resistance. Therefore, considering its simplicity, it 

may be a useful non-invasive tool for population studies. 
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The insulin resistance (RHOM,J is calculated as: 

RHOMA = g • il22.S (2-2) 

where g and i is the fasting plasma glucose (mmol/l) and insulin (J.1U/ml), respectively. 

It is critical to note, however, that HOMA is an index of insulin resistance. Whereas 

insulin sensitivity (SlHOMA) is calculated as exactly the inverse of the formula for 

resistance shown in equation (2-1): 

SIHOMA = 22.5/(g • i) (2-3) 

The basic rationale for the model is stated as: "The basal hyperglycaemia of diabetes 

may be considered as a compensatory response with a major role in maintaining 

sufficient insulin secretion, from a reduced p-cell capacity, to control hepatic glucose 

effiux"(85). 

However it has sometimes been concluded that the HOMA index does not correlate well 

with other measures of insulin sensitivity (80). 

2.3.4. Minimal Model of Glucose Kinetics 

TIle minimal model (or thereafter one compartment minimal model, 1 CMM) was 

developed to analyse data from frequently sampled intravenous glucose tolerance test 

(FSIVGTT) and to produce measures of peripheral insulin sensitivity (Sl) (94). It was 

termed the "minimal model," because it was the mathematical model with the fewest 

parameters that was found to provide a good fit to the data and the fits to data are 

remarkably good (94). It should be noted that the fits are obtained using, for example, 

non-linear least squares techniques: parameters are varied according to a defined 

strategy and are assigned a final value that minimizes the sum of squares of differences 

between the data and the glucose and insulin values predicted by the model (which is 

non-linear) for any parameter set. The goodness of fit and, therefore, the reliability of 

the parameters can then be evaluated statistically. 
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The FSIVGTI is constructed with a glucose bolus (300 mglkg body weight as a 50% 

solution in water) injected at zero minute and about thirty samples withdrawn over more 

than three hours (95). The 1 CMM works well in subjects with normal insulin secretion, 

because the model assumes that insulin action is zero at the start of the test and it reset 

to zero at each iteration loop for solving the equations for glucose disposal. In the case 

of impaired or poor insulin secretion in the presence of insulin resistance, the value of 

insulin action will be close to zero, which makes the estimation of SI very sensitive to 

any small change in the plasma insulin leading to the test variability and poor 

quantification of insulin sensitivity (96). Thus, Beard et ai, have injected tolbutamide 

intravenously 20 min after glucose injection to produce a large insulin secretory 

response (89). 

This modification was not suitable for diabetic patients because most of the patients 

suffer from pancreatic dysfunction and do not have significant insulin secretion in type 

I diabetes or the combination of reduced insulin response and pancreatic dysfunction. 

To overcome this problem, in the modified FSIVGTT the tolbutamide injection was 

replaced by an insulin injection (O.OSmU/kg) instead at time 20 min (16). This 

exogenous insulin simulates the function of the endogenous insulin by the pancreas and 

enables the model to make calculations with improved accuracy of the parameters 

estimation (19). Also different sampling techniques were used which reduced the 

numbers of samples to 13 samples and 12 samples (16; 95-97). 

The modified intravenous glucose tolerance test (WGTT) with insulin injection 

interpreted with the 1 CMM of glucose kinetics is a powerful non-invasive tool to 

investigate glucose metabolism in physiological studies (98). The model analyses 

IVGTT data and provides two metabolic indices measuring glucose effectiveness (SG) 

and insulin sensitivity (SI) in a single individual. SI and SG are composite parameters, 

which measure the net effect of glucose and insulin respectively to promote glucose 

disappearance and inhibit endogenous glucose production (98). The I CMM method has 

gained increasing popularity and is used by investigation around the world (99) because 

it is simple and non-invasive. The 1 CMM is represented in Figure 2-1. 

37 



A.. A SIll A 
INSULIN 

I L ____ _ 

Figure 2-1. Minimal model of glucose kinetics (100). k.a and ~ relate to the efficiency of 

coupling of remote insulin with target biochemical processes. While kl and ~ represent the 

effect of glucose to accelerate its utilisation. 

The glucose space is represented as a single extracellular compartment (Q), the glucose 

in this space is determined by a balance between the net production of glucose by the 

liver and the utilisation of glucose by the peripheral tissues. The effects of glucose to 

accelerate its own uptake by the periphery and inhibit production are represented by rate 

coefficients kl and k2 respectively. Insulin in the model (I) is envisaged to act on 

glucose metabolism not directly, but via a component remote from plasma (1'). This 

component represents the effect of insulin and account for the delayed insulin actions on 

glucose. The rate of metabolism of the remote insulin effect is envisioned as being 

independent of plasma insulin and determined by kJ. Independent metabolism of the 

insulin effect is consistent with insulin action continuing long after plasma insulin is 

normalised (100). G is the plasma glucose concentration, V is the distribution volume 

per unit body weight (ml/kg). The equations of the minimal model are: 

Q{I) = - [Sa + X (I)] Q (I) + Sa Qb 

Q(O) = Qb 

dX(t)ldl = - P1 X(I) + pj I (I) 
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X(O) = 0 

G(I) = Q(I)IV 

(2-7) 

(2-8) 

In equation (2-4) the rate of change in plasma glucose Q(t) is depending on So and the 

effect of glucose that is enhanced by remote insulin X(t). Qb is baseline value for 

glucose compartment. Equation (2-5) describes the rate of change of insulin action 

(dX(t)/dt), P3 describes how the increase in insulin action is dependent on the 

incremental insulin response while P2 describes how the disappearance of insulin action 

is dependent on how much insulin action (X) was present at the time. So is taken 

directly from the first equation (Pl= kl +k5) (98). While SI is calculated as the ratio 

between P2 and P3: 

(2-9) 

where 

(2-10) 

The I CMM approach uses the computer to analyse the plasma glucose and insulin 

dynamics observed following glucose injection (101-103). It yields in vivo 

measurement of the relative contributions of the pancreas and tissues to glucose 

disposal. The insulin time course is part of the input to the computer program input, 

which then used to compare the prediction of the model with measured glucose level. 

This enables the program to estimate the equations parameters and by analysing 

frequently sampled intravenous glucose tolerance test (FSIVGTT) data the program 

provides values for the parameters of insulin sensitivity (SI) and glucose effectiveness 

(So)(101). 

The model assumes that the injected glucose is distributed rapidly in a single 

compartment. After injection of glucose, plasma glucose falls by two mechanisms: (1) a 

component of glucose disposal that is dependent only on plasma glucose concentration 

and independent of any increment in insulin level, (2) disposal which is dependent on 

the incremental insulin response. Glucose inhibits its own production and increases its 

own utilisation in proportion to its concentration in plasma. Insulin synergies these 
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effects of glucose and insulin. The insulin effect is proportional to its concentration in a 

remote compartment. 

Finally, the assessment of an index of insulin sensitivity (S1), by employing the minimal 

model kinetic analysis to data obtained from the FSNGTT, appears to represent a more 

accurate means of quantifying insulin sensitivity (78). The S1 correlates well with the 

insulin-mediated glucose disposal rate (M). and S1 as determined by the euglycaemic 

hyperinsulinaemic clamp (16; 104-106). The dynamic and physiological nature of this 

test and the relative simplicity of its performance count among its attractive features. 

Differences and potential problems arise from the same source: the rapid dynamics may 

confound transients based on the distribution of glucose throughout the system and 

those due to glucose removal. Two-pool or higher order descriptions of glucose 

dynamics and the use of tracers were suggested (107; 108) as possible solutions to such 

difficulties. 

2.3.5. Two compartment minimal model of glucose kinetics 

Recent published reports and studies indicate that So is overestimated (109-113) and S1 

is underestimated (l09-112) during ICMM attributing the main reason to the under 

modelling effect of using one compartment to represent the glucose pool (110; 113). 

The new two compartment minimal model (2CMM) was first introduced in 1993 to 

measure hepatic glucose production during an isotopically labelled IVGTT by 

appending a second non-accessible compartment to the classic 1 CMM. The new model 

was needed because, at that time, the available single compartmental minimal model 

specifically developed to interpret labelled IVGTT data. provided a non-physiological 

pattern of hepatic glucose production (114). In 1997 Vicini et al (109) validated the 

2CMM to estimate Sit Sen and plasma clearance rate during an isotopically labelled 

FSIVGTT. Recently Cobelli et al (115) incorporated a priori knowledge on glucose 

exchange kinetics using Bayesian estimation to derive insulin sensitivity and glucose 

effectiveness with the 2CMM during standard IVGrr in healthy SUbjects. 
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Figure 2-2. Two compartment minimal model (2CMM), (110). 

The 2CMM appends a second non-accessible compartment to the 1 CMM. The 2CMM 

was validated in normal subjects during standard IVGTT by applying a Bayesian 

approach to incorporate prior knowledge on k12 and k21 parameters (II5). TIle model 

equations are as follows: 

(2-12) 

X{O)=O (2-13) 

G(t) = QI (t)IVI (2-14) 

where Ql and Q2 (mglkg) denote the glucose masses m the accessible and 

non-accessible compartments, respectively, with subscript b denoting their basal 
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(end-test) steady-state values; VIis the volume of the accessible compartment (mglkg); 

k12 and k21 are rate parameters describing glucose exchange kinetics (l/min); D, G, I, X, 

Pit P2. and P3 are variables and parameters already defined for the 1 CMM. The 2CMM 

parameters S? and So2 are calculated as follows: 

s/ = P3 VI (ml/minll peqlUlml) 
P2 

(2-15) 

(2-16) 

The 2CMM differs from 1 CMM only in allowing an exchange of glucose between the 

accessible and the non-accessible compartment, see Figure 2-2. This added complexity 

brings a priori identifiably problems. The theoretical or a priori identifiably address the 

ability of getting unique solutions for the unknown parameters on the basis of the 

experiment-generated data. A Bayesian analysis using a priori information on the 

glucose exchange kinetics parameters k12 and k21 was applied to solve these problems 

and reach unique identifiability (115). 

42 



2.4. Assessment of pancreatic p-cell responsiveness 

Type 2 diabetes results from varying fonns and degrees of abnormality in p-cell 

function and insulin sensitivity. p-cell dysfunction predicted diabetes in many studies 

(56), and the progression from normal glucose tolerance to impaired glucose tolerance 

(57). In addition, the progression from IGT to T2D is characterised by progressive loss 

ofp-cell function (116) and T2D is characterised by impaired pancreatic p-cell response 

to glucose. It is weJl founded that a substantial loss of p-cell function should be present 

for a hyperglycaemia to appear in type 2 diabetes, and it is implicated that insulin 

deficiency is the proximate cause of the progressive increase in plasma glucose levels 

(31). 

Several methods with varying approaches and complexity were introduced to assess in 

vivo pancreatic p-cell responsiveness to glucose (117-119). The methods range from 

simple time series plots, and simple calculations such as the methods and indexes 

relating fasting insulin to fasting glucose (85; 119), the increase in plasma insulin or 

C-peptide in plasma insulin after oral glucose and meal tolerance test (119; 120), after 

IV glucose tolerance test (121) including the calculation of the acute insulin response to 

glucose (AIRglucose) (122), and the increase in insulin or C-peptide after stimulation by 

glucagon (123), to moderate and sophisticated techniques and model-based approaches 

(77; 79; 124; 125). These approaches and methods have great value in the 

understanding and predicting the progression of the disease. 

The hyperglycaemic glucose clamp is the gold standard method for assessing p-cell 

responsiveness in vivo (77). In spite of this, the clamp methods are not suitable for 

routine use and not feasible for investigating insulin secretion in large groups and 

population studies because it is costly and labour intensive. Other models and 

approaches were proposed and used after oral glucose tolerance test (126), after IV 

glucose tolerance test (127) and under other conditions (79; 85; 128). The insulin 

secretion model (ISM) was validated to assess pancreatic p-cell responsiveness during 

more physiological conditions (32). Among these method and approaches, some will be 

discussed and summarised in the following text. 
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2.4.1. The hyperglycaemic clamp 

The hyperglycaemic clamp (77) is considered the gold standard which provides the 

most reliable and direct method for assessing pancreatic responsiveness. During the 

hyperglycaemic glucose clamp. plasma glucose is rapidly elevated by an exogenous 

bolus and maintained by a variable infusion of glucose to produce a desired circulating 

glucose level, thus stimulating the endogenous insulin secretion. The extent of the 

stimulation is employed as an index of pancreatic ~-cell responsiveness, and the 

response is usually evaluated in terms of plasma insulin concentrations. The exogenous 

glucose injection is followed by a frequent sampling schedule to enable the evolution of 

the early pancreatic response. Samples are withdrawn also at basal states before the 

glucose administration. The sampling schedule is usually every 1-5 minutes for the first 

15-30 minutes then reduced and made every 1 0-30 minutes thereafter. 

The time-secretion profile of insulin can be estimated by combining the hyperglycaemic 

clamp with the combined model which employs both insulin and C-peptide to calculate 

insulin secretion (129). The incremental area under the curve (O-lOmin) can be used to 

calculate and evaluate the first phase insulin secretion. However the use of the 

hyperglycaemic glucose clamp is limited due to the great investment of resources 

required and the complexity of the experimental interventions which make considerable 

demands on both labour and subjects. 

2.4.2. Minimal model of C-peptide secretion during IVGTT 

The minimal model of C-peptide secretion and kinetics builds upon the insulin minimal 

model (130; 131). However the C-peptide has the ability to reflect the pre-hepatic 

insulin secretion. In addition the C-peptide has been shown to exhibit a linear kinetics 

over a wide range of physiological plasma concentrations, and under fasting and 

postprandial conditions. The model provides two indices of first phase and second phase 

~-cell responsiveness (127). It yields a true pre-hepatic picture of the ~-cell secretion 

and response to glucose stimuli. 
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2.4.3. HOMA 

As described previously. the homeostasis model assessment (HOMA) is a simple 

computer-solved model. which takes advantages of the analysis of the fasting 

homeostatic state and provides reasonable measures of p-cell function as well as insulin 

sensitivity (85). The % p-cell function index is derived as: 

p-cell function (%) = 20 x insulinl(glucose-3.5) (2-17) 

The accuracy and precision of estimates were assessed by comparison with independent 

measures of p-cell function (132) including the hyperglycaemic glucose clamp, and 

intravenous glucose tolerance test (85; 133). It is critical to take into account the degree 

of insulin resistance when assessing p-cell function with the HOMA model (134). 

However, because of its simplicity it fonns a useful method to assess both insulin 

resistance and p-cell function in epidemiological studies (134; 135). 

2.4.4. CIGMA 

Continuous infusion of glucose with model assessment (CIGMA) is a model-based 

approach for assessing glucose tolerance and p-cell function (79). It consists of a 

continuous glucose infusion (5 mg glucose/kg ideal body weight per min) for 60 min, 

with measurement of plasma glucose and insulin concentrations. These are similar to 

the postprandial levels. These levels change slowly depending on the dynamic 

interaction between the insulin produced and its effect on glucose clearance. The 

glucose and insulin concentrations after 30 min can be compared with reference values 

and interpreted using a mathematical model of glucose and insulin homeostasis to 

assess insulin resistance and p-cell function. 

The model is based on the available physiological data describing quantitatively the 

relationships between glucose and insulin (136; 137). The functions used in describing 

the model are drawn from experimental physiological data, which do not have simple 

mathematical fonnulations. p-cell responsiveness is defined as the ability of the 

pancreas to respond to glucose and is expressed as % of nonnal p-cell function. 
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CIGMA provides a near-physiological glucose load and the slowly changing glucose 

and insulin homeostasis can be easily assessed. It can be considered as a test of glucose 

tolerance and is analogous to the oral glucose tolerance test. The p-cell function 

measured by CIGMA correlated in a linear fashion with the steady state plasma insulin 

levels during hyperglycaemic clamp in diabetic but not normal (79). In addition 

CIGMA could be used with C-peptide instead of insulin measurements. It therefore 

assesses pancreatic secretion rather than the post-hepatic delivery rate which is more 

likely to cross-react with insulin assay than with C-peptide. 

Theoretically the p-cell function values from CIGMA are independent of the glucose 

levels achieved because the model includes responses for different levels of glycaemia. 

However the model assumes that the assessment parameters are relevant to studied 

subjects, which apply more to diabetic than normal subjects. These assumptions include 

equality of liver and peripheral insulin resistance, and that the reduction in p-cell 

function in diabetes is a quantitative decrease. Therefore the model may not be suitable 

in special situations, such as in the case of a change in the shape of the p-cell dose 

response curve. 

2.4.5. Intravenous glucose tolerance test 

Insulin response to an intravenous glucose stimulus has been observed to have a 

biphasic pattern. In healthy humans, an intravenous glucose bolus results in an 

immediate and sharp and rapid insulin secretion (first phase insulin secretion with 

response to glucose injection; AIRG). This peak in insulin secretion normally lasts for 

about 10 min and is followed by a second slow phase of insulin secretion which lasts for 

a longer duration. First phase insulin secretion has been observed during other 

techniques such as the hyperglycaemic glucose clamp (77; 138), glucagon injection 

(124), and stepped glucose injection (139). 

There is no standard consensus as to how the first and second phase should be 

calculated. The first phase insulin secretion generally is defined as that secretion 

occurring 2-10 min after glucose injection. The second phase is usually defined as the 

overall secretion occuring during the rest of the experiment (130). The first and second 

phase insulin secretion during IVGTT can be measured by the minimal model of C-
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peptide kinetics (140). The incremental area under the curve of insulin (or C-peptide) 

curve 2-10 min is usually used to calculate the first phase insulin secretion and assess 

the acute insulin response (123). 

2.4.6. Insulin Secretion Model 

The insulin secretion model (ISM) is a simple relatively non-invasive model-based 

approach developed several years ago to quantify pancreatic p-cell responsiveness 

during a meal tolerance test (MIT) (32). The model measures the prehepatic insulin 

secretion and assesses pancreatic p-cell responsiveness providing two indices of 

pancreatic responsiveness. Fasting (basal) pancreatic p-cell responsiveness (Mo; ability 

of fasting glucose to stimulate C-peptide secretion) and postprandial responsiveness 

(M}; ability of postprandial glucose to stimulate C-peptide secretion). The model is able 

to quantify pancreatic responsiveness in healthy and disease states, and confirms 

significant differences between healthy subjects and subjects with newly diagnosed type 

2 diabetes (141). The insulin secretion model is shown in Figure 2-3. 

kOl 

Figure 2-3. Insulin secretion model (ISM) (32). 
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Insulin and C-peptide are co-secreted in an equimolar ratio by j}-cells, and this 

phenomenon has been exploited to assess prehepatic insulin secretion (130). The liver 

does not clear C-peptide to any significant extent. C-peptide kinetics have been shown 

to be linear over a physiological to supraphysiological range of plasma C-peptide 

concentration (32). Under steady state conditions a single measurement of plasma 

C-peptide is expected to provide a more reproducible index of insulin secretion than a 

single measurement of plasma insulin (130). 

In the ISM a linear relationship between C-peptide secretion and plasma glucose was 

postulated and combined with the population model of C-peptide kinetics (32). This 

linear relationship was imposed from the time of meal ingestion until plasma glucose 

returned to its fasting concentration. 

The population model of C-peptide kinetics was reported by Van Cauter et al in 1992 

(142). It has been developed from the analysis ofC-peptide decay curves obtained from 

experiments carried out in 200 adult subjects. It enables the parameters of the C-peptide 

kinetic to be approximated from a subject's height, weight, age, sex, and the 

classification of being normal, obese, and type 2 diabetic. 

The model is described by a set of differential equations: 

{ 

MI(g(t) - St» + Most, ifM.(g(t) - St> + MoSt> > 0, 
u(t) = 

o otherwise, 0 ~ t ~ t max 

(2-18) 

(2-19) 

(2-20) 

where CI(t) is C-peptide concentration in the central (plasma) compartment, C2(t) is 

equivalent concentration in the peripheral compartment, kij are transfer rate constant per 

min, get) is plasma glucose concentration, ~ is fasting plasma glucose concentration, 

u(t) is secretion rate of C-peptide per unit volume of the central compartment and is 
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constrained to non-negative values and tnWl is either 240 min or the time when plasma 

glucose returns to its fasting value. 

Ml (postprandial sensitivity index) is the ability of postprandial glucose to stimulate 

p-cells. A change in plasma glucose by 1 mmoVL results in a change in the C-peptide 

secretion rate by MJ pmollL min. Mo (basal sensitivity index) is the ability of fasting 

glucose to stimulate p-cells. Mo is numerically equal to the fasting C-peptide divided by 

the fasting plasma glucose concentration. The population model of C-peptide kinetics 

provides parameters ~j of C-peptide kinetics from a subject's demographic data using a 

regression model and avoiding the need to assess C-peptide kinetics on an individual 

basis (142). The model uses the computer to analyse the plasma glucose and C-peptide 

during MIT. A sample of the graphs produced by the model is shown in Figure 2-4. 
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Figure 2-4. A sample of the graphs produced by the insulin secretion model. 
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2.5. Parameter estimation 

The process of parameter estimation is carried out in order to get a set of numerical 

estimates of the parameters which best fit the data and a measure of their precision. The 

standard least square method is the most commonly used one. The following is a brief 

explanation of the parameter estimation methods used in this thesis. 

2.5.1. Standard two-stage method 

In the standard two-stage method (STS), the model parameters are identified and 

estimated in each subject separately (each subject is analysed individually) and the 

mean and covariance of the population are determined as the sample mean and the 

covariance. The technique used to resolve the true value of the model parameters, which 

best fit the model, is the non-linear regression (weighted non-linear least squares). The 

values of sample mean (IJ) and covariance (r,2) of the estimated parameters represent 

the mean and the variance of the population distribution. To determine each subject's 

parameters, the weighted residuals sum of squares is minimised with respect to the 

vector of model parameters Pj for a subject j 

NI [GOBS _ G( I )]2 
WRSS(Pj) = L i.j 2

Pj ' i.j 
i=l O"i.j 

(2-21) 

where Nj is the number of data points available for the jth subject; tij and GitBS are the 

ith time point and the observed data point, respectively, of the jth subject; a\ is the 

variance of the measurement error of the ith data point; and G(Pj,tij) is the model 

prediction of glucose concentration for a given Pj. 

The population mean for each parameter is calculated as the sample mean of all the 

individual parameter estimates ( P j ) 

(2-22) 
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where N is the number of subjects, and the population variance is calculated as the 

corresponding sample variance 

(2-23) 

The STS method simply calculates the population statistics based on the best fit of each 

subject parameters independently. However, large between-subjects variability can lead 

to errors in the statistics for the population (143; 144). 

2.5.2. Iterative two-stage population analysis 

The iterative two-stage population analysis (ITS) is a methodology used to quantify 

between-subject variability relative to a given population model. It helps solving crucial 

problems in clinical studies such as parameter estimations with few sampling points, 

similarly in physiological and metabolic studies like the IVGTT moving out of the 

investigative stage into clinical and population studies (145). 

The method calculates the population mean and the standard deviation at each iteration 

and then uses the information from the sample mean and the covariance as prior 

information for the individual analysis. The use of a prior in the popUlation analysis 

should improve the precision of the individual estimates and provides a more reliable 

measure of the popUlation parameters (J 44). Such estimates can be performed, despite 

the fact that the number of data points obtained from each individual may be less than 

the number of model parameters. 

The ITS is based on the concepts of population prior knowledge and maximum a 

posteriori (MAP) probability empirical Bayesian estimation. The process starts with an 

initialisation step where the mean and the covariance are estimated as in the standard 

two-stage. The next step is to perform the parameter estimation on each subject j again, 

but this time minimising the following extended MAP Bayesian objective function with 

respect to Pj 
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(2-24) 

where pj,i is the ith element of the parameter vector for subject j and Np is the number of 

elements in the vector Pj' The estimate P J obtained by minimising this objective 

function is often caIled post hoc, or empirical Bayesian estimate. J.li(k) is the value of the 

population mean at the kth iteration of the method, and rdk) is the ith diagonal element 

of the population covariance matrix at the kth iteration. The updated population mean of 

the parameter vector can then be calculated as: 

(2-25) 

and the covariance is calculated as: 

(2-26) 

where Vj is the variance (precision) of the resulting estimate P J ofpj. 

This approach can mtnlmlse the sampling requirements from each individual 

dramatically. The iterative two-stage method assumes that the distribution of the 

population parameters is multivariate normal. However it is expected to perform well 

even if the assumptions of normality is not fully met (146; 147). 

2.5.3. Bayesian estimation 

Bayesian analysis is based on the idea that unknown quantities such as population mean 

and distribution have a probability distribution. This probability distribution for a 

population is based on the available prior knowledge about the popUlation, then adding 

the knowledge which comes from the data set. The prior knowledge could be 
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summarised as the mean and the standard deviation or variance, which is constructing 

on a priori distribution. The data set is then used to refine and modify the prior 

probability distribution, which then results in the posterior distribution. The modified 

probability n(p) is obtained according to the Bayes theorem: 

&(p) = p(pIY) = p(J1p)p(p) 
p(y) 

(2-27) 

where y = yl .... yN is the vector of measurements, p(P) is the prior probability of 

parameters, p(y) is the prior probability of measurements, and p(ylp) is the conditional 

probability of measurements given data (148). 

The great influence of the prior distribution on the results could be a major limitation of 

the Bayesian approach (149; 150). 
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3. Reduced sampling schemes for estimating pancreatic 

responsiveness during meal tolerance test 

3.1. Introduction 

Population studies for the assessment of p-cell function in subjects at risk of and with 

type 2 diabetes (T2D) are of primary importance to understand the disease aetiology and 

design preventative strategies. Most of the tools and models available for assessing the 

p-cell function are costly and labour and time consuming such as the hyperglycaemic 

clamp (79). and minimal model of C-peptide secretion during intravenous glucose 

tolerance test (123). Thus the in-depth examinations of p-cell function are limited to 

research studies. 

The availability of a simple and easy model-based approach to quantify ~-cell function 

will extend its use to population and clinical utilization which should help in predicting 

and understanding the progression of the disease. 

The insulin secretion model (ISM) with the meal tolerance test (MTT) is a simple 

relatively non-invasive tool to investigate pancreatic responsiveness (32). It measures 

the prehepatic insulin secretion and assesses pancreatic p-cell responsiveness giving 

postprandial pancreatic p-cell responsiveness (M1) and basal pancreatic p-cell 

responsiveness (Mo). 

Different sampling schemes were used in the process of estimating pancreatic p-cell 

responsiveness with the insulin secretion model. The full sampling scheme employed in 

model development consisted of 14 samples over four hours at 0, 10,20,30,40,50,60, 

75, 90, 120, ISO, 180, 210 and 240 min as determined by clinical personnel when 

designing the experimental protocol. 

A sampling scheme consisting of nine samples has also been used and will be used in 

the course of studies in this thesis (51) but its performance with the model is currently 

unknown. A reduced five sample scheme over two hours at 0, 30, 60, 90, and 120 min 

(151) will further reduce the time, labour and cost, facilitating a wide use of the model. 
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In the present study, the pancreatic p-cell responsiveness indices (MJ and Mo) were 

evaluated with two reduced sampling schemes (nine samples and five samples) and 

compared against indices obtained during the full sampling scheme. 
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3.2. Methods 

3.2.1. Subjects and experimental design 

A total of twenty one subjects with newly presenting Type 2 diabetes participated in the 

study, see Table 3-1. Ethical approval for the studies was obtained from the South 

Glamorgan Local Research Ethics Committee, Cardiff, UK. 

The subjects were admitted on the study day to the Diabetes Research Unit, Llandough 

Hospital (Penarth, UK). Each subject underwent the meal tolerance test to assess 

parameters of carbohydrate metabolism and to measure glucose, insulin, and C-peptide. 

The subjects were studied after an overnight fast for 12 hours. 

Table 3-1. Demographic data for subjects participating in the study (N = 21 ). 

Sex Age Height Weight 8MI 

(M/F) (year) (m) (kg) (kg/m2
) 

Mean 16/5 52 1.71 87.9 30.4 

SE 2 0.02 4.2 1.2 

3.2.2. Meal tolerance test 

The standard meal tolerance test (MIT) consisted of digesting 15g Weetabix, 109 

skimmed milk, 250mL pineapple juice, 50g white meat chicken, 60g wholemeal 

bread, 109 polyunsaturated margarine (75g carbohydrates; total 500 Cal; calorie 

contribution: 58% carbohydrate, 23% fat and 19% protein) (49). The subjects were 

required to consume the whole meal within 10 minutes. In total 15 blood samples 

were taken over 240 minutes to measure plasma glucose, insulin and C-peptide, 

samples were taken at -30, 0, 10,20, 30, 40, 50, 60, 75. 90, 120, 150, 180, 210 and 

240 minutes relative to meal ingestion. At each sanlple time the infusion is stopped 

and the first 2-ml blood withdrawn and discarded, prior to obtaining the sample for 

assay. 
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Blood was taken via an indwelling intravenous (IV) cannula which was inserted into the 

antecubital fossa vein and connected via a three-way tap to a slow running saline 

(0.IS4nmoVl) infusion to maintain the patency of vein. 

3.2.3. Sample Analysis 

Glucose was assayed using the glucose oxidase method (intra-assay CV < 2%). Insulin 

and C-peptide were assayed using a monoclonal antibodies method (intra-assay CV < 

5% and < 6%, respectively). Insulin in plasma is measured by an enzyme immunoassay 

which does not cross- react with other insulin-like components, and C-peptide in plasma 

is also measured by an enzyme immunoassay which does not cross-react with insulin. 

Following blood sampling the samples were separated as soon as possible. Blood 

was centrifuged (2000g, Smin) in a refrigerated (4°C) centrifuge and the plasma 

put into aliquots and frozen at _20° C immediately. Samples remained frozen until 

assay. 

3.2.4. Insulin secretion model 

The insulin secretion model was used to quantify pancreatic p-cell responsiveness from 

MIT data, providing fasting p-cell responsiveness (Mo; ability of fasting glucose to 

stimulate C-peptide secretion) and postprandial p-cell responsiveness (M1; ability of 

postprandial glucose to stimulate C-peptide secretion) (32). 

The package used to calculate Mo and MI was version 1.0 of CPR (Calculating 

Pancreatic Responsiveness; written by R. Hovorka and H.C. Subasinghe, MIM Centre, 

City University, London, UK, 1997). 

The model parameters Mo and Ml were estimated employing weighted non-linear 

regression analysis. The measured errors wereassumed to be uncorrelated, with zero 

mean and a constant coefficient of variance (CV = 6%). The precision of the parameters 

was obtained from the inverse of the Fisher information matrix and expressed as CV of 

the parameter estimates. The model is fully described in section (2.4.6). 
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3.2.5. Sampling schemes 

3.2.5.1. Full sampling scheme 

The full sampling scheme consisted of 14 samples at 0, 10, 20, 30, 40, 50, 60, 75, 90, 

120, 150, 180,210 and 240 min relative to meal ingestion. The full sampling scheme 

was employed by the insulin secretion model to estimate M1-ful1 and MQ-fuU. Parameter 

estimation results (estimates and precision) obtained with the full sampling scheme 

were used as the reference measurements. 

3.2.5.2. Nine-sample scheme 

The nine-sample is a reduced sampling scheme consisted of 9 samples at 0, 30, 60, 90, 

120, 150, 180,210 and 240 min relative to the meal ingestion. The nine-sample scheme 

was used to estimate the fasting (Mo.9) and postprandial (Ml-9) pancreatic ~-cel1 

responsiveness indices. 

3.2.5.3. Five-sample scheme 

A further reduced sampling scheme consisted of 5 samples at 0, 30, 60, 90, and 120 min 

relative to the meal ingestion. This sampling scheme was used to estimate the indices; 

Ml-S and Mo.s. 

3.2.6. Statistical analysis 

The Pearson correlation coefficient was used to assess the relationship between indices. 

A paired sample t-test was applied to assess the difference between indices. 

Significance was declared at P < 0.05. The precision of estimation with respect to the 

reference measurement, and the agreement between variables was assessed by the 

Bland-Altman plots (plotting the difference between methods [Y-axis] against the 

reference method [X-axis]) (152). A 20% region of agreement was defined reflecting 

the day-to-day variability of fasting plasma glucose (FPG), insulin (FPI). and 

postprandial plasma glucose and insulin responses to a mixed meal. In subjects with 

type 2 diabetes, a 15% FPG within subjects variation was reported (153) and 20% for 
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FPI (154). The posbneal glucose and insulin variation were 15% and 20%, respectively 

(155). A 20% variation should not affect the discrepancy between healthy and type 2 

diabetic subjects (32; 141). 
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3.3. Results 

3.3.1. Plasma glucose, insulin, and C-peptide 

Plasma glucose, insulin, and C-peptide profiles during MIT are shown in Figure 3-1. 

TIle data are presented as mean ± SEe 

3.3.2. Parameter estimates with nine-sample, five-sample and full 

sampling schemes 

Individual estimates of the pancreatic responsiveness indices with the full sampling 

(Ml-full and MO-fuU), and the reduced sampling schemes (MI-9, M0-9, Ml-S and Mo..s) are 

given in Table 3-2. The parameters were estimated with good precision with the reduced 

sampling schemes (mean CV :s 9%, and < 6% for Ml and Mo, respectively), and with 

the full sampling scheme. The precision of the Ml estimates with the full sampling was 

slightly better than with the reduced schemes, see Table 3-2. Postparandial and fasting 

p-cell responsiveness with full sampling, nine-sample, and five-sample schemes are 

summarised in Figure 3-2. 

3.3.3. Evaluation of nine-sample Indices 

Ml-9 was significantly correlated with Ml-full (rs = 0.99, P < 0.001). However it was 

significantly higher than Ml-fuIl (P < 0.05), see Table 3-3. The observed statistical 

significant does not imply the clinical significance as demonstrated in Figure 3-3, as 

most of the cases (19 out of 21) are lying within the predefined 20% clinical region of 

agreement. No systemic deviation or error trend was observed during the examination 

of the difference between Ml-9 and M1-full_ The scatter plot in Figure 3-5 shows the 

estimates' distribution around the equality line. 

M0-9 was significantly correlated with MO-full (rs = 0.98, P < 0.001), and the individual 

estimates of Mo..9 were similar to Mo..full (P = NS). All MO-9 estimates lied within the 

predefined clinical region of agreement (Figure 3-3). 
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Figure 3-1. Plasma glucose, insulin, and C-peptide profiles during MIT in subjects with T2D 

(mean ± SE, N = 20). 
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Table 3-2. Parameter estimates with nine-sample, five-sample, and full sampling schemes in 

subjects with T2D (N = 21). 

Full-Sample Nine-Sample Five-Sample 

Sub. 

No. 

606 21.2 8* 7.7 3 21.7 9 7.6 4 22.9 10 7.0 5 

607 8.5 7 3.7 3 9.6 8 3.6 5 8.5 11 3.6 5 

608 8.6 8 2.9 3 9.1 10 2.9 5 7.5 13 2.7 5 

610 17.5 7 8.1 3 17.0 9 8.2 5 16.9 11 7.7 5 

612 15.4 7 6.4 3 18.2 7 5.6 5 16.4 9 5.4 6 

616 11.5 5 5.4 3 11.5 6 5.5 5 13.2 7 5.3 5 

618 26.4 6 7.8 3 26.4 8 8.3 5 26.7 8 7.7 6 

624 28.5 4 3.5 3 32.5 5 3.4 5 30.1 5 3.2 6 

626 22.4 4 5.0 3 22.9 5 5.1 5 21.1 7 4.8 6 

638 17.5 6 6.0 3 18.1 7 6.0 5 16.6 9 5.8 5 

639 37.4 5 10.4 3 37.9 6 10.9 5 36.0 7 10.5 5 

647 26.2 6 8.2 3 28.4 6 8.2 5 24.0 8 7.7 5 

649 21.8 6 4.2 3 21.7 8 4.3 5 22.0 8 3.9 6 

651 16.1 6 3.6 3 20.4 7 3.2 5 18.2 8 2.9 5 

655 16.5 7 7.4 3 17.5 8 7.2 5 16.9 10 7.0 5 

660 4.5 6 2.4 3 4.9 7 2.3 5 4.3 11 2.3 5 

672 15.2 4 3.0 3 16.5 5 3.3 4 15.0 6 3.0 5 

673 18.9 7 7.4 3 18.7 10 7.1 5 21.3 10 7.4 5 

674 12.2 5 4.7 3 14.8 5 4.2 5 12.9 7 3.9 5 

678 7.4 15 3.2 4 7.5 21 3.3 6 8.2 20 3.4 5 

680 21.1 6 9.4 3 21.2 7 9.3 5 20.3 9 9.2 5 

Mean 17.9 6 5.7 3 18.9 8 5.7 5 18.0 9 5.5 5 

SE 1.7 1 0.5 0 1.8 1 0.5 0 1.7 1 0.5 0 

.Precision ofparnmeters estimates expressed as coefficient of variation (CV) 
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3.3.4. Evaluation five-sample indices 

MI-S was significantly correlated with M1-Cull (rs = 0.99, P < 0.001), and was not 

statistically different (P = NS). The individual estimates of M1-S and M1-full were quite 

similar as the differences between individual estimates were quite well within tlle 

agreed level of variation, see Figure 3-4. 

MOoS was significantly correlated with Mo-fuU (rs = 0.99, P < 0.001), but it was 

significantly lower than Mo-Cull (P < 0.05). However MOoS were not clinically different 

from the full sampling estimates. The Bland-Altman plot in Figure 3-4 shows no 

systematic deviation in the parameter estimates with the five-sample scheme. All 

individual estimates of Mo-s were within the clinically predefined 20% region of 

agreement. TIle tight association and agreement between the five-sample indices with 

the full sampling indices are shown in Figure 3-6. 

Table 3-3. Paired sample t-test and Pearson correlation with Bonferroni adjustment between 

pancreatic responsiveness indices (M( and Mo) with nine-sample, five-sample and full sampling 

schemes in subjects with T2D (N = 21)_ 

Pearson correlation T-test 

Correlation P-value t P-value 

Mi-full - M I-9 0.99 0.000 -3.46 0.012 

M(}'f~l- M(}'9 0.98 0.000 0.83 0.416 

Mi-full - MI-5 0.99 0.000 -0.69 0.501 

M(}'f~l- M(}'5 0.99 0.000 4.15 0.003 
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Figure 3-5. Relationship between individual estimates of postprandial pancreatic p-cell 
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3.4. Discussion 

In the present study, ISM indices of pancreatic ~-cell responsiveness were successfully 

estimated and evaluated during MTT with nine-sample and five-sample schemes. 

Reduction in sample number from 14 to 9 and 5 did not have any significant effect on 

the clinical utility and the calculation and precision of the ~-cell responsiveness indices 

Ml and Mo. The reduced sample schedules did not produce any observed clinical bias on 

the calculated value of Ml and Mo. 

To derive reliable estimates of ~-cell responsiveness during MTT, a rich data set was 

initially used with 14 samples taken over four hours. However a sampling scheme with 

nine samples is in use (49), and a standard five sample scheme (lSI) is widely adopted, 

reducing the cost, time and labour. 

A 20% clinical region of agreement was defined depending on reported variation in 

FPG, FPI, and postprandial glucose and insulin responses. Ollerton et al (153) reported 

a ±15% FPG day-to-day variability. They suggested that 14% of the variability is due to 

the biological variability in 193 subjects with newly diagnosed type 2 diabetes (153). In 

eight subjects with mild diabetes Wolever et al (154) reported about 20% fasting and 

postmeal plasma insulin within-subject variability. They reported 11 % as an overall 

mean plasma glucose within-subject variation after meal (154). 

Nine-sample scheme 

ISM pancreatic J3-cell responsiveness parameters (MI-9 and MO-9) during MTT were 

estimated with good precision with the nine-sample scheme. MI-9 was significantly 

correlated with M1-full, but was statistically higher than Ml-full (P < 0.05). However Ml-9 

was not clinically different from the M1-full and the difference between the index 

measurements with the two schemes was within the predefined clinical accepted range. 

No systematic bias was observed in calculating MI from nine-sample scheme as 

demonstrated by the Bland-Altman plot. M0-9 was well correlated with and identical to 

MO-full. 

Five-sample scheme 

The five-sample scheme was sufficient and rich enough to get reliable estimates of both 

Ml-S and MO-s. The model was able to fit the data and to provide pancreatic J3-cell 

70 



responsiveness parameters during MIT with good precision (mean CV:5 9%). M1-S was 

significantly correlated with and identical to Ml-fuu and the differences between the 

individual estimates of indices were within the predefined variation level. 

MO-s was significantly correlated with MO-full. but was statistically lower (P < 0.05). 

However it was not clinically different. the differences between the individual estimates 

were all within the clinically accepted range. The MO-s individual estimates are in 

agreement with the reported range in subjects with newly diagnosed T2D (32; 141). The 

MO-s estimates were not biased. or different from MO-full as documented by the 

Bland-Altman plot. No systemic trend or deviation was observed (see Figure 3-4). 

3.5. Summary 

Nine-sample and five-sample reduced sampling schemes were proposed and 

successfully evaluated against the full sampling scheme. Reduction in sample number 

did not have any significant effect on the calculation and precision of the p-cell 

responsiveness indices providing accurate estimates of both Ml and Mo. 
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4. Validation of the insulin secretion model during OGTT in healthy 

subjects and subjects with type 2 diabetes 

4.1. Introduction 

Type 2 diabetes (T2D) is characterised by various degree of p-cell defect (64), and it is 

well accepted that a substantial loss of p-cel1 function should be present for a 

hyperglycaemia to appear in type 2 diabetes (60). In addition, individuals at high risk of 

diabetes demonstrated a diminished p-cell function while maintaining normal glucose 

tolerance (62; 63; 155). 

The availability of p-cell function indices is important for understanding and identifying 

with other factors, such as insulin sensitivity the aetiology of type 2 diabetes. A reliable 

quantification of p-cell functions and insulin resistance could make it possible to predict 

the disease progression. Various methods and approaches have been developed to assess 

pancreatic p-cell function including the hyperglycaemic clamp (77), minimal model of 

C-peptide secretion during intravenous glucose tolerance test (J 23), combined model of 

insulin and C-peptide secretion (156), Low-dose insulin and glucose-infusion test (157), 

Homeostasis Model Assessment (HOMA) (85), and Continuous Infusion of Glucose 

with Model Assessment (CIGMA) (79), in addition to several other simple one 

measurement and simple mathematical calculations. 

The insulin secretion model (ISM) is a non-invasive model-based method developed to 

quantify pancreatic p-cell responsiveness during a meal tolerance test (MTT) (32). The 

model calculates two indices of pancreatic responsiveness. It measures the prehepatic 

insulin secretion and assesses pancreatic p-cell responsiveness giving fasting pancreatic 

p-cell responsiveness (Mo; ability of fasting glucose to stimulate C-peptide secretion) 

and postprandial responsiveness (M1; ability of postprandial glucose to stimulate 

C-peptide secretion). The model is able to quantify pancreatic responsiveness in healthy 

and disease states, and confirms significant differences between healthy subjects and 

subj ects with newly diagnosed type 2 diabetes (141). 

MTT is used because it results in a typical postprandial exposure of the pancreas to 

glucose and gut and vagal honnones.( 158). However the oral glucose tolerance test 
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(OGTT) is the most widely used test because of its simplicity, its ease of 

implementation and the fact that it is easy to standardised. In addition OGTT is the 

standard diagnostic test of type 2 diabetes and impaired glucose tolerance (IGT) 

approved by the World Health Organisation (WHO) (1). 

The insulin secretion model was developed and validated during MTT (32). In the 

present study we validated the insulin secretion model during OGTT in healthy subjects 

and subjects with T2D. Comparisons between the ISM estimates, and glucose, insulin, 

and C-peptide responses during MTT and OGTT were carried out. 

MTT has the advantage of increased the stimulatory effect of incretin as a result of the 

meal composition (see Methodology). However, both MIT and OGTT represent a 

physiological stimulation and represent a typical postprandial exposure of pancreas to 

glucose and gut and vagal hormones, and OGTT is expected to perform in a comparable 

manner to MIT. 
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4.2. Methods 

4.2.1. Subjects and experimental design 

Two groups of subjects were studied, namely a healthy group and a T2D group having 

subjects with newly presenting type 2 diabetes (Table 4-1, and 4-2, respectively). Each 

group underwent a meal tolerance test and an oral glucose tolerance test on two 

occasions one week apart. The subjects were admitted on the study day to the Diabetes 

Research Unit, Llandough Hospital, Penarth, UK. The subjects were studied after an 

overnight 12 hour fast. The ethics approval for the studies was obtained from the South 

Glamorgan Local Research Ethics Committee, Cardiff, UK. 

Table 4-1. Demographic data for healthy subjects (N = 9). 

Sex Age Height Weight BMI 

(M/F) (year) (m) (kg) (kg/m2) 

Mean 9/0 28 1.80 78.1 24.2 

SE 2 0.02 1.5 0.5 

Table 4-2. Demographic data for subjects with newly presenting T2D (N = 20). 

Sex Age Height Weight BMI 

(M/F) (year) (m) (kg) (kg/m2) 

Mean 1713 55 1.71 83.1 28.6 

SE 2 0.02 2.3 0.8 

4.2.1.1. Meal tolerance test 

The meal tolerance test consisted of digestion of ISg Weetabix, 109 skimmed milk, 

250mL pineapple juice, 50g white meat chicken, 60g wholemeal bread, 109 

polyunsaturated margarine (75g carbohydrates; total 500 Cal; calorie contribution: 58% 

carbohydrate, 23% fat and 19% protein) (49). The subjects were required to consume 

the whole meal within 10 min. 

Samples were taken over 240 minutes in addition to another two samples withdrawn at 

fasting states to measure glucose, IRI and C-peptide. The samples were taken at -30, 0, 

30,60,90, 120, 150, 180,210, and 240 min in T2D group. The sampling in the healthy 
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group had an additional five samples at 10, 15, 20, 25, and 45 min, relative to meal 

ingestion. At each sample time the infusion is stopped and the first 2-ml blood 

withdrawn and discarded, prior to obtaining the sample for assay. 

4.2.1.2. Oral glucose tolerance test 

The oral glucose tolerance test consisted of 75g glucose syrup taken by mouth. 

Samples were taken over 240 min in addition to another two samples withdrawn at 

fasting states to measure glucose, IRI and C-peptide. The samples were taken at 

-30,0,30,60,90, 120, 150, 180,210, and 240 min in T2D group. The sampling in 

the healthy group had an additional five samples at 10, 15, 20, 25 and 45 min, 

relative to glucose intake. At each sample time the infusion is stopped and the first 

2-ml blood withdrawn and discarded, prior to obtaining the sample for assay. 

4.2.1.3. Assay methods 

Following blood sampling, the samples were separated as soon as possible. Blood was 

centrifuged (2000g, 5min) in a refrigerated (4°C) centrifuge and the plasma put into 

aliquots and frozen at _200 C immediately. 

Glucose was assayed using the glucose oxidase method (intra-assay CV < 2%). Insulin 

and C-peptide were assayed using a conventional radioimmunoassay (intra-assay CV < 

6%). 

4.2.2. Insulin secretion model 

The model provides two indices, MJ (postprandial responsiveness index) represents the 

ability of postprandial glucose to stimulate the ~-ce]]. Mo (fasting responsiveness index) 

represents the ability of fasting glucose to stimulate p-cells. The model is 

comprehensively described in Chapter 2. 

75 



4.3. Data analysis 

4.3.1. Model validation and parameter estimation during OGTT 

To assess the adequacy of the ISM with OaTT in healthy subjects and subjects with 

T2D. we evaluated practical (a posteriori) identifiability. and goodness of fit (143). The 

following criteria were used to assess model validity: 

• coefficient of variation (CV) measured as the fractional standard deviation 

(FSD) for the assessment of precision of parameter estimates 

• distribution of normalised residual for the assessment of model ability to fit data 

(goodness of fit) considering the measurement errors. and to detect any 

systematic deviation between the data and the model prediction 

• runs test to assess the distribution of the residuals and check for presence of 

model misfit. 

The package used to calculate Mo and Ml was version 1.0 of CPR (Calculating 

Pancreatic Responsiveness; written by R. Hovorka and H.C. Subasinghe. MIM Centre. 

City University, London. UK 1997). The model parameters Mo and Ml were estimated 

employing weighted non-linear regression analysis. The measured errors were assumed 

to be uncorrelated, with zero mean and a constant coefficient of variance (CV = 6%). 

The precision of parameters was obtained from the inverse of the Fisher information 

matrix and expressed as CV of parameter estimates (32). 

4.3.2. Incremental area under curve 

In addition to the parameters obtai?ed from the insulin secretion model. we evaluated an 

incremental area under the curve (AUC) from 0-90 minutes for glucose (AUCG). insulin 

(AUCl). and C-peptide (AUCc) during both MTT and OOTT. The incremental response 

was used to eliminate the effect of the basal values on the analysis. The calculation was 

done over 0-90 min because glucose concentrations reach the basal level by 90 min in 

the majority of subjects. Fasting plasma glucose (FPO). insulin (FP!). and C-peptide 
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(FPC) were calculated as the mean of fasting values (at -30 and 0 min) during both 

MTT and OGTT 

4.3.3. Statistical analysis 

A Spearman correlation analysis with Boniferroni correction was carried out to assess 

relationships between indices. Wilcoxon signed ranks test was applied to assess the 

difference between the model indices and glucose, insulin, and C-peptide responses 

during MTT and OGTT. 
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4.4. Results 

4.4.1. Healthy subjects 

4.4.1.1. Plasma glucose, insulin, and C-peptide 

Table 4-3 shows the individuals, fasting values of glucose, insulin, and C-peptide 

(HbAIC is not available). No significant difference in fasting values (FPa, FPI, and 

FPC) was observed between the two test days (P = NS). Plasma glucose, insulin, and 

C-peptide profiles during oaTT and MIT are shown in Figure 4-1. During MTT and 

OaTT, the glucose and insulin levels reached their peak values at 30-60 minutes. 

However the glucose returned to the fasting level more quickly during MTT at 90 min. 

The glucose levels during oaTT remained elevated for longer and returned to fasting 

levels at 120-150 minutes. 

Table 4-3. Fasting plasma glucose (FPG), insulin (FPI), and C-peptide (FPC) in healthy 

subjects. 

FPG FPI FPC 
Subject No. (mmol/I) (pmol/I) (nmolll) 

1 5.4* 73* 0.407* 

2 5.5 20 0.232 

3 5.2 35 0.360 

4 5.5 44 0.338 

5 4.9 34 0.258 

6 5.2 24 0.465 

7 5.6 40 0.288 

8 5.9 59 0.257 

9 5.2 39 0.283 

Mean 5.4 41 0.321 

SE 0.1 6 0.026 

• Mean of fasting values on two study days 
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Figure 4-1. Plasma glucose, insulin, and C-peptide profiles in healthy subjects during COIT 

and MIT (mean ± SE, N=9). 
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4.4.1.2. Model validation during OGTT in healthy subjects 

Parameter estimates were obtained with excellent precision (mean CV for M, and 

Mo ~ 4%). see Table 4-4. During OGTT the model had a tendency to underestimate 

plasma C-peptide at 5 min and overestimate at 10-20 min. However the non-significant 

Runs test indicates a random distribution of the residuals. The value and distribution of 

normalised residuals around the zero line after 20 minutes indicate a good model fit 

(Figure 4-2). 

4.4.1.3. Parameter estimation 

The results of parameter estimation during MTT and OGTT are given in Table 4-4. The 

parameters were computed with excellent precision during both MTT and oaTT (mean 

CV for M, and Mo $ 4%), see Table 4-4. Healthy subjects exhibited a wide range of 

postprandial pancreatic responsiveness, whereas fasting pancreatic responsiveness was 

low and comparable to those observed in subjects with type 2 diabetes (32). 

Table 4-4. Pancreatic responsiveness indices (M, and Mo) during MTT and OGrr in healthy 

subjects: 

Subject 
MTT OGTT 

No. 
M. CV Mo CV M. CV Mo CV 

(10.9 x 1/min) (%) (10.9 x 1/min) (%) (10.11 x 1/min) (%) (10.11 x 1/min) (%) 

1 54.55 5* 6.36 3 34.29 3. 3.22 4 

2 21.64 4 2.04 4 16.12 3 3.55 4 

3 43.85 5 3.72 5 54.63 4 4.88 5 

4 102.45 5 6.43 2 33.64 3 2.23 5 

5 52.08 4 4.04 4 8.34 6 2.28 5 

6 17.74 5 2.97 3 23.61 4 3.21 4 

7 57.68 4 3.59 4 35.51 4 3.95 4 

8 53.78 4 2.75 4 40.43 3 2.61 6 

9 47.40 4 3.46 4 30.70 3 4.16 3 

Mean 50.13 4 3.93 4 30.81 4 3.34 4 

SE 8.11 0 0.51 0 4.53 0 0.30 0 

.Precision of parameter estimate expressed as coefficient of variation 
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Figure 4-2. Normalised residual (difference between calculated and measured C-peptide 

concentration divided by measurement error) vs. time in healthy subjects during OGTT (top 

panel) and during MIT (bottom panel), (mean ± SE). 
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4.4.1.4. Comparability of pancreatic responsiveness during MIT and OGIT 

Pancreatic responsiveness indices (M, and Mo), and glucose, insulin, and e-peptide 

responses during MIT and oaTT are given in Table 4-5. M, was about 35% higher 

during MIT than OGrT (p = NS), while Mo was comparable. ooIT resulted in a two 

fold higher glucose incremental Ave than MIT (P = 0.055), while e-peptide 

incremental AVe was only 1.2 fold higher (P = NS). Insulin incremental AVe was 

comparable and strongly correlated between tests (rs = 0.90, P < 0.01). Wilcoxon signed 

ranks test and Spearman correlation are summarised in Table 4-6. Figures 4-3 to 4-6 

summarise the pancreatic responsiveness indices (M, and Mo) results and the 

relationship between indices. 

Table 4-5. Pancreatic responsiveness indices (M. and Mo), and glucose, insulin, and C-peptide 

incremental area under curve (O-90min) during MIT and OGIT in healthy subjects. 

Subject 
MTT OGTT 

No. 
M Mo AUCG AUCc AUC, M, Mo AUCo AUCc AUC, 

{10·9 
X {10·9 x (mmollli (nmollli (mmollli (10·' x (10·' x (mmollli (nmol/ll (mmollli 

1/mln) 1Imln) 90mln) 9amln) 9amln) 1/mln) 1/mln) 90mln) 90mln) 9amln) 

1 54.55 6.36 116.0 76.48 19.1 34.29 3.22 200.5 72.83 23.3 

2 21.64 2.04 182.0 42.13 11.7 16.12 3.55 356.5 64.10 12.3 

3 43.85 3.72 43.5 52.53 13.7 54.63 4.88 103.8 96.50 19.7 

4 102.45 6.43 35.5 75.23 26.6 33.64 2.23 154.3 81.88 20.2 

5 52.0B 4.04 98.3 74.13 12.9 B.34 2.28 232.0 25.65 11.8 

6 17.74 2.97 133.0 9.38 5.9 23.61 3.21 198.5 53.73 8.4 

7 57.68 3.59 121.3 79.95 15.8 35.51 3.95 114.8 88.50 17.2 

8 53.78 2.75 95.0 79.08 18.3 40.43 2.61 194.0 99.15 22.0 

9 47.4 3.46 59.8 31.20 8.0 30.7 4.16 176.8 48.00 2.9 

Mean 50.13 3.93 98.3 57.79 14.7 30.81 3.34 192.3 70.04 15.3 

SE 8.11 0.51 15.6 8.49 1.9. 4.53 0.30 24.8 8.16 2.3 
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Table 4-6. Wilcoxon signed ranks test and Speannan correlation with Bonferroni adjustment 

between pancreatic responsiveness indices (M, and Mo) and AUCG, AUCc, and AVC, during 

MTT and OGTT. 

Speannan correlation Wilcoxon signed ranks test 

Correlation P-value test P-value 

M, 0.35 0.356 -2.037 0.190 

Mo -0.28 0.460 -0.296 0.767 

AUCG 0.62 0.385 -2.547 0.055 

AUCc 0.62 0.385 -1.481 0.139 

AUC, 0.90 0.005 -0.533 0.594 

P=NS P = NS 

60 

50 4 

~20 

10 

0.1...---- 0"'-----

MIT OGIT MIT OGIT 

Figure 4-3. Pancreatic responsiveness indices (M! and Mo) during MTT and OGTT in healthy 

subjects, (mean ± SE, N = 9). 
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Figure 4-5. Postprandial pancreatic p-cell responsiveness during OGTT and MIT in healthy 
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Figure 4-6. Fasting pancreatic p-cel1 responsiveness during OGTT and MIT in healthy subjects 

(N =9). 
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4.4.2. Subjects with type 2 diabetes 

4.4.2.1. Plasma glucose, insulin, and C-peptide 

Newly presenting type 2 diabetes demonstrated elevated fasting plasma glucose and 

HbAlc as indicate for the lack of control. At the same time, fasting plasma insulin was 

elevated which might indicate a high degree of insulin resistance (159). Individuals 

fasting values of glucose, insulin, and C-peptide together with HbAlc are given in Table 

4-7. No significant difference in fasting values (FPG, FPI. and FPC) was observed 

between the two test days (P = NS). Plasma glucose, insulin, and C-peptide profiles 

during OGrr and MTT are shown in Figure 4-7. The glucose and insulin levels 

remained elevated for longer than in non-diabetic subjects with peak values reached at 

60-120 minutes. 

Table 4-7. Fasting plasma glucose (FPG). insulin (FPI). C-peptide (FPC), and glycated 

haemoglobin (HbAIC) in subjects with type 2 diabetes. 

Subject No. 
FPG FPI FPC HbA10 

(mmolll) (pmolll) (nmol/l) (%) 
1 14.6* 36* 0.368- 13.8 
2 9.1 21 0.653 9.2 
3 14.6 12 0.563 13.9 
4 9.9 32 0.768 8.0 
6 10.7 129 1.095 8.4 
6 7.7 78 1.133 9.5 
7 10.7 50 0.613 8.7 
8 12.6 6 0.363 11.2 
9 15.8 113 0.990 11.1 
10 15.5 95 0.710 13.2 
11 11.6 128 0.258 11.6 
12 9.9 164 0.880 11.5 
13 6.9 138 0.700 12.5 
14 10.0 155 0.583 9.3 
15 5.9 170 1.280 10.7 
16 10.3 138 1.023 12.5 
17 9.9 122 0.723 12.0 
18 11.9 53 0.705 12.6 
19 10.8 135 0.483 11.1 
20 7.6 156 0.773 9.8 
Mean 10.8 97 0.733 11.0 
SE 0.6 13 0.061 0.4 

• Mean of fasting values on two study days 

86 



20 

_ 18 
:::::::: 
(5 
E 16 
E -(I) 14 en 
0 
0 ::s 12 
(!) 

10 

8 

70 

60 

_ 50 
:::::::: ::s 
E 40 -c: 
'3 30 
en c 

20 

10 

0 

1800 

::::- 1600 

~ 1400 
c.. -(I) 1200 
"0 

E. 1000 
(I) 
c.. o 800 

600 

I : OGnl --.- MTT 

-30 0 30 60 90 120 150 180 210 240 

-30 0 30 60 90 120 150 180 210 240 

-30 0 30 60 90 120 150 180 210 240 

Time (min) 

Figure 4-7. Plasma glucose, insulin, and C-peptide proflles during MTI and OaTI in subjects 

with T2D (mean ± SE, N=20). 
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4.4.2.2. Model validation during OGTT in subjects with type 2 diabetes 

Parameter estimates were obtained with good precision (mean CV of parameter 

estimates for Ml and Mo ~ 10% and 5%, respectively), see Table 4-8. The magnitude 

and distribution of normalised residuals around the zero line indicate a good model fit 

(Figure 4-8). The Runs test was not significant indicating a random distribution of the 

residuals. 
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Figure 4-8. Nonnalised residual (difference between calculated and measured C-peptide 

concentration divided by measurement error) in subjects with T2D during OGrr (top panel) 

and MTT (bottom panel), (mean ± SE). 
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4.4.2.3. Parameter estimation 

Parameters were estimated with good precision during both MlT and OGlT (mean CV 

of parameter estimates for MJ and Mo ~ 10% and 5%, respectively). Individual estimates 

of pancreatic responsiveness indices during MIT and OGTI together with their 

precision are presented in Table 4-8. 

Table 4-8. Pancreatic responsiveness indices (M, and Mo) during MTT and OGTT in subjects 

with T2D. 

Subject 
MIT OGTT 

No. 

MI CV Mo CV MI CV Mo CV 

(10.9 x 1/min) (%) (10.9 x 1/min) (%) (10.9 x 1/min) (%) (10.9 x 1/mln) (%) 

1 7.12 6* 1.42 5 3.83 5 1.23 4 

2 14.92 6 3.80 6 8.61 7 4.74 5 

3 6.31 10 2.73 4 2.15 15 2.63 4 

4 43.39 7 4.19 6 12.83 6 4.69 5 

5 35.75 8 6.99 4 14.09 10 7.13 5 

6 23.18 10 9.14 5 19.46 7 9.80 5 

7 12.84 8 4.07 5 6.71 7 3.29 5 

8 9.53 7 1.84 5 4.63 6 1.81 5 

9 8.18 9 4.68 4 3.29 15 3.72 4 

10 7.09 12 2.67 5 2.22 20 2.63 5 

11 1.69 15 0.97 4 3.17 7 1.50 5 

12 26.86 7 7.05 5 3.74 9 1.84 6 

13 6.08 11 3.81 6 7.52 8 7.93 4 

14 12.19 7 4.67 5 1.88 15 3.27 5 

15 29.08 7 14.33 5 12.75 7 13.67 4 

16 16.31 7 5.40 5 5.47 13 5.63 5 

17 8.53 9 4.44 5 5.78 12 5.13 4 

18 7.04 6 2.53 6 3.94 13 3.97 5 

19 15.93 7 2.81 4 8.83 a 3.01 4 

20 11.88 10 6.25 5 12.88 7 7.16 5 

Mean 15.19 9 4.69 5 7.19 10 4.74 5 

SE 2.46 1 0.68 0 1.09 1 0.70 0 

*Precision of parameter estimate expressed as coefficient of variation 
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4.4.2.4. Comparability of pancreatic responsiveness during MIT and OGIT 

M. was two fold higher during MIT than OGrr (p = 0.001), see Table 4-9 and Fig 4-9. 

The two indices were correlated (rs = 0.62; P < 0.05). Mo was identical and highly 

correlated during MIT and OGTT (rs = 0.70; P < O.Ol). Glucose response during 

OGrr was higher than during MTT (P = 0.001), however the insulin and C-peptide 

responses were slightly higber during MTT (P = NS). Pancreatic responsiveness indices 

(M) and Mo), and glucose, insulin, and C-peptide response during MTT and OGTT are 

presented in Table 4·11. 

Table 4·9. Wilcoxon signed ranks test and Speannan correlation with Bonferroni adjustment 

between pancreatic responsiveness indices (M) and Mo) and AUCo, AVCc, and AVC. during 

MTT and OGTT. 

Spearman correlation Wilcoxon signed ranks test 

Correlation P-value test P-value 

M. 0.62 0.020 -3.696 0.001 

Mo 0.70 0.005 -0.672 0.502 

AUCG 0.48 0.155 -3.696 0.001 

AVec 0.44 0.275 ·0.859 0.390 

AUC. 0.49 0.135 -1.549 0.121 

P = 0.001 P=NS 

5 

o 2 
~ 

o~---

MTT OGTT MTT OGTT 

Figure 4-9. Pancreatic responsiveness indices (M) and Mo) during MIT and OGIT in 

subjects with T2D, (mean ± SE, N = 20). 
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4.4.2.5. Correlation between ~-ce" responsiveness and glucose control 

The p-cell response during OGTT represents the effect of postprandial glucose on 

insulin secretion, while it represents the effect of postprandial glucose and the effect due 

to the fat and protein contents of the meal during MTT. The difference between MI 

during MIT and OGTT (~MI) theoretically could represent the p-cell response to the 

non-carbohydrate meal contents during MTT and could account for the effect of fat and 

protein on insulin secretion (incretin effect). 

Postprandial p-cell responsiveness (Mv during MTT and OGTT was strongly correlated 

with HbA1C and FPG. However ~MI was correlated with HbA1C (rs = 0.51, P was not 

significant after conservative adjustment) but not with FPG. Fasting p-cell 

responsiveness during MTT and OGTT was strongly correlated with FPG. Table 4-10 

shows the results of the Spearman correlation analysis between glucose control (HbA)c 

and FPG) and fasting and postprandial p-cell responsiveness during MTT and OGIT. 

The correlations between glucose control and the difference between MI during MIT 

and OGTT are also given. 

Table 4-10. Spearman correlation with Bonferroni adjustment between pancreatic 

responsiveness indices (M, and Mo) during MTI and CaTI and ~Ml (difference between M, 

during MTI and OaTI) with FPa and HbA1C in subjects with newly presenting type 2 

diabetes. 

HbA1c 

FPG 

* P< 0.05 

** P < 0.01 

Fasting p-cell 

responsiveness (Mo) 

MTT OGIT 

-0.50 -0.39 

-0.59 -0.73** 

Postprandial p-cell 
6M1 

responsiveness (M1) 

MIT OGIT (MIT-OGTI) 

-0.71** -0.59 -0.51 

-0.48 -0.63* -0.15 
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Table 4-11. Pancreatic responsiveness indices (MI and Mo), and glucose, insulin, and C-peptide 

incremental area under curve (O-90min) during MTI and OOTI in subjects with T2D. 

Subject 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

MIT OGIT 

Mo AUCG AUCc AUC, Mo AUCo AUCc AUC, 

(10-9 X (10-9 x (mmallll (nmallll 

1/min) 1/min) 90min) 90min) 

(mmollll (10-11 x (10-11 x (mmollll (nmollll (mmollll 

90min) 1/min) 1/min) 90min) 90min) 90mln) 

7.12 1.42 

14_92 3.80 

6.31 2.73 

43.39 4.19 

35.75 6.99 

23.18 9.14 

294 

405 

320 

159 

198 

195 

12.84 4.07 330 

9.53 1.84 242 

8.18 4.68 579 

7.09 2.67 272 

1.69 0.97 230 

26.86 7.05 305 

6.08 3.81 216 

12.19 4_67 344 

29.08 14.33 279 

16.31 5.40 422 

8_53 4.44 293 

7.04 2_53 437 

15.93 2.81 198 

11.88 6.25 278 

23.55 

44.25 

3.1 3.83 1.23 444 21.90 1.9 

12.6 8.61 4.74 552 34.50 4.5 

19_20 4.0 2.15 2.63 465 18.30 1.7 

64.05 22.7 12.83 4.69 327 62.25 19.5 

57.30 18.5 14.09 7.13 434 66.45 8.6 

44.40 12.7 19.46 9.80 387 53.40 25.4 

60.90 16.2 6.71 3.29 279 25_80 2.7 

22.65 3.2 4.63 1.81 428 38.70 7.6 

51.30 9.3 3.29 3.72 560 20.85 3.4 

10_95 4-1 2_22 2_63 360 8_25 1.4 

9.00 6_6 3.17 1.50 582 17.85 7.9 

71.10 27.0 3.74 1_84 468 6.00 22.1 

3.75 11.8 7.52 7.93 372 22.50 2.9 

48.00 21.8 1.88 3.27 437 15.60 2.5 

79.20 

71.10 

27.00 

22.80 

31.65 

40.95 

29.1 12.75 13.67 509 92.55 31.3 

10.2 5.47 5.63 536 43.80 14.9 

5.0 5.78 5.13 398 29.85 3.2 

4.2 3.94 3.97 414 16.35 18.0 

6.8 8.83 3.01 281 33.30 6.2 

14.9 12.88 7.16 372 39.30 7.6 

Mean 15.19 4.69 285 

18 

40.16 

5_05 

12.2 7.19 4.74 430 33.38 9.7 

SE 2.46 0.68 1.8 1.09 0.70 20 4.85 2.0 
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Figure 4-10. Relationship between individual estimates of postprandial pancreatic ~-cell 

responsiveness indices during MIT and OGIT (top panel), and between fasting pancreatic 

p-cell responsiveness indices during MTT and oorr (bottom panel), (N = 20). A unity line is 

shown. 
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Figure 4-11. Postprandial pancreatic ~-cell responsiveness during OOTI and MIT in subjects 

with T2D (N =20). 
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Figure 4-12. Fasting pancreatic ~-cell responsiveness during OOIT and MIT in subjects with 

T2D (N=20). 
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4.5. Discussion 

The insulin secretion model was validated successfully during the oral glucose tolerance 

test. The validity was assessed and supported by the precision of parameter estimates, 

the distribution and statistics ofnonnalised residuals, and the non-significant Runs test. 

Parameter estimates were calculated with high precision (CV of parameter estimates 

< 10%) in both normal subjects and subjects with T2D. The behaviour of the normalised 

residuals was satisfactory in terms of both distribution and magnitude. These results 

suggest that a standard OGIT results in data that allow the insulin secretion model 

assessment over a wide range of p-cell responsiveness. The model fit in healthy group 

was not as good as in T2D group, which could be due to the subject characteristics 

(young and lean subjects). The healthy subjects have a high glucose and C-peptide 

variation in response to glucose load. 

p-cell responsiveness indices were proposed during NGTT (121) and clamp (77), 

however the oral load (OGIT and MIT) has some advantages with respect to NGIT or 

clamp approaches. It allows an accurate assessment of the p-cell function under 

physiological conditions, and represents a typical postprandial exposure of the pancreas 

to glucose and gut and vagal hormones. It is easy to perfoml, reducing the labour and 

financial costs, making it an appealing tool for population studies. 

Other methods exist to measure pancreatic ~-cell responsiveness, e.g. hyperglycaemic 

clamp (77), homeostasis model assessment (HOMA) (85), and continuous infusion of 

glucose with model assessment (CIGMA) (79). p-cell responsiveness indices were also 

derived from the fasting measures of plasma glucose and insulin (85) and during MIT 

(119) and OGTT (118; 126; 160). The postprandial secretion index Ml is basically the 

ratio (.1C-peptide secretion)/(Aplasma glucose concentration) and thus is very similar to 

that obtained by the CIGMA method, but evaluated during dynamic conditions after 

meal ingestion. Simple methods have been used in the past to assess postprandial 

insulin secretion during MIT, such as insulin incremental concentration at 30 min, or 

insulin incremental concentration at 30 min over glucose incremental concentration at 

30 min. However, methodological considerations (the effect of the measurement error 

and the inter-subject variability in insulin and C-peptide kinetics) suggest the superiority 
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of the model-based method over a simple one or two concentration-point assessment. 

Furthermore, the model-based method has been shown to be reproducible in subjects 

with Type 2 diabetes as reported in Chapter 5. 

Comparability o/pancreatic responsiveness in healthy subjects 

In healthy subjects, OGIT resulted in a two fold higher glucose incremental AUC than 

MIT, while C-peptide incremental AUC were only 1.2 fold higher (P = NS). Marena et 

al (161) observed higher glucose response to OGTT than MTT, and similar insulin and 

C-peptide responses in healthy sUbjects. This could be explained by the fat content of 

MIT stimulating the secretion of incretin hormones, which in tum stimulate insulin 

secretion (75; 76; 162). As a result of high C-peptide secretion during MTT with respect 

to the glucose concentration, MTT resulted in 1.5 fold higher postprandial pancreatic 

J3-cell responsiveness than OGTI. In healthy subjects, no correlation was observed 

between glucose and C-peptide responses across MTT and OGIT. Explaining the lack 

of correlation between Ml'S. Robert et al (163) also reported poor correlation (rs = 0.15) 

between 2hour glucose values after OGIT and standard meal in health pregnant 

women. 

Comparability o/pancreatic responsiveness in subjects with T2D 

hl subjects with T2D, glucose response during OGIT was higher than during MTT (P = 
0.001). whereas the insulin response was slightly higher during MTT (P = NS). Marena 

et al (161) also observed a higher glucose response to OGTT than MTT, and similar 

insulin and C-peptide responses in subjects with T2D. Ml was two fold higher during 

MIT than OGIT (P = 0.001). TIle two indices were correlated. The higher insulin 

response during MIT is explained by the stimulatory effect of incretin hormones on 

insulin secretion (162). as a result of the meal composition which contain carbohydrate, 

fat, and protein. Glucagon-like peptide and gastric inhibitory polypeptide are glucose 

and fat dependent gut hormones (164). Mo was identical and highly correlated. 

The J3-cell response during OGTT represents the effect of the postprandial glucose on 

insulin secretion, while it represents the effect of postprandial glucose and the effect due 

to the fat and protein contents of the meal during MIT. It is suggested that the 

difference between Ml during MIT and OGIT (~Ml) represents the effect of fat and 

protein on insulin secretion (incretin effect). The effect of incretin on insulin secretion 
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and postprandial glucose control could be a good explanation for the correlation 

between ~Ml and HbAlc and the lack of correlation with FPG. HbAIC was more 

strongly correlated with the postprandial than with fasting p-cen responses during MTT 

and OGTT. On the other hand FPG was strongly correlated with the fasting p-cell 

responsiveness during MIT and OGTT. This suggests that ~Ml is a clinically relevant 

index of the incretin effect and that it could be used in clinical studies to characterise the 

phannacodynamics of the incretin effect as compared to the measurement of incretin 

hormones, which characterise the pharmacokinetics properties. 

4.6. Summary 

The insulin secretion model was validated during OGIT in healthy subjects, and 

subjects with T2D. The model is able to assess pancreatic p-cell responsiveness from 

MTT as well as OGTT data. However the postprandial p-cen responsiveness during 

MIT is higher than that measured during OGTT, most likely due to the stimulatory 

effect of incretin hormones on insulin secretion during MIT. The meal tolerance test 

provides more physiological challenge to the p-cell than OGTT, enhances p-cell 

responsiveness compared to OGTT, and facilitates more comprehensive assessment of 

p-cell function. 
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5. Reproducibility of pancreatic l3-cell responsiveness in healthy 

subjects and subjects with type 2 diabetes 

5.1. Introduction 

Pancreatic p-cell responsiveness can be quantified by a model-based method during 

meal tolerance test (MIT) (32). In the previous chapter this model (insulin secretion 

model; ISM) was validated also to quantify pancreatic p-sell responsiveness during oral 

glucose tolerance test (OGTT). 

ISM measures the prehepatic insulin secretion and assesses pancreatic p-cell 

responsiveness giving postprandial pancreatic p-cell responsiveness (M l ; ability of 

postprandial glucose to stimulate C-peptide secretion) and basal pancreatic p-cell 

responsiveness (Mo; ability of basal glucose to stimulate C-peptide secretion). However 

these quantified measures were not studied for reproducibility. 

In the present study we investigated the reproducibility of the quantified measures of the 

pancreatic p-cell responsiveness (Ml and Mo) and glucose, insulin, and C-peptide 

responses during both MIT and OGTT. In part one, we assessed the reproducibility 

during MTT and OGIT in healthy subjects. In the second part and due to the limitation 

of data availability, we investigated the reproducibility during MTT but not OGTT in 

subjects with type 2 diabetes (T2D). 
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5.2. Methods 

5.2.1. Subjects and experimental design 

Two groups of subjects participated in the current study namely: healthy group. and 

T20 group. 

Healthy group. Healthy male subjects (N=9. age 27.6 ± 2.3 year. BMI 24.2 ± O.S 

kg/m2; mean ± SE) participated in the study see Table (5-1). Each subject in this group 

underwent MTT and OGTT twice on four separate occasions. one week apart. Part of 

the data obtained from healthy subjects was used in the previous chapter. 

Table 5-1. Demographic data for healthy subjects participating in the study (N - 9). 

Sex Age Height Weight 8MI 

(M/F) (year) (m) (kg) (kg/m2) 

Mean 9/0 28 1.80 78.1 24.2 

SE 2 0.02 1.5 0.5 

T2D group. Twelve male subjects with T20 (N = 12. age 46.3 ± 3.0 year. BMI 

29.2 ± 1.6 kg/m2
; mean ± SE) participated in the study. see Table 5-2. Each subject 

underwent MTT twice in two separate occasions one day apart. 

Table 5-2 Demographic data for subjects with T2D (N = 9). 

Sex Age Height Weight 8MI 

(M/F) (year) (m) (kg) (kg/m2) 

Mean 1210 46 1.70 85.0 29.2 

SE 3 0.04 7.2 1.6 

5.2.1.1. Meal tolerance test 

The meal tolerance test consisted of digestion of 15g Weetabix. 109 skimmed milk. 

250mL pineapple juice. SOg white meat chicken. 60g wholemeal bread. 109 

polyunsaturated margarine (7Sg carbohydrates; total 500 Cal; calorie contribution: 58% 
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carbohydrate, 23% fat and 19% protein) (49). The subjects were required to consume 

the whole meal within 10 min. 

Samples were taken over 240 minutes in addition to one sample withdrawn in the 

fasting states to measure plasma glucose, insulin, and C-peptide. The samples were 

taken at -30,0,30,60,90,120,150, 180,210, and 240 min in T2D group. The sampling 

in the healthy group had an additional six samples at -15, 10, 15, 20, 25 and 45 min, 

relative to meal ingestion. At each sample time the infusion was stopped and the first 

2-ml blood withdrawn and discarded, prior to obtaining the sample for assay. 

5.2.1.2. Oral glucose tolerance test 

The oral glucose tolerance test consisted of 75g glucose syrup taken by mouth. 

Samples were taken over 240 min in addition to another two samples withdrawn in 

the fasting state to measure glucose, insulin, and C-peptide. The samples were 

taken at -30, -15, 0, 10, 15,20,25,30,45,60,90, 120, ISO, 180,210 and 240 min 

relative to glucose intake. At each sample time the infusion was stopped and the 

first 2-ml blood withdrawn and discarded, prior to obtaining the sample for assay. 

5.2.1.3. Assay methods 

Glucose was assayed using the glucose oxidase method (intra-assay CV < 2%). Insulin 

and C-peptide were assayed using conventional radioimmunoassay (intra-assay CV < 

6%). 

5.2.1.4. Insulin secretion model 

The insulin secretion model was used to quantify pancreatic responsiveness using MTT 

or OGTT data, providing basal sensitivity (Mo; ability of basal glucose to stimulate 

C-peptide secretion) and postprandial sensitivity (Ml ; ability of postprandial glucose to 

stimulate C-peptide secretion) (32). The package used to calculate Mo and Ml was 

version 1.0 of CPR (Calculating Pancreatic Responsiveness; written by R. Hovorka and 

H.C. Subasinghe, MIM Centre, City University, London, UK 1997). The model 
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parameters Mo and MI were estimated employing weighted non-linear regression 

analysis. The measured errors were assumed to be uncorrelated, with zero mean and a 

constant coefficient of variance (CV = 6%). The precision of the parameters was 

obtained from the inverse of the Fisher information matrix and expressed as CV of 

parameter estimates. For more detailed description see Chapter 2. 

5.2.2. Data analysis 

5.2.2.1. Incremental area under curve 

In addition to the parameters obtained from the insulin secretion model, we evaluated an 

incremental area under the curve from 0-90 minutes for glucose (AUCG), insulin 

(AUCI), and C-peptide (AUec) during both MTT and OGTT. 

5.2.2.2. Statistical analysis 

Reproducibility was assessed by ANOVA allowing for effects due to sUbjects. giving 

estimates of within subject CV, within subject variation as % of total variation and 

95% range for difference between duplicate measurements. Comparison was made by 

Spearman correlation analysis and Wilcoxon signed ranks test. The results are 

expressed as mean ± SE unless stated otherwise. 
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5.3. Results 

5.3.1. Healthy group 

5.3.1.1. Plasma glucose, insulin, and C-peptide 

Plasma glucose, insulin and C-peptide profiles during the repeated OaTT and MTT are 

shown in Figure 5-1 and 5-2 respectively. 

5.3.1.2. Parameter estimation during OGTT and MIT 

Parameter estimates were obtained with high precision during OaTT and MTT (CV of 

parameters estimates for Ml and Mo :s 6%). The individual estimates of the pancreatic 

responsiveness indices during oaTT and MTT together with their precision are 

summarised in Tables 5-3 and 5-4, respectively. 

Table 5-3. Pancreatic responsiveness indices (MI and Mo) during OGTT at occasions 1 and 2 in 

healthy subjects. 

Subject M' CV MI2 CV Mo' CV Mo2 CV 

No. (10.9 x 1/min) % (10.9 x 1/min) % (10.9 x 1/min) % (10.9 x 1/min) % 

1 34.29 3- 33.62 4 3.22 4 6.72 3 

2 16.12 3 27.42 4 3.55 4 3.81 4 

3 54.63 4 30.65 5 4.88 5 4.76 4 

4 33.64 3 25.98 3 2.23 5 2.93 4 

5 8.34 6 55.64 4 2.28 5 5.52 5 

6 23.61 4 22.92 4 3.21 4 3.69 3 

7 35.51 4 42.95 3 3.95 4 2.38 4 

8 40.43 3 28.07 4 2.61 6 1.86 4 

9 30.70 3 39.5 4 4.16 3 4.38 4 

Mean 30.81 4 34.08 4 3.34 4 4.01 4 

SE 4.53 0 3.45 0 0.30 0 0.51 0 

.Precision of parameter estimate expressed as coefficient of variation 
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Table 5-4. Pancreatic responsiveness indices (M, and Mo) during MIT at occasions 1 and 2 in 

healthy subjects. 

Subject MI1 CV MI2 CV M01 CV Mo2 CV 

No. (10.9 x 1/min) % (10.9 x 1/min) % (10.9 x 1/min) % (10.9 x 1/min) % 

1 54.6 5- 56.6 5 6.36 3 7.16 3 

2 21.6 4 38.5 4 2.04 4 3.65 4 

3 43.9 5 59.1 3 3.72 5 2.63 5 

4 102.5 5 53.7 3 6.43 2 2.01 5 

5 52.1 4 18.0 6 4.04 4 2.4 4 

6 17.7 5 44.1 5 2.97 3 3.96 3 

7 57.7 4 34.2 4 3.59 4 2.63 5 

8 53.8 4 72.4 4 2.75 4 2.79 3 

9 47.4 4 60.4 4 3.46 4 4.55 3 

Mean 50.1 4 48.6 4 3.9 4 3.5 4 

SE 8.1 0 5.5 0 0.51 0 0.53 0 

*Precision of parameter estimate expressed as coetlicicnt of variation 
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Figure 5-1. Plasma glucose, insulin, and C-peptide profiles (mean ± SE, N = 9) in healthy 

subjects during OGTI on two separate occasions. 
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Figure 5-2. Plasma glucose, insulin, and C-peptide profiles (mean ± SE, N = 9) in healthy 

subjects during MIT on two separate occasions. 
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5.3.1.3. Reproducibility 

Reproducibility of glucose, insulin, C-peptide, and pancreatic responsiveness indices 

(Ml and Mo) during MTT and OGTT are reported in Table 5-7. Within subjects 

variation (CV) was high for all variables during both MTT and OGTT (CY :::= 26%). 

The within subjects variation as a % of total variation was also quite high (CV:::= 31 %) 

except for insulin (CY ~ 19%). In general the reproducibility of parameters during 

MIT was slightly better than OGTT, while it was markedly better for Ml and AUCc 

during MTT. No significant difference was found between repeated measures during 

MIT and OGTT. However, no significant correlation was found between repeated 

measures during MTT and OGTT except for AUCl (Table 5-5 and 5-6). Figures 5-3 

and 5-4 show the relationship between individual estimates of repeated measures of 

pancreatic p-cell responsiveness (Ml and Mo) during OGTT and MTT. 

Table 5-5. Spearman correlation and Wilcoxon signed ranks test with Bonferroni corrections 

between repeated measures during OGIT in healthy subjects. 

Spearman correlation Wilcoxon signed ranks test 
Variables 

correlation P-value Test P-value 

MI 0.00 1.000 -0.059 0.953 

Mo 0.22 0.576 -1.007 0.314 

AUCG 0.75 0.100 -0.059 0.953 

AUCc 0.48 0.187 -0.178 0.859 

AUC1 0.80 0.048 -0.889 0.374 

Table 5-6. Spearman correlation and Wilcoxon signed ranks test with Bonferroni corrections 

between repeated measures during MIT in healthy subjects. 

Spearman correlation Wilcoxon Signed ranks test 
Variables 

correlation P-value Test P-value 

MI 0.00 1.000 -0.059 0.953 

Mo -0.38 0.318 -0.356 0.722 

AUCG 0.53 0.145 -1.599 0.110 

AUCc 0.20 0.606 -0.296 0.767 

AUC. 0.85 0.019 -0.889 0.374 
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Table 5-7. Reproducibility of pancreatic responsiveness indices (M, and Mo) and glucose, insulin, and C-peptide responses during MTT and OGTT in 

healthy subjects. Mean ± SE values are reported. 

MIT OGIT 

MI Mo AUCG AUCc AUC1 MI Mo AUCG AUCc AUC, 
(10" x 1/min) (10" x 1/min) (mmoIN9Omin) (nmoUII90min) (mmoUl/901min) (10" x 1/min) (10" x 1/min) (mmolll/9Omin) (nmoUl/90min) (mmoW90/min) 

Day 1 50.13±B.11 3.62±0,45 9B.25±15.59 57.79±B.49 14.7±2.1 32.81±4.53 3.34±O.30 192.33±24.77 70.04±B.16 15.3±2.3 

Day 2 4B.57±5.49 3.53±O.53 76.69±9.66 59.02±6.04 16.5±2.7 34.0B±3.45 4.00±O.51 185.11±20.72 72.72±2.09 1B.1±2.9 

Mean 49.35±5.2B 3.4B±0,45 87.47±11.05 58.40±5.41 15.6±2.2 32.45±2.78 3.67±O.31 188.72±18.12 71.38±3.86 16.7±2.4 

Within subjects CV 36% 34% 36% 34% 26% 42% 33% 30% 37% 29% 

Within subjects variation 

as % of total variation 39% 35% 31% 43% 16% 66% 45% 35% 72% 19% 

95% range for difference 

between duplicate 

measurements ±17.58 ±1.23 ±26.6 ±19.60 ±0.64 ±13.04 ±1.10 ±54.50 ±25.84 ±0.72 
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(N = 9). 
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5.3.2. Type 2 diabetes group 

5.3.2.1. Plasma glucose, insulin, and C-peptide 

The repeated measures of pl~ma glucose, insulin and C-peptide concentration during 

MIT are shown in Figure 5-5. 

5.3.2.2. Parameter estimation during MIT 

Parameter estimates were obtained with high precision during MIT. Mo was estimated 

with excellent precision on both occasions (CV ~ 7%). Ml was estimated with good 

precision in both occasions (CV ~ 23%), except in one subject (CV = 27 and 86% on 

occasion 1 and 2, respectively). The individual estimates of the pancreatic 

responsiveness during MTT together with their precision are summarised in Table 5-8. 

Table 5-8. Pancreatic responsiveness indices (Ml and Mo) during MIT on occasions 1 and 2 in 

subjects with T2D. 

Subject MI' CV MI2 CV Mo' CV Mo2 CV 

No. (10·g x 1/min) % (10.9 x 1/min) % (10.9 x 1/min) % (10.9 x 1/min) % 

1 57.61 5- 44.02 5 4.90 6 9.01 5 

2 12.92 23 42.61 6 12.37 3 9.26 4 

3 38.39 10 47.81 7 15.28 4 11.21 5 

4 56.56 8 50.24 6 19.39 5 15.00 5 

5 8.97 27 2.51 86 6.10 5 7.35 5 

6 28.14 7 27.09 7 8.59 5 10.12 4 

7 20.61 7 28.80 8 7.28 5 9.62 5 

8 51.15 12 41.09 10 18.17 4 16.53 4 

9 26.66 5 24.76 6 6.50 5 9.09 4 

11 2.83 9 13.33 6 1.37 5 4.45 5 

12 22.78 5 20.85 6 10.44 5 7.55 7 

13 12.50 8 13.69 7 5.25 5 4.63 5 

Mean 28.26 11 29.73 13 9.64 5 9.49 5 

SE 5.42 2 4.46 7 1.62 0 1.03 0 

*Precision of parameter estimate expressed as coefficient of variation 
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Figure 5-5. Plasma glucose, insulin, and C-peptide profiles during MIT at two separate 

occasions in subjects with T2D (mean ± SE, N=12). 
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5.3.2.3. Reproducibility 

Reproducibility of glucose, insulin, C-peptide, and pancreatic responsiveness indices 

(M. and Mo) during MTT are reported in Table 5-9. Within subjects variation (CV) was 

acceptable for all variables (CV ~ 27%). The within subjects variation as a % of total 

variation also was quite low (CV ~ 11 %). No significant difference was found between 

repeated measures. They were significantly and tightly correlated (rs > 0.75, and 

P < 0.05), see Table 5-10. Figure 5-6 shows the relationship between individual 

estimates of repeated measures for pancreatic ~-cell responsiveness indices (M. and 

Mo) during MIT. 

Table 5-9. Reproducibility of pancreatic responsiveness indices (M. and Mo) and glucose, 

insulin, and C-peptide responses during MTT in subjects with T2D (Mean ± SE). 

MTT 

MI Mo AUCG AUCc AUCI 

(10.9 x 1/min) (10.9 x 1/min) (mmoIl1l90min) (nmolll/90min) (mmol/1I90/min) 

Day 1 2B.3±5.42 9.64±1.6 293.1±31.6 75.B:t10.7 21.9:t3.5 

Day 2 29.7±4.4S 9.49±1.0 302.4±28.5 79.3±9.2 23.5±4.7 

Mean 29.0±4.S7 9.6±1.3 297.B±29.0 77.S±9.6 22.7±4.0 

Within subjects CV 27% 21% 13% 17% 21% 

Within subjects variation 
11% 9% 7% 7% 3% 

as % of total variation 

95% range for difference 

between duplicate ±6.6 ±1.7 ±32.7 ±10.9 ±O.7 

measurements 

Table 5-10. Speannan correlation and Wilcoxon signed ranks test with Bonferroni corrections 

between repeated measures during MTT in subjects with T2D. 

Spearman correlation Wilcoxon signed ranks test 
Variables 

Correlation P-value test P-value 

MI O.BO O.OOB 0.000 0.100 

Mo 0.B5 0.002 -0.314 0.754 

AUCG 
0.90 0.000 -1.020 0.308 

AUCc 0.75 0.025 -0.510 0.610 

AUC1 
0.92 0.000 -0.314 0.754 
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Figure 5-6. Relationship between individual estimates of repeated measures of pancreatic ~-~ell 

responsiveness indices (M1) top panel, and (Mo) bottom panel during MTT in subjects with T20 

(N = 12). 
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5.4. Discussion 

We investigated the reproducibility of pancreatic p-cell responsiveness indices, M, and 

Mo and the reproducibility of glucose, insulin, and C-peptide to oral challenge tests in 

healthy subjects and subjects with T2D. In the first part we investigated the 

reproducibility of M" Mo, and glucose, insulin, and C-peptide incremental area under 

curve 0-90 min during MTT and OGTT in healthy subjects. In the second part and due 

to the data limitation, we investigated the same parameters during MIT but not OGIT 

in subjects with T2D. The glucose, insulin and C-peptide responses were studied with 

the incremental area under the curve to eliminate the effect of the basal values (165). 

Healthy group 

We observed a lack of reproducibility of glucose and C-peptide profiles during MTT 

and OGIT (within subject CV 2: 30%). Slightly smaller CV values (21 % ~ CV ~ 29%) 

were reported for the repeated 2hr glucose during OGTT in healthy subjects (166). In 

accordance with other studies (167; 168), incremental area under curve 0-90 minutes of 

insulin but not glucose or C-peptide were reproducible during MTT and OGTT. 

McDonald et al (169) reported a lack of reproducibility for the Ih 2h and 3h glucose 

concentration after a IOOmg oral glucose load repeated six times over a period of one 

year in healthy subjects. 

As a result of the lack of reproducibility of glucose and C-peptide, M, and Mo showed 

weak reproducibility during MTT and OGTT. Although they were not significantly 

different, no significant correlation was observed. 

In the present study, glucose, and C-peptide, but not insulin, responses failed to show 

significant correlation between the repeated measures during MIT and OGrr 

(rs 2: 0.78, P ~ 0.07 for insulin). The lack of correlation between glucose AVC during 

OGrr in healthy subjects was reported by Ganda et al (168). The authors reported a 

significant correlation between insulin AUC 0-60 min (rs = 49, P < 0.05). Harding et at 

(167) reported insulin AUC to be more reproducible than glucose AUC in a large group 

of subjects with a high proportion of women of which about 15% exhibited abnormal 

glucose tolerance. 
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Several reports indicated poor reproducibility of the OGIT in healthy subjects and 

subj ects with T2D (37; 166; 170; 171). This was explained in part by considerable 

broad within-subject variation after oral glucose and meal tolerance tests (ISS; 172-

174). The inter-subject variability in healthy young and lean subjects was reported to be 

higher (ISS). The level of reproducibility is also affected by changes in digestion or 

absorption from time to time and uncontrolled environmental factors (175; 176). Other 

studies suggested that day-to-day variations in glucose tolerance could result from 

variation in cortisol secretion in response to stress (167). 

T2Dgrolip 

Pancreatic p-cell responsiveness indices Ml and Mo were reproducible during MIT in 

subjects with T2D, in line with reproducible glucose and C-peptide profiles (within 

subject variation as % of total variation was II and 9% for Ml and Mo, respectively). 

The repeated measures were not significantly different and were strongly correlated 

(rs ~ 0.78, P < 0.05). In subjects with T2D who underwent MTT on two separate 

occasions (73g carbohydrate, 20g lipid, and 31g protein for a total of S96 kcal), Le 

Floch et al (176) reported significant correlations between and sufficient 

reproducibility of glucose and insulin AUC 0-180 min (rs = 0.64 and 0.87 and P < 0.01 

and < 0.001 for glucose and insulin, respectively). 

In the present study the within subject variation as a % of total variation was quite low. 

CV was also good (CV ~ 21%) for glucose, insulin, and C-peptide. Wolever et al (154) 

reported similar CV values for glucose and insulin values over two hours 

(measurement were taken at 0, IS, 30, 45, 60, 90, and 120 min) after repeated mixed 

meal test in subjects with T2D. 

5.5. Summary 
Reproducibility of pancreatic p-cell responsiveness to MIT and OGIT was 

investigated. In healthy subjects the indices of pancreatic ~-cell responsiveness failed 

to show sufficient reproducibility due to lack of reproducibility of glucose and 

C-peptide to MIT and OGTT. Insulin responses to MIT and OGTT were reproducible. 

In subjects with T2D. Ml and Mo were sufficiently reproducible in line with 

reproducible glucose, insulin, and C-peptide responses to MTT. 
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6. Evaluation of two compartment minimal model performance in 

type 2 diabetes during insulin-modified FSIVGTT 

6.1. Introduction 

The one compartment minimal model (ICMM) of glucose kinetics is a powerful 

non-invasive tool to investigate glucose metabolism in physiological studies in different 

pathophysiological states (178-180). It provides two metabolic indices measuring 

glucose effectiveness (So) and insulin sensitivity (SI) in a single individual. So and SI 

are composite parameters, which measure the net effect of glucose and insulin 

respectively to promote glucose disappearance and inhibit endogenous glucose 

production (181). The I CMM method has gained increasing popUlarity and is widely 

used in clinical and epidemiological studies with more than 450 papers up to 2002, 

because it is simple and relatively non-invasive (100). The lCMM is represented in 

Figure 6-1. Recent published reports and studies indicate that So is overestimated (109-

Ill; 113; 182-184) and SI is underestimated (109-111; 184) during ICMM attributing 

the main reason to the under modelling effect of using one compartment to represent the 

glucose pool (113; 180; 185; 186). 

The new two compartment minimal model (2CMM) was first introduced in 1993 to 

measure hepatic glucose production during labelled NGTT by appending a second 

non-accessible compartment to the classic I CMM. The new model was needed because 

at that time the available single compartmental minimal model specifically developed to 

interpret labelled IVGTT data, provided a non-physiological pattern of hepatic glucose 

production (114). In 1997 Vicini et al (107) validated the 2CMM to estimate SI. So, and 

plasma clearance rate during an isotopically labelled FSNGTT. Recently Cobelli et al 

(115) incorporated a priori knowledge on glucose exchange kinetics using Bayesian 

estimation to derive insulin sensitivity and glucose effectiveness with the 2CMM during 

standard IVGTT in healthy SUbjects. However, the study did not test the model 

reliability under other conditions such as insulin-modified FSNGIT and in subjects 

with type 2 diabetes (T2D). 

Based on data published earlier (106), this investigation evaluated 2CMM in type 2 

diabetic subjects during insulin-modified FSIVGTT and compared its performance with 
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1 CMM. The glucose clamp technique is considered the gold standard reference method 

for measuring insulin sensitivity. so it is used here to assess the validity of the 1 CMM 

and the 2CMM measurements. The Bayesian analysis was applied to estimate 

parameters of the 2CMM. However the model failed to give physiologically feasible 

estimate for SG in 7 out of 12 subjects. The iterative two-stage population analysis was 

adopted. which was successful in providing feasible parameter estimates in all subjects. 
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6.2. Methods 

6.2.1. Subjects 

Male subjects with type 2 diabetes participated in the study (N = 12; age 59 ± 3 year, 

BMI 28.3 ± 0.9 kglm2
; mean ± SE). Duration ofT2D was 6.3 ± 0.6 year, see Table 6-1. 

No subject had any medical condition other than diabetes or received drugs except for 

sulfonylureas. All subjects were screened for fitness to participate in the study by a full 

medical history and medical examinations. Participants maintained their normal 

isocaloric diets and sulfonylurea therapy was omitted on the study days. The South 

Glamorgan Local Research Ethics Committee, Cardiff, UK, approved the study 

protocol, and all participants gave written informed consent. 

Table 6-1. Demographic data for the 12 men with T2D participated in the study. 

Age Weight Height 8MI Duration of diabetes 
Sub. No. 

(year) (kg) (em) (kglm2
) (year) 

1 47 92 176 30 4.1 

2 57 94 172 32 9.2 

3 70 72 171 25 4.2 

4 43 99 182 30 7.0 

5 67 62 157 25 6.7 

6 53 95 168 34 6.2 

7 66 85 176 28 9.3 

8 70 71 172 24 6.8 

9 55 75 165 28 8.0 

10 61 96 176 31 7.0 

11 50 77 163 29 1.7 

12 69 65 165 24 5.1 

Mean 59 82 170 28 6.3 

SE 3 4 2 1 0.6 

6.2.2. Experimental design 

Each subject underwent a frequently sampled insulin-modified intravenous glucose 

tolerance test (FSNGTT) and an isoglycaemic hyperinsulinaemic clamp in random 

order with 2-4 weeks between tests while participants maintained their normal 

isocaloric diets. 
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6.2.2.1. Insulin modified FSIVGTT 

Subjects were studied after 12 hours overnight fast. Antecubital veins were cannulated 

in both anns, one for sampling and the other for administration of glucose and insulin. 

The insulin-modified FSIVGTT consisted ofO.3g1kg glucose bolus per body weight at 0 

min over 2 min and O.OSmU/kg insulin bolus at 20 min. Overall, 30 samples were taken 

over 180 minutes to measure plasma glucose and insulin in addition to two pre-test 

samples. The samples were taken at -30, -15, 0, 1,2,3,4,5,6, 7, 8, 10, 12, 14, 16, 19, 

22, 23, 24, 25, 27, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150 and 180 min. 

6.2.2.2. Isoglycaemic hyperinsulinaemic clamp 

This study was conducted after a 12 hours overnight fast. An antecubital vein was 

cannulated and used for glucose and insulin infusions. A second cannula was inserted 

retrogradely into a contralateral hand vein and the hand was wanned in a heated box to 

allow sampling of arterialised blood. After three basal samples for plasma glucose, an 

infusion of human Acrapid (NovoNordisk, Bagsavaerd, Denmark) at a rate of 

160mU/minlm2 commenced for 4 min as a priming dose and then was reduced to 40 

mU/min/m2, which was maintained for the duration of the study. The plasma glucose 

concentration was clamped at the basal (mean of the three basal plasma glucose values) 

by means of variable infusion rate of 20% D-glucose, changed on the biases of plasma 

glucose concentration obtained every 10 min. In addition to samples for plasma glucose, 

blood was sampled for the measurement of insulin at the basal period and at regular 

intervals during the procedure. 

6.2.2.3. Essay methods 

Plasma glucose was essayed using glucose oxidase method on a YSI Y2300 glucose 

analyser (YeIlow Spring, OH; intra-assay CV <2%). Immunoreactive insulin (IRI) was 

assayed by using conventional radioimmunoassay (intra-assay CV <6%) 
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6.2.3. Data analysis 

6.2.3.1. One compartment minimal model 

The ICMM analysis of FSIVGTI data gave insulin sensitivity Sit and glucose 

effectiveness Sal, see Figure 6-1. The non-linear regression analysis was used to 

estimate model parameters during I CMM. The model equations and a full description 

of the model structure are in chapter 2. The equations of the ICMM model are: 

Q(I) = -[PI + X(t)JQ(t) + PIQb Q(O) = Qb + D 

X(t) = -p~(I) + pJ[I(I) - IJ X(O) = 0 

G(t) = Q(I}IV 

(6-1) 

(6-2) 

(6-3) 

where Q is glucose mass (mg/kg), with Q, denoting its basal (end-test) steady state 

value; 0 is the glucose dose (mglkg), PI= kl + ks, where ~ are rate parameters (min-I); 

X is a variable related to insulin concentration in the insulin remote compartment, and 

X(t) = (l4 +~) l(t); l(t) is plasma insulin concentration (~U/ml); Ib and Gb denote basal 

plasma insulin and glucose concentrations respectively, G is the plasma glucose 

concentration; V is the distribution volume per unit body weight (ml/kg), P2 = k3, and 

P3 = k2(kt+~) are rate parameters expressed in min-l and min-2/)lU I x ml, respectively. 

The lCMM derived parameters SI1 and SQI were calculated as follows: 

S 1 = P3 V (ml/minlkg per IlU/ml) 
J Pz 

(6-4) 

(6-5) 

sl and Sal at variance with the fractional indices SI and Sa commonly expressed 

elsewhere, and have the same units as the analogous glucose clamp indices allowing 

for direct comparison. 
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figure 6-1. One compartment minimal model (ICMM) (115). 

6.2.3.2. Two compartment minimal model 

, , , , , , 

The 2CMM appends a second non-accessible compartment to the 1 CMM . The 2CMM 

was validated in normal subjects during standard IVGTT by applying Bayesian 

approach to incorporate prior knowledge on k12 and k21 parameters (115). The glucose 

exchange kinetic parameters k12 and k21 were assumed to be normally distributed with 

mean and standard deviation of 0.070 ± 0.018 and 0.050 ± 0.013 min-I, respectively, 

and with a correlation of 0.90. The model equations are as follows: 

Q1ft) = k21Qlt) - k12Qlt) QlO) = Q2b 

X(I) = - p~(I) + pil(l) -IJ X(O) = 0 

G(t) = Qlt)/VI 

(6-6) 

(6-7) 

(6-8) 

(6-9) 

where QI and Q2 (mg/kg) denote the glucose masses in the accessible and non­

accessible compartments, respectively, with subscript b denoting their basal (end-test) 

steady-state values; VI is the volume of the accessible compartment (mglkg); kl2 and k21 

are rate parameters describing glucose exchange kinetics (l/min); D, G, I, X, PI. P2, and 
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PJ are variables and parameters already defined for the 1 CMM. TIle 2CMM parameters 

S? and si were calculated as follows: 

s/ = 12 VI (mllminll peq.l.U/ml) 
pz 

(6-10) 

(6-11 ) 

The 2CMM differs from I CMM only in allowing an exchange of glucose between the 

accessible and the non-accessible compartment, see Figure 6-2. This added complexity 

brings a priori identifiably problems. Theoretical or a priori identifiably addresses the 

ability of getting unique solutions for the unknown parameters on the basis of the 

experiment generated data. To solve these problems and reach the unique identifiably a 

priori information on the glucose exchange kinetics parameters k12 and k21 was used 

applying Bayesian estimation (115). 

PLASMA 
IXSULJ).r 
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I 
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Figure 6-2. Two compartment minimal model (2CMM) (115). 
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6.2.3.2.1. Bayesian prior on k12 and k21 

Bayesian analysis was applied to estimate 2CMM parameters (insulin sensitivity S? and 

glucose effectiveness SG2
) using the available prior knowledge on k12 and k21 from 

healthy subjects because of unavailability of prior knowledge from T2D subjects. The 

prior knowledge was adopted from Cobelli et al (115) who reanalysed published tracer 

bolus injection data obtained in the basal state in healthy subjects with a 2CMM 

corresponding to the one used in the current study and with no irreversible loos from the 

non-accessible pool. The glucose exchange kinetic parameters k12 and k21 were assumed 

to be normally distributed with mean and standard deviation of 0.070 ± 0.018 and 0.050 

± 0.013 min' l , respectively, and with a correlation of 0.90 (l15). 

6.2.3.2.2. Iterative two stage population approach 

The iterative two-stage population analysis was applied to estimate 2CMM parameters. 

This approach is based on calculation of the population mean and the standard deviation 

at each iteration and then uses them as prior information for the individual analysis. The 

use of a prior in the population analysis should improve the precision of the individual 

estimates. All parameters were log transformed before analysis to assure nonnegativity 

of parameter estimates. The model gives insulin sensitivity stPop and glucose 

ffi · S 2·pOP e ectlveness G • 

6.2.3.3. Parameter estimation 

The minimal model analysis of the insulin-modified FSIVGTT data during 1 CMM and 

2CMM was completed using SAAM II © (software applications for kinetics analysis) 

version 1.2 (SMM Institute, University of Washington. Seattle. USA) (187; 188). The 

precision of parameter estimates was obtained from the inverse of the Fisher 

information matrix and calculated as the fractional standard deviation (FSD). 
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6.2.3.2.3. Model evaluation 

The following assessment procedure was applied to the 2CMM with Bayesian analysis 

and the 2CM1\1 with the iterative two-stage population analysis whose parameters have 

been estimated successfully (a priori identifiably). The 1 CMM will not undergo this 

assessment since it has been validated in previous studies (94). 

To assess the adequacy of the 2CMM during insulin-modified FSIVGTT in T2D 

subjects, we evaluated practical (a posteriori) identifiably, and goodness of fit (143). 

The following criteria were used to assess the model validity: 

• Coefficient of variation (CV) measured as the fractional standard deviation 

(FSD) for the assessment of precision of parameter estimates 

• Distribution of normalised residual for the assessment of model's ability to fit 

data (goodness of fit) considering the measurement errors, and to detect any 

systematic deviation between the data and the model prediction 

• Runs test to assess the distribution of the residuals and check for presence of 

model misfit. 

6.2.3.4. Clamp 

Isoglycaemic glucose clamp was used as the gold standard reference when comparing 

the insulin sensitivity indices derived by 1 CMM and 2CMM. SICLA.\1P was derived from 

the steady-state glucose infusion rate [M value (minlmglkg)] during the 3rd hour of the 

clamp corrected for the ambient insulin and glucose concentrations 

S Clam = M (mVmin/kg per ~U/ml) 
I P AlxG 

(6-12) 

where 61 (pmolll) is the increment in insulin concentration from basal, and G (mmolll) 

is the clamped glucose concentration. 
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6.2.3.5. Statistical analysis 

Pearson's correlation coefficient was used to assess relationships between variables. 

Significant differences between insulin sensitivity indices among different models were 

determined by two-way analysis of variance. and pairwise significance was further 

tested by the Games-Howell multiple comparison method. Paired sample t-test was 

applied to assess the difference between SGI and SG2
•
POP

• Significance was declared at 

p <0.05. 
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6.3. Results 

6.3.1. Plasma glucose and insulin 

Table 6-2 shows the basal insulin (FPI) and glucose (FPG) values during FSIVGTT. 

Table 6-3 shows data from isoglycaemic hyperinsulinaemic clamp and includes basal 

and clamped values for glucose and insulin, and the M value. FPG and FPI 

concentrations were not different between the two study days (P = 0.13 and P = 0.65, 

paired t-test, respectively). Figure 6-3 shows the profile of glucose and insulin 

concentrations during the FSIVGTT. 

Table 6-2. Basal plasma insulin and glucose values during FsrvGrr in subjects with type 2 

diabetes (N = 12). 

Basal insulin Basal glucose 
Subject No. 

(pmolll) (mmolll) 

1 64 9.3 

2 132 7.9 

3 48 6.0 

4 80 11.5 

5 132 8.8 

6 152 11.0 

7 60 7.6 

8 78 12.6 

9 132 8.0 

10 42 8.1 

11 116 7.2 

12 182 9.3 

Mean 102 8.9 

SE 13 0.6 
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Table 6-3. Isoglycaemic clamp data in subjects with type 2 diabetes (N = 12). 

Subject No. Basal insulin Clamped insulin Basal glucose Clamped glucose M 
(pmolll) (pmol/l) (mmol/l) (mmol/l) (min/mglkg) 

1 72 384 8.5 8.4 3.26 

2 141 564 9.0 9.0 3.87 

3 48 438 5.1 5.1 4.11 

4 87 630 9.3 9.2 2.66 

5 90 756 7.7 7.6 3.84 

6 156 528 12.7 12.6 1.71 

7 72 462 6.3 6.2 4.10 

8 75 654 11.6 11.3 6.26 

9 138 492 7.6 7.5 3.09 

10 60 480 7.1 7.0 6.29 

11 162 846 5.7 5.7 3.09 

12 153 630 10.1 10.0 1.92 

Mean 105 572 8.4 8.3 3.68 

SE 12 39 0.7 0.7 0.40 
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Figure 6-3. Plasma glucose and insulin profiles during FSIVGTT in subjects with T2D (N= 12, 

mean ± SE). 
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6.3.2. One compartment minimal model 

The lCMM estimated S,' and SOl with good precision (mean CV = 13% and 21%, 

respectively) except for SOl in one subject (CV = 246%). Table 6-3 shows lCMM 

parameter estimates. while Figure 6-4 shows distribution of normalised residuals. The 

Runs test was insignificant in 7 out of 12 subjects. 

Table 6-4. Parameter estimates of the one compartment minimal model in subjects with type 2 

diabetes (N = 12). 

PI P2 P3 V 
S,' 

Subject No. (10-2 x (10-2 X (10-5 x (10-2 x 
1/min) 1/min) ml/min-1/kg per IJUlml) (1/kg) 

ml/minlkg per IJUlml) 

1 0.001(246)* 0.166(11 ) 0.016 (13) 0.183(4) 1.75(11) 

2 0.011(18) 0.090(36) 0.003(31 ) 0.187(4) 0.57(30) 

3 0.003(83) 0.069(10) 0.008(11) 0.233(5) 2.79(13) 

4 0.010(22) 0.069(11) 0.008(16) 0.146(4) 1.62(11) 

5 0.009(29) 0.100(16) 0.009(18) 0.201(5) 1.86(17) 

6 0.012(15) 0.100(40) 0.002(33) 0.154(3) 0.14(2) 

7 0.014(14) 0.045(14) 0.003(19) 0.140(4) 1.02(21) 

8 0.020(13) 0.050(18) 0.011(13) 0.148(4) 3.35(3) 

9 0.016(15) 0.056(12) 0.010(13) 0.139(4) 2.39(8) 

10 0.009(25) 0.037(14) 0.003(22) 0.134(5) 1.03(17) 

11 0.017(17) 0.058(15) 0.005(18) 0.124(5) 1.05(8) 

12 0.005(33) 0.054(10) 0.007(9) 0.141(3) 1.82(12) 

Mean 0.012 0.074 0.007 0.161 1.62 

SE 0.002 0.010 0.001 0.009 0.27 

*Precision of parameter estimates expressed as fractional standard deviation 
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Figure 6-4. Weighted residuals during lCMM for the full test (top panel) and the first 30 min 

(bottom panel), (mean ± SE). 
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6.3.3. Two compartment minimal model 

6.3.3.1. Bayesian prior on k12 and k21 

With Bayesian analysis the 2CMM failed to give a physiologically feasible estimate for 

PI in 7 out of 12 subjects (PI hits the lower limit). Table 6-5 shows model parameter 

estimates. Figure 6-5 shows distribution of normalised residuals. The Runs test was 

insignificant in 6 out of 12 subjects. 

Table 6-5. 2CMM parameter estimates with Bayesian analysis in subjects with type 2 diabetes 

(N = 12). 

Sub. k,2 k2, 
p, P2 P3 V, SI2 

(10.2 X (10.2 x (10.5 xmllmin' (10.2 x 
No. (1/min) (1/min) 1/min) 1/min) '/kg per ~U/ml) (lIkg) 

mllminlkg per ~U/ml) 

1 0.05(31*) 0.02(36) O.OOO(NA+) 0.07(20) 0.009(19) 0.15(7) 2.00(3) 

2 0.04(40) 0.03(34) O.OOO(NA) 0.02(22) 0.002(22) 0.17(6) 2.06(S) 

3 0.09(22) 0.06(26) O.OOO{NA) 0.04(17) 0.009(18) 0.17(6) 3.S1(3) 

4 0.O7(29) 0.05(31) O.OOO(NA) 0.05{21 ) 0.012(23) 0.11(7) 2.70(4) 

5 0.06(32) 0.04(35) O.OOO(NA) 0.04(17) 0.008(20) 0.16(7) 3.78(3) 

6 0.08(24) 0.06(24) 0.017(33) 0.03(39) 0.002(35) 0.09(9) 0.57(46) 

7 0.09(23) 0.06(23) 0.013(39) 0.03(17) 0.006(18) 0.09(8) 1.89(25) 

8 0.09(23) 0.06(25) 0.025(77) O.OS(77) 0.017{S7) 0.10(23) 3.59(14) 

9 0.08(23) 0.06(25) O.011(48) 0.05(20) 0.016(23) 0.10(8) 3.32(12) 

10 0.07(21) 0.OS(26) O.OOO(NA) 0.03(13) 0.00S(14) 0.10(6) 1.93(3) 

11 0.O9(22) 0.06(23) 0.01S(46) 0.05(26) 0.008(30) 0.08(8) 1.38(14) 

12 0.08(23) 0.05(2S) O.OOO(NA) 0.03(1S) 0.009(16) 0.10(S) 2.7S(3) 

Mean 0.07 0.05 0.016 0.04 0.009 0.12 2.46 

SE 0.00 0.00 0.002 0.00 0.001 0.01 0.28 

*Precision of parameter estimates expressed as fractional of standard deviation 

"1ndicates estimation failure 
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Figure 6-5. Weighted residuals during 2CMM with Bayesian analysis for the fu ll test (top panel) 

and the first 30 minutes (bottom panel), (mean ± SE). 
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6.3.3.2. Iterative two-stage population approach 

Table 6-6 gives parameter estimates with the population analysis. stPOP and SG2
.
POP 

were estimated with exceIIent precision (mean CV of 16 and 15% respectively), see 

Tables 6-7 and 6-8. Normalised residuals were randomly distributed around the zero 

line, see Figure 6-6. The Runs test was not significant in 8 out of 12 subjects. 

Table 6-6. 2CMM parameter estimation results with the population analysis in subjects with 

type 2 diabetes (N = 12). 

P, P2 
P3 x 10.3 

stPOP 

Sub. k12 k21 (10.2 X (10.2 x (10.5 xml/min" VI (10.2 x 
No. (1/min) (1/min) I/kg per (1/kg) 

1/min) 1/min) 
~U/ml} 

mllminlkg per ~U/ml) 

1 0.197(1") 0.0652(0) 0.0138(26) 0.0599(1 ) 0.0059(14) 0.123(6) 1.22(17) 

2 0.200(1) 0.0652(0) 0.0118(16) 0.0591(1) 0.0032(15) 0.147(3) 0.80(16) 

3 0.198(1) 0.0652(0) 0.0087(27) 0.0594{1 ) 0.0080(10) 0.169(4) 2.28(12) 

4 0.198(1) 0.0652(0) 0.0148(20) 0.0596(1) 0.0089(9) 0.105(4) 1.58(12) 

5 0.197(1) 0.0652(0) 0.O122(19) 0.0600(1) 0.0080(10) 0.151(3) 2.01(13) 

6 0.197(1) 0.0652(0) 0.O171(17) 0.0595{1 ) 0.0023(30) 0.108(4) 0.41(32) 

7 0.197(1) 0.0652(0) 0.0213(13) 0.0590(1) 0.0049(21) 0.097(4) 0.80(24) 

8 0.199(1) 0.0652(0) 0.0200(17) 0.0597(1) 0.0169(7) 0.119(8) 3.39(8) 

9 0.197(1) 0.0652(0) 0.0199(15) 0.0591(1) 0.0141(7) 0.102(4) 2.43(9) 

10 0.197(1) 0.0652(0) 0.O133(16) 0.0589(1) 0.0049(15) 0.093(3) 0.77(17) 

11 0.196(1) 0.0652(0) 0.0208(16) 0.0591(1) 0.0071(8) 0.089(5) 1.08(11) 

12 0.198(1) 0.0652(0) 0.0110(20) 0.0585(1) 0.0083(13) 0.098(3) 1.39(14) 

Mean 0.198 0.0652 0.0154 0.0593 0.0077 0.117 1.51 

SE 0.000 0.00 0.0012 0.0001 0.0012 0.007 0.25 

*Precision of parameter estimates expressed as fractional standard deviation 
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Figure 6-6. Weighted residuals during 2CMM with population analysis for the full test (top 

panel) and the first 30 minutes (bottom panel), (mean ± SE). 
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6.3.4. Insulin sensitivity and glucose effectiveness 

The lCMM failed to estimate SG with acceptable precision in one subject (CV > 100%). 

However the 2CMM with Bayesian analysis failed to estimate SG in 7 subjects (PI hits 

lower limit). The 2CMM with population analysis did not fail in any subject. Tables 6-7 

and 6-8 show insulin sensitivity and glucose effectiveness with lCMM (SII and Sol), 

2CMM with the Bayesian analysis (S? and Si), and the 2CMM with the population 

analysis (stPOP and SG
2

-
POP

). The insulin sensitivity SICLAMP derived from the clamp 

study is also shown. 

Table 6-7. Insulin sensitivity with the minimal model and during the isoglycaemic clamp in 

subjects with type 2 diabetes (N = 12). 

S,1 S? stPOP 
S'CLAMP 

Sub. No 
(10.2 x mllmin/kg per ~U/ml) 

1 1.75(11 )* 2.00(3) 1.22(17) 2.12 

2 0.57(30) 2.06(5) 0.80(16) 5.64 

3 2.79(13) 3.51(3) 2.28(12) 9.58 

4 1.62(11) 2.70(4) 1.58(12) 6.67 

5 1.86(17) 3.78(3) 2.01(13) 8.12 

6 0.14(2) 0.57(46) 0.41(32) 2.00 

7 1.02(21) 1.89(25) 0.80(24) 5.00 

8 3.35(3) 3.59(14) 3.39(8) 12.46 

9 2.39(8) 3.32(12) 2.43(9) 8.99 

10 1.03(17) 1.93(3) 0.77(17) 3.73 

11 1.05(8) 1.38(14) 1.08(11) 4.42 

12 1.82(12) 2.75(3) 1.39(14) 3.80 

Mean 1.62 2.46 1.51 6.04 

SE 0.27 0.28 0.25 0.93 

.Precision of parameter estimates expressed as fractional standard deviation 
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Table 6-8. Glucose effectiveness with the ICMM and the 2CMM in subjects with type 2 

diabetes (N = I2). 

SG' SG2 SG2•POP 

Sub. 10. 
(ml/min/kg) 

1 0.18(246)* O.OO(NA+) 1.70(22) 

2 2.15(14) O.OO(NA) 1.74(14) 

3 0.67(79) O.OO(NA) 1.47(25) 

4 1.48(19) O.OO(NA) 1.56(16) 

5 1.74(24) O.OO(NA) 1.83(16) 

6 2.64(3) 1.53(26) 1.84(14) 

7 1.97(10) 1.17(33) 2.06(10) 

8 3.00(10) 2.37(58) 2.39(13) 

9 2.25(11) 1.12(43) 2.03(11) 

10 1.24(21) O.OO(NA) 1.23(14) 

11 2.06(12) 1.21(40) 1.85(12) 

12 0.69(30) O.OO(NA) 1.07(18) 

Mean 1.81 1.48*"' 1.73 

SE 0.21 0.23 0.10 

• Value not included in the calculation of the mean 

•• Mean reflects 5 subjects and does not include zero estimates 

.. Indicates estimation failure 

6.3.5. Comparability of Insulin sensitivity and glucose effectiveness 

The 2CMM with population analysis and 1 CMM were measuring the same SI and So (P 

= 0.99 and 0.47 respectively), with a strong correlation between Sr
pop 

and SICLA.\1P (rs 

= 0.91, P<O.OOl). The 2CMM with Bayesian approach estimated S135% higher than the 

1 CMM but with no significant difference (P = NS). and strongly correlated with SICLAMP 

(rs = 0.83, P<O.Ol). However it failed to estimate So in 7 out of 12 of cases (So = 0). 

Figure 6-7 summarises insulin sensitivity and glucose effectiveness results. Correlation 

results are shown in Table 6-9. Two way analysis of variance was significant for the 
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between parameters variability (p = 0.000). Table 6-10 shows the Games-Howell 

multi-comparison results. Figures 6-8 to 6-10 show the graphical representation of 

relationships between SICl.AMP, Sll, S? and stPOP. Figure 6-11 shows the relationship 

between SOl and S02-POP (rs = 0.76, P<O.OI). Due to the high failure rate in the estimate 

of So during 2CMM with Bayesian analysis it was difficult to relate si to SOl and 

S 2-POP a . 

Table 6-9. Pearson correlation (with the Bonferroni correction) between insulin sensitivity 

indices during 1 CMM, 2CMM, and the clamp method. 

Sl1 S? S?-POP SICLAMP 

SI' 1 0.85* 0.96** 0.81* 

S? 1 0.86* 0.83* 

S?-POP 1 0.91** 

51CLAMP 1 

• p<O.Ol 

•• p<O.OOl 

Table 6-10. The results of Games-Howell multiple comparison between insulin sensitivity 

indices during 1CMM, 2CMM, and the clamp method. 

51' 5? S?:POP SICLAMP 

SI' 1 N5 N5 0.003* 

5? 1 N5 0.012* 

S?-POP 1 0.002* 

51cLAMP 1 

• The mean difference is significant at the 0.05 level 
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6.4. Discussion 

During modified FSIVGTT in subjects with T20, the insulin sensitivity index derived 

with the 2CMM applying population analysis was comparable to that measured with the 

lCMM and was strongly correlated with the clamp insulin sensitivity index. Validation 

of the 2CMM in T20 subjects using population analysis was successful. SI and So were 

estimated with excellent precision (mean CV for stPOP and si-POP was ~ 13%). 

Normalised residuals had satisfactory behaviour in terms of both pattern and amplitude 

and were randomly distributed around the zero line indicating a good model fit. 

In the current study, SI2-
POP was correlated with S11

, sl, and SICLAMP (rs > 0.81), with no 

significant difference from Sil (1.51 ± 0.25 vs. 1.62 ± 0.27 x 10-2 x ml/min/kg per 

llU/ml, P=NS). In healthy subjects during insulin-modified IVGIT, Omenetto et al 

(189) also found no significant difference between insulin sensitivity measured by 

lCMM and 2CMM (12.90 ±1.31 and 13.24 ± 1.40 x 10-2 
x rnVrnin/kg per ~U/rnl, SI! vs 

S? respectively). 

In a previous study by Saad et al (16), S!Cl.AMP was correlated with SI! (rs = 0.41, 

P<O.OI) during insulin modified FSIVGTT in T20 subjects. However it was four fold 

higher (0.040 ± 0.006 vs. 0.011 ± 0.003 dVmin per ~U/ml). In healthy subjects, Vicini et 

al (107) reported a strong correlation between st t denotes an index derived from the 

labeled FSIVGTT) and st (rs = 0.95, P<O.OOI) with no significant difference between 

the two indices (12.98 ± 2.21 vs. 13.83 ± 2.54 x 10-2 ml/min/kg per ~U/ml) and 

suggested using 1 CMM instead of 2CMM for its remarkable precision and near-perfect 

correlation with 2CMM (it should be noted that st and S? are derived from two 

models with two and one outfluxes, respectively, and the two indices my present 

different properties). N agasaka et al (190) also found strong correlations between S 11 , 

st and st in healthy and TID subjects. During labelled WGIT in healthy subjects, 

Hoffinan et al (182) reported more reliable estimates with lCMM than 2CMM with no 

difference between insulin sensitivity. In addition the insulin sensitivity indices were 

positively correlated (182). 

In the present study, So2-POP was correlated with SOl (rs = 0.76, P<O.OI) and the indices 

were not significantly different (1.73 ± 0.10 vs. 1.81 ± 0.21 mVmin, P=NS). Nagasaka 

et al (190) found in healthy and T20 subjects a strong correlation between So 1* and si* 
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with no significant difference. Vicini et al (107) also observed a weak correlation 

between Sal- and S02- in healthy subjects. 

Our results during modified FSIVGIT are in accordance with previous studies during 

both labelled and unlabelled FSIVGIT and demonstrate insignificant difference 

between the 1 CMM and 2CMM indices of insulin sensitivity. This insignificant 

difference applies also on the glucose effectiveness indices during 1 CMM and 2CMM. 

The values for the glucose exchange kinetic parameters k12 and k21 during population 

analysis of the 2CMM bad a negligible intersubject variability [0.198 ± 0.000 and 0.065 

± 0.000 min-l, respectively (k21 was identical for all subjects)] suggesting that the 

individual data set is not rich enough to obtain individual estimate of these parameters. 

Parameter estimates of k12 values were three fold higher than k21 (P < 0.001). These 

results suggest that the 2CMM with population analysis tends to treat the two glucose 

pools as one, which could explain the comparability of 1 CMM and 2CMM parameter 

estimates. 

The 2CMM with Bayesian approach estimated insulin sensitivity with good precision, 

35% higher than 1 CMM with no significant difference, and a strong correlation with 

SICLAMP (rs = 0.79, P<O.Ol). However it failed to estimate So in 7 out of 12 T2D 

subjects (more than 50% of the cases). Although Bonadonna et al (191) demonstrated 

no significant difference in the fractional outward transport of 3-0-methyl-o-glucose in 

skeletal muscle between healthy and T2D subjects during insulin clamp. the use of 

informative prior information on k21 and k12 obtained in healthy but not T2D subjects 

may have had a negative impact on the estimation results. 

Applying Bayesian analysis, Cobelli et al (lIS) also experienced difficulties when 

resolving 2CMM exchange kinetics parameters especially k12 with acceptable precision 

in healthy subjects. sl and/or Sa2 precision was unsatisfactory (CV > 100%) in 10 out 

of 22 subjects. Vicini et al (107) reported unsatisfactory precision for Sl estimates 

during labelled IVGIT with 2CMM (st and/or S02- precision was unsatisfactory in 5 

out of 14 healthy subjects). HotTman et al (182) reported difficulties in estimating S?* 

and S02. during labelled IVGTT with reliable precision and suggested using 1 CMM as 

a robust approach in population-based studies which provides more reliable estimates 
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than 2CMM. Due to the high failure rate in the estimate of So during 2CMM with 

Bayesian analysis it was difficult to carry out any comparison of si with SOl and 

S 2-POP o . 

The difficulty of estimating 2CMM parameters with satisfactory precision in previous 

studies indicates that the model is too complex for the experimental data. In addition the 

failure of the model to estimate glucose effectiveness in the current study with the 

Bayesian analysis indicates the unsuitability of the 2CMM model to fit the modified 

FSIVGTI data in T2D subjects. The higher estimate of insulin sensitivity during 

2CMM with Bayesian analysis could be explained as an over estimation attempt to 

compensate for zero valued glucose effectiveness. 

The insulin modification appears to reduce the insulin sensitivity with the 2CMM 

making it similar to the I CMM estimate. This was demonstrated by Omenetto et al 

(189), who studied healthy subjects with insulin-modified IVGTT and observed 

identical estimates of insulin sensitivity with the 1 CMM and the 2CMM, while glucose 

effectiveness was 35% higher with I CMM than with the 2CMM. On the other hand, 

result on standard (unmodified) IVGIT in healthy subjects demonstrated that the 

2CMM glucose effectiveness and insulin sensitivity were respectively 60% lower and 

35% higher than the corresponding lCMM indices (115). 

The main objective of the 2CMM was to solve the under-modelling effect on glucose 

effectiveness and insulin sensitivity. Although the model was successfully validated in 

T2D subjects during insulin-modified FSIVGTT, it is still measuring the same glucose 

effectiveness and insulin sensitivity as the ICMM. For its simplicity and popularity and 

to benefit from the data available in the literature it is recommended to use the 1 CMM. 

6.5. Summary 
The 2CMM was validated successfully using population analysis in T2D subjects 

during insulin-modified FSIVGTT, giving precise estimates of SI and So with strong 

correlation with lCMM estimates and SICLAMP. Insulin sensitivity and glucose 

effectiveness estimated by 2CMM with population analysis are not different from 

1 CMM estimates. 
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7. Application of ISM and 1 CMM to assess glucose metabolism In 

newly presenting type 2 diabetes 

7.1. Introduction 

The pathogenesis of Type 2 diabetes is complex and has yet to be fully understood (65; 

192), however, it has been established that both insulin resistance and deficient insulin 

secretion play decisive roles in the development of Type 2 diabetes (8; 47; 193). 

The minimal model analysis (78) using the standard or insulin-modified intravenous 

glucose tolerance test (IVGTT) measures insulin sensitivity (St) and glucose 

effectiveness (Sa). It also provides a measure of the first phase insulin secretion (AIRa). 

The minimal model has been widely used to assess insulin resistance in various 

pathophysiological states (78; 194) and has become invaluable especially in popUlation 

studies due to its simpler experimental design compared to the glucose clamp 

technique (77). 

In the previous chapter the one compartment minimal model (I CMM) correlated 

significantly with the clamp index of insulin sensitivity and was superior to the two 

compartment minimal model with respect to simplicity and popularity and applicability 

to use in subjects with T20. The ICMM was shown to be able to provide reproducible 

estimates of glucose effectiveness and insulin sensitivity (32; 195). 

The insulin secretion model (ISM) is a recently developed approach to measure fasting 

(Mo) and postprandial (Ml ) pancreatic p-cell responsiveness during a meal tolerance test 

(MTn (32). The MTT is a standardised physiological test and has the benefit of a 

typical postprandial exposure of the pancreas to glucose, other nutrients (fat, protein), 

gut and vagal hormones. The insulin secretion model has been shown to discriminate 

across a wide spectrum of pancreatic p-celJ responsiveness (32) and to provide 

reproducible measurements in subjects with T20 as demonstrated in Chapter 5. 

The generally accepted but as yet not confirmed hypothesis is that the IVGTT and/or 

MIT facilitate the estimation of essential indices of the whole-body carbohydrate 

metabolism. The aim of this study was to investigate whether these indices are able to 
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explain inter-individual variability of clinical measures of glucose control such as 

fasting plasma glucose and insulin, glycated haemoglobin, and the glucose and insulin 

responses to a meal. In this study subjects with newly diagnosed Type 2 diabetes were 

studied as they present the end-point of the natural development of the disease prior to 

therapeutic intervention. 
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7.2. Research Design and Methods 

7.2.1. Subjects 

Subjects with newly presenting type 2 diabetes participated in the study (N = 65; 53 

males, 12 females; age 54 ± 1 year; BMI 30.5 ± 0.7kg/m2
; mean ± SE), see Table 7·1. 

The study was approved by Bro Tar Local Research Ethics Committee, Cardiff, UK. 

Table 7·1. Demographic data for subjects with T2D participating in the study (N .. 65). 

Sex 

(M/F) 

Mean 53112 

SE 

Age 

(year) 

54 

1 

7.2.2. Experimental Design 

Height 

(m) 

1.72 

0.01 

Weight 

(kg) 

90.0 

2.5 
30.5 

1.5 

The subjects were admitted on two consecutive study days to the Diabetes Research 

Unit, Llandough Hospital (Penarth, UK) following an overnight 12 hour fast. Each 

subject underwent two procedures in random order to assess the parameters of 

carbohydrates metabolism. 

7.2.2.1. Intravenous glucose tolerance test 

The insulin·modified intravenous glucose tolenmce test (NGIT) consisted of a 0.3g1kg 

glucose bolus per body weight given at 0 minute over two minutes, followed by 

0.05mUlkg insulin (Actrapid, Novo Nordisk, Denmark) at 20 minutes (49). Blood 

samples were taken at .30, ·15, 0, 1,2,3,4,5,6, 7, 8,10, 12, 14, 16, 19,22,23,24,25, 

27, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, and 180 minutes for measurement of 

plasma glucose, insulin, and C-peptide. 
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7.2.2.2. Meal tolerance test 

A standard 500 kcal meal was consumed at 0 minute (75g carbohydrates; calorie 

contribution: 58% carbohydrate, 23% fat and 19% protein) (49). The meal consisted of 

digestion of 15g Weetabix, 109 skimmed milk, 250mL pineapple juice, 50g white meat 

chicken, 60g wholemeal bread, and 109 polyunsaturated margarine. Subjects were 

required to consume the whole meal within 10 minutes. Blood samples were taken at 

-30, 0, 10,20,30,40, 50, 60, 75, 90, 120, 150, 180, 210 and 240 minutes to measure 

plasma glucose, insulin, and C-peptide. 

In both tests blood was taken via an indwelling intravenous cannula which was 

inserted into the antecubital fossa vein and connected via a three-way tap to a slow 

running saline infusion to maintain the patency of the vein. At each sample time 

the infusion is stopped and the first 2-ml blood withdrawn and discarded, prior to 

obtaining the sample for assay. 

7.2.2.3. Assay method 

Glucose was assayed using the glucose oxidase method (Yellow Springs Analyser, YSJ 

23000, USA; intra-assay CV < 2%). Insulin and C-peptide were assayed using 

immunoassays utilising monoclonal antibodies (Dako Dioagnostics, Ely, Cambs, UK; 

intra-assay CV < 5% and < 6% respectively). 

7.3. Data Analysis 

7.3.1. Glucose and Insulin levels 

Fasting plasma glucose (FPG) and fasting plasma insulin (FPI) were obtained as mean 

values of pre-test IVGTf and MIT measurements. Caw,o and Cmu,l were the maximum 

incremental plasma glucose and insulin concentrations during the MTT. AUCo and 

AVCl were the incremental area under the curve of plasma glucose and insulin, 

respectively during MTT from 0 to 180 minutes. 
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7.3.2. Minimal model analysis 

The minimal model analysis of IVGrr data gave insulin sensitivity (Sit ability of 

insulin to enhance the net glucose disappearance from plasma) and glucose 

effectiveness (So, ability of glucose to promote its own disposal) (19). Both S, and So 

are measures of insulin sensitivity; the former measures insulin sensitivity at an 

incremental insulin concentration. the latter at the basal insulin concentration (100). 

The fIrst phase insulin response (AIRo; measure of pancreatic p-cell responsiveness) 

was calculated as the incremental area under the curve from 2 to 8 minutes during the 

IVGIT (122). The disposition index (D,; composite measure of insulin sensitivity and 

pancreatic p-cell responsiveness) was calculated as D, = S, x A1Ro (1 22). 

The package used for the calculation of the minimal model parameters was IS_Ciba 

(Insulin Sensitivity from Ciba, © Ciba-Geigy Ltd .• CH-4002 Basle, Switzerland 1995 

Author: Dr. G.H. Mehring / Medical Department / Biometrics Date of version: 

September 22nd. 1998) (102). 

1.3.3. Insulin secretion model 

The insulin secretion model was used to quantify pancreatic p-cell responsiveness from 

MTT data, providing fasting p-cell responsiveness (Mo; ability of fasting glucose to 

stimulate C-peptide secretion) and postprandial p-cell responsiveness (M,; ability of 

postprandial glucose to stimulate C-peptide secretion) (32). 

Mo represents fasting prehepatic insulin secretion divided by the fasting plasma glucose. 

M, represents the increase in prehepatic insulin secretion given an increment in 

postprandial glucose (32). 

The package used to calculate Mo and Ml was version 1.0 of CPR (Calculating 

Pancreatic Responsiveness; written by R. Hovorka and H.C. Subasinghe. MIM Centre. 

City University, UK, 1997). The model is comprehensively described in Chapter 2. 
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Table 7-2. Glossary for dependent and independent variables 

Variable Description 
........................................................................................................................................................................................................................ 

DEPENDENT VARIABLES 

FPG Fasting plasma glucose (mmoVL) 

FPI Fasting plasma insulin (pmolll) 

HbAtc Glycated haemoglobin (%) 

Cmax.G Maximum (above fasting) plasma glucose during MTT (mmoVl) 

Cmu.1 Maximum (above fasting) plasma insulin during MTT (pmoIlL) 

AUCG Integrated (above fasting) plasma glucose during MTT (mmollL per 180 min) 

AUC
1 

Integrated (above fasting) plasma insulin during MTT (mmollL per 180 min) 

INDEPENDENT VARIABLES 

51 Insulin sensitivity (IVGTT -derived) (1/min per pmollL) 

5G Glucose effectiveness (IVGTT -derived) (1/min) 

MI Post-prandial p-cell sensitivity (MTT -derived) (1 min) 

Mo Fasting p-cell sensitivity (MTT-derived) (1/min) 

AIRG First phase insulin response during IVGTT (pmollL per 6 min) 

0
1 

Disposition index (01 =51 • AI~) (IVGTT -derived) (1/min per 6 min) 

7.4. Statistical analysis 

A Spearman correlation analysis with a Boniferroni correction was carried out to assess 

relationships between indices classified as independent variables for the purposes of the 

study (measures of insulin sensitivity and pancreatic p-cell responsiveness: Sit SG, 

AIRo, Dh Mo, and M,), and dependent variables (clinical measures of glucose control: 

HbAle, FPG, FPI, AUCG, Cmax,G, AUC1 and Cmax,l). The step-wise multi-linear 

regression analysis was used to relate the measures of insulin sensitivity and pancreatic 

p-cell responsiveness to the clinical measures of glucose control. The amount of 

explained inter-individual variability was calculated by the analysis of variance 

(ANOVA). The dependent and independent variables were tested for normal 

distribution and where as appropriate logarithmically transformed. The results are 

expressed as mean ± SE unless stated otherwise. SPSS for Windows V9.0 (SPSS Inc., 

Chicago, IL, USA) was used to carry out statistical calculations. 
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7.5. Results 

7.5.1. Plasma glucose, Insulin and C-peptide 

Elevated fasting plasma glucose and HbA 1C shown in Table 7-3 document the lack of 

control in the newly diagnosed subjects who also presented elevated BMI (see 

Subjects). However, fasting plasma insulin was comparable to that measured in healthy 

subjects indicating a gross reduction in insulin secretion when corrected to the glucose 

stimulus. The AIRa mean value was quite low and close to the FPI values because of 

the weak pancreatic response in newly diagnosed Type 2 diabetes. 

The profiles of plasma glucose, insulin, and C-peptide during IVGrr and MTT are 

shown in Figure 7-1 and 7-2. During IVGTT, the efIect of exogenous insulin at 20 

minutes on glucose lowering is clearly visible. At the start of the experiment, the 

glucose bolus failed to stimulate an immediate insulin response as documented by an 

early drop in C-peptide and resulted in a paradoxical temporary suppression of insulin 

secretion. During MIT, the glucose and insulin levels remained elevated for longer than 

in non-diabetic subjects with peak values reached at 60-90 minutes. 
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Table 7-3. Summary statistics of variables representing glucose control: fasting plasma glucose 

(FPG), fasting plasma insulin (FPI), incremental area under the curve of glucose and insulin 

during MIT (AUCQ, AUel ), incremental glucose and insulin concentration during MIT 

(C""",.G, Cmax,r), and glycated haemoglobin (HbA1c); and variables representing characteristics of 

glucose metabolism: insulin sensitivity (SI). glucose etfectiveness (So), tirst phase insulin 

secretion (AIRo), disposition index (~), and fasting (Mo) and postprandial (M,) pancreatic 

p-cell responsiveness. 

Variable Mean SE (Interquartile range) 

FPG (mmollL) 11.0 0.4 

FPI (pmollL) 60 (31-81) 

AUCG (mmollL per 180 min) 607 41 

Cmax.G (mmollL) 5.2 0.2 

AUCI (mmollL per 180 min) 28.7 (13.6-36.6) 

Cmax.1 (pmoI/L) 233 (115-320) 

HbA1c (%) 7.9 (6.1-9.3) 

SI x10·5 (1/min per pmollL) 1.07 (0.40-1.51 ) 

So xi 0.2 (1/min) 1.5 0.1 

AIRo (pmol/L per 6 min) 313 (143-393) 

D. (1/min per 6 min) 488 (202-732) 

M. xi 0.9 (1/min) 20.1 (11.3-27.4) 

Mo x10·9 (1/min) 5.7 (3.4-7.8) 
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Figure 7-1. Plasma glucose, insulin, and C-peptide profiles during IVOIT (mean ± SE; N=65) 

in newly presenting subj ects with TID. 
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Figure 7-2. Plasma glucose, insulin, and C-peptide profiles during MIT (mean ± SE; N=65) in 

newly presenting subjects with T20. 

ISS 



7.5.2. Minimal model 

Results of the minimal model analysis are given in Table 7-4. All parameters were 

estimated with acceptable accuracy. As expected, insulin sensitivity SI was markedly 

reduced by about 70% and So by about 20% compared to healthy subjects (197). Table 

I in appendix I shows the parameters for all subjects. The model failed to estimate SI 

with acceptable precision (CV more than 150%) in four subjects. No common reason 

was found among the four subjects, which might explain the failure. 

Table 7-4. Minimal model results in subjects with newly presenting T20 (N - 65). 

Pz Cv P3 cv So CV 51 CV 
(1/min) (%) (1/min2xpmollL) (%) (10·2x1/min) (%) (10.5 x1/mln per pmollL) (%) 

Mean 0.24 23 0.70 27 1.54 20 1.8 18 

5E 0.03 3 0.09 4 0.07 2 1.3 3 

7.5.3. Insulin secretion model 

The individual estimates of the pancreatic responsiveness indices during MTT together 

with their precision of estimates are given in Table 2 in appendix I. Table 7-5 

summarises the results of ISM analysis. Fasting and postprandial pancreatic p-cell 

responsiveness Mo and Ml were low compared to those measured in healthy subjects 

(197) (reduction by about 50 and 80% respectively; N = 16, age: 50 ± 10 years, BMI: 

29.2 ±3.6 kWm2, FPG: 5.1 ± 0.5 mmollL) (197). They were estimated with excellent 

precision (CV ~ 7%). 

Table 7-5. Insulin secretion model (ISM) results in subjects with newly presenting T20 

(N= 65). 

MI CV Mo CV 
(10·9 x 1/min) (%) (10·9 x 1/min) (%) 

Mean 20.15 7 5.72 3 

SE 1.66 1 0.36 0 
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7.5.4. Co"elation analysis 

The results of the Spearman correlation analysis are given in Table 7-6. FPG was 

negatively correlated with all measures of pancreatic p-cell responsiveness (most 

strongly with MJ) and the composite index DI (Figure 7-3). HbAlc followed a similar 

pattern with an even stronger correlation with MI but correlation with DI failing to reach 

significance after the Boniferroni (conservative) correction, see Figure 7-4. The two 

MTT-related glucose variables Cmax,G, and AUCo were also negatively correlated with 

MI. 

All insulin variables (FPI, Cmax,I and AUCI) were positively correlated with measures of 

pancreatic p-cell responsiveness. In addition, FPI was strongly negatively and AUC, 

was weakly negatively correlated with SI (Figure 7-5). These were the only correlations 

demonstrated by the two insulin sensitivity indices SI and So. 

Table 7-6. Spearman correlation with the Bonferroni correction between measures of glucose 

control (FPO, FPI, AUCG, Cmax,G. HbA1C, AUCI and Cmax,l) and indices of insulin sensitivity and 

pancreatic ~-cell responsiveness (Sb SG, A~, Db Mo. and MJ. 

SI SG AIRG 01 MI Mo 

FPG ~.16 0.10 -0.49** -0.58*** -0.73*** -0.61 *** 

FPI ~.70*** 0.23 0.74*** -0.06 0.40* 0.76*** 

HbA1C -0.12 -0.03 -0.37 -0.43 ~.81*** -0.52** 

Cmax,G 0.16 -0.01 -0.26 -0.08 -0.49** -0.36 

Cmax,1 ~.38 0.15 0.64*** 0.21 0.78*** 0.77*** 

AUCG 0.01 -0.01 -0.26 -0.2 -0.65*** -0.42* 

AUC, -0.43* 0.15 0.64*** 0.19 0.75*** 0.76*** 

* p<0.05; ** P<0.01; *** P<0.001 
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Figure 7-3. Relationship between FPG and MI (top panel), and between FPG and 0 1 (bottom 

panel) in subjects with T2D (mean ± SE). 
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Figure 7-4. Relationship between HBAlc and Mr (top panel), and between HbAle and Dt 

(bottom pane]) in subjects with T2D (mean ± SE). 
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7.5.5. Regression analysis and explained Inter-individual variability 

The results of the step-wise multi-linear regression analysis are shown in Table 7-6. The 

table lists normalised regression coefficients (z-scores; a higher absolute z-score 

indicates a stronger explanatory ability - this is achieved by transforming the 

independent variables to standardised form which makes the coefficients more 

comparable since they are all in the same units of measure), which entered the 

regression formulae. 

The postprandial pancreatic ~-cell responsiveness M, entered all formulae with the 

exception of that associated with FPI and was the strongest predictor in these 

regressions. The disposition index D, was the second strongest predictor. S, was a strong 

predictor of FPI and also entered the formula associated with Cmu,l. AIRQ predicted 

AUC, and Mo predicted FPI. So did not enter any regression. 

The linear regression analysis was powerful in explaining inter-individual variability of 

all variables with the exception of glucose responses to MTT, see Figure 7-6. Linear 

regression explained 70--80% inter-individual variability of FPI, FPG, HbAIC and 

insulin responses to MIT, and only 25--40% interindividual variability of glucose 

responses to MTT. 
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Table 7-7. Results of step-wise linear regression are shown in the form of z-scores (regression 

coefficients when all variables are expressed in standardised fonn). Dash (-) indicates that the 

independent variables (Sb Sa, AIRo, Db Mo, and M,) did not enter the regression fonnula for the 

dependent variables (FPG, FPI, AUCG, Cmax.G,AUC. and Cmax,')' 

FPG 

FPI* 

HbA1C* 

Cmax,G 

Cmax/ 

AUCG 

AUCt 

-0.83 

-0.47 

0.28 

- 0.41 

0.44 

-0.21 

0.26 

• Variable log transformed to assure normality 

-100 
::.E! 
~ 

FPG FPI HbA,c Cmax,G Cmex.1 

Dependent Variables 

Mo* 

0.35 

- 0.66 

-0.73 

-0.50 

0.69 

-0.65 

0,65 

P value 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

Figure 7-6. Explained inter-individual variability of clinical measures of glucose control using 

indices of insulin resistance and pancreatic ~-cell responsiveness. 
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7.6. Discussion 

The present study documents that at time of presentation, pancreatic p-ceU deficiency 

plays the key role in explaining fasting glucose levels at Type 2 diabetes. This finding is 

consistently supported by MTT and IVGTT data. 

Impaired postprandial pancreatic p-cell responsiveness is the most powerful explanatory 

factor of impaired glucose control. This suggests that most effective normalisation of 

glucose levels in Type 2 diabetes is associated with increased postprandial insulin 

appearance. 

During MIT, fasting plasma glucose and HbAIC were strongly inversely related to the 

ability of basaVfasting and, to a greater extent, postprandial pancreatic p-cell 

responsiveness. Fasting plasma glucose was also inversely correlated with the 

IVGTT -derived first phase insulin response and more strongly with the disposition 

index. This confirms that the disposition index is useful in characterising the overall 

state of glucose metabolism (122). However, in newly presenting Type 2 diabetes, 

postprandial insulin secretion is even more useful as it is more closely correlated with 

fasting plasma glucose. 

Glucose meal responses were only correlated with pancreatic p-cell responsiveness and 

not with insulin resistance. Insulin sensitivity SI failed to demonstrate any relationship 

with fasting plasma glucose and glucose meal responses. Reaven et al (198) also failed 

to find a simple relationship between insulin resistance and fasting plasma glucose in 

non-obese individuals (normal, impaired glucose tolerance and Type 2 diabetes 

subjects). However, Van Haeften et al (199) reported the effect of insulin sensitivity as 

assessed by byperglycaemic clamp on fasting glucose in subjects with normal and 

impaired glucose tolerance. Levy et al (200) documented that the ongoing faU in p-cell 

function assessed by HOMA modelling closely followed a rise in fasting plasma 

glucose in a 10-year prospective study of newly presenting Type 2 diabetes but also 

failed to find any effect of insulin sensitivity. 

The insulin dependent glucose disposal (production) is the product of two factors, the 

ambient insulin levels and the ability of insulin to stimulate (suppress) glucose disposal 

(production). The former factor is influenced by pancreatic p-cell responsiveness and 
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the latter corresponds to the insulin sensitivity index. It is a paradox that only one factor, 

the pancreatic deficiency. is related to glucose control (primarily fasting plasma 

glucose) in the studied subjects. It is unclear why there is a lack of relationship between 

glucose control and insulin resistance and whether methodological issues associated 

with measuring insulin resistance or unaccounted physiological mechanism(s) are 

responsible. 

Our interpretation is that when fasting plasma glucose exceeds say 7mmolll, insulin 

sensitivity is greatly reduced with little or no further reduction with increasing fasting 

hyperglycaemia (subjects in the present study had already achieved their maximum 

insulin resistance). In highly insulin resistant state, insulin dependent glucose disposal 

during fasting becomes negligible and fasting plasma glucose is regulated primary via 

the insulin independent pathways such as the mass effect of glucose on its disposal 

(glucose effectiveness). Thus at fasting, insulin resistance is so high that insulin fails to 

exercise any detectable effect on glucose disposal and production, and in tum on 

glucose concentration. 

This interpretation is not, however. fully consistent with another study finding. Insulin 

sensitivity 51 and fasting plasma ~nsulin have been found tightly (negatively) correlated 

in the present study. This correlation is well documented by others and is normally 

interpreted by a causal chain reasoning that includes plasma glucose. The argumentation 

is that insulin resistance results in elevated plasma glucose, which in tum stimulates 

insulin secretion. Thus insulin resistance is the cause of increased fasting plasma 

insulin. However. this argumentation does not hold in the present study due to the lack 

of correlation between 51 and fasting plasma glucose and we must seek alternative 

explanations. Two candidate theories emerge. Either chronic elevation of plasma insulin 

induces insulin resistance possibly due to the down regulation of insulin receptors or 

some other metabolic variable acts as the "control" messenger between insulin 

resistance and insulin secretion. 

Note that tight correlation between 51 and FPI in the diabetes group supports 

methodological validity of 51 estimates and suggests that insulin modification of IVGTT 

enabled insulin sensitivity to be successfully estimated. 
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Subjects with Type 2 diabetes demonstrate both insulin resistance and reduced 

pancreatic p-cell responsiveness (4S; 193). A previous study on newly diagnosed T20 

showed that both insulin sensitivity (S.) and postprandial p-cell responsiveness (M,) are 

reduced by about 80% compared to BMI-matched healthy subjects, whereas glucose 

effectiveness (So) and fasting p-cell responsiveness (Mo) are reduced by approximately 

25% and 50%, respectively (197). 

Subjects were referred directly after diagnosis by their GPs. The subjects had no 

treatment and did not have any dietary advice. It is possible that they may have made 

their own dietary adjustments, for example they may have given up sugar in their tea 

once they knew they were diabetic, but to all extents and purposes they had had 

absolutely no treatment for diabetes (treatment naive) before undergoing MTT and 

IVGTT. 

Subjects presented a wide range of fasting plasma glucose and fasting plasma insulin 

(S.9--18.4mmoIlL and 20-1S0pmo1lL respectively) probably due to the duration of 

undetected diabetes and/or individual differences in diet and life style. The mean value 

of fasting plasma insulin was close to that observed in healthy subjects, while the mean 

value of fasting plasma glucose was considerably elevated. This observation supports 

the hypothesis that overt diabetes does not appear until the pancreas is not able to meet 

the body's demand for insulin in the face of increasing insulin resistance (193; 201; 

202). This process is then accelerated as glucose is then toxic (glucose toxicity) to the 

p-cell and peripheral tissues (202; 203). 

It has been shown that during the natural development of Type 2 diabetes, fasting 

plasma insulin increases and then decreases as insulin resistance develops (Starling's 

curve of the pancreas). The increase in fasting plasma insulin is generally regarded as a 

compensation mechanism aiming to reverse the effect of insulin resistance and the 

subsequent decrease as a decompensation mechanism reflecting ~-cell 'exhaustion'. 

However, such analysis fails to take into account the level of the stimuli, i.e. the fasting 

glucose level. When insulin secretion is normalised to fasting glucose (such as when 

calculating fasting responsiveness Mo), no increase in insulin secretion, i.e. 

compensation, is observed and there is a consistent pattern of continuously deteriorating 
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fasting pancreatic p-cell responsiveness accompanying elevated fasting glucose. This 

suggests that no compensation mechanism per se exists and that the apex on the Starling 

curve represents a point when the stimuli are not high enough to overcome deteriorating 

pancreatic p-cell responsiveness. It is also known that the early insulin release 

(parameter comparable to M0 during an oral load decreases progressively as the 2-h 

plasma glucose increases. There is no Starling curve for this parameter of insulin 

secretion, which is compatible with our data. 

Fasting plasma insulin correlates negatively with insulin sensitivity (-0.70, p < 0.001). 

This correlation can be explained by the effect of insulin resistance on the stimulation of 

insulin secretion (46; 204) and suggests that elevated fasting plasma insulin is a reliable 

index of insulin resistance. Bonora et a1 (159) also found a negative correlation between 

'insulin sensitivity and fasting plasma insulin in mild glucose intolerance and suggested 

that overproduction of insulin is due to insulin resistance. Olefsky et al (46) found a 

similar correlation in normal subjects, subjects with impaired glucose tolerance and 

Type 2 diabetes, and explained fasting plasma insulin elevation as a result of an attempt 

to overcome insulin resistance. 

The explained inter-individual variability of fasting plasma glucose and HbAlc were 

excellent (> 75%) if we consider intra-individual (day-to-day) variability, which could 

account for 10--20% of unexplained variability (153). A similarly excellent explanation 

was found for fasting plasma insulin and insulin responses to meal. 

Glucose responses after a meal were poorly explained « 45%). It appears that other 

variables not included in the study such as gut absorption and endogenous glucose 

production are responsible for the residual amount of unexplained variability. Thus the 

standard indices of insulin sensitivity and pancreatic p-cell responsiveness do not enable 

reliable predictions of postprandial glucose to be made. 

7.7. Summary 
In conclusion, pancreatic p-cell responsiveness indices from IVGTT and MIT are better 

explanatory factors of fasting plasma glucose, HbAIC, and insulin and glucose responses 

to meal than insulin resistance indices in newly presenting Type 2 diabetes. Postprandial 
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insulin deficiency is the most powerful explanatory factor of elevated fasting plasma 

glucose. glycated haemoglobin and glucose responses to meal. Indices of insulin 

sensitivity and pancreatic ~-cel1 responsiveness are able to explain glucose control well 

with the exception of glucose response to a meal. 
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8. Final discussion 

The primary aim of this thesis was to use modelling techniques employing data 

collected during MTT and IVGTT to progress our understanding of the pathology of 

type 2 diabetes. The secondary aim was to evaluate the domain of validity of the insulin 

secretion model (ISM) and, in part, the minimal model. 

Various methods with varying degrees of complexity have been established and 

developed for the measurement of insulin sensitivity and p-cell function. A review of 

these methods was given in Chapter 2. However, for methodological considerations and 

to eliminate or reduce the effect of the measurement error and the inter-subject 

variability in insulin and C-peptide kinetic, model-based approaches are preferred over a 

simple one or two concentration-point assessment. 

The insulin secretion model (ISM) with MTT is a simple relatively non-invasive tool to 

investigate pancreatic responsiveness (32). It measures the prehepatic insulin secretion 

and assesses pancreatic p-cell responsiveness providing postprandial pancreatic p-cell 

responsiveness (Ml) and fasting pancreatic p-cell responsiveness (Mo). 

A reduced sampling scheme consisting of nine samples has been used and was planned 

to be used in the course of studies in this thesis (49) but its performance with the model 

was still unknown. In Chapter 3, ISM indices of pancreatic p-cell responsiveness were 

successfully estimated and evaluated during MTT with nine-sample and five-sample 

schemes. The five-sample scheme will further reduce the time, labour and cost, 

facilitating a wide use of the model. 

The insulin secretion model was successfully validated during OOTT in healthy 

subjects, and subjects with T2D. The OOTI is the most widely used test because of its 

simplicity. The OGTT is the standard diagnostic test of type 2 diabetes and impaired 

glucose tolerance IGT approved by the World Health Organisation (1). 

In the same chapter (Chapter 4), a comparison between model performance and indices 

during MTT and OaTT was performed. In healthy subjects, as a result of higher 
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C-peptide secretion during MIT with respect to the glucose concentration. MIT 

resulted in 1.5 fold higher postprandial pancreatic ~-cell responsiveness than OGIT. 

In subjects with T2D, glucose response during OGIT was higher than during MTT 

(P = 0.001). whereas the insulin response was slightly higher during MIT (P = NS). As 

a result Ml was two fold higher during MIT than OGIT (P = 0.001). The two indices 

were also correlated. The meal tolerance test provides a more physiological challenge to 

the ~-cell than OGIT. Therefore. MIT is expected to facilitate a more comprehensive 

assessment of ~-cell function. 

In Chapter five, the reproducibility of pancreatic ~-cell responsiveness and the 

reproducibility of glucose. insulin. and C-peptide responses to MIT and OGTT were 

investigated. In healthy subjects the indices of pancreatic ~-cell responsiveness failed 

to show sufficient reproducibility due to lack of reproducibility of glucose and 

C-peptide to MTT and OGIT. However insulin responses to MTT and OGTT were 

reproducible. In subjects with T2D, Ml and Mo were sufficiently reproducible in line 

with reproducible glucose, insulin, and C-peptide responses to MIT. Due to the data 

limitation in subjects with T2D, the reproducibility of these parameters was studied 

during MTT but not OGIT. 

The one compartment minimal model (1 CMM) of glucose kinetics is a powerful 

relatively non-invasive tool to investigate glucose metabolism. However it has been 

criticised by several studies reporting that So is overestimated (109-111; 113; 182-184) 

and SI is underestimated (109-113; 184) due to the under modelling effect of using one 

compartment to represent the glucose pool (113; 182; 185; 186). The new two 

compartment minimal model (2CMM) was suggested and used as an alternative to the 

lCMM, but the 2CMM performance in subjects with type 2 diabetes is still unknown. 

In Chapter 6, the one and two compartmental minimal model performance was 

evaluated and compared to the clamp in subjects with type 2 diabetes during the 

modified NGTT. 

The iterative two-stage popUlation approach was the successful one among several other 

approaches applied during the evaluation and validation of2CMM. Although the model 

was successfully validated in subjects with T2D during insulin-modified FSIVGTT, 
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insulin sensitivity and glucose effectiveness estimated by 2CMM with population 

analysis were not different from lCMM estimates. For its simplicity and popularity and 

to benefit from the data available in the literature it is recommended to use the 1 CMM. 

In Chapter seven the one compartment minimal model and the insulin secretion model 

with MTT were then applied to study newly presenting type 2 diabetes in order to gain 

more understanding of the disease pathology and to investigate the ability of the IVGTT 

and MTT derived indices to explain the inter-individual variability of clinical measures 

of glucose control such as fasting plasma glucose and insulin, glycated haemoglobin, 

and the glucose and insulin responses to a meal. 

Two sets of indices were defined and analysed. One set contained model-based indices 

assessing and presenting the level of insulin sensitivity and pancreatic p-cell 

responsiveness. A second set included several indices of clinical measures describing 

the blood glucose and insulin control ranging from fasting to postprandial measures. 

The impaired postprandial pancreatic p-cell responsiveness was the most powerful 

explanatory factor of impaired glucose control. The explained inter-individual 

variability of fasting plasma glucose and HbAlc were excellent (> 75%) if we consider 

intra-individual (day-to-day) variability, which could account for 10--20% of 

unexplained variability (153). A similarly excellent explanation was found for fasting 

plasma insulin and insulin responses to a meal. 

Glucose meal responses were only correlated with pancreatic p-cell responsiveness. In 

addition insulin sensitivity Sl failed to demonstrate any relationship with fasting plasma 

glucose and glucose meal responses. Fasting plasma glucose and HbAlc were strongly 

inversely related to the ability of fasting and, to a greater extent, postprandial pancreatic 

p-cell responsiveness during MIT. 

Fasting plasma insulin correlates strongly and negatively with insulin sensitivity (-0.70, 

p < 0.001). This correlation was explained by the effect of insulin resistance on the 

stimulation of insulin secretion and suggesting that elevated fasting plasma insulin is a 

reliable index of insulin resistance. 
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Subjects with Type 2 diabetes demonstrated both insulin resistance and reduced 

pancreatic p-cell responsiveness. When insulin secretion was normalised to fasting 

glucose (such as when calculating fasting responsiveness Mo), no increase in insulin 

secretion, Le. compensation, was observed and there was a consistent pattern of 

continuously deteriorating fasting pancreatic p-cell responsiveness accompanying 

elevated fasting glucose. 

This observation supports the hypothesis that overt diabetes does not appear until the 

pancreas is not able to meet the body's demand for insulin in the face of increasing 

insulin resistance (193; 201; 202). This process is then accelerated as glucose is then 

toxic (glucose toxicity) to the p-cell and peripheral tissues (202j 203). 

In conclusion, the model-based approaches used in this thesis, provided simple and 

reproducible relatively non-invasive measures to assess the pancreatic p-cell 

responsiveness and insulin sensitivity. These methods enhanced and raised our 

understanding oftype 2 diabetes pathology. 

8.1. Achievement of objectives 

An outline of the achieved objectives is given below. The achievements are divided as 

the objectives into methodological and clinical. The methodological achievements are: 

_ Pancreatic p-cell responsiveness was successfully estimated and evaluated 

during MTT with nine-sample and five-sample schemes 

_ Insulin secretion model was validated during OaTT in healthy subjects, and 

subjects with T2D. The model is able to assess pancreatic p-cell responsiveness 

from MTT as well as oarr data 

_ In healthy subjects the indices of pancreatic p-cell responsiveness failed to show 

sufficient reproducibility due to lack of reproducibility of glucose and C-peptide 

to MTT and OaTT 
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- In subjects with T20, Ml and Mo were sufficiently reproducible in line with 

reproducible glucose, insulin, and C-peptide responses to MIT 

- The 2CMM was validated successfully using population analysis in TlO 

subjects during insulin-modified FSIVGIT, giving precise estimates of SI and 

So with strong correlation with 1 CMM estimates and SICLAMP. 

- Insulin sensitivity and glucose effectiveness estimated by 2CMM with 

population analysis were not different from 1 CMM estimates. For its simplicity 

and popularity and to benefit from the data available in the literature it is 

recommended to use the 1 CMM. 

The clinical achievements are: 

- Pancreatic p-cell responsiveness indices from IVGTT and MTT were better 

explanatory factors of fasting plasma glucose, HbAIC, and insulin and glucose 

responses to meal than insulin resistance indices in newly presenting Type 2 

diabetes 

_ Postprandial insulin deficiency was the most powerful explanatory factor of 

elevated fasting plasma glucose, glycated haemoglobin, and glucose responses 

to meal 

_ Indices of insulin sensitivity and pancreatic p-cell responsiveness were able to 

explain glucose control well with the exception of glucose response to a meal in 

subjects with T20. 
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8.2. Future work 

Several research questions were raised during the course of study. Recommendations 

for future research encompass clinical and methodological aspects: 

- It is recommended to follow up subjects with newly diagnosed T2D to gain 

more understanding of the disease progression and to detect the effects of 

therapeutic interventions 

- Future work is needed to understand the variability of glucose meal responses 

and its main explanatory factors 

- It is recommended to study the reproducibility of the pancreatic p-cell 

responsiveness during OGrr in subjects with T2D 

- It is recommended to compare the perfonnance of the one compartment minimal 

model with both iterative two-stage popUlation analysis and standard two-stage 

analysis in different pathogenesis states including T2D. 
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Appendix I has three tables including data from 65 subjects with newly presenting type 

2 diabetes who participated in the study described in Chapter 7. Table I shows 

individual estimates of minimal model parameters. Table 2 shows individual estimates 

of insulin secretion model. Individual fasting values of glucose, insulin, and C-peptide 

together with HbA1c are given in Table 3. 

Appendix II contains the published papers and a list of publications derived from the 

work included in this thesis. 
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Table 1. Individual estimates of minimal model analysis in subjects with newly presenting T2D. 

Sub. No. Pz CV P3 CV Sa CV S. CV 
1/min % (1/min2x~molll} % (10'2x1/min} % (1 0.5 x 1/min ~eq~mollL} % 

1 0.01 54 0.06 45 1.40 11 1.01 74 
2 0.05 25 0.22 32 1.18 17 0.71 23 
3 0.13 15 2.39 17 0.93 36 3.12 5 
4 5.59 n/a· nla nla 1.57 17 0.16 127 
5 0.00 nla 0.00 122 1.20 44 nla nla 
6 5.60 0 nla nla 3.28 12 nla nla 
7 0.03 35 0.35 28 3.51 8 2.22 14 
8 0.05 18 0.41 23 1.52 15 1.28 16 
9 0.02 56 0.04 56 2.04 9 0.47 31 
10 0.19 211 0.09 206 1.86 6 0.08 102 
11 0.10 10 1.25 13 0.22 104 2.08 6 
12 0.04 8 0.37 10 0.92 16 1.59 8 
13 0.06 18 0.92 22 1.38 19 2.48 7 
14 0.07 14 0.74 16 1.19 20 1.72 10 
15 0.05 27 0.87 28 1.38 38 2.82 6 
16 0.06 10 0.96 12 0.68 29 2.78 9 
17 0.21 126 0.17 122 1.77 7 0.14 57 
18 0.07 49 4.85 39 2.72 38 10.83 13 
19 0.31 164 0.35 161 1.73 7 0.19 58 
20 0.04 16 0.25 19 1.67 10 0.94 15 
21 0.05 13 0.33 16 1.60 11 1.00 9 
22 0.05 15 0.32 19 1.64 11 1.01 12 
23 0.06 7 0.73 10 1.07 15 2.19 5 
24 0.06 12 1.07 14 1.34 16 2.77 4 
25 0.03 21 0.63 25 1.11 33 3.32 8 
26 0.05 9 0.58 11 1.16 13 1.82 5 
27 0.07 19 0.24 20 1.73 B 0.57 15 
28 0.08 21 1.65 24 1.37 31 3.35 6 
29 0.07 21 0.23 22 1.38 12 0.57 16 
30 0.08 8 0.99 10 0.88 19 2.12 5 
31 0.00 nla nla nla 2.03 13 nla nla 
32 0.04 21 0.46 23 0.96 33 1.98 26 
33 0.02 30 0.07 34 1.90 B 0.55 19 
34 0.03 14 0.21 18 1.31 13 1.03 10 
35 0.02 25 0.10 32 1.17 14 0.86 22 
36 0.05 9 0.69 12 1.01 20 2.53 7 
37 0.04 12 0.23 15 1.18 11 0.96 12 
38 0.04 23 0.60 23 1.49 26 2.65 6 
39 0.06 35 1.76 27 1.92 35 4.62 10 
40 0.02 18 0.06 21 1.58 6 0.53 12 
41 0.09 18 1.17 22 1.15 31 2.22 10 
42 0.08 26 1.73 28 1.42 38 3.78 7 
43 0.04 29 0.14 35 1.62 13 0.55 26 
44 0.00 nla nla nla 1.61 15 nla nla 
45 0.05 30 0.22 28 1.18 19 0.74 28 
46 0.05 13 0.34 15 1.46 10 1.11 13 
47 0.07 20 0.46 21 1.32 15 1.11 16 
48 0.08 15 0.58 18 1.48 18 1.17 9 
49 0.07 9 1.44 12 3.77 59 3.22 5 
50 0.09 30 0.66 36 2.01 21 1.22 15 
51 0.08 18 0.48 22 1.57 17 1.00 12 
52 0.09 27 0.80 29 1.19 43 1.45 6 
53 0.09 17 1.98 19 1.17 28 3.83 5 
54 0.04 17 0.49 19 1.64 18 2.22 6 
55 0.06 18 0.65 23 1.34 26 1.74 9 
56 0.05 12 0.43 15 1.35 12 1.50 12 
57 0.09 16 0.32 18 1.81 8 0.61 11 
58 0.07 35 1.62 35 1.56 44 3.73 7 
59 0.05 35 1.38 27 1.61 38 4.79 9 
60 0.23 38 0.56 40 1.70 7 0.42 17 
61 0.03 19 0.24 21 1.53 11 1.39 18 
62 0.06 33 0.20 33 1.59 11 0.54 29 
63 0.03 12 0.20 18 1.52 8 1.17 12 
64 0.12 78 0.11 73 2.04 5 0.15 47 
65 005 H Q.18 18 1.Z5 a 0.60 14 
Mean 0.24 23 0.70 27 1.54 20 1.79 18 
SE 0.03 3 0.09 4 0.07 2 0.21 3 

• The estimation did not return any value 
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Table 2. Individual estimates ofISM analysis in subjects with newly presenting T2D. 

Sub. No. M, CV Mo CV 
{10-9x 1/minl % {10'9 x 1/min} % 

1 40?? fi 7O? 4 
2 30.23 8 11.72 3 
3 8.10 6 2.44 3 
4 44.21 4 7.78 3 
5 21.17 8 7.65 3 
6 8.53 7 3.72 3 
7 8.63 8 2.93 3 
8 25.47 6 6.09 3 
9 17.53 7 8.12 3 
10 19.62 8 6.25 3 
11 19.72 6 7.20 3 
12 11.54 5 5.35 3 
13 26.38 6 7.83 3 
14 1.94 28 3.02 3 
15 18.21 4 3.22 3 
16 11.64 4 5.05 3 
17 16.94 9 7.90 3 
18 28.50 4 3.51 3 
19 57.91 4 13.62 4 
20 22.40 4 5.04 3 
21 15.77 7 4.73 3 
22 14.84 5 3.75 3 
23 32.26 4 5.52 4 
24 2.41 8 .92 3 
25 45.24 5 9.06 3 
26 11.30 7 4.05 3 
27 6.46 21 4.26 3 
28 14.78 6 4.62 3 
29 12.84 7 5.07 3 
30 13.06 5 2.29 4 
31 17.45 6 6.04 3 
32 37.44 5 10.44 3 
33 29.14 4 5.17 4 
34 29.63 4 4.29 3 
35 5.37 20 5.48 3 
36 7.01 4 1.15 3 
37 12.12 7 3.51 3 
38 34.14 3 3.30 4 
39 6.93 5 2.42 4 
40 26.20 6 8.21 3 
41 11.26 6 2.89 3 
42 21.84 6 4.21 3 
43 15.56 8 6.85 3 
44 16.09 6 3.60 3 
45 15.40 9 10.25 3 
46 37.94 6 7.75 3 
47 9.28 11 6.03 3 
48 16.51 7 7.35 3 
49 7.04 5 1.97 3 
50 7.70 5 2.12 3 
51 15.28 11 4.03 3 
52 4.47 6 2.42 3 
53 14.38 8 5.75 3 
54 38.48 6 12.62 4 
55 41.40 6 9.72 3 
56 39.39 4 7.77 4 
57 9.02 7 5.46 3 
58 13.36 5 3.32· 4 
59 15.15 4 3.03 3 
60 18.91 7 7.36 3 
61 12.23 5 4.69 3 
62 19.27 6 8.85 3 
63 67.77 5 11.75 3 
64 7.41 15 3.16 4 
65 21,01 6 9,41 :3 
Mean 20.15 7 5.72 3 
SE 1.66 1 0.36 0 

193 



Table 3. Fasting plasma glucose (FPG), insulin (FPI), C-peptide (FPC). and gtycated 

haemoglobin (HbA1c) in subjects with newly presenting T2D. 

Sub. No. FPI FPG FPC HBA1C 
(pmolll} {mmolll} {nmolll} {%} 

1 1\1 RR n.~~ n/R· 
2 117 8.9 1.598 nla 
3 13 15.7 0.560 nla 
4 82 11.2 1.385 nla 
5 90 15.6 1.793 nla 
6 66 15.8 0.941 nla 
7 25 15.4 0.628 nla 
8 55 9.2 0.764 nla 
9 99 12.4 1.701 nla 
10 148 14.4 1.418 nla 
11 97 8.7 0.921 nla 
12 63 10.6 0.907 8.5 
13 80 6.6 0.685 5.8 
14 42 17.2 0.813 12.1 
15 28 9.0 0.491 6.9 
16 46 8.6 0.711 9.1 
17 99 10.9 1.479 7.7 
18 19 7.7 0.435 6.1 
19 87 7.5 1.403 5.7 
20 36 9.1 0.678 7.2 
21 43 11.9 0.793 9.2 
22 58 10.8 0.646 7.0 
23 38 6.6 0.644 5.7 
24 10 15.8 0.255 9.3 
25 66 6.6 1.299 4.7 
26 32 13.1 0.898 8.3 
27 63 15.0 nla 9.6 
28 36 10.4 0.766 7.1 
29 74 11.2 1.206 10.0 
30 31 10.1 0.366 6.4 
31 72 12.1 1.074 9.9 
32 30 5.9 0.922 5.2 
33 53 8.2 0.797 6.3 
34 52 11.7 0.839 7.6 
35 43 15.4 0.910 11.6 
36 17 15.3 0.276 10.0 
37 51 16.0 0.862 11.3 
38 22 6.3 0.306 4.2 
39 32 8.9 0.411 8.4 
40 79 7.6 1.219 5.5 
41 25 12.1 0.512 7.9 
42 37 10.4 0.662 6.9 
43 63 12.2 1.217 7.7 
44 27 14.1 0.691 7.4 
45 101 8.8 1.390 7.1 
46 77 8.9 0.993 5.7 
47 49 12.2 1.046 9.0 
48 104 9.8 1.218 7.4 
49 21 11.3 0.436 9.3 
50 22 17.0 0.531 12.0 
51 54 15.1 0.868 9.4 
52 30 15.7 0.585 10.5 
53 38 8.9 0.923 10.0 
54 54 6.3 1.339 5.5 
55 81 7.2 1.345 6.0 
56 69 8.7 0.848 6.1 
57 152 11.0 nla 9.2 
58 26 12.3 0.573 8.1 
59 23 10.6 0.625 8.5 
60 118 10.1 1.153 7.4 
61 106 10.5 0.744 5.2 
62 105 8.8 1.194 8.5 
63 69 6.3 0.990 4.9 
64 63 18.4 0.973 13.6 
65 128 Z.Z 1.1QZ 6.1 
Mean 60 11.0 0.901 7.9 
SE 4 0.4 0.045 0.3 

• The estimation did not return any value 
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