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Abstract 

Compact and low-cost semiconductor laser sources have significant potential for use 
in applications that are currently dominated by expensive solid-state lasers. The direct 
application of high-power semiconductor lasers for free-space and satellite 
communications, visual displays, biomedical applications and remote sensing, optical 
recording, spectroscopy, optical data storage, laser printers, laser radar and also for 
materials processing is becoming increasingly attractive due to the remarkable 
improvement in performance of high-power laser diodes. In addition, high-power 
spatially and spectrally coherent sources are required for the efficient pumping of 
solid-state and fiber lasers and efficient nonlinear frequency conversion to the short­
wavelength part of the visible spectrum, which is not readily available with 
semiconductor sources directly. 

The early development of the semiconductor amplifier had initially been assisted by 
the use of the semi-analytical and numerical approaches, which has been extended to 
include segmented sections to allow for lateral variations of the optical and electronic 
parameters. In this work, a vectorial finite element beam propagation method 
(FEB PM), which is numerically efficient and has incorporated a wide-angle approach 
to tackle rapid axial variations and the perfectly matched boundary condition, to avoid 
reflections from the orthodox computational window, has been employed to study and 
design the guided-wave photonic devices. The evolution of the optical beam profile 
along a high power tapered semiconductor amplifier has been demonstrated by 
employing this method. Numerically simulated results indicate the generation of many 
higher order modes, and their interference with the fundamental mode causes a 
variation of the optical beam, both along the transverse and the axial directions, which 
could significantly modify the output beam quality, which also leads to beam 
filamentation. 

In this thesis, the FEBPM approach has also been utilized to study rigorously the 
complex refractive index profiles, which provide modal gain in the semiconductor 
structures. The power gain in an active photonic device, such as a laser or an amplifier 
is due to the presence of the imaginary part of the complex refractive index in the 
core. The injected current generates carrier density and when the density is above the 
transparent carrier density then the optical field can be amplified. In case of a high­
power tapered semiconductor optical amplifier (SOA), the width of the SOA changes 
continuously, which reduces the power density to improve the total gain. The modal 
gain properties and field expansion have therefore been examined in this work. The 
effect of gain reduction along the transverse directions due to non-uniform transverse 
field profile is also demonstrated. Furthermore, the effect of gain saturation on the 
total optical gain of the amplifier is studied by considering both the transverse and 
axial variation of the local gain coefficient. 

Finally, the study of the far field profiles and birefringence for various tapered 
waveguide structures, with particular interest to the very wide width SOA structures is 
carried out. 
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Chapter 1 Introduction 

1.0 Introduction 

1.1 Lightwave Technology 

The use of light as communication methods can date back to antiquity if we define 

optical communications in a broad way. The modem fibre-optic communications 

started around 1970s when the GaAs semiconductor laser was invented and the 

optical fibre loss could be reduced to 20 dBIkm in the wavelength region near 111m. 

Since then, fibre-optic communications have rapidly developed and the enormous 

progress of lightwave systems can be grouped into several generations, as discussed 

below [1]. 

The first generation of lightwave systems was made commercially available in 1980. 

It operated near the wavelength 800 nm and used GaAs semiconductor lasers. The 

data rate of these lightwave systems could reach 45 Mh/s with repeater spacing up to 

10km. 

The second generation of lightwave systems became commercially available in late 

1980s. It operated in the wavelength region near 1.31lm, where fibre loss is below 1 

dBIkm and optical fibre has exhibited minimum dispersion in this region. From the 

early 1980s, the developments of InGaAsP semiconductor lasers and detectors 

operating near 1.31lm and the use of single-mode fibres have contributed to the 

availability of the second generation of lightwave systems. By 1987, the second­

generation lightwave systems with data rate of 1.7 Gb/s and a repeater spacing of 50 

km were available. 

The third-generation lightwave systems with data rates of 2.S Gb/s became 

commercially available in 1990. It was known that silica fibres had the minimum loss 

(0.2-dB/km) near the wavelength of l.SSllm. Unfortunately, there is large fibre 

dispersion near 1.5Sllm. To overcome this problem, dispersion-shifted fibre and 

single-longitudinal-mode lasers were developed. The drawback of the third-generation 
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Chapter 1 Introduction 

lightwave system was that the signal has to be electronically regenerated periodically, 

with the repeater spacing of typically from 60 to 70 km. 

The use of erbium-doped fibre amplifiers (EDFA) and wavelength-division 

multiplexing (WDM) is the distinct character of fourth-generation lightwave systems. 

EDFA was developed in 1985 and commercially available in 1990. EDFA made it 

possible to transmit optical signals up to tens of thousands of kilometers without using 

an electronic regenerator. The advent of the WDM technique started a revolution and 

increased the capacity of lightwave system enormously. By 1996, commercial 

transatlantic and transpacific cable systems became available and a demonstration of 

optical transmission over 11,300 km using actual submarine cables at a data-rate of 

5Gb/s was realized in the same year. Since then, many submarine lightwave systems 

have been developed worldwide. 

The next generation of lightwave systems, has been under development for some 

time. The emphasis of research can be commonly categorized into two groups. One 

emphasis is to extend the wavelength range to L-band (1570nm - 1610nm) and S­

band (1485nm - 1520nm) to increase the number of channels in WDM. The 

lightwave systems are operating in the conventional wavelength window, known as 

C-band, which is from 1530 nm to 1565 nm. Another emphasis is to increase the data­

rate of each channel. Many experiments have been done operating at data rate of 10 

Gb/s or 40 Gb/s since year 2000. In such higher data rate lightwave systems, 

dispersion compensation management and combating of nonlinearity degrading 

effects like SPM (Self-phase modulation), XPM (Cross-phase modulation) and FWM 

(Four-wave mixing) are becoming urgent. In this issue, modulation formats have been 

a key factor. As the data-rate of lightwave systems is increasing to 10Gb/s or 40Gb/s, 

the optical signals are becoming more sensitive to the linear and nonlinear degrading 

effects. Polarisation mode dispersion (PMD) has become one of the major obstacles to 

upgrade the current per-channel bit rates to 40 Gb/s and beyond in dense wavelength 

division- multiplexing systems. 

Consequently, NRZ (non-return-to-zero) that has been used for a long time in 

lightwave system is no longer an optimal modulation format in the next generation of 
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lightwave systems. A modulation format that is more tolerant to linear and nonlinear 

impairments is needed. The capacity of lightwave system, bit rate-distance product, 

will be improved dramatically using optimal modulation formats compared to NRZ 

format. In addition, spectral efficiency would be improved using optimal modulation 

format thus more information could be conveyed per wavelength or more wavelengths 

can be co-propagated over fibres. From an economical point of view, optimal 

modulation formats will permit service providers to develop their existing lightwave 

network without an overall upgrade and to utilize most of the existing systems, 

thereby saving costs. 

1.1.1 Integrated Photonics 

As a result of new developments, associated also with other technologies, such as 

electronics, new disciplines have appeared connected with optics: electro-<>ptics, 

opto-electronics, quantum electronics, waveguide technology, etc. Thus, classical 

optics, initially dealing with lenses, mirrors, filters, etc., has been extended to describe 

a new family of much complex devices such as lasers, semiconductor detectors, light 

modulators, etc. The quantum nature of light is important and the operation of these 

devices must be described in terms of photons as well as of electronics, giving birth to 

a mixed discipline called photonics. 

This new discipline emphasises the increasing role that electronics play in optical 

devices, and also necessity of treating light in terms of photons rather than waves, in 

particular in terms of matter-light interaction (optical amplifiers, lasers, 

semiconductor devices, etc.). 

For 30 years after the invention of the transistor, the processing and transmission of 

information were based on electronics that used semiconductor devices for controlling 

the electron flux. But at the beginning of the 1980s, electronics was slowly 

supplemented by and even in some cases replaced by optics, where photons 

substituted for electrons as information carriers. 
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Nowadays, photonic and opto-electronic devices based on integrated photonic circuits 

have grown in such a way that they not only clearly dominate long-distance 

communications through optical fibres, but have also opened up new fields for 

applications, such as sensor devices, and are also beginning to penetrate into the field 

of the information processing technology. 

The first optical waveguides, fabricated at the ends of the 1960s, were two­

dimensional devices on planar substrates. In the mid 1970s the successful operation of 

three-dimensional devices waveguides was demonstrated in a wide variety of 

materials, from glasses to crystals and semiconductors. 

The technology and fabrication methods associated with integrated optical circuits 

and components vary widely. In addition, they depend on the substrate material on 

which the optical device is fabricated. Optical integration can expand in two 

directions: serial integration and parallel integration. In serial integration for optical 

devices the different elements of the optical chip are consecutively interconnected: 

laser and driver, modulator and driver electronics, and detector and receiver 

electronics. In parallel integration, the chip is built by bars of amplifiers, bars of 

detectors and wavelength (de) multiplexors. The highest level of integration (whether 

serial or parallel) is achieved in monolithic integration, where all the optical elements 

including light sources, light control, electronics and detectors are incorporated in a 

single substrate. The most promising materials to achieve full monolithic integration 

are semiconductor materials, in particular GaAs and InP. 

1.1.2 Optical Technology Evolution 

From the technological aspect of the industry, optical components may need to go 

through the same kind of generations that the electronics industry went through, from 

discrete components to printed circuit board, and to solid-state devices. Today, the 

optical components industry is still in the discrete, bulky optics phase. It is possible 

that the industry will go through low-level, medium-level, and then high-level 

integration. Technology enables two evolution paths to create value 

(a) consistent performance and lower cost 
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(b) consistent price and higher performance 

In Fig. 1.1, a proposed possible evolution path for optical technology evolution is 

reported. Because the nature of the photon is very different from the electron, optical 

technology will have some major differences compared with the electronic technology 

evolution. It may go through more steps before large-scale integration possible. The 

technology evolution path will depend on how technology breakthrough will develop 

in the future. Below is shown a brief analysis of each stage for the proposed evolution 

of optical technology: 

Discrete Hybrid Low-level Medium-level High-level .. ... monolithic .. monolithic .. monolithic 
components r integration ... r r 

integration integration integration 

Fig. 1.1 Technology evolution for optical components. 

(aJ Discrete components: Except for a few components, like array waveguide 

gratings (A WGs) made from planar technology, most of the components used 

are made of bulky, discrete manner such as thin-film filters and FP tunable 

filters. Considerable labour is involved to put them together and each 

component performs a specific function. Customer design integration is 

required to make them fit into modules or subsystems, such as fibre amplifier 

modules, OC-192 transmitter/receiver modules and optical switching modules. 

The performance of these modules are determined by the performance of key 

components. For the same function, there are several technology options 

available, such as WDM filters using three technologies: thin-film filter, fibre 

Bragg grating, or array waveguide grating. There is no clear "winning" 

technology transition from one generation to another generation. At the very 

base technology level the optical component industry is still relatively 

immature as is probable that optical integration is 15-20 years behind the 

semiconductor industry. There are numerous opportunities for inventions and 

innovations in both the components and subsystems levels. 
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(b) Hybrid integration: At this stage, several functional components made with 

different materials can be integrated on a common platform such as silicon 

"optical bench" and ceramic substrates to hold active and passive components 

in place and using silica or polymer waveguides to guide light from one 

component to another. This process can potentially reduce packaging size, cost 

and increase module functional density and scalability, while maintaining a 

high level of performance. This is a transitional step for monolithic component 

integration. The main objective is to reduce overall cost to enable low-cost 

optical modules for metro or access applications. On the other hand, the small 

packaging may enable high-speed (~40 Gb/s) applications. 

(c) Low-Level Monolithic Integration: While hybrid integration provides several 

functions on a common platform, monolithic integration combines several 

functions on the same material or chip. Because of the great challenge we are 

facing with material, processing, and the very basic physics of optical devices, 

only a few functions can be integrated in one chip. Due to its high potential, 

there are a lot companies targetting on this solution right now using different 

technologies. These firms include IDS Uniphase, Coming, K.2 Optronics and 

mM 

(d) Medium-Level and High-Level Monolithic Integrations: As the material and 

processing technologies advance, more and more functions can be integrated on 

one chip. We divide these into medium- and high-level integration because we 

believe that the technology that will be able to achieve high-level integration 

may be very different from those in the low- and medium-level integrations. 

Furthermore, optical integration may never reach the level of integration and 

number of functions you can put on a semiconductor electronic chip. The 

wavelengths of light of interest to telecommunications are of order 10,000 times 

bigger than the size of an electron. Therefore, levels of optical integration will 

be limited to 100s of elements, as opposed to the millions encountered in 

electronic ICs. Nonetheless, there is much to be gained over current discrete 

optics, and integrated optical circuits represent the next level of efficiency and 

performance in fibre optic components. 
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1.1.3 Optical Communication Research and Technology 

During the past several years, optical communications have evolved from a 

speculative research activity plagued with many practical problems to a point where 

systems implementation is a reality. This success was assured when, in 1970, the first 

20 dB/km optical fibre was demonstrated. Before this event, typical fibre attenuations 

ranged in the thousands of dBlkm range, a loss level, which precluded consideration 

of optical light guides for data transfer. With optical fibre losses now below 1 dB/km, 

and with the development of suitable solid-state diode light sources and detectors, 

there are no insurmountable technological barriers remaining, which will prevent fibre 

optical transmission systems from finding widespread commercial and military 

applications in the near future. The technological advantages offered by fibre 

implementation on data transfer systems guarantee the use of optical fibres at the very 

least specialized applications, regardless of economic issues. 

The military possesses the greatest variety of specialized applications, and it is the 

military, which will most likely capitalize most rapidly on this technology. The 

telecommunications and computer industries on the other hand can take advantage of 

this technology after economic viability has been demonstrated. In view of their prior, 

high capital investment in conventional ''transmission'' technology, fibres are being 

used initially in replacement and expansion situations. 

This optimistic future for optical communication was achieved only after many 

different and various approaches to utilize light as an information carrier were 

attempted. With the invention of the laser in the early 1960s, the exploitation of the 

immense information-carrying capacities promised by optical frequency radiation was 

widely envisioned. However, progress was limited by two factors: components and 

the transmission media. Component progress during the sixties was continuous with 

several types of optical transmitters (lasers and LEDs), modulators, and photo­

detectors being developed. Suitable sources with the adequate power existed at the 

end of the sixties for transmission in low-loss media. However, a transmission 

medium with acceptable transmission characteristics did not then exist. 
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Transmission in the open atmosphere was long recognized to be unacceptable and 

unreliable for light transmission. Transmission outages caused by adverse weather 

conditions significantly degraded system performance. A controlled atmosphere using 

evacuated pipes was postulated as a means of circumvent the transmission outage 

problems. In order to maintain beam quality, periodic refocusing was required. The 

most promising approach employed a conduit filled with a gas, which had a radial 

temperature gradient to refocus the optical beam. The radial temperature profile was 

obtained using suitably placed interactive servo-controlled heater elements, which 

gave rise to a radial gas-density gradient and thus a radial index of refraction gradient. 

Radially graded refractive indices provided continuous beam refocusing and in a 

sense formed a waveguide. Technical feasibility was established for this approach: 

however, practical considerations of index profile control and size precluded system 

utilization of this approach. The realization of 20 dBIkm fibre by Coming radically 

changed the outlook for optical communications by providing for a stable, flexible, 

low-loss transmission media. Cylindrical fibres step or graded index was quickly 

perfected, with transmission losses now being reduced to below 1 dBIkm and tensile 

strengths in 1 km lengths. Detector technology for communications application was 

already available and only had to be optimized. When the 20 dBIkm fibre appeared 

(1970) sources compatible with optical fibre use only existed in laboratory models. 

Diode lasers and LEDs were still in the exploratory stage of development. Five years 

of research quickly led to the development of long-life (>105 hr), high brightness 

sources with performance characteristics compatible with fibre optic usage. 

Early source deficiencies such as low brightness and fibre strength issues resulted in 

the first fibre system demonstrations using fibre bundles containing hundreds of fibres 

per channel. These bundles captured a large fraction of the emitted light and because 

of their size proved to be easy to terminate and interconnect. As fibre and source 

performance improved, single fibre per channel technology developed and has now 

replaced bundle technology. Connectors and splices for single fibre per bundle cables 

have been developed and outperform analogous bundle connectors in terms of 

connection loss. Single-fibre per channel technology, however, is utilized in longer 

length applications such as encountered in the telecommunications industry and larger 

intraplatform (ships) applications. Performance and fibre economy strongly favour 

single fibre approaches. 
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1.1.4 Market Overview 

The optical component market can be divided into two different segments: 

components and modules/subsystems. Components are the basic building blocks for 

modules, subsystems, as well as the final systems. Optical components can be 

classified as active components, which are devices that generate or manipulate light, 

such as lasers, modulators, and receivers, and passive components, which handle 

light, such as wavelength division multiplexing (WDM) filters, couplers, isolators and 

circulators. Modules and subsystems are mUltiple components packaged together to 

perform one or a few functions, such as transmitters/receivers, erbium-doped fibre 

amplifiers (EDFAs), Raman amplifiers, optical add/drop multiplexers (OADMs), and 

optical switches. 

The interaction between systems and components development has been particularly 

strong and efficient for the fibre optical communications industry as compared to 

many other technological industries because of the complexity involved in optical 

systems. For many years, optical technology remained in the academic realm and 

always viewed as a "future technology". Today's advanced optical systems are made 

possible with a large number of technological breakthroughs such as low-loss fibres, 

high-speed semiconductor lasers, WDM filters, erbium doped fibre amplifiers, etc. 

The demand for new components depends on the demand for advanced optical 

systems from telecommunications carriers and other network operators. After 5 years 

in the late 1990s significant demand with double or triple digit growth, there has been 

a slowdown in both components and systems over the last few years. 

On the other hand, optical component technology is still in the early development 

stage. No dominant design has been established for most components. Almost every 

component has several technology options. For example, optical filters are important 

components in optical systems for combining and separating optical signals. Overall, 

because fibre optic communications provide the best performance/price ratio to 

deliver bandwidth over the net, the industry will enjoy a solid growth in the long term. 

Optical technology is also penetrating into metro and access markets and each 

generation of the network will need new components and more and more optical 

contents are embedded in the network. 
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Overall, there are still requirement for advanced technological innovation to produce 

advanced optical components for optical systems to bring enhanced value to the end 

users. 

1.2 Optical Waveguide Structures 

Integrated photonics devices are based on the processing of light confined in optical 

structures called optical waveguides. These optical structures allow the confinement 

of light within its boundaries by total internal reflection. They consist of a core (where 

the light is confined) and a cladding, or substrate surrounding the core as shown in 

Fig. 1.2. The refractive index of the core, ng is higher than that of the cladding ns. 

Therefore the light beam that is coupled to the end face of the waveguide is confined 

in the core by the total internal reflection. 

The condition for total internal reflection at the core-cladding interface is given as 

(1.1) 

Since the angle, ¢ (given in radians) is related with the incident angle, B by 

(1.2) 

we obtain the critical condition for the total internal reflection as 

(1.3) 

The refractive index difference between core and cladding is of the order of 

n g - n s , then B max in equation 1.3 can be approximated as 

(1.4) 
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(}max denotes the maximwn light acceptance angle of the waveguide and is known as 

the Numerical Aperture (NA). 

XL 
Y z 

x=a 
----r~----'~--~_.::::_---~-~ X = 0 

z 
x=-a 

Cladding n, 

x 

n 

Fig. 1.2 Basic structure and refractive index profile of optical waveguide. 

An optical waveguide classification can be produced by considering the number of 

dimensions in which the light is confined as shown in Table 1.1. Planar optical 

waveguides confine the optical radiation in a single transverse direction. They are the 

key to construct integrated optical circuits and semiconductor lasers. Considering the 

refractive index distribution in the planar structure, planar waveguides can be 

classified as step-index waveguides or graded index waveguides. 

The step-index planar waveguide is the simplest structure of light confinement, and is 

formed by a uniform planar film with a constant refractive index, surrounded by two 

dielectric media of lower refractive indices. The homogenous upper medium, or upper 

cladding has a refractive index of nc, and the lower mediwn with refractive index na• 

is often called substrate. Usually it is assumed that the refractive index of the upper 

cladding is less than or equal to the refractive index of the substrate, nc S na, and in 

this way we have ng > ns ~ nco In fact, in many cases the upper cladding is air, and 

therefore nc = 1. If the upper and lower media are the same, ns = nc (equal optical 

constants), the structure forms a symmetrical planar waveguide. On the other hand, if 

the upper and lower media are different, it is an asymmetrical planar waveguide. 

If the high index film is not homogenous, but its refractive index is depth dependent 

(along the x-axis) the structure is called a graded index planar waveguide. Usually the 

refractive index is maximum at the top of the surface, and its value decreases with 

depth until it reaches the value corresponding to the refractive index of the substrate. 

This kind of structure is present in waveguide fabrication methods based on the 
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surface modification of a substrate, whether by physical processes (ion implantation, 

metal diffusion, etc.), or by chemical modification of the substrate (ionic exchange 

methods). 

In planar waveguides, the light confinement is restricted to a single dimension (along 

the x-direction) and if the light propagates along a given direction (z-axis), the light 

can spread out in a perpendicular direction (y-axis) due to diffraction. To avoid this 

effect and keep the light beam well confined, it is necessary for total internal 

reflection to take place not only at the upper and lower interfaces, but also at the 

lateral boundaries. This confinement is attained in channel waveguides, or 2D 

waveguides, in which the core region (where the optical energy is concentrated) has a 

refractive index greater than any of the surrounding media. 

Dimensions of light confinement 

ID 
2D 

3D 

Classification of optical waveguides 

Planar waveguides 
Channel waveguides 

. Optical fibres 
Photonic crystals 

Table 1.1 Classification of optical waveguides according to the number of 
dimensions of light confinement. 

Although many types of channel waveguides have been proposed, three are the most 

common basic structures used. The easiest way to build a channel waveguide is to 

deposit a stripe made of a high refractive index material on top of a lower refractive 

index substrate. This kind of channel waveguide is called stripe waveguide, and can 

be made by either depositing the stripe directly onto the substrate, or simply by 

conveniently etching a previously deposited film. If the etch process is not complete 

and does not reach the substrate, a channel waveguide is also produced, providing that 

the thickness and height of the structure are conveniently tailored; this waveguide 

geometry is called rib waveguide. Another common type of channel waveguide is the 

buried channel waveguide. In this case the waveguide is fabricated by including a 
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local increase of the substrate refractive index, which IS usually performed 

experimentally, by diffusion methods. 

Optical fibres are special type of channel waveguides, from the point of view of their 

geometry and manufacturing methods as well as their applications. They have 

cylindrical geometry, and are constituted by a cylindrical core of radius a and 

refractive index ng, surrounded by a cladding of slightly lower refractive index ns. 

Optical fibres are a best choice when low loss and high transmission bandwidth is 

required in long-distance optical communications. 

Structures also exist that confine light in the three dimensions. These constitute a very 

special case of optical waveguides: since the radiation is confined in all directions, it 

cannot propagate. Therefore, these structures in fact form light traps, and are often 

called photonic crystals. The light confinement in this case obviously cannot be based 

on total internal reflection; instead, photonic crystals are fabricated by means of tri­

dimensional periodical structures, in which the light confinement is based on Bragg 

reflection. Photonic crystals have very interesting properties, and their use in several 

devices and applications have been proposed, such as miniaturised lasers with 

virtually no threshold power, waveguide bends with very small curvature radii and 

dimensions, or narrow-band filters [2]. 

The slab waveguide is the simplest and most basic type of optical waveguide. It can 

support a finite number of guided modes, which are associated with an infinite 

number of unguided radiation modes. The boundary value problem can be formulated 

using Maxwell's equations taking into account the boundary condition at interfaces to 

solve for such modes. The guided modes ofthe slab waveguide can be extracted using 

the approximation that is valid for short wavelength of light known as "geometrical or 

ray optics". 

Let's consider the cladding guide interface and a light ray, A, as shown in Fig. 1.3 

incident at an angle 81 , between the light field normal and the normal to the interface. 

By using Snell's law, the refraction can be expressed as 
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ng sinO, 
-=--
ns sinO 

(1.5) 

where 0 is the exit angle of the refracted wave AB. 

From using Snell's law the guide cladding interface can also be expressed as 

nc sinO 
-=-- (1.6) 

where O2 is the angle of the refracted ray BC, with the normal to the guide cladding 

interface. 

Since ng > nc, an incident ray is reflected into the guided region, following the path 

AB and when () < Be, the total reflection conditions are not met at the guide-cladding 

interface, therefore the ray is reflected to the cladding region. Similarly when the 

incident angle () > Oe. the total reflection occurs and the light ray will be following the 

pathBD. 

When the incident angle () < Os. at the guide substrate interface, then the light ray may 

refract back in to the substrate through which the light escapes from the structure 

(substrate radiation modes). 

Cladding 
c 

Core 

t 
ng 

Substrate 

Fig. 1.3 Reflection and refraction of light ray in a slab waveguide. 
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When 0 is large enough total internal reflection occurs in both interfaces. This leads 

to the light in the guide to be trapped and confined and propagates in a zigzag pattern 

along the z direction. These are hence referred to as the guided modes. 

These guided modes can be described as Transverse Electric (TE) or Transverse 

Magnetic (TM) modes. For the TE mode, the electric fields are perpendicular to the 

direction of the propagation. On the other hand, for TM mode the magnetic fields are 

perpendicular to the direction of the propagation. 

The waves travel with a wave vector kng usually in the direction of the wave where 

the absolute value k is, 

k = 2:r = (J) 

A c 
(1.7) 

k is termed as the wavenumber, A, (J) and c are the free-space wavelength, angular 

frequency and velocity of light in the vacuum, respectively. The mode propagation 

constant, fl, and the phase velocity, vp , of the light wave can be expressed as [3] 

P =.!!!....=kn sinO v g 
p 

(1.8) 

The condition for all the multiple reflected waves to add in phase is that the total 

phase change experienced by the plane wave for it to travel one round trip, up and 

down across the guide should equal 2m1t, where integer, m, is the mode order. The 

phase change for the plane wave to cross the thickness, t, of the guide twice, up and 

down, is 2kng cosO. Furthermore, the wave suffers a phase shift of -2¢s, on the total 

reflection at the guide-substrate boundary and phase shifts -2¢e. due to the total 

reflection at the guide-cladding interface. The above relationship yields the self­

consistency condition for the guided mode in a planar slab optical waveguide as 

(1.9) 
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The above equation is also tenned as the eigenvalue or transcendental equation. By 

employing the Fresnel fonnulae for each polarisation [3], the phase shifts ¢s and ¢e, 

for the TE waves can be expressed as 

rn 2 sin2 0 _ n2 
V g c tan ¢ = ...!-~---

C ng cosO 

and in case ofthe TM waves, 

(1. lOa) 

(1. lOb) 

(1.1la) 

(1.IIb) 

Similarly, expressions can also be calculated for the guide-substrate interface, by 

substituting the refractive index of the cladding ne. with the refractive index of the 

substrate, ns. 

1.3 Analysis of Optical Waveguide Structures 

The ray optic approach can be used in the qualitative description of light behaviour in 

an optical waveguide, to establish the types of mode that can be found in such 

structures, to calculate the number of guided modes that support a waveguide, and to 

detennine its propagation constants. Nevertheless, for many applications it is essential 

to know the electric field distribution of the radiation within the waveguide structure, 

and this method does not provide such infonnation. If one wants to detennine the 

optical fields or the intensity distribution associated with the light propagation in 
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waveguide structures, it becomes necessary to invoke a more rigorous formalism, 

based on the electromagnetic theory of the light. Therefore, implementing the 

Maxwell's equations to the electromagnetic fields in a given structure, which defines 

the waveguide, can solve the problem; the solutions for the fields will correspond to 

the propagation modes. 

There have been various analysis methods suggested for solving the optical 

waveguide problems. These methods can be classified into two broad categories as 

(a) Analytical approximation solution techniques 

(b) Numerical solution techniques 

An exact treatment of the modal characterisation in 2D waveguide is not possible, 

even in the simplest case of a symmetrical rectangular waveguide. Therefore, in order 

to solve this problem, some analytical approximation should be made. These 

analytical approximation solutions are mostly based upon the ray approximation 

method (RAM) [4] and the Wentzel, Kramers and Brillouin (WKB) method [5]. 

However, these analytical solution methods do not satisfy the boundary conditions, 

hence not being suitable for solving and analysing more practically used three­

dimensional optical waveguides whose field are of hybrid nature. 

Numerical solution techniques can be classified into two groups, the domain 

techniques and the boundary techniques. For the domain solution technique 

(differential technique) the whole domain of the optical waveguide structure is 

considered, while with the boundary technique (integral technique) only the boundary 

or discontinuity regions are considered. The domain solution technique includes the 

finite element method (FEM), finite difference method (FDM), beam propagation 

method (BPM), and variational method (VM). The boundary solution technique 

includes boundary element method (BEM), mode-matching method (MMM) and 

point-matching method (PMM). 
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1.4 Analytical Approximation Solution Techniques 

Analytical approximation techniques had been widely used in the modelling of opto­

electronic waveguides such as rib waveguides, tapers, buried waveguides and 

directional couplers. In the next sub-sections two widely used analytic methods will 

be explained: Marcatili's method and the effective index method. While the first one 

allows us to calculate the electromagnetic field in a rectangular waveguide (with a 

homogenous central core), with the latter we can obtain the optical modes supported 

by a waveguide with arbitrary geometry (in principle, but not easy), even with graded 

index regions (whether the core or the surroundings). 

1.4.1 Marcatili's Method 

This approximation method can be used to calculate the propagation constants and 

modal fields supported by a rectangular waveguide, whether stripe or buried, as the 

one shown in Fig. 1.4. This method was developed for guiding structures, with large 

dimensions, in which the refractive index difference between guiding and cladding 

materials is small, less than 5%. Under these assumptions, the field is assumed to exist 

only in the core waveguide region and in four neighbouring cladding regions, which 

are obtained by extending in tum the width and height of the waveguide to infinity. 

Marcatili's method [6] allows the ability to model a waveguide geometry as shown in 

Fig. 1.5, which consists of a central homogenous high index core surrounded by four 

homogenous low index regions. The waveguide core, referred to as region I in the 

figure, has a rectangular cross-section with dimensions, a and b in the x and y 

directions respectively, and a refractive index nl. The central core is surrounded by 

homogenous regions II, III, IV and V as indicated in Fig. 1.5, which have refractive 

indices n2, n3, 14 and ns, respectively. 
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Fig. 1.4 Geometry of a rectangular buried waveguide, which 
can be modelled by Marcatili's method. 

Introduction 

If the propagation constant p of the mode is far from the cut-off (P ;:::: kon l ), the 

electromagnetic field is confined mainly in the core (region I), and only a small 

fraction of the energy carried by the optical mode spreads out to the surrounding 

regions (regions II, III, IV and V). 

x 

................ .... ....... ..... 1 

.............•. III .•....•.•...•. •.• 

.•......•...•.. . .........•••...• 

y 

a v I IV 
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b 

Fig. 1.5 A waveguide geometry used for modal analysis employing 
Marcatili's method (the shaded regions are not considered in this analysis). 

Moreover, the fields penetrate even less in the four corners (dotted regions in the Fig. 

1.5), and therefore in these regions there is little energy of the mode. However, poor 

results are obtained using this method if the mode is near the cut-off [7]. 
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This is the argument used in Marcatali's method to completely ignore these comer 

regions, and thus the analysis can be greatly simplified. Therefore, Marcatili's method 

is only valid for rectangular waveguides having homogenous regions, and for guided 

modes far from cut-off condition. If one is interested in analysing a waveguide with a 

different geometry, this method is not useful, and it is necessary to tum to other 

approximate methods, such as the effective index method. 

1.4.2 The Effective Index Method 

The effective index method (ElM) is an approximate analysis for calculating the 

propagation modes of waveguides. This method was first proposed by Knox and 

Toulois in 1970 [8] with a view of extending the Marcatili's method. It is one of the 

simplest approximate methods for obtaining the modal fields and the propagation 

constant in channel waveguides having the arbitrary geometry and index profiles. It 

consists of solving the problem in one dimension, described as the x coordinate, in 

such a way that the other coordinate (the y coordinate) acts as a parameter. In this 

way, one obtains a y-dependent effective index profile; this generated index profile is 

treated once again as a one-dimensional problem from which the effective index of 

the propagating mode is finally obtained. 

However, the ElM is not accurate near the cut-off region, and the several other 

techniques have been reported to improve its performance. For instance, ElM has 

been used for a trapped image guide, where the original waveguide was replaced by 

an equivalent structure [9]. Then the transverse resonance at the air-dielectric 

interface is imposed, to include the free-space region of the structure and solve the 

problem in terms of the surface impedances in an approximate manner, and achieve 

an improved accuracy at low frequencies. 

The drawback of this method is that it does not yield good results when the structure 

operates near the cut-off region. However, this method can be applied to a wide 

variety of structures, including channel waveguides, strip waveguides and arrays of 

such waveguides [10]. Due to the simplicity and speed of this method many engineers 

have been encouraged to search for different approaches that will improve the 
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accuracy. As a result, many different variants of the ElM have been developed such as 

the ElM based on linear combinations of solutions [11], or the ElM with perturbation 

correction [10]. 

1.5 Numerical Solution Techniques 

Numerical techniques generally require more computation than analytical techniques 

or expert systems, but they are very powerful analysis tools. Without making a priori 

assumptions about which field interactions are most significant, numerical techniques 

analyze the entire geometry provided as input. They calculate the solution to a 

problem based on afull-wave analysis. 

The complex nature of modem optical devices has restricted the use of analytical 

methods to only simple structures such as those involving single layered slab 

waveguides. As a result, increasing attention has been focused upon improving 

existing numerical techniques and in other cases developing novel semi-analytical 

methods [12,13]. 

The selection of appropriate numerical analysis method for analyzing the optical 

wave guiding structures is based upon several factors, which should be taken into 

consideration, and based on published reviews [14-16] these factors are: 

(a) the shape of the cross-section area, whether it is convex or concave or 

whether it is uniform or non-uniform. 

(b) whether the dominant mode or other higher order modes are required. 

(c) whether the numerical method can deal with more than two 

homogenous dielectric layers. 

(d) whether the field distribution or cut-off frequency is required or both .. 

(e) the accuracy of the technique in specific frequency ranges, especially 

near cutoff frequencies. 

(f) the accuracy of the technique with regard to dielectric boundaries and 

regions. 
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(g) whether the technique generates spurious solutions and if so whether 

the technique can identify and/or eliminate them. 

(h) the computational efficiency and storage capabilities. 

(i) whether the technique should be programmable, being able to solve a 

wide range of structures, or it has to be programmed specifically for 

each region of the structure separately. 

G) the degree and understanding required from the user. 

(k) the assumptions and limitations of the numerical approach, for 

particular cases. 

The commonly used numerical solution techniques will be briefly discussed in the 

following subsections. 

1.5.1 The Method of Lines 

The method of lines (MoL) is a semi-analytical technique, which is mostly suitable 

for the analysis of hybrid modes in optical waveguiding structures. Schulz and Pregla 

[17] first suggested this method for the analysis of dispersion characteristics of planar 

isotropic waveguides and microstrips. Most optical waveguide structures have a 

geometry with multiplayer cross section. The channel waveguide, the rib waveguide, 

and the strip-loaded waveguide can be seen as types of this class of optical waveguide 

structures. 

However, for a cross section with straight interface the method of lines [18,19] was 

proven as an analysis procedure with the higher accuracy. Structures with curved 

interfaces have also been modelled by the MoL previously using high number of 

inhomogeneous layers with straight interfaces [19]. This technique has also been 

applied to model optical waveguides with lossy inhomogeneous anisotropic media. In 

this approach, the optical waveguide is enclosed inside a rectangular box with electric 

or magnetic walls at the sides to satisfy the boundary conditions for the required 

polarisation. 
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The cross section is then divided into a number of equidistant lines along the 

transverse direction leading to the discretisation of the fields, which are solved 

analytically along the longitudinal direction. A system of coupled ordinary differential 

equations, for each dielectric layer is obtained, by substituting different operators for 

the second derivatives of the electromagnetic wave equations. The above system is 

uncoupled and the equations can be solved analytically, through suitable matrix 

transfonnation. However, this technique is disadvantageous when applied to curved 

boundaries and the accuracy near the cut-off regions is limited. 

1.5.2 The Boundary Element Method 

The boundary element method (BEM) is a technique in which the basic equations are 

boundary integral ones which are numerically solved on the numerically divided 

integration domain. This technique utilizes infonnation only upon the boundaries of 

interest, and thus reduces the dimension of any field problem by one. For differential 

operators, the response at any given point to sources and boundary conditions depends 

only on the response at neighbouring points. 

In BEM, the governing differential equations are transfonned into integral variables, 

which are applicable over the boundary surface of the region. The integrals are 

numerically integrated over the boundary, which is divided into boundary elements. If 

the boundary conditions are satisfied, a system of linear algebraic equations may be 

established for which a unique solution can be found. 

Unlike the FEM, the BEM can easily incorporate boundary conditions at infinity, and 

hence, no infinite elements are required. Another advantage of the BEM is that it can 

deal with odd-shaped boundaries, as the FEM, but with far less number of unknowns 

as the unknowns are set only at the boundary points while for FEM, the unknowns at 

nodes covering the whole cross section are solved for. However, the BEM is 

applicable only to homogenous structures, and also some nonphysical solutions, 

known as resonant solutions, may be difficult to avoid. The method also requires 

some analytical treatments and in some cases, the Green's function has some 

singularities with respect to the integral equations. The FEM is as numerically 
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efficient as the BEM formulation leads to dense matrices, while in the FEM the 

matrices remain sparse [20]. 

1.5.3 The Point Matching Method 

One of the oldest and simplest "boundary solution" method for the analysis of 

isotropic homogeneous dielectric waveguides is the point matching method (PMM). 

Goell [21] initially used this method for solving rectangular waveguide problems, 

where the radial variations of the electromagnetic fields are represented by a series of 

circular harmonics. The idea was to express the electromagnetic fields inside the core 

by a sum of Bessel functions and their derivatives, with the fields outside represented 

by a sum of modified Bessel functions and their derivatives, then both mUltiplied by 

trigonometric functions. 

By imposing the boundary conditions of the above field at a finite number of points at 

the interface, known as "matching points", a system of linear equations is obtained. 

By matching the tangential field elements at the interface yields to continuity 

equations, whose solution gives the eigenvalues and eigenvectors when arranged into 

a matrix equation. 

The PMM is more computationally efficient than other numerical techniques, as the 

matching points are needed only at the boundaries rather than the whole 

computational domain. This method is capable of use for analyzing dielectric 

waveguides having arbitrary cross sections, coupled waveguides and composite 

dielectric waveguides. However, the PMM is difficult when applied to three­

dimensional waveguide structures with inhomogeneous index distribution, such as the 

graded index fibres. 

1.5.4 The Mode Matching Method 

The mode matching method (MMM) is an approximate solution method for open 

dielectric waveguides. It is also known as the equivalent network method. In this 
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method the waveguide is artificially bounded, and the open waveguide cross section is 

presented in terms of building blocks or constituent parts, which are portions of 

uniform dielectric layered structures interfaced by dielectric step discontinuities. 

These step discontinuities are represented by transformers, where equivalent network 

admittance take into consideration the effect of the outer region. The uniform 

transmission lines with their characteristic impedance represent the uniform dielectric 

regions. 

The whole spectrum of the open waveguide structure can be modeled as a cascade of 

uniform regions and step discontinuities. When the boundary condition to the 

different modes and transverse resonance condition are applied, for a particular mode, 

the total admittance to all the ports are zero, this allows the dispersion for the 

propagation constant to be obtained. 

The TE-TM coupling and the continuous modal spectrum at the sides of the 

waveguide are neglected, since the open waveguide structure is artificially bounded. 

Dagli and Fonstand [22] presented a more accurate technique by discretising the 

continuous modal spectrum using suitable basis function expansions rather than 

artificially bounding the open waveguide structure. 

However, a full-vectorial analysis of the optical rectangular waveguides by MMM, 

where the TE-TM coupling and the discretisation of the continuous modal spectrum 

have been taken into consideration have been reported [23]. . 

1.5.5 The Spectral Index Method 

The spectral index method (SIM) has traditionally been applied to the analysis of 

rectangular semiconductor rib waveguides, [24,25], and was subsequently used to 

analyse multiple rib waveguide structures [26,27]. Further developments led to its 

successful application to the analysis of rib waveguide based spot-size transformers 

[28]. The method accurately predicts longitudinal propagation constants and field 

profiles for this class of waveguide. This, together with the relative simplicity of the 

method means it is ideally suited as a CAD tool for the analysis of the polarised 
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modes of optical waveguides and to its extension to a wider range of optical 

components and circuits. 

The SIM approach begins by modifying the physical semiconductor-air boundary in 

the transverse plane of the waveguide by replacing that boundary with a polarization 

dependant evanescent boundary, upon which the field is set to zero. Exact solutions to 

the scalar wave equation are then formulated in the upper guiding or rib region and 

the underlying substrate region of the waveguide. These solutions are then matched 

along the boundary of the two regions using a variational principle to give a simple 

transcendental eigenvalue equation for the longitudinal propagation constant. 

The SIM is an accurate and fast technique, as it requires far less computational time 

than other numerical methods. Like the FEM, in the presence of dielectric comers, 

where the electric field exhibits singularities produced by its transverse components, it 

leads to more complicated field distribution [29]. 

1.5.6 The Finite Difference Method 

The finite-difference method (FDM) is probably the most popular technique for 

modelling dielectric waveguides. When applied to step-index waveguides, however, 

the accuracy is heavily dependent on the difference equations that are used at points 

near to interfaces between regions of different refractive index. If the interface 

changes direction sharply, such as at a rectangular dielectric comer, further 

complications occur because of the singular nature of the field. 

The FDM application to the modelling of optical waveguides dates from the early 

1980s, originally evolving from previous FD models for metal waveguides [30]. The 

FD method discretisizes the cross-section of the device being analysed and is 

therefore suitable for modelling arbitrarily shaped dielectric guides which could be 

made out of isotropic homogeneous, inhomogeneous, anisotropic or lossy material. 

The essence of the FD method is to map the structure onto a rectangular mesh, 

allowing for the material discontinuities only along mesh lines. There are two possible 
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ways of placing nodes on the mesh: at the center of each mesh cell so that node is 

associated with a constant refractive index, [31], and on mesh points so that each node 

can be associated to maximum of four different refractive indices [32]. 

The differential vector, semi-vectorial or scalar wave equation is then approximated, 

usually with a five points finite difference form, in terms of the fields at the nodes of 

the mesh. For improved convergence more accurate difference forms can be used. 

Taking into account the continuity conditions of the electric and magnetic field 

components at the grid interfaces, the eigenvalue problem becomes of the form 

(1.12) 

where [A] is a band matrix which is symmetric for scalar modes or non-symmetric for 

semi-vectorial and vector modes. Here p, is the modal propagation constant, Ii is the 

eigenvalue and <I> is the eigenvector representing the modal field profile. 

Equation (1.12) can be solved using direct method such as Gaussian elimination 

(suitable when the matrix is small) or more efficiently, using iterative methods such as 

the shifted inverse power iteration method [33]. 

Whilst the FDM is in principle straightforward to implement, numerical modelling of 

the open boundaries, typical of dielectric waveguides, needs care. The problem is 

overcome either by 

(a) enclosing a structure in a sufficiently large rectangular "box" 

which does not disturb the penetration of the field and on which 

the zero field condition is imposed, or, 

(b) imposing an open or matched boundary condition on the "box" 

sides, for example, by assuming exponential decay of the field 

in the outward normal direction, in which case the size of the 

box can be somewhat relaxed. 

( c) Radiation is allowed to freely escape the problem without 

appreciable reflection, whereas radiation flux back into the 
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problem regIon IS prevented by employing transparent 

boundary condition (TBC). 

However, when the device operates near cut-off, the size of the box for both cases has 

to be sufficiently large to allow for substantial penetration of the field into the 

substrate. If a uniform mesh is used it can result in a very large number of nodes and 

large matrices. To make the FDM more flexible for modelling of large and complex 

geometries, non-uniform meshes have been proposed such that a finer mesh is applied 

on regions where the field changes rapidly, and a coarser mesh for regions where field 

is stationary [34]. Although, the method increases the error in the differences from 

second to first order and makes the matrix [A] more complicated, on the whole it 

produces more accurate results, especially in cases where field singularities are 

present. 

The accuracy of the method therefore depends on the mesh size, the assumed nature 

of the electromagnetic field, (scalar, polarised or vector) and the order of the finite 

difference scheme used. The symmetry (or asymmetry) of the structure can also be 

exploited to advantage of the mesh size, taking care that the appropriate boundary 

conditions are applied along the symmetry (asymmetry) lines. 

The popularity of the FDM in modeling dielectric waveguides is due to its ease of use 

and generality. Disadvantages become apparent when a device has large dimensions 

andlor operates near cut-off, in which cases an adequate mesh has to be employed and 

extra care has to be taken in modeling the open boundaries, both of which require 

long run times and high memory requirements. 

1.5.7 The Finite Element Method 

The finite element method (FEM) is a well-established and powerful numerical 

technique for solving optical waveguide problems. This method is based upon 

dividing the problem region into non-overlapping polygons, usually triangular 

elements. The field over each element is then expressed in terms of,low-degree 
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interpolating polynomials weighted by the field values at the nodes of each element. 

The total field is found as a linear summation of the fields over each element. 

The accuracy of the FEM can be increased by using a finer mesh or by employing 

higher order polynomials. The appearance of spurious solutions is a serious downside 

of the method and is caused by not satisfying the divergence condition (V. H = 0). 

Formulating the variational expression in terms of various field components has been 

tried to avoid spurious solutions. A number of formulations have been proposed, out 

of which the full H-field formulation is the most commonly used in modeling optical 

waveguides due to a much easier treatment of boundary conditions. 

The suppression of spurious solutions can be alternatively achieved by introducing a 

penalty term into the variational expression with a penalty parameter defined 

heuristically, [35], or by checking the zero divergence condition for each obtained 

mode and discarding ones that do not satisfy it [36]. Another approach is to use edge 

elements that force spurious solutions exactly at zero frequency [37]. In this approach, 

the interpolating functions are defined as vectors and the continuity of tangential 

components across elements is satisfied. The continuity of normal field components is 

not satisfied which gives rise to a non-zero divergence. However, all spurious 

solutions are forced to zero frequency and hence easily identifiable. 

In modeling of complex geometries, the FEM is considered more flexible than the 

FDM, due to the greater flexibility of triangular elements and the ability to use 

irregular mesh. The Finite element method will be discussed in greater depth in the 

next chapter. 

1.5.8 The Beam Propagation Method 

The Beam Propagation method (BPM) describes the evolution of the total field 

propagating along waveguides such as tapers, Y-Junctions, gratings and bends. 

The method was first formulated based upon the Fast Fourier transform (FFT) by Feit 

and Fleck [38]. The FFT-BPM was developed for the case of weakly guiding 

structures, neglecting the vectorial properties of the field. The use of the paraxial 
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approximation limited the method to structures where the beam propagates in 

directions that make small angle with respect to the axis of propagation. This made 

the method unsuitable for commonly used nowadays semiconductor optical 

waveguides with high step index difference. 

Since then, many BPM approaches have been reported which include scalar, semi­

vectorial and full vectorial based upon the finite difference method [39,40]. 

Comparisons between the FFT- and the FD-BPM show that for comparable accuracy 

the FD-BPM employs larger propagation step size. Also the computational time per 

propagation step in the FD-BPM is much lower which makes it a more efficient tool 

for the analysis of complex structures. With the FD implementation, the BPM was 

soon extended to include vectorial properties for two-dimensional and three­

dimensional propagation. 

Recently, FD-BPM schemes based on structures-related coordinate schemes that 

naturally follow the geometry of a structure have been described and shown to be 

particularly useful when the angle between the waveguide and propagation direction 

increases [41,42]. The FEM has also been utilized to develop BPM approaches for 

both the TE and TM wave propagating in strongly guiding longitudinally varying 

optical waveguides. 

Recently, a full vectorial BPM algorithm based on the finite element method has been 

reported [43]. In this approach only the two transverse components of the magnetic 

field are considered and incorporates, the perfectly matched layer (PML) boundary 

condition to offer a reflectionless boundary to the unwanted radiation waves to leave 

the computational domain. In Chapter four, the full vectorial BPM will be presented 

and the mathematical details associated with it discussed. 

1.6 Aims and Objectives of the Thesis 

The goal of integrated optics is to develop miniaturized optical circuits of high 

functionality on a common substrate. As optics becomes more and more attractive, 

especially for a wide range of communication systems and for instrumentation 

techniques, there exists a growing interest in the development of more and more 
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complex integrated optical devices. The information presented in the introduction to 

this thesis forms as the backbone to the work reported. The aims and objectives of this 

research work can be briefly outlined as: 

(a) To develop further and investigate the rigorous finite element technique based 

on the H-field variational formulation for the analysis of optical waveguide 

problems. 

(b) To implement further and investigate more fully the full-vectorial Finite 

Element based Beam Propagation Method (FEBPM) for guided-wave 

photonic devices, which are important for a wide range of systems. This 

numerically efficient approach was used to develop and investigate 

semiconductor optical amplifiers. 

(c) To use the FEBPM to obtain the transformation of the optical beam profile in 

truly 3-D tapered region in a guided-wave device. 

(d) To generate a carrier profile and investigate the effects it has on the optical 

gain of opto-electronic devices. 

(e) To study and investigate the evolution of the beam along the waveguide 

structures more importantly tapered waveguide structures, which includes the 

variations of the waveguide width, the total guided power, the spot size etc., 

along the axial distance. 

(f) To investigate the polarisation issues e.g. the variations between the transverse 

electric (TE) and transverse magnetic (TM) modes and their influence on the 

polarization dependent performance. 

(g) To investigate the mode beating in tapered semiconductor optical amplifiers 

(the existence of higher order modes along with the fundamental mode), which 

deteriorates the beam quality significantly, contributing towards beam 

filamentation problem. 

(h) To investigate and determine the modal gain and the effects of gain saturation 

in deeply-etched tapered semiconductor amplifier, with its effects on the total 

optical gain of the device. 

(i) To study the farfield pattern for various tapered waveguide structures, with 

particular interest to the very wide width structures. 

(j) To investigate and examine birefrigence in the tapered waveguide structures. 
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1.7 Structure and Format of the Thesis 

The work presented in this thesis is based on research carried out by the author in the 

use of the finite element based beam propagation method (FEB PM), which is a well­

established numerical technique for the solution of wide range of guided wave 

problems. The FEBPM was developed to study the evolution of the optical beam 

profile along semiconductor optical amplifiers. Various types of semiconductor 

waveguide structures were considered. The discussion in this· section outlines the 

structure of this thesis, which commences with the introduction, presented in this first 

chapter. The first chapter embraces a general overview of lightwave technology, the 

establishment of integrated photonics, followed by the contribution of optical 

communications research and technology in the modem world. The study and analysis 

of optical waveguide structures is also discussed and several analysis techniques are 

described which include both analytical approximation solution techniques and 

numerical solution techniques. The following chapters will explain the numerical 

methods used in this research work followed by various semiconductor optical 

amplifier designs achieved, with finally the presentation ofthe numerical results. 

The general overview of Optical Amplifiers (OAs) and their applications is reported 

in Chapter 2. This Chapter begins with the history of the generation of the OA and a 

classification of the OA is reported which includes the Optical Fibre Amplifiers 

COFAs) and the Optical Semiconductor Amplifiers (OSAs). The features of both of 

these amplifiers have been examined. The Semiconductor Optical Amplifier (SOA) 

has been reported in the literature; available to provide high gain with low power 

consumption and its single-mode waveguide structure makes it particularly suitable 

for use with monomode fibre. In the remaining part of this chapter the SOA is 

examined in more detail, including: the features, characteristics and applications of 

the device. The general applications of the OAs are reported. Finally, the theory of the 

farfield pattern creation is presented. 

The theoretical basis of the finite element method as a powerful and well-established 

numerical technique for analyzing optical waveguides is reported in Chapter 3. The 

essence of the finite element method is reported followed by a brief historical 

background of the method. This is followed by a general overview of the FEM 

analysis and its applications. The fundamental mathematical relations derived from 
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Maxwell's equations, for the application of the technique in the solution of optical 

waveguide problems with several variational formulations is considered, with a more 

detailed H-field finite element formulation reported. The triangular elements, 

coordinates, shapes and infinite elements are studied, to determine the propagation 

constants and the field profiles of different modes propagating through an optical 

waveguide. The presence of "spurious modes" with the fundamental mode in this 

vector formulation is examined, as a result the "penalty function" method is studied 

which avoids the appearance of these modes. 

The development of the vector BPM approach based on the versatile FEM is reported 

in Chapter 4. This starts with a brief history of the BPM followed by an overview of 

the various propagation algorithms. The features of these propagation algorithms 

includes the Fast Fourier transform (FFT), the Finite Difference Method (FDM), the 

Modal Propagation Algorithms (MP A) and the Finite Element Method (FEM) and 

these are all reviewed. The mathematical derivation of the FEBPM is also reported. 

The concept of the perfectly matched layer (PML) boundary condition in absorbing 

the unwanted radiation waves and its inclusion into the finite element formulation is 

also reported. The approach presented is truly fully vectorial as it accounts for both 

the polarization effect and coupling, as it is based on only the transverse magnetic 

field components. 

In Chapter 5, the evolution of the optical beam along tapered semiconductor laser 

structures, by using the rigorous vectorial numerical approaches based on the finite­

element method, is reported. The approach is numerically efficient and has 

incorporated a wide-angle approach to tackle rapid axial variations and the perfectly 

matched boundary condition to avoid reflections from the orthodox computational 

window. The technique is used to obtain the transformation of the optical beam 

profile in a truly 3-D tapered region of the guided-wave device. In this chapter, buried 

semiconductor tapered structures are considered, and the expansion of the beam shape 

is also observed, but together with the presence of significant modal interference 

between the fundamental mode with higher order modes. This likely contributes 

towards the beam filamentation, and ultimately the degradation of the beam quality. 

Thus in general, a numerical analysis of mode beating in tapered semiconductor 

amplifiers is undertaken. 
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A study of the evolution of the optical beam along deeply-etched semiconductor laser 

structures, through the use of the vectorial numerical approaches based on the finite 

element method, is presented in Chapter 6. In this Chapter, the FEB PM approach has 

been utilized to study rigorously the complex refractive index profiles to provide 

modal gain in such structures. The modal gain properties and field expansion has also 

been examined. The effect of gain reduction along the transverse directions due to 

transverse field profile is demonstrated. Furthermore, the effect of gain saturation on 

the total optical gain of the amplifier, by considering both the transverse and axial 

variation of the local gain coefficient, is presented. 

In Chapter 7, the farfield pattern of the near field input profile and output field profile 

of the optical beam are examined, as is also the effect of the tapered angle 

contribution to the shape of the farfield pattern is considered. Furthermore, in this 

chapter the principles of birefringence in tapered waveguide structures are examined 

and the effective indexes for the TE and TM equations presented, followed by some 

relevant simulation results. 

The general conclusions arrived at from this research work are summarized and 

explored in Chapter 8. Possible future research on the basis of this work has also been 

suggested. Finally a list of references is cited in the thesis with a list of relevant 

publications by the author. 
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2.0 Optical Amplifiers 

2.1 Introduction 

Optical amplifiers have expanded the design possibilities and the perfonnance of fibre 

optic systems. They can be used to increase the transmitter optical output, as in-line 

amplifiers or as optical preamplifiers of detectors, increasing in all applications the 

power budget of the fibre optic network into which they are incorporated. When the 

history of scientific progress throughout the 20th century is analysed it will become 

apparent that the discovery of light amplification phenomena has associated with it 

considerable depth of scientific and technological development. 

Optical amplification has had a very particular impact on fibre optic applications due 

to the development of semiconductor amplifiers and fibre optic amplifiers [44-46], 

which can be easily integrated in fibre optic devices and networks. The traditional 

way of compensating for optical loss in light-wave communication systems has been 

the rather cumbersome procedure of regeneration. In many applications, direct optical 

amplification of the light signal is advantageous. 

2.2 Overview of Optical Amplifiers 

The physical phenomenon responsible for amplification is stimulated emission 

introduced by Albert Einstein [47] in 1917. Unlike spontaneous emission, which 

spreads evenly in every direction, stimulated emission only takes place in the same 

direction as the stimulating beam. 

The implementation of these ideas came in 1960, when the first laser was achieved by 

Maiman [48] who used a ruby rod pumped by a pulsed lamp. In 1961 the first gas 

laser was achieved, the He-Ne laser [49], which showed a lower emitted power but 

worked on continuous operation. Throughout the 1960s researchers found a wide 
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variety of methods to obtain laser action and managed to develop most of today's 

known laser types; although these first lasers still needed further improvement. For 

example, in 1962 the first semiconductor laser was achieved [50], a GaAs pulsed laser 

with a required working temperature of 77K. The interest in these devices brought 

great attention to their further development, which led to devices working using 

continuous operation at room temperatures [51]. In 1964 the first results on 

amplification in a multi-mode Nd doped optical fibre [52] was obtained, and in 1965 

amplification was accomplished in an Er doped fibre [53] (although pumping was 

achieved with a lamp surrounding the fibre which was very inefficient). But the great 

leap of optical amplification took place during the second half of the 1980's when 

amplification was achieved in single-mode optical fibres, doped with either Nd [54] or 

Er [55,56]. 

The great expansion of optical communications in the 1990's led to senous 

consideration being given to the idea of substituting opto-electronic regenerators for 

optical amplifiers, which allowed a superior bandwidth and were transparent to 

encoding methods (therefore it was not necessary to the amplifier when changing the 

encoding method). This led to a huge development of semiconductor and fibre 

amplifiers. Nowadays, these amplifiers are not only useful in optical communications, 

but are also employed in processes involving optical signals whose power must be 

increased, as in the case of optical sensors or exploiting nonlinear optics. 

2.3 Optical Amplifier Classification 

The transmission distance of any fibre-optic communication system is eventually 

limited by fibre losses. For long-haul systems, the limitation has traditionally been 

overcome using optoelectronic repeaters in which the optical signal is first converted 

into an electric current and then regenerated using a transmitter. Such generators 

become quite complex and expensive for wavelength-division multiplexed (WDM) 

lightwave systems. 

An alternative approach to loss management makes use of optical amplifiers, which 

amplify the optical signal directly without requiring its conversion to the electric 
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domain. Several kinds of optical amplifiers were developed during the 1980s, and the 

use of optical amplifiers for long-haul lightwave systems became widespread during 

the 1990s. Within the currently accepted optical amplifiers categories, only two of the 

aforementioned types namely, 

a) Optical Fibre Amplifiers (OFAs) 

b) Optical Semiconductor Amplifiers (OSAs) 

are useful for optical fibre technology, given their low size, low electrical power 

consumption and their facility for easy and stable coupling to optical fibres. 

Feature OFA OSA 

Typical max. internal gain (dB) 30-50 30 
Typical insertion loss(dB) 0.1-2 6 - 10 
Polarisation sensitivity No Weak «2dB) 
Pump source Optical Electrical 
3dB gain bandwidth (nm) 30 30-50 
Nonlinear effects Negligible Yes 
Saturation output power (dBm) 10 -15 5 - 20 
Typical intrinsic noise figure (dB) 3-5 7-12dBm 
Photonic integrated circuit compatible No Yes 
Functional device possibility No Yes 

Table 2.1 Main features of OF As and OSAs [57]. 

2.4 Fibre Amplifiers 

There are three basic types of optical fibre amplifiers; rare earth doped fibre 

amplifiers, Stimulated Brillouin Scattering (SBS) amplifiers and Stimulated Raman 

Scattering (SRS) based amplifiers. In the rare-earth doped fibre amplifier the optical 

fibre core is doped with a lanthanide (Er or Pr principally) and stimulated emission 

takes place between two energy levels of the dopant ions, which set the amplification 

wavelengths. Pumping is carried out through radiative transitions (optical pumping) 

that excite the ions from the ground level to levels with higher energy then the upper 

level of the laser transition, from where they "fall" to this last level and populate it. 
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In the case of fibre amplifiers based on SBS or SRS, the pumping is carried out by 

laser light, with a transition to a virtual state that acts as an upper laser level. 

Therefore, the amplification wavelength can be modified as desired, as it is 

determined by the position of the virtual level, which depends on the wavelength of 

the pump laser. 

SBS amplifiers have a major drawback that makes them of little practical use in 

communications systems (and hence are not discussed in the later sub-sections); their 

bandwidth is limited to less than O.1nm, while for the rest of the amplifiers considered 

this value is in the order of a few tens of nm. 

Semiconductor amplifiers show some disadvantages over optical fibre amplifiers, 

such as higher insertion losses, higher polarisation gain dependence and more severe 

channel distortion and crosstalk. Nevertheless, semiconductor amplifiers have a 

smaller size and a large amplification bandwidth than those based on doped fibre or 

SRS. Furthermore, they are readily integrable with other functional devices, and this 

thesis focuses on the design issues of high power semiconductor optical amplifiers. 

2.4.1 Erbium doped Fibre Amplifiers 

Erbium doped fibre amplifiers (EDFAs) are those with the best features among the 

rare earth doped fibre amplifiers. First, they achieve gains over 40dB in weak signal 

operation (using few tens of m W for pumping) and output powers of a few watts in 

saturation regime (higher powers are limited by the appearance of non-linear effects 

created by the signal and the pump) [58,59]. 

Also their amplification spectrum is typically located in the 1.53 to 1.55 J.lm 

wavelength range, which corresponds to the so-called "third window" and this has a 

special interest for optical communications due to the low loss exhibited by silica 

fibres in these wavelengths. 

One of the problems ofEDFAs is that interaction effects between the erbium ions can 

lead to up conversion effects and thus, decreasing the population inversion. Since 
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these effects only occur for high enough erbium concentrations, they can be avoided 

using low erbium concentration fibres. In recent years semiconductor lasers have been 

developed which provide powers over 500 m W. The first such lasers were usually 

made from GaAs/AIGaAsP structures with the second usually employing 

In GaAsP IInGaAsP structures. 

In recent years optical communication systems have evolved towards wavelength 

division multiplexing as a method for increasing data transmission capacity, 

simultaneously propagating in a single fibre signals of different wavelengths, each 

carrying different data [3,60]. The lack of flatness of the gain spectrum of erbium in 

silica, for instance, makes the different wavelengths multiplexed comes across 

different gain values and therefore very high power differences might result, which is 

highly undesirable. To avoid this problem some gain flattening methods have been 

developed [61] e.g. using ZBLAN fibres doped with erbium or high aluminium 

concentrations in the core of silica-based erbium-doped fibres, using spectral filters, 

Bragg gratings or active filters (for example acusto-optic filters) to control 

dynamically the output power of each wavelength, etc. With these methods some 

good results have been achieved. 

2.4.2 Raman Amplifiers 

Raman effect amplifiers, widely considered some years ago, especially in the high 

speed telecommunications systems and soliton transmission context, are receiving 

renewed consideration [62]. In fact, commercialisation of Raman amplifiers, lasers 

and pump units for them was carried throughout year 2000 [63]. Gains of 40 dB and 

output powers of +26 dBm had been previously demonstrated at 1310nm [64]. 

The basis of Raman amplifiers is the Raman scattering. Such scattering, which takes 

significant values when high power light interacts with optical fibres, generates new 

optical frequencies higher and lower than the original incoming light. The proximity 

of these new lateral bands to the original light frequency is strongly dependent on the 

material used. The Raman scattering is caused by optical vibrational modes of the 

material. In a Raman effect amplifier, signal amplification takes place when its optical 
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frequency matches the scattering spectrum of the pump laser. In this case the signal 

generates stimulated emission at its optical frequency and thus gain is obtained. 

In the optical spectrum region where no absorption peak exists, optimum Raman gain 

is determined by pump light wavelength. Optimum gain is achieved for the 

wavelength with maximum scattering. For example silica fibres pumped at 1500run, 

Raman scattering yields optimum amplification at wavelengths around 80 run higher 

and lower than this pump wavelength. Usually gain obtained for every pump mW in a 

Raman amplifier is approximately two orders magnitude lower than in erbium- doped 

silica amplifiers. However, the new available semiconductor laser with output powers 

higher than 1 W make the Raman amplifier a commercial reality. The main reason is 

that Raman amplification can be achieved at every desired wavelength. Gain spectrum 

for Raman amplifiers is determined by fibre composition, pump wavelength and fibre 

length. In general, if the fibre length is optimised to obtain highest gain, the 

amplification bandwidth will be reduced. Table 2.2 highlights typical values of the 

main parameters of erbium doped fibre and Raman amplifiers. 

ERBIUM DOPED FIBRE RAMAN AMPLIFIER 
AMPLIFIER 

Typical Gain 25 -40 dB 10-40 dB 

Typical Bandwidth 35 run 25 run 

Saturation Power 10 -20 dBm .. 10-25 dBm 

Pump Power 20-100mW 0.35-5W 

Noise Figure 3.5 -6 dB >3dB 

Table 2.2 Comparison of typical values of the main parameters for fibre amplifiers [57]. 
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However, rather than the lumped version of this kind of amplifier, it is the distributed 

one which resurrected Raman amplification as a viable commercial technology. The 

distributed Raman-assisted transmission usually acts on a low-noise preamplifier to 

maintain signal integrity. When a distributed Raman amplifier is concatenated with an 

EDF A post amplifier, the equivalent noise factor of the system is lower than that of 

two cascaded EDF As. 

Increasing the Raman gain, the overall noise figure decreases up to a certain value of 

Raman gain [62]. This hybrid amplification system has been employed to transmit 

40Gbit/s signals over 400km [65]. 

2.5 Semiconductor Optical Amplifiers 

The first studies on Semiconductor Optical Amplifiers (SOAs) were carried out 

around the time of invention of the semiconductor laser in the 1960s. The early 

devices were based on GaAs homojunctions operating at low temperatures. The 

arrival of double heterostructure devices spurred further investigation into the use of 

SOAs in optical communication systems. In the 1970s Zeidler and Personick carried 

out early work on SOAs [66,67]. 

In the 1980s there were further important advances on SOA device design and 

modelling. Early studies concentrated on AIGaAs SOAs operating in the 830 nm 

range [68]. In the late 1980s studies on InP/InGaAsP SOAs designed to operate in the 

1.3 Jlm and 1.55 Jlm regions began to appear [69]. 

In 1989 SOAs began to be designed as devices in their own right, with the use of 

more symmetrical waveguide structures giving much reduced polarisation sensitivities 

[70]. Since then SOA design and development has progressed in tandem with 

advances in semiconductor materials, device fabrication, antireflection coating 

technology, packaging and photonic integrated circuits, to the point where reliable 

cost competitive devices are now available for use in commercial optical 

communication systems. 
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The advent of SOAs preceded that of fibre optic amplifiers. Their major advantage is 

their small size. Also interesting is their ability to be integrated in a substrate along 

with light sources, detectors and any other optical waveguide type devices, giving the 

ability to generate small size structures for routing and signal processing in optical 

domain. Additional advantages include a higher bandwidth than that of fibre 

amplifiers and lower power consumption. However, their major drawbacks are their 

difficult connection to optical fibres and higher noise levels than other types of 

amplifiers. They are also more dependent on the polarisation state of input signals, 

i.e., SOAs are polarisation sensitive. This is due to a number of factors including the 

waveguide structure and the gain material. Polarisation sensitivity can be improved by 

the use of square-cross section waveguides and strained quantum-well material. The 

gain of SOA is influenced by the input signal power and internal noise generated by 

the amplification process. By integrating spot-size converters, coupling to optical 

fibres can also be improved. 

2.6 Semiconductor Optical Amplifiers Classification 

SOAs will play an important role in future optical systems, both for optical fibre 

transmission and for optical data processing. Semiconductor optical amplifiers 

provide high gain, with low power consumption and their single-mode waveguide 

structure makes them particularly suitable for use with monomode fibre. There have 

been many studies, but it was not until recent years that high performance SOAs (with 

for example, low threshold current, narrow far field radiation patterns, and good 

antireflection coatings) became available. 

The most common semiconductor optical amplifiers are divided into two groups 

a) Fabry-Perot Amplifiers 

b) Travelling Wave Amplifiers (TWAs) 
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2.6.1 Fabry-Perot Amplifiers 

In essence, semiconductor amplifiers are laser diodes operated beneath the laser 

oscillation threshold. For Fabry-Perot amplifiers, both ends of the semiconductor 

optical waveguide where stimulated emission is achieved act as reflectors (as shown 

in Fig. 2.1 (a» creating a cavity, just as in semiconductor lasers. Typical reflectivities 

for the semiconductor - air transition take values around 32% but this can be modified 

using reflective layers. In short, the light to be amplified enters the cavity from one 

end and gets amplified through successive reflections in mirrors, obtaining an output 

signal with higher optical power than that ofthe input one. 

In this way, the gain curve of Fabry-Perot amplifier depends on the reflective 

characteristics of the cavity and the gain provided by the waveguide. Moreover, this 

curve is strongly dependent on light wavelength and cavity modes. Its dependency on 

optical frequency is given by [71] 

(2.1) 

where G(v) is the gain as a function of optical frequency v, RJ and Rz are the 

reflectivities of each of the two faces of the cavity, G, is the single path peak signal 

gain and Vo is the central optical frequency at which the gain is maximum, c is the 

light speed in a vacuum and L is the length of the cavity. 

From the above equation (2.1) it is easy to obtain the amplification bandwidth, 

(considering R, = R2) 

c . _,[I-RG,] 
!l V3dB = -sm /RG: 1CL 2 RG , 

(2.2) 

Then the relation between available bandwidth and maximum gain Gmax (G (v = vo» 

can be expressed as 
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ro- ~V = c 1-RGs 

Vl.Jmax • 3dB 2Ln 2~RGs 

Optical Amplifiers 

(2.3) 

The above equation (2.3) states that a compromise solution must be taken between 

amplification bandwidth and gain for this type of amplifier. Also notice that a Fabry­

Perot amplifier is useful only if Gmax > Gs• If this condition does not hold, a single 

path configuration (travelling wave amplifier) is preferable. 

2.6.2 Travelling Wave Amplifiers (TWAs) 

An ideal travelling wave amplifier (TWA) can be defined as a Fabry-Perot amplifier 

in which the ends of the active waveguide have been matched to achieve null 

reflectivity. Fig. 2.1 (b) shows the shape and direction of the amplifying medium, and 

without going through the filtering effect of the Fabry-Perot resonator. Generally, 

apart from higher power consumption and larger size, TWAs have better performance 

than Fabry-Perot amplifiers. This is shown on Table 2.3, which summarises some 

typical values of the main parameters on both types of semiconductor optical 

amplifiers. 

TWAs have been widely studied as a possible way to achieve all optical switching 

[72-74], or wavelength conversion [75]. Despite their poor performance compared to 

fibre amplifiers, TWAs are also believed to regain importance as in-line amplifiers in 

spectral windows where there are no other obvious candidates or in optical local area 

networks (LANs) where the smaller dimensions are possibly lower cost, compared to 

fibre amplifiers, will be important factors for choice of amplifiers. 

(b) Travelling wave Amplifier 

Fig. 2.1 Semiconductor Optical Amplifiers. 
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TRAVELLING WAVE FABRY-PEROT 
AMPLIFIER AMPLIFIER 

Typical Gain 30 dB 20-30 dB 

Typical Bandwidth (at 20 10000 GHz 1-10 GHz 
dB gain) 

Saturation Power 10-20dBm -10--5 dBm 

Injection Current 100-200mA 20mA 

Noise Figure 7dB 10dB 

Table 2.3 Typical values of the main parameters on both types of Semiconductor 
Optical Amplifiers [57]. 

2.7 SOA - Basic Description 

An SOA is an optoelectronic device that under suitable operating conditions can 

amplify an input signal. A schematic diagram of a basic SOA is shown in Fig. 2.2. 

The active region in the device imparts gain to an input signal. An external electric 

current provides the energy source that enables gain to take place. An embedded 

waveguide is used to confine the propagating signal wave to the active region. 

However, the optical confinement is weak so some of the signal will leak into the 

surrounding lossy cladding regions. The input signal is accompanied by noise. This 

additive noise is usually produced by the amplification process itself and so cannot be 

entirely avoided. The amplifier facets are reflective causing ripples in the gain 

spectrum. Anti-reflection coatings can be used to create SOAs with facet reflectivities 

< 10-5• 
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Output signal 
and noise 

.... 

_ ~ __ +-+ __ Active region and 
waveguide 

. Input signal Input facet 

Fig. 2.2 Schematic diagram of an SOA. 

2.8 Fundamental Device Characteristics 

Optical Amplifiers 

Output 
facet 

The most common application of SOAs is as a basic optical gain block. For such an 

application, a list of desirable properties are anticipated which are given in Table 2.4. 

The goal of most SOA research and development is to realise these properties in 

practical devices. 

Property 

High gain and gain bandwidth 
Negligible facet reflectivities 
Low Polarisation sensitivity 
High Saturation output power 
Additive noise near the theoretical limit 
Insensitive to the input signal modulation characteristics 
Multichannel amplification with no crosstalk 
No nonlinearities 

Table 2.4 Desirable properties of a practical SOA. 
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a) High gain and gain bandwidth 

In general there are two basic gain definitions for SOAs. The first is the intrinsic gain 

G of SOA, which is simply the ratio of the input signal power at the input facet to the 

signal power at the output facet. The second definition is the fibre-to-fibre gain, which 

includes the input and output coupling losses. These gains are usually expressed in 

dB. The gain spectrum of a particular SOA depends on its structure, materials and 

operational parameters. For most applications high gain and wide gain bandwidth are 

desired. 

The gain bandwidth of the amplifier is defined as the wavelength range over which 

the signal gain is not less than half of its peak value. Wide gain bandwidth SOAs are 

especially useful in systems where multichannel amplification is required such as in 

WDM networks. A wide gain bandwidth can be achieved in an SOA with an active 

region fabricated from quantum well or mUltiple quantum wells (MQw) material. 

Typical maximum internal gains achievable in practical devices are in the range of 30 

to 35 dB. Typically small-signal gain bandwidths are in the range of 30 to 60 nm. 

b) Polarisation sensitivity 

In general the gain of an SOA depends on the polarisation state of the input signal. 

This dependency is due to a number of factors including waveguide structure, the 

polarisation dependent nature of anti-reflection coatings and the gain material. 

Cascaded SOAs accentuate this polarisation dependence. 

The amplifier waveguide is characterised by two mutually orthogonal polarisation 

modes termed the Transverse Electric (IE) and Transverse Magnetic (TM) modes. 

The input signal polarisation state usually lies somewhere between these two 

extremes. The polarisation sensitivity of an SOA is defined as the magnitude of the 

difference between the TE mode gain GTE and IM mode gain G TM expressed as 

GTEITM = I GTE - G 1M I (dB) (2.4) 
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c) Signal gain saturation 

The gain of an SOA is influenced both by the input signal power and internal noise 

generated by the amplification process. As the signal power increases the carriers in 

the active region become depleted leading to a decrease in the amplifier gain as shown 

in Fig. 2.3. This gain saturation can cause significant signal distortion. It can also limit 

the gain achievable when SOAs are used as multi-channel amplifiers in wavelength 

division (WDM) multiplexed systems. 

A useful parameter for quantifying gain saturation is the saturation output power, 

p 01 Sat, which is defined as the amplifier output signal power at which the amplifier 

gain is half the small-signal gain. Values in the range of 5 to 20 dBm for P 01 Sat are 

typical of practical devices. Techniques for realising SOAs with high P 01 Sat are 

discussed later in this research work. 

, 
1-----------..:::---T - - - _. 

I 3dB 

-------------------1 --f-' 
I 
I 
I 
I 
I 

Po,Sat I 
I 

Ouput signal power (dBm) 

Fig. 2.3 Typical SOA gain versus output signal power. 

d) Noise figure 

A useful parameter for quantifying optical amplifier noise is the noise figure. F, 

defined as the ratio of the input and output signal to noise ratios, i.e. 

F- (SIN); 
- (SINt 
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The signal to noise ratio in equation (2.5) are those obtained when the input and 

output powers of the amplifiers are detected by an ideal photo-detector. In the limiting 

case where the amplifier gain is much larger than unity and the amplifier output is 

passed through a narrowband optical filter the noise figure is given by 

(2.6) 

where nsp is the spontaneous emission factor and the lowest value possible for nsp is 

unity, which occurs where there is complete inversion of the atomic medium, 

i.e., NJ = 0, giving F = 2 (Le. 3dB). Typical intrinsic (not including coupling losses) 

noise figures of practical SOAs are in the range of 7 to 12 dB. The noise figure is 

degraded by the amplifier input coupling loss. Coupling losses are usually of the order 

of 3dB, so the noise figure of typical packaged SOAs is between 10 and 15 dB. 

e) Dynamic effects 

SOAs are normally used to amplify modulated light signals. If the signal power is 

high then gain saturation will most likely to occur. This would not be a serious 

problem if the amplifier gain dynamics were a slow process. However in SOAs the 

gain dynamics are determined by the carrier recombination lifetime. This means that 

the amplifier gain will react relatively quickly to change in the input signal power. 

This dynamic gain can cause signal distortion, which becomes more severe as the 

modulated signal bandwidth increases. These effects are even more important in 

multi-channel systems where the dynamic gain leads to interchannel crosstalk. This is 

in contrast to optical fibre amplifiers, which have recombination lifetimes of the order 

of milliseconds leading to negligible signal distortion. 

f) Nonlinearities 

SOAs exhibit nonlinear behaviour. These nonlinearities can cause problems such as 

frequency chirping and generation of intermodulation products. However, 

nonlinearities can also be of use in using SOAs as functional devices such as 

wavelength converters. 
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2.9 High Saturation Output Power Structures 

High saturation output power is a desirable SOA characteristic, particularly for power 

booster and multi-channel application. High saturation output power is inevitable for 

linear SOAs because its linear output power is always limited to a value 5 or 6 dB 

lower than the saturation output power in order to avoid the waveform distortion due 

to the pattern effect when amplifying optical signals. 

By reducing the active layer thickness in the waveguide structure, saturation output 

power can be increased significantly while maintaining low polarization sensitivity. 

Reducing the active layer thickness causes the optical field to expand widely out of 

the active layer so that the optical confinement factor decreases much. Therefore, a 

thin active layer can have a large dlf value, where d is the thickness of the active 

layer. Additionally, because the saturation output power strongly depends on the 

carrier density in the active layer, it is important to obtain a realistic current injection 

to the model. However, a reduced modal confinement, r, will also reduce the modal 

gain ofthe SOA. 

2.9.1 Basic Model of Amplifier Saturation Characteristics 

To determine the factors that influence SOA gain at high input powers, a simple rate 

equation model can be used. In this case, the amplifier is assumed to have zero facet 

reflectivities. The material gain coefficient g m at the signal wavelength is assumed to 

be a linear function of carrier density, nl , 

(2.7) 

where a
l 
is the differential of g m with respect to nl and is assumed here to be a 

constant and no is the transparency carrier density. The carrier density obeys the rate 

equation expressed as 

(2.8) 
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The propagation of the signal intensity I, through the SOA is described by the 

travelling-wave equation expressed as 

(2.9) 

In equations (2.8) and (2.9), t is the time, z is the propagation direction (along the 

amplifier axis), J is the active region current density, e the electron charge, d is the 

active region thickness, T is the spontaneous carrier lifetime, Ii the Planck's constant, 

v is the signal optical frequency and ex. the waveguide loss coefficient. Under steady 

state conditions the differential in equation (2.8) is zero. 

The saturation intensity, I sat ' and saturation power, ~at , are given by 

p = AIsat 
sat r 

(2.10) 

(2.11) 

where A is the active region cross-section area. Air is the amplifier mode cross­

section area. Hence, 

dI, =[ rgo -aJI 
dz 1 + I, /Isat ' 

(2.12) 

where the unsaturated material gain coefficient go is given by 

g = a [tf -n ] 
o 1 ed 0 

(2.13) 
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2.9.2 Improving Saturation Output Power 

The saturation output power of an SOA can be improved by increasing 16al • This can 

be achieved by reducing T and a l • In practice T is inversely proportional to carrier 

density, so operating at high bias currents leads to increase P o,Sal.' However, as the 

carrier density increases the amplifier gain will also increase making resonance effects 

more significant. The single-pass gain can be maintained by reducing r or the 

amplifier length. 

The choice of gain material can also influence the saturation behaviour of the 

amplifier via a l • In bulk materials al is relatively sensitive to changes in carrier 

density. 

It is also possible to increase P o,Sal by increasing Air. An approach based on this 

concept, is to unfold the amplifier waveguide width towards the output facet [76,77]. 

This increases the modal field area at the amplifier output. 

2.10 Applications of Optical Amplifiers 

In this section a brief review of the multiple applications of optical amplifier will be 

given. The most common applications include 

a) Optical amplifiers as repeaters 

Line optical amplifiers are one of the most common applications In 

telecommunication links. The concatenation of a number of them is used in point-to­

point links in order to cover hundreds of Ian avoiding the utilization of classical 

repeaters and enabling wavelength division mUltiplexing. 

b) Power amplifiers 

The fibre amplifier should either be operators in the small-signal regime or as a power 

booster amplifier. The most fundamental system application of optical amplifiers is as 

preamplifier or line amplifiers. However, there has been an increased interest in 
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power amplifiers, not only as signal booster in long-haul transmission links but also as 

power amplifiers for optical distribution systems. The preferred choice of high-power 

amplifiers is LD-pumped erbium doped fibres. 

c) Remote pumping 

One of the important advantages of fibre amplifiers is that the amplification can be 

achieved remotely, launching the pump power at the extreme of the fibre. This offers 

the possibility that a repeater station can be built that requires no local electrical 

power supply. This possibility is very appealing for undersea links. An alternative is 

distributed amplification, which is based on the same concept. 

d) Wavelength converters 

One application of optical amplification that could be extremely important in the 

wavelength multiplexed transmission networks is optical frequency conversion. 

Wavelength converters allow the re-utilization and relocation of the channels on the 

different optical carriers so that the flexibility of the network increases and the 

maximum number of optical carriers does not limit the system. 

Different schemes for 'transparent' wavelength converters have been presented based 

on semiconductor optical amplifiers or optical fibre amplifiers. The semiconductor 

amplifiers are the most favoured candidates to succeed since their bandwidth is 

slightly higher than the fibre amplifier one. Besides SOAs consume less power, have a 

smaller size and can be integrated along with other semiconductor devices, such as 

those that will be present on future optical routing nodes. 

e) Soliton transmission 

Soliton transmission could mark the next generation of fibre optic systems. Solitons 

are narrow optical pulses with high peak powers and special shapes. When a soliton 

propagates along an optical fibre, it does not change shape. Soliton pulse takes 

advantage of nonlinear effects in silica to overcome the pulse broadening effect of 

group velocity dispersion. By using solitons it is possible for narrow pulses to be 

propagated at very high speeds over thousands of kilometres without waveform 
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distortion. These pulses required constant signal power along the fibre and only 

Raman amplification could offer this perfonnance. But the introduction of erbium­

doped amplifiers overcame almost all problems involved in demonstrating practical 

soliton communication. 

f) Amplifiers for wavelength division multiplexed networks 

Optical amplifiers, particularly EDF As, started their applications in single-channel 

systems. As the demand for bandwidth continues to grow, optical amplified WDM 

system are becoming a very interesting alternative to higher-speed time-division­

multiplexing systems. Thus optical amplifiers have started to deal with simultaneous 

independent wavelength signals. Classical erbium doped silica fibre amplifiers have 

been strongly claimed as optimal devices for WDM because of their large 

amplification bandwidth and transparency to the modulation format. However, two 

problems arise when several wavelengths are simultaneously introduced which are 

gain competition and gain diversity for different wavelengths. 

2.11 Theory of Far field Pattern 

In diffraction theory we refer to the field emitted from the laser waveguide as the near 

field and the diffracted field some distance away as the far field. The transition occurs 

roughly at w212, where w is some characteristic full-width of near-field pattern. In a 

real index-guided waveguide, the wavefronts are planar as they approach the emitting 

facet. They remain approximately planar in the near field, but begin to show 

noticeable curvature in the transition to the far field. After some distance to the far 

field, the wave fronts approach a spherical shape with a radius of curvature measured 

from the centre of the emitted mode at the facet where the wavefronts are planar. The 

most narrow, planar wavefront location is termed the beam waist in Gaussian mode 

theory. 

Consider a plane wave incident normally on along narrow slit of width w as shown in 

Fig. 2.4. If we have a screen beyond the slit then according to geometrical optics, only 

the region LM will be illuminated and the remaining portion (which is known as the 
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geometrical shadow) will be absolutely dark. However, experiments tell us that there 

is some light in the geometrical shadow; this spreading of light is due to the 

phenomenon of diffraction. In most applications it is desirable to capture this output 

light into some other waveguide or detector. The amount of light actually captured 

depends on the size and shape of the beam at the cross section of the capturing object 

amongst other things. Thus, it is useful to predict the field profile as it extends beyond 

the output facet. 

In the experimental arrangement shown in Fig. 2.4, diffraction will occur along the x­

direction and the amount of (diffraction) spreading increases with 

a) increase in wavelength and 

b) decrease in the width of the slit 

Thus the smaller the slit width, the greater will be the spread due to diffraction. 

The phenomenon of diffraction is usually divided into two categories 

i) Fresnel diffraction 

ii) Fraunhofer diffraction 

x 

ll..... ........ ........ ..... ...... L 

~ a 

Long narrow slit Screen 

Fig. 2.4 A plane wave in incident normally on a long narrow slit of width w. 
According to geometrical optics, only the region LM will be illuminated. 

In Fresnel diffraction, the source of light or the screen (or both) are at a finite distance 

from the diffracting aperture. For example, in both the arrangement in Fig. 2.4, since 

the screen is at a finite distance from the diffracting aperture, it corresponds to the 
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Fresnel diffraction. In Fraunhofer diffraction, the source and the screen are at infinite 

distances from the aperture; this is easily achieved by placing the source on the focal 

plane of a convex lens and placing the screen on the focal plane of another convex 

lens. The two lenses effectively move the light beam parallel and the second lens 

makes a point on the screen receive a parallel beam of light. Indeed in the 

arrangement shown in Fig. 2.4, if the distance z between the aperture and the screen 

satisfies 

. (2.14) 

where a is the dimension of the aperture, then the diffraction pattern observed on the 

screen will be essentially of the Fraunhofer type. It turns out that it is much easier to 

calculate the intensity distribution corresponding to Fraunhofer diffraction and 

fortuitously, it is the Fraunhofer diffraction pattern which is of greater importance in 

optics. Furthermore, the Fraunhofer diffraction pattern is not difficult to observe. 

2.12 The Diffraction Formula 

We first consider a plane wave incident normally on a diffracting aperture ~ as shown 

in Fig. 2.5. The field at the point P can be calculated approximately by using the 

Huygens-Fresnel principle according to which each point on a wavefront is a source 

of secondary disturbance and the secondary wavelets emanating from different points 

mutually interfere. Now, the field at the point P due to spherical waves emanating 

from the area d~dll around the point Q whose coordinates are (~,l1,O) will be 

proportional to 

(2.15) 

where, A represents the amplitude of the plane wave in the plane of the aperture and 

(2.16) 
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represents the distance QP. In order to calculate the field at the point P due to the 

entire aperture we will have to sum over all the infinitesimal areas and if we replace 

the summation by an integral we will obtain 

u(P) = c J t A(e'jkr / r)drgdll (2.17) 

where C is the proportionality constant which can be determined by noting that in the 

'kz 
absence of the aperture u(P) must be equal to Ae'J . Thus 

(2.18) 

If we carry out the above integration under the approximation that most of the 

contribution to the integral comes from the domain Ix - rgl, IY -171 «Z, we will obtain 

Thus, 

C= jlA (2.19) 

x 

y 

Fig. 2.5 A plane wave propagating along the z-axis is incident 
normally on a diffracting aperture ~. 
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'A If -jkr 
u(P) = L _e -d~d17 

A r 
(2.20) 

It should be mentioned here that a more rigorous analysis based on the solution of the 

scalar wave equation gives the same result as equation (2.20) provided we neglect the 

obliquity factor [78]. 

In most problems of practical interest, the dimension of the aperture is small so that 

the quantity, r, does not vary appreciably over the area of the aperture and very little 

error will be involved if r in the denominator is replaced by r' and taken out of the 

integral i.e., 

(2.21) 

where r' represents the distance of the point P from a conveniently chosen origin in 

the aperture. Even when we have an infinitely extended aperture (such as a long 

narrow slit) we will see that the major contribution to the integral in equation (2.21) 

comes from a small domain of the aperture where r can be assumed to be a constant. 

We choose a convenient point 0 (on the plane of the aperture) as the origin to the 

coordinate system. Let (~, 11, 0) and (x, y, z) represent the coordinates of arbitrary 

points Q and P on the planes of the aperture and of the screen respectively. Thus, the 

distance QP is given by 

[ ]

112 
'= 1- 2(x~ + Y17) ~2 + 17

2 

r '2 + '2 r r 
(2.22) 

where r' =(.1 + I + I) ~ represents the distance of the point P from the original o. 
Since the dimensions of the aperture are, in general, very small compared to the 

distance r', we make a binomial expansion to obtain 
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_ . _ xq + Y17 [ (xq + Y17)2 q2 + 172 ] 
r-r . + '3 + + ...... 

r 2r 2~ 
(2.23) 

Now, if r' is so large that the quadratic (and higher order tenns) in ~ and 1') can be 

neglected, then we have what is known as Fraunhofer diffraction. If it is necessary to 

retain terms that are quadratic in ~ and 1') then we have what is known as Fresnel 

diffraction. 

In general, for an aperture of dimension a, the pattern will be Fraunhofer if 

(2.24) 

The quantity a2/)..z is known as the Fresnel number of the aperture, thus while 

discussing Fraunhofer we may write 

r = r' - (/~ + m1') (2.25) 

where 

I = xl r' = cos a. and m = yl r' = cos p (2.26) 

represent the direction cosines OP along the x and y-directions; a. and P represent the 

angles that OP makes with the x and y axes. Substituting in equation (2.21) we obtain 

where 

jA e-jkr' 

C=-Y-r-'-

(2.27) 

(2.28) 

The factor e-ikr' is a constant which will give a factor of unity when we take the 

squared modulus of u(P) to get the light intensity, therefore it is dropped. 
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Hence we can write the final expression for the complex amplitude at P, 

u(P) = ~ f L ejk
(l.f+

m
'1) dC;d" 

C is a constant. Ifwe define an aperture function P (~,,,) by 

P (~,,,) = 1 for (~,,,) inside the aperture 

= 0 otherwise 

then equation (2.27) can be written as 

(2.29) 

} (2.30) 

(2.31) 

Equation (2.31) is nothing other than the Fourier transform of the aperture function 

P(x,y). If instead of an aperture we have an amplitude distribution A(x,y) across the 

wavefront, then the above equation would be modified to 

(2.32) 

Sine the Fourier transform of a Gaussian function is another Gaussian function, if we 

consider a beam whose transverse intensity distribution is Gaussian, then the 

transverse intensity distribution associated with the Fraunhofer diffraction pattern will 

also be Gaussain. Indeed, even the Fresnel diffraction pattern is also Gaussian. 

2.13 Directionality of Laser Beams 

An ordinary source of light radiates in all directions. On the other hand, the output 

from a laser is usually such its divergence is primarily due to diffraction effects. The 

output from a laser has usually a transverse intensity distribution and can be expressed 

as 
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Fig. 2.6 Diffraction of a Gaussian beam. . 

the propagation is along the z-axis and the quantity Wo is usually referred to as the 

spot-size of the beam. When the beam propagates (along the z-direction) the spot-size 

increases as shown in Fig. 2.6. 

(2.34) 

thus from equation (2.14) 

(2.35) 

The beam width increases as 

(2.36) 

hence the diffraction divergence is given by 

(2.37) 
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It can be observed that the greater the radius of the beam the smaller will be the size 

of the focused spot and hence the greater will be the intensity at the focused spot. 

Indeed one may use the beam expander to produce a beam of greater size and hence a 

smaller focused spot-size. However, the beam would then have a greater divergence 

and therefore it would expand within a very short distance. 

2.14 Summary 

In this chapter, the general overvlew of optical amplifiers has been presented, 

including the history of its generation, classification, their properties and applications. 

Moreover, the comparison between the fibre and semiconductor optical amplifiers has 

been outlined. 

In this research work the semiconductor optical amplifiers has been given more 

attention more specifically the travelling wave amplifiers. Therefore, the basic 

description and fundamental characteristics of these devices has been detailed in this 

chapter. The final section of this chapter discusses the mathematical theory of the far 

field pattern for different waveguide structures. 
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3.0 The Finite Element Method 

3.1 Introduction 

The finite element method (FEM) is now firmly accepted as one of the most powerful 

general technique for the numerical solution of a variety of problems encountered in 

engineering. Applications range from stress analysis of solids to the solution of 

acoustical, neutron physics and fluid dynamics problems. 

A finite element model of a problem gives a piecewise approximation to the 

governing equations. The basic premise of the finite element method is that a solution 

region can be analytically modelled or approximated by replacing it with an 

assemblage of discrete elements. Since these elements can be put together in a variety 

of ways, they can be used to represent exceedingly complex shapes. The method 

solves the governing equations through a discretisation process. The finite element 

discretisation procedures reduce the problem to one of a finite number of unknowns 

by dividing the solution region into elements and by expressing the unknown field 

variable in terms of assumed approximating functions within each element. The 

approximating functions (sometimes called interpolation functions) are defined in 

terms of the values of the field variables at specified points called nodes or nodal 

points. The nodal values of the field variable and the interpolation functions for the 

elements completely define the behaviour of the field variable within the elements. 

For the finite element representation of a problem the nodal values of the field 

variable become the unknowns. Once these unknowns are found, the interpolation 

functions define the field variable throughout the assemblage of elements. 

Clearly, the nature of the solution and the degree of approximation depend not only on 

the size and number of the elements used but also on the interpolation function 

selected. 

The finite element method has developed its superiority over other methods due to 

two well-known features. Initially, a geometrically simple complex domain of the 

problem is represented as a collection of geometrically simple sub-domains, called 

elements, avoiding the difficulties governed with the "whole domain" techniques. 
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Secondly, over each element the approximation functions are derived using the basic 

idea that any continuous function can be represented by a linear combination of 

algebraic polynomials. 

3.2 Brief Historical Background of FEM 

Although, the label finite element method first appeared in 1960, when it was used by 

Clough [79] in a paper on plane elasticity problems, the ideas of finite element 

analysis date back much further. The first effort to use piecewise continuous functions 

defined over triangular domains appears in the applied mathematics literature with the 

work of Courant in 1943 [80]. Courant used an assemblage of triangular elements and 

the principle of minimum potential energy to study the St. Venant torsion problem. 

The actual solution of plane stress problems by means of triangular elements whose 

properties were determined from the equations of elasticity theory was first given in 

the now classical 1956 paper of Turner, Clough, Martin, and Topp at the Boeing 

Aircraft Company [81]. They used the finite element method to calculate the stress­

strain relations for complicated aircraft structures for which no known solutions were 

existed. With this paper together with many others, an explosive development of the 

finite element method in engineering applications began. In 1959 Greenstadt [82], 

outlined a discretisation approach involving "cells" instead of points; that is, he 

imagined the solution domain to be divided into a set of contiguous sub-domains. In 

his theory he describes a procedure for representing the unknown function by a series 

of functions, each associated with one cell, he then uses continuity requirements to tie 

together the equations for all the cells. This means he reduces the continuous problem 

to a discrete one. Greenstadt's theory allows for irregularly shaped cell meshes and 

contains many of essential and fundamental ideas that serve as the mathematical basis 

for the finite element method as we know it today. 

Clough first introduced the name finite element in 1960 [79], in the early sixties, the 

method was viewed as sound and versatile, and it became a respectable area of study 

in the academic circle. A wide variety of elements were developed including bending 

elements, curved shell elements and the isometric concept was also introduced. 

The method was soon recognised as a general method of solution for partial 

differential equations; its applicability to non linear and dynamic solid mechanics, 
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fluid mechanics, thermodynamics, electromagnetism, etc., produced solution to 

engineering problems. 

3.3 Steps involved in FEM Analysis 

Regardless of the approach used to find the element properties, the solution of a 

continuum problem by the finite element method always follow an orderly step-by­

step process. The following summarise how the finite element method works in 

general terms. 

a) Discretise the Continuum. The first step is to divide the continuum or the 

solution region into elements. A variety of element shapes may be used, and 

different element shapes may be employed in the same solution region. 

b) Select Interpolation Functions. The next step is to assign nodes to each 

element and then choose the interpolation function to represent the variation of 

the field variable over the element. The field variable may be a scalar or 

vector. Often, polynomials are used as interpolation functions for the field 

variable because they are easy to integrate and differentiate. The degree of the 

polynomial chosen depends on the number of nodes assigned to the element, 

the nature and the number of unknowns at each node, and certain continuity 

requirements imposed at the nodes and along the element boundaries. 

c) Find the Element Properties. Once the finite element model has been 

established (that is, once the elements and their interpolation functions have 

been selected), you determine matrix equations expressing the properties of 

the individual elements. 

d) Assemble the Element Properties to Obtain the System Equations. To find the 

properties of the overall system modelled by the network of elements we must 

"assemble" all the element properties. In other words, we combine the matrix 

equations expressing the behaviour of the elements and form the matrix 

equations expressing the behaviour of the entire system. The matrix equations 

for the system have the same form as the equations for an individual element 

except that they contain many more terms because they include all nodes. This 

is an attractive feature of the finite element method. 
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e) Impose the Boundary Conditions. Before the system equations are ready for 

solution they must be modified to account for the boundary conditions of the 

problem. At this stage we impose known nodal values of the dependent 

variables or nodal loads. 

f) Solve the System Equations. The assembly process gives a set of simultaneous 

equations that we solve to obtain the unknown nodal values of the problem. If 

the problem describes steady or equilibrium behaviour, then we must solve a 

set of linear or nonlinear algebraic equations. While if the problem is 

unsteady, the nodal unknowns are a function of time, and we must solve a set 

of linear or nonlinear ordinary differential equations. 

In classic analytic procedures, without subdivision processes, the system is modelled 

over the whole region using analytic functions, hence these approaches are only 

suitable for planar or one-dimensional structures. 

3.4 Applications of the FEM 

Applications of the FEM divide into three categories, depending on the nature of the 

problem to be solved. 

a) Equilibrium problems or time-independent problems. The solution of 

equilibrium problems in solid mechanics area, we need to find the 

displacement distribution and the stress distribution for a given mechanical or 

thermal loading. Similarly, for the solution of equilibrium problems in fluid 

mechanics, we need to find pressure, velocity, temperature, and density 

distribution under steady state conditions. 

b) Eigenvalue problems of solid and fluid mechanics. These are the steady-state 

problems whose· solutions often require the determination of natural 

frequencies and modes of vibration of solids and fluids. 

c) Propagation problems or the multitude of time-dependent. This category is 

composed of the problems that result when the time dimension is added to the 

problems of the first two categories. 
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The discussion in this chapter will mainly focus on the eigenvalue problem and is 

indeed of steady state nature. In terms of its nature, where the problem region is the 

waveguide cross-section, the waveguide problem can be regarded as a one- or two­

dimensional problem. 

3.5 Basic Equations 

In this section we shall discuss the fundamental electromagnetic field equations, such 

as the Maxwell's equations and boundary conditions. These two equations are 

essential in order to employ the finite element method in the optical waveguide 

analysis problems hence considered. 

3.5.1 Maxwell's Equations 

Propagation of light through a waveguide is an electromagnetic phenomenon, and is 

described by Maxwell's equations. These equations form a basic set of equations of 

electromagnetic field theory, governing all electromagnetic phenomena. The 

equations can be addressed in both differential and integral forms, but in this work 

they are presented only in differential form, as it is the most convenient form to be 

implemented in the finite element method. 

The differential form of Maxwell's equations in time-varying electromagnetic fields 

can be written as 

-aD 
VxE=--

at 

aD 
VxH=-+J 

at 

V.D =p 

(Faraday's law) (3.1) 

(Ampere's law) (3.2) 

(Gauss's law) (3.3) 
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V.B =0 (Gauss's law of magnetics) (3.4) 

where 

E = electric field intensity (Volts / meter) 

H = magnetic field intensity (Amperes / meter) 

D = electric flux density (Coulombs / mete~) 

B = magnetic flux density (Webers / mete~) 

J = electric current density (Amperes / mete~) 

p = electric charge density (Coulombs / meter3
) 

The fundamental current continuity equation, which describes the conservation of 

charge can be expressed as 

V. J= -op 
fJt 

(3.5) 

Associated with the Maxwell's equations are the constitutive relations which relate 

the field and the medium as follows 

D= cE (3.6) 

B= ,uH (3.7) 

where c is the permittivity and ,u is the permeability of the medium. 
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Lets assume the time dependence to be exp(j OJt), where j is the imaginary part, OJ is 

the angular frequency (radian), and t is the time, for convenience purposes. Thus the 

differential form of Maxwell's equations can be written as 

v x E=-jOJB (3.8) 

Vx H=jOJD + J (3.9) 

v.n =p (3.1 0) 

V.B =0 (3.11) 

the continuity equation hence can be written as 

V. J=-jOJP (3.12) 

3.5.2 Boundary Conditions 

Certain conditions have to be accomplished at the interface between two media with 

different parameters; these conditions are called the "boundary conditions". 

Maxwell's equations, as presented above, are subjected to boundary conditions at 

surfaces where the refractive indices change abruptly. A key strength of the FEM is 

the ease and elegance with which it handles arbitrary boundary and interface 

conditions. Fig. 3.1 shows such a boundary between two different media with the unit 

normal vector n directed from medium 1 to medium 2. 

When there is neither a surface charge (p = 0) nor a surface current (J = 0) the 

following boundary conditions remain valid 

a) The tangential components of the electric field must be continuous. 

(3.13) 
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where EI\ and EI2 are the tangential electric field in medium 1 and medium 2, 

respectively. 

b) The tangential components of the magnetic field must be continuous. 

(3.14) 

H t =H t \ 2 

where H 1\ and H 12 are the tangential magnetic field in medium 1 and medium 2, 

respectively. 

c) The normal components ofthe electric flux density must be continuous. 

(3.15a) 

where D and DD are the normal electric flux density in medium 1 and medium 
D\ 2 

2, respectively. 

where En '* En 
I 2 

(3.1Sb) 

d) The normal components ofthe magnetic flux density must be continuous. 

(3.16a) 

Bn =Bn 
\ 2 
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where B and Bn are the normal magnetic flux density in medium 1 and medium 2, n. 2 

respectively. 

(3.16b) 

If the relative permeabilities in medium 1 and 2 are 11'1 and 11"2 respectively, then, for 

most of the optical waveguides, 11'1 = I1rz = 1. Therefore, the magnetic field vectors at 

the boundary are equal. 

(3.16c) 

In an ideal case of a perfect electric conductor, another boundary condition is often 

used, this boundary condition can be termed as the "electric wall" which can be 

contributed when 

nxE=O or n.H=O (3.17) 

This boundary condition requires that the magnetic field vector, H, must vanish, and 

ensures the continuity of the electric field vector, E, at the boundary. A "magnetic 

wall" condition is normally imposed when one of the two media becomes a perfect 

magnetic conductor and 

nxH=O or n.E=O (3.18) 

The magnetic wall condition vanishes the electric field vector, E, and ensures the 

continuity of the magnetic field vector, H, at the boundary. 
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n 
Medium 2 ).I], E],E1,H1 

Medium 1 ).IbEJ,E"H, 

Fig. 3.1 The Interface between two different media. 

3.6 Variational Formulations 

The two major alternatives for formulating the finite element method are the 

variational [83] or weighted residual approach. It has been reported in literature that 

most of the solutions for wide variety of electromagnetic field problems have been 

based on the variational approach. The variational approach is more advantageous, 

regardless of the weighted residual being more straightforward; this is because only 

one global parameter, such as the propagation constant is needed. This approach has 

been extensively applied to a wide variety of electromagnetic field problems, in 

particular to the problem of wave propagation along the arbitrary shaped waveguides, 

with anisotropic material. In this work, only the variational approach will be 

considered. 

When a variational expression is considered, it can be converted into a standard 

eigenvalue problem through the application of finite element method in the form 

[A ]{x} = A[B ~x} (3.19a) 

[A ]{x} - A[B ]{x} = 0 (3.19b) 

where [A] and [B] are real symmetric matrices, and [B] is also positive definite 

matrix. The eigenvalue A may be k/ (ko is the free space wavenumber) or ti 

72 



Chapter 3 The Finite Element Method 

depending on the variational formulation and {x} is the eigenvectors representing the 

unknown nodal fields. The resulting matrix equation is mostly desirable to be of the 

canonical form, to allow for robust and efficient solution. The equation (3.19b) can be 

solved by one of the various standard subroutines to obtain different eigenvectors and 

eigenvalues. 

The two most commonly used variational formulations, which can be utilised in finite 

element method, are the scalar [84] and the vector formulations [36][85,86]. 

3.6.1 Scalar Field Formulation . 

This method has been applied to problems of electromagnetic wave propagation in 

homogenous, isotropic media, where a single potential or only one field component 

has been applied. It is the simplest form of the differential variational formulations. In 

this method its validity becomes apparent only in situations where the modes can be 

described predominantly as TE and TM modes. The following scalar variational 

expression has been proposed in the work of Mabaya [87]; 

where 

P is the propagation constant 

n is the refractive index profile 

ko is the free-space wavenumber 

(3.20) 

In this case, n denotes the cross section domain where the integration is carried out. 

The eigenvector, ~(x,y) is the transverse field distribution, when m = 1 , ~ = Ex for the 

TE modes. A finite element program based on the above mentioned functional yields 

p2 as the eigenvalue of the matrix equation for a given ko• 
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On the other hand for the TM modes the scalar approximation can be expressed as 

In this case, \jJ denotes the cross section domain where the integration is carried out. 

The eigenvector, \If(x,y) is the transverse field distribution, when m = lIn2 
, \If = Hx for 

the TM modes. 

The two scalar finite element formulations form an excellent approximation for the 

TE and TM modes of the optical waveguide. The main advantages of the scalar 

approximation are 

a) The two scalar functionals are positive definite (or can immediately be made 

positive definite). All the eigenvalues are, therefore, positive and each one 

corresponds to a physical mode of the guide. This results in an ease to 

compute the higher order modes of the guide. This is of great significance in 

open dielectric waveguides where to compute higher order modes, it becomes 

very hard to differentiate between the spurious and non-physical modes. 

b) In this method the dimensions of the matrices are reduced compared to the 

vector finite element method causing a reduction in the computer time. 

c) It is easier to calculate modes close to the cut-off since it is possible to use 

more triangles to model the substrate for a given maximum matrix size. 

3.6.2 Vector Field Formulations 

The scalar formulation is inappropriate to solve and handle hybrid modes of 

anisotropic or inhomogeneous optical waveguide problems, vector wave analysis is 

important for an accurate evaluation of the propagation characteristics. Another 

advantage is that it offers a better solution convergence for some modal types as 

compared to corresponding scalar formulations. 
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One disadvantage of any vector finite-element method is the appearance of the 

spurious solutions or non-physical solutions, which appear mixed with the correct 

solutions. Later, on this chapter we shall discuss the generation and how these 

spurious solutions can be avoided. 

For such vector wave analysis, there are a number of finite element methods 

depending on which electromagnetic field component is used for formulation, which 

are 

a) Finite element method using the three electric field components, (E). 

b) Finite element method using the three magnetic field components, (H). 

c) Finite element method using the six electromagnetic field components, 

(E+ H). 

d) Finite element method using the transverse electric field components, 

(Et). 

e) Finite element method using the transverse magnetic field components, 

(Ht). 

f) Finite element method usmg the transverse electromagnetic field 

components, (Et + Ht). 

g) Finite element method using the longitudinal (axial) electromagnetic 

field components (Ez + Hz). 

Berk [88] derived some vector variational expreSSIOn m the form of Rayleigh 

quotients for loss-free resonators and microwave waveguides in terms of H-field, E­

field or combination of both. Later, Morishita and Kumagai [85] established 

procedures to derive variational expression for both self-adjoint and self-adjoint 

operators. 

The formulation of finite element using axial component of the fields (Ez and Hz) was 

one of the first vector formulation used in finite element to solve many different types 

of guiding structures problems [89]. However, this Ez-Hz formulation cannot without 

destroying the canonical form of the eigenvalue matrix treat general anisotropic 

problems. The satisfying of the boundary conditions in this method can be quite 

difficult, for a waveguide with arbitrary dielectric distribution. The other disadvantage 

of this method for optical dielectric waveguide problem is that it considers axial 
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components of the fields, which are the least important components of the six-vector 

field. 

The vector E-field was first applied by English and Young [90], this method can solve 

general anisotropic problems. They considered a vector E formulation as it involved 

more Dirichlet (rather than Neumann) boundary conditions associated with the fields. 

Unfortunately, the boundary condition is that of a magnetic wall, which cannot be left 

free for an electric wall boundary. Since it is essential for boundary condition n x E = 

o be imposed on any conducting boundaries, it is an added difficulty to implement 

that boundary condition on arbitrarily shaped guided walls. Another drawback of this 

method is that the dielectric interface needs special consideration to ensure continuity 

of the tangential components of the fields. 

Angkaew [91] formulated a variational expression suited for the finite element 

method in terms of the transverse electric (E) and magnetic (II) field components. 

This transverse formulation in this method is computationally costly as it involves 

additional differentiation [92], although a complete discrimination of the spurious 

mode solutions from guided mode solutions are confirmed. 

Under all the criterias, a vector H-field formulation [93] has the advantage over all the 

others. For general optical waveguide problems, where the modes are hybrid, the 

transverse field components are dominant, and the materials may be generally 

anistropic, the vector H -field formulation appears to be the most accurate, versatile, 

and suitable method. For this formulation, we can consider general antisotropic 

problems, which are important for many active and passive integrated optics 

structures. In this method, the natural boundary condition is that of an electric wall, so 

that for arbitrary conducting guide walls it can be left free. The chosen field is 

continuous at the dielectric interfaces in this formulation making it very efficient for 

the finite element solution of dielectric waveguide problems. 

The vector H-field formulation can be written as [35], [88] 

(3.22) 
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where & and f.I are the general anisotropic permittivity and permeability of the loss­

free medium, respectively. OJ is the radian frequency while domain n is where the 

integration is carried over on the waveguide cross section. 

Since the natural boundary conditions is that of an electric wall, we need not force any 

boundary condition on conducting guide walls. But for regularly shaped waveguides, 

and at the symmetric walls (if applicable), we can enforce the boundary condition to 

reduce the problem size. To obtain a stationary solution of the functional equation 

(3.22) this can be minimised with respect to each of the variables, which are unknown 

modal field components Hx, Hyand Hz, defined by a set of algebraic polynomials. The 

minimisation leads to a matrix eigenvalue equation as stated in equation (3.l9b) 

where [A] is a complex Hermitian matrix and [B] is a real symmetric and positive 

definite matrix. The eigenvalue problem can be solved by one of the various standard 

subroutines to get different eigenvectors and eigenvalues. The eigenvectors {x} 

represent the unknown field components at the nodal points for different modes with 

A as their corresponding eigenvalues and also A is proportional to oJ. In order to 

obtain a mode of a given wavelength, the p value has to be changed iteratively until 

the output eigenvalue corresponds to that wavelength. Generation of spurious solution 

appear mixed up with correct solutions, which tends to be a drawback, later in this 

chapter we shall discuss how the spurious solutions can be avoided. 

3.6.3 Natural Boundary Conditions 

Natural boundary condition is the boundary condition which is satisfied automatically 

in the variational formulation. One significant feature of the variational formulation is 

that the natural boundary condition can be automatically be satisfied if left free. 

The functional defined in equation (3.20) has the continuity of m[:~] where m = 1, 

as the natural boundary condition and the functional expressed in equation (3.21) has 

the continuity ofm[:~] where m = lin' as the natural boundary condition, ;; is the 

outward normal unit vector. The vector H-field variation formulation given in 

equation (3.22) in contrast has the electric wall as the natural boundary condition 
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expressed as n.H = O. In some occasions it is essential to change the unsuitable natural 

boundary condition by introducing additional surface integral around the desired 

boundary, however, in case of symmetry of a waveguide exists, the natural boundary 

condition may be enforced, which reduces the matrix problem size, but it is of great 

significance to analyse the structure with complementary symmetry condition to 

obtain all the modes, although the exploitation of the symmetry greatly reduces the 

computational cost. 

3.7 Optical Waveguides Application 

The analysis of electromagnetic waveguide problems can be categorised as 

i) One-dimensional 

ii) Two-dimensional 

The analysis method to consider depends on the eigenmode property of the waveguide 

which can be either a scalar or vector analysis. The vector analysis is more accurate 

and versatile when considering a two-dimensional problem, whilst the scalar analysis 

can be employed in both one and two-dimensional problems. 

Since hybrid modes are generated by the arbitrarily-shaped waveguide, vector wave 

analysis is significant for precise evaluation of their propagation characteristics and 

polarisation issues, therefore considered. However, vector solution has the 

disadvantage of appearance of spurious solutions. These can be eliminated by either 

using the H t (Hernandez-Figueroa et al., 1994) formulation or by employing the 

penalty function [35] in the variational formulation. 

When the optical waveguide with arbitrary cross-sectional shape, is build up of 

different materials, they can be described by the arbitrary permittivity (e) and 

penneability (Il) tensors. These could be linear, nonlinear, isotropic, anisotropic or 

loss less. 
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Fig. 3.2 (a) Planar waveguide 
(one-dimensional). 

The Finite Element Method 

Fig. 3.2 (b) Arbitrarily-shaped 
waveguide (two-dimensional). 

The waveguide is assumed to be uniform along the axis of propagation z-axis. 

Assuming the time (t) and z dependencies are given as exp(jOJt) and exp(-jfJz) 

respectively, where OJ is the angular frequency and {J is the propagation constant, the 

electric field E(x,y,z,t) and the magnetic field H(x,y,z,t) can be expressed as 

E(x,y,z,t) = E(x,y) expU( OJt-{Jz)] (3.23) 

H(x,y,z,t) = H(x,y) expU(mt-fJz)] (3.24) 

The spatial variations of the electric and magnetic fields are E(x,y) and H(x,y) 

respectively. 

Fig. 3.3 Optical waveguide with arbitrary subdomains with different materials. 
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3.8 Spurious Solutions 

The vector variational fonnulations suffer from the appearance of spurious or non­

physical modes, which appear mixed up with the physical (true) solutions during 

computations. There are various methods employed to detect these spurious solutions 

from the true modes, such as for example examining the field. The characteristic of 

spurious solutions is the inconsistency and the random fashion of the field varied. The 

explanation to the cause of these spurious solutions could be due to the enforcement 

of the boundary conditions or the nonzero divergence of the trial fields [36], [93]. In 

electromagnetic waveguide problems the spurious modes do not arise if the trial field 

precisely satisfies the condition V.B = O. Spurious modes occur in a full vector 

formulation where the divergence-free condition is neither implied nor forced and are 

distinctive in giving particularly high values ofV.B. 

To eliminate these spurious modes, it is essential to differentiate between the physical 

(true) and the spurious solutions. For a physical mode, mathematically, its eigenvector 

satisfies the condition V.H = O. So it is possible to identify the spurious solution from 

the physical ones by calculating the V.H for each solution over the waveguide cross 

section. The solution with low values of V.H are the real modes whilst those with 

high values are the spurious modes. 

Based on this phenomenon, Rahman and Davies [35] developed the so called Penalty 

junction method. It is a useful way of imposing certain constraints on solution 

variables. The method has been used in structural engineering problems to impose 

specific boundary conditions. This method was used to successfully eliminate these 

spurious solutions in problems of microwave or optical waveguides; improving the 

quality of the field. In this approach, an additional integral is added to the variational 

formulation equation (3.22), which satisfies the condition V.II = O. The penalty tenn 

can be thus written as [35] 

~ (V x H)' .s·'. (V x H)ao + [:.] (Vx H)'. (V.H)] an 
W2=-=------------,-~~~~----------d---

fH·.p.HdO 
(3.25) 
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where a is the dimensionless penalty number, the element matrix [A]e can be 

introduced in a separate subroutine to implement the additional penalty term in the 

numerator of the equation (3.25). The value of the penalty function a can be 

approximated as lIEg, where Eg is the dielectric constant of the core guide, The 

advantage of using the penalty term is that it does not increase the matrix order and 

additional computational time is negligible. For higher values of the penalty 

coefficient a further reduction of spurious modes exists, but may deteriorate the 

accuracy of the eigenvalues. 

3.9 Mathematical Formulation of FEM 

Firstly, the FEM discretize the entire problem domain into a finite number of 

triangular sub-regions, called elements, so that the continuous field problem is 

reduced to finding fields at discrete nodes, where the unknown field values in only 

coupled to the field values of neighbouring nodes. Using many elements, we can 

approximate any continuum with a complex boundary and with an arbitrary index 

distribution so that an accurate analysis can be carried out. The field functions are 

defined by a set of algebraic polynomials over each element in the transverse plane, 

and longitudinal dependence exp(-jpz) is assumed, for given p. 

3.9.1 Shape Function 

For the approximation of the field over each element, it is important to consider a 

continuous function that is allowed to vary in a linear manner over the element region. 

The function varying is constrained by the fact that at the nodal points, the function 

should take values equal to the nodal values ¢I, th. and tho In this perspective, the 

functions have to be expressed in terms of its nodal values. These functions are 

referred to as the "shape functions". 

The continuous field function ¢ (x,y) in the problem domain can be replaced by a set 

of discrete values (A, i = 1,2,3, ..... ... ,m), where m is the total number of nodes. Across 

the adjacent triangles this function will be continuous. For these functions to be 
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admissible, they must satisfy some conditions between the element; usually the 

continuity ofthe field across the boundaries is preferred. 

For each first order triangular element, tP is interpolated continuously, this is shown in 

Fig. 3.4. This can be achieved by introducing the nodal shape function (interpolation 

function), N,{x,y). When considering tPk(X,y) to be the field inside the element, the 

interpolation functions for i = 3, can be represented as 

3 

¢k(X,y) = LN;(x,y).¢; (3.26) 
;=1 

where ¢j are the nodal field values. The equation (3.26) can also be represented in a 

matrix form as 

(3.27) 

therefore, 

(3.28) 

where N is referred to as the shape function matrix and ¢k is the vector corresponding 

to the element nodal field values at the three vertices of the triangular (i.e the nodal 

field values). 

The first-degree polynomial (a + bx + cy) is used over each element for a simple first 

order triangular element. The element shape function can be represented in a matrix 

notation as 

X3 - X2][1] 
xl -x3 x 

X 2 -Xl Y 

(3.29) 
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where T denotes a transpose, Xl, Xl. X3, YI, Y2 and Y3 are the X and y coordinates of the 

three nodes respectively. Ae is the area of the triangular element given as 

1 Xl 

A =.!. 1 X2 
e 2 

1 x3 

The shape function matrix can also be written as 

(/Jk(X,y) 

(3.30) 

(3.31) 

(/Jk(X,y) 

r------4---+~-----4----~y 

X 

P(X,y) 

Fig. 3.4 The First-order triangular element showing the coordinates and node numbers. 
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With respect to equations (3.30) and (3.31), ai, bi, and Cj (i = 1,2,3) are constants, 

which are calculated as 

b - Y2 - Y3 
1 - 2A 

e 

(3.32) 

(3.33) 

(3.34) 

The values of a2. b2• C2, a3. b3 and C3 can be obtained by a cyclic exchange in 

equations (3.32), (3.33) and (3.34) simultaneously. 

Also, if we consider a typical point inside the triangular element shown in Fig. 3.4. 

The shape functions N; can be expressed by using the areas of the triangles as 

N 
_ area of the sub - triangle P - 2 -3 

]-
area of full triangle 1- 2 - 3 

(3.35) 

N2 and N3 can also be expressed similarly, this yields immediately that the shape 

function N; has the following property 

3 

"'IN; =1 (3.36) 
;=1 

The shape function Nl yields the value 1 when evaluated at the node 1 (Xl. Yl) and the 

value 0 at nodes 2 and 3 and all the other points passing through the nodes on the line. 

This is the unique first-degree interpolation function for node 1. In terms of the shape 

functions N2 and N3. the value 1 is at nodes 2 and 3 respectively, and the other nodes 

areO. 
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3.9.2 Element and Global Matrices 

The matrices A and B in equation (3.19b) are known as the global matrices, and are 

built up with triangular element matrices of the discretised cross section of the 

waveguide. The derivation of the element matrices based on the full vectorial II-field 

variational expression of equation (3.22) will be discussed in this section. 

Considering each triangular element, the three unknown II-field components, Hx. Hy 

and Hz of the magnetic field can be written as 

(3.37) 

(3.38) 

(3.39) 

where, H XI ' H YI and H ZI (i = 1,2,3) represents the x, y and z components of the nodal 

magnetic fields. The nodal magnetic field vector [H le for each element can then be 

written as 

(3.40) 
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Hx 
I 

Hx 
Z 

HX3 

[NI N2 NJ 0 0 0 0 0 

}J 
HYI 

[He]= ~ 0 0 Nl N2 NJ 0 0 HYz (3.41) 

0 0 0 0 0 Nl N2 HYl 

Hz 
I 

HZ2 

Hz 
l 

Equation (3.41) can also be expressed as 

(3.42) 

where {H}e is the column vector which contains the three components of the nodal 

field values of the element and [N] is the shape function matrix. 

The factor (V x H)e can be substituted in equation (3.42) to define each element, and 

can be written as 

0 
-0 0 -oz Oy 

(VxH)e = [V]x[N][H]e = 
0 

0 
-0 

[N]{H}e = [Q]{H}e 
OZ ox (3.43) 

-0 0 
0 -

Oy Ox 

where the matrix [Q] can be written as 
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[0] -a[N] a[N] [0] jp[N] .a[N] 
j-

az By By 

[Q]= a[N] [0] -a[N] 
= - jp[N] [0] .a[N] 

(3.44) -j-
az ox ox 

-a[N] a[N] [0] -a[N] a[N] [0] 
By ox By ox 

therefore 

[0]= [0 0 0] (3.45) 

[N]= [NI N2 N3 ] (3.46) 

a[N] = [b
i 

Ox 
b2 b3 ] (3.47) 

a[N] = [c
l By 

c2 c3l (3.48) 

In equations (3.33) and (3.34) the coefficients of the shape functions 

b
i 
,b

2 
,b3 ,c1 ,c 2 and C 3 have been defined. 

When an isotropic media is assumed and equations (3.42) and (3.43) are substituted in 

the variational expression equation (3.22) for an element, we obtain the following 

Ie = J{H}~[Qf&-1[Q]{H}edn-w2 J{H}~[Nr ,u[N]{H}edn (3.49) 
n n 

the integration done over the element domain is represented by n, T and ... denotes the 

transpose and the complex conjugate transpose, respectively. 

By summing Je of all the elements, the total function, J, associated with the whole 

cross section of the waveguide can be obtained as 
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·n 

J= ~)e (3.50) 
e=l 

When Rayleigh-Ritz procedure is employed in equation (3.50), (differentiating with 

respect to the nodal values and equating zero) i.e., 

where, e = 1,2,3 ........ , n 

The following eigenvalue equation is obtained 

(3.51) 

where 

n n 

[A] = L [A] e= L J.S·-l [QV[Q]dn (3.52) 
e=l e=l n 

n n 

[B]= L [B]e= L f,u[NV[N]dn (3.53) 
e=l e=l n 

[A] and [B] are the global matrices of the eigenvalue equation, while [A]e and 

[B]e represent the element matrices. Column matrix {H} contains all II-field nodal 

values over the whole cross section of the waveguide structure. The evaluation of the 

elements [A]e and [B]e are shown in the Appendix 1. 

3.10 The Infinite Elements 

An infinite element is a finite element that indeed extends to infinity, and the shape 

functions for such an element should be realistic to represent the fields and should be 

square integrable over the infinite element area, to satisfy the radiation condition. 
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Open-type waveguide has the property of the finite fields existing in the region 

outside the guide. Outside the guide core, the field decays and the region of interest 

extends to infinity. The extension of the problem domain is significant for solutions 

near to cut-off, as the fields decay slowly and the region of significant field value can 

be arbitrarily large. 

In an Orthodox finite element discretisation of the waveguide, as shown in Fig. 3.5, 

the region cannot be extended to infinity. Yeh et al., [30] used boundary elements 

considering an exponential decay outside the guide core. Due to non-conformity of 

the two co-ordinate systems, the field used were not continuous. Mabaya [87] 

suggested an artificial electric or magnetic wall boundary condition to this problem, 

but it needs to consider large active domain to minimise the perturbation error or 

introduces a significant error. Another technique [94] involves shifting the virtual 

boundary wall to satisfy a given criterion for the maximum field strength at that wall. 

The recursion approach is another technique, which is used to generate the matrix 

representing the region outside the main domain. It is possible to find the internal and 

external solutions and match them on an imaginary boundary, some sort of integral 

solution being possible for the outside region [95]. 

Rahman and Davies [36] then developed a very useful and efficient approach which 

involves the extending the domain of interest to infinity keeping the same matrix 

value, as shown in Fig. 3.5. The method doesn't increase the order of the matrices and 

is quite simple to implement. 

Elements can be extended in either or both transverse direction, when extending in 

one transverse direction, we consider an exponential shape function in that direction 

and conventional polynomial shape function in the other direction. For instance, as 

shown in Fig. 3.6, if an element is extending towards infinity in the x-direction, we 

can assume exponential decay in x and conventional shape function dependence in the 

y-direction. Thus, the shape function can be expressed as 

Nj(x,y):; /;(y).exp (-x I L) (3.54) 
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where, L is the decay length. The infinite elements extending towards the y-direction 

can be obtained by considering the exponential decay in y. Similarly, by assuming 

exponential decay in both x and y, we can consider a rectangular or quadrant element 

extending towards infinity in both x and y-directions. Integration of these shape' 

functions or their derivatives over the infinite elements are finite, and can be easily 

carried out. 

Lets assume any field component, for example, Hx, it can be written as 

2 

Hx =f(x,y)Hx1 = LN;(x,y)HX1 

1=1 

y 

Orthodox_--+~ 
Element 

(3.55) 

(3.56) 

(3.57) 

Infinite 
~~---

Element 

x 

Fig. 3.5 Rectangular dielectric waveguide discretised into orthodox and 
infinite elements. 
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where Hx,. and H~ are the values of Hx at the nodes 1 and 2, respectively. In its 

simplest form, Nl and N 2 can be expressed as 

(3.58) 

(3.59) 

where b is the width of the infinite element in the y-direction. Similarly, the other field 

components, Hy and Hz can be expressed in the same manner. 

Indeed, combining all the infinite elements along with the conventional finite element, 

we can represent any open-type waveguide cross-sectional domain very conveniently 

with each field component being continuous over the whole infinite domain. 

y 

b 

!+-~ 
1 x 

Fig. 3.6 Infinite Element of width b in the y direction and 
extending to infinity in the x direction. 

3.11 Summary 

The application of the finite element technique based on the vectorial principle for 

solving optical waveguide problems has been presented in this chapter. A brief history 
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of the method and the steps involved in the analysis of the technique has been 

described. The aspects involved including different scalar and vector formulations, 

natural boundary conditions, shape functions and infinite elements have also been 

detailed. Since the vector formulation suffers from the appearance of spurious 

solutions the use of the penalty function method was also discussed to eliminate these 

non-physical modes. This chapter incorporated with the beam propagation method 

presented in the next chapter forms the numerical basis for this research work for the 

analysis of optical waveguide problems involved in subsequent chapters. 
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4.0 The Beam Propagation Method 

4.1 Introduction 

One of the fundamental aspects in integrated optics is the analysis and simulation of 

electromagnetic wave propagation in photonics devices based on waveguide 

geometries, including optical waveguides. Most of the photonic integrated devices 

cannot be accurately analysed by simple analytical techniques. Also, even where 

analytical techniques are available, numerical techniques are employed to verify the 

designs before proceeding to invest serious effort in making new structures. In fact, 

numerical techniques are becoming increasingly available and user-friendly. 

Optoelectronics is an emerged technology that combines the capability of photonics 

and microelectronics and has produced a diverse novel and useful devices for 

interconnections and telecommunications. The lack of powerful computerised design 

tools, though have made it difficult for engineering, manufacturing as well as research 

the development of optoelectronic devices for system applications. Development and 

engineering of optoelectronic devices follow a pattern of design, fabrication, 

characterisation and re-design process that is not adequate for optimisation and 

engineering of sophisticated optoelectronic devices to the desired specifications. 

Therefore, it is imperative to develop powerful computer-aided modelling and 

simulation tools that are efficient, robust and accurate. 

In the previous chapter, the finite element method, which is useful in the modal 

solution of optical waveguide problems, has been discussed. But, this method is not 

capable of simulating how light is propagating and interacting with media in 

longitudinally non-uniform structures and for this purpose; researchers have 

developed various methods. For instance, the Beam Propagation Method (BPM), 

which is a step-by-step method of simulating the guidance of light through any 

waveguiding medium, allowing us to track the optical field at any point as it 

propagates along the guiding structures. The calculations are repeated for each step in 

a manner of step like calculation of the propagating field. The Beam Propagation 
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Method is a powerful modelling technique for optical wave-guiding structures. It is 

particularly useful for waveguides that change slowly in the propagation direction, 

although it has also been extended to structures with longitudinal interfaces. 

4.2 Brief history of the Beam Propagation Method 

Feit and Fleck first introduced the Beam propagation method for the study of fibre 

optics in 1978 [38,96] to calculate the mode properties of optical fibres. Ever since 

researchers have developed many other optical waveguide structures. 

In 1983, Hermansson, Yevick and Danielsen [97] analysed tapers with a parabolic 

graded index transverse profile and various longitudinal profiles with the aid of the 

propagating beam method. With the implementation of both, analytical and numerical 

techniques, they described the optimal profiles for tapers and demonstrated the 

standard first-order local normal perturbation theory for such structures. 

Danielsen [98], succeeded in reducing the three-dimensional problem of calculating 

the field distribution in an integrated optic circuit to a two-dimensional problem, 

which was solved by applying the propagating beam method. On the basis of his work 

he used a V-branch electro-optic modulator as an example, which agreed with the 

pertubation theory. 

The Beam Propagation Method was also employed to demonstrate the characteristics 

of active as well as passive integrated optics X-structures, both single mode and 

multimode, and it has been shown that the results were readily understood in terms of 

mode interference [99]. Since then many other optical waveguide structures such as 

the bends [100], gratings [101], fibre couplers [102,103] and non-linear directional 

couplers [104] have been analysed and modelled by using this method. 
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4.3 Overview of Propagation Algorithms 

The Beam Propagation Method (BPM) is one of the most commonly used numerical 

methods for analysis and simulation of guided-wave propagation in axially non­

uniform structure media. In the literature to formulate the BPM, basically, four 

numerical approaches have been presented. These approaches are 

a) Fast Fourier Transform Method 

b) Finite Difference Method 

c) Modal Propagation Method 

d) Finite Element Method 

These four numerical approaches will be studied briefly in the following subsections 

outlining their respective advantages and disadvantages. 

4.3.1 Fast Fourier Transform Beam Propagation Method 

The Fast Fourier Transform Beam Propagation Method (FFT -:BPM) is the first BPM 

algorithm. In this method, the optical propagation is modelled as a plane wave 

spectrum in the spatial frequency domain, and the effect of the medium 

inhomogeneity is interpreted as a correction of the phase in the spatial domain at each 

propagation step [38]. The use of the fast Fourier techniques connects the spatial and 

spectral domains, and this method is therefore called Fast Fourier transform Beam 

Propagation Method (FFT-BPM). This method is also referred to as Split-Operator 

FFT-BPM and can be expressed mathematically as 

Ijf{X,y,z +!l z) = PQPIjf{x,y,z) (4.1) 

where Ijf{x, y, z) and Ijf{x, y, z + !l z) are the field distributions at two subsequent 

propagation steps, P is a propagator which can be solved by the FFT, and Q is a phase 

correction. 

The limitations of using the conventional FFT-BPM are 
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a) 

The Beam Propagation Method 

A paraxial approximation has been made in the derivation; therefore 

the FFT-BPM is accurate only when the beam propagates in the 

direction with a small angle to the z-axis. 

b) The formulation of the method is under the assumption that the 

refractive index difference in the transverse directions is very small so 

that the phase error term can be expressed by the first term in a Taylor 

series. Therefore, structures with large index discontinuities that are a 

common feature in modem optoelectronics based on semiconductor 

materials FFT -BPM is difficult to solve. 

c) The FFT-BPM cannot describe the vectorial properties such as the 

polarisation coupling and polarisation dependence of guided-wave 

devices as it can only trace the scalar wave propagation. 

However the distinct advantages of the method are 

a) It applies to a structure with an arbitrary cross section. 

b) In the analysis both the guided and radiation waves are included. As 

long as input field is given, the FFT-BPM is capable of tracing the 

wave propagation in the given structure. 

4.3.2 Finite Difference Beam Propagation Method 

The beam propagation method that solves the paraxial form of the scalar wave 

equation in inhomogeneous medium using the finite difference method is called the 

Finite Difference Beam Propagation Method (FD-BPM). This requires choosing a 

computational window in the transverse dimension (x, y) as well as choosing a grid in 

the z-direction. The computational window must be large enough to contain the 

desired field distribution all along the propagation path. 

However, since radiated fields can always be present, setting the field values to zero 

at the boundaries of the computational window can create difficulties. Since this 

boundary condition effectively creates a reflecting boundary, the radiated fields will 

reflect back and create spurious field distribution. 
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One way to eliminate this difficulty is to use absorbing boundaries. This is achieved 

by introducing an artificial complex index distribution around the computational 

window to generate a lossy boundary. The radiated fields are then absorbed before 

reaching the edge ofthe window [105]. 

Hedow and Shakir [106] developed a finite difference method beam propagation 

method to solve the paraxial wave equation by the finite difference method to improve 

the efficiency and flexibility. The original application of FD-BPM, though, has been 

limited to cylindrically symmetric structures. Chung and Dagli [39] introduced the 

FD-BPM to the Cartesian coordinate system. 

Due to the limitations of the conventional FFT -BPM, some efforts has been made to 

adapt BPM to treat strongly guided waveguides [107-110]. For example, a split-step 

FD-BPM has been developed by Yevick and Hermanson [111,112] to stimulate 

strongly guiding semiconductor-based rib waveguides. Instead of using the FFT, they 

used the split-step FD-BPM to solve the propagator by the finite difference method. 

The conventional phase correction is still retained in the algorithm. 

The numerical advantages ofFD-BPM over the conventional FFT-BPM are 

a) To stimulate integrated photonic devices the FD-BPM is clear, since it 

admits larger propagation steps, and also behaves quite well managing 

structures with large discontinuities in the refractive index. 

b) If the computational window is reduced in such a way that the optical 

field reaches the computational boundaries, it is necessary to 

implement additional algorithms to avoid the optical fields reflecting at 

the boundaries and re-entering the computational window; otherwise, 

the simulation of the optical devices will not be correct. This problem 

can be adequately solved in the case of FD-BPM, but is cumbersome 

when using FFT -BPM. 

c) For a given cross-section, the FD-BPM computation is proportional to 

the number of mesh points, N, instead of NlogN in FFT -BPM, 

. therefore the number of mesh points, N, can be arbitrary number in 
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FD-BPM, while it is restricted to a power of 2 in the conventional 

FFT-BPM. 

d) An additional advantage of FD-BPM, besides the lower memory and 

time consuming in modelling complex structures, is the possibility of 

incorporating wide-angle propagation and full vector algorithms 

[113,114]. 

Some researchers devoted on developing semi and full-vectorial beam propagation 

method algorithms based on the finite difference method. These propagation 

algorithms are capable of predicting the polarisation dependence and coupling of 

guided-wave optical devices, but, since they are based on finite difference scheme, 

they suffer the following shortcomings 

a) The finite difference method suffers from inefficiency in the 

discretisation of the waveguide cross-section. They instead rely on 

uniform grids, which results in high computational efforts, and for 

curved boundaries, they present very crude approximation. 

b) Some authors have noticed that if an arbitrary input field is used, for 

vectorial propagation algorithms based on finite differences, some 

unphysical gain (lossless structure is assumed) is observed during the 

propagation [115]. The explanation of the occurrence of the unphysical 

gain may be that the propagation matrices involved in the FD-BPM 

algorithms are complex non-Hermitian, which gives the chance to 

unphysical spurious modes to appear. Specifically, the inadequate 

description of the interface boundary conditions through truncated 

Taylor series expansion [116] may lead to that complex non-Hennitian 

propagation matrices, and hence to the unphysical gain effect. 

4.3.3 Modal Propagation Method 

Some analytical approaches have been proposed to describe the wave propagation in 

optical devices, since the FD-BPM needs a large computational effort. One of these is 

the Least Squares Boundary Residuals (LSBR) [117,118]. The LSBR method was 

introduced as an alternative to point-matching (and Galerkin) methods, satisfying the 
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boundary conditions in the usual least-squares sense over the interface. The method is 

rigorously convergent, the error minimization being global rather than sampled, and 

has the flexibility of introducing an electric/magnetic-weighting factor. 

The LSBR method has been used to study scattering coefficients at the discontinuity 

planes. [119-121]. Other very similar approaches to LSBR have also been proposed 

[122,123]. All these approaches also depend on the same principle of matching the 

transverse electric and transverse magnetic field components using the conventional 

mode matching technique to treat problems of one- and two-dimensional dielectric 

waveguide discontinuities. Since these approaches basically, depend on expanding the 

field components in terms of the guided andlor radiation modes, they are termed as 

Modal Propagation Methods. 

The advantages of these methods includes 

a) They are very computationally efficient compared with the FD-BPM. 

b) They are capable of determining the reflected waves which is not 

available in some of the FD-BPM algorithms. 

On the other hand, accurate characterisation of optical devices using the modal 

propagation methods needs the determination of all guided and radiation modes. 

Finding the radiation modes using very powerful numerical methods like Vector H­

field finite element method in one-dimensional problems is a difficult process and 

many radiation modes are needed to be found in order to get accurate numerical 

results. 

For photonic devices which contain large number of discontinuities, like structures 

such as the tapered waveguide, numerically approximated by a series of very small 

longitudinal sections, the process of finding both the guided and radiation modes must 

be repeated at each propagation step. This situation will be more difficult when 

working with two-dimensional problems. 
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4.3.4 Finite Element Beam Propagation Method 

The Finite Element Beam Propagation Method (FE-BPM) is a more computationally 

efficient propagation algorithm based on the finite element scheme, as an alternative 

to the conventional FFT-BPM and FD-BPM. In literature, Koch and Davies presented 

one of the first FE-BPM algorithms [124,125]. In their approach, a variational method 

is used to solve the scalar wave equation, under the paraxial approximation; with the 

finite element method applied to the transverse cross section and the finite difference 

Crank-Nicolson method applied to the longitudinal axis to propagation. 

Koshiba [126,127] have presented a beam propagation method (BPM) based on the 

finite element method (FEM) for longitudinally varying three-dimensional (3-D) 

optical waveguides. In his approach, in order to avoid non-physical reflections from 

the computational window edges, the transparent boundary condition was introduced. 

Using the Pade approximation, a wide-angle finite element beam propagation method 

for 3-D waveguide structures was established. The FE-BPM was derived via the 

application of Galerkin's procedure, to solve the scalar wave equation. 

All the FE-BPM algorithms explained above are solving scalar wave equations, 

hence, they are not adequate in predicting the polarisation properties and coupling of 

strongly guiding optical devices based on semiconductor materials. 

Montanari, Selleri, Vincetti and Zoboli [128,129] presented a vectorial approach, 

which is based on the paraxial approximation, and also not using the rigorous 

absorbing boundary condition. This vectorial FE-BPM approach demands large 

computational effort and storage requirements for solving three magnetic field 

components. 

Obayya, Rahman, and EI-Mikati [43,130] presented a full-vectorial beam propagation 

algorithm based on the versatile-finite element method, in order to accurately 

characterize three-dimensional (3-D) optical guided-wave devices. The 

computationally efficient formulation was based on the two transverse components of 

the magnetic field without destroying the sparsity of the matrix equation. The robust 

perfectly matched layer (PML) boundary condition was incorporated into the 

formulation so as to effectively absorb the unwanted radiation out of the 
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computational domain. In this Chapter this particular finite element beam 

propagation formulation will be discussed and presented. 

Indeed, the finite element method has some advantages, when it comes to 

discretisation, over the FD and/or FFT schemes. These methods are inefficient in the 

discretisation of the transverse section relying on rectangular, and often even uniform, 

grids. In contrast, the finite elements, allow a better description of curved geometries 

and an efficient distribution of nodal points; furthermore they permit adaptive 

techniques to be used and allows one to deal with media with high index step. 

The advantages of the vectorial FE-BPM considered in this work are 

a) Ability to solve only for the transverse components of the magnetic 

field; hence it minimises the computational effort and the storage 

requirements. 

b) Wide-angle approximation; hence it IS capable of tracking waves 

propagating off the propagation axis. 

c) Rigorous perfectly matched layer boundary condition. 

4.4 Perfectly l\latched Layer Boundary Condition 

Due to the fact that the computational domain in BPM calculations is finite, it is 

necessary to specify boundary conditions for the optical field at the limits of the 

computational window. These boundary conditions must be adequately chosen, in 

such a way that the effect of the boundaries does not introduce errors in the 

propagation description of the optical field. If these conditions are not well specified, 

the radiation tends to reflect on the limits of the computational window and comes 

back to the region of interest, and unwanted interference is produced when the 

propagation is performed by FD-BPM. In the case of wave propagation based on 

FFT-BPM, the results is the disappearance of the optical field through a boundary, but 

the appearance of a new perturbation from the opposite window boundary. 
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The most common way of preventing boundary reflection using FFT-BPM is the 

insertion of artificial absorption regions adjacent to the pertinent boundaries [38,131]. 

Usually, the absorption coefficient is ramped from zero at the region's leading edge to 

some maximum value at the boundary node. Thus, the thickness of the region, the 

maximum absorption coefficient, and the functional shape must all be carefully 

chosen for the method to work properly. However, if the gradient in the absorption 

coefficient is too large, that gradient itself will generate reflections. Although the 

artificial absorption procedure is accurate provided that the absorption region is 

adequately tailored, ensuring that this condition is fulfilled for each new problem is 

often difficult and time-consuming process. Even when successful, the addition of 

extra problem zones results in computational penalties of run-time and storage space. 

When using FD-BPM for simulating optical propagation we find that the field at 

points j = 0 and j = N + 1 are not defined, but are necessary for calculating the field 

in the interior points (j = 1 to N), and we need two extra equations to determine them. 

Dirichlet boundary conditions provide the simplest possibility by specifying the 

boundary values Po and j.lN+1 directly, for instance by setting their value to zero; other 

possibilities are the Neumann or even the periodiC boundary conditions [132]. 

Unfortunately, none of these boundary conditions gives satisfactory results, and the 

implementation causes optical field "reflections" at the window limits, because the 

condition of zero field at the boundaries is not realistic when the optical perturbation 

reaches the limits of the computational window. One alternative to this dilemma 

consists in trying to implement realistic boundary conditions from a physical point of 

view, that is, an algorithm that allows the wave to leave the computational region 

when it reaches the window limits, without any reflection coming back to the domain. 

This algorithm is known as transparent boundary condition (TBC), and simulates a 

non-existent boundary [105,133]. Radiation is allowed to freely escape the problem 

region without appreciable reflection, whereas radiation flux back into the region is 

prevented. This TBC employs no adjustable parameters, and thus is problem 

independent, and can be directly applied to any waveguide structure. In addition, it is 

easily incorporated into a standard Crank-Nicolson differencing scheme in both two 
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and three dimensions, and it is applicable to longitudinally varying structures of 

importance for integrated photonic devices [133]. 

In TBC, the idea is to approximate the wave near the boundary of the computational 

domain as a plane wave, which satisfies 

o¢ = -jk¢ 
op (4.2) 

where ¢ is the field near the boundary, k is the transverse wave-vector and p is the 

distance in the direction normal to the boundary. However, for TBC, the plane wave 

approximation of the outgoing wave near the boundary is not sufficient to suppress 

large radiation. Also, some numerical instability will occur, when many field values 

inside the computational domain are involved in estimating k [134,135]. 

Berenger [136] has introduced the concept of the Perfectly Matched Layer (PML) as 

an alternative to the absorbing or transparent boundary conditions. The objective was 

to synthesise an absorbing layer for the Finite Difference Time Domain (FDTD) 

method. The PML concept has been successfully applied in one- dimensional FD­

BPM [137] and has proved to be more robust than the transparent boundary condition. 

The original form of PML introduced by Berenger needs the splitting of the field 

components into two sub-components. When this happens, it leads to non-Maxwell's 

equations, which is not the desired form for the application of finite elements. Pekel 

and Mittra [138,139] have introduced a new form of the PML, for treating free space 

scattering problems, which does not involve the field splitting, maintaining the desired 

form ofthe Maxwell's equation for the finite element application. 

Obayya, Rahman and EI-Mikati [43], incorporated the robust perfectly matched layer 

(PML) boundary condition into the finite element based BPM formulations, but either 

considering a simple scalar formulation [140] or the E-field formulation [141], which 

considers all the three field components. In this approach, the sparsity of the global 

matrices is retained, as no matrix inversion is needed, hence, a numerically efficient 

sparse matrix solver is used which is the main advantage of the present formulation. 
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The PML boundary condition effectively absorbs the unwanted radiation waves 

without reflection. The PML fonn has been introduced into the vectorial FE-BPM 

equations. 

Consider the optical waveguide cross section as shown in Fig. 4.1 t where x and y are 

the transverse directions, regions 01 and 02 are the PML regions nonnally faced with 

x and y directions, respectively, regions 03 corresponds to the four comers of the 

PML, z is the direction of propagation, 0 corresponds to the computational domain 

region, W is the width (or height) of the PML, and Wx and lly are the width and height 

ofthe computational domain in the x and y directions, respectively. 

With PML fonn, Maxwell's curl equations can take the fonn 

oE 
Vxll=&-+J at 

all 
VxE=-Jl­at 

(4.3) 

(4.4) 

Lets assume the time dependence to be exp (j mt), where j is the imaginary part, OJ is 

the angular frequency (radians), and t is the time, for convenience purposes. Thus the 

differential form of Maxwell's equations can be written as 

(4.5) 

(4.6) 

where E and II are the electric and magnetic field vectors, respectively, n2 is the 

square ofthe refractive index, and V is the modified differential operator defined as . 

a a a 
V=xa -+ya -+z-

%ox Yay f}z 
(4.7) 
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Fig. 4.1 Different PML regions along an optical waveguide cross-section. 

where 

(4.8) 

In this case ere and er m are the electric and magnetic conductivities of the PML, 

respectively. The equation (4.8) shows that the PML satisfies the impedance matching 
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condition with an adjacent medium in the computational domain with refractive index 

. d ~o n and wave lmpe ance --2' 
con 

In the regions the values of the parameters ax and t; are defined as 

a) region 0 (computational domain) 

and ay= 1 

b) region 0 1 

and t;= 1 

c) region 02 

ax = 1 and t;= at 

d) region 03 

and ay= at 

The electric conductivity profile can be assumed as 

(4.9) 

p is the distance inside the PML, which is measured from the interface of the 

computational domain and the PML, O'max is the maximum value of the electric 

conductivity, and m is the power of the conductivity profile and will be taken as 2. For 

this conductivity profile, the theoretical reflection coefficient, R, at the interface 

between the PML and the computational domain is [137] 

R = exp[- 2 O'max J(.E...)1 ap ] 
en Co 0 W 

(4.10) 
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where c is the velocity of light in free space. Integrating equation (4.10), O'max can be 

given as 

0' = 3cnEo In(1-) 
max 2d R 

(4.11) 

When the value of the theoretical coefficient is chosen, R (set to very small value), the 

maximum electric conductivity, O'max, is calculated using the equation (4.11). The 

electric conductivity profile a(p) and the PML parameters ax and ay will be 

determined for the different PML areas. Such PML arrangements will force any non­

physical radiation wave leave freely the computational domain whatever the angle 

andlor the strength it hits the boundary of the computational domain. 

4.5 The Wave Equations 

When considering Maxwell's curl equations (4.5) and (4.6), to derive the vectorial 

wave equations. Taking the curl equation (4.5) and using equation (4.6) yields [40] 

(4.12) 

ko is the free space wavenumber and is given as 

(4.13) 

where A. is the free space wavelength. The full vectorial wave equation shown in 

equation (4.12) contains the three components of the magnetic field vector, H. By the 

use of the zero divergence condition this wave equation can be reduced to only the 

two transverse components, i.e., H~ or Hy as 

oH aHy aH 
a --2-+a --+-_% =0 

xax Yay oz (4.14) 
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Substituting equation (4.14) into equation (4.12) gives the following two coupled 

wave equations 

8 ( -2 8H x ) 8 (-2 8H x J -2 8 ( 8H x ) - n -- +a - n a -- +n a - a -- + 
8z 8z )lay )I ay Xax x ax 

2 2 8 ( 8H)I ) 8 ( 2 8H)I ) k H +n- a - a -- -a - n- a -- =0 o x xax)l ay )lay x ax 
(4.15) 

8 ( -2 8H)I ) 8 (-2 8H)I ) -2 8 ( 8H)I ) - n -- +a - n a -- +n a - a -- + 
8z 8z Xax x ax )lay)l ay 

k H +n a - a -- -a - n a -- = 2 -2 8 ( 8H x ) 8 (-2 8H x ) 0 
0)1 )lay x ax ]tax )I ay (4.16) 

The assumption that the refractive index is slowly varying in the direction of 

propagation (~2) = 0, has been made in deriving the wave equations (4.15) and 

(4.16). Solving equations (4.15) and (4.16) is more convenient than equation (4.12), 

because it has a less number of unknown components and also because the zero 

divergence condition is automatically satisfied through the derivation, thus, there is no 

possibility for spurious solutions to propagate. Assuming the wave travels along the 

+z direction, the fields can be separated as slowly varying envelopes and a fast­

oscillating phase term as 

{~:}={;}xp(- jnokoz) (4.17) 

'l'x and Ifyare the slowly-varying envelopes of the Hx and Hy components, respectively 

and no is a reference index of refraction which should be chosen such that the 

envelope varies very slowly in the +z direction. For this purpose, no should be chosen 

very close to the effective index of the guided mode(s) of the concerned structures. In 

case of monomode waveguides, no can be set equal to the effective index of the 
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fundamental mode. But, for multimode waveguides, the situation will be complicated, 

as the effective indices of all guided modes have to be determined in order to set no to 

the proper value. In this particular case, a better approximation is to set no as the 

average of the guide and substrate refractive indices [142]. 

The following two coupled unidirectional wave equations will be obtained when 

substituting equation (4.17) into equations (4.15) and (4.16); 

-2~-2J·n k n 2 __ x +a - n 2a __ x +n 2a - a _'f'_X + a2
", _ a'lf a (_ a'lf) _ a ( all') 

n a2 Z2 0 0 az Y ay Y ay x ax x ax 

2 ( -2 2) -2 a ( a 'If y J a (-2 a 'If y J + k 1-n n 'IF + n a - a -- - a - n a -- = 0 o 0 'f'x Xax Yay Yay x ax (4.18) 

2( -2 2) -2 a (a'lfx) a (-2 al/fx) +k I-n n /IF +n a - a -- -a - n a -- =0 o O'f'y Yay Xax Xax Yay (4.19) 

The following section of this chapter will use equations (4.18) and (4.19) to solve the 

slowly varying envelope by the application of the finite element method. 

4.6 Formulation of the Finite Elements 

Lets assume that the waveguide cross section shown in Fig. 4.1 is discretised into a 

patchwork of first order triangular elements. Considering equations (4.18) and (4.19), 

the application of the standard Galerkin's procedure gives 
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(4.20) 

(4.21) 

Ni are the shape functions with i = 1,2,3 over the first order triangular element, e, and 

J (.) ds stands for the integration over the element area. In writing equations (4.20) 
e 

and (4.21), it has been assumed that the refractive index, n, and the PML parameters, 

ax and ay, are fixed to constant values within each element. Thus, for step index 

waveguides, the discontinuity of the refractive index and the associated interface 

boundary conditions will not be accounted for. Therefore, by using the Green's 

theorem for integration by parts will result in line integrations, around each element, 

which can be used to satisfy the following interface boundary conditions 

a) Continuity of Ez, 
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b) Discontinuity of n-2 alf/ x and n-2 alf/ Y along the horizontal and ax By 

vertical interfaces between two different media. 

Using the Green's theorem for integration by parts and applying it to equations (4.20) 

and (4.21) taking the above interface boundary conditions into consideration yields 

(4.22) 

J -2 021f/ Y N d 2' k J -2 alf/ Y N d J 2 -2 alf/ y aNI d J 2 -2 alf/ y aNI d n - . s- Jno 0 n -- . s- a n ---- s- a n ---- s+ 0. 2 I az I x ax ax Y By ay 
II 'Z II , II 

(4.23) 

where nx and ny represent the direction cosines between the normal element boundary 

re and the x and y directions, respectively, and f (.)df, represents the line 
r. 

integration around the element boundary, fe. The line integrals in equations (4.22) 

and (4.23), introduced to account for the interface boundary conditions, are also 

responsible for the coupling and polarisation dependence. In order to get a true 

vectorial formulation, the inclusion of these integral into the formulation is 
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mandatory. Over each element, e, and in terms of the shape functions, Nj, the 

transverse magnetic field envelopes can be represented as 

3 

11'; {x,y,z} = I hxiz} Nj {x,y} (4.24) 
j=i 

3 

11'; {x,y, z}= Ihyj{z}NAx,y} (4.25) 
j=i 

where hXj (z } and hyj (z) express the element nodal values of the x and y components of 

the magnetic field, respectively, at any propagation distance. Substituting equations 

(4.24) and (4.25) into equations (4.22) and (4.23) and collecting the contribution from 

all the elements gives 

where {O} is a column vector with all zero entries, and 

h,d 

h",2 

r(z)} h",J 

{ht }= hy(z) =~ hY1 
(4.27) 

hY2 

hYJ 

where h",{z) and hy{z) are the nodal values of the x and y components of the 

magnetic field over the whole domain. The global matrices [M] and [K] can be 

represented as a summation of the corresponding matrices as 

[
[Mu ] [On 

[M]= ~[Ml = ~ [0] [M yy]J 
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""'[ L· "",[[Ku ] [K xy]l 
[K]= ~ K = ~ [KyJ [Kyy]J 

The Beam Propagation Method 

(4.29) 

where L represents the contribution of all element matrices [M], and [K], into the 
, 

global ones and [0] is a 3x3 zero matrix. The matrices [Mu]and [M )')'] have the 

same form as 

fN•2ds fN1N2ds fN1N3ds 
, , , 

[M u ] = [M 11] = n-2 fN2N1ds fN;dS fN2N3ds (4.30) 
, , , 

fN3N1ds fN3N2ds fN;ds 
, , , 

Also, matrices [K u land [K yy] can be expressed in the form 

(4.31) 

(4.32) 

where 
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IN{ds JN1N2ds JN1N3ds JNl
2
yds JN1yN2yds JN1y N3yds 

II II II II II II 

[Ktt] = kg JN2N,ds JNids JN2N3ds _ n-2a 2 y JN2yN1yds JNiyds JN2yN3yds 
II e e II e 

fN3N1ds fN3N2ds JNids JN3yN1yds JN3y N2yds fNiyds 
II e II II II II 

JNl
2
Xds JNlx N2Xds JN1X N3X ds 

II II e 

_ n-2a 2 JN2X N1Xds JNixds JN2X N3Xds 
(4.33) 

x 
II II II 

JN3X Nlxds JN3XN2Xds JNixds 
e e II 

where Nix and N;y denotes the x and y derivatives of the shape function Nj , 

respectively. The matrices [K.a ]r, and [K Y.V]r. are related to the line integrals and 

expressed as 

1NINlxnxdre 1NIN2X nXdrll 1 Nl N3xnxdr, 
r, r, r, 

[Kxxlr. = n-2a; 1N2Nlxnxdre ·1N2N2xnxdre 1N2N3xnxdle (4.34) 
r. r, r, 

1 N3 Nlxnxdr, 1N3N2xnxdre 1 N3 N3xnxdl, 
r, r. r, 

f Nl N1yn ydre 1NIN2ynydre fNIN3ynydre 
r, r, r. 

[Kyyl =n-2a~ 1 N2Nlynydre 1N2N2ynydl, fN2N3ynydf', (4.35) 
, r, r, r, 

1N3 Nlyny dre 1N3N2ynydlll 1N3N3ynydl, 
r. r, r, 

Also, the matrices [K xy] and [K yx] can be represented as 

(4.36) 
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(4.37) 

where 

jN\yNbds jN\yN2XdS jN\yN3XdS 
, , , 

[Xl] = n-2a Xa y JN2y N\X ds JN2y N2xds jN2y N3X ds (4.38) 
, • • 

JN3yNbds JN3yN2Xds jN3y N3X ds 
• • • 

jN\xNJyds jNJx N2yds jNb N3yds 
, • e 

[Xz]= n-2a Xa y jN2xNJy ds jN2X N2yds JN2XN3yds (4.39) 

• , , 

jN3xNJyds JN3XN2yds JN3XN3yds 
e • , 

f Nl Nlynxdf', fNlN2ynxdf'. fNlN3ynxdf'. 
r, r, r, 

[XXI 1. = n-
2a Xa y f N2Nlynxdf', fN2N2ynxdf', fN2N3ynxdf', (4.40) 

r, r, r, 

1 N3NJy nxdf' •. 1N3N2ynxdf', 1N3N3ynxdf', 
r. r, r, 

1NlN)xnydf', fNJN2Xnydf', f NlN3xnydf', 
r. r, r, 

[xyxl =n-2aXay f N2Nbnydf', 1N2N2xnydf', f N2N3xnydf'e (4.41) 
, r. r. r, 

1N3Nbnydf', fN3N2X nydf', f N3N3xnydf', 
r, r, r, 

The shape function integrals used in the calculation of the element matrices [M] cand 

[X] c can be evaluated using the following formulae 
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(4.42) 

" " 

IN; Ni df' = I .. J.. I 
.. 1 2 It (i + j + I)! 12 
'12 

(4,43) 

The element area related to the nodal coordinates of the element is expressed as, Ae, 

and r12 and h2 are the part and length of the element boundary connecting the nodes I 

and 2, respectively. 

It can be noted that the element matrix [K le, from the above formulation of the 

element matrices is responsible for coupling and polarisation dependence. The 

inclusion of the line integrals in the matrices [K xx] and [K »] make them unequal, and 

thus, the polarisation dependence is accounted for. But, since the matrices [K xy] and 

[K yx] are not zeros, the coupling between the polarisation states is taken into account. 

This formulation considers only two transverse components of the magnetic field. The 

resulting global matrices [M] and [K] are sparse, hence, only non-zero elements 

have to be stored, and also computationally-efficient matrix solver based on LU­

decomposition can be based. This is a major strength of the formulation, since other 

vector formulations based on this phenomenon of transverse field components lead to 

dense matrices. In some optical devices, the hybrid nature of the field is not strong; 

hence, the polarisation coupling is very weak. The matrices [K xy] and [K yxl can be 

neglected so that the formulation reduce to two decoupled wave equations for Hx and 

R hence referred to as a semi-vectorial one. However, for some weakly guiding y, , 

optical devices, even the polarisation dependence may be neglected, thus, matrices 

[K.IX ] and [K Y.Y 1 will reduce to one matrix [Kit] so that the formulation reduces to 

only one wave equation for Hx ~d Hy • In this case, the formulation reduces to a scalar 

one. 

The exact non-paraxial vectorial wave equation to be solved in a step-by-step 

procedure in z direction is shown in equation (4.26). The neglection of the z-second 

derivative term reduces to the approximate paraxial equation which is valid only for 
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wave propagating very near to the axis of propagation, z. Hence, by application of the 

Pad'e approach [143] gives a better approximation. The equation (4.26) can be re­

written as 

d 
where, -=0 

dzo 

(4.44) 

By utilising the first Pad'e approximation (Pad'e (1,0» by putting i = 0 in the 

recurrence Pad'e relation as shown in equation (4.44), yields 

where 

(4.46) 

The paraxial equation is easily obtained from equation (4.45) by replacing matrix 

[it ]bY [M). Since equation (4.45) can trace wave propagating otT the propagation 

axis, z, with accuracy than the paraxial equation, it is called the wide-angle equation. 

Moreover, to solve equation (4.45) in a finite range of the z-domain, we divide it into 

sections each of a width D.z. Over the /(h section (shown in Fig. 4.2), the finite element 

method can also be used to approximate the field as 

(4.47) 

where S is the local coordinate of the /(h section, {h, (SA:)} and {II, ((hI)} are the 

column vectors containing the field nodal values over the whole cross section at /(h 
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and (k+ 1 yh propagation steps, respectively, while Ll t;) and Lk+ J( t;) are the shape 

functions given as 

(4.48) 

(4.49) 

Applying Galerkin's procedure, with weighting functions Wm, and substituting 

equations (4.47), (4.48) and (4.49) into equation (4.45) yields 

[A 1 {h, }k+l = [B 1 {h,lt (4.50) 

where 

[Al=-2 j noko[if 1 +e&,[K]k -n~k;[Ml) (4.51) 

[Bl=-2 j noko[ if 1 + (a-l)&,[K]k -n;k;[M]k) (4.52) 

where subscripts k and k+ 1 denote the quantities related to the f(h and (k+ l/h 

propagation steps, respectively and &' is the propagation step size, a is the scheme 

parameter given as 

1 

JW",sds 
e=~o,....--__ 

1 

JW",ds 
o 

(4.53) 

Once the initial field has been specified, equation (4.51) can be solved to get the field 

at the successive propagation steps. The value of the scheme parameter, 0, depends on 

the choice of the weighting functions Wm• The value of, e, decides the stability and the 

numerical losses of the propagation algorithm. It has been reported that when e~ 0.5, 

then the algorithm will be unconditionally stable [144]. Moreover, when a = 0.5, 

which corresponds to the finite difference Crank-Nicolson algorithm, the algorithm 

will be stable and conserving the propagating beam power too. 
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However, for Crank-Nicolson algorithm, some high frequency oscillations may 

appear in the field distribution. The use of the rigorous PML boundary conditions can 

eliminate these high frequency oscillations. The high frequency oscillations can also 

be eliminated by using higher values of the scheme parameter, 0, but this has a 

drawback of appearance of non-physical numerical losses. 

Therefore, we can conclude that the vectorial propagation algorithm used in this 

section is unconditionally stable (0= 0.5) and power conserving too. 

o=o,wm=1 L..l.--I __ 

B= 0.50, Wm = 

0= 1.0, Wm = 

II 

1 

k+l 

Fig. 4.2 Shape functions and different cases of weighting functions for 
discretisation along the longitudinal z-axis. 
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4.7 The Imaginary Axis Propagation 

BPM offers an accurate description of spatial (near-field) and angular (far-field) 

properties of the electric field, but it can also generate infonnation relevant to a purely 

modal description of the field [100]. The method is very efficient in tracing wave 

propagation in guided wave optical devices. The modal solution of unifonn optical 

waveguides using the vector H-field finite element method has been discussed in the 

previous Chapter. Furthennore, it has been proven that BPM is capable of calculating 

the guided modes of a unifonn optical waveguide if any arbitrary field is allowed to 

propagate in the direction of an imaginary axis [145,146]. The inclusion of the 

imaginary axis propagation will be incorporated in the context of the developed 

vectorial FEBPM algorithm. 

The paraxial fonn of equations (4.18) and (4.19) can be expressed as 

where 

81f/ = - jQIf/ 
8z 

(4.54) 

(4.55) 

where Q is a matrix of transverse directions, x and y, operators affecting the field 

envelope, 'I/. Equation (4.54) can also be expressed in the fonn 

'I'(x,y,z) = exp(-jzQ)'I'(x,y,O) (4.56) 

where 'I'(x,y,O) is an arbitrary initial field, which can also be represented as the 

summation of the waveguide modes (both guided and radiated) as 

ao 

'I'(x,y,O) = LCII¢II (x,y) (4.57) 
11-0 
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where ¢n (x, y) are the eigenvectors of the operator Q, and the associated eigenvalues, 

An, which can be in the order 

ito> A..J> ............... > An > ............... . (4.58) 

The eigenvectors and eigenvalues of the operator Q should satisfy 

(4.59) 

The relation between the eigenvalues An and the propagation constant of the nth order 

mode Pn of the paraxial wave equation is 

(4.60) 

Applying Taylor's series expansion to exp(:izQ) and using equation (4.57), we can 

write equation (4.56) in the fonn 

co 

/fI(X,y,Z} = LCn exp(-jAnZ)¢n(x,y) (4.61) 
n=O 

When the field propagates along an imaginary axis (z = j~, equation (4.61) becomes 

co 

/fI(x,y,~) = LC" exp(An~)¢,,(x,y) (4.62) 
,,-0 

When no is chosen close to Po, then Ao::= 0 and all other eigenvalues will be 
ko 

negative. This means that, all higher order modes will exponentially decay as the field 

propagates and only the fundamental mode will propagate with very slight decaying. 

Therefore, after some distance of propagation along the imaginary axis, ~, the 

propagating field will eventually be similar to the profile of the fundamental mode 

whose propagation constant can be obtained from 
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(4.63) 

Once the nodal values of the field are obtained, the integrals in equation (4.63) can be 

obtained by summing the contributions of each element as discussed in the previous 

section. 

4.8 Power Calculation 

The calculation of the propagating beam power is an essential parameter for 

characterising many photonic devices. For instance, for bent or leaky mode 

waveguides, the estimation of power losses is important as the fundamental to 

understand and minimise these losses. 

The power associated with a beam propagating in the z+ direction (Poynting's 

theorem) is given as [147] 

(4.64) 

• 
where Re represents the real part, z is the unit vector in the z direction, and the 

integration is carried over the surface of the computational domain. The transverse 

electric field components can be given in terms of the magnetic field components as 

(4.65) 

(4.66) 
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The second order derivatives with respect to the transverse coordinates, x and y have 

been neglected, in deriving Ex and Ey • Substituting from equations (4.65) and (4.66) 

into equation (4.64) gives 

(4.67) 

where Zo is the free space wave impedance (Zo ~ 377 ohms). Substituting from 

equations (4.17), (4.24) and (4.25) yields 

(4.68) 

where {Itt} represents the nodal values of the propagating field, T is the complex 

conjugate transpose and [M] is the global matrix defined earlier in the previous 

section. 

4.9 Summary 

In this chapter the vectorial propagation algorithm based on the finite element 

technique has been presented. The formulation does not only consider the minimum 

number of components for a real vector formulation, but also, satisfies the interface 

boundary conditions satisfying the zero divergence condition, therefore, the existence 

of non-physical modes during propagation is not possible. The approach is truly 

vectorial as it accounts for the polarisation dependence and coupling. 

The concept of the perfectly matched layer and inclusion of the imaginary axis 

propagation with the developed vectorial algorithm has also been outlined. The 

propagation algorithm will be used to investigate and analyse photonic devices in 

subsequent chapters. 
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5.0 The Beam Propagation Method Analysis of 
SOA Waveguides 

5.1 Introduction 

High-power and low-cost semiconductor laser sources have significant potential for 

use in applications that are currently dominated by expensive solid-state lasers. The 

direct application of high-power semiconductor lasers for free-space and satellite 

communications, visual displays, biomedical applications and remote sensing, optical 

recording, spectroscopy, optical data storage, laser printers, laser radar and also for 

materials processing is becoming increasingly attractive due to the remarkable 

improvement in performance of high-power laser diodes. In addition, high-power 

spatially and spectrally coherent sources are required for the efficient pumping of 

solid-state and fiber lasers and efficient nonlinear frequency conversion to the short­

wavelength part of the visible spectrum, which is not readily available with 

semiconductor sources directly. 

In edge-emitting semiconductor lasers, the possibility of catastrophic optical damage 

limits the power density to several tens of milliwatts per micrometer width of the 

active layer. One of the approaches available to increase the total power is by 

increasing the width of the active area for broad-area lasers, but these usually exhibit 

non-coherent multiple lateral mode operation, thus dew:ading the beam quality and 

leading to filamentation. Alternatively, by using many parallel coupled lasers, the 

overall total power can also be increased [148]: however, poor gain discrimination 

and the early onset of spatial mode oscillations limits the total power, and these arrays 

often exhibit an undesirable two-lobed far-field pattern, indicative of a phase shift 

between the adjacent emitting elements. 

Another alternative approach for obtaining higher output power is to amplify the 

output power of a single-mode laser, where the coherent output is more readily scaled 

to high power, retaining good beam quality. Semiconductor optical amplifiers (SOAs) 
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[149] with a tapered gain region have proven to be very efficient to reach the 

diffraction limited high output powers with high efficiency. In such high-power lasers, 

the optical mode size of the laser source has to be expanded in order to reduce both 

the junction temperature and nonlinear effects and the optical power density at the 

laser facets. Broad-area tapered devices have been proposed to yield high output 

power, together with achieving better quantum efficiency and higher beam quality 

[150], and in recent years, similar semiconductor laser amplifiers with tapers have 

been studied extensively. In the taper design, the width is gradually increased [146, 

150] to expand the optical beam, which consequently lowers the power density, and 

thus the effect ofthe gain saturation is reduced. 

On the other hand, if the width is progressively reduced, in a similar way to the design 

of a spot-size converter [151], the optical beam would expand only when the 

waveguide reaches its modal cut-off condition. This design may be useful for a low­

power amplifier to couple efficiently this device to a single-mode fibre with a larger 

spot size. However, since its spot-size would be smaller along most of the tapered 

structure, except near the end where the cut-off condition is approached, for a high­

power optical amplifier an increased power density along the amplifier would reduce 

the overall gain due to early onset of gain saturation. Although significant progress 

has been made in the use of wider tapered waveguides, one of the most significant 

issues remaining is beam filamentation, which can limit the output power and degrade 

the beam quality. Often, a Gaussian output beam profile is preferred to couple the 

optical beam more efficiently. The modal field profile of the fundamental mode of an 

expanded tapered waveguide may be close to a Gaussian profile. However, with such 

a large waveguide being multimoded, the beam shape often deteriorates due to the 

mode beating between the fundamental mode and the higher order modes. This beam 

filamentation has been attributed to different mechanisms, including the carrier [152] 

and thermally induced index change [153], amplified spontaneous emission [154], the 

line-width enhancement factor [155], and defocusing-type nonlinearities [156]. 

This section focuses on the evolution of the optical beam along tapered semiconductor 

laser structures, by using rigorous vectorial numerical approaches based on the finite­

element method (FEM). 
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5.2 Modal Solution by Beam Propagation Method 

In this phase of the project, the generated Gaussian and mode input (from FEM) field 

profiles were used to investigate the properties of the propagating field along the 

waveguide by the use of the beam propagation method (BPM). 

In Fig. 5.1(a)-(d) a uniform guide was developed with an axial distance ofz = 200 Ilm 

for a Gaussian input width, Wo = 1.0 Ilm. In this work, re-meshing is carried out after 

every ten z steps i.e., at 10-llm intervals (m = 10), unless otherwise stated. The height 

of the waveguide (H) is taken as 1 Ilm, and its width (W) is adjusted along the tapered 

structure. For the structure considered here, the quaternary InGaAsP core and InP 

cladding indexes are taken as ng = 3.39 and ns = 3.17, respectively, at the operating 

wavelength of 1.50 Ilm. The generated Gaussian input field is shown in Fig. 5.1 (a), 

although it appears to be oval in shape, which is due to change of scale in the vertical 

direction (Height). Although its actual spatial profile is circular in nature, the variation 

of the normalized power along the axial direction is shown in Fig. 5.1 (b). It is clearly 

observed that the power undergoes faster loss along the axial direction when z < 50 

J.lm and when z > SO Ilm the power loss was much slower. Gaussian field was not 

identical as the mode field, but can be considered as superposition of the fundamental 

mode and many higher order modes, which are not guided. The launch field settles to 

the fundamental mode and other higher order modes radiates out, contributing to the 

loss .. 

When z > 100 Ilm the power loss (normalised) stabilises and settles around 0.74 dB, 

further increase in the propagation distance had a limited effect on the power loss. In 

Fig. 5.1 (c) the total power loss experiences similar characteristics as in Fig 5.1 (b), 

however it stabilises and settles around -1.29 dB. During propagation the Gaussian 

input field settles to generate the output field profile as shown in Fig. 5.1 (d) which is 

much smaller compared to the original input field profile. The output field profile 

obtained from the Gaussian input field appears identical with the mode output field 

obtained when the actual mode input was launched from FEM as shown in Fig. 5.1 

(e). 
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The variation of the spot-size along the axial direction is shown Fig. 5.1 (f). It is 

clearly seen that the spot-size starts from cr = 2.65 11m2, then decreases rapidly to cr = 

0.62 11m2, however these abrupt changes in the spot-size reduce when z> 50 11m. The 

damped oscillations in the spot-size appear to settle around 0.96 11m2. When the mode 

input is used instead of the Gaussian input the spot-size increased from 0.96 11m2 to 

0.98 11m2 as shown in Fig. 5.1 (g). Due to a magnified view on the vertical direction 

the difference appears to be large but it is actually very small around 0.020 11m2. 

However when z> 25 11m the damped oscillations in the spot-size area appear to settle 

around 0.97 11m2, which correlates with the Gaussian input result. 
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Fig. 5.1 (a) Transverse field profile of the Gaussian 

input plane. 
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direction from a Gaussian input field. 

Fig. 5.1 (d) Transverse output field profile due to 
Gaussian input field. 
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direction from a Gaussian input field. 

Variation of the confinement factor cn along the axial direction when the Gaussian input 

is launched is shown in Fig. 5.1 (h). It is clearly observed that at the beginning, r = 

0.55, which increases rapidly to 0.84 then decreases again. However, when z > 100 

~m the r, settles down to around 0.86. This result correlates when the mode input 

field generated from FEM is launched to the BPM as shown in Fig. 5.1 (i) where the r 

settles down around 0.87. 

The results that follow examine different beam widths, Wo used to generate the 

Gaussian input field, then launched into the BPM. The variation of the power loss 

along the axial direction when Wo = 0.5 flm is shown in Fig. 5.2 (a). It was clearly 

observed that the power loss decreased rapidly and settled around - 0.0588 dB, which 

is much less compared to the power loss of Wo = 1.0 flm as shown in Fig. 5.1 (c). This 

is because Wo = 0.5 flm is closer to the modal field, so only a small amount of other 

modes were generated. The output field from the Gaussian input is also shown in Fig. 

5.2 (b), which shows clearly that the mode has settled, and this is very close to the 

modal field. The variations of the spot size and confinement factor along the axial 

direction are shown in Fig. 5.2 (c) and (d) respectively. 

The trend appears to be the same with comparison to Wo = 1.0 flm, however for Wo = 

0.5 flm the damped oscillations in the spot size appear which settles around 0.97 flm 2
, 
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and the r settles around 0.87. When a much smaller width, Wo = 0.3 flm is examined, 

the power loss increases rapidly and is shown in Fig. 5.3 (a), and settles around - 1.59 

dB which is much higher than compared when Wo = 0.5 flm and more closer to Wo = 

1.0 flm. To understand this feature the maximum power loss for different widths was 

investigated and plotted in Fig. 5.4. However, the spot size and confinement factor (r) 

as shown in Fig. 5.3 (a) and (b) appear to settle around 0.97 flm2 and 0.87 flm2 

respectively, correlating with the previous results. 
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Fig. 5.2 (a) Variations of the power loss along the axial 
direction from a Gaussian input field . 
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Fig. 5.4 Variation of the power loss with different 
Wo (J..lm) values. 

It was observed earlier that the power loss settles at different values when different Wo 

is used. Fig. 5.4 shows the variation of the power loss with different width, Wo values. 

It can clearly be seen that when Wo = 0.2 flm the power loss is 3.775 dB and further 

increase in the width decreases the power loss until when Wo = 0.58 ~lm where the 

minimum power loss is attained which is only 0.002 dB. However, increase in the 
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width from henceforth, results in further increase in power loss respectively. At Wo = 

2.0 ~m the power loss has reached 4.411 dB as shown in the figure. This explains that 

modal field profile is very close to a Gaussian field with Wo = 0.58 ~m, and whenever 

the input Gaussian profile deviates from modal field, either larger or smaller, the 

coupling loss value increases. 

The study of spot-size with the waveguide width is important. This can be used to 

optimise coupling to a SMF (Single Mode Fibre). As a SMF spot-size could be 

around 60 - 100 J.lm2 so coupling would not be efficient unless the width is increased 

but then it will be multimoded guide or bring it close to cut-off then the spot-size can 

increase to a high value. The variation of the spot-size with different widths (W) is 

shown in Fig. 5.5. It is clearly observed that there are three distinct phases that occur 

when the waveguide width is varied. When W reduces spot size reduces, reaches a 

minimum value and as W is reduced more, it approaches the modal cut-off and the 

spot-size expands. This occurs when the width is at a range of 0.02 ~m to 0.1 ~m, 

which produces spot-size area of7.75 ~m2 and 1.62 ~m2 respectively. At this stage the 

Gaussian approximation decreases faster than its equivalent real (mode) field and 

settles down faster. 

During the second phase, the width kept increasing though at a very small range of 

about 0.3 ~m to 1.5 ~m. During this phase, both the mode and its equivalent Gaussian 

field behave approximately the same. 

However, the first phase was observed to be the longest phase where it occurred 

between 1 0 ~m to 2 ~m. At this stage, the spot-size area was directly proportional 

towards the width, hence increase in the width caused an increase in the spot-size 

area. The highest value of the spot-size area obtained at this phase was 25.87 ~m2. 

During this phase the Gaussian approximation decreases slower than its equivalent 

real field and settles down. 
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Fig. 5.5 Variation of the spot size for different widths (W). 

The variation of the modal birefringence for different widths is shown in Fig. 5.6, 

which implies that the effective index n: of the H!1 mode is lower than the effective 

index n{ofthe mode H~I. This yields to a positive modal birefringence, B expressed 

as B = n{ - n: , where ne = L and ko = 2Jr • However, in some cases a negative modal 
ko A. 

birefringence has also been reported [157]. It should be noted that in this example W < 

H, but for larger W, mode is well confined so the difference is smaller. 

When the width of the waveguide is decreased beyond the cut-off, the modal 

birefringence stays steady until the width is 2 J.tm, where it increases rapidly as W 

increases further. In this case the birefringence values obtained for the whole range of 

widths considered are positive since n{ > n: • 
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Fig. 5.6 Variation of the modal birefringence for different widths (W). 

5.3 Tapered Semiconductor Optical Amplifier Waveguides 

Tapered waveguides are important components in integrated optics. They can be used 

to interconnect optical devices of different cross-sectional dimensions such as lasers, 

fibres, and waveguides. The development of tapered amplifiers has raised a lot of 

interest recently due to the emergence of various applications like frequency doubling, 

pumping of fiber amplifiers or free space communication. Optical guided-wave 

devices often contain tapered structures [158-160] to achieve a highly efficient power 

coupling between two different optical devices. It is desirable that a well-designed 

taper possesses the capacity to convert optical mode sizes adiabatically. In general, to 

reduce the radiation loss, the dimensional variation along the propagation direction of 

a tapered waveguide must be small, so that the device length is therefore increased. In 

recent years, semiconductor optical amplifiers (SOAs) with linear [161] or 

exponential tapers [76,161] and other combinations [162,163] have been studied 

intensively as they provide higher saturation output power and better quantum 

efficiency. 
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5.3.1 Design of the SOA Tapered Waveguides 

The need for high output power and good spatial and spectral purity often required by 

applications in ultra fast nonlinear optics or communication systems has led in recent 

years to device designs for high-power high-brightness semiconductor laser sources 

and to the realization of new laser amplifiers with improved beam quality. The laser 

amplifier system consisting of a laser pulse source and a semiconductor amplifier is a 

very commonly used configuration since it allows the separate optimisation of device 

properties responsible for pulse properties and output power. The spatial and spectral 

properties of a pulsed signal that has been amplified in a high-power semiconductor 

laser thereby depend particularly strongly on both the geometry of the laser (in 

particular the waveguide geometry) and the specific realization of the current 

injection. More recent investigations on tapered laser amplifiers have revealed the 

influence of the tapered angle and the length of the waveguide section on beam 

quality and power of the amplified signal [164]. 

The first structure studied was a simple rectangular waveguide as shown in Fig. 5.7. 

The properties of the waveguide are uniform in the x-direction; na is the refractive 

index of the core and n. is the refractive index of the substrate. The refractive indices 

of the quantemary InGaAsP core and InP cladding are taken as na = 3.39 and n. = 

3.17, respectively. The free space wavelength A, considered here is 1.50 J.lm. Wt 

represents the initial width and h represents the height (thickness) of the core region, 

taken as 1 J.lm and 0.1 J.lffi, respectively. The final width (rJf) was taken as 3 J.lm. 

However, in the later stage, W; and rJfwere taken as 4 J.lm and 100 J.lm, respectively, 

as will be discussed in detail in this chapter. 

An initial 100 J.lm uniform section was considered prior to the tapered section as 

shown in Fig. 5.7 (b). The TE mode of the input signal generated from the FEM is 

launched in this structure and the guided beam is investigated as it propagates along 

the waveguide. 
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Fig. 5.7 Schematic diagram of a rectangular waveguide. 

Later in this chapter the contribution of this waveguide structure to the evolving beam 

profile will be examined and discussed. 

5.3.2 Propagation Analysis of the Modal Field 

In this section, the evolving beam will be examined as it propagates along the 

waveguide structure. However, it should be noted that for the first 100 J.lm a uniform 

section was developed. The refractive indexes were taken as ng = 3.39 and ns = 3.17, 

respectively, at the operating wavelength of 1.50 J.lm. In this work, the tapered angle B 

is large i.e., B = 6.0°, and this is varied symmetrically to achieve a final width (Wj) of 

100 J.lffi from an initial Wi = 4.0 J.lm. 
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Fig. 5.8 (a) Transverse electric field profile of the evolved beam at z = 50 ~m. 

For the initial I 00 ~m the structure was uniform, therefore the evolving beam at z = 

50 ~m and z = 100 J..lm as shown in Fig. 5.8 and Fig. 5.9, respectively, appeared 

identical, during propagation. This is mainly because the width of the waveguide was 

constant at 4.0 ~m, however after z = 100 J..lm, further increased in the width increased 

the size of the evolving beam as seen in the figures below (It should be noted here that 

the horizontal and vertical scales are different). However, it should be noted here that 

the height of the evolving beam always remained constant in both the uniform and 

tapered sections, as waveguide height, H, was not changed. 
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Fig. 5.9 Transverse field profile of the evolved 

beam at z = 100 11m. 
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Fig. 5. 11 Transverse field profile of the evolved beam at z = 400 11m. 

In Fig. 5.10 it can clearly be observed that evolving beam has started to spread out 

due to the contribution of the tapered region, and the effect of the tapered angle is 
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clearly visible. When z = 200 /lm, at this particular axial position the width of the field 

has increased from the initial 4.0 /lm to 22.02 /lm, to allow the expansion of the field . 

The difference is not much visible in the three dimensional contour view (though not 

shown here), however, when the evolving beam spreads all over the horizontal 

distance, the effect of the spread can be observed. The transverse field profile of the 

evolving beam at z = 400 /lm is shown in Fig. 5.11, which clearly shows that the field 

has spread much more compared to when z = 200 /lm . At this ax ial position the width 

attained was 64.06 /lm. One significant feature observed in Fig. 5.11 and later on Fig. 

5.12 is the appearance of the non-smooth contours of the optical beam, which shows 

that there exists a rapid field variation due to modal interference. This feature will be 

discussed later in this chapter. 

The final width of 100 /lm was attained as shown in Fig. 5.12. It is clearly observed 

here that the output field has spread along the entire waveguide width, which is 

clearly visible when a 3D view was plotted as shown in Fig. 5.13. This was attained 

when z = 557 /lm. 
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Fig. 5.12 Transverse field profile ofthe evolved 

beam at z == 557 ~m . 
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5.4 Study of the Evolution Beam along Tapered waveguides 

Initially, a small tapered structure is considered to study rigorously the resulting mode 

expansion and the optical power loss by using the full-vectorial FEB PM [43]. A 

schematic diagram of the beam expander considered here is shown in Fig. 5.14. In the 

BPM approach, an input optical field profile is needed as the exciting field, this being 

generated by employing a fully vectorial H-field-based FEM (VFEM) [93]. 

Often, a high-power semiconductor amplifier is preceded by a master oscillator [165] 

or preamplifier [166]. In this work, a uniform section, represented here by an initial 

100-J.lm-Iong section, is added prior to the tapered section, which stabilizes the 

launched beam. For high-power applications, the output waveguide could be several 

hundreds of micrometers in width [165,166], and the corresponding taper angles could 

be as high as 10° [166,167]. In this study, the longitudinal propagation step I:::.z is taken 

as 1 J.lm. The z-dependent tapered guided-wave structure is required to be remeshed 

along the axial direction as its width is continuously changed. However, rather than 

remeshing at every propagation step, this is carried out at a finite interval to reduce 

the computational cost. In this study, remeshing is carried out after every ten z steps 

i.e., at 10-J.lm intervals (m = 10), unless otherwise stated. The height of the waveguide 

(H) is taken as 1 J.lm, and its width (W) is adjusted along the tapered structure. For the 

first structure considered here, the quaternary InGaAsP core and InP cladding indexes 

are taken as ng = 3.39 and ns = 3.17, respectively, at the operating wavelength of 1.50 

J.lm. For this structure, the tapered angle B is small, and this is varied symmetrically to 

achieve a final width (W;-) of3 J.lm with initial width (W;-) of 1 J.lm. 

5.4.1 Variation ofthe Waveguide Width along the axial direction 

The variation of the waveguide width along the axial direction is shown in the right 

hand side of Fig. 5.15. However, it should be noted here that the initial width of the 

first 100-J.lm-Iong uniform section is taken as, Wt = 1 J.lm, and after this section, it is 

expanded in a staircase fashion. The horizontal steps are of 10 J.lm, as dictated by the 

remeshing steps (m = 10), and its slope is governed by the tapered angle B. In this 
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particular case, for a tapered angle () = 0.30 and an axial step tJ.z = 1 J..lm, the lateral 

width step used ~Wwas 0.1 J..lm. 

I~ 

Fig. 5.14 Schematic diagram of the tapered semiconductor 
amplifier, including a short uniform section at the beginning. 
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Fig. 5.15 Variations of the normalized power and local width 
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5.4.2 Variation of the Normalised Power along the axial direction 

The variation of the total guided power along the axial distance is shown in the left 

hand side of Fig. 5.15. It can be noted that the total nonnalized power reduces 

monotonically along the axial distance. Within the first 100 J.lm of the uniform 

section, the mode shape obtained by using the VFEM [19] settles down to a similar 

mode shape (but for BPM approach, so slightly different) that is obtained by using the 

FEBPM, with only 0.3% power loss. The power loss in the tapered section is also 

clearly visible. The mode shape requires approximately 20 propagation steps to 

evolve or stabilize in a particular section. It has been observed that the total power 

loss increases as the tapered angle is increased, which will be discussed later in this 

chapter. 

5.4.3 Variations of the Spot-Size along the axial direction 

The evolution of the optical beam along the tapered structure can be identified by its 

spot-size, and its variation along the axial direction as shown in Fig. 5.16. In this case, 

the spot-size is defined as the area, which has more than lIe2 of the maximum 

intensity (Le., the field intensity lie). It can clearly be observed that in the first 100-

J.lm-long and unifonn (l-J.lm-wide) section, the spot-size remains constant, and 

subsequently it expands in the tapered section as the waveguide width is continuously 

increased. The input beam profile and the expanded output beam profiles are shown in 

Fig. 5.17. It can be clearly seen that the output field has increased to 3 J.lm when z = 

291 J.lm, from initially 1 J.lm, however the height of the output field remained constant 

all through the propagation. For a shorter distance of z = 291 J.lm, to attain the final 

width a smaller tapered angle of B = 0.30 was used. Hence, the tapered angle has a 

significant effect on the overall length of the amplifier. 

However, one new feature that could be readily observed is that the spot-size 

expansion is not monotonic but goes through a strong oscillation process. It can be 

seen that at positions B, D, and Y the spot size is smaller than that of positions A, C 

and X, respectively, even though the local waveguide width is wider at these positions 

(positions B, D and Y). Expansions of the spot-size along the axial direction for B = 

0.20 and 0.40 are also shown in Fig. 5.18. 
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Fig. 5.16 Variations of the spot size and local width along the 
axial direction. 

Oscillations in the spot-size variations, similar to that shown in Fig. 5.16, are also 

visible here. However, it can be observed that for a smaller tapered angle, such as e = 

0.2° , the overall rate of the spot-size expansion is slower, compared to that of for e = 

Input Plane 
Wj= l~m 
Z = O~m 

Hy Field Profile 

• 
Output Plane 
Wr = 3~m 
Z = 291~m 

Fig. 5.17 Input and output beam profiles. 
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However, in both the cases, although their lengths were different, and since the final 

waveguide width is fixed at 3.0 /lm, the maximum mode expansion are similar for 

both the cases. To understand the mechanism behind this oscillation, the resultant 

beam shapes, effect of remeshing steps (m) and the effect of the tapered angle, e are 

then thoroughly investigated and reported in the next section of this chapter. 
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Fig. 5.18 Variations of the spot-sizes for two different tapered angles. 

5.5 Mode Beating in Tapered SOA Structures 

Numerically simulated results obtained by using rigorous full -vectorial approaches 

indicate that the presence of the finite discontinuity steps generates higher order 

modes along a tapered guided-wave structure. The interference between the modes 

allows the beam quality to deteriorate significantly both in the lateral and the axial 

directions. The nonlinear interaction between the forward- and the backward­

propagating waves has been reported to produce a transverse spatial modulation of the 

phase and intensity [168], and similarly, the mode beating between the fundamental 

mode and the higher order modes may also contribute towards the beam 

fiiamentation. 
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The 3-D plots of the evolving beam at four different axial positions were examined 

and illustrated in Fig. 5.19. From the 3-D plots there was no significant observation to 

the evolving beam, as at all the different axial positions, the fields appeared to be 

similar. 

Fig. 5.19(a) 3-D plot of the evolving 
beam at axial position, Z = 218 11m. 

Fig. 5.19(c) 3-D plot of the evolving 
beam at axial position, Z = 234 11m. 

Fig. 5.19(b) 3-D plot of the evolving 
beam at axial position, z = 225 11m. 

Fig. 5.19(d) 3-D plot of the evolving 
beam at axial position, z = 243 11m. 

Fig. 5.19 3-D plots of the evolving beam at different axial positions. 
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However, it should be noted that as the field propagates along the tapered section 

there was always a slight increase to the width of the field and the height remained 

constant at H = 1 ~m . 

Further investigation was carried out on the field amplitude at the selected axial 

positions and some significant results were observed. The variations of the Hy field 

profiles was carried out in the vertical direction at axial positions 'C' and 'D' when z 

= 234 ~m and z = 243 ~m, respectively, as shown in Fig. 5.20. It was clearly observed 

that the two fields appeared identical, and this can be explained, as since the height of 

the evolving beam remains constant as the field propagates, the field amplitude of all 

the axial positions at the uniform and/or tapered section will always appear similar. 
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Fig. 5.20 Variations of the Hy field profiles in the vertical direction at 
two axial positions. 

Fig. 5.21 shows the variations of the evolving beam along the horizontal (x) direction 

for () = 0.3 0
• The dominant Hy field profiles, ~A' ~B' ~c and ~D at axial positions, z = 

218~m, 225~m, 234~m, and 243~m, respectively, are shown here. These axial 

positions have also been identified as points 'A', ' B', 'c' and ' D' in Fig. 5.16, 

146 



Chapter 5 The Beam Propagation Method Analysis 

corresponding to peaks and troughs in their spot-sizes. In these cases the maximum 

values of the Hy fields have been normalized to unity to enable a closer comparison of 

their profiles. It can be observed that the beam profile expands and contracts 

periodically in the lateral direction. At z = 218~m the field is narrow then expands at z 

= 225~m, then when z =234~m reduces then again at z =243~m it expands. 
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Fig. 5.21 Lateral variations of the evolved beam, normalized to their amplitudes, at 
four different axial positions. 

The lateral (x) variations of the evolving beam at the centre of the guide are shown in 

Fig. 5.22. The Hy field profiles 9x and 9y, at axial positions z = 275 and 287 ~m, are 

shown by a solid and a dashed line, respectively. These axial positions have also been 

identified as points "X" and "Y" in Fig. 5.16, corresponding to peaks and troughs in 

their spot size. The lateral variations of the dominant Hy field for the TE mode along 

the center of the waveguide clearly indicate the interference between the fundamental 

(H t; ) and the higher order modes. Since the structure is symmetric and the input beam 

was also symmetric, no anti-symmetric mode (H:q , where p is even) is generated, 

and the evolving beam remains symmetric, as is shown in this figure. To identify the 

origin of the interference, the difference between the optical fields at these positions, 

9x - 9y, has also been plotted. This difference clearly shows the existence of the H 51 
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mode. The beat length shown in Fig. 5.16 does clearly correlate with the beat distance 

or with the /:l/3{/:l/3 = /311 - /331)' where /311 and /331 are the propagation constants of 

the H ~ and H JI modes, respectively. 

The overlap integrals of these modes with the evolved beam were also obtained at 

these positions. At position "X", the modal coefficients of the normalized H ~, H JI 

and H I I modes were 0.93, 0.26, and 0.06, respectively. This clearly proved that 

although the fundamental H ~ is dominant in the beam, as the waveguide width 

increases, other symmetric modes are also excited and propagate along the tapered 

structure. The interference of these modes creates a semi-periodic spot-size variation 

along the axial direction, as shown in Fig. 5.16, and the field profile also varies along 

the lateral direction (x), as shown in Fig. 5.21. 
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Fig.5.22 Variations of the Hy field profile for the TE polarized optical 
beam at axial positions, z = 275 11m and 287 11m and their difference. 

The axial positions 'C' and '0' were also investigated. For this type of field 

presentation, the peak field value z = 234 11m is higher than of z = 243 11m, as at this 

position the lateral spreading was smaller as shown in Fig. 5.23. The difference 

between the field values of these two positions, ~D - ~c, has also been plotted, which 

shows the existence of the H JI mode. The local width increases along the axial 
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direction and the values of /3)) and /33) also increase with the local width. However, 

their difference reduces and consequently the beat length slowly increases. At position 

'D' the modal coefficients of the normalized Hi; and HI) modes were 0.95 and 0.20, 

respectively. This also shows that amplitude of the higher order modes increase along 

the z - direction. 
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Fig. 5.23 Lateral variations of the evolved beam, at axial positions 
z = 234 Ilm and 243 Ilm and their difference. 

5.5.1 Effect of the re-meshing steps, m 

Subsequently, a more typical tapered structure with a large waveguide width [21], 

suitable for high-power semiconductor amplifiers, has been considered. In this case, 

the initial width of the guide is taken as 4 Ilm, with its core height being 1 Ilm. The 

core and the cladding indexes are taken as ng = 3.22 and ns = 3.17, respectively, at the 

operating wavelength of 1.50 Ilm. A much reduced index contrast for the diluted In-
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GaAsP core /).n = ng - ns = 0.05 has been used in this case to reduce the number of the 

guided modes when the waveguide is expanded to a much wider width. Again, an 

initial 1 OO-~m uniform section is considered prior to the tapered section so that the 

input field stabilizes before the start of the actual tapered section. 

Although the change in the waveguide width could be considered at each propagating 

step (which, in this case, is 1 ~m), the associated matrix calculation at each 

remeshing, would increase the CPU time considerably. A practical tapered device 

would also have finite width variations due to mask designs. Here, the effects of the 

remeshing steps m are being investigated. 
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Fig. 5.24 Variations of the spot-size, local width and normalized 
power for two different remeshing schemes. 

The variations of the spot-size, local width and the normalized power along the axial 

direction for the two different values of m are shown in Fig. 5.24. In this case, the 

tapered angle is 6°, and the tapered section is 457 ~m long to achieve the 1 00 ~m final 

width from its 4 J.lm initial width. It can be observed that the spot-size expands as the 

width of the tapered section increases: however, both the curves (for m = 2 and 5) are 

almost identical. Although the oscillations are clearly visible, it can be noted that their 
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periodicity is much less pronounced than that of the curve shown in Fig. 5.16 for the 

earlier structure. The reason for such a less pronounced variation is that a waveguide 

with a large width can support a large number of guided modes, and the rapid change 

in its width excites a large number of these modes. However, the modal interference 

between such a large number of modes, with their different beat lengths, makes the 

spot-size variation much less prominent, although it does still exist. It can also be 

noted that the optical power loss is almost the same for both cases, but for m = 5, this 

is slightly larger due to a larger discontinuity step as shown in Fig. 5.24. 

~~ 
m=6 

Fig. 5.25 Effect of width change for two m values. 

For the case of m = 5, each lateral width change AWhas been 1 flm, but in the case of 

m = 2, this reduces to 0.4 flm. Since it is difficult to identify the effect of width 

changes from the staircase-like line, a magnified view of the line is shown in Fig. 5.25 

(it should be noted, however, that in this figure, m was taken as 2 and 6, respectively 

to show clearly the effect of the discontinuity). 

5.5.2 Effect of the Tapered Angle 

The optical loss depends on the taper angle. The variations of the optical power with 

the axial distance for three different taper angles are shown in Fig. 5.26. In this case, 

the lengths of the tapered sections are 1375, 686, and 457 flm (beyond the first 100 

flm uniform section), for taper angles of 2°, 4°, and 6° , respectively, to achieve the 
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100 flm final width. It can be noted that in all three cases, the power loss in the first 

100 flm were the same, since these uniform sections were identical for all the cases. 

Subsequently, the rate of power loss becomes higher for a larger tapered angle. 

Although such a larger angle requires a shorter tapered section to achieve the 100 flm 

final width, however, the total loss is higher, due to larger discontinuity step 

encountered. 

The variations of the spot-size for these three different tapered angles are shown in 

Fig. 5.27. The diffraction angle, ¢, was calculated using equation (2.37). Therefore, 

for Wi = 4 flm, diffraction angle, ¢ = ~ = ~ radians (approximately 7.0°), where A 
JrWo 8 

is the wavelength, Wo is the width of the beam which increases with z, z is the 

propagation distance. It should be noted that the rate of increase in the width is 

proportional to the wavelength and inversely proportional to the initial width of the 

beam. 
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Fig. 5.26 Variations of the normalized power for three different tapered angles. 

It can be noted that for the smaller tapered angle, the rate of the spot-size increase is 

smaller. However, for the same final width (Wf = 100 flm), the final spot- sizes at the 

end of the tapered sections are very similar for all the three cases. 

Oscillations are al so clearly visible, but because of the interference between many of 

these modes (with their different beat lengths), the periodicity is less pronounced, but 
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in general , the oscillations amplitudes are lower for smaller angles. However, it has 

been noticed that if e is larger than 10.00
, then the spot-size expansion is limited by 

the diffraction angle, ¢, which depends on the waveguide aperture and this being 

equal to 7.0 0
, when the taper angle increased faster than this, spot size did not expand 

at a faster rate as shown in Fig. 5.28. 

-'" 

100 

80 

E 60 
::i ........-

b 
40 

20 

OL-__ ~ ____ -L ____ ~ ____ L-__ ~ ____ -L ____ ~~ 

o 200 400 600 800 1 000 1200 1400 

Z(,um) 

Fig. 5.27 Variations of the spot-size along the axial direction for three 
different tapered angles for a wider semiconductor amplifier. 
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5.5.3 The Output Field Profile 

The output field profile at the end of the tapered section when Wj = 1 00 ~m is shown 

in Fig. 5.29. In this case, the horizontal spot-size is clearly controlled by the local 

width, which was 100 ~m at the end of the tapered structure. Its vertical spot-size was 

constant, fixed by the core thickness, and in this case, although the core thickness was 

only 1 ~m, due to a very low index contrast (fln = 0.05), the structure was operating 

close to its cut-off thickness (vertical cutoff), and its spot-size is significantly larger 

than the thickness. It can be clearly seen that non-smooth contours of the optical beam 

show that a rapid field variation is occurring due to the modal interference between 

the many higher order modes. 

To identify the modal interference tP,(x) and rACy), the lateral variations of the evolved 

beam at z = 534 and 550 11m, respectively, are shown in Fig. 5.30. It can be observed 

that the resultant optical beam is significantly different from the usual Gaussian 
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Fig. 5.29 Transverse field profile of the evolved beam at the output plane. 
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approximation that is often considered. As a result, the commonly used Gaussian 

approximation would be unsatisfactory in the calculation of the far-field profiles and 

the beam divergence. The field profiles clearly show a flat pedestal area in the centre 

and a sharp roll-off at the edges. A similar pedestal-type near field profile with many 

spikes has been reported by several authors, for example as shown in the work of 

Goldberg et al., [153, Fig. 19]. However, some sharp oscillating fields, originating 

from higher order modes, are also visible near the centre. It has been noted that these 

peaks are in and out of phase at different axial positions. 

To illustrate the point, the difference between the field profiles 9\ and rh is also shown 

in by a curve, labeled ¢Z-9\ , which clearly indicates the presence of the higher order 

modes. It should be noted that a very fine mesh division has been used in the central 

core area, and a relatively coarse mesh exists in the adjacent tapered region. The field 

profiles in the vertical direction are not shown here, as the structure was single-moded 

in the vertical direction, and thus the associated vertical beam profile remains 

unchanged along the tapered structure. 
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In the beam-propagation approach, the evolving optical field is considered as a 

complex valued field function, which varies along the x, y, and z directions as the 

beam transforms along the tapered structure. The phase of this optical field varies 

along the axial direction as it propagates, but in this case, it also varies along the 

lateral direction. Variations of their phases L.¢J and L.rh at two axial positions z = 534 

and 550 I-lm, respectively, are shown in Fig. 5.3]. A rapid phase variation near the 

center (A) is clearly visible, and more smooth monotonic phase variations in both the 

left and right side of the structure, away from the center, can be observed. The sudden 

phase reversal between points B and B' and C and C', as shown here, are artificial, 

these being due to the change of the phase angles from -7t to +7t in the calculation of 

the arctan angle by using the FORTRAN trigonometric functions. It can be noted that 

the phase of the optical field changes by 27t rad between points B' and C, where the 

optical field intensity remained considerably higher, as shown in Fig. 5.30. It has also 

been observed, but not shown here, that inside the guide core, the phase angle is 

constant along the vertical direction; however, outside the core region, there is a rapid 

7t rad phase change in the cladding region. 
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Fig, 5,31 Variations of the phase angle of the evolved beam along the 
lateral direction (x) at two different axial positions. 
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5.6 Comparison between the TE- and TM-poJarized modes 

A hybrid transverse-magnetic (TM) mode is also launched into the same structure 

with a taper angle e = 6° . The variations of the spot-size and the normalized power 

along the axial direction (z) are shown in Fig. 5.32 by solid and dashed lines, for the 

TM and TE modes, respectively. It can be observed that the power loss and the spot 

variations are almost similar for both the polarizations. In this case, the index contrast 

(~n) of the waveguide in both the lateral and vertical directions were very small and 

equal to 0.05. However, for an optical guided-wave structure with a higher index 

contrast, or a slanted sidewall, or a curved section, it is expected to show a higher 

polarization-dependent performance. 

.... 
CI) 

0.95 
3: 
0 
(l. 

"0 
CI) 

. ~ 
Cii 
E 
0 0.9 
z 

0.85 

o 

TE 

····· ... 1 
TM/ 

'. 
'. 

100 200 300 

Z(,um) 

120 

100 

80 
.......... 
'" E .. 

60 :::i.. ......... 
'" b 

40 

20 

0 
400 500 600 

Fig. 5.32 Variations of the spot-size and the normalized power along 
the axial direction for the TE- and TM-polarized waves. 

5.7 Elimination of Mode Beating in SOA Structures 

In this work, a deep-etched semiconductor optical amplifier [149] was considered to 

study rigorously the mode beating in SOA. Furthermore, an approach has been used to 
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eliminate the mode beatings, however, the approach was seen to be costly and 

generally, increase the computational time. 

The deep-etched tapered SOA is shown in Fig. 5.33. In this particular case the core 

height (h) is taken as 0.1 Jlm, with an initial width (Wi) of the guide as 1.0 Jlm and this 

width is adjusted along the tapered structure. The core and cladding indices at the 

operating wavelength of 1.55 Jlm were taken as ng = 3.480 and ns = 3.402, 

respectively, generating an index contrast, An = ng - ns = 0.078. Based on this 

structure, initially, the tapered angle, 0, is taken as 0.3° and the width is varied 

symmetrically to achieve the final width (n}-) of 8 Jlm. An initial 100 Jlm uniform 

section is considered prior to the tapered section, before the actual tapered section. 

n}- = 8.0 Jlm 
-----------------.~~ 

:=:=:=:=~= .. 4-4_~=~===:=J I h 

nc = 3.169 

ns = 3.402 I 
I... --I 

nc = 3.169 

I... --I 
WI = 1.0 Jlm 

Fig. 5.33 Schematic diagram of a deep-etched tapered 
SOA Structure. 

The spot-size and its variation along the axial direction can illustrate the evolution of 

the optical beam along the tapered waveguide. The variations of the spot-size along 

the axial direction with different m values are shown in Fig. 5.34. It can be clearly 

seen that for higher m values (Le., m = 30) the oscillations were visible compared to m 

= 5. However, for m = 5 the amplifier length was shorter and the oscillations were 

reduced dramatically as the evolving beam propagates, which clearly indicates the 

non-existence of the higher order modes with the fundamental (H t;) mode. However, 
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one significant feature was observed when m = 5, the spot-size expansion stabilizes 

and settles down before further expansion as shown in the inset on the left side of Fig. 

5.34. This feature will be discussed in a later stage of this chapter. 

To prove the existence of mode beating when a large value of m = 30 was used, the 

peaks and troughs of the spot-size were plotted with their differences at different axial 

positions i.e., Z = 530 !-lm, 538 !-lm and 546 !-lm. 

-

4.5 ....-----------------------, 

m = 5 
4.0 

3.5 

3.0 

Z=530~111 Z=546~111 

111 = 30 '!( 
~ " " 1 II'~ , 

,1 'W • 'I , " N I , , NE 
::1. 2.5 

u r, I 'I " Z=538 
m = 10 1 "" , ~11l 

.. 'L ' " , -.. 
t:> 

2.0 

1.5 

1.0 

"'-..... I"f'" " " ~l'" ' ' " " " II ""f' '", , " • ~ " I:l;;' , 'I, " 1/ 
"') (.J" " I,,' I} V 

P 11 r~ " " "II ~ 
~"~~~ t t 

~ n • 

0.5 L..-_-'-__ ......... __ .l....-_--J __ --'-__ -L-__ ...L..._----l 

o 100 200 300 400 500 600 700 

Z(~m) 

Fig. 5.34 Variations of the spot-size along the ax ial direction 
with different m values. 

The Hy field profiles ~I and ~2 at axial positions, z = 530 !-lm and 538 !-lm, are shown 

by a solid and dotted lines, respectively, in Fig. 5.35. As explained earlier in this 

chapter the field profile at centre of the waveguide clearly indicates the interference 

between the fundamental (H ~ ) and higher order modes. The difference between 

these two points, ~I and ~2, has also been plotted as dashed line in the figure, which 

shows clearly the existence of the H ~ mode. Furthermore, when the variations of the 

evolving beam at axial positions z = 538 !-lm and 546 !-lm and their difference plotted 

as shown in Fig. 5.36, it clearly indicated the existence of the H {I mode. This 
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hypothesis proved the interference between the higher order modes and the 

fundamental (H ~ ) mode, which occurs during the field propagation. 
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Fig. 5.35 Lateral variation of the evolved beam at two different 
axial positions z = 530 J.lm and 538 J.lm and their difference. 

Fig. 5.36 Lateral variation of the evolved beam at two different 
axial positions z = 538 J.lm and 546 J.lm and their difference. 
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The variation of the spot-size along the axial direction (z) is shown again in Fig. 5.37. 

In this case to see the effect of the width change initially a large remeshing step, m, 

was used. In this work the axial step, llz, is taken as 1.0 Jlm, and if the m is taken as 

40, then the remeshing along the axial direction is carried out at every 40 Jlm 

intervals. In the first example, the tapered angle, e, is taken as 0.30
, with the total 

SOA length as 250 Jlm. After the 100 Jlm uniform section, the first remeshing is 

carried out at 120 Jlm, and then after every 40 Jlm interval. In this figure it can be 

observed that the spot-size remains constant at cr = 0.7 Jlm2 for the first 100 Jlm as the 

width was constant and subsequently expands as the width increases. 
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Fig. 5.37 Variations of the spot-size along the axial direction. 

At z = 120 Jlm, its width is changed from its initial value of 1.0 Jlm to 1.21 Jlm. It can 

be observed that as the width increases its spot-size also increases slightly and quickly 

settles down to a value of 0.77 Jlm2. When at z = 160 Jlm, the width again changes 

abruptly from 1.21 Jlm to 1.63 Jlm and damped oscillations in the spot-size appear 

which settles around 0.91 Jlm2. At the next step, Z = 200 Jlm, the spot-size expansion 

undergoes oscillations which do not appear to stabilize and similar feature can also be 

noted at 240 Jlm. 
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Fig.5.38 Variations of the effective indices with the waveguide 
width (W). 

The interference between the fundamental mode and the higher order modes is clearly 

seen in Fig. 5.37. Next, a thorough investigation is carried out to understand the 

mechanism of the spot-size during propagation through the stepped tapered section. 

Variations of the effective indices for the fundamental Hit and higher order H {I and 

Hjl modes with the waveguide widths, W, are shown in Fig. 5.38 with a solid, a 

dashed and a dotted lines, respectively. A horizontal chained line shows the cutoff 

conditions for these modes. It can be observed that the second H il and the third H jl 

modes reach their cutoff conditions when the waveguide widths are 1.31 J.lm and 1.6 

J.1m respectively. 

When z = 120 J.lm, the higher order modes were generated at the discontinuity plane, 

as it was necessary to satisfy the boundary conditions. However, these modes 

attenuate rapidly, as shown in Fig. 5.37, since at local W = 1.21 J.lm, these higher 

order modes are below their cut-off conditions. Due to the symmetrical nature of the 

tapered structure, no asymmetric higher order mode (H!n ) where m is even, is excited 

when a symmetrical input field is used. When z = 160 J.lm, the local width changed to 
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1.63 J.lm, the generated H {, is very lossy by being close to the cutoff condition and 

attenuates rapidly with damped oscillations, as shown clearly in Fig. 5.37. However, 

beyond 200 J.lm, as W> 2.05 J.lm, the generated H{, will not dissipate, as this mode is 

now well guided. This yields more pronounced oscillations due to the interference 

between the Hit and HI, modes and the beat length strongly correlates with the local 

AP between the H r. and H {, as shown in the Figs. 5.39 and 5.40. 
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Fig. 5.39 Variations of the local AP as the width (W) increases. 

In Fig. 5.39 when the width of the waveguide is increased beyond the cut-off, it is 

clearly observed that AP = P" - P3" for the Hit and H {, respectively, decreases 

sharply as the width increases, however when W = 6.0 J.lm, it decreases slowly as W 

increases further. This is mainly because when a much smaller waveguide width is 

used only the fundamental and second order modes are excited, but if the width is 

increased further it excites other higher order modes as shown in Fig. 5.40 which 

leads to a more complex mode beating as discussed earlier. 

The variations of the beat length, expressed as La = ~, with width are shown in Fig. 
AP 

5.40. Due to the different cutoff regions for the modes Hit, H {, and H II the La 

obtained from different AP varied. However, they all appeared to have started from a 
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similar LB value and increased steadily as the width was increased. It shows that even 

though the fundamental mode propagates along the waveguide, the excitation of 

higher order modes were observed, especially for tapered structures as the width will 

be constantly changing in the tapered section. 
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Fig. 5.40 Variation of beat length (LB) to the width (W). 

Variations of the beat length along the axial direction for different m values are shown 

in Fig. 5.41. It is clearly observed that as the evolved beam propagates the beat length 

for m = 20 and 30 are mostly identical, however after z = 800 J..Lm, for m = 30 the beat 

length is slightly lower compared to m = 20. To link the beat length, as obtained from 

the BPM simulation, its variation with the local waveguide width is also calculated 

and shown in Fig. 5.42. Moreover, when the width increases the beat length for both 

the m values were identical and increased steadily as shown in the figure. 

This result showed that the m value has no significant impact in this particular case to 

the evolving mode along the axial direction. However, it should be noted that a finer 

mesh should be used for better results. For comparison, the variations of the beat 

length when the width increases from FEM calculation (LB = ..!!.-) and BPM analysis 
AP 

are shown together in Fig. 5.43. It should be noted here that a similar waveguide with 

identical refractive indices were used. From the BPM result the LB started at 
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z = 216 ~m with a width of 2.04 7 ~m. At this axial position, the excitation of H j l was 

observed which contributed to the fi31 value that yields the first Lo approximation. 

200 

180 

160 

140 

120 

'" ....J 100 

'" ....J 

80 

60 

40 

20 

0 
0 200 400 600 800 1000 1200 

Z(/lm) 

Fig. 5.41 Variations of the beat length along the axial direction 
for different values of m. 
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Fig. 5.42 Variations of the beat length as the width increases 
along the axial direction for different values of m. 
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It can clearly be seen that both curves increases as the width increased. However, the 

fundamental mode stabilizes and settles during propagation along the waveguide, this 

causes the La in the BPM analysis to appear unsteady at the start before settling down 

as shown in Fig. 5.43. The agreement between the curves is true, however, it should 

be noted that local width of BPM can only roughly correlate with the FEM modal 

solution, which is true to steady state (uniform) guides. 
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Fig. 5.43 Variations of the beat length when the width 
increases from FEM calculation and BPM propagation. 

However, for a practical taper design the width change could also be slower with a 

smaller ~W step values. To represent such smaller ~W changes, it is required to re­

mesh more frequently, which would increase the CPU time considerably. However, in 

a fabricated SOA, the tapered section may also incorporate finite steps due to the type 

of mask used. Next, the effect of the re-meshing steps, m, is investigated. Variations 

of the spot-size along the axial direction for two different values of m are shown in 

Fig. 5.44. The corresponding ~Wvalues for m = 10 and 5 are 0.053 !lm and 0.026 !lm, 

respectively. It can be observed that when m = 10, the spot-size expansion along the 

axial direction shows stronger oscillations compared to when m = 5, which shows 

significantly smooth variations and the peaks and troughs of the spot-size expansion 

were reduced dramatically. It was observed that any further reduction of the re­

meshing step, m, did not modify the spot-size expansion property, as shown in Fig. 
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5.45 . It has also been observed, that for m = 5, when the difference between the fields 

at two axial positions z = 206 and 207 ~m almost identical were plotted and compared 

as shown in Fig. 5.46, no stronger existence of higher order modes was visible. The 

magnitude of the higher order field is very small and it should be noted that the highly 

magnified scale is used on the right hand side to plot the field differences. To 

understand this an approach has been proposed. 
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Fig. 5.45 Variations of the spot-size along the axial direction. 
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Fig. 5.46 Lateral variation of the evolved beam at two different 
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This suggests that when a much smaller step size, m, is used the generation of the 

higher order modes would be limited. However, if during the fabrication of such a 

SOA, a larger width change step is encountered or if the sidewalls are rough, then the 

modal interference between the modes could exist. 

~ ..... ............ T-
11-·t----L-A-----4~~I· .. ···· ······ Tx 

Fig. 5.47 Schematic diagram of the tapered waveguide. 
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During this study, it was also identified that at every remeshing stage, it should also 

match with the discretisation steps in width both L\w and Ax. In this case Ax is the 

mesh division in the x-direction, L\w is the change in width at every re-meshing step. 

Lets assume the tapered angle, e = 0.3°, initial width to be WI = 1.0 J!m and the length 

of the amplifier to be z = 250 J!m assuming the first 1 00 ~m is the uniform section as 

shown in Fig. 5.47. In this example the value of m = 5 while the WI is changed with 

respect to the tapered angle i.e., 

· · . 
· · . 

La = Total Length - LA 

La=250-100= 150 ~m 

x = tanO.3° *150~ 0.8 J!m 

WI= 2 (tan 0.3° *150)+W, 

Uf ~ 2.6 Jlm 

In this approach, to eliminate the excitation of higher order modes and limit the 

oscillations we assume, L\w = Ax; 

· · . 

~w= 
x 
-xm 
LB 

= 0.8 x5 = 0.027 
150 
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where LA is the unifonn section of the amplifier, LB is the tapered section, WI is the 

final width, x is the x-dimension where the field widens as the evolving beam 

propagates along the axial direction, and n JC is the number of horizontal (x), mesh 

divisions in the flared part, x. For this approach to be efficient and effective for longer 

tapered sections the tapered angle, () and the value of m should be small, mainly 

because if a higher tapered angle and/or m value is used the value of n 11 tends to be 

high, this will demand considerable CPU computational time and can only be solved 

by supercomputers which allows a much increased mesh distribution. 

Variations of the spot-size along the axial direction when m = lOis shown in Fig. 

5.48. The H (height) = 1.0 J-lm, initial and final width as, W, = 1.0 J-lm and WI = 3.0 

Ilm, respectively. The tapered angle was taken as, e = 0.3°. It can clearly be observed 

that the spot-size was unifonn at the first 100 Ilm, thereafter appearances of 

oscillations. The mesh distribution was 80*70, with finer mesh used in the core region 

of the structure. It should be noted here that Ilx = 0.067, while 6w = 0.052 (discussed 

in section 5.7). 

To understand the effect of the re-meshing steps and its contribution to the oscillations 

a smaller m value was used i.e., m = 5 as shown in Fig. 5.49. In this case the mesh 

distribution was kept constant at 80*70 with finer mesh used at the core. 

Again 6x -:f:. 6W, since m = 5, 6w = 0.026 while Ilx = 0.067. For the first 100 Ilm to 

180 Ilm, the oscillations were slightly reduced; thereafter they appeared consistent all 

through the propagation distance. It can be concluded here that even though the re­

meshing step was reduced, as long as Ilx ;f 6w, the appearance of oscillations on the 

tapered section was very likely. 
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Fig. 5.48 Variations of the spot size along the axial direction for re-meshing 
step, m = 10. 
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The variation of spot-size along the axial direction when m = 10 with higher mesh 

distribution is shown in Fig. 5.50. In this case, the mesh distribution was increased to 

126*70, with all other parameters kept constant. There was no significant change 

observed during the propagation at the tapered section, as the oscillations were still 

consistent. Therefore, increase in the mesh with no consideration on the llx value, did 

not improve the results either. 

A smaller m value i.e., m = 7, with higher mesh distribution (126*70) was used as 

shown in Fig. 5.51. Again, all the parameters were kept constant. It can be observed 

that at the tapered section the oscillations have been significantly reduced. The peaks 

and troughs were reduced and the oscillations inconsistent. It should be noted that in 

this case llx ;f. ~w, however, since the mesh was increased and the m value reduced, 

the difference between llx and ~w was small i.e., 0.011, where llx = 0.026 and ~w = 

0.037. 
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Fig. 5.50 Variations of the spot size along the axial direction for re-meshing 
step, m = 10. 
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To understand the above result thoroughly and make sound conclusion a smaller m 

value, i.e., m = 5 was used with the same mesh distribution (126*70) as shown in Fig. 

5.52. However, it should be noted here that, tu = ~w, where tu = 0.026. The 

oscillations were eliminated significantly on the tapered section of the propagation 

distance. Therefore, purely based on these results we can conclude that the 

oscillations can be indeed avoided by using finer mesh and smaller value of re­

meshing step, m, which will correlate with tu = ~w. However, for longer propagation 

distances for devices such as amplifiers, a higher mesh distribution may be required, 

which will take considerably CPU computational time and can only be solved by 

supercomputers. 
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Fig. 5.51 Variations of the spot size along the axial direction for re-meshing 
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Fig. 5.52 Variations of the spot size along the axial direction for re-meshing 
step, m = 5, where !xx = ~w. 

The variation of the spot-size area along the axial direction is shown in Fig. 5.53. 

Here, the initial and final widths were taken as 1.0 11m and 8.0 J.1m, respectively. The 

tapered angle, B = 0.5°, and the nj, carrier gain at low power was taken as 0.005, and 

the amplitude coefficient, b, as 1.0. It should be noted here that, !xx :;;t ~w. In this case 

two m values were used, i.e., m = 5 and 10, and the mesh was distributed accordingly 

to achieve the final width of 8.0 11m. For m = 5, the mesh distribution used was 

120*90 while for m = 10, it was 140*90. It can be clearly observed that the spot-size 

area remains constant for the first 100 11m (uniform section). 

From the figure it can be seen that for m = 5, the oscillations drastically reduced at the 

start of the tapering section and became apparent again after z = 180 11m, this is 

mainly because the mesh distribution was high to allow room for the expanding field 

and the difference between !xx and ~w was small, however on further tapering the 
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effect of the oscillations was observed. On the other hand, for m = 10, the oscillations 

appeared as early as the start of the tapered section which was due a high re-meshing 

step along the propagating distance. 
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Fig. 5.53 Variations of the spot size along the axial direction for re-meshing 
steps, m = 5 and 10, with different mesh distribution. 

The presence of oscillations had no significant effect on the overall gain as shown in 

Fig. 5.54. It should be noted here that for m = 10, the amplifier length was taken as 

501 flm to achieve the Wj = 8.0 flm. It can be clearly seen that from the start of the 

propagation gain verses z is almost linear. Furthermore, for both m values with 

different mesh distribution the gain at each axial position was identical. It can be 

concluded here that the re-meshing step and the mesh used has no significant effect on 

the overall gain of the amplifier. 
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Fig. 5.54 Variations of the gain (dB) along the axial direction for re­
meshing steps, m = 5 and 10, with different mesh distribution. 

5.8 Summary 

600 

In this chapter, the study of the evolution of the optical beam along various waveguide 

structures by using the rigorous vectorial numerical approaches based on the versatile 

finite element technique has been presented. Initially the Gaussian and mode fields 

were used as the input field to investigate the properties of the propagating field along 

the waveguide with the beam propagation method. 

The variations of the waveguide width, normalised power, power loss, expansion of 

the beam shape and spot-size area were thoroughly investigated. One significant 

observation discussed in this chapter was the appearance of higher order modes, 

which caused significant modal interference with the fundamental mode along the 
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propagation distance. The mode beating is likely to contribute to the degradation of 

the beam quality and contribute towards beam filamentation, correlated by their beat 

length and amplitude by using overlap integral. 

To eliminate the mode beating in SOA structures an approach has been proposed 

which eliminates the existence of higher order modes interfering with the fundamental 

mode along the waveguide structure improving the beam quality significantly. 

177 



Chapter 6 Carrier Rate Equation, Gain Analysis and Gain Saturation 

6.0 The Carrier Rate Equation, Gain Analysis and 
Gain Saturation in SOA Structures 

6.1 Introduction 

In recent years, there has been increased attention towards semiconductor laser amplifiers 

(SLAs) due to their unique feature to be easily integrated with other photonic devices and 

feasibility of performing sophisticated multi functions such as pulse-shape regeneration, 

signal tapping, switching and routing. The advantages of semiconductor optical 

amplifiers, includes; potentially low cost, wide gain bandwidth, and possibilities for 

monolithic integration with laser diodes andlor photodetectors. It is therefore significant 

to understand how the saturation characteristics of these amplifiers may affect their 

performance in future applications. 

The tapered structure of a laser amplifier has been shown to provide better saturation 

performance [161], used to amplify picosecond pulses with very little distortion [169] 

and also generating mode-locked [170] and Q-switched [171] short pulses with high 

peak values. SLAs have been developed mainly to replace complex optoelectronic 

regenerating systems. Some of their main functions are to act as 

(a) Post-amplifiers for the optical transmitter 

(b) In-line amplifiers, and 

(c) Preamplifier for optical receivers 

Recently, the development of EDF As has challenged many applications of SLAs. The 

limitation of SLA is the difficulties in achieving high gain, low polarisation 

sensitivity, low noise figure and low coupling loss at the same time [172]. However, 

SLAs have the advantage of small size, low power consumption and low cost (when 

mass produced), and can be integrated monolithically with other photonic devices like 

lasers or detectors. Moreover, they are also available at a wavelength of 1.3 !lm and 

perform other functions such as pulse-shape regeneration, switching and wavelength 

conversion. 
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Gain saturation in travelling wave- semiconductor optical amplifiers (TW-SLAs) 

severely limits many of its applications. In a wavelength division-multiplexing 

system, the gain saturation is determined by the total power of all the channels 

involved. As a result, the number of channels in WDM system for a given gain is 

limited by the gain saturation. This also results in undesirable effects, such as gain 

saturation induced channel cross-talk [173], and nearly degenerates four-wave mixing 

[174]. When SLAs are used as in-line amplifiers, the gain provided by each amplifier 

(which also determines the number of required amplifiers) is limited by the gain 

saturation of the amplifier. Many other applications, such as booster amplifiers, also 

require high gain saturation. 

One method of obtaining high gain saturation in a SLA is to increase the cross-section 

area of the active region. There are two aspects that result in an improvement in gain 

saturation. Firstly, by increasing the cross-sectional area of the active region, the 

intensity is reduced for a given optical power. Secondly, there are more carriers 

available for providing gain since the active volume is bigger. Increasing the width of 

the active region enhances the cross-sectional area. The cross-section area of 

conventional TW -SLA is limited by the condition for single mode propagation, which 

is desirable for high coupling efficiency to single mode fibre [175]. To achieve both 

high gain saturation and single-mode propagation simultaneously, the width of the 

TW-SLA can be increased gradually from the input to the output so that conversion to 

higher order modes can be minimised [76]. The performance of tapered TW-SLAs has 

been investigated in [163,176], where, it was found that linearly tapered TW-SLA 

gave a better gain saturation performance and a higher normalised fundamental mode 

output power. 

6.2 The Carrier Rate Equation Analysis 

In this section, the analysis of carrier rate equation and its contribution to the optical 

modal gain will be discussed. To study the carrier density. modal gain and gain 

saturation through a tapered guided-wave structure, an etched semiconductor optical 

amplifier is considered and a schematic diagram of such a deep-etched SOA is shown 

in Fig. 6.1. In this particular case the core height (H) is taken as 0.1 Ilm, with an initial 
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width (W;) of the guide as 1.0 J.lm and this width is adjusted along the tapered 

structure as shown in Fig. 6.1. The core and cladding indices at the operating 

wavelength of 1.55 J.lm were taken as ng = 3.480 and ns = 3.402, respectively, 

generating an index constant, Iln = ng - ns = 0.078. For a non-uniform structure, its 

width is varied symmetrically with a tapered angle, 8, to achieve the wider final 

width, Wj. An initial 100 J.lm uniform section is considered, which often can represent 

a preceding laser, before the actual tapered section. 

The power gain in an active photonic device, such as a laser or an amplifier is due to 

the presence of the imaginary part of the complex refractive index in the core. The 

injected current generates carrier density and when this density is above the 

transparent carrier density then the optical field can be amplified. A complex 

refractive index, ng = n, + jn;, has been considered in the waveguide core to mimic 

the optical gain of a semiconductor optical amplifier. The local gain parameter, g" is 

related to the imaginary part of the refractive index, nj , by g, = kont. The imaginary 

part of the refractive index, which provides the necessary gain is often taken as a 

constant value in the core region, but in reality this is not constant but its local profile 

depends on the local optical power density. Since this profile depends on the total 

optical power and as the total optical power continuously increases along the axial 

distance, so this parameter, nj (z), also changes nonlinearly along the propagation 

distance. The transverse optical intensity profile also depends on the mode field 

profiles, so this parameter, n; (x, y), also changes continuously in the transverse 

direction as well as along the axial direction, nj (x, y, z) , as the power density changes 

with the modal gain. 

The TW -SOA structure considered in this study is shown in Fig. 6.2. The z 

dependence of the width W{z} of this structure can be expressed as 

(w -WJ W{z) = W, + f LiZ (6.1) 
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Fig. 6.1 Schematic diagram of the deep-etched tapered 
semiconductor amplifier. 

where W, and WJ are the input and output widths, respectively. The rate equation for 

the carrier density in the TW-SOA can be expressed as [177] 

(6.2) 

where 

(6.3) 

(6.4) 

where N is the carrier density, D is the diffusion coefficient, J is the current density, 

e is the electron charge, d is the active layer thickness, x is the distance along the 

lateral direction, S(x,y) is the optical field, hf is the photon energy, gill (N) is the 
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material gain, a is the gain coefficient, No is the carrier density at transparency, 

1', {N)is the carrier combination lifetime, An,' Brad' and CAUg are the nonradiative, 

radiative, and Auger recombination constants, respectively. The gain term has also 

been included in the last term of equation (6.2). It should be noted, besides the time­

dependence stated in equation (6.2), these parameters are also function of their spatial 

positions. 

The carrier distribution along the lateral direction can be approximated as [161] 

(6.5) 

where Nave (z) is the average carrier density along the z direction and N, (z) accounts 

for the amplitude of the spatial carrier density distribution along the x-direction. It can 

be assumed that carrier profile is uniform along the y-direction inside the active 

region. 

, 
~ Active region JJf 

t 

I'" 
L 

~I 

Fig. 6.2 Schematic diagram of the active region of a 
linear TW SOA. 

Since the maximum field intensity is at the centre of the waveguide, often a simple 

transverse variation of the local gain coefficient can be used in the numerical 

simulation of the optical amplifier and this can be expressed as [169]. 

g{x) = n; (1- b * COS271X /W) (6.6) 
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The term n; is the carrier gain at a low power, and the amplitude coefficient, b, 

depends on the maximum power intensity. Here x is the lateral position (from the 

centre of the guide), and Wis the local width of the amplifier. 

The transverse gain profile, g(x), along the horizontal direction is shown in Fig. 6.3. 

For a fixed value of n" the overall optical gain strongly depends on the value of b. As 

the value of b is increased, the local gain is reduced and hence the overall optical gain 

is also reduced. 

.' -----1-
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Fig. 6.3 Transverse gain profile (g(x)) along the horizontal direction. 

It has been observed that the overall gain depends strongly on the value of b and the 

gain is only 0.2 when the value of b is 1, compared to that when b = 0 as shown in 

Fig. 6.4. Gain verses z is almost linear, however, close observation from the numerical 

data yields that gain between 800 - 900 I-lm was about 5% higher than that of between 

100 - 200 I-lm, which was due to the slight increased confinement factor (in the wider 

guide). It was also observed that increase in the value of n, with b value kept constant 

causes the overall gain to be increased. 

It has been mentioned earlier that in the simplified numerical approaches the modal 

confinement factor, r, expressed as 

r = Power in the active area 

Total guided power 
(6.7) 

have been used instead of the detailed transverse variation of the optical parameters. 

Although in this work the detailed two-dimensional variations of the field profiles, 

power density, carrier profiles, gain profiles, and their nonlinear interactions have 
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been considered, but the confinement factor for the stationary modal fields and for the 

evolutionary propagating beam have also been calculated. It should also be noted that 

for a tapered SOA, the confinement factor is not constant but changes along the OA 

as the local width varies. The variation of the confinement factor, r, for the 

fundamental H~; mode along the axial direction is shown in Fig. 6.5 . In this case, the 

total length of the SOA, is taken as 500 ~m and the tapered angle, B= 0.5°. 

For this optical structure, the stationary value of the power confinement factor in the 

active area has also been calculated by using the finite element method (FEM) and 

also shown in Fig. 6.5 by a dashed line. At the start of the amplifier, this value r = 

0.183 when the waveguide width, W, is 1.0 ~m and this value increases monotonically 

to 0.206 at the end of the amplifier when the width is increased to 8.0 ~m. 

The BPM is also used to evaluate the mode confinement of the optical beam. In this 

case, the sharp oscillations are clearly visible in the z-dependent BPM solutions, as 

shown in Fig. 6.5 by a solid line, which are due to the existence of higher order modes 

and mode beating during propagation. For a smaller waveguide width, the generated 

higher order modes are quickly radiated out. At a longer axial position, z, when the 

width is bigger, the generated higher order modes are guided. 
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Fig. 6.4 Variations of the Gain (dB) along the axial direction with 
different b values and the effect of ni. 
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The near periodic variation of the confinement factor strongly correlates with the beat 

length between the propagating H ~ and H {\ modes. Overall , the BPM solution 

shows a slightly lower value of r as compared to FEM solutions in the tapered 

section. The slight reduction in its value could be due to the contributions from the 

higher order modes, which are generated and have lower modal confinement values. 
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Fig. 6.5 Variations of the confinement factor, r, along the axial direction. 

The variations of the confinement factor along the axial direction with different 

tapered angles, e, is shown with a solid and dotted line to represent, e= 0.3° and 0.5°, 

respectively, in Fig. 6.6. It can be clearly seen that from the start of the amplifier to 

axial distance z = 100 flm, the confinement factor was similar and steady for both the 

tapered angles, this is mainly because the structure was uniform and identical in this 

region. However, from henceforth it was observed that sharp oscillations appeared for 

both tapered angles, though for e = 0.5° the peaks and troughs seemed to be much 

pronounced. A wider tapered angle, in theory contributes to a much increased width 

of the structure, this however yields the excitation of much more higher order modes, 

which is shown clearly with the dotted line around 100 - 300 flm. However, for both 

the tapered angles, the confinement factor settles down around 0.206. 
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The normalised field profiles along the transverse direction for b = 0 and b = 1, are 

shown in Fig. 6.7, by a dashed and a solid line respectively. As shown in Fig. 6.7 the 

field at the edge of the guide when b = 1.0 are relatively higher than the field in the 

centre compared to that of b = O. In the case of b = 0 it experienced a uniform gain, 

while for b = 1.0 the gain at the edge ofthe guide was higher. Besides the reduction of 

gain, the evolved modal optical beam profile is also slightly different, as the gain 

coefficient at the edge of the waveguide core (at x = WI2) is higher than its value at 

the centre (at x = 0). A higher gain coefficient at the edge of the guide amplifies 

higher order modes preferentially when compared to the fundamental mode. 

Hence the fields are selective and have more gain at the edge of the guide. At the 

centre for b = 1.0 fine oscillations were clearly visible indicating the existence of 

higher order modes. 
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Fig. 6.6 Variations of the confinement factor, r, along the axial 
direction for different tapered angles, e. 
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Fig. 6.7 Normalised field profiles along the transverse direction 
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Fig. 6.8 Variation of the total optical gain (dB) along the axial 
direction with different n; values for a uniform guide (Gain). 
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We shall also investigate the effect of the local refractive index (only the imaginary 

part, n;), in the core to the normal ised power and total gain. However, for this 

experiment a refractive index (i.e. , imaginary part) that generates a loss has been 

considered. The variation of the total optical gain along the axia l direction for a 

uniform guide is shown in Fig. 6.8 . In this particular case, the guide experienced a 

positive refractive index in the core. It can clearly be observed that a higher value of n, 

contributed to a higher gain. At the start of the propagation the total gain (dB) for the 

different nj values was small, but further increase in the axial direction increases gain 

dependently on the contribution of the n, value. For n; = 0.001 the total gain at the end 

of z =100 )lm uniform guide was 1.27 dB whi le for a higher n, = 0.005, the total gain 

was 3.98 dB respectively. 

The variation of the normalised power along the axial direction with different nl 

values for a uniform guide is shown in Fig. 6.9. It can clearly be observed that the 

power at the start of the guide is the same but as the fie ld propagates along the ax ial 

direction there is an increase in the normalised power, however it should be noted that 

for a lower n j value the increase is slower. 
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Fig. 6.9 Variation of the normalised power along the axial direction 
with different nl values for a uniform guide (Gain). 
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It is observed that for n j = 0.001 the normalised power peaked 1.30 with comparison 

to nj = 0.005 which was 4.0 at 100J-lm distance. 

To understand the contribution of the local refractive index, a negative n, value was 

plotted as shown in Fig. 6.10, to demonstrate the total loss along the waveguide. At 

the start, the total loss was zero but reduces along the axial direction. It can be 

observed that the loss is less when a higher n, value is used . 
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Fig. 6.10 Variation of the total optical gain (dB) along the axial direction 
with different negative n j values for a uniform guide (Loss). 

However, the loss seemed steady for all the n, values, but for lesser negative refractive 

index the loss was slower during propagation, yielding a much lower loss at the end of 

the guide. 

It was observed at this point that for n, = -0.001 the total loss was - 1.20 dB whi le for 

n, = -0.005 the total loss was peaking - 6.0 dB. These results correlate when a positive 

n, value is used to obtain a gain (dB). 

The normalised power initially starts at the same level at the beginning of the 

propagation but undergoes decrease in the power as the field propagates along the 

axial direction since it is experiencing a loss as shown in Fig. 6.11. However, it was 
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clearly observed that for lower negative ni value the power loss was slower (in real 

scale, but uniform rate in dB scale) and lower at the end of the propagation. It was 

recorded that for ni = -0.001 and -0.005 the total normalised power at z =100 !-tm was 

0.75 and 0.25, respectively, indicating clearly that the loss was high when ni = -0.005 

was used. 

It was observed as shown in Fig. 6.12 that for the first 100 !-tm (uniform section) the 

spot-size remains constant and varies with change in width. One significant 

observation noted was that for different values of b, the peaks and troughs at different 

axial positions were different as clearly shown on the figure when z = 410 !-tm. Mode 

beating was due to steps in the tapered section, which are identical for m = lOused 

here. But preferential gain for the fundamental or higher order mode depends on b 

values. The higher power reduces the carrier and hence reducing the total gain. A 

further investigation was carried out on the axial position z = 410 !-tm, and it was 

observed that when the field amplitude was plotted as shown in Fig. 6.13 that when b 

= 0, the fie ld distribution was wider at the edge with comparison with b = 1. 

Therefore, for b = 0, there was uniform gain, but for b = 1, there is less gain at the 

edges than at the center that's why the field is smaller. 
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Fig. 6.11 Variation of the normalised power along the axial direction with 
different negative ni values for a uniform guide (Loss). 
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This is mainly because as the field propagates power is higher on the edge with 

respect to the centre and this was brought about due to the formation of the structure. 
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Fig. 6.12 The variation of the spot-size along the ax ial direction for 
different values of b. 
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Fig. 6.13 Variation of the field amplitude with the width for 
different values of b. 
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However, when the phase at that axial position was plotted as shown in Fig. 6.14, 

where b = 0 and b = 1.0 represented by a dotted and sol id lines respectively, there was 

no significant change between the two different b values. The sudden phase reversal 

are artificial, these being due to the change of the phase angles from -1t to +1t in the 

calculation of the arctan angle by using the FORTRAN trigonometric functions. 

I At t~e p~int ~ = 4~~ 
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Fig. 6.14 Variation of the phase angle with the width at 
different values of b. 

6.3 Gain Analysis of SOA Structures 

The most important property of an optical amplifier is its ability to amplify the power 

of optical signals. The optical gain in optical amplifier is created by external pumping. 

In SLAs, it is provided by the injection of carriers by an electric current, whereas in 

fibre amplifiers, which are doped by rare-earth such as erbium (Er3+), the external 

pumping is provided by a powerful light source [178]. 

In any case, the gain of the optical amplifier is of primarily interest [179], as it 

determines many other essential factors , like signal-to-noise (SIN) ratio, when they 

are incorporated into systems [180]. The signal gain, G of an optical amplifier is given 

in decibels, and expressed as 
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(6.8) 

where Pout is the light power measured at the output of the optical amplifier, and PI" is 

that measured at the input end [181]. One can further refine definition of signal gain 0 

by considering the light path. If equation (6.8) describes the input and output light 

power due to a single light path from input to output of the optical amplifier, the 

resulting gain is known as signal pass gain, G$' If negative feedback is provided (i.e., 

by reflections from end facets in semiconductor laser amplifiers) the signal gain 0 

becomes; 

(6.9) 

where FB is the proportion of output signal which is fed back to the input. Equation 

(6.9) is analogous to that of an electronic amplifier. When 0 = On it corresponds to 

amplifiers without feedback (FB = 0). This is true in measuring the gain in SLAs with 

zero or nearly zero facet reflectivities (known as travelling-wave or near travelling­

wave amplifiers, respectively) [182]. If the reflectivities are finite so that some sort of 

optical feedback is provided to the amplifier, then FB is finite and the resulting 

amplifier structure becomes a Fabry-Perot amplifier. 

Ideally, an optical amplifier should have as high a gain as possible. Physically, optical 

amplifiers with infinite gain are impossible to achieve. Furthermore, an amplifier with 

infinite gain will actually generate an output without an input. This is equivalent to the 

condition for oscillations where the amplifier becomes a laser [183]. Therefore, the 

performance limit of the gain in any optical amplifier is that the amplifier gain is not 

so large that self-sustained oscillations will be excited. This is complicated by the fact 

that stray reflections in the system can provide additional feedback in the amplifier 

[184], pushing the overall gain of the amplifier. In addition, the maximum gain, which 

can be obtained in optical amplifier, is further restricted by gain saturation 

mechanisms. This subsequently affects the dynamic range of the amplifier, limiting 

the maximum optical power, which can be input to and output from the amplifier 
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[185]. In the next section of this chapter the gain saturation mechanism will be 

discussed and investigated. 

6.4 Gain Saturation in SOA Structures 

It is well known that the total gain of a semiconductor amplifier also depends on the 

input power to the SOA. When the input power is higher, the resulting optical field 

reduces the carrier density and ultimately saturates the overall gain. The optical gain 

coefficient is a function of the intensity of the optical wave travelling in the gain 

medium, it decreases as the optical signal intensity increases. 

Often the saturation power density, Ss, along with the confinement factor, r, have 

been used to find the effect of the gain saturation. In this case it is assumed that a 

fraction of the power, r.ss. is uniformly distributed in the core, which reduces the 

carrier density uniformly in the core. However, it is clear that the power density is not 

constant and its effect on the modification of the local gain coefficients would not also 

be uniform. This physical effect can be modelled by introducing a saturation power 

density expressed as [77] 

( ) gmo 
g x,y,Z = S( ) 

1+ x,y,z 
(6.10) 

S, 

where g mo is the unsaturated material gain coefficient equal to njkO' S(x, y, z) is the 

local power density profile, which not only depends on the transverse (x andy) profile 

of the optical beam, but also on the axial (z) position as the total optical power 

increases. It should be noted that in the case of a conventional laser amplifier where 

the input and output widths are equal, the saturation power intensity S,' is constant. 

However, in a tapered amplifier structure this is not the case and the saturation power 

intensity also depends on the design of the active layer width and depends on the 

active layer width, given as 

s, =Sj(x,y,z)!(w) (6.11) 
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The contribution of the active layer width on S $ is given as function f(w), which can 

be easily obtained by varying the local gain along the active region. 

When the local optical power density, SI (x, y, z) is equal to the saturation power 

density, Ss' then the local gain, g" is reduced to hal fits unsaturated gain value, gmo' 

The device parameters used for the work to follow are shown in Table 6.1. 

6.5 Simulation Results 

In this section the variations of the field profiles, power density, carrier profiles, gain 

profiles, gain saturation and their properties, with their nonlinear interactions will be 

considered and investigated. The variation of the gain coefficient propagating along 

the axial direction is shown in Fig. 6.15. It was clearly obserVed as shown in the 

figure that as the field was propagating along the axial direction (z) as the total power 

increases, so does the power density (S(x,y,z)), resulting the gain coefficient g(x,y,z) 

to be reduced drastically. 

The parameters values used in the tapered amplifier model. 

W; Input active region width 1 ~m 
Wj Output active region width 30-50 ~m 
L Amplifier length 1000 ~m 
LA Length of the uniform region 100 ~m 
LB Length of the tapered region 900~m 

d Active region thickness 0.1 ~m 
ng Refractive index in the core region 3.480 
ns Refractive index in the cladding region 3.402 
duw Upper cladding thickness 0.2~m 

d/w Lower cladding thickness 0.2~m 
A Operating wavelength 1.55 ~m 
Anr Non-radiative recombination constant o s·\ 
Brad Spontaneous recombination constant 8 x 10·\7 m3s·\ 

Caug Auger recombination constant 9 x 10··1\ m6s·\ 

E Gain compression factor 0 
a differential gain coefficient 1. 64 x 1 0·20m·2 

No Transparent carrier density 1024 m·3 

B Tapered angle 0.5°(unless stated) 
r Ootical confinement factor 0.2 

Table 6.1 Device parameters for the tapered model [161]. 
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As clearly seen in Fig. 6.15 a further increase in the z causes decrease in the slope. 

The variation of the power density at particular axial position is shown in Fig. 6.16. 

As stated the power density (S(x,y,z)) is clearly observed to increase as the z distance 

increases as shown in the figure. In this case, the gmo used was 0.005, while the Ss = 

0.002 WIJlm2. This figure illustrates clearly the effect of power and its contribution to 

the gain coefficient as stated earlier. 

The investigation of the gain saturation of different g mo (unsaturated material gain 

coefficient) is shown in Fig. 6.17. It was observed initially up to z = 200 Jlm that the 

curve was linear as it was going through constant gain as power is small since the 

width is larger. Around z = 600 Jlm it slopes downward, which means the rate of 

power increase is smaller due to the effect of gain saturation. For higher, g mo' gain is 

higher, so the effect of gain saturation is higher as power was also high. The 

saturation power was maintained constant, at Ss = 0.002 W/JJ,m2, and gmo was varied. 

For different values it is seen that the gain saturation level was reached on a 

respective, g mo' thus it can be said that the power density increases along the axial 

direction but the rate is reduced when higher, reducing the total gain. 
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Fig. 6.15 The transverse variation of the gain coefficient, g(x,y,z) , at 
different axial position. 
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Fig. 6.16 The transverse variation of the power density 
(S(x,y,z)) at different axial position. 
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Fig. 6.17 Variations of gain with different gain coefficients (g mo) and the 

effect of gain saturation. 
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Hence, as gain increases, power increases, effect of gain saturation increases gain per 

unit length/rate slows down but when it reaches z = 1000 f..I.m, the increase is 

minimum. It was also observed that when the saturation power was increased, S, = 

0.02 W/f..I.m2, the total gain was increased and the effect of gain saturation was not that 

significant, with correspondence to S, = 0.002 W/f..I.m2
, where the saturation was 

observed much earlier as seen in the figure. To understand this, the contribution of S, 

to the total optical gain was then examined. 

Here some typical S, values are used to study the effect of the gain saturation. The , 

variations of the gain along the axial direction for different values of S, are shown in 

Fig. 6.18. It can be observed that for a higher value of the gain saturation, S, = 0.2 

W/f..I.m2, the gain curve is almost linear and the gain per unit length remained almost 

constant. The slight reduction of the gain slope near the end is due to the higher total 

power affecting the gain near the output section. 

It has also been shown earlier in Fig. 6.5 that, for this structure the average 

confinement factor is 0.195 and if the gain saturation can be neglected then the total 

gain would have been 35.3 dB. This value agrees well with the total gain of 35.5 dB 

as the effect of gain saturation has been very small. It can be mentioned here that the 

total unsaturated gain for the TM mode would be 34.8 dB, which is slightly lower 

than that ofTE polarization, due to its lower confinement factor. 

It can be seen from Fig. 6.18 that, for a lower value of S, = 0.002 W/f..I.m2 the effect of 

gain saturation was more profound and total gain is only 22.5 dB, compared to 30.0 

dB and 35.5 dB for S, = 0.02 W/'tJ.m2 and 0.2 W/f..I.m2
, respectively. 

The variations of the power density along the axial direction with different Ss values 

are shown in Fig. 6.19. It can be observed that when the power is increased along the 

axial direction, the power density is also increased. However, if the saturation power 

intensity (Ss) increases it reduces the effect of saturation causing a smaller reduction 

of g(x, y, z), due to saturation, which gives a higher overall gain. Although 

oscillation peak for Ss = 0.2 W/f..I.m2 appear to be higher than that for Sa = 0.002 

W/f..I.m2, but their percentage of variation are of similar order. At a given axial position 
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z, higher power gives increased power density. However, there are some oscillations 

that are shown here which are mainly due to the existence of higher order modes 

excitation. 
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Variations of the power density along the transverse (x) direction at different axial 

positions are shown in Fig. 6.20. It can be observed that the optical field expands in 

the lateral direction as the axial distance increases, which is due to the increased width 

in the tapered section. The transverse beam profile at z = 100 J.l.m is similar to that of 

the fundamental mode profile of a waveguide with W = 1.0 J.l.m and resembles closely 

to a Gaussian shape. However, at z = 1000 J.l.m, the expanded output field as shown by 

a dotted line, is composed of other higher order modes, besides the fundamental 

mode, and it deviates significantly from the shape of the fundamental mode of a wider 

guide at that position. Another feature that can be observed is the amplitude of the 

power density increases along the axial direction due to the increase in the overall 

gain. 

The variation of the local refractive index (only the imaginary part), n, (x), is shown in 

Fig. 6.21 at various axial positions. It can be observed that the value of n, is highest at 

the edge of the guide where the optical intensity is nearly zero, and at this position the 

n, (x) is equal to its unsaturated value nj = 0.003. Similarly, this value is minimum at 

the centre of the guide, where the optical intensity is the maximum. It can also be 

noticed that at a higher or longer axial (z) position (z = 1000 J..l.m), the complex 

refractive index profile is significantly lower, since the optical power is higher at this 

location, which reduced nj (x) further. It is clearly visible that at a larger axial 

distance, when the width of the guide widens, this also spreads the n, (x), along the 

transverse (x) direction. 

The variation of the power density along the axial direction (z) when different n, 

values are used is shown in Fig. 6.22. In the tapered section, as by (b) identified, the 

power density increase rate is lower than that of the uniform section as identified by 

(a). Although power increase rate was similar, however this is because in tapered 

section as the width increases the area increases so rate of power density increase is 

slower. 

However, it was clearly observed that the power density was increasing much faster 

when higher n,= 0.006 as shown by a chained line was used compared to nj= 0.003. A 

higher nj value increases the power along the axial direction contributing to a higher 

power density. For the dashed line as shown in the figure, when nj = 0.003, there is no 
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gain in the uniform section, the rates are similar to the tapered structure of the same ni, 

but due to no power increase in the uniform section the total power density is lower. 
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The effect on the power density is visible when different tapered angles are used, and 

next the effect of tapered angle is studied. The variation of the power density along 

the axial direction for different tapered angles is demonstrated and shown in Fig. 6.23 . 

In this case, the Pin, Ss, and n; was maintained constant at -40 dBm, 0.002 W/J..lm2, and 

0.003 respectively, while the tapered angle is varied. In both cases, since th input 

power is very low, the power density is increasing but very slowly. However, it is 

clearly seen that for a smaller tapered angle, e = 0.30 the power density is increasing 

much faster, therefore, overall attaining the saturation much earlier. Variation of the 

power density along the axial direction (z) when different tapered angles, e, with high 

input power is shown in Fig. 6.24, however this time the Pin = 10 dBm, being very 

large, for both the tapered angles it is clearly observed after the z = 100 (uniform 

section), the power density drops rapidly. In this particular case, the large drop in the 

power density is almost entirely due to the lateral expansion of the SOA. However, it 

is clearly observed that higher tapered angles experience much more drop on the 

overall power density. If the cross-section area of the SOA increases (due to tapering) 

faster than the power increase, then, power density is reduced. By proper design, the 

power density can be adjusted by controlling gain parameter and taper angle. 
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The effect of gain saturation is severe when input power is high and next the effect of 

tapering for such a case is studied. Variations of the power density with the 

propagating distance for both tapered and untapered SOA are shown in Fig. 6.25 for 

two input power levels. It can be seen that for a low input power, Pin = -30 dBm, the 

initial power density, as shown by a dotted line, is very low (right hand scale), but this 

value increases exponentially· as the effect of gain saturation is negligible. When the 

SOA is tapered, with () = 0.3°, the power density keeps increasing but very slowly as 

shown earlier. It should be noted that for tapered SOA, the modal gain is even higher 

than that of the uniform SOA, but the reduction of the power density increment is due 

to the increase in the core cross-section, as the rate of the power gain was higher than 

the rate of the width increase. 

On the other hand, when the input power is large, the initial power density is high, as 

shown by a dotted line (left hand scale) but its rate of increase is slow due to the 

strong gain saturation. However, the same taper angle as before, e = 0.3°, the power 

density drops rapidly. 

In this case, since the power gain was very slow, the large drop in the power density is 

almost entirely due to the lateral expansion of the SOA as stated earlier. This would 

reduce the effect of gain saturation considerably, and the differential gain 

improvement wouldbe greater. 

The variation of the total power when different input powers, P /", are used along the 

axial direction is shown in Fig. 6.26. The unsaturated material gain coefficient, g mo , 

tapered angle, saturation power density, S" were maintained constant as 0.005, 0.5°, 

and 0.002 W/J,lm2, respectively. It was clearly observed that even though the input 

power varied, the total power along the axial direction was increasing, however for 

higher input power it was much slower with comparison to lower input power. 

Beyond, axial position z = 600J,lm, the difference between the total power was 

reduced significantly, and the total power appeared to settle down with slight 

difference between them at the end of the propagation. 
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Fig. 6.25 Variations of the power density along the axial direction with different 
input power, for both tapered and untapered SOA. 

The variations of the gain along the axial direction for different tapered angle are 

shown in Fig. 6.27, when Ss' ni, and Pin were maintained constant at 0.002 W//-lm2, 

0.003, and -40 dBm, respectively. It can be observed that the tapered angle has 

significant impact on the final gain value. This is mainly because smaller angles yield 

a narrower width, which progressively increases local power density and reduces gain 

coefficients due to saturation. It was clearly observed that the total gain for B = 0.3° 

was 22.5 dB, compared to 27.5 dB when B = 1.5°. This clearly shows that a wider 

tapered angle makes the SOA cross-section larger, reduces the effect of gain 

saturation in comparison to smaller tapered angles. Hence the higher the tapered 

angle, lower is the effect of saturation causing the overall gain to be high. Now, the 

variation of the overall power gain with the tapered angle is shown in Fig. 6.28 for 

two different gain saturation values. It can be observed that as the tapered angle, B, is 

increased the total gain is also increased due to smaller effect of the gain saturation. In 

this case the input signal is taken as -40 dBm. It can also be observed that when the Ss 

value is increased, then the overall gain is also increased. 
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The unsaturated gain parameter, g rna ' depends on the carrier density in the active area. 

When the tapered angle is increased the volume of the active area is also increased 

and in this case the injected current has to be increased to maintain the same carrier 

density or the unsaturated gain coefficient. The variation of the current with the 

tapered angle is also shown in this figure by a dashed-dotted line. However the effect 

of tapered section is more dominant for higher power SOA. In this work current was 

calculated using equation (6.12) 

(6.12) 

where N is the unsaturated carrier density, q is the elementary charge, V represents 

the active volume and r s is the carrier lifetime. 

The variations of the power gain and output power with input power is shown in Fig. 

6.29 for two different input powers. It can be observed that as the input power is 

increased the total power gain reduces rapidly, which is due to the gain saturation. It 

can also be observed that for a low input power, Pin = -40 dBm, as shown by a dashed 

line, the gain increases rapidly as the taper angle, e, is increased to 0.10 and 

subsequently no further improvement can be observed. Although the total gain is very 

high the gain improvement due to tapering is only 3 dB. 
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Fig. 6.29 Effect of the tapered angles (degrees) on the overall gain with 
different input power. 

On the other hand, for a larger input power, Pin = 10 dBm, the total gain is very low, 

but this value increases monotonically and reaches its maximum value around () = 

0.7° and any further increase in the tapered angle would not increase the gain 

significantly. However, it can be observed that more than 10 dB overall gain can be 

achieved. 

The input power has a significant impact to the total gain, hence examined. The 

variation of the gain (dB) along the axial direction for different input powers is shown 

in Fig. 6.30. It can be clearly observed in the figure that when a low input power, Pin = 

-40 dBm shown by a dashed line was used the gain curve was almost linear, and the 

gain per unit length remained constant, with an overall gain of 38.28 dB. Also the 

increase was much more rapid, compared to when a high input power, Pin = 10 dBm, 

was used. However, since the power is low, so power density is low, the effect of gain 

saturation was negligible. 
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different input powers. 

On the other hand, when a high input power was used, the gain increase along the 

axial direction was very slow, but since the power density was high, the effect of 

saturation was attained earlier, with a small overall gain of 7.0 dB. Another significant 

observation made was that when the input powers were Pin = -30 dBm and -40 dBm, 

the gain along the axial direction was nearly the same, until when z > 800flm, when 

P in = -40 dBm had a slight increase in the overall gain. It was also observed though 

not shown here that when the input power was further reduced the effect of gain was 

minimum, for the axial distance of z = 1000 flm. 

The effect of the polarization dependence on the total gain along the axial direction 

was also examined . In this experiment a uniform guide structure was established, with 

the tapered angle, e = 0°. It is clearly seen in Fig. 6.31 that initially the gain for all the 

TE and TM modes was zero, however further increase along the axial direction 

contributed to increase in the gain with slight difference before reaching their 

respective saturation levels. 

209 



Chapter 6 Carrier Rate Equation, Gain Analysis and Gain Saturation 

For both widths, i.e., W = 1.0 Jlffi and 2.0 Jlffi, the TE mode shown by the dashed and 

solid lines, respectively, their overall gain was slightly higher than for the TM mode, 

however the TM mode for those respective widths attained their saturation much 

earlier. When a larger width, W = 2.0 J.lm was used, the total gain for both the TE and 

TM modes was 19.32 dB and 18.35 dB, respectively, with a gain difference of 0.97 

dB, while for W = 1.0 Ilm, it was 16.86 dB and 15.84 dB, respectively, with a gain 

difference of 1.02 dB. A wider width increases the amount of power along the axial 

direction hence the power density, this in turn increases andlor improves the overall 

gai~. Also, for wider guid"e the gain difference between TE and TM is smaller, 

therefore the gain difference reduces for W = 2.0 J.lm. For wider guide the 

confinement factor is also higher. Therefore, we can conclude on the above work that, 

rTE> rTM, thus GTE> GTM. Also, [2.0> [1.0,SO G2.0> Gt.owidth. 

The variations of the overall gain, total output power (P our), tapered angle or unifonn 

guide with different input powers is investigated and shown in Fig. 6.32. It is 

observed that when the input power decreases, the overall gain increases as shown in 

the left hand side of the figure caused by increase in the power density as stated 

earlier. However for a uniform guide structure the saturation was reached earlier, with 

an overall gain of 35.01 dB, compared to the tapered structures which was 38.28 dB 

and 38.30 dB for ()= 0.3° and 0.5°, respectively. It can also be seen that for the tapered 

angles the difference in the overall gain when different input powers were used was 

minimum. However for the higher tapered angle, ()= 0.5°, the gain was slightly higher 

due to the effect of the guide width. At input power, Pin = -40 dBm both structures 

attained their saturations. The overall gain will always be high, when a large tapered 

angle is used, as long as the input power is low. 

On the other hand, the total Pout results shown in the right hand side of the figure 

reflects the gain curve; when the guide was unifonn increase in Pin increases the total 

Pout, with a total output power, Pout = 12.63 dBm at the end of the propagation when 10 

dBm input power was used. When a tapered structure was implemented, the total 

output power was increased significantly with a total Pout = 17.00 dBm and 18.98 dBm 

for () = 0.3° and 0.5°, respectively, thus it can be concluded here that increase in 

tapered angle increases the overall output power, as long as the input power is high. 
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Fig. 6.31 Variations of gain (dB) along the axial direction for the 
TE and TM polarized modes at different input widths. 
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The effect of remeshing steps (m) plays a great role to the spot-size area as explained 

in section 5.5.1. In this section its effect on the power density and total power will be 

examined. The variation of the power density along the axial direction for different m 

values with high input power, Pin = 10 dBm is shown in Fig. 6.33. It should be noted 

that the Ss' ni, and e were maintained at 0.002 W/~m2, 0.003 and 0.3°, respectively. It 

was observed that for the first 100 ~m (uniform section) the power density had a 

slight increase, which was similar for both the m values. 
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Fig. 6.33 Variations of power density along the axial direction 
for different m values with high input power. 

However, further increase along the axial direction contributed to an abrupt drop in 

the power density. Although for m = 30 the oscillations were much pronounced and 

visible. This is because when a larger m value was used, it facilitated the excitation of 

higher order modes during propagation. One significant observation made was that at 

z =120 )lm the power density changes rapidly from 0.030 W/~m2 to 0.021 W/~m2, 

before it settles down to 0.025 W/~m2, this feature has also been observed previously 

in the spot-size expansion in Fig. 5.37. However, when z = 150 )lm, the power density 

undergoes oscillations which does not appear to settle down, to the end of the 
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propagation. When a low input power, Pin = -30 dBm was used and the parameters 

maintained as before as shown in Fig. 6.34, it was observed that when z > 100 /lm, the 

power density increases exponentially along the axial distance and the effect of m was 

the same as the previous figure. 

The variations of the total power along the axial distance when different m values, 

were used is shown in Fig. 6.35. It can clearly be observed that for the uniform section 

the total power was the same for both the remeshing steps, however further increase 

varied the total power between the two m values. It is seen that for a low m value, m = 

5, their was a slight increase in the total power along the axial direction compared to 

m = 30. During propagation, the larger m value, m = 30, undergoes higher oscillations 

in the power density as shown in Fig. 6.34, this uneven distribution of the power 

density along the axial direction contributed to the slight drop to the total power. 
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213 



Chapter 6 Carrier Rate Equation, Gain Analysis and Gain Saturation 

le-5 ~----------------------------------------------~ 

8e-6 

~ 6e-6 
~ 
o 
Q. -.ES 
o E-' 4e-6 

2e-6 

o 

p. =-30dBm on 

S, = 0.002WIllmZ, "j = 0.003 

9 = 0.3
0 

o 50 100 

m~ / /\ 
11/ = 30 

150 200 250 

Z(~m) 

Fig. 6.35 Variation of the total power along the axial direction 
when different m values (re-meshing steps) was used. 

6.6 Summary 

300 

In this chapter, the FEBPM approach has been used to study rigorously the complex 

refractive index profiles to provide modal gain in tapered waveguide structures. The 

field expansion and modal gain properties has also been further examined. The 

mathematical carrier rate equation is outlined. 

For SOA structures its ability to amplify the power of light is very important. Thus, 

the gain of the SOA is of primarily interest, as it determines other essential factors, 

such as signal-to-noise ratio when incorporated into systems [186]. In this chapt r the 

gain analysis of SOA structures is described which includes the variation of the gain, 

tapered angle, current, input power and power saturation along the axial direction. 
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It is well known that the maximum gain, which can be obtained in these structures is 

restricted by gain saturation mechanisms. This subsequently affects the dynamic range 

of the amplifier, limiting the maximum optical power, which can be input to and 

output from the amplifier. Therefore, this mechanism is thoroughly investigated in 

this chapter using simulation results. 
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7.0 Far field Patterns and Birefringence in SOA 
Structures 

7.1 Introduction 

In Chapter 2, we discussed the Far field profile theory in this chapter we shall discuss 

the mode expansion principle and furthermore, demonstrate some simulation results. 

The optical wave transmitted through the waveguide is partly reflected at the facet; 

simultaneously, it is partly transmitted through the facet and radiates into the free 

space. The transmitted wave, observed just outside the facet, is in a form proportional 

to the lateral mode E (x,y) of the waveguide and the intensity distribution is called the 

near-field pattern (NFP). 

The output wave propagates in free space, with evolution of the wavefront and the 

intensity distribution. The intensity distribution observed at a plane sufficiently away 

from the facet is called the far-field pattern (FFP). 

Analysis of the wave-front and the intensity distribution in the far field provides 

important insights useful for the design of focussing, collimating and coupling into 

optical fibre of semiconductor laser light for practical applications. 

The dimensions of a convenient test range can be reduced by making measurements in 

the near field, and then using the analytical methods to transform the measured near­

field data to compute the far field radiation characteristics [187-189]. These are 

referred to as near field or far field (NFIFF) methods. Generally, implementation of 

NF/FF transformation techniques begin with measuring the magnitude and phase of 

the tangential electric field components radiated at regular intervals over a well­

defined surface in the near field. By the principle of modal expansion, the sampled E­

field data is used to determine the amplitude and phase of an angular spectrum of 

plane, cylindrical or spherical waves. Expressing the total field in terms of modal 

expansion allows the calculation of the field at any distance, solving for the fields at 
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infinite distance results in the far field pattern. However, the planar-near field 

transformation has a principal advantage over the cylindrical and spherical techniques, 

due to its mathematical simplicity. 

In the next section of this chapter we shall discuss the mode expansion method for 

planar waveguides. 

7.2 Mode Expansion Method for Planar Waveguides 

The mathematical formulations of the planar NFIFF method are based on the plane 

wave (modal) method. Simply stated, any monochromatic, but otherwise arbitrary, 

wave can be represented as a superposition of plane wave travelling in different 

directions, with different amplitudes, but all of the same frequency. The objective of 

the plane wave expansion is to determine the unknown amplitudes and directions of 

propagation of the plane waves. Similarly, cylindrical wave and spherical wave 

expansions are used to determine far field patterns from fields measured in the near 

field over cylindrical and spherical surfaces, respectively. 

The relationship between the near-zone E-field measurement and the far-zone fields 

for planar waveguides can be expressed as 

(7.1) 

where 

h h h 

k=a",kz+a,ky+a,k, (7.3) 

h 1\ 1\ 

(7.4) 
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where/(kx,ky) represents the plane wave spectrum of the field. The x and y 

components of the electric field measured over a plane surface (z = 0) are expressed as 

( - 0) - _1_ iiI' (k k) -J(k.x+kyy )dk EM x,y,z - - 2 J x x' y e xdky 47Z' a a 
(7.5) 

(7.6) 

The x and yeo-ordinates of the plane wave spectrum, Ix(kx,ky)and Iy(kx,ky), in 

terms of the near-zone electric field is given as 

£b/2[0/2 (. ') 
I' (k k) = E (x' I Z' = 0) e+i k.x+kyY dx'd I 

J x x' Y b/2 0/2 XQ ,y, y (7.7) 

£b/2[0/2 I ·(k 'k ') 
f, (k k)= E (x • z' =O)e+J • .1+ yY dx'd . 

y x' Y b/2 0/2 yo ,y'. y (7.8) 

The far field pattern, in terms of the plane wave spectrum function, f, is then 

expressed as 

or 

k -jkr 

E(r,(},?) == j_e -[cos(} l(kx,ky)] 
21D" 

k -jkr 

E~ (r,(},?) == j_e_cos(} (- Ix sin? + Iy COS?) 
21D" 

(7.9) 

(7.10) 

(7.11) 

The procedure then to determine the far field from near field is as follows: 

1) Obtain the electric field components E .10 (x, y, z = 0) and 

Eyo(x,y,z = 0) in the near field. 
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2) 

3) 

Far Field Patterns and Birefringence in SOA Structures 

Find the plane wave spectrum function fxand fy using equations (7.7) 

and (7.8), respectively. 

Determine the far field electric field using equations (7.10) and (7.11), 

respectively. 

Similar procedures are used for cylindrical and spherical measuring systems except 

that the constant surfaces are, respectively, cylinders and spheres. However, their 

corresponding analytical expressions have different forms. 

It is apparent once again, that if the tangential field components are known along a 

plane, the plane wave spectrum can be found, more convenient if the evaluation is 

restricted to the far field region. 

7.3 Simulation Results 

In this section the far field patterns will be studied and demonstrated. The near field 

was obtained from the Beam Propagation Method (BPM) input and output fields. 

These were then investigated and their far field patterns plotted. It should be noted 

here that tapered waveguide structures were used. 

The variation of the farfield pattern with different angles for both the absolute and real 

and imaginary inputs are shown in Fig. 7.1. It should be noted here that a tapered 

waveguide structure was used with a tapered angle, B = 0.3°. The dashed and solid 

lines represent the absolute input and real and imaginary parts, respectively. It was 

observed that when the real and imaginary parts were read and launched to generate 

the near field, the farfield pattern generated was similar to when the absolute field was 

launched. However, in this figure we can see clearly that there was a slight mismatch 

between the two, which is insignificant. It should be noted that, the farfield pattern 

when the imaginary and real values were obtained never expanded to their maximum 

due to the size of the window. 
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Fig. 7 .1 Variation of the farfield with different angl , 
for both absolute and real and imaginary inputs . 

The variations of the farfield when the mode field was launched at the start of the 

waveguide (before tapering) and after tapering were investigated and shown in Fig. 

7.2. It should be noted here that at the start the initial width of the guide wa WI = 1.0 

11m and expanded to Wf = 10.4 11m at the end of the propagation. It can be clearly seen 

that when the near field was Wi = 1.0 11m, the farfie ld pattern widens from e = -50° to 

500. However, when the output field was launched the farfield beam was reduced to e 
= _200 to 200 and the appearance of ripples were visible. It should b noted here that 

when a Gaussian near field input was used the farfield pattern was simi lar to the n ar 

field, but in this case the modal field as the input profile was used. The presenc of 

ripples was due to the mode expansion after propagation and phase change, which 

was contributed due to the excitation of hjgher order modes with the fundamental 

mode during propagation in the tapered section. 
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Fig. 7 .2 Variation of the farfield at different width locations. 

In the following figure the investigation of the vertical and horizontal angles of the 

farfield pattern were investigated and shown as Fig. 7.3. The near field used was the 

output field obtained at the end of the tapered section in BPM. It can be observed that 

the farfield pattern on the vertical direction (~) is more similar to the one plotted 

earlier when ~ = 1.0 J-lm, this is mainly because the width of the mode at the tapered 

section kept on changing during propagation while the height remained constant. 

However, the field pattern was not as smooth as before due to mode interference. The 

ripples observed may also be due to the near field being very wide, and this yields a 

very narrow far field, which can have side lobes and nulls similar as antenna's 

radiation pattern [190,191]. 
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In Fig. 7.4 the variation of the farfield on the vertical direction with different angles 

has been plotted. It can be clearly seen that the farfield pattern widens when a higher 

tapered angle, B = 1.50 shown by a solid line was used; however the range of the 

expansion were the same. 
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Fig. 7.4 Variation of the farfield on the vertical direction with 
different angles. 
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The pattern of the farfield for all the three different tapered angles were the same, 

however due to the scale of the plot when a smaller angle was used the farfield pattern 

appeared like a straight line shown by the dashed line. 

Investigation of the effect of change of width to the spot-size area and farfield angles 

were examined and shown in Fig. 7.5. Firstly, the spot-size area for 0:." OJ, with change 

in width is shown by the solid and dotted lines, respectively, at the left hand side of 

the figure. It can be observed that 0:., dropped slightly from 0.9871 Jlm2 to 0.8831 Jlm2 

before increasing rapidly with increase in width. Therefore increase in the width on 

the horizontal direction contributed to the increase in the spot-size area, 0:.,. 

However, since the height of the waveguide was constant it was observed that spot­

size area, OJ, remained stable at approximately 0.77 Jlm2 and any change in width was 

insignificant. The farfield angle at the horizontal section for (}n and ~. expressed as 

• -1 A. 
() =tan --x 

7rC1 xl2 

(7.13) 

are shown at the right hand side of the figure. For both cases it can be clearly 

observed that the angles increase slightly with increase in width, however after W = 
1.0 Jlm, it decreases slowly with increase in width. However, (}x was experiencing a 

smaller farfield angle increase initially, but after W = 1.0 Jlm, the decrease was slower 

compared to ~', having a slight higher angle for a wider width. The farfield angle at 

the vertical section for 8", and (}y' expressed as 

() 
• -1 A. 
= tan y 

7rC1 yl2 

(7.14) 

are shown at the right hand side of the figure too. In this case, 8", and 8,,' are 

represented by the dotted and dashed dotted lines, respectively. Initially, for both 

cases increase in width increases the far field angle, however after W = 1.0 Jlm, they 

appeared to be stable, and any increase in width from henceforth was insignificant, 

this is due to the height ofthe guide being constant (formation of the structure). 
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Therefore, a;" starts from high width and when W decreases, a;" decreases until when 

it reaches (Jmim it approaches its cut-off, then increases. ex' is directly related to a;" by 

equation (7.1). For ex, when W reduces it reaches its maximum, fU11her reduction 

causes an increase in ex. 
Since H is fixed, as W reduces OJ, remains constant. However, as W reaches a very low 

value, due to cut-off OJ, increases. 
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Fig. 7.5 Variation of the spot-size area and farfi eld angles at diffe rent 
widths. 

7.4 Birefringence in Layered waveguides 

In this section of the chapter we shall investigate the birefringence principle in layered 

waveguides. Some published papers have reported on polarization dependence and 

birefringence control/compensation [192] . It has been observed and reported that the 

change in the refractive index I:!..nx is higher than the change in refractive index I:!..ny. 

This implies that the effective index n/ of the H/ I mode is lower than the effective 

index n/ of the H/ ' mode, having a birefringence, B, expressed as B = n/ - n/ 
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The effective index of the TE (transverse electric polarized) mode of the layered 

structure can be calculated by using equation 7.15 [157], [193] 

(7.15) 

and for the TM (transverse magnetic polarized modes) it can obtained by [5], [6] 

(7.16) 

where hg and hs are the heights of the alternate high and low index layers, 

respectively, and ng and ns are the refractive indexes of the core and cladding regions. 

n,=3.480 
ns=3.401 
nc=3.169 

I" ·1 W= 2 J.lm 

Fig. 7.6 Schematic cross section of the layered waveguide. 

Initially, in this work, the width was taken as W= 2 J.lm and the refractive index of the 

core and cladding was taken as, ng = 3.480 and ns = 3.402, respectively. The modal 

solution of the confinement factor for the TE and TM modes were ry= 0.2014 and rx 
= 0.191, and the effective indexes, rfe and nXe were 3.299 and 3.290, respectively. In 

terms of both the effective indexes and the confinement factor, the TE mode was 

observed to have a higher value than TM mode. Hence, the layered structure neq(l'E) > 

neq(l'M). This yields to a positive material birefringence, where neq(TE) and neq(TM) 
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are the quasi-TE and TM modes, respectively. The material birefringence is defined 

as Bmaterial = n eq(TE) - n eq(TM), and Bmalerial = 0.009. 
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Fig. 7.7 Variations of the effective indexes against ratio (hg: h5) ' 

In this work we used a layered approximation with the ng and ns values assum d at 

different layers. When Equation (7.15) was used ng = 3.391 for TE and when quation 

(7.16) was used ns = 3.402 for TM mode. When the ratio hg and hs was k pt to 1 :2.85, 

the n Xe and fx was reduced to 3.284 and 0.189, respectively. This could b du to this 

layers assisting modal confinement. 

When a layered cladding region was used to mimic homogenous nc, and nc = 3.169 for 

the TE mode, it yielded nc = 3.159 for TM, and the TM solution was carried out the 

result was f x = 0.l92 and n Xe = 3.281. Here instead of simulating a structure with a 

real layered region we have just assumed if the index of nc = 3. 169, then 

approximation can be done by the layered structure and there maybe a birefringence 

of, B = 0.018. Although confinement factor (f) has improved slightly it is too little to 

make it polarization independent by using this approach. 
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Fig. 7.8 Variation of the birefringence with the ratio (hg: hs). 

Fig. 7.7 shows the variations of the effective indexes for the quasi-TE and quasi-TM 

modes against the ratio (hg:hs). The ratio was varied while ng and ns were kept 

constant at 3.170 and 3.480, respectively and the equivalent indexes, neq(TE) and 

neq(T1vf) calculated using equations (7.15) and (7.16), respectively. It was clearly 

observed that when the ratio (hg:hs) increases both the neq(TE) and neq(TM) decreases 

monotonically. Furthermore, it was also observed that the value of neq(TE) is higher 

than neiTA!), giving a result of a positive material birefringence. 

The variation of the material birefringence with the ratio is shown in Fig. 7.8. As the 

ratio between hg and hs is high, the difference between neq(TE) and neq(TM) increases 

considerably, until when the ratio of hg:hs is 1: 1, at this point the maximum material 

birefringence is attained, and further increase in the ratio decreases the material 

birefringence as shown in the figure. Therefore, it is desirable to maximize the 

material birefringence simulations by using a ratio of hg:hs = 1: 1. 
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7.5 Summary 

In this chapter, the far field profile is examined for different waveguide structures, 

which includes the derivation of the mode expansion and simulation results. The near 

field profile was usually obtained by the beam propagation method. The farfield 

pattern was varied when the near field was absolute, real and imaginary, all shown in 

this chapter. 

The end section of this chapter investigates the effect of birefringence in layered 

structures. The mathematical equations for both the effective indexes and the material 

birefringence are presented. 
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8.0 Conclusions and Future Works 

8.1 Overview of the Work 

The main objective of this research work was to develop further the Finite Element 

based Beam Propagation Method (FEBPM) and as a result to study and analyse the 

evolution of the optical beam profile along semiconductor optical amplifiers. In this 

work various types of semiconductor waveguide structures were considered with 

more attention given to tapered structures. Extensive development of the powerful and 

robust vectorial FEBPM codes have been implemented and a range of applications 

analysed. The set objectives of the study at the start of this work were indeed 

successfully achieved, with detailed investigations and analysis of the results being 

undertaken during the course of the work. 

It should also be stressed that in this work, the finite element-based techniques were 

further developed for use in the analysis and design of practical waveguides such as 

the rib waveguides, deeply etched waveguides and planar waveguides. Since most 

photonic devices are designed around optical waveguides, it is a basic and indeed 

indispensable approach to solve accurately for the modes of these optical waveguides. 

Therefore, there is a particular need for modeling techniques capable of accurately 

performing the modal analysis needed for a wide range of both lossless and lossy (or 

with gain) optical dielectric waveguides and also to provide the general complex 

propagation constants and the full vectorial fields of different modes of such 

waveguides. Thus, the analysis of light propagation in longitudinally varying optical 

devices has been successfully performed using one of the most common techniques, 

the beam propagation method (BPM), which has been incorporated with the 

computationally efficient finite element method. 

Chapter 2 discussed the general overview of the Optical Amplifiers (OA) and their 

diverse applications. This include the history of the OA generation and its 

classification. The area of most interest, however, was Semiconductor Optical 
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Amplifiers (SOAs). In literature, SOAs have been reported to provide high gain, with 

low power consumption and their single-mode waveguide structure makes them 

particularly suitable for use with monomode fibers. A semiconductor laser is 

essentially an optical amplifier enclosed within a reflective cavity that causes it to 

oscillate via positive feedback. Semiconductor lasers use semiconductors as the gain 

medium. They are compact and can be fabricated in large volumes using advanced 

integrated semiconductor technology, making them the most popular light sources for 

optical communication systems. Semiconductor amplifiers are characterized by large 

optical gain, where more than 20 dB gain can be easily achieved in devices of few 

hundreds of microns of length. Large optical gains are always present together with 

low saturation power and hence, saturation mechanisms are expected to be important 

to set the performance of any device based on active semiconductors. 

Broad-area semiconductor optical amplifiers (SOAs) were also studied in this work as 

they allow the output power to be boosted, although the lack oflateral structure and mode 

beating leads to a degradation of the beam quality in such devices and even to 

filamentation. SOA's with a tapered gain region have proven to be very efficient to reach 

high-output power in a diffraction-limited beam by the amplification of the light emitted 

by a master oscillator, be it integrated or not, which was detailed in the later chapters. 

Several aspects of these devices have been analyzed both experimentally and theoretically 

although comparatively little research has been performed on the correlation between the 

structure of the device and the beam quality and in this work some of these features was 

studied thoroughly. Finally, a detailed mathematical approach of the far field pattern 

theory was presented. 

Chapter 3 presented the mathematical background for the finite element method 

vector H-field variation formulation. This technique has been proven to be a powerful 

and well-established numerical technique for analyzing optical waveguides. The 

fundamental mathematical relations derived from Maxwell's equations, for the 

application of this method in the solution of optical waveguide problems are 

considered in this chapter with a more detailed H-field finite element formulation. 

The primary concepts such as the shape functions and element matrices were also 

discussed in detail. With the H-field formulation, the appearance of spurious modes 

with the physical modes was a major drawback. To eliminate these spurious modes a 
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penalty function method was introduced and its role explained. This method was used 

to eliminate the spurious modes by imposing the constraint V.H = 0 in problems of 

microwave or optical waveguides, improving significantly the quality of the field. 

Furthermore, a very useful and efficient approach, which involves the extending of 

the domain of interest to infinity keeping the same matrix value, was considered. 

The work showed that the FEM could also be used to determine the initial field 

distribution for simulation analysis using the vector finite element based beam 

propagation method. 

In Chapter 4, general overviews of the various propagation algorithms were discussed, 

with the main features of the algorithms reviewed. More important has been the 

mathematical development of the vector beam propagation method approach, based 

on the versatile finite element method (FEBPM). The concept of the perfectly 

matched layer (PML) boundary conditions in absorbing the unwanted radiation waves 

and its incorporation with the finite element technique has also been discussed. The 

application of the finite elements to both the transverse cross-section and longitudinal 

directions produced a system of linear equations, which were solved for the modal 

values for a given initial field profile. The use of imaginary distance propagation with 

the FEB PM to generate the quasi-TE and quasi-TM modes and the calculation of the 

beam power has also been detailed. 

In Chapter 5, the evolution of the optical beam along the tapered semiconductor laser 

structures, by using the rigorous full vectorial numerical approaches based on the 

finite element method (FEM) has been presented. Numerically simulated results 

obtained by using rigorous full vectorial approaches indicate that the presence of the 

finite discontinuity steps generates higher order modes along a tapered guided-wave 

structure. The existence of the odd modes for a symmetric structure has clearly been 

demonstrated by the correlation of its transverse field profiles, the axial variation of 

the beat length, and also by calculating the modal coefficients of these modes in the 

evolved beam. Interference between the modes allows the beam quality to deteriorate 

significantly both in the lateral and the axial directions. The nonlinear interaction 

between the forward- and the backward-propagating waves has been reported to 

produce a transverse spatial modulation of the phase and intensity, and similarly, the 

mode beating between the fundamental and higher order modes may also contribute 
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towards the mode filamentation. It has also been observed that the phase of the optical 

beam is not monotonic in the lateral direction, and this contributes further towards the 

deterioration of the beam filamentation and of the far-field profiles. Often, a Gaussian 

field is taken as the input signal to the amplifier section, which may not be launched 

in a way that is perfectly symmetrical with the structure, and this beam profile may 

also differ significantly from the fundamental mode of the input section. In that case, 

the modal coefficients of the excited higher order modes are higher and may even 

include modes with asymmetry, which would be amplified along the tapered 

amplifiers and are expected to deteriorate the beam quality further. 

The evolution of the optical beam along deeply etched semiconductor laser structures 

by the use of the vectorial finite element based beam propagation method (FEBPM) is 

presented in Chapter 6. In this Chapter, the approach has been used to study 

rigorously the complex refractive index profiles to provide modal gain in such 

structures. The modal gain properties and field expansion has also been examined in 

detail. The power gain in an active photonic device, such as a laser or an amplifier is 

due to the presence of the imaginary part of the complex refractive index in the core. 

The injected current generates carrier density and when the density is above the 

transparent carrier density then the optical field can be amplified. In the case of a 

high-power tapered SOA, the width of the SOA changes continuously, which reduces 

the power density to improve the total gain. 

The effect of gain reduction along the transverse direction, due to the transverse field 

profile, has been investigated and results presented. The variations of the gain along 

the axial direction with different parameters such as the tapered angles, power 

saturation, input power also was examined. For this optical structure, the stationary 

value of the power confinement factor in the active area is calculated by using the 

finite element method (FEM) and compared with the z-dependent BPM which clearly 

shows sharp oscillations which are due to the existence of higher order modes during 

propagation in the tapered section as explained in Chapter 5. 

Again, it is well known that the total gain of a semiconductor amplifier also depends 

on the input power to the SOA. When the input power is higher, the resulting optical 

field reduces the carrier density and ultimately saturates the overall gain. In this work, 
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the saturation power and the tapered angles, along with the confinement factor have 

been used to find the effect of the gain saturation. The effect of the gain saturation on 

the total optical gain of the amplifier by considering both the transverse and axial 

variation of the local gain coefficient also has been examined. 

In Chapter 2 the mathematical derivation of the farfield profile was presented: 

however in Chapter 7 the mode expansion and some simulations results were 

discussed. The waveguide field profiles assumed to be uniform along the length of the 

laser as long as the cross section of the guide remains uniform. At the output facet this 

field emerges from the laser waveguide and diffracts freely in the surrounding 

dielectric (usually air). 

In Chapter 7 the shape of the farfield patterns contributed by the tapered section and 

the optical beam and near field profiles were examined. The mathematical approach 

of the mode expansion method for planar waveguides was discussed. The near field 

profile was usually obtained from the input or the output fields of the beam 

propagation method (BPM). The variations of the farfield patterns when the field were 

absolute, real and imaginary were also examined. Furthermore, the variation of the far 

field pattern when an input field from the BPM is launched with comparison with the 

output field which significantly explains the effect of the tapered section, and the 

appearance of ripples when a wider width was used. 

Finally, the birefringence in the tapered waveguides was considered. The 

mathematical equations of the effective indexes of the TE and TM modes were also 

presented. It should be noted here that with the structure of the waveguide a positive 

material birefringence was attained and some useful simulations results were 

presented. 

8.2 Future Work 

In this research work it has indeed been proven, in light of several applications 

presented and simulation results obtained, that the versatile vector finite element 

based beam propagation technique is a rigorous method for characterising accurately a 
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wide range of guided-wave optical waveguide devices. Several design problems have 

been experienced and reported by many research workers in this field, some of which 

have been investigated in this work and various design techniques have been 

recommended to overcome them. Further applications of this technique (FEBPM), 

which are essential to better communications systems and can be investigated include, 

polarisation issues, analysing and investigating the effect of TE and TM modes on the 

modal gain of the SOA and design optimisation for their polarisation independent 

operation, polarisation conversion, the effect of current on both polarisation signals, 

the effect of facet reflectivity on the general performance of the SOA, investigating 

the non-linearities that arise from the carrier density dependence of the gain and the 

refractive index in the active regions of the amplifier. 

This research work has been focussed predominantly on the optical model of the 

SOAs. To have a complete design package for SOAs, the electronic and thermal 

models also have to be incorporated. In the development of the Electronic model, the 

design of Multiple-Quantum Wells (MQWs) and investigating their characteristics 

and to develop and improve the laser performance can be considered. In a system with 

many quantum wells separated by spatially thick high barriers, the carriers may 

become non-uniformly distributed among the wells. In view of the sub-linear 

relationship between optical gain and carrier density, with relationship between non­

radiative recombination rates and carrier density and the non-uniform carrier 

distribution affects the high performance laser operation. This is a drawback 

established by many designers and it is thus essential to study in depth the carrier 

distribution and the effect of the carrier on aspects such as the gain. The energy band 

diagram, which detects electric fields and influences current flow within the 

semiconductor needs to be developed and its key properties need to be investigated. 

The heating effect is experienced on both the electrical and thermal models. In 

electrical degradation, the increase in threshold current accelerates the device through 

heating leading to catastrophic damage of the device, while in thermal degradation a 

major problem has been observed in the bonding of the device causing it to generate 

excessive heat. The heating effect and thermal dependence are key areas that need to 

be investigated. Polarisation issues such as polarisation sensitivity and polarisation 

variability are also very important for these devices. 
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Finally, a prototype design package could be developed which would incorporate the 

optical, electronic and thermal models. The optimised SOA can then be integrated 

with other devices such as the spot size converters. 
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Appendix 1 

The Calculation of the Element Matrices 

The evaluation of the elements [At and [BLfrom equation (3.52) and (3.53). 

respectively. are shown here. 

Therefore. from equation (3.52); 

[A] e= &-1 jlQf[Q]dn 
t. 

-1 
=& 

t. Ox Oy 

jfJo[Nf [N] 
OX 

From equation (3.53); 

[B] e= J.l nNf[N]dn 
t. 

fNnNl [of [0] 
= J.l [of [0] [Nf[N] 

t. [of [0] [of [0] 

_ o[Nf o[N] jfJ[NY o[N] 
Oy Ox OX 

_ p2[NT[N]+ o[Nf o[N] jfJ[NY o[N] 
Ox Ox Oy 

jpo[Nf [N] o[NT o[N] + o[Nf o[N] 
~ Oy Oy ax ax 

(A1.I) 

[ono1l 
[of [0] (A1.2) 

[Nf[N] 

The integration of the shape functions in the above equations (A1.I) and (A1.2) can 

be evaluated for a triangular element using the following relation 

(AI.3) 

A is the area of the triangular element. 
e 

In this case the following integrals can be obtained. 
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(A1.S) 

(A 1.6) 

From equation (AI.1) some of the elements of the 9x 9 [Ale matrix can be given as 

( )2 [2 ] 1 2 2 oNI 1 - f3 Ae 2 
[A]e(II)=- J-p Nl + - do.=- +c1Ae 

• SA Oy S 6 
(A 1.7) 

(A1.8) 

[A] =!J-ONI aNI dO. =-!cbA 
e(1.4) :l.. a t t e 

SA vj' lX S 
(A 1.9) 

Also, from equation (A 1.2) some of the elements of the 9 x 9 [B] e matrix can be 

given as 

[B] e(l.t)= Jl JNt
2 

dO. = Jl i 
A 

(A 1. 10) 

[B] e(I.2)= Jl JNtN2 dO. = Jl ~~ 
A 

(A1.11) 

[B] e(I.4)= 0 (A1.12) 
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Power Calculation 
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S, 

1 2 
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S, 
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lie 
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but c=-== 
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{
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yl 

[ 

1l./6H 2· 
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1l./6Hy/ 

1l/12HY2H y3 

Power Calculation 
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