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ABSTRACT

The Korteweg-de Vries equation (KdV) is a partial differential
equation which has some remarkable mathematical properties.
Furthermore, it also appears as a useful model in a great many
physical situations. Thus, although it was originally obtained as
an approximation in fluid Aynamics, it was reinterpreted as a
canonical field theory for weakly dispersive and weakly nonlinear
systems, This reinterpretation led to the hypothesis that the
properties of the KAV could be understood in terms of a balance
between the competing effects of dispersion and nonlinearity.
Alternatives to the KAV were proposed on the basis that their
dispersive properties were physically and mathematically
preferable to those of the Kav,

The use of dispersion, which is a linear concept, as a criterion
for predicting the properties of these nonlinear equations was
examined in an earlier thesis by Abbas. By introducing a general
class of equations which includes the KAV and all its proposed
alternatives as special cases, Abbas investigated in detail the
predictions based on the dispersion relation and compared them
with the actual properties of the equation, particularly in regard
to the existence of solitary waves. He found little correlation
and some contradictions and concluded that the idea of a balance
between nonlinearity and dispersion 18 not useful way of
understanding these equations. It is clear, therefore, that we
must develop other criteria to obtain this understanding.

In this thesis we continue this investigation by looking at other
properties of the class of equations introduced by Abbas which are
relevant to the Kav, The general question which we are
considering is whether the properties of the KAV are unique in
this class and if so how can we decide this a priori, i.e., from
the equation and its elementary solutions. A prerequisite for
tackling this problem is to establish whether the embedding of the
KAV in this class is reasonable, i.e., that these equations can
indeed be considered as homologues of the KAV. Thus, it is
necessary to establish well-posedness, the existence of solitary
wave and other elementary solutions and the existence of other
properties such as, for example, conservation laws. These are the
specific questions that we consider in this thesis.

To make the thesis self-contained we begin with a comprehensive
review of the KAV and its main alternative, the regularized long
wave equation, together with the work of Abbas. This comprises
the first part of the thesis and puts our own contribution in its
proper perspective.

The second part of the thesis contains our own contribution
and begins with a completion of the analysis of solitary waves
begun by Abbas. We next partition the general class into five
equivalence classes and establish well-posedness for three of them .
and existence for a fourth. Finally, we show that all equations

-9-



have at least two conservation laws, some of the equations have at
most three conservation laws. These results enable us to conclude

that this class of equations is a reasonable one in which to
investigate the question referred to above.

The thesis ends with a résume and suggests avenues for continuing
this investigation.

-10-



CHAPTER ONE
NTRODUCTION

1.1 General Perspective

Thé last twenty five years have seen a great deal of progress in
the theory of nonlinear partial differential equations. ' This has
come abhout for three reasons. Firstly, the use of functional
analysis has advanced the understanding of well-posedness in the
subject. By posing the problem in a Banach séace or Hilbert space
and using weak topologies on these spaces, techniques such as a
priori inequalities together with fixed point theorems,
contraction maps and sequencing can be used to establish the
existence of weak solutions for a large variety of equations.
Uniqueness and regularity can then be proved separately to
establish the existence of classical solutions. The point here
is that it is easier to prove the existence of weak solutions and
then establish regqularity rather than do it Dboth together.
Secondly, the advent of high speed computers with large processing
capability ha.é allowed efficient numerical procedures t§ 'be
developed to obtain detailed quantitative solutions of complicated
equations such as the Navier—sfokes and Einstein equations., It '
has kalso allowed numerical experimentation to become a standard
tool of mathematicalb investigation by providing iarge—ééa.ie
simulations. Thirdly, in the area of exact solu’tions' and
feduction to quadratures, i.e., integrability, there has beén a
significan’c adva;'nce with the discovery of a class of nonlinear
partial differential equations which can be transformed £o a
linear 1integral equation via an a.ssociated linear eigenvalue

problem. This procedure is usually referred to as the inverse
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scattering method.

In this thesis we are concerned with this third aspect and in
particular with the properties of the equations in this class,
which we refer to as Athe ini:egrahle class., Since one of our major
questiqns concérna: well-posedness, we sha].l use functional
ar‘lalytid techniques. On the other hand we make no use whatsoever

of numerical methods,

1.2 The inteqrable class
The class of equations for which the inverse scattering wmethod
applies includes equations such as the well-known Korteweg—de

Vvries equation (KAV).

"t"'“x"'““x"'“xxx'o, {(1.1)
and the sine-Gordon equation (SGE)

Both of these equations arise in many applications and hence -are
not merely pathological examples. Typical applications include
. shallow water wave theory, plasma waves, ion-acoustic, the
anharmonic lattic, ..., etc. PFurthermore, from the construction
of the equations it is clear that the KAV and SGE can be
considered as particular nonlinear extensions of the undirectional
wave equation and one dimensional wave equation respectively.

This view point will be taken up later for the Kav.

It turned out that these equations have a number of very
interesting properties apart from the fact that they ~can be

linearized.v These are as follows. (1) They each have a family

-12-



of splitary travelling wave :solutions which move with different
speeds. This contrasts with the linear case where all solitary
waves have the same speed. (2) They each have a new class of
exact solutions called wmultisolitons. ' A multisoliton 18 a
nonlinear . combination ¢;7£ solitary waves . which decomposes
asymptotically as ([t} - o 1into a linear combination. (3) Each
equation has an infinite number of local conservation laws. These
lead to an infinite set of conserved functionalswithin a class of
solutions which includes the multisolitons. (4) Each equation haak
an auto-Backlund | transformation., By definition this is a map of
one solution to another. The usual form of the map is in terms of

a system of partial differential equations,

'rhe qﬁest;ion now arises as ‘to ‘vvlhether‘ all these éroéerties a.re
:connected. We look at this question from the following point of
view: 1if an equation has soliton solutions does it follow that (1)
it is solvable by the inverse scattering method, (2) it has an
1_nfinite number.. of conservation laws, (3) there exists a Backlund
transformation, ' The reason for doing this is Dbecause of -the
following observations. Firstly, there is no systematic way of
getting the associated 1linear eigenvalue problem ‘for inverse
scattering from the nonlinear partial differential equation. It
has to be guessed. Secondly,  although there are systematic ways
of getting conservation laws and Backlund' transformations, the
methods are tedious and may not: always: work on - arbitrary
differential equations. The situation is ‘similar in regard to
finding' soliton solutions. Clea.rly, if we are going to solve this
problem then it: is necessary to first establish whether an
equation. has soliton solutions or not. To put: it more

gpecifically, we would like to know when a solitary tfavelling

-13-



wave solution of a nonlinear partial Qifferential equation is also
a soliton. That is, we would like to know what properties this
wave and the equation must have to guarantee the exiatence of
r;ultisoliton solutions. This study was 1nitiated by Abbas [’1] and
this thesis is - a continuation of {t. In order to put our

contribution in perspective we now turn to a discussion of the

KAV, its properties and the work of Abbas.

1.3 The KAV as a field theexy

The KAV equation is a nonlinear partial differential equai:ion of
evolution type in one space and one time dimension. The equation
(1.1) was first derived. in 1895 in the study of shallow water
waves by Korteweg and de Vries [10] to demonstrate that it could

support a solitary wave.

Inspite of this earlier derivation of the equation it was
neglected for about 70 years until 1964 when Broet, -in his study
of_ the interaction of nonlinearity and dispersion in wave
propagation [5] suggested that the equation could be approached
from the point of view of a field theory. The properties of this
field are thought to be obtained from nonlinear and dispersive
effects corresponding to the terms uu, - and Uy respectively.
Since these terms appear additively in the equation their
interaction wili be observed only in the solution space. Hence
the  general scheme proposed by Broer is to write the field

equation as a structural perturbation
u, + ux~+ N(u) +‘ D(u) = O (1.3)
of the basic unidirectional linear nondispersive equation

-14-



u + u. =0, . . ‘ ) ; (1.4)

where N and D 'a.re the nonlinear and dispersive perturbations

respectively and can be generated from physical considerations.

This scheme has the following advantages:
(1) since the zero order approximation implies that %; + %t—- o,
then the equality 2 = -2 can be used to construct

ax ot
alternatives to the field equation by changing N or D or both.
For example, the equality is used to change Uy, in the Kav
equation to -u,,, to establish an alternative to the Kav
equation ([3].
(i1) The terms in the field equation can be considered
independently so thét physical and mathematical information can be

introduced through the dispersive terms or nonlinear terms or

both.

Hence, this interpretation of the KAV equation led to the belief
that its properties could be understood in terms of a balance

between the nonlinear and dispersive effects.

1.4 PRroperties of the Kqv

The field theoretic interpretation outlined above awakened the
interest of the 1nvestigators' to look again at the properties of
the KdV. One of the fascinating discoveries was made in 1965 when
Zabusk§ and Kruskal [16] Vfound by numerical experiments that the
KAV solitary wave u = :ft':aechz fg [x - (14c)t] 1is a soliton and
that these solitons are rémarkably stable. This was the first use
of the term soliton. Following this discovery attention was paid
by many others t;o inw;estigate its mathematical properties. Among

these properties we present the following:

-15-



(1) The equation has wmultisoliton solutions. This behaviour was
first observed numerically by Zabusky and Kruskal [16] in the case
of two solitons and the a.na.lytic expression for the geneta.l case
was given by Hirota [a] and Wadati and Toda [13] | l-‘or example the
two soliton is given by | B

u=72 2+ —8t) + cosh (4x-64 . (1.5)

{3 cosh (x-28t) + cosh (3x-36t)]%

Asymptotically (as |t} - o) this decomposes into the two solitary

waves
u, = 12 sech? [(x-4t) + 8,1 ana

u, = 48 sech? [2(x-16t) + 8,1, with 8, and 8, constants.

(2) The equation has an infinite number of 1ndepéndent local
conservation laws [11] by which it is meant that the KAV can e
expressed in a form 2 7, + € x.-0, where (T,)® and (X
X ot 1 7 g T (T1)yy ( 1)1 =1
are polynomials in x, t, u and derivatives of u. For example,

the KAV itself can be written in the form:

2 2
:(u)t+(u+‘§—+um)x-o - T; =u and xl-u+;‘-—+uxx.

Also multiplying the KdV by u gives

ug 2z

(-—-)t+(9-+ +uuxx =0 - '1'21-34—-2 '
2 3 u?

X, =Y. 4 U 4y - X

275 3 Yax T 5
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This property was exploited by Bona and Smith [4] to derive a

priori estimates of the solutions in proving well-posedness.

(3) The K4V was the prototype for developing the inverse
scattering method. The solution u(x,t) of the KAV equation can

be represented by the potential of the linear Schrodinger equation
Oy + (A = (u(x,t))0 = 0. | | ~ (1.6)

This forms the associated eigen&alue problem. Hence, the exact
solution u(x,t) of the KAV equation is obtained from the usual
inverse scattering method in terms of the solution of the
Gelfand-Levitan integral equation [7). Note that (i) the method
can only be applied to certain classes of initial data and (1ii)

the multisolitons can be obtained in explicit form.

(4) There exists a Backlund transformation [14] for the KAV as

follows:

%:': (Wytwp) = = af + 3 (wy—wp)3,

B (wytwy) = = (Wymy ) & (wiy) + 2(uZ + ugu + u?),
ot (1tV2 17V ) =g (W) ~W, 1+ uuy +uz),

ow
where uy = -~ -a;; s 1 =1, 2 are solutions of the kxav,

For example starting with u; = 0 gives the single soliton (or

golitary waves),

1.5 Alternatives to the KAV _and the general class

There are many. alternatives to the KAV equation generated
according to the Broer scheme. ' Most of these alternatives have

been proposed on the basis that their mathematical and physical
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properties are preferable to those of the KAV. The mathematical
basis used. to construct these alternatives was investigated by
Abbas (1)} who concentrated his study on the solitary wave

solutions.

in the first- place, e.nalysing separately the Aeffects of
nonlinearity and dispersion on selected initia.l profiles, Abbas
found that for the Kdv ' eqilation the effect of nonlinearity is
insignificant, but that the sech? solitary wave profile disperses
more 8lowly than the others. Moreover, synthesising the KAV and
compa.ring the properties of its solitary waves with the prediction
of its component pa.rts, he found several oon'cradictions. He-
concluded that the Broer hypothesis is not valid on the KAV

equation. |

Next, the general belief that existence of solitary waves is dQue
to a bhalance between nonlinearity and dispersion was tested. FPor
this context, Abbas considered the general class of third order

equations with quadratic nonlinearities, i.e.,

Up + Uy + AUl + ajuuy + agup, ¢ AuUGg F AgUpg g + BAgUge = O

(1.7)

where a; e R '(1 =1, 2, ..., si. This contains the KAV and some
proposed alternatives such as the regula.rized 1ong wave equation

(RLW) (3]
U + U+ uny, - Uy =0 g : {(1.8)
and {Joseph § Egri eouation (d’.l‘::) [9"]‘
“t"'.‘.‘x"'“f‘);""“xctt"o‘_ - e (1.9)

-18~



Solitary wave solutions with sech? profiles are shown to exist for
a wide varity of dispersion relations. However, Abbas also
showed the existence of a formally nondispersive subclass of the
general class which has stable solitary waves. - This clearly
contradicts the belief that the formation and properties of
solitary waves can be underetood in terms ot' a balance between

nonlinea.rity and diepers 1on.

c°nsequent1y he concluded that dispersion is not necesaa.ry for the

exiatence of solitary waves [1] and [2].

Since AdQispersion is not a useful criterion in understanding the
properties of the KAV equation, the question arises as to whether
it is possible to develop other criteria for such understanding.
In order to attack this problem it is convenient to establish a
wll-&efined ‘cla.ss whicri includeé the KdV a.nd 1f;8 altetnativ;s and
has solitary wave sélutions and to investigateqthe exéént t;o which
this class‘hai.sl the properties of the KAV which were listed above,
This 1s the specific problem that we look at in this thesis and

our strateqgy and contribution is described below.

1.6 Properties of the general ¢lass

we investigate the general class of equations (1.7) since it has
solitary wave solutions and can be thought. of as- forming a
neighbourhood of the KAV in the space of ~coeffj.cients.‘ Our
oontribu}:ion is - in two main areas.  Pirstly, we examine the
weil.poaedness of the general class (1.7)Parcertain prescribed data.
Secondly, we look' at the numbef of conservation laws of the

general class. The well-posedness is examined as follows:

-19-~



(1) We prove that the general class can be reduced, for a certain
class of data, to a system of first order partial differential
equations. - This reduction is then used to classify the problem
into two subclasses which we c¢all the nonsingular and singular

subclasses.

(2) We use the method of characteristics on the nonsingular class

and find that well-posedness 1s ensured for certain data.

(3) PFor the singular‘class. 1;e., the class in which ehe msthod
of characteristics fails, we find that this class can be redaced
to four -equiv;alence Classes, namely, the KAV and RIW classes and
two others which we refer to as Wg,e and Wg,. {The names of these

classes is characterized by their dispersive terms).

(4) Finally, we consider the well-posedness of these singular
classes and provide some theorems which are necessary for their

well-posedness,
This is the first part of our original contribction.

The second subject 1s to examine the conservation law property on
the general class (1.7). We use elementary operations to derive
the first two conservation laws. We then establish*a necessary
condition for the existence of a third conservation law, namely,
coupling of the coefficieats that if ;% 1s a root of the cublic
equation a; - a4A‘¥ aSAz - agr® = o, then the corresponding
subset has a third conservation law. This condition is then used
to classify the problem into four eqnivalence classes, which are
the same as . those in (3) above 1n the simple sense, i.e., no uut

term is present, We now turn to study the conservation laws of

these classes separately. We find that unless the equation is in
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the KAV class in the simple sense, then it has only three
_conservation laws. Finally,. we turn to the case in which the
coupling coefficients condition- is invalid and show that such

equations have at least two conservation laws..

This is the second part of our original contribution.

1 '7 w
The thesis is organized as follows: Together with this
intmduction it consists of eight chapters, five appendices and a

bibliography.

Chapters 2, 3 and 4 review the general class, the Kdv equation and
the RLW equation, respectively. Chapters 5, 6 and 7 conta.in our
owm contributions. Chapter 8 contains our conclusions. A st.mms.ry

of the chapters is given below.

In chapter 2. a review of the general class of - equation§ is
: presented. ; In - the first section we study the existence of
. solitary wave and periodic wave solutions. The second section- is
- devoted to the ‘study of the linear stabilitp of these solitary
waves. a genera.l classification in terms of these solitary waves

is presented in the third section. | 'l‘his is followed by a

conclusion of the work in this chapter.

In chapter 3 a review of the mathematical properties of.the Kav
equation: is.  introduced. In the first section we state the
existence theoretn of the solitary and periodic wave solutions.,f In
the second section the linear stability theorem is. stated. . The
third section is devoted to the study of the inverse scattering

method. - This method is then used to find the N-soliton solution
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of the equation which is presented in the fourth section. This is
followed by the investigation of the local conservation laws of
the equation together'with a proof of the existence of an infinite
number of such conservation laws in the fifth section. Next a
relationship between tﬁose conservation laws and the inverse
scattering method 1is presented. Finally, the well-posedness of
tﬁe corresponding initial value problem i.e. existence, uniqueness
and continuous dependence of the solution on the initial data 1is

discussed briefly leaving the technical proofs to appendix A.

In chapter 4 we review the mathematical properties of the
regularized long wave (RIW) equation. This chapter begins with
the existence of solitary and periodic wave solutions in the first
section. This is followed by the linear stability theorem which
is stated in the second section; The third section 1is
devoted to the investigation of the conservation laws of the
equation. Next, the conditional stability of the solitary w;ve
sol.ution is presented together with outline proof of the theorem.
Finally, we establish the well-posedness of the corresponding

initial value problem in detail.

In chapter 5 we complete the classification derived in chapter 2
on the existence of solitary waves for the general class. Next we
define the class W NS and study some of its properties. In the
third section we show that the geneial class can be reduced to
four equivalence classes by defining solutions to be equivalent if
they are oonnected by nonsingular linear transformations. Next,
we show how this reduction simplifies the well-posedness of the
general class of equations. This is followed by a section de§oted

to showing that the reduction is then shown to preserve the
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existence of'solitary ﬁaves as well. Finally,'the existencé of

multisolitons in the K4V equivalence ‘cla.ss i.s'discuss'ed.

In chapter 6, tbe well-posedness of the geperal clags of equatiqns
is presented. This .chapger begins with the reduction to a
semi-linear system of first order partial differential equations
and the characteristics are established in the second section. In
the third section the normal férm of the system"ia obtained. This
is followed by introducing the method of characteristics together
with an 1llustration using the 1linear wave equation. The
well-posedness classification 1into nonsingular and singular
clasgses is then presented in the f£fifth section. Next, the
well—poéedness of the nonsingular class is investigated. Pirst,
an integral formula foi— the nonsingular class is established
followed by the proof of the uniqueness of the solutions is then
shown by using the wmethod of characteristics followed by the proof
of the continuous dependence of the solution on the given data.
F;nally. the well-posedness of the singular class is investigated.
Reduction into the four equivalence classes is used to simplify
this ivestigation. This is followed by some applications to

illustrate the above technique.

In chapter 7, the conservation laws of the general class are
discussed. 1In the first section we use elementary operations to
derive the first two conservation laws and establish the coupling
coefficients condition which 18 necessary for deriving the third
one. This condiiton is then used in the next section to classify
the problem into four classes. This is followed by a section
devoted to introducing the general formalism for the existence of

conservation laws. This formalism is used in the next section to
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prove that the class Wg, (in the simple sense) has only three
conservation laws and to show that Wg,; (in the simple sense) has
also three conservation laws. Finally, we turn to the case in
which the coupling coefficieﬁts condition is invalid and provide
an example to ' -show that (:here exist at leastr two conservation

laws.

Chapter 8 contains our concluding remarks and list some quesfions

for future investigation.
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CHAPTER TWO

THE GENERAL CLASS OF EQUATIONS
Consider the set of evolution equations, defined by

{(2.1)

where ai(i = 1,2,...,6) are real numbers and u(x,t) 1is a real
scalar field defined for all (x,t) € R®. This class, which was
first defined by Abbas (1], includes the KAV equation and some of

jits alternatives.

In this chapter we shall concentrate on the study of the extstence
and properties of solitary waves which have received considerable

attention in the above quoted reference,

2.1 Existence of solitary wave solutions

Thé solitary wavos*are speciol caseo of the travelling waves and
the latter are obtained by transforming the evolution equarion
(2.1) to the frame of referencek in which the waves appear
stationéry (rest» fréme). Thio is “achieved by usiné‘trhe

transformation
x -‘; - (14c)t, t -t and u(x,t) - v(x,t),Wﬁj;;,p,f (2.1.1)
Then (2.1) reducéa;to
[ = eV 4 [a5-a,(140) vV, + ayvyy + [ag-ag(1dc)tag(1ic)?

- ag(14C)3 19,y + (ag-2ag(1+C)=3a45(1+C)2 )V,
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Since the travelling waves appear stationary in this frame, then
all the t. - derivatives should vanish and (2.1.2) reduces to the

ordinary differential equation

- cv' + [a;-3,(14C)]IvV" + [ag-a,(14c)tag(l+c)i-ag(lec)®lv e’ = 0,
(2.1.3)
or, for simplicity,

—V' + (XW' + BV'.' = o, X (20104)

where oC = 2;-a,(14C), BC = a3-2,(14C) + ag(1+c)? = ag(1+c)®

and the prime stands for the total x - derivatives.
Integrating (2.1.4) once with respect to x gives
-v+ g v: 4+ pv't 4+ Ay =0, (2.1.5)

Multiplying (2.1.5) by ' v! , integration again with respect to x

ig possible yielding

2
A,v+A -L + 2y 48 (v)2ap
rA2 - Ye 2 (V)

i.e.

3B (vr )2 - v+ 2v2+8a,v+ A, , o . (2.1.6)

where A; and A, are constants of integrations. Using the

substitutions

o 1
- = — X a.nd V W= = vy 2. .
x g 125 C « ’ ‘ ; 7)

where « and B have the same sign, then (2.1.6) reduces to the

simple form

. (W')z-wa"kzw-k3 . ) : s ‘ (2‘1‘8)
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where ,kz - %% (1+2a;a] and kg = i% [2+6Ala+6A2az].

Equation (2.1.8) has the general solution which 1is the

weierstrassion elliptic function

q(€) = ¥y + (ry-ry) cn® (A&iKk) , (2.1.9)
whereb ri, r, and r,; are the roots of the cubic equation
4r® - Kor = k3 = 0 . , _ (2.1.10)

and con 1is the Jacobian elliptic cosine amplitude with modulus

T, =T o ’
2 3 2 o
k, k 'h and A ¥y —ry .

If X% # 1, cn (A&1k) 1s periodic. If k2% = 1, then the solitary

wave occurs and (2.1.9) reduces to
q(€) = ry; + (rz-ry) sech®A¢. 4 (2.1.11)

Since for this case (2.1.10) has two identical roots, then its

discriminant should vanish yieidiné the necessary condition,

k’ = 27kz K . . . . O
2 3 ; (2.1.12)
for the existence of solitary waves. From the expressions for k,

and X3, (2.1.12) leads to

27[2% (2+6A,0462,0%)) = (32 (14m)))%.

Thus (2.1.12) can only be true for all o # 0 if Ay = A, =0

which implies that the boundary conditions of the solitary waves

b4
are Vv, %i. and g;!z - 0. as |x‘|-» w0 .

3

]

Furthermore, ky = i% and k, = = Thus {2.1.10) reduces to



4r3—1'3r+£--0 - rl-rz-}lx andr3-:%. Hence

AZ = % ’a.nd (2.1.11) becomes
: - L
ace) = 2 - 2 secn? (2)? ¢. (2.1.13)

But q(f) = w = & —v(x,t), thus

vix ,t ) =% - (& - & secn®(d)? €1 = § seen®d)® ¢. (2,10

Using the expression for ¢ - and the transformation (2.1.1), then

the solitary wave solutions of (2.1) are

ug(x,t) = 3 sech? ('2'{]/?[“ - (1)t} (2.1.15)

The above results are summarized as follows:

Theorem 2.1
(1) All the equations (2.1) have periodic “waves - which are
welerstrassian elliptic functions with possible constraints on the

parameters to keep the solutions real.

(bn) The necessary condition for the existence of real solitary
waves 1is that fB(ay, 2a,, a5, ag) » O and they all have the sech?
profile. ‘

")‘, )

(1i1) . The solitary waves have necessarily the boundary conditions
w, 4, 22u -.0 as x| - ® .

ax au?
Furthermore, the work of Abbas [1] gives the following corollary:
Corollary (2,2.1)
The  nonlinearity is the dominant term in producing the sech?
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profile whereas the dispersion only effects the width of this

profile, lj

2.2 Linear stability

Having obtained the existence of solitary. wavrers‘, .we tvutrn our
atténtion to whether tﬁesé solitary waves are stabié Vor not., We
ghall not go into the préof of stabllity for the general case but
merely i;lustra.te thig proof briefly for the nonfdisperaive class

of equati.ons [2],

ut+ux+a1uux+a2uut+a3um+a4um-o. a3-a4<0

(2.2.1)
which have the solitary waves : :
u (x,t) = 3 éechz a1 [x - (1+c)t] o l
glX/,t) = & (2.2.2)
Cavp - T T , o
where oc = a; = 3,(14C), £ = -3 = -3, > O. (2.2.3)

initio
The solitary wave solutioh us(x;t) of (2 2 1) is sa.id to be
stable if for any € » 0 there exists 8 » 0. such that |
11v(€,0) = ug(€Xl €8 = ||v(&,t) = ug (€)1 « e
for a suitable norm ||.|| for all ¢t » 0O, whefe vi¢,t) 1 a
solution of (2.2.1) in the rest frame of the sgolitary wave,’

f.e. ¢ =x=(14c)t,t.
'170 implément th:e aboye Qef?;nifi;or; i.n j.fa iir;eariged ‘fo>rmw, let
v(g,t) = uB(t.) + eg(£,t) . - (2.2.4)
be 'the‘solut;i.on of »(2.‘2.‘1) 'in 1the rést ftame, i;.é. »
Vg = OV + acvv, + ayvv, + BCVepy + AVeey = 0 . (2.2.5)
by working to the first order in €, g must satisf;/
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Lo du
g — Cgp + oclagugtg F1 + azugde + Boggyp + 249¢¢e = O

(2.2.6)

Hence g, being the solution of the linear equation (2.2.6) can be

expanded in terms of the elementary solutions of (2.2.6), i.e.
a(E,t) = £ £alEvgretVat + [£ (e wyret¥etau, (2.2.7)

where thénsumhation is over the Adiscrete spectrum of (2;2.6)‘with
Wq = O and wy = my + ing, (ngq # 0), and the integral is over the
continuous spectrum with w, € R; (“b # 0). Now, 8ince the
continuous component consists of periodic travelling waves wh;ch
are bounded for all time t, then w, 1is real and the waves are
consequently stable. Thus the main concern is with the Adiscrete

components only. The frequencies of these:components are usually

complex; hence"g(tot) reduces to

g(€.t) = £ [£4(E,mgtinglelfatieat + [g (€, worel¥etaw,.

(2.2.8)

Hence the problem of determining the linear stability of (2.;.1)
- i8 reduced to that of finding the discrete frequency spectrum of
(2.2.6), since for the non-zero frequency, wgq # O, either
(1) ng > 0, the waves are ;table wherever the discrete components
die awéy as t- iqcre#se leaving small oscillations ieﬁaininq, or
(i1) n4 < O, tﬁe:d;screte components grow as 't increases in an
unbounded manner and the solitary wave 1is cohsequentlyrunsgable.
But the zero fréquency corresponds to some sort of stability, i.e.
'"neuﬁraltétabiiiéy". and ¢, Dbeing now time independent, wmoves
the solitary wave to a slightly different position in the rest

- frame, since ug modulo phase shift is the unique static solution
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of (2.2.1) in the rest frame and
CW(E) = ug(Ehe) = ug(£) + €uz(€) + o(e?). (2.2.9)

Now, to find the discrete spectrum which corresponds to the
non-zero frequencies of (2.2.6) it is convenient to make use of

the substitution
g(€,t) = £(¢)eivt (2.2.10)

to reduce (2.2.6) into the ordinary dAifferential equation

Bc 925 + qc[us—f + € EEEJ -c gf + 1w [a,ﬂ—f + azusf + £] = 0.

(2.2.11)

Purther f4 - 0 as |¢| - o, 8ince v({,t), being required in the

2
same Class as ug, satisfies; v, g% and gE% - 0 as |¢} - .

Equation (2.2.11) has the following properties:

(1) the asymptotic solutions of (2.2.11), being the solutions of
constant coefficiénts differenéial equation are unique:.

(ii) the equation possesses a symmetry property.

(iii) the equation can be arranged in the matrix form

gl | ° 0 9

£5] + 0 0 of |g

- ;(or'cuwaz)gs ‘;““_s of leg
(2.2. 12)

where f; satisfies (2.2.11).

‘ r‘,, -

Since “s - O as ICI ~- oo, the last tem in (2 2. 12) vanishes as

€] - o and at this limit (2 2 12) reduces to
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..,
[a]
[y
—
Q
[
[o]
rh
[ d
o

at |1 ° 101 ’ ‘ (2.2.13)
£n w1 el |
L pBc B 8 1
or the single equation
Q3 4, Q2E_ 4, yy a0, a, =a, = -8. 2.2.14

This eciuation has clearly the solutions

Al €L Ayl Aql &l
fd(flwd) - . ‘
-A -A -A
ae el + b__evzlcl + c_e alél as { --m
e lEl e -A
a,e 1lél + Db,e 21¢l + cye 3lél as ¢ -~ o

;d(tl'wa)'

A A . A ,
a_e 11¢l +. Db_e 216l c_e alél . € -~

where A;, A, and A; are the roots of the cubic equation

PcA® - wpA® - CA + lw = 0 | '

i.e. Ay =Ny = ‘-/—% and Ay = %‘—' + Now the boundary conditions
require that the eigenfunctions tend asymptoticaliy to zero as
j€| - o, but sim;:e there is8 no choice of the constants a,, b,
and c, for which this occurs simultaneously then the values -
w # 0. are -excluded., Hence W = 0 1is the only discrete
eigenvalue. Hence the perturbed solutions (2.2.4) are

w(E.t) = ug(Ete), -

and correspond to translations of solitary waves, 1i.e. the

solitary waves of (2.2.1) are neutrally stable.
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2.3 classification

A general classification of the equations (2.1) by means of their
solitary waves can be obtained by considering the properties of

the width parameter B, vwhere
BC = a; — ay(14c) + ag(1+c)? - ag(14c)? o (2.3.1)

which should be poéitivevfrom Theorem (2.1). This classification

has been done in [1] for the simple cases as follows:

(A) ag =0, ag #0, c> 0.

In this case fC = aj - ay(14c) + ag(1+c)?. - (2.3.2)
Hence two cases should be considered .

A(1) ag < b, pBc has three possible graphs

Rc

a(in a(i)2 a(1)3

In the two cases A(i)L and A(1)3, there would be no solitary
waves, whilst in the case A(1i)2 the-soliﬁafy Qave does not exist
if the roots ¢y and ¢, of the quadratic (2.3.2) are negative

i.e. ¢4 ¢ cp, ¢ 0. If 0 « €y < .Cy, . the solitary wave‘would

exist only inside the interval (cy,¢5) and if Cp <0 <cc, it

exists inside the interval (0,c,), without loss of generality.
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aA(ii) ag > 0, three graphs of pBc are possible.

Bc

Bc BC

(o]

. Cl . C2 C3
a(ii a(ii)2 A(11)3

In the case A(11)1 which corresponds to the condition

356

a:-4a =0, if ¢y <0 = c € (0, w) 1in which the solitary
wave would exist.. Whenever ¢, » 0 - c € (0O, °1>U(°1' ) 1in
which the solitary wave exists, where ¢, 18 the root of the

quadratic (2.3.2).

In the case A(11)2, i.e. the quadratic (2.3.2) has two distinct
.real root, corresponding to the condition a: - 4ajag > 0, if c,,
c, - denote to these roots .and . C; { C3 - (without loss of
gen';erality), then 0 < c, < ¢c3 = cC € (0, cy) (c3, ) - for which
the solitary waves would. exist, whilst if €, ¢ €3 < 0, then the
solitary wave éxists efrerywhgre a.nd" the speed is .u‘nboiunded. }But:

if Cy < 0 ¢ Cy, t:hen this case reduces to A(ii)1.

In the case A(il1)3, there is no real roots of the quadratic
(2.3.2), corresponding to the condition af} - 4ajag < O. The
golitary wave which corresponds to this case exists everywhere and

the speed is unbounded.

The results for ¢ < 0 follow from the above by reversing the
direction of the c-axis and interchanging the interpretation of

the figures.




(B) ag =0=ag, C>0.

For this case pc reduces to

The following cases arise:

B(i) a, » 0 > a, (the KAV case), the solitary wave exists where.

the speeds are unbounded above.

B(ii) a; > a4 > 0, the solitary wave would exist if pc » O,

a
1060 c‘-a%-ll

B(111) a; < a4 < 0, the solitary wave exists if c » - 1.» 0

ety

j.e. bounded from below.

B(1v) a; = 0, L.e. . BC = — a,(14C), then if a, » O, there would

be no solitary waves. Whilst if a, < O, the solitary wave

exists and the speed is unbounded,

Thus the results from this classification show that for quadratic

nlinearities and third order dispersive terms, solitary waves,
where they exist, have the sedh2 'form. Also these results
indicate that there is a variety of equations which have solitary
wave solutions where all the equations have the same nonlinearity

but different dispersion terms

Co la
The linear equation is an unreliable indicator of the properties

of the full nonlinear equation.
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The proof has been carried out by 2abbas [1] by analysing the

linear part of (2.1) in terms of the dispersion relation w(k),

agw® — agkw® + (ask*-1)w + (k-ak®) = 0 (2.3.4)

wheré u(x,t) - A(k)exp[(ikx-w(k)t)], k » 0, is the fundamental
solution of the 1linear part of (2.1). Then by ordering these
dispersion relations from bDbeing single-valued and real to
many-valued and complex and comparing with the results from the
classification above, the solitary wave solutions of the

corresponding nonlinear equations exist in all cases.

2.4 counclusion

In this chapter we have studied the existence of solitary wave
solutions and their stability under linear perturbations. It was
demonstrated that the solitary wave solutions exist for a wide
variety of dispersion relations. Furthermore it was shown that
>stable solitary wave solutions exist for formally non-dispersive
equations. Thus t;ne main conclusion is th#t dispersion is not

necessary for the existence of unique and stable solitary wave

solutions of the KAV alternatives,

This uselessness of the dispersion to predict the properties of
the KAV alternatives leads us to discuss whether other criteria
can be found for such predictions. For this concept it 1is
convenient to present a comparative study for the alternatives of
the KAV in terms of the properties which comes from the Kav
theory, such as:

(1) well-posedness (2) solitary waves (3) soliton

/

(4) conservation laws (5) 1linearization by inverse method.
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The theory of an evolution equation is said to be complete if all
the information about the above properties are confirmed either

positively or negatively.

In the next chapter the theory of the KAV equation shall be

presented ih detail.
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CHAPTER THREE

REVIEW OF THE KORTEWEG-DE VRIES EQUATION

This chapter is devoted ' to a review  of some mathematical
properties of the KAV equation. The results of chapter 2 are used
to prove that t‘newequations has a solit;a.ry wave which is linearly
gtable. We, then, -turn to the l;neari:zation of the equation by
tﬁe binverse , scattering metho§ and thain the N-solkiton solution.
Wwe go on to aM that the equation haer an A:l.nfinvi‘t-:e number‘ .of

conservation laws, and, finally that it is well-posed.

3.1 of solit \' 8

Consider the Korteweg-de Vries equation (KAV) in the form

“t"’“x"’““x"’“xxx"of ‘ (3.1.1)

Then both the solitary wave: and  periodic wave. (cnoidal wave)
solutions are obtained by choosing ag = ag = a, = a, = 0 and

a; =a; =1 in the proof of ‘theorem 2.1, - Hence the proof of

the following theorem is Clearly obtained.

Theorem 3,1
The KAV equation has two different types of travelling wave

solutions, namely
(1) Periodic waves (cnoidal waves), given by
u(x,t) = ¥, + (ra-rz)cn"{iz T3-F; [Xx - (14c)t1iK}  (3.1.2)

equation
r® — 3cr? — 6A,x - 6A, = 0, A;, A, are constants of integrations
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and cn 1is the Jacobian elliptic cosine amplitude with modulus K

(ii) Solitary waves, given by

ug(x,t) = 3¢ sech® . "-g (x - (1+c)t), c»> 0. O (3.1.3)
3.2 _ Stability of the solitary wave solution

In a sense similar to that used in the proof of the linear
stability of the solitary wave solutions of the general class 2.1,

the following theorem is proved

Theorem 3,2
T™he solitary wave solution of the KAV equation is stable under

linear perturbations. [J

3.3 Inverse scattering wethod

This method, which was first discovered by Gardner, Green, Kruskal
and Miura [16]', pbovides a procedure for solving the initial v)alue ,
problem of the xdv equation and is applicable to initial data that

vanishes rapidly as |x| - w.

The initial value problem, considered in this section and in the

next one, is .

up - 6uu, + uoo. =0 -m<X<¢cm, t >0, (3.3.1)
u(x,0) = g(x) i : ~ (3.3.2)
where, ?g(x) safisfies tﬁe two'v:concllitions
(1)

.. @ dt 2 . - . L : ¢ .
| ng-f ax <o, (11) [ (1 + IxDa(x) ax < o
—m . .

4
E
r=0 . =0 -

(3.3.3)
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where the first condition guarantees the existence of a classical
solution of the KAV equation (7], whilst the second condition
guarantees the existence of a solution of the eigenvalue problem,

stated below, [9].

Lemma 3.

If v is a solution of the modified KAV equation in the form

vy = 6vivy +vvxx* =0 | | / (3.5.4)
thenj“

u=vi+wv, o (3.3.5)
is a solution of the KAV equation (3.3.1). O

If we take u to be known then (3.3. 5) is a Richti equation in

v and can be linearized by making use of the transformation,

"v-;‘;x

Py . ’ ' ‘ ' (3.3.6)

Hence (3.3.5) reduces to .

b — W = 0
which, without loss of generality, can be replaced by

Equation (3.3.7) is time independent Schrédinger equation with

potential»u. energy level A and wave function ¢.

The inverse scattering problem 1is to determine u from a
knowledge of its scattering data, i.e. discrete eigenvalues, the

‘normalizing coefiicients of the corresponding eigenfunctions, and
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the reflection coefficients  (reflection and transmission
coefficients occur when a wave sent in from o interacts with a
potential and some is reflected back and the rest . transmitted

through).

For the continuous spectrum, since u - o as |x| - ®, the
asymptotic behaviour of the eigenfunctions that corresponds to

the set of all positive eigenvalues A = k¥ may be written as

exp{-ikx} + b(k,t)exp{ikx} X - +om
o(kxt) ={ | | (3.3.8)

a(k, t)exp(-ikx)} X - -0,

where Db is the reflection coefficient and a 1is the
transmission coefficient. The conservat:ion of energy is expressed
by lal® +"|b'|=' -1, Assuming these scattering data are known,
the problem ha.s been studied by wany people f13], (151, [30), ..

and it has been solved by writing

" u(x) = -2 K(x,x) \ 3.
u(x) ax (x,x) (3.3.9)
where K satisfies the Gel'fand-levitan integral equation
K(x,¥) + B(xty) + [ B(y+2)K(x,2)dz = O (3.3.10)

and the Kernel B is given by

N
B(€) = L 2 exp(-kpt}+ % [ bk)exp{ik¢}ax. (3.3.11)
m=1 2n -

In the above calculations t entered as ‘a parameter. But if we
take into account the dependence of u on: t : and consequently

the dependence of the  eigenvalues, reflection and transmigsgsion
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coefficients and the wave fuhction on t, then, to determine
u(x,t), the KAV solution, we have to know the quantities km, Cn

and b(k,t). These are given by the following theoren,

Theorem 3.3 [10], [20]
If u(x,t) evolves according to the KAV equation (3.3.1) and

w(x,0) -0 as |x| - o, the following relations are ga.tisfied
(1)  each discrete eigenvalue A, of (3.3.7) is constant
(11) D(k,t) = D(k,0) exp {8ik>t}

(111) cp(t) = cp(0) exp {axlt)

(iv) a(k,t) = a(k,0)

where ¢ (0), b(k,0) and a(k,0) are determined from the initial

data of the KAV equation u(x,0) = g(x). [J

Hlence the solution of the KAV equation is given by (3.3.9),

and theorem 3.3., having the form:
ux,t) = -2 gx—x(x,x,t) (3.3.12)

where K satisfles <the mtegral equation (3.3.10) such that

N
B(E,t) = L cf exp (8Kt - k,¢)
n=1

1 3. _
+3 f:,b(k,o) exp (i(8k%t - k¢)}dk. (3.3.13)

3.4 N-soliton solution
Having discussed the solitary wave solution and the inverse
scattering method in the above sections we turn to the study of

the N-soliton solution. The solitary wave of any nonlinear
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evolution equation is called a soliton if there exist solutions
for this equation which approach a linear superposition of its
solitary waves as |t| - .  Zabusky (33] claimed that if the

initial condition u(x,0) of the KAV equation

Up = 6uUy + Uy = O (3.4.1)

satisfies the condition Imu(x,O) > 0, then at least one soliton
-0

emerges from this initial disturbance. On the other hand Segur

[25] extended the inequality of Bargmann [2] and found an upper

bound for N, namely

u(x,0), u(x,0) >0
N1+ [ Ixlg(x)ax, where g(x) - ' o

-2 . . .

0 .,  u(x,0) ¢ 0

The interaction between solitary waves for the KAV eqﬁation
(3.4.1) was first observed, numerically, by Zabusky and Kruskal
{34). They showgd that if two solitary waves placed on the real
line, the taller to. the left of the shorter at t = 0, are
travelling, then after a sufficient time passed away, .they
overlap, interact and the tallei' overtakes the shorter and they
both regain this original shapes and velocities. The only change
is that a phase shift occurs. Lax [18] discussed the same
phenomena - analytically and confirmed 2Zabusky and Kruskal's

observations.

The exact solution for the case of multiple collision of N
solitons with different amplitudes was first found by Hirota [13].

The proof of such solutions is found in many references (10],

{13), (20].
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This proof depends on the fact that the N-soliton solutions have
zero reflection coefficients. With this fact the Gelfand-levitan

integral equation (3.3.10) reduces to

- -
; N 2 _ N 2 _
K(x,y) + mgl Cm XD {-Ky(x+y)) + mgl cmgexp (% Z+VK(x,2)a2

(3.4.2)
where ¢, = Cn(t) = cp(0) exp (kpt}.
In oxrder to remove f—dependence from (3.4.2) we must take
N .
K(x,y) = = L Cphn(X) exp {~KpY} R T (3.4.3)

where c, have been introduced so that the & turn out to bhe

T3

normalized eigenfunctiéns of the Schrédinéet equation
Opx = (Kptu)d = 0 (3.4.4)

we now substitute (3.4.3) in (3.4.2) and separately equate the
coefficients of exp{-k,y} to zero. We get the following N

linear equationsv in 3

kp + ¥n

N —(k,, + X
¢m(x) + I’lgl cmcn¢n(x) exp ¢ Lﬁ—h)—l - cm exp {"ka},
‘ m- 1‘ zl 00;' N . . (3.405)

—

which can be re-written in the form

(LI +C) = E (3.4.6)
where I is the unit matrix of order N,
exp{~(ky + k) :l
C = (Cunl = ¢ (3.4.7)
Fn ,°_“‘“[ kg + Ky |
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is a NxN matrix and

2% rc, exp {-k,x}
oy . |ey exp {-k,x)

o= | and E = |: (3.4.8)
L°N‘ LcN exp {—kNx).

are column matrices.

A sufficient condition under which (3.4.6) has a unique solution
is that C : is positive definite, This 1is true sgince the
quadratic form corresponding to C 18

NN exleliy + kX N y :
me1 nE1 R0 Ky + X, ' fdz Cpfy Om P}

which is positive. Now we note that

N N
0 ¢detC= (M ci) exp (-2(_E kp)x} det i‘;i"? (3.4.9)
n

so that det —+—— > 0 .
R SRR :

From (3.4.9) it 1s clear that C can be written as

det C = a exp {-X}, o and B are positive. Then by expanding

along the nth column we have

exp(~(ky + kp)X)
km + ¥n

N
= det (I+C) = & + c . C
A ( ') l“)_:1( mn

m“n Wun (3.4.10)

where Q.. 18 the co-factor of the coefficient matrix I+C.

Using Cramer*'s rule to solve (3.4.6), then
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2

o =% JE ©n & (X} -  (3aaan

Replacing y by x in the expression of K(x,y) in (3.’4.3) and

using (3.4.11), we have

- N h N N ’
o e - - 1
K(xlx) mggmomexp{ ka} | A m'gl nEJ.Can exp (-(km + kn))an
=i &a - Scina. o © (3.4.12)

substituting (3.4.12) in (3.3.12)
2
) = -2 & gix,x) = -2 9 1
u(x,t) ax (x,x) e na
&
= -2 %_xi 1n {det (I+C)) (3.4.13)

which 1is - a solution of - the KA4V. equation - corresponding to a
reflectionless potential where  this reflectionless initial

condition remains reflectionless from theorem 3.3,

The asymptotic analysis carried out by Gardner, Green, Kruskal and
Miura [10] for the solution of the KAV equation showed that it
represents  some finite number of (interacting) solitons with

nothing else present. This is summarized by the following theorem:

Theorem 3.4 (10]
If u is a reflectionless solution of the KAV equation, then as

It] - o each eigenvalue A, = -k; has associated with it

a solution which approaches the solitary wave form
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2 2 — AXZ4)— . -
2kp gsech [kp(x 4kpt) Sp ) t ]

lim u == (3.4.14)
¢ fixed

2 2 _ 2, = -
—2kp sech [kp(x 4kpt) sp] . t ©

where t’x_4k;t’ p‘l, 2’ DN /N a.nd‘

- p-1 Ky -k _ N EE _
-5 i [mEl log ;;—:fii m-§+1 lag Ky + ¥m ]

(3.4.15)

i.e. (3.4.15) implies that the total phase shift is the sum of the

phase shifts in isolated pairwise interaction with every other

soliton. (]

3.5 al conse tio aws
A local conservation law associated with a given equation is
expressed by an equation of the form é% T + 2 X =0, where X

ax
and T are functions of x and t and the various derivatives

of u.

In this section, the conservation laws for the c®-golutions of

the KAV equation

u, - 6uuy + Uy =0, (3.5.1)

where u together with all its x—derivatives vanish as |x| - «,

are established.

In fact it is historically known that Korteweg and de-Vries [17]
themselves derived their model in a conserved form. The first

conservation law of (3.5.1) is obtained by re-writing the equation
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in the form,

a_ 2. - 3u?] =
ot (u] + P [y — 3u°] = 0. (3.5.2)

The second conservation law is obtained by multiplying (3.5.1) by
u and arranging the resulting equation in the form

2

8. v 4 & —2y? - %, .
at[2]+ax[2u+w‘°‘ z] 0. (3.5.3)

Multiplying (3.5.1) by u® - 1; U ¢ then the third conservation

law can be established in the form

(ud - é uZ] + §; [% ul + ulu, + % uu, - g u*] = o.

@
o

(3.5.4)

In fact, the existence of an infinite number of such conservation
laws has been found by Miura et al ([21). These conservation laws
are used to derive a priori estimates of the solution of the kav

equation as shall be seen in section 3.7. -

Theorem 3.5
There exist an infinite number of polynomial conservation laws for

the c®-solution of the KAV equation (3.5.1). [J
The proof of this theorem is outlined as follows:

consider the Miura transformations,

u = v+ v, (3.5.5)

which couples the modified K3V equation

Ve — 6V + Ve = 0 (3.5.6)
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with the KAV equation (3.5.1) as in lemma 3.3.1. By making use of

the transformation

X' =x+3-t, t' =t uxt)=u(x,t')+1s ang
2¢ 4¢2

.

v(x,t) = ew(x',t') +
2¢

(3.5.7)

where the specific dependence on the arbitrary parameter e« has

been chosen to get the desired results below, (3.5.1) gives

o= u - Guux + Ugse

= (2v + -3;) (Ve = 6V3v, + Vi) (by using (3.5.5))
-(1+e-§;+2«szw) [we — 6(w + e2w?)wy + w ], (3.5.8)

(by dropping all primes and using (3.5.7)].
Now, inserting (3.5.7) into (3.5.5) and dropping all primes, then
u=w+ ew, + 2w, (3.5.9)

By solving (3.5.9), recursively, w can be determined in the form of

a formal power series in € with coefficients which are functions

of u and x-derivatives of u, i.e.,

w(x,t1€) = Wy + ewy + €®w, + L.,

=u - ey —-€*(uf - u, )+ ... . (3.5.10)

Using (3.5.10) and (3.5.8), then the expression in the square
brackets of (3.5.8) must vanish to all orders in & since we are

dealing only with formal series, i.e,
wp — 6(W + €W )Wy + W =0 (3.5.11)

XXX

(to all orders in €).
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Equation (3.5.11) can be re-written, to all powers in ¢, in the

form

2w+ 2_

e p [-3w® — 2€*Ww® + w1 = 0. (3.5.12)

Thus, the coefficient of each power of & 18 a conservation law
for the KAV equation (3.5.1). This leads to the existence of an
infinite number of conservation laws of the KAV equation since
(3.5.11) does not depend on € and it can be shown that the
coefficients of the even power of € gives nontrivial
conservation laws whereas the coefficients of the odd powers of «

are trivial conservation laws [21]).

The above theorem shows that the KAV equation has an infinite
number of local conservation law . The constants of motion are
derived by integrating each conservation laws with respect to x
between X = —® to X = o and using the assumption that u

vanishes rapidly together with all its x-derivatives as |x| - o

eoga

In the last section, the eigenvalue problem played a distinguished
part to prove the existence of an infinite number of conservation
laws. This proof was via the use of the Miura transformation.
This result provides a Clue to the relationship between inverse
method and the conservation laws for a broad class of nonlinear
evolution equations which was systematically discussed by Ablowitz

et al [1] and contains the K4V, the sine-Gordon and other
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equations. A general wethod for deriving conservation laws from
the inverse method was provided by Konno et al [16] and wadati et

al [29] as in the following:

eor 3.6
The conservation laws of the KAV equation (3.5.1) can be obtained

from the inverse method. ([J

The proof of this theorem is in [16].

3.7 Well-posedness

The theory of existence and uniqueness of the solution of the Kav
equation began with Sjoberg [26]. He showed that for periodic
data with three L? derivatives, the initial value problem of the
KAV equation with this data has a solution, but he did not
consider the continuous dependence of the solution on the data.
Temam ([27] has used the method of regularization by adding the
term €U, to the KAV equation to get some properties. Then,
by letting € -~ 0, a weak solution to the KAV equation
corresponding to periodic initial data has been shown to exi:st.
However no claim was made to extend the initial value problem to
the inifite interval by this wmethod. Furthermore there was no
consideration of the continuous dependence of the solution on the
initial data. Up to the present the problem has been studied by
many others [8], [28], ... . Among those people Bona and Smith
[7] used the method of regqularization to prove that the initial

value problem,

Up + Uy + Upre = 0, -0 <X <o, t>O0
(3.7.1)

u(x,0) = g(x)
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is well-posed. Since the uniqueness is easier to prove and it had

been done by, for example Sjoberg [26], we begin the theory of

well-posedeness by the uniqueness of the the solution of (3.7.1).

Theorem 3.7 (uniqueness)

If the initial value problem (3.7.1) has a solution, then this

solution is unique. (]

Proof
Let u and v be two solutions of the initial value problem
(3.7.1) and w = u - v, Then w sgatisfies the initial value

problem,

wt+-§[(u+v)w]x+wm-o

(3.7.2)
w(x,0) = 0.
Multiplying the first equation in (3.7.2) by w, we have
wt+—;=w [ (u+ VWl + Wy = O. (3.7.3)

Integrating (3.7.3) from X = -@ to X = ®w, then if w, Wy, and

Wik vanish as |x| - o (this will be confirmed in the existence

proof), (3.7.3) reduces to

ﬁ _J: wi(x,t) = --1_‘; _I:(ux + v )wiax

< !2= i:g fuge + vyl Imw"dx . (3.7.4)
-®

If c = sup |u, + v, |, then
x€R

a_ 1
3t F(w) < 2 C P(w) (3.7.5)
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where PF(w) & fm w2dx. Hence (3.7.5) gives

-0
F(w) = F(0) exp i ct
= 0 (since F(0) = 0)
i.e. w=0 almost everywhere,
i.e. us=syv and the solution of (3.7.1) 1is unique.

We turn now to prove the existence. The proof is very long and
complicated. Before outlining this proof, we define the function

spaces which are used in this proof:
Definition 3.7.1

Y
(1) LHR) = (u(x)r [ (w)2ax < @}, [lul] 2

= { | u(x)*ax}
-» L*(R) _[:

(11) HS(R) [Sobolev space of order S] = {u(x): ueL®(R) and

%% eL*(R), | €k £ 8}, and

< 3 a&ujz, . S aKy
TUCAO TN iy fm|-d—xx| ax= L IIgKI

k=0 ~ L%(R)

(111)%5 =C(0, T; %) = (u, ut RXxT - R, for each t ¢ [0,T],
T

u(.,t) « % and the mapping u: [0,T] - H® is continuous

and bounded},

Hull s Sup ||U(-ot)||Hs
Y o<t<T
T
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i
(i")%:’k = {uex,t) é%; : 28 ¢ H: , 0% 1i<Kk),

atl
i
”“”%s.k = Sup Sup Hsuaﬁ&i&)”’a
T O<tsT O0<igk ot ;!

Now, leaving the technical proofs to Appendix (A) the proof for

the existence of the solution of (3.7.1) is summarized as follow:

(a) Regularizatjon of the KAV
The KAV equation in (3.7.1) is regularized by adding the term
— €Uy B8O that (3.7.1) becomes

U +uu + U < €U =0
(3.7.6)

u(x,0) = g(x) ., -0 < x <o and € €(0,1].

By making use of the transformation,

E 3
XK~ ¢= ez(x—t), £t - T = €2t and u - v(&E,T) = su(x,t),

€ € (0,1] - (3.7.7)
equation (3.7.6) transforms to

v.r+v€+vv€—v€£.r-0
(3.7.8)
X
v(£,0) = h(£) = € g(e*x) .
The initial value problem (3.7.8) was proposed by Benjamin et al
(4] as an alternative to the KAV equation. The exact theory for
(3.7.8) has beeﬁ provided by (4] and shall be discussed in the
next chapter. Hence for a fixed e both u(x,0) and v(¢,0)
are in the same function class and the following lemma can be

clearly introduced.
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Lemma 3,7.1 (7]
(1) If g € Hk, k 2 2, then there exists a unique solution
u(x,t) to the regularized KdV equation (RKAV) (3.7.6), u edﬂ‘;

for any finite T » 0 and %g% e“’;’P FO<PS K -

(2) If g € H®, then there exists a unique solution u(x,t) to
(3.7.6) which together with all its derivatives lies in 4('1‘ - % ;

for all finite T.

Our purpose 1is to 1let € -~ 0, but at this 1limit the
transformation (3.7.7) is singular and the bounds of u cannot be
obtained in terms of the bounds of v. Hence the bounds of u

ghould be obtained by its own and this is done in the next part

(b) A priori bounds for solutions of RKAV

Lemma 3,7.2 (see appendix (A)]

Let g € H®, then the solution u of (3.7.6) satisfies

< -
(1) i, Hall y

(2) ||u||31 € ¢ (||g||H1) independently of €, 0 ¢ € £ 1,
where ¢§: Rt - R* is continuous monotone increasing function

with £(0) =0

(3) For T > O, there exists ¢, = ¢,(T,|lg| IH‘) such that

”u“az <£1(||glla,) independently of t ¢ {0,T], where

€41t Rt - Rt is a continuous monotone increasing function,

€4(0) =0, O < €< ¢,
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(4) Forany T >0 and K32 3 and ¢, as in (3), u(x,t) 1is

bounded in % ’; with bounds depending only on T, €5

Nl

Hgll g and € 11g1] gy

k,l
(5) u(x,t) 1is bounded in % ¢ independently of € < e, for

all x,1y T»> O

(c) Regqularjzation of the initial data
The data g(x) = u(x,0) 1is now regularized by convolution with a

smooth function ¢ to obtain the regqularized data

L A
g (K) = &(€°Kk)g(k)

where % is the Pourier transformation of ¢, ¢ is an even
c®-funtion satisfies O € ¢ < 1 such that ¢(0) = 1 and
Wx) = 1 - &(x) has a zero of infinite order and ¢ -~ O,
exponentially, as |x| - o [e.g. ¢ = exp{-xzem{-:z}].

Then g, € .

Using this regularization of the data and the result of part (a),

then the initial value problem

Up + uUy + U T €U
(3.7.9)

u(x:o) = ge(x)
has a unique c™-solution u_, which lies together with all its
derivatives in %T for all finite T » O,
(d) sSmall ¢ consjderation

Since to each €, O < € € 1 there is a unique solution of
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(3.7.9), then the behaviour of this solution as € -~ 0 must be

considered. This is summarized in the following

Lemma 3.7.3 [See the Appendix (A)]

Let geﬂk, k23 and g, as in (¢), thenas ¢ - 0

1

-
(1) "g(!'ﬂk+j =0(¢ ), 3 =1, 2, ... . Uniformly on bounded

subset of H¥
_éj
(2) 'Ig - gelhk—j = 0(6‘ ) for j = 31, 2, o6 o Unifomly

on compact subset of Hk

(3) g - ge”Hk = o(1). Uniformly on compact subset of H*

(4) u, 1s bounded in %’; independently of sufficiently small
1
=M
¢ for each finite T » 0. Morever «° u, 1is bounded
in %];Hn independently of sufficiently small & for each

finite T >0 and m > 1

L
(5) o v, is bounded in %T and € g, 3u, 1s bounded

in %T independently of sufficiently small €, for all

finite T» 0 and m=1, 2, ..., 5, (where at-g—t).m

(e) Sequencing to a weak solutjon of the Kdv
Using the results in (4d), then the final part in this procedures

is summarized in the following lemma whose proof is in (7]

Lemma 3.7.4

Let u, be the solution of (3.7.9) where g ¢ HX, k » 3, then
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k -
(1) {u,} 1is Cauchy sequence in %T as € - o

(2) (u(x,tje) 1s Cauchy sequence in 4(];"3 as € - o0. O

The above procedures can effectively used to prove the following:

Theorem 3.8 (Existence)

let g € Hk, k # 3. Then there exists a unique solution u(x,t)
of the initial value problem (3.7.1) which lies in %‘; for all

finite T » 0. (]

Broof

The uniqueness of the solution is guaranteed by theorem 3.7. To
prove the existence let g, be the regularization of g as in
(c) and u, be the solution of the reqularized KAV equation
(3.7.9), 1.e. toeach €, O < € € 1 there exists a solution of
(3.7.9). Using lemma 3.7.4 (1) these solutions form a Cauchy
sequence 1n£:, -k 3 3 for any finite T > 0. Since %: is a
is a Banach space, then as ¢ - o, u, - u in %’; Similarly,

using lemma 3.7.4 (2), du, - Vv e%];‘3. This leads to

a%u a3u
2 y2 -9 g2 YK gna —€ . indk3 a5 ¢ - 0.
ax Ye ~ ox ﬁ'r ax3 %'r

k3 -
Furthermore,%ilg—t- u, is bounded in }6: 5, so tnat,

P Q:z—;“e -0 as € - o (at least in the sense of distribution),
ax=a

Since u, - u in%’;, then u, - u as € - o (in the sense of

distributions). Thus
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at

€ at
where u is the solution of the KAV equation.

v (in the sense of distributions) as ¢ -~ o,

since the choice of T was arbitrary, i.e. if T becomes large
enough, € can be chosen small enough such that the results in
part (b) hold. Then the solution can be extended over any T and

the solution exists globally which completes the proof.

we consider now the continuity of the solution with respect to the

initial data. PFor this , let {4 o be the space defined by
- B 8-3 8-6

P %Tn x'r nz,r N .. andlet Pi1 B® 236 5, be the

mapping which assigns to each g ¢ H® the unique solution of

(3.7.1), then with this notation the following theorem is

introduced:

Theorem 3,8 (7]
Iet T > O be given and let P Dbe the restriction to the time
interval [0,T] of the map assigning to g e Hk, X » 3 the unique

global solution of (3.7.1). The F is continuous. (]

3.8 Conclusion
In this chapter we have presented a review of the mathematical
properties of the KdV. We have shown that the equation has the

following properties:

(a) is well-posed (b) has solitary wave and N-soliton solutions
(c) can be linearized Dby the inverse scattering method and

(d) has infinite number of conservation laws.

Hence the thoery of the KAV equation is complete in the sense

given in the last chapter.
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CHAPTER FOUR

THE REGULARIZED LONG WAVE EQUATION

The regularized long wave (RLW) equation was first obtained by
Peregrine {17] to describe the development of an undular bore,
i.e., a smooth solitary wave that is observed to propagate in
shallow water channels, and later by Benjamin et al (5] to
describe approximately the unidirectional propagation of 1long
waves in certain dispersive systems. Under the same
approximations which lead to the KAV equation the RIW equation is

derived in the form ([5):

u, +u +uy -u =0, (4.1)

In this chapter a review of the mathematical properties of the

model (4.1) is presented.

Like the KdV, the RLW has bounded travelling wave solutions which

are either solitary waves or periodic waves.

Hence if we choose ag = ag = a3 = a;, =0 and a; = - a, = 1 in

theorem (2.1) the following theorem can be proved.

Theorem 4.1

The RIW equation has two classes of solutions namely:
(1) periodic solutions
u(x,t) = ¥y + (ry3-ry;) cn? (Agrk) (4.1.1)

where cn 1is the Jacobian elliptic cosine amplitued with modulus

k, A2 =1y - 13, Kk = (ry-r3)/(r;-ry), and r,, ¥, ¥y are the
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roots of the cubic equation

4r® - 12c%(1 + %élr + 8c?(1 - %ﬂ + 321 = 0, A, B are constants;

(ii) solit wave_ solutions

ug(x,t) = 3¢ aech‘% /-‘:—J;-[x - (14c)t], © > 0. [J (4.1.2)

4.2 inear & 1 8 wav: 8

Having proved the existence of solitary wave solutions, the
question about the stability of these solutions arises and in this
section we consider linear stability. If the solution u(x,t) of

(4.1) is approximated by
u=ug(¢) + eg(&,t), £ =x - (14c)t (4.2.1)

then by using the asymptotic analysis method as in section 2.2,

we can prove the following:

Theorem 4.2
The solitary wave solution of the RIW equation is 1linearly

stable. [J

There is another type of stability (conditional stability) which

makes use of the conservation laws of the equation.

4.3 Conservation laws
In this section we consider another important property of the RIW,

the existence of a number of independent congervation laws,
Replacing u by -1-u, the RLW equation reduces to
ut_uux—u]a“:-"o (4.3.1)
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which can be re-written in a conserved form :

2 u?
Lyl =0 (4.3.2)

or (U1 *

This is the first conservation law.

Multiplying (4.3.1) by u, the resulting equation can be

re-written in the form :

2
F IR i
ot 2 2

3
1+ -4 — w1 -0 (4.3.3)

which is a second conservation law.

The third conservation law is obtained by multiplying (4.3.1) by

u?. Hence the resulting equation has the form:
a_ udy 2 (ul, .2 -
ot [3 ] [4 + u “xt] 2uu,
-[ﬂf—+ 2 2
u - 2u u, -
ox -4 Ut ] xt [Ug = Upyel

[3: +udu,l - %; (uf —uil ., i.e.

-

2
(uf - ul ~ vy, ~Y3 =0 (4.3.4)

a_
ot 3 ax 4

which is the third conservation law.

Hence (4.3.2),  (4.3.3) and (4.3.4) are three independent
conservation laws for the RIW (4.3.1). The corresponding
functionals (constants of motion) are obtained by integrating the
above equations and using the assumption u, u, and u, - o as

|x| - o, then the three functionals are respectively;
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2
Py(u) = [Tuax, Pyu) = [(8 + Fyax ana Fy(w) = [Tutax
-

-0 —-m

Olver [16] showed that the RIW has no other conserved densities

depending on X, U,U,, U,,, ... than those stated above. This is

summarised in the following theorem:

Theorem 4,3

The only nontrivial independent conservation laws of (4.3.1) are

(4.3.2), (4.3.3) and (4.3.4). O

The method of the proof is based on a comprehensive algebraic
machinery for use in the investigation of conservation laws of
partial differential equations, and a nice presentation of the

Olver's proof was given by Abbas (1].

In spite of the fact that the RIW has only three conservation
laws, there might exist other consarved donsition dopend on ¢
and the t-derivatives of u and u,. Duzhin & Tsujishita {10]
have discussed this possibility by using the method which is based
on the calculation of a certain part of the vinogradov spectral
sequence [19] and the universal operator €p = -DID, + D - Dy.s
where D is the total differential operator defined on the
algebra of x, t, u and the various derivatives of u., They have
proved that the conjugate 4 ;. of the operator ¢ F has a finite
dimensional kernel generated by three elements 1, u, i( u? + Upe).
The conjugate is given by (.7;. = DiDy - D, + D, and by using the
relationship between Ker € ; and the space of conservation laws,

the following theorem can be proved:
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Theore 4
The dimension of the space of conservation laws of the RLW (4.1)

is not greater than three. (J

4.4 tio stabilit

In section 4.2, the stability of solitary wave solution of the RIW
equation, under linear perturbation, was considered. 1In this
section the 1linearity assumption 1is not specifically included.
Morever, the stablility of solitary waves is discriminated in
respect of shape. This 1s achieved by a device entailing the
definition of certain quotient space, as shall be seen in

definition 4.4.1 below.

To study this type of stability, consider the initial value

problem for the RLW equation

“t+‘5<+““x'u:a:t"°' - <X <¢<cmw, t>»0

(4.4.1)
w(x,0) = g(x)

which has the solitary wave solution

x -
ug(x,t) = 3¢ sech®} [;fglz [x — (14c)t] = &(x—ct), (4.4.2)
where c = l4cC.

Now, the stability of ¢ means that if u is made close to ¢
at t = 0 then u will remain close for all t. For this
purpose, some précise measure of distance between u and ¢ must
be specified. This metric is a functional depending on pairs of
functions defined on the whole real axis and evaluated on the two

solutions u and ¢ of (4.4.1). This wetric is generally a
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function of t and not constant.

Thus to establish the stability of (4.4.2), the following

assumptions, made by Benjamin [4], are necessary:

(1) The solutions of (4.4.1) are c®-functions all of whose

derivatives vanish rapidly as |{x| - w.

(2) The initial value g(x) and the solitary wave ¢(x) are

close to each other.

(3) The solution u(x,t) exists for the considered class of
g(x) and has the required smoothness properties (this is
guaranteed by the well-posedness theory of (4.4.1) which is given

in the next section).
(4) The two functionals:

E(u) = Im( u?+ug)dx = constant and
—m -

(4.4.3)

Q0
M(u) = I (u2+: u®)ax = constant
- 3
for solutions of (4.4.1) with required restrictions on asymptotic

values are used.

(5) A device -can be found to concentrate the proof on the
stability of the shape of the wave. This 1is clear from the

following definition of the metric used to wmeasure closeness.



Definition 4.4.1

Let £, g € B anda HY/G be the quotient space, where G is the
translation group in R, 1i.e., Gyf(x) = f(x+y), Y & R. Now,
define

a(f,qg) = inf | £(x+ty) — g(x)||
yeR

alery ° (4.4.4)

Then d is a pseudo—metric on B! and a proper metric on the

quotient space HI/G.

Using the above points, (1) to (5), Ben)Jamin was able to prove a
gtability theorem. However his proof contained some restrictions

and unjustified assumptions. These were improved and corrected

later by Bona [6].

The final theorem, whose proof is provided by Bona {6] is as

follows:
Theorem 4.5

let € » O Dbe given. Then there exists &6 » 0, such that if

g € B2, u 1is the solution of (4.4.1) and
g - ¢||Hl < §, then
d(u,9) € €. O

4.5 Well-posedness

Congider the initial value problem

ug + u, +uu, - U = o, - < X <o, ¢t >»O0

(4.5.1)

u(x,0) = g(x).
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Re-writing the differential equation in (4.5.1) in the form
3 ) 1.2
1 -=_Jj = - u(x,t) + = u(x,t 4,5.2
(1 -3 o (X €) + = ui(x, )] ( )

it can be regarded as an ordinary differential equation in U .
If we consider the boundary conditions u(x,t) - 0 as |x| - m,

the Green's function of the differential operator, i.e.,

A(¢)eX + B(g)e™*, X ¢ ¢
G(x,£) =

e(¢)eX + D(g)e X, x> ¢
is reduced, by using the boundary condition, to

A(¢)eX x ¢ ¢
G(x,¢) =

D(e)e—x x> ¢ .
since G(x,£{) = G(¢,x),

Ae(x-e)l X ¢ ¢

G(x,¢) =

Ae-(x_t )

Using the continuity properties of the Green's function

= G ana 9SG - 96 -
x = ¢£4+0 X = £-0 ax'x = ¢40 axlx = £—0 -1
one can obtain A = - i . Hence
G(x, £) =-%e"x'“ (4.5.3)
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which 1is the Green's function of the Jdifferential operator

2
(1 -9

Then (4.5.2) can be inverted to

m e
u = - %.If x-¢| g.é {u(e, t) + —zl u?(e,t))ae

1 [ 1x-6) 1,2
1 f;e (ue,e) + L uce,enae .

Integrating the last equation once with respect to t and using

the initial condition u(x,0) = g(x) we have

S
u=gx)+ - [ [ kx-€)u(e,m) + 3 uie,TrNaear  (4.5.4a)
0 ~w 2

where X(x-£) = 32= sgn( x-¢)e~ [ ¥~¢l
Hence the original initial value problem (4.5.1) 1is formally

equivalent to an integral equation and we can now re-write this in

the form: -
u = Au = Bu + g(X) (4.5.4b)

-t
where Bu = [ [° k(x-€)(u(e,m) + 1 u2(e,7)acar,
> ~m 2
Having obtained the integral form of the general solution of
(4.5.1) in the form (4.5.4) we turn to study the well-posedness of

the problem.

4.5.1 Existence
The existence proof 1is done in two steps. The existence of the

solution is first obtained locally and then extended globally.
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The treatment, given below, closely follows that of Benjamin et al

(sl.

Local existence
The proof of existence of a solution to (4.5.1) is reduced to

existence of a solution to (4.5.4). For this purpose let g t be

the sgpace of all continuous and bounded functions defined on

R x [o,to] with norm defined by ||.]] = sup |.| . One can show
X&¢R
Oct<t,

that e t, is complete normed linear space (Banach space).

consider now the integral equation (4.5.4) where the integral

operator A acts on 'gto , 1.e.,, A gto “{to « Then for any

Vi V2 efto and any x € R, t € [0,t,],

|avy, — Av,| = [(g+BVy) — (g+Bvy)|

t
1 7 xx-6)1(vy-v2) + L (vi-v)1acar]
o - -

N

t
[5 7 x(=62119y = val11 + 2 (v 4v,)1a¢8r
o - 2

< sSup vy - v2|[1 +1 sup vy = Vol
x€R 2 xR
te[o,to] te[o,to]

[ [° eex-e)aear)
-0

o

<lvg - vallf, 1+ 2 v +3 lvallg, It
o (o] o

(since [ Wk(x-¢) Nae=1).
L (4.5.5)

-69-



Taking the supremum of both gides for x,t ¢ R X (0,t,]1 and using
the definition of the norm in the space g t . we have
()
Havy-ava i1y < (1 + 5 11vgttfe + 5 119l 1fe Mivyvyl e &,
o (o] o o
(4.5.6)

which implies that A is continuous mapping of e t into itself.
o
Purthermore, it satisfies a Lipschitz condition on the ball

l1lvll € R with Lipschitz constant A such that
t,(14R) € A < 1. (4.5.7)

Since, using the condition (4.5.7) in (4.5.6),

Av,—AV € t . (14R Vq=V € A V4=V . 4,.5.0
| |1Avy-Av,y || € to(14R) [lvy 2”&0 vy 2“&0 ( )

Choosing v, = 0O and vy =V in (4.5.8), then
Av < A v 0 ¢ A<l
| l%ao » I I%QO, '

i.e., A is Lipschitz. Hence A 18 a contractive mapping for

values of t,, where to( 1+R) ¢ A < 1,

Similarly
Bv € A v . R
M ||€to I ”gto (4.5.9)

But using (4.5.4) and (4.5.9),

{1Av] ] £ Sup lg(x)| + ||Bv}|
gto xR to

< Sup [g(x)| + A ||vI] .
x€R ?to
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Now for the mapping A to be contractive over the ball |{v|| = R

for any to' we must have

Ssup |g(x)I < (1-A)R . (4.5.10)
x<R
It can Dbe easily checked that (4.5.7) and (4.5.10) can be
satisfied simultaneously by cChoosing A = £ , R = 2M and

Buﬁ lga(x)] < M. Firstly (4.5.10) is satisfied, and (4.5.7) is
P

satisfied for any value t, such that ¢t < 214’4 .

Hence A 1is contractive over the ball ||v]| ét £ R. Thus
o)
according to the fixed point theorems for Banach spaces, the

integral equation (4.5.4) has a unique solution which is
continuous and bounded for all t such that 0 € ¢t < t,. This

proves the following lemma:

Iemma 4,5.1

Let g(x) be a continuous function such that Sug lg(x)| € M ¢ w.
Xe

Then there exists a ¢t (M) > O such that the integral equation

(4.5.4) has a solution satisfying u(x,0) = g(x) which is bounded

and continuous for x € R and 0 £ t < to. Q

Next we show that the solution guaranteed by lemma (4.5.1) has

sufficient regularity to be a classical solution of (4.5.1).

Lemma 4.5.2
If g € c?(R). Then any solution of (4.5.4) which is an element

of p (for a given T > 0) is also an element of e;'m. 0
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§;

et u be a solution of (4.5.4) guaranteed by lemma 4.5.1, i.e.,

t L ..2
u=Au=g(x) + I { rm k(x-¢){u+3 ulaglar.
o -~w

Since u ee ty,* then u 1is bounded and uniformly continuous on
R X [o,tO]. Hence u = Au is continuously differentiable

function i.e., u, exists and is given by
u, = (Au), = r’ K(x-¢){u+1u®}ae.
-

Furthermore ug, is continuous and bounded on both x and t on

R x [0,t,]. Hence u,, exists and is given by

uee(xot) = [TROx-£){ug(£,€) +uE,t) ug(£,£))ae.
—o

Hence, by induction, the k th derivatives with respect to t

exists and is given by

k-1

e [rx-g) & (urdut)ag, K =2,3, ... .
atF - atk-1

To obtain the x—derivative, the range of integration is divided at

e = X, i.e.

t X ,_ t
u=g(x) +% [ [ef*u+riut)acar - 2 [ jmex“(m-guz)dcdr.
o —m o X

(4.5.11)
Since u(x,t) is a solution of (4.5.4) in 61. then u(x,0) = g(x)

is continuous and bounded, then u, exists, being given by
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t £ X
ux,t) = g'(x) + [ (urdudjar - 1 [ [Turdu?reéXacar
o o -

t
-3 rex"c[u+-§uz}d£d'r
o

t t _
- g'(x) + I {u+-§u‘}d*r - I r’ % elx “[u+-§uz}dcd1’.
o o -
This shows that u, 1s continuous and bounded, then the first
integral is a continuously differentiable function of x. Since

g € c3(R) we can differentiate again and obtain

t t X
wod X, £) = gn(x) + [ (uuugdar + 4 [0 [7 eé*usdu?)acar
o] o =-®

t t
-4 I {u+iu®)ar - 2 I Jxex"‘{u-&%uz}dedr
o o -

ot t
=g" + [ (uguy)ar + [ [@K( x-¢)(u+du?)acar
(o] o -

t
= g™(x) = g(x) + u(x,t) + [ {u, + uuglar .
(o]

(using (4.5.4)

Thus u,, exists and is continuous and bounded. Clearly u has

2,

the regularity of g in its x-derivatives and so u eg T .

i
(For the definition of the space«e T'j, see appendix D).

Combining lemma 4.5.1 and lemma 4.5.2, the proof of the following

theorem is obtained.
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Theorem 4.6

Let g(x) € c*(R) and ba hounded, then there exists a t, » O
such that the initial value problem (4.5.1) has a local classical

golution for any t, 0 € t £ t, - 0

Global existence

Having obtained the local existence of solution of the regularized
long wave equation (4.5.1) we turn to extend this solution for
larger t. For this purpose the interval (O,t,] 1is replaced by
the interval [to,tll to see whether u(x,t,), guaranteed by
theorem 4.6 can provide the same set of properties that when
assumed for u(x,0) enabled the existence of solution of (4.5.1)
to be proved for 0 < t <€ t,. If this is the case then the
solution of (4.5.1) exists in the interval [to,tll and this
argument can be repeated any number of times which leads to the
existence of the solution globally. For doing this we introduce

the following lemma which proof is provided by Benjamin et al (5].

Lemma 4,5.3

-

(1) If (w,) 1s a sequence of functions 1in .e,__o and 1if

wn( x,t) is asymptotically null for all n, then so is 1lim Wh o
n-mo

(11) If w(x,t) is continuous and asymptotically null, then so
are
[*el®*tluerae  ana  um [* K(x-£)wy(6)ac

—00 n-w -
(iii) If u(x,t) 1s a solution of the integral equation (4.5.4)

guaranteed by lemma (4.5.1) and if g, g', ..., oK) are

continuous and asymptotically then 85 8"‘:‘ u is aysmptotically

null for all m > 0, O <P <K,
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Prom now on the arguments depend on the assumption that we are
dealing with solutions which satisfy u, u,, Uy =0 as x| -~ w
(i.e. asymptotically null). For such solutions, the above lemma

leads to the following theorem which assures the global existence.

Theorem 4.7

Let g(x) satisfy

r’ (g3+g 2)ax = E, < ® and g e c*(R), then the partial

-
2,m
differential equation (4.5.1) has a solution u eg ® which

satisfies u(x,0) = g(x). O

Proof

Let u(x,t) Dbe a solution of (4.5.4) assured by lemma (4.5.1),
then u 1is a classical solution of (4.5.1) (by theorem 4.6],

i.e., u satisfies

Ug + Uy + Uy = U = O

pointwise on R x [0,t,]. Multiplying the last equation by u

and integrating with respect to x between x = -, and x = 4L,

we have
L L
g_t-: I f(uP+uglax + [fu® + Lu® - uux]_L = 0,
-L

Integrating with respect to t and using u(x,0) = g(x), we have

L L t

A
z 1]
[ suttufrax - L[ (g%4g'2)ax = - [ (fuP+iu®-uy,) ar .
-L -L o ~-L
L
Since I (g%+9'?)dx remains bounded as L - o and the
-L
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integrand in the right hand side is uniformly bounded as L - m,

L
then as L -®, [ (u?+ul)ax must be bounded.
L

Using lemma (4.5.3) (iii), the integrand in the right hand side

vanishes as L -~ o». Hence
E(u) = [w (u*+ug)ax = fm (g%+g'%)ax < o (4.5.12)
—® -

through the interval ([0,t,].

Thus u(x,t,) provides the same set of properties that when
assumed for g(x) enabled the existence of solution to be proved

for 0 € t € t,. Hence the theorem is proved.

4.5.2 Unigqueness
Theorem 4.8

The solution of the initial value problem

ut+ux+uux'—um4-0, - <X <mw, t >0
(4.5.1)

u(x,0) = g(x)

guaranteed by theorem (4.7) is unique. []

Proof
Let u and v Dbe two solutions of the initial value problem
(4.5.1) and w = v-u, then w gatisfies the initial value

problem
wp + W + 3 (WUHV) ]y ~ W = 0,  w(x,0) = 0. (4.5.13)

Multiplying (4.5.13) by w, i.e,,
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wwy + wwy + ZWW(uRv) ] = wwo e = 0. (4.5.14)

Integrating (4.5.14) with respect to x between X = - R, x = R

R R R
o= [ Swirioedx + vk -] 43 ] wieoudnax

R
R R
=1 I g—;, (WAHwR)ax + 3 [wg - wwy ]+ 2 [wE(ubv)]
~R -R -R
R

- I (v+u )wwxdx .

Since U, Uy, Uyys Vs Vg and Vit vanish as |x| - o, then so

are W, W, and Wyt * Hence as R -~ w

a. 2
':"? -[:(wzwx)dx -

N

r) wW (u+v)dx
-m

(o3

n
N

Su u+tv Im ww, Aax
*<R ' l low ¥

ety [ L(wiiiiax
=00

[
Nl

where c¢(t) = Sup |utv|.
X€
Integrating with respect to t Dbetween 0 and t, we have

[m(wzw§)dx~ < Im (w¥(x,0) + wi(x,0))ax exp(3 [tc(r)dr)
‘o —w o

= 0 (since w(x,0) = 0) (4.5.15)

i.e., Im (wiwi)dx = 0 - w = 0.
-—m
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Hence u =v for all t » O,
Thus the solution of (4.5.1) is unique. |

Note

The choice of g € c?(R) in the above analysis was replaced by
Bona & Smith [9] by the assumption g ¢ H?(R) (see the appendix D
for the definition of Hk) and was considered in the last chapter.
Hence theorems 4.7 and 4.8 can be slightly changed to the

following:

Theorem 4.9
let g € H®, m > 2, then there exists a unique solution to the
jnitial value problem (4.5.1) 1lies in %% for all finite

T™T>» 0. O

4.5.3 The_dependence of solution on the initial data

Let u and v be two solutions of (4.5.1) such that
v(x,o)-gl(x) and u(x,0) = g,(x). Then w = u-v satisfies the

initial value problem R

(4.5.16)

Using similar calculaticnsas in theorem 4.8, we have

t
f” (wP+w2)dx < |lagllgl exp (3 [ o(T)ar) (4.5.17)
bl o

where c(t) = :chg Iv(x,t) + u(x,t)}.

Let, now, ||Agl.ﬂl < &, then
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c(t) = Sug.|v(x,t) + u(x,t)l
xe

< Hvllgt + lluflgl (by the properties of H1]
= ”91“31 + IlngHl (by (4.5.12].
Thus,

max c(t) € |1gqligl + 1gyllg2
0<t<T

= 211g;llgl + (11gzxligl-11g9,11gl) = 2{ig;ligl + 8.
1''H 2''H 1''H 1''8H

(4.5.18)
The relations (4.5.17) and (4.5.18) are combining together and

give

Sup jm (witw2)ax < & exp {llg;ligl + %)T, i.e.
0<t<T ~o

||w|y(; < 5 exp {I1g;llgl + g)r

(see appendix D, for the definition of the apace‘ﬁf%).

Hence u and v are close to each other provided that g; and

g, are. Thus the following theorem is proved

Theorem 4,10

The solutions of (4.5.1) depend continuously on the initial

data. (0

The analysis in the above three subsections imply that (4.5.1) is

well- posed.
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4.6 Conclusion

In this chapter we reviewed the mathematical properties of the RIW
equation. We found that the equation has a stable solitary wave
golution, perhaps the only exact asymptotically null solution
which is known for this equation. Thus, unlike the KAV, there is
no information whether the N-soliton solution exists or not. It
is believed that the RLW does not have N-soliton solutions because
the equation has only three conserved functionals and hence cannot
be linearized by the inverse method. Although the numerical
results carried out by Abdullov et al and Bona et al show that
there is inelastic interaction between the solitary waves of the
RLW, as far as we know no analytic proof for the non existence of

N-soliton solutions is yet known.

The analysis above shows that the RIW theory is not complete.
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CHAPTER FIVE
CLASSIFICATION AND REDUCTION OF THE GENERAL CLASS OF EQUATIONS

In this chapter we complete the classification derived in chapter
2 on the existence of aqlitary waves of the general class of
equations. By defining solutions to be equivalent if they are
connected by a nonsingular linear transformation we show that the
general class can be vreduced to four equivalence classes,
considerably simplifying the problem of proving the well-posedness
of the equations. We also show that the equivalence
traﬁsformations preserve solitary waves and conservation laws.
Finally, we consider the question of the existence of multisoliton

solutions in the KAV equivalence class.

5.1 General Clasgification

The existence of solitary wave solutions of the general class of

equations,

ue + u, + ajuuy, + auug + azuon, t aguy + AgUyp ¢ + AgUyyye = O
(5.1.1)

was established in chapter 2, and a general classification in
terms of the speed of the solitary waves was initiated for the
cases ag = 0. This section is devoted to completing this

classification.

For this context let ag # 0, tience from section 2.1, the

solitary wave solution has the form

3
ug(x,t) = 2 sechz(—z-f/;—[x-(lm)t]) (5.1.2)

where,
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ac = a; — a5(14C), BC = az - a,(14c) + ag(1+c)? - ag(1+c)?®
(5.1.3)

The necessary condition for the existence of the solitary wave
solutions is B should be positive. The cubic equation (5.1.3)
for pc has three roots. The types of these roots are obtained

according to the properties of the discriminant determinant A,

where,
A= (4aa’ - 182 a aa + 27a%a? + 9a%a - ala?).
1oea; 35 3456 3 6 4 6 4 5
(5.1.4)
Remark!
2 .33a and 2a3=9aaa - 27a a* , then has
Ifa=0, a 46 5 456 3e ' Pe

three real and equal roots. If A < O, then pBc has two complex
conjugate roots and one real root. If A > 0, then fpc has three
real and distinct roots. And if A = O, then pAc has two real

and equal roots and one simple real root.

Thus four cases arise in the classification baelow. This
clagsification is presented for ¢ > 0. The results for ¢ < O
follow from this by reversing the direction of the c-axis and

interchanging the interpretation of its corresponding figures.

2 3 2
- ac = 3a a and 2a° =93 aa - 27a a
(1) 4=0, 5 4 6 5 456 36

In this case g¢ has two possible graphs

Bc Bc

N c
i

Fig.(1.a) Fig.(1.b)
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The cubic for figure (1.a) has real root ¢, of order three.
This figure corresponds to the condition ag » O. Hence, 1if

C

o * 0, the solitary wave would exist inside the interval (O, co)

and the speed is bounded above, whilst if ¢, < O, the solitary

wave does not exist.

The cubic for figure (1.b) has a real root ¢, of order three,
subject to the condition ag < 0. Thus

c, >0~ ce (Cor ®) for which the solitary wave would exist and

C, <0~ ce€ (0, o) for which the solitary wave would exist,

(2) 4 <O

O ————— e —

In this case pBc has two possible graphs

Bc
Bc

Fig.(2.a) Fig.(2.b)

The cubic for figures (2.2) and (2.b) have one real root and two
complex conjugate roots. This case reduces to the cases (1.a) and

(1.b), discussed above, .,

(3) 4>0

e —————

In this case pc has two possible graphs, having three real

distinct roots
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Bc

:74:::><:: c
¢ © 3

Fig.(3.a)

Bc
s
¢, 6N

FPig.(3.b)

For this case, let C;, €, and c; be the roots of the cubic fc

and without loss of generality let Cy ¢ Cy < C3.

Between any two

consecutive roots the graph attains its maximum or minimum values

(i.e. (BC)pax or (BC)min
t A2 - 3aa
% "V " 46 |
3a
6
The cubic for figure (3.a)

Cpin > “max

where fCuin = (PC)yjin

respectively) at the values

corresponds to the condition

Hence the following subcases arise.

1) Cy > c, > Cqy 2 0.

There would be no solitary waves in the interval ([c,,c3)(J([0,¢,]

otherwise the solitary wave exists

(i1) ©4 < Cy < Cy < o .

The solitary wave exists and the speed is unbounded above,

icedl c € (Op m)

(iii) ¢4 < ©p < 0 ¢ccy .
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This case implies that c ¢ (c3,m) for which the solitary wave

would exist

(iv) ©4 < 0 < &5 < C5 .

The solitary wave would exist only, for those values c,

C & (O,CZ)U(C3,00).

The cubic pc  for figure (3.b) corresponds to the condition

Cpax ’ Cmin and the following subcages arise

(1) 0 c¢<Ccy ¢ Cy ¢<Cy

The solitary wave would exist for the values ¢, ¢ & ( 0,c4 )U(cz,ca)

(i1) c©y <« €y < C3 < o .

For this case there would be no solitary waves

(iil) ¢4 < €3 ¢ 0 < Cy .

The solitary wave would exist only for the values ¢, ¢ ¢ (0,c3)

(iv) cl < 0 < CZ < c3 .

The solitary wave exists for ¢, C € (c;,Cy).

(4) A=0

‘#
In this case, the cubic Ac has only one multiple real root c,
and one simple root c,. This multiple root is a turnhing point

for the graph of pc. Hence four possible graphs.
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Bc PC

3C

(9]

C TN
~—1 N
C Cn C
7N T N GRS ey

Pig.(4.a) Pig.(4.b) Fig.(4.c) Fig.(4.4d)

The cubic pc for the graph (4.a) correspond to the condition,
cy < c, and Cmax ¢ Smin ° Hence, 1if Cy ¢ 0 < c, or
0 ¢ Cy ¢ Cy, the solitary wave would exist only for the values of

c, € € (cy ™). If c4 < c, < O, then the solitary wave exists

for the values of C, ¢ 6 (0 , m).

The cubic pc for figure (4.b) corresponds to the conditions
Cy ¢ Cy and Cpayx ¢ Cpyn: Hence, if c¢; < 0 <c,, the solitary
waves would exist for the values ¢, ¢ € (0O, c,)U(cy, w). I
0 ¢ Cy <Cy, the solitary wave exists for c, c ¢ (cy, ¢4V (cy, w).
whilst, if ¢, < c; ¢ O, the solitary wave exists for the values

of ¢, ¢ € (ol W).

The cubic pc for figure (4.c) corresponds to the conditions
¢y ¢ Cp and Cpyp ¢ Smaxe Hence, 1if O < Cy ¢ Cy, the solitary
wave exist for ¢, ¢ € (0,C4)U (cy,C3). If C; < O ¢ €y, then the

solitary wave would exist for ¢, ¢ « (0,c,). Otherwise the

solitary wave does not exist.

For figure (4.4), i.e. C5 < c; and Cpy, ¢ Cpa. » the solitary
wave would exist only for the values c, ce (0,c5) if O < Cy ¢ C4.

otherwise the solitary wave does not exist.
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5.2 The class WAS
In the parameter space, let W = ((a,,35,...,35) € R}, i.e. W

represents the general ‘class of equations
up + Uy +ajuuy A UU + A3lga + AUy + AglUyey + AgUgee ™ 0.

Then WN S is defined to be the class of all elements of W

which possess a solitary wave solution

ug = 3 sech? ;iﬁ—(x—(1+c)t],

oc = a; - a5(14+C) and BC = a5 - a4(1+c) + ag(14c)? ~ ag(1+c)>.

The analysis, introduced in chapter 2 together with section 5.1
indicates that inside the class WA S all the equations are
restricted to those which keep the solutions real. Furthermore
from the definition of the solitary wave Bsolutions, ug, the

following points are noted:

(1) If c is kept fixed, the amplitude (2) is a function of a,
and a,. Hence positive or negative amplitudes are possible by
varying a, or a, or both. Furthermore, these coefficients are

the dominant terms in producing the sech? profile,

(2) The width of the solitary wave (4m/B) is a function of the

dispersion terms only, i.e. of the parameters a,, a,., ag and ag.

(3) The width and the amplitude of the solitary wave are coupled

in terms of cC.

(4) In the parameter space W, WNS can be regarded as a

subspace of the topological space R°®.

It follows from (4) that it makes sense to discuss any of the
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topological properties for W N S in the parameter space.

on 2
(1) A topological space E 1is connected 1f it cannot be
represented as a union of two disjoint open sets. Otherwise it is
disconnected.
(11) A maximal connected subset of a topological space, i.e. a
connected subset which 1s not properly contained in any larger

connected subset, is called a component of the space.

Theorem 5,1

(1) Wn S 1is disconnected, i.e. not connected.

(2) WN S has four possible components. (]

Proof

Let Wp and W be two subsets of WN S, where
W = {e € WnS: pc has only real roots and

We = (e ¢ WNnS: pc contains complex roots}.

Then W and W gatisfies

(1) Wgn Wc = ¢ (the empty set) (2) Wgpu W =WaAns.
Hence W N S has a proper separated partition which proves (1).

(2) In the proof of (1) Wp can be separated into W W and
Rl' R2

wRa' where, pBc has three real equal roots in WR1' has two equal

roots and one simple in sz' and has three distinct real roots in

Wg_. Thus WAN S = leu szu WR3\J W- and Wen WRI(\ WRZA WR3 = 0.

3
Each one of the four classes is clearly connected and cannot be
contained in any larger connected set. Thus each one 1is a

component of WNS. @

-88-



Definition 5.2.2
If e;, @ € WAS and e = (a;, 33, ... 3g), € = (by, by, ...,
bg) in the parameter space then the segment e,e, 1s the set of

s € {0,1].

Example 5.2.1

bg = by = bg = 0 (RIW).

Then e,e, = (3, 0, (1-8), -8, 0O, 0) which represents the

equation
ug + uy +uu, + (1-8)u . — BUp, =0 (Regularized Kav).

since inside W/1S, a solitary wave solution exists along any
segment, joining any two elements of W{(1S, then a subset N of all
segments, joining the KAV with all other elewents of WS 1is now
connected. Hence, constructin ences

’ g sequ (S1)4 ¢ [0,1] 8uch that
a solitary wave solution exists for each value 8y 18 now

possible.

5.3 u n t iv.

The general class (5.1.1) splits, with respect to Cauchy problem,

into three distinctive subclasses:

(i) The class Wg(ag # 0) for which (5.1.1) is third order in t

and three bits of data, u, ug and Upyr are given at t = 0,

(ii) The class Wg(ag = 0 and ag # 0), then (5.1.1) is second

order in t and both u and uy have to be specified.
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(1ii) The class Wg3(3g = 0 = ag), then (5.1.1) is first order in

t and only u must be given at t = 0.

To discuss the well-posedness of the general class, which is done
in the next section, it is convenient to reduce this class to a
number of disjoint subclasses such that the properties of the
general class are characterized by these subclasses. The proof of
this reduction will be established separately for the classes,

which we call Wg, Wg and W,.

5.3.1 The reduction theorem of We

The equation of this class is

Up + Uy + AgUL F AjUU + AgUgge + A4tk * Aglxee + AgUkee < O
(5.3.1)
Consider the nonsingular linear transformation

- ' = —L - —&- - LI -—L -— —_m [
X X 1-n 1—nt' t t 1-m 1-m s w(x',t) - v(x,t'),
(5.3.2)
and n; m # 1. Under the transformation (5.3.2), (5.3.1) reduces
to

Vie + Vyo D30V + DovVe 0 4 DaVigerxr + DgVyrxrer + PV

+ bth't!t' - o (503.3%)
where,
- n a, - - 2 _ 3
by = a, ay , b, = y ~ ma, b - az - a4n + agn agn®
1-n 1-m 3 (1 - n)°

3a; ~- (m + 2n)a, + n(n + 2m)ag - 3mn®ag ,

‘b -
4 (1 - )31 - m)
b = 3a; - (2m + n)a, + m(2n + m)ag - 3nmz§§ . and
5 (1L - n)1 - m)?
_ 33 - agm + agm® - aGm3
b . (5.3.3b)

)
(1-m)
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Define a relation P on WG such that, 1if €, €, € We then
elye2 if and only if they have the same type of roots of the

cubic equation
ag — agh + agA? — agA® =0 . (5.3.4)

Now, p is clearly an equivalence relation. Thus it partitions
Wg into equivalence classes. 51nce.(5.3.4) has only four types

of roots A4, Ay and Aj, i.e.,

(1) Ay = Ay = Mg and Ay is real, 1 =1, 2 and 3,
(2) Ay =2y # A3 and Ay 1sreal, i=1, 2 and 3.,
(3) Ap #2A; #A; and Ay isreal, i =1, 2 and 3,

(4) Ay = Ao o Ag s Ag is real but Ay and A, are complex

conjugate.

Then Wg 18 partitioned into four equivalence classes, each of
them being characterized by one type of the roots of (5.3.4).
Furthermore, this partition depends only on the dJdispersive

coefficients a3, 34, ag and ag.
Theoyem 5,2
The class Wg can be reduced to the following equivalence classes
(i) The subclass (¢y, C, ¢3, 0, 0, 0), 1.e.
Vi + Vg + CyVVy + CoVVy + CaVige = 0 (KAV class)
(ii) The subclass (d;, d,, 0, 4,4, 0, 0), i.e.

Ve + Yy + v, + dzvvt + d4vxtt = 0 (RLW class)



(1ii) The subclass (¥, Y2+ O, Y4, Y5, 0), 1.e.

Ve + Ve + YV + YoV + YVt ¥ YeVxtt = 0 (W5, Class)
(iv) The subclass (&,, 8, 83, 0, 85, 0), i.e.

Ve + Vy + 5,V + Bvv, + 83Viaax + S5Vt = 0. (Wgy class ).
To prove this theorem, the following lemma is introduced

Lemma 5.3.1

If the cubic equation (5.3.4) for a given equation

up + Uy + aguy + auup + AU + Al F AgUpe + AUk = O

has a unit root A (i.e. A = 1), then there exists a nonsingular
linear transformation which transforms this equation to another

equation
Wi + Wy + CyWWy + Cowwy + CaWp e + CaWpret + CeWoutt + Ce¥Wete = O

for which the cubic (5.3.4) for c¢; does not possess the unit

root. [

Thus from now on we suppose that: A # 1, a root of (5.3.4).

Proof of theorem 5.2

The above analysis proves that Wg splits into four equivalence
classes, characterized by the different kinds of the roots of

(5.3.4).

(1) Ay = Ay = Ay are all real. Choose m and n 1in (5.3.2)

as follows: m = Ay and n = O, Hence m # n such that the
transformation (5.3.2) is nonsingular. Since m 1is a wultiple

root of order three of (5.3.4), then
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3
aZ = 33,35 and 2ag — 93,353 + 27a5a = 0. (5.3.5)
Hence combining the two conditions (5.3.5) yields

azag = 9aj3g. (5.3.6)

Using this result we calculate the coefficients Dby 1in (5.3.3),

then
bg = 0 1is clear since m 1s a root of (5.3.4)
b = 3a; - (2m + n)ag + m(2n + m)ag - Bm‘aﬁ
5 (1 - n)1-w?
3(a; — 34h; + 3gAT — agh]) -~ A (-2, + 2agh, - 3agA})
(1 - Ap)*

0 (since A; is a root of order three].

Similarly b4 = 0,

by = 236 T %% L

by =a
3 = 3y 32, - a,

1" 2.
i.e. (5.3.1) reduces to
Vi + Vx + clvvx + czvvt + C3vm = 0 (KAV class) (5.3.7)

where, Cj = by i=1,2 and 3 which proves (1)

(1) Ay = A # Ay are all real.

Choose m = Ay and n = A3 in (5.3.2). The transformation
remains nonsingular, and since m 18 a root of order two of
(5.3.4), then similar to the above case by = bg = 0. Furthermore
gince n 1is a root of order one, then b3 = 0 Dbut b4 # 0 and

(5.3.1) reduces to the class
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Ve + Ve + vy + d,vve + Qv = 0 (RLW class) (5.3.9)
where d1' d2 and d3 are in terms of ay (L =1, 2, ..., 6)

(1ii) Ay # A, # A5 are all real.

choose m = Ai and n = Aj P (1 # j)n Both m and n are
simple roots of (5.3.4), then by = bg = 0 but by, # 0 and by # 0

in (5.3.3b). Thus Wg reduces to
Vi + Ve + ¥V + YoV + VgVt + Y5Vt = O (5.3.9)

Choose m = A4 and n such that by, = 0 in (5.3.3b). Hence

bg = 0 = by, by # 0. Thus W reduces to

(5.3.10)

'where &; are in terms of aj, 1 =1, 2, ..., 6.9

Ccorollary (5.3,1)
a
-1
If 3

simpler classes

is a root of (5.3.4), then the class Wg reduces to the

(1) \ + Vi + C + CVyex ™ 0
(11) v + Vg + 4, v, + AV = O
(1i1) Vi + Ve ¥ ¥V * YVt * YsVxtt = ©
(iv) vy + Vy + 8 VV + 83V + ssvxtt = 0

where cj, dj, ¥4 and &; are in terms of a,, a, , ..., . O
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Note:

The only nonlinear term in the reduced classes, ias VVyes

Proof

a
In the above theorem if a',i; is a root of (5.3.4) we choose m
equal to this root, then from (5.3.3b) b, = 0. This completes

the reduction of Wg. W

5.3.2 The reduction theorem of "5

The equation of this class is

up + U+ ajuu, + ajuly + AU + Alng + AgUyy e = 0.

(6.3.11)

consider the nonsingular linear transformation

ey =X Ky, £t =X - ' o
x - x' = K- e e ﬁ;t, u(x,t) = v(x',t')
(5.3.12)

Under the transformation (5.3.12), (5.3.11) transforms to

vt' + VX' + bJ.WX' + bzwt' + b3vx.x.x. + bgvx.x.t. + bsvxototv

+ bsvt.t.tu =0 (5.3.13a)
where
a, - ka, a, - a, - a 2
b, = 1 B b2 - _L_p_fl . b3 - 3 Q‘k + ask '
17 1 -x 1-p (1 -x)®

3a, - (P + 2k)a, + (k* + 2kp)ag
(1 -K)*1-p)

by = (5.3.13b)

3a, — (2p + k)a, + (2kp + p?)ag b a3 — a,4p + agp?

’ -

(1 - k)1 - p)? 6 (1 -py '

bg =

and p can be chosen such that bg # 0 and the transformation

(5.3.12) remains nonsingluar. Hence equation (5.3.13) forms an
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element of Wg and the reduction to the equivalence classes can
be done by following the analysis in the above section. Since the

equivalence relation can be defined in terms of the roots of the

cubic equation
by — byA + bgA% + bA® = 0 (5.3.14)

i.e. using (5.3.13b) in the cubic (5.3.14), one can find the roots

of (5.3.14) in the form

A, = - R, = - (1-p) [283'(P*k)84+2kpa5}up-k)vé;-gaaas
1-k 2(1-k) a3 - agp + agp?
and (5.3.15)

_(a-py [2a3 = (B¥K)ay + 2kpag) - (P-k WA - 4aja,
2(1-k) ag — ap + agp*

Aa-

Then

a
(1) az = 4333z ~ Ay = A3 and if in addition p = ;: . then
5

A = Ay = Ay and the class Wg reduces to the KAv class

(11) a2 = 4azag ~ A; # Ay = A; all real. Hence wg reduces

the RIW class

(111) a} » 42335 = A; # A; # A3 and all real. Hence Wg

reduces to the class L/

(1v) a4 < 42335 , then Aj;, A, = A3 and Wy reduces to the

———

class Wg3.

This proves the reduction theorem of the class Ws .
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5.3.3 The reduction of the class w43

This class has the form

ug +ouy + ajuu, + auu + AU + AU =~ 0 .

This class contains individually the KAV and the RLW classes as

follows

(1) If ag, = 0, then Wi, reduces to

ug + uy + auu, + azuy 4+ aju,, =0 (KAV class)
(1i) 1If ag = 0, then W,, reduces to

u, + U, +oajuuy + ajuu, + azu (RLW class)
The analysis in the sections 5.3.1, 5.3.2 and 65,3.3 completes

the reduction theorem of the general class.

5.4 Well-posedness
Consider the 1initial wvalue problem which corresponds to the

general class

where u, w. and uw., are given on an arbitrary space curve
x = x(8), t = t(s) and s 18 a parameter. Then this initial
value problem is said to be well-posed if it has a unique solution

which depends continuously on the initial data.

As shall be proved in the next chapter, the initial value problem
corresponding to the general class can be reduced to a semilinear

system of first order partial differential equations
U, + AU + B =0 (5.4.1)
where A, B are wmatrices, U is a column matrix and A does not
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depend on U. Then the method of characteristics is the natural
procedure to assure the wéll—posednees. This procedure comes to a
stop if A 1is a singular or if the initial curve which supports

the data is a characteristic curve of the system (5.4.1),.

To avoid these obstacles the reduction, introduced in section 5.3,
is used to advantage. In this reduction we have concentrated on
the equivalence of solutions. However this implies also an
equivalence of the initial data. For example, for the class Wg,
u, u and u, are given on any initial curve (t = 0 say).
Using the reduction theorem of Wy, these data reduce to v, Vi
and Vg, oOn the skew curve. Since the reductions in all cases
reduce the number of t-derivatives by at least one, this means
that at least one bit of data becomes redundant and raises the
question about the specification of the data. This will be
discussed in detail in the next chapter when we consider the

question of well-posedness for the reduced equation.

Thus, using this. reduction, the original initial value problem
reduces to four disjoint initial value problems corresponding to
the classes K4V, RILW, Wg, and Wg,. Here disjoint means that the
golution for one does not imply the solution of other. Under this
reduction the solution does not in fact lose any regularity since
the reduction is via a transformation which is nonsingular. Thus

the theory of well-posedness of the KAV and RILW, introduced 1in

chapters 2 and 3 are used to advantage.

In the next chapter the well-posedness of the general class ghall

pe studied in detalil via the above analysis.
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5.5 Consgervatio aws

In chapter 7 a number of conservation laws for the general class
will be established together with a detailed discussion of how
many conservation laws exist for the general class. The idea of
conservation laws was initiated in chapter 3 where the proof for
the existence of an infinite number of conservation lawa of the
Kav equation is found. This 1dea was revived in chapter 4 and it
was shown that the RIW equation has only three conservation laws.
since the KAV and the RIW lie in two disjoint classes (KAV and RLW
classes respectively), then the question which naturally arise is
whether the reduction introduced in section 5.3 preserves the
existence of such conservation laws or not. The answer is clearly
positive by the definition of the conservation law and shall be

ii1lustrated by the first conservation law.

. Example 5.5.1 (the first conservation law)
By resolving the general class (5.1.1) in x and t derivatives,

the first conservation law of the general class has the form

a
gt[“ + 22 u® + aguyy + aguyel + gx[“ + ;l uf + agu
+ ajupe] = 0. (5.5.1)

consider the transformation (5.3.2), i.e,

X' = X - n t, t.-'—‘x—“——m_t, and
l1-n 1-n 1 -m l1-m

u(x,t) = v(x*',t'). Hence

u . 1 v 4 _1 v 4
3x 1 - n 4dx’ 1 -madat*

’

du ., -—n_9v _ _m  Jv
at 1-ndx" 1-m at°*

. (5.5.2)
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Thus (5.5.1) reduces to

1 8 4, 1 8 + 2z, —
(1-n8x' 1-m8t'){ 2 a3[(1._n)z V' x*

2
(1 -n)1-m)

2 Verer] Al v

Veryps +
x't' T (1 (1 - n)?

_m)

- (n + m) ey = —E
(Ionxil-m Xt Q1 -m el

-2 ,_n_ 2, (v+32vz+a5[

—N v
1-n &x' 1-mbaot (1 - n)? Verx*

o (n+m o _m
(T-n)l-m Xt 7 (L-me e

2
+ ——g—— 1t + 2mn _m-—-—z
26l T -z X% T T a1 —my Xt Yo m: Vererl)

=0 ] i.e.
L v+l (317 2"y 2, 23 T 340 * agnm - agmn?,
at' 1-m (L -n)¥1-m) x'x’

l'Za.3 - a4(n + m) + asm(n +nm) - Zan n]
(1 - n)(1 - m)? Vet

a; - agm + a5m asm’
+ ( (1 - m)s ]vt't'

St

+ _Q_ (v + 1 (317 32,2 , (23 T 240 Y agn® - aﬁn‘]v
1-n (1 - n)® x'x*

[2a3 - ag(n + m) + agn(n + m) - 2a6n‘m]
(1 - %1 - m) V't

a; - agm +' alsm2 - ajm’:l
(1 - m)%(1 - n)

+ [ vt't'} = 0 (5.5.3)

(5.5.3) can be re-written in the form
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- - 2 _ 3
2 o+ 1AL 222 (23 T 20 A0 Caen,
at* 2 1-m (1 - m)3 L't

a, - a,n a, - aysn + acn? - a.n®
+ & v+t A2 gz (23 4 53 (3 )vx'x'
ax 2 1-n (1 - n)

. (3a3- ag(2n + m) + ag(n + 2m) - 336'““21‘, L
(1 - )31 -m) x't

(333 - as(n + 2m) + agm(2m + n) - Sa,ﬁmz
M (1 - n)1 - m*

n] .
vt't') = 0,

(5.5.4a)
j.e.,
9 1 2 2
;:, (v + ‘2“ sz + Cevtvt.} + %;'(V + i clv + C3vx.x.
+ Cvactl + csvtott) = 0
where,
- - - 2 _ 3
1 1-n 2 1-m 3 (1-n) !
.. = 3a; - a,(2n + m) + agn(n + 2m) - Sa.emnz
4 (1 - n)*(1 - m) !
. = 3a; - ag(n + 2m) + agm(m + 2n) - 3a6nmz
5 (1 - n)1-w? and
a, - a.m + aczm? - a_m>
o 23 a4 5 6
CG (1 _ m)3 . (5.5.4b)

Comparing (5.5.4) and (5.3.3) proves that the reduction preserves

the existence of conservation laws.

This 7result produces a convenient procedure to study the
conservation laws of the general class by shifting this study to

the four disjoint classes instead. This shall be done in chapter

7.
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5.6 Preservation of the solitary waves

In this section we prove that the reduction, introduced in section

(5.3) preserves the existence of solitary wave solutions.

Theorem 5.3

3 2 1
If ug = & sech v [x - (1 + c)t] 1is a solitary wave solution

[e

of the equation

up + Uy + @guUy F AUUp + Aglgge + Aglee F AUt t AgUeee T O

5.6.1
then ( ‘

3 2 1 . ]
Vg = ;T gech Py [x* - (1 + c')t'] 1is a solitary wave solution
of the equation

Veo + Vyo + D3V + Dyvv,, 4+ PaVyerxrer ¥+ PaVxrixrxe

+ bsvx't't, +b6vt.t.t- = 0 (5.6.2)
where by, by, «eos bg are defined by (5.3.3b),

ac = a, - ay(1 +C), BC = ay - ay(l+C)+ag(l+ o)’

- ag(1 + c)®, a'c’' =by —by(1l +c'),

B'c' = by = by(1 + €') + bg(1 +c')? - bg(1 +c*)?,

and (1 + c), (1 + c') are the speeds of the solitary waves in

the respective coordinate systems. (O

Proof
The definition of the rest frame, introduced in chapter 2,
dx ax’
es, X =1+c and ==-=1+cC', .
j,mpli ’ at ac* i.e.
x=(1+cC)t and x' =(1+cC"). (5.6.3)
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Prom section 5.3, the equation (5.6.1) reduces to (5.6.2) via the

nonsingular transformation

X - n t, t*'' = X - m t and
1-n l1-n 1i-m 1 ~-m

u(x,t) = v(x',t').

Then, using (5.6.3)

X __n t-(1+c)(—3— -—‘3L-—t) (5.6.4)
1-n 1-n mo1

Ssubstituting the first relation of (5.6.3) in (5.6.4), then

[1+° ]t-(1+c)[

]t.

Hence (1 + c¢') has the form

vy = (=W (1 + c) = n],
(1 +c') (1 = n)[(l r ) - m] (5.6.5)
Thus
a'c’ =b1—b2(1+0')
ay-ha, a)~-mWy; 1 _m,l1+Cc-1n
( pI¢ )
1-n i-m “-n 1+c-nm
_ (ay - naz)(l +C -m) - (a._1 - maz)(l +¢Cc - n)
- (1 - )1+ c¢c~-m)
(n — ul)a1 - (n - m)a.z(l + c)
- (L-n)1+cC-m
=(n—m)[a1-—a2(1+c)] - (n - m) oc -
(1 -n)Y1+cCc-m) (1 -n)1 +c-m)
(5.6.6)
But (5.6.5) implies c¢C*' = {n - m)c (5.6.7)

(L-nun)1+c-m)
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Then (5.6.6) yields o = o

j.e. the amplitude is invariant under the reduction,

similarly, it can be shown, after tedious calculations,that

Tt o n-—m
pre [(1-n)(1+c—m)lp y (5.6.8)

Hence

' = n-m 2
. [(1—n)(1+c—m)] p (5.6.9)

1¢eo' if ﬁ > o' then ﬁ' > 0

which proves the theorem. @

Example 5.6,1

Iet a.l = 2, az = 1' a3 = 9, a4 = 12' as = 6 and aG = 1

. + +
i.e. ug u, + 2uu, +ougy + BU e F 12Ul F BUG, F Uy, = O,

A (5.6.10)
consider the transformation
X' =%, t'=2t-%, u(x,t)=v(x',t'). (5.6.11)
Then (5.6.10) reduces under this transformation to
Vs + Vo + 200x0 + BVpigiye = 0. (5.6.12)

Bc =8 -12(1L+¢c)+6(1+¢c)2 - (1+¢)®=(1-<c)® and
oc =1 -¢C . (5.6.13)
j.e., the solitary wave solution of (5.6.10) has form

u,. = 3¢ BeCl'? {l ———c——-(x - (1 +
s 1 -c 2/ (L-c) - c)tls. (5.6.14)
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Similarly, for the equation (5.6.12)

p'c' =8 and x'c* = 2, (5.6.15)

Hence (5.615) implies

8 = p'c' = p'. 26 L, p' =4 (J:..‘_Q) = 4 (_L_)I(L:J:_”
1-cC c 1 -c c

(by substituting n = 0, m = 2 in theorem 5.3], and «' = a.

Hence the solitary wave solution of (5.6.12) has the form

vss—a-;’—'-sechzlz*vf-[w - (1 +c")t'). (5.6.16)
5.7 Prese on goli 8

we have seen that the above reduction to the four classes
preserves solitary waves. However, we know that the solitary wave
of the KAV is also a soliton, i.e. that there are exact N-soliton
gsolutions for any N € Z. The question therefore arise as to
whether the N-soliton solutions are preserved under the reduction.
The definition of the N-soliton solution for a given equation
implies that the solution decomposes asymptotically to N solitary
waves of the equation. Since the reduction preserves a solitary
wave, then under the reduction, the N-soliton solution transforms
to a solution for the reduced equation and the solitary waves
transform to soliatry waves for the reduced equation. Hence the
reduced solution is N-soliton solution for the new equation. We
look first to thé following example of an equation from the simple
Kdv class, defined in corollary 5.3.1, to show that the N-soliton
solutions can be obtained by a technique, comes from the Kav

equation.

~-105-



Example 5.7.1

up + Uy - buuy + Uy F U — U, Huye = Wy = 0. (5.7.1)
consider the transformation

= 2 —'

u=v"+ Ve = Ve . (5.7.2)

substituting (5.7.2) in (5.7.1) leads to the fact that if v

evolves according to the equation

- 2 2
vt+vx vax+6vvt+vm-3vmct+3tht"vttt'°

(5.7.3)

then u evolves according to (5.7.1). If u is known, (5.7.2)

can be linearized by choosing

=12 _2
M \u(x :’;T)w‘ (5.7.4)
Hence, (5.7.2) has the form
W= Wy= 2yt + Vit (5.7.5)

which is parabolic equation in ¢ and without loss of generality u
can be shifted by a constant A. Hence (5.7.5) reduces to the

forms

8 2._‘?_5 + 22 - -
[(é)xz axat at"-) (u }‘)]“"0' (5.7.6)

To solve (5.7.6) it is convenient to use the nonsingular linear

transformation

— ' = - ’ n&
X - X x, t-t 2+ ¢ WX, t) - o(x',t') and

N e

u(x,t) = w(x',t") (5.7.7)
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to transform (5.7.6) to the equation

[ﬁz‘“-")]“”O (5.7.8)
ax
where the substitution (5.7.7) in (5.7.1) implies that w evolves

according to the KAV equation
wt' + Wx. - wat + w !x'x' - °A (5.7.9)

Hence (5.7.8) is a Schrodinger equation with potential w, energy
level A and wave function ¢. Then by using the inverse
scattering method, introduced in .chapter 3, the N soliton solution

of (5.7.9) has the form

2
w(x',t') = -2 g;TE' 1n £,

2 ' ] ]
. 14 _c_l e2k1x clcg e(kl-d»kz )x B .cch e(k1+k x
2Ky k4 +k, kl"'kN

L 4 »

f = . . 4

chl e(k+k1)x' c.c e(kl"'kz)x.“.

kiK1 Ktk 2ky

Hence by using the inverse of the transformation (5.7.7), the

N-soliton solution of (5.7.1) has the form

9% ,_0% 3t
,8) = =2 - < + —
ux,£) [ 2 axat at?

In F, 5.7.10
ax ] ( 10)

F = Tv1¢, where Tl is the inverse of the transformation (5.7.7).

In fact (5.7.10) is N soliton solution of (5.7.1), this fact can
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be shown by studying the behaviour of the solution as |t| - w,
where one can show that the solution splits into a number of

solitary waves of (5.7.1) in a similar sense as for the Ka4v

equation (see Wadati and Toda (4]).

The above example shows that the reduction preserves the N-soliton
solution [in the simple KAV class]. Furthermore the procedure,
introduced for obtaining the N-soliton solution of the Kav
equation can be extended to obtain the N-soliton solution of all

the elements of the simple KAV class.

outside the simple KAV class, we shall see that the above
technique comes to a stop and the transformation which couples any

element with its modified form only exists in the simple KAV

class.

Theorem 5.4
If v evolves according to the modified general class

- - 2
+a‘6vttt-o (5.7.11)

then

u=v2+ av, + BV (5.7.12)
evolves according to the general class

up + Uy - 6?1““:: T 6auup + AgUgee * Al + AsUxte

+ agUeee = O (5.7.13)
if and only if the cubic equation

a; — agh + agr® - 3gr® = 0 (5.7.14)
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has three equal real roots. [] (See appendix (B) for the proof].

The condition of the theorem together with the reduction analysis
in section (5.3) implies that the equation (5.7.11) must be inside
the simple KAV class. If this is the case, then (5.7.12) can be

linearized by making use of the transformation

al(a2+p2yy.
u w(aax Bat) (5.7.15)

Then the exact solution is obtained in a sense similar to that as

in example (5.7.1).
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CHAPTER SIX
THE WELL-POSEDNESS OF THE GENERAL CLASS OF EQUATIONS

In this chapter the well-posedness of the general class

u, + Uy + a,uu, + ajuu, + AqUy oy + AUt + AgUyy + AgUppr ™ (o]

(6.1)

is studied., We prove, first of all, that the general class can be
reduced for certain data to a semi-linear system of first order
partial differential equations. We find the characteristics of
this sytem and show that it is equivalent to a system of ordinary
Aifferential equations in which differentiation 1s along
characteristic direction. These equations can be intergrated to
give the solution of the system provided that the data is not
specified on a characteristic. This method of solution is called
the method of characteristica. Thus, 1its availability for the
general class (6.1) depends upon the data not being specified on a
characteristic, This leads us to divide the general class into
two subclasses according as to whether the method of
characteristics can be used, We call the subclass in which the
method of characteristics is applicable the nonsingular class and

the remaining the singular class.

we establish well-posedness for the nonsingular clasgss by applying
the well-known theorems on uniqueness, existence and continuous
dependence on the initial conditions for semi-linear systems. As
regards the singﬁlar class, we divide it further according to the
multiplicity of the (essential) characteristic roots. In the case
of a triple root we show that it corresponds to the general Kdv,

for a double root to the RIW, for a distinct roots to Wg, and for
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a pair of conjugate roots to Wgy (These classes were defined in
chapter 5). Thus the KAV represents one of the subsets of
equations in the general class for which the method of

characteristics fails.

Now, clearly, well-posedness of gome parts of singular class
follows from the results established for the KAV and RLW in
chapters 3 and 4 respectively. However, these do not deal with
the inclusion of a uu, term, but are confined to the so-called
»gimple” KAV and RIWN classes. As part of our own contribution we
extend thege results to certain equations in the singular class
which include the uu, term. Finally, some applications are
provided to show that the KdV and the RIW equations are well-posed

for any skew data.

6.1 Reduction to a semi-linear system of first order
partial differentijal equations

consider the initial value problem which corresponds to the
general class of. equations (6.1). Let the initial curve which
supports the data be non-characteristic, as shall be defined in
the next section, and without loss of generality let this curve be

the usual one t = 0, i.e.,

u, + 4+ a,u + a,u +
g+ Uy 2 WU F U+ Al + Al + AgUyey + AgUgpy T O

(6.1.1a)

u(x,0) = £(x) U (x,0) = g(x) U (X%,0) = h(x). (6.1.1b)

wWe introduce now the following:

Temma 6.1.1

fpt=

The initial value problem for the general class of equations
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(6.1.1) with non-characteristic initial data may be reduced to a
non—characteristic initial value problem for a first order system

of partial differential equations. (O
Proof
Re—-writing (6.1.1a) in the form:
F(u, Pr @ X, 8, T, V, W, i, V) = 2.V + AgW + a4 + 25V
+(a;q +aplu+q+p=0, (6.1.2)
where,
P=u, qQ=Up T=Ugqgnw 8% Uy, U= Uy, V= Upny

Bom Ugger W= Ugppr 3 VR Uy (6.1.3)

subject to the initial conditions (6.1.1b), and differentiating

(6.1.2) with respect to t vyields

g% = Py + Fpby + Fqd_ + Fyfy + FgBp + FrTy + Fyvy + Py,

+ Fuug + Fyug

(249 + apPiu + (1 + au)p; + (1 + aju)q, + agv, + agw,
+ ag + a3y =0 (6.1.4)

and,
u, =P, P =T G =8, T WV, B TITy =W, Ty = Sy

Wt“’x' Py = Wy and Ve = (from (6.1.3)). (6.1.5)
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Ingserting (6.1.5) into (6.1.4) we have

(2@ + 3,P)P + (1 + au)r + (1 + a,u)s + agv, + agv, + azw,

+ a3#x’°‘ (6.1.6)

Thus (6.1.5) and (6.1.6) can be cowbined to form the following

system:

(249 + azP)P + (1 + au)r + (1L + alu)s + agvy + agv, + agw,

+ agu, = O,
u =p., Pg =T, qe = 8.
I, =V By ™ Ty =W Te ™ By (6.1.7)
Wy = Vg Be = Wy Ve = Hy

which is a system of first order partial differential equations in

the dependent variables u, p, q, r, 8 T, VvV, W, 4 and v,

The initial conditions way be obtained from equations (6.1.1b),
and amount to the specification of u, p, q, r, 8, 7, v, w, ¢ and
v. However, v 1is not known explicity, but since the initial
conditions are assumed specified on a non—-characteristic curve,
then v may always be determined. Thus the initial conditions on

£ = 0 becowe:

u(x,0) = £(x) p(x,0) = g(x) q(x,0) = £'(x)

r(x,0) = h(x) 8(x,0) = g'(xX) T(%,0) = £"(x)
(6.1.8)

W(XIO) = h'(X) u(XIO) - g"(,() \)(x,O) - f"'(x)

v(x,0) = G(£(x), g(x), £'(x), h(x), g'(x), £"(x), h'(x),

gn(x), £"'(x))
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The system (6.1.7) can be expressed in the matrix form

where U, A and C are
WT=fupgqrsrvwypunvl, (6.1.10a)

cT=[{-p-r-s-v0030O00) (6.1,10b)
with 3 =3 [(2,9 + 2P)P + (1 + au)r + (4agu)s], 3¢ # 0

and

] 0 o ]
| |
| 0 0 |
| ]
0( 4x4) I o o 1 0( 4x4)
| |
| o o |
| |
———————— [—-——-—--'——-———-._
A= |0 0 0 -1 | O o | 0 0o o0 o
| |
i I +(6.1.10¢)
0o 0o 0o o0 | -1 ©o | 0 o o o
———————— [——————l-—-——-—__
' ' a a a
5 4 3
: Y 0 : 5.6 3.6 &60
| |
0( 4%4) | o o | -1 0 0 o
| |
I o o | 0-1 o0 o
| {
| o o | o0 0 -1 o

with O(nxn) the nxn zero matrix,

This completes the proof of the lemma. P
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Definition 6.1.1
The system of equations (6.1.9) is called guasi-linear if A and
C depend on x, t and U. If A is independent of U, the

system is called semi-linear. If C is also a linear function of

U, the system is called linear.

Using definition 6.1.1 and lemma 6.1.1 gives the following

theorem:

Theorem 6.1

The initial wvalue problem (6.1.1) for the general class of
equations with non—characteristic data can be reduced to a
non—characteristic 1initial value problem for a first order

semi-linear system of partial differential equations. (J

Remarks

(1) When ag = O in the above reduction then A Dbecomes
singular. In this case, as was shown in section 5.2, one can find
a nonsingular linear transformation which takes the original
equation to one with ag # 0. However, the non—characteristic
curve which supports the data of the original equation may be
transfoﬁned to a characteristic curve for the new equation, i.e.,
the new "data becomes characteristic., This gives a contradiction
with the assumptions of theorem 6.1. The way out of this
contradiction together with a classification of the problem 1in
terms of the singularity of A will be discussed in section 6.5.

Thus, in the present section and up to section 6.5 we assume that
ag # 0.

(2) The equivalence of the solutions corresponding to the new

system of equations and the original equation can be proved by
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noting that if u 1is a solution of (6.1.2) and (6.1.1b), then the
vector U will be a solution of the new system (6.1.7) with
initial conditions (6.1.8). Conversely, suppose that U is a
solution of (6.1.7) with initial conditions (6.1.8). Then, 1f
these quantities Qo not simultaneously satisfy both the original
equation and the new system, there will be defined the non-zero

quantities

O =P = Upr O T 9T W g T Meg T T e T Upt T8
Oy ™ W = Tr et ™ Yot ~ V0 %eet T Ykt T W
Ot = Upxt T He AN Ggoe ¥ Uygge TV

Now, from the second equation of (6.1.7) we have

o = Uy - u, = 0, and from the definition of %y

aP -2 - - -
Ay = ;; - Uy pry uy Uy 0, 8o that - A 0.

Using the initial condition at t = 0, we have

a - -_a_-_ - - ’ - ¢ - -
Oyt B-a—t 8 ox P 8 g'(x) g'(x) atht-O 0.

To establish that o, 1is identically zero, we form the relation

-——r--‘z—utt--g—att-o - Ay = 0.

similar arguments establish that the other differences are
jdentically zero. Thus the quantities u, p, q, r, 8, 7, v, w, u
and v satisfy also the differential equation (6.1.2), which

proves the equivalence between the solutions.,
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6.2 Characteristics of the system

pDefinition 6.2.1

A characteristic of the sytem (6.1.9) is a curve along which the
values of U, combined with the equations (6.1.9) are insufficient

to determine the derivatives of U normal to this curve,

The problem of determining the derivative of U normal to our
data 1is easily resolved by considering the effect on system

(6.1.9) of a change of coordinates,
t -t and x - ¢(x,t) = constant (6.2.1)

(t is left unchanged since the discussion 18 for evolution

equations].

Then the system (6.1.9) reduces under (6.2.1) to

ay 2¢ 29 QU 9o -
(at * at a¢) * Aam ax v Uy =o, il.e.,

(133 + Agi).g% + g-‘é’ + C(U) =0 (6.2.2)

where gg is the normal derivative of U to t = 0. This nommal

derivative is determined 1if
det [T 92 4+ a2 o0, .2,
[ at ax] (6.2.3)
cowbining this result with definition 6.2.1, then the
characteristics of the system (6.1.9) are given by the equation

det [r-gf + Ag-;‘;] = 0. (6.2.4)

29 99 ax
A== = then (6.2.4) ¢ w
putting s / at (6.2.4) can be written as
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det (A — AL) = 0. (6.2.5)

Equation (6.2.5) 1is called the characteristic equation of the

system (6.1.9) where A 18 now an eigenvalue of the matrix A.

The above analysis leads to the following:

Theorem 6.2

The characteristics of the system (6.1.9) which corresponds to the
general class of equations (6.1.1) are given by the roots of the

equation
7 - -— 3 -
A'fag Ah + agh agh ] (o] (6.2.6)

where A-gzs-
at 0

Proof
By using the expression of A from (6.1.10c) and expanding

det(A-AI) = 0 then, obviously (6.2.6) follows and the theorem is

proved. @

we conclude this section by defining the hyperbolicity of a

general system of which our case is a specific example.

Definition 6.2.2
(1) If all the roots of equation (6.2.5) are real and distinct

the system of equations (6.1.9) is called totally hyperbolic

(2) If some of the roots of (6.2.5) are complex, the system is

called ultra-hyperbolic.

(3) If all the roots of (6.2.5) are complex, the system (6.1.9)
is elliptic.
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(4) The system is hyperbolic if (6.2.5) has at least one real

root.

Note that the method of reduction is not unique and can introduce
redundant eigenvalues into the characteristic equation. These can
be disregarded since they do not lead to any inconsistency or loss
of generality. The number of genuine eigenvalues necessary to
golve a given equation is equal to the order of the differential
equation. For example in the second order differential equation
Upp + Cuyy +4u=0, if u =y and u, = u  the equation

reduces to the system

fuyl [ o c 01 [u,] [ u
u . 0 0 1 u Jy --(u1 + uy)

for which the genuine eigenvalues are A = ty—C and the redundant
eigenvalue is A = 1, Thus, if we reject A = 1 then the

equation is elliptic if ¢ > 0 and totally hyperbolic if ¢ ¢ 0.

We now turn to exploit the results of theorem 6.2 to reduce the
sysem (6.1.9) into a simple form for discussion and this is done

in the next section.

6.3 Normal form of the first order system

In the previous section we demonstrated that our system (6.1.9) is
of hyperbolic type and proved that its characteristics are given

by the eigenvalues of the eigenvalue problem

AX = AX. (6.3.1)

It is now convenient to transform the system (6.1.9) to a simple
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form in which the differentiation should be in one direction only,
i.e., directed along a characteristic of the system. This new

system is called the normal (canonical) form of (6.1.9).

For doing this 1let the eigenvectors corresponding to the
eigenvalues A; of A span E'® and let T be the matrix in
which each column is one of those eigenvectors, Then T {is

nonsingular. Suppose that
g =TV, (6.3.2)
Inserting this transformation into (6.1.9), then
(TV)g + A(TV), + C = 0O, TV(x,0) = H(x). (6.3.3)
Hence,
™, + TV + AT,V + ATV, + C = O. (6.3.4)

Multiplying both sides of (6.3.4) by the inverse of T, 1.e.,

1,

-1 ~

~ - -
c = Tlc + 1lar,yv + Tl (6.3.6)

since A is a matrix of constant coefficients, (6.1.10c) then the
eigenvalues of A 4o not depend on X, t and U consequently T
does not depend on Xx, ¢t and U and this implies that

But since 7 laT = D is diagonal, (6.3.5) can be written as
~7
Ve + DV + C = 0 , D =diag(nry, ..., Ao). (6.3.7a)

with the initial condition
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v(x,0) = T lu(x,0) = w(x). ' (6.3.7b)

Finally, equations (6.3.7a,b) can be written in terms of
components and the ith component, which corresponds to the 1ith

characteristic, has the form:
1 1l 4
vi 4+ alvl 4+ Tt = 0, vix0) = i), (6.3.8)

From the theory of a single first order partial differential
equation, it follows that on the characteristic traces for the
equation, the equation reduces to an ordinary differential
equation. Hence, Vi + Alvl 1s a directional derivative in the
direction Ai. Thus, every equation in the form (6.3.7) contains
a differentiation 1in one direction only which is the

characteristic direction. The form (6.3.7) 1s called the normal

form of the system (6.1.9).

Rewarks

(1) The reduction of the original system to its corresponding
normal form (6.3.7) is viable even if some of the eigenvalues arve

multiple [14].

(2) The case when some of the roots are complex is left to the

end of this chapter.

6.4 The method of characteristics

The characteristics of the system (6.1.9) were obtained in the
last section. 'i'he basic rationale underlying the use of the
characteristics is that by an appropriate choice of coordinates
the original system (6.1.9) can be replaced by a system expressed

in characteristic coordinates (normal form). The method of
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characteristics is expressible briefly as; firstly, solving the
equation (6.2.5) to locate the characteristic curves and secondly,
integrating the equation (6.3.7) as ordinary dQifferential
equations along the characteristics. Hence the solution of the
original system can be constructed. This is illustrated by the

following simple example.

Example 6.4.1 (the wave equation)

Upye ™ Uyer -m < X ¢ ®, t» 0,
(6.4.1)

u(x,0) = £(x), ut(x,O) = g(x).

7o find the solution of this equation by using the method of
characteristics, we firstly reduce it to a system of first order

quasilinear partial differential equations. Thus, 1ét

F(u, p, 4, £ 8, T)’“tt"“xx"r"r'o' (6.4.2)
where

U =q, Ug=Pr U =T, Upp = 8 and Uy = T, (6.4.3)

pDifferentiating (6.4.2) with respect to t and using (6.4.3)

gives
Te —Tg = O (6.4.4)

where,
u. =4, Py = 8, Qg = T, Ty =8y and 8. = T, (6.4.5)

Combining (6.4.4) and (6.4.5), then the original equation (6.4.1)

reduces to the system
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with the initial data

u(x,0) = £(x) p(x,0) = £'(x)

r(x,0) = £"(X) s8(x,0) = g'(x),

ax,0) = g(x)

T7(%,0) = G(f(x), g(x), £'(x), £"(x), g*'(x)).

The system (6.4.6) and (6.4.7) can be written in the

U = AUx + BO, U(x,0) = H(x),
where,

[ | O o} [0 o] 1 0|
| |
| O 0 0 0 (o] 0 |
| N R i |

0(4x4) | O (o] |

| {

A= I 1 oy , B = o 4x4) |
------- - - - {

0 0] 0 ol o 1 |

| |

0 o] (o} 01} 1 0 |

and Ul =[upqrsT].

(6.4.6)

(6.4.7)

matrix form

(6.4.8)
o o
1 o0
o 1
o o
o o
o o
(6.4.9)

The characteristic equation for (6.4.8), i.e., det(A - Al) = 0 is
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o o . - ) ) 0
0 0 0 - 1 0
0 ) 0 ) -A 1

o o o o 1 -A

= A*(A%-1) = 0,

(6.4.10)



Thus, the characteristic roots are

A=0,0,0,0,1 and -1 (6.4.11)

indicating that the equation is hyperbolic., (In fact it is
totally hyperbolic since the roots A = 0 are redundant). The
eigenvectors corresponding these eigenvalues (6.4.11) are the

solutions of the equation
AX = AX (6.4.12)

and are as follows:

A=0; e, =[1 0 0 0 0 01T, eg=(0 2 0 0 o 0T,
e, =[0 0 1 00O 01T, e, =(0 0 0 1 o o)T

A=-1 eg=1(0 0 0 -1 1 -11T ana

A=1) eg=1(0 0 o 1 1 1T,

Let T be the matrix whose columns are ey, 1 =1, 2, ... and 6,

itec,

?T= [0 0o o 1 -1 1. (6.4.13)

-124-



Then the inverse of this matrix exists and has the form

1= Jo o o 1 o -1 (6.4.14)

Then, clearly, we have
T_lAT = dia.g (0, o' O, O, —1, 1)' (6‘4.15a)

[0 o 1 (0] 0 0]

r™lsr= {0 0 o0 o0 o o (6.4,15Db)

Iet, now, U = TV, then the system (6.4.8) reduces to
(TV)¢ =A’t.'rV)x + BTV. (6.4.16)

since T does not depend on both x and +t, then (6.4.16)

implies that
v, = (T 1AT)V, + (T 1BT)V. (6.4.17)

Using (6.4.15), equation (6.4.17) can be written in the form;
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[Vy [ 0 ] [ V3 ]

v, o Vg+Ve

Vs, o] -Vg+Vg

Va - 0 + o (6.4.18)
Vs -Vg o

Vel { Vel L 0

with the initial data V(x,0) = T lu(x,0), 4i.e.,
v(x,0) = [£ € g 0 ¥g'-f*) g'+em)T. (6.4.19)

Consider now the last two components of the system (6.4.18) and
(6.4.19). The equations of the characteristics are %f - —-1 and
and gf = 1 regpectively. Then,

3 a
(a—t + ;;)vs = 0 = vg(P) = vg(R),

(&~ 2vg = 0 = ve(®) = ve(R)

(Fig. 6.1)

Now the third component gives

ov
at

= -1 [g'(x-t) - £7(x-t)] + F [g'(x+t) + £7(x+t)].
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Thus, integrating with respect to t gives

V3(P) = —% [(—g(x-t) + £'(x-t)] + % [g(x+t) + £'(x+t)] + P(x).

(6.4.20)

Computing at t = 0 gives

£' + P(x) - P(x) =0,

i
a
+
X

g=%9g - € +
Thus,

Va(P) = —% [—g(x-t) + £'(x-t)] + § [g(x+t) + £'(x+t)).

(6.4.21)

Next, the first component yields

V.
;:1 =Vy =3 [ g(x-t) - £(x~t)] + 5 [g(x+t) + £'(x+t)].

Thus

v, =% itg(x—:)d; + 3 itg(x+;)d;

+ FLE(x-t) + £(x+t)] +  q(x). (6.4.22)

The first integral is determined by putting x-t = £, then

i jtg(x—i)di - -4 ‘acerae - 3 [“aterac.
o x Xx-t

Similarly:
£ - - 1 x-t
3 [[aetrae = 3 [ aterac.
o] X
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Inserting these two integrals into (6.4.22) we have

x+t
vy =% | aterae + Fre(xat) + £(x-t)]) + q(x). (6.4.23)
x-t

since Vy(x%,0) = u(x,0) = £(x), (6.4.23) implies that
£ =0+ S(E+€) + q(X) ~ q(x) =0, and

x+t

Vil = u(x,t) = LE(x+t) + £(x-t)1 + 3 [ gce)ae. (6.4.24)
x-t

which is the D'Alembert formula .

6.5 Well-posedness classification

The analysis so far has concentrated on elements of the general
ciass with ag # O and non-characteristic data. (The reduction
to a first order system introduced in section 6.1 fails for the
case 3g = 0 or if the data are characteristic). It was pointed
out at the end §f section 6.2, that the case ag = 0 can be
avoided by using a nonsingular linear transformation to transform
this equation to one with ag # 0. Thus the reduction makes sense
again as long as the transformed data is non—characteristic (witnh
respect to the transformed equation). However, if the transformed
data remain or become characteristic, then the underlying
reduction fails completely without any visible avoidance. Hence
the method of characteristics cannot be used to solve the original

jnitial value problem.

To study the well-posedness of the general class of equations we
classify it into two subclasses in terms of the above reduction

In one of them, well-posedness will be investigated by using the
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method of characteristics, whilst in the other well-posedness will
be studied by means of the reduction to equivalence classes

introduced in section 5.2.

pefinition 6.5.1 (the nonsingular class)

The nonsingular class is the subclass of the general class of
equations W, whose elements satisfy one or other of the following

conditions:

(1) ag # 0 and the data are non—characteristic.

(2) if ag = 0 there exists a nonsingular linear transformation

which transforms the initial value problem to one satisfying (1).

Note that condition (1) of this definition can be replaced by:

(1*) A 1is nonsingular, where A 1s the matrix given by the

expression (6.1.10C), and the data are non-characteristic.

pefinition 6.5.2 (the singular class)

The complement of the nonsingular class in W 18 called the
ginqular class, i.e., the subclass of W whose elements satisfy

one or other of the following conditions:
(1) ag # 0 and the data is on a characteristic curve,

(2) ag = 0 and there is no linear transformation which
transforms ag -to a non-zero value and leaves the data on a

non—characteristic curve.

Thus, any element of W cClearly belongs to either the nonsingular

or the singular class.
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Remark:

since we are only interested in those elements of W which have
solitary waves, i.e., W N S, then the above definitions are

restricted to the class WM S.

These definitions lead to the following theorem for our general

class of equations:
Theorem 6.3
let e = (al' Ags ceey aﬁ) € W S.

(1) If ag # 0, then e belongs to the nonsingular class if and

only if the initial curve supporting the data is

non—characteristic, i1.e. A = ﬁf and a; - agh + agh? - agA® # 0,

(2) If ag =0, then e Dbelongs to the nonsingular class if the
initial curve supporting the data is neither the usual curve

(i.e., t = 0) nor the curve given by
- ‘AZ -— - - ‘é
for every m such that a, - a,m + asmZ 20. 0O

Proof
Combining definition 6.5.1 and the characteristic equation (6.2.5)
then A& is nonsingular and the initial curve supporting the data

is non—characteristic. Thus (1) follows.
To prove (2), let ag =0, i.e, e 6« Wl 5 is defined by
ug + Uy + ajuu, + azuué AU * AU + AgUyyy =0 (6.5.1)

with u(x,t) and u.(x,t) given on any line t = ox.

-130-



Subjecting (6.5.1) to the nonsingular linear transformation

X - —S=-—=t, t- - —=—t, u(x, - .
1-x 1k 1-m  1-m (x,£) - v(x,t), (6.5.2)

then, as in section 5.2, (6.5.1) reduces to

Ve + Vg + DyvVy + Douve + DoV + DaVixe * PgViet * PgVete ™ O

(6.5.3)
where
a,-ka a,-ma a,- agk+ack?
bl - _L—-—-a ’ bz = _g R b3 - 3 4 ask R
1-k 1-m (1-x)?
3a,-(m+2k)aH(k2+2km)ag
4 (1-k)%(1-m) ’
- 2
b = 3a,—( 2mHk )a +( 2kmim? Jag . and b, = aj-ama m’
5 (1-X)(1-m)? 6 (1-m)3

(6.5.4)

Hence bg # 0 1if aj-agm+agm® # 0.

Oon the other hand the initial line t = ax for (6.5.1) transforms

to the initial line
t = i_n_—i 9.‘&‘.1
Gt omt) (6.5.5)
and the two bits of data u, u, for (6.5.1) reduce to two bits of
data v and v, for (6.5.3) on the line defined by (6.5.5),
Now, the characteristic equation of (6.5.3) is

- 2 _ s o

and the roots are:i
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1
M ’iij R B (i—k)

and Ay = (6.5.7)
37 2V -
1-kK a, a4m+a5m

Thus the characteristic lines of (6.5.3) are

x= (Bl , x= % (&_l) 233~ (m+k)a4t(m-k)v£ 3&

By using the inverse of the transformation (6.5.2), these

characteristic lines correspond to the lines

as- Zasmtﬁ 2_§

t=0 and t= {

}x
respectively. Thus (2) is proved. |

Example 6,5,1 (KAV with skew data)

Consider the initial value problem:

“t*“x*"“x"'“:qa('o (6.5.8)
u(x,t) = g(x) on the line t = kx (k # Q) (6.5.9)
under the nonsingular linear transformation

x-x, t “ﬁ f{x: and u(x,t) = v(x,t) (6.5.10)

(6.5.8) and (6.5.9) become

. 4 - 3k x2
Ve + Ve + Vi x Ve + Ve — Vext + (_J.i.i.)_z_.vxtt

3

PN 3 ' 2 = 0
(1x)® ttt ! (6.5.11)
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v(x,0) = g(x). (5.5.12)

The characteristic equation of (6.5.11) is

3k 3k ,2 x> 3 ax
1-k (1-x)* (1-x)?® ' at ¢ )

Thus A, = Ay = Ay = Ki} , 4i.e. (6.5.11) has only one

characteristic curve which is glven by

t = ;EI'* . (6.5.14)
This line clearly corresponds to the line t = 0 1in the original
coordinates. Thus two cases arise
(1) if k = 0, then (6.5.8) belongs to the singular class.
(2) if k # 0, then (6.5.8) belongs to the nonsingular class.

Wwe shall use this result later to prove well-posedness for the KAV

equation not only for the usual data but also for skew data.

Example 6,5.2 (BBM with skew data)
Up Uy Fuly = U =0, (6.5.15)
u(x,t) = g(x) on the line t = kx, (k # 0). (6.5.16)

Under the transformation (6.5.10), equations (6.5.15) and (6.5.16)

become
k k —2K__ 2
v, + Vv + Vv, - -2vy, - By + - -

(6.5.17)

v(x,0) = g(x).
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The characteristic equation of (6.5.17) has the roots

Thus, (6.5.17) has two characteristic lines given by
x = constant and X = 15-;—1‘ t.
Hence we have the following:

(1) if kx =0, 1i.e,, the data is usual, then the BBM belongs to

the singular class.

(2) if x#0 then, the BBM belongs to the nonsingular class.

Example 6,5.3 (Joseph Egri wodel)
up +u tuu +uy, =0 (6.5.18)
u(x,t) and ut(x,t) given on the line t = kx.
pProceeding as in the above examples one can show that:

(1) if k = 0, then the J.E. Model belongs to the singular

class.

(2) if Xk # O, then the J.E. Model belong to the nonsingular

class.

Raving classified the general class of equations into the two
subclasses, namely, the singular and the nonsingular classes, we

now look at the well-posedness of these classes,

6.6 —pos 8
This section is devoted to the proof of the well-posedness of the

nonsingular class defined by Definition 6.5.1. For this purpose
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we first establish integral formulae for the solution of the

nonsingular class.

It was proved in section 6.1, that the nonsingular class can be
reduced to the semi-linear system of f£first order partial

differential equations
U, + AU, + C=0, U(x,0) = H(X)
and it was shown that the latter system reduces to the normal form
Vi + DV, +'E =0, V(x,0) = ¥(x)
where D = diag (Ay, Ay, ..., Ayg) and —é is defined by (6.3.6).
Thus the ith component is

=%
visatvi=el, vixo) =ebx), 1=1,2, ... (6.6.1)

“
where C

~

= — C. Along characteristics, the equations (6.6.1)
are ordinary differential equations, since the differentiation is
now in one direction only. This is the clue to establishing the

integral formula.

pefinition 6,6.1 (Domain of determinacy)

Conesider the linear or semi-linear system U, + AU, + C = 0. The
domain of determinacy for this system is defined to be the set of

all points p(x,t) which can be connected to the initial interval

by characteristic trajectories.

Now, if p(x,t) is any point in the domain of determinacy of the

system (6.6.1), then integrating along the characteristic PQy we
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have

i iy Py
wp) = wely + [ Tvian (6.6.2)
Qi

where Qg are those points on the initial intervals, connected to
p by the ith characteristic, 1 =1, 2, ... . Equation (6.6.2)
gives

WAp) = viig + [Pewran (6.6.3)

Q4

which is integral fomulae of the underlying system.

6.6.2 Uniqueness

To prove the uniqueness of the solution of the system
Ug + AU, + C = 0, U(x,0) = H(x)

where A and C are given by (6.1.10c¢,b) it is important to note

that it can be re-written in the form
U, + AU, + BU = O, U(x,0) = H(x). (6.6.4)

since by the expression of C 1t can be shown that C = BU,

where U is given by (6.1.10a) and

i 0] o I ]
l |
0(3x3) | -1 0 | 0(5x3)
| |
| o -1 |
______ = = = === == = = m - - =
o 0 of O o |o o -1 0 o
| |
B= o 0 o] o o |o ) ) 0 ol. (6.6.5)
| |
0 0 of © o |o o o 0 o
| {
a,q+a,p i+a,u  14a,u
0
3 | % g : ° 0
I o o | T --TT==
| |
o(3x3) | O© o | 0(5x3)
{ |
| o o |



Lemma 6.6.1 [3]

If W(x,t) 1s a solution of the linear system

W, + AW, + BW = O, W(x,0) = 0 (6.6.6)
where A 1is symmetric, then W =o0. [J
The proof of this lemma is left to appendix C.

Using the result of the above lemma, then the uniqueness of the

solution of the original system (6.6.4) can be proved,

Theorem 6,4

If U 1is a solution of the semi-linear system (6.6.4) then U 1is

unique. O

Proof

As was demonstrated in section 6.3, the semi-linear system (6.6.4)
can be reduced, by a nonsingular linear transformation to the

normal form
Ve + DV + C(V) = 0, V(x,0) = ¥(x) (6.6.7)

where U= TV, D= diag.(AJ., s ey Alo)' -C - T_IBT and Ai are
the eigenvalues of the matrix A. Hence to prove the uniqueness
of the system (6.6.4) it suffices, without loss of generality, to

prove that the solution of (6.6.7) is unique.

Iet VvV, and V, be two sol
1 2 utions of (6.6.7) and W = v, - Vo,

then W satisfies

W, + DW, + E(Vl) - E(Vz) =0, W(x,0) =o0, (6.6.8)
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Using the mean-value theorem, we have

C(V;) = C(Vy) = K(Vy, V)V = V)
= K(Vy, VW,
Then (6.6.8) reduces to
W, + DWy + K(Vy, V)W =0, W(x,0) = 0. (6.6.9)

The latter system 1is a linear system with D diagonal and K
does not depend on W. Now, since W(x,0) = O then by using

lemma 6.6.1.
W(x,t) - 0, ioecl Vl = V2c

consequently the solution of the system (6.6.4) is8 unique,

Example 6.5.4
Uy + e U = U+ U = O, (6.6.10a)

u(x,0) = £(x), uw(x,0) = g(x) and u;,(x,0) = h(x).

(6.6.10b)

The initial value problem (6.6.10a) and (6.6.10b) clearly belongs
to the nonsingular class. To prove that the solution of this
problem is unique we reduce the problem into a system of first

order partial differential equations.

Using the procedures, introduced in section 6.1, (6.6.10) reduces

to the semi-linear system
U + AU + C =0, U(x,0) = G(x), (6.6.11)
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where,

| o o | ]
| |
| o o |
| |
0( 4x4) | o o | 0( 4%x4)
| |
i o o |

- — — o - - — - -—eem s am we e o e e

| 0 o0} 0 -1 0 o
| |
0(4x4) | o o} -1 o 0 o|. (6.6.12a)
( |
| o 0] 0 -1 o 0
| |
] | o of 0 o -1 o
UT=(lupqrsTvwyuuv], (6.6.12b)

with v, p, q, x, 8, 7, Vv, w, 4 and v as in (6.1.3) and

cT=(-p -r -s -v 0 0 3 0 0 oO]. (6.6.12¢)
with j =qp + r + (1+u)s.
similarly, the initial data (6.6.10b) reduces to

of = [£(x) g(x) £'(x) h(x) g'(x) £"(x) h'(x) g°(x)
£"'(x) G] (6.6.13)

with G = 6(£, g, £, h, g*, £, ', g», £"'),
The eigenvalues 6f A are

A=O0O, 0,0, 0,0, 0,0, 0, 0, 1, -1 and the corresponding

eigenvectors are as follows:
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A =0; e; are the usual basis vectors for R® e.g.,
e; =(1,0000000]T, 1=1, ..., 8

A=1; e,=(0000001-11-1T

q

A=-1) eo=(000000111 17T,

Now, denote by T to the matrix whose columns are
ei, i=1, 2, ..., 10, i.e.,

r -

diag(1, 1, 1, 1, 1) O(5%5)

0(5x5) o o 1 -1 1
0 o) 0 1l 1
0 0 o -1 1)
Then,
diag(l, 1: 10 11 1) 0(5X5)
1 0] ) o 0
. (6.6.15)

0(5%x5)

"3|
[y
)
o
[
o
U
-
(o)

Now, if we subject the system (6.6.11) to the nonsingular

transformation U = TV where T is given by (6.6.14), the system
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reduces to its characteristic form, i.e.,
o~

Ve + DV + C = O, V(x,0) = &(x), (6.6.16)
where D = aiag(0, 0, 0, 0, 0, 0, O, 0, 1, -1) and
~ T
C=([-p -r -8 v 0 O (qp + r + (1+u)s}) O O O}]°. (6.6.17)
Hence, to prove the uniqueness of the original system (6.6.11) it
suffices to prove the uniqueness of (6.6.16). Thus, let vV, and

vy be two solutions of (6.6.16) and W = vy - Va. Then W

satisfies the initial value problem:

~ ~
W, + DW, + C(Vy) - C(Vy) = O, W(x,0) = O, (6.6.18)
g
By using the definition of C from (6.6.17) and the relations:

q,Py — APy = (qy - q)Py + (Py — P2),; = qpy + pq, and

uy8; — U8y = (u; = uy)8y + (8y — 8y3)uy = usy + 8u,,
where Py = Vits Py, = Vot: P = W¢ ..o etc, then

~ ~ T

C(Vy) ~C(Vy) =[P -r -8 -v 0 0 k 0 0 0]

=qp; + pdy + ¥ + us; + su,.
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~ ~
Hence C(Vl) - C(Vz) = BW, where

0 -1 o o (o) (o) (o) 0 (o] 0]

0 0 o] -1 0] (0] 0 0 o o

0 0 0 (o] -1 o] (0] ] o 0

(o} o o o o 0 (o] -1 0 0

0 o (o] o) (o] 0 0 o 0 (o]
B =

(o] 0 ) o o] 0 0 0o o o

0 o o o (o} 0 o (o] o o
o o o 0 o 0o o o] 0 (o]
L0 o (o] 0 0 0o o] o o o

i.e., the system (6.6.18) reduces to
Wy +DW, +B(V;, V)W = 0, W(x,0) = 0.

since this system is linear in W and the matrix D 18 symmetric
and W(x,0) = o,.the hypotheses of lemma (6.6.1) are satisfied and
it follows that the system (6.6.18) has at most one solution.
Consequently, the original equation (6.6.10) has at wmost one

golution also.

6.6.3 Existence
The existence theory for hyperbolic systems of quasi-linear

partial differential equations
U, + AU, +C =0, U(x,0) = H(x)

is an old problem and has been studied by many people {4], (5],

(111, ... . For the analytic problem, i.e. when A and C are
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analytic in x and t and H 18 analytic in x, then the
solution exists and depends continously on the data in
the small (i.e., for suitably narrow neighbourhood of x = O,
t = 0) by the Cauchy-Kowalewsky theorem. This result was
extended by Lax [13] who considered the quasi-linear system 1i.e.
the system in which linearity and semi-linearity of the systems
are special cases. By using a priori estimates of the solutions
and an iterative scheme, Lax was able to show firstly that for
analytic data the solution exists not only in the small but it can
be continued analytically until it reaches the boundary of the
domain of analyticity. Secondly, by approximating a non-analytic
problem by a sequence of analytic problems and using the above
results, the solution of a non-analytic initial value problem
which is now a generalized solution is shown to exist. Lax proved
that if all the matrices A, C and T (where T is the matrix of
eigen-vectors of A) have continuous first derivatives and the
first derivative of H(x) 1is almost everywhere continuous, the
first derivativeé of the generaliged solution are continuous at
all regqular points of the system, i.e., points that do not lie on
characteristics through points of Qiscontinuity of the initial

data.

We now turn to prove existence for the semi-linear system (6.6.4)

which has the normal form
]
Vg + DV + C =0, V(%x,0) = ¥(x) (6.3.7)
where D= diag (Al' Azn 000)0
To prove existence for (6.3,7) the following lemma is needed;
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Lenma 6.6.2
The system of differential equations (6.3.7) can be replaced

equivalently by a system of nonlinear integral equations. []

pProof
-] 9
Dy oo K o n e kth component of (6.3.7) then Dy
can be regarded as differentiation along the characteristic Cyx-
Thus, by similar arguments as were used to derive the integral
formulae (6.6.3), the system (6.3.7) corresponds to the nonlinear

integral equations

v = Lv, (6.6.19a)

wX(e, ™) = ¥ + [ ne vian (6.6.19b)
(o]

which proves the lemma. &4

Before introducing the theorem which guarantees the existence of
the solution of (6.3.7) we define the region in which the

existence proof is valid.

et H be a closed domain in the x, t space in which all the
characteristics ¢y followed from a point p in H backwards
in t meet a given section J of the initial data line t = 0

in the points pj, as in figure 6.2.

(Fig. 6.2)
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et S Dbe the set of all functions v with domain H having

continuous derivatives and equal to ¥(x) on t = 0, Finally, we
defined the norm of the elements of S to be the largest value of
the functions attained in the closed domain H. However, if we
chose ||¥(x)I] = N and restrict admissible functions in S by
choosing ||vll € 2N, then there exists a common upper bound

u > 0 such that (3]s
~ ~ X Pt
ST < me 1TCSI € mo 1ICKEIN < p ana (KL < u (6.6.20)
where 'JC)‘(, is the functional gradiant of 'ék with respect to v.
~ ~,
Note that Ck ='CK = 0 for the system (6.6.4).

Now, we introduce the following theorem:

Theorem 6.5

~
Let ¥(x), C have continuous first derivatives, then the system

~
Vg + DV + C = 0, V(x,0) = ¥(x) (6.3.7)
possesses a solution which has the same differentiability as

vw(x). O

Proof

If we choose h sufficiently small, then (6.6.19) implies that

(IVEI1 € [19(x)]+ ph = N + ph € 2N,

The system (6.6.19) lends itself immediately to a process of
solution by iteiation and for a suitably narrow strip 8, the
desired fixed element will be constructed as the uniform limit,
as n-o of v,.4 = Lv, starting with Vo(X,t) = ¥(x)., For

doing this we prove that the operator L in (6.6,.19) is
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contracting in the supremum norm.

Let Vv, and V, be two elements in S, then (6.6.19) yields

~

~
w, - W, = [ (ex,1,vy) - c(x,1,v,)ar (6.6.21)
e ]

T~ -
= I cv(x,'r,V)(Vl—v2 Yar (using the mean value theorem)
o

where ; is the intermediate wvalue. Thus
[ILVy = Woll € ph{Vy-V,I1. (6.6.22)

If h is small enough such that uh <« 6 < 1, ¢then L 18 a

contraction operator in the supremum norm.
similarly, if Zh * V41 — vn, then
'lzn|l < ellzn_.1||l 0 <6 ¢l (6.6.23)

i.e. 2,0 as n - o uniformly in the strip H,. Thus the
sequence (Vn) converges uniformly to a continuous function Vv
in S and clearly has the initial value W¥(x). Hence, by using
the fixed point theorem V 18 a solution of the integral
equations (6.6.19). Furthermore, V solves the sytem (6.3.7) in

the normal form since the directional differential operator on the

integral in (6.6.19) produces the integrand.

we must still show that the solution V(x,t) has continuous first
derivatives with respect to x and t. To prove this it 1is
enough to show that V Thas, at all points, continuous first
derivatives in the characteristic direction and with respect to
x, 8ince the t—derivatives follows from the Xxnown directional

(characteristic) derivatives.
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Now, the existence and continuity of vV in the characteristic
direction follows directly from the system (6.6.19) and from the
continuity of the solution obtained. To prove the existence and

continuity of the derivatives N e observe, first of all, that

ax
,-l
the assumed continuous differentiability of ¥(x) and C implies
that all the approximations constructed in proving the existence

of a solution, have continuous derivative with respect to x.

Differentiating the (n+1) 8t approximation,

T
Ve (€:T) = %x(0,T,8)+ | C(x,t,V,)an
o

with respect to &¢. Thus

A/ Y5 R v (x(0,7,¢) &£ + IT(QQ Vn ox + &€ 9xy4,
a¢ x o oV, ox 8¢ ox 8¢

IQ_{ T o~ Vad
= vy i xg [CyVy + Cylan. (6.6.24)

similar to the assumption made about the system (6.6.19) we can
av,

prove the uniform convergence of the sequence (;—ﬂ} (x 1instead
x

of ¢), n=1, 2, ..., by using the same method which we used to

av

prove the convergence of (V,}. This give us 1lim —8 = &,
n-ow ax ax

which suffices to prove the existence of the solution of the

characteristic system (6.3.7) locally. To show that the solution

exists qlobally, i.e. in a larger region, we use the line t = h

as new initial line and solve the problem by the same procedures,

as above, in the strip h < t < 2h. We continue stepwise in this

way which implies the existence of the solution in an arbitrary

large t 80 long as the assumption of the continuity and
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boundedness remains satisfied.
The existence of the original system
U + AU, + C = 0O, U(x,0) = G(X)

is, then, obtained from the above theorem since this system
reduces equivalently to the system in the last theorem as in

section 6.3.

6.6.4 Continuous dependence of the solution on the initial data
Theorem 6.6.

et U(x,t) and W(x,t) be two solution of (6.3.7), such that
U(x,0) = ¥(x), W(x,0) = &(x) and |1 — ¥|]| < &, Then
jlw —ull] <« € and € - o as &6 -~ o (where |[|.|| is the

supremum norm defined in the previous gection). (O

Proof
et ®(x) - ¥(x) = alx), where lx(x)Il < &, and
o(x,t) - W(x,t) = 2(x,t). Then, as in theorem 6.5 2Z satisfies

the integral equation

2(x,t) = 8(x) + [ Gy(x,m,V)(U-W)dn
o

T~
= 8(x) + [ Cy(x,n,V)2(x,n)dn (6.6.25)
o

(where V is intermediate value).

et max |Z(x,t)| = €, then by estimates analogous to that used
x,teS

in the existence proof

“~
€ < 8§ +eTpu, (lICIl < u). (6.6.26)
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Replacing 2 in the integral equation (6.6.25) by the right hand

side of (6.6.26) and repeating the procedure, we obtain

22
€ < (1 + ur) + € E—g——.

Repeating this aperation n times we have

2.2 n-in-1 n
€ ¢ 5[1 4 pr+ BIT2 4 w7 o w
21 (n-1)1 nl

Now, a8 n - ®, we get
6<Seut.

Thus if t 1s bounded, then 8§ - o implies & - o which proves

the theorem.

6.7 Well- 8

The singular class was defined in section 6.5 as the complement of
the nonsingular class in W\ S -in the sense of the capability of
the method of characteristics to ensure the well-posedness of the
problem. That is, in the singular class, the technique used in

the previous section is no longer applicable.

To study the well-posedness of the singular class we recall the
reduction to equivalence classes obtained in section 5.2. This
reduction not only reduces the singular class to the four
equivalence claéses, Kdv, RIW, Wg,a and w53, but it also reduces
the prescribed data from being characteristic to the usual data as

in the following theorem:
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Theorem 6,7
Consider the initial value problem corresponding to the general

class of equations

Up Uy +oajuuy + ajuue F A3Una b AU F AgUpey + Aglpyy = 0

(6.7.1)

where the initial data u, u, and Uy are given on a
characteristic line x = mt, m # 0. Then, this problem reduces
to the four equivalence classes KAV, RIW, w54, and w53 classes,

i.e.,
Vi + vy + CyVVy + Covvye + CaVyxx = o,
Vi + Ve + dlvvx + dzvvt + dévxxt =0 ,
(6.7.2)

Ve + Ve Y VvV + Youvve + YV + YV = 0,

Ve ¥ Vx ¥ 83VUx + 8VVp + S3Viax * O5Vte T O

respectively, and the corresponding characteristic data u, U

and  Ugy reduce to v, v, and Vv, on t =0, 8

Proof
since x = mt 1is a characteristic of (6.7.1), then m satisfies

- + 2 _ 3 .
az — azk + agh agA 0.

Now, consider the nonsingualr linear transformation

x-x=-X Db ¢l X Bt

1-n  1-n iI-m  1-m

u({x,t) - v(x,t) = u(x,t).
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The reduction of equation (6.7.1) to the equations of the four
equivalence classes K4V, RIW, Wg,, and Wg,; is ensured Dby the
reduction theorem 5.2. Clearly the characteristic line x = mt
transforms to the line t = 0 and the data on this 1line ar¢

obtained from the following:

u(x’.?S) = V(;(,O) r
m

ut(x,i) - i%n vz (X,0) - I%E vE(X,0), (6.7.3)

2
X D o p2mm o % m —

Upplx = Vix + v X,0) + —— v X,0).

tt( 'm) (1_n)z xxX (1~n)(1-m) xE( ,0) (1-m)2 EE( ,0)
This completes the proof. Bi
Remarks

- a

(1) In the proof of the above theorem if m = 5% s then according

to the Corollary 5.3.1 the general class reduces to the simple
four equivalence classes, i.e., with the disappearance of the wuu,

term.

(2) It is seen from the result of the above theorem that the
reduction reduces the t—derivatives by at least one so that at
least one bit of data becomes redundant. If the transformed data
of each of the four classes are consistent, then well-posedness of
the singular subset of the general class is guaranteed if we can

prove that the set of equation (6.7.2) are well-posed for data on

t’o.

Thus, to investigate the well-posedness of the singular class it

suffices to study the well-posedness of each of the four classes

in (6.7.2).
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6.7.1 The RIW class

The initial value problem corresponding to the RLW equation
Ve + Vg + VW = Vet = 0, v(x,0) = g(x) (6.7.4)

has been studied in chapter 4 where its well-posedness is ensured

by theorems 4.7 to 4.10.

Now, the RIW equation generates a subset of the singular class,
i.e., the simple RLW class and the data v(x,0) generates one bit
of data for this subset., But according to the Cauchy problem two
more are needed for this subset 'corresponding to Ve(x,0) and
Vip(X,0). If v, v. and v, are consistent (i.e. can be
generated from the solution of (6.7.4)) then the RIW being

well-posed, leads to the well-posedness of this subset.

The analysis above was restricted to the simple RLW subclass i.e.,
no uu, temm. A similar analysis can be done if uu,  is

present. Thus consider the initial value problem:
u, +u, + uu, + euu, - Uy, = O, u(x,0) = £(x). (6.7.5)
To study the existence of a solution of (6.7.5) it is convenient

to establish the integral formula of the solution.

Inteqral formula of solution of (6.7,5)

Re—writing (6.7.5) in the form
a2 '
(1 - ;;Eﬁut = —(uy + uy, + euu,). (6.7.6)

The left hand side is an ordinary differential equation in U .
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Thus, by using the Green's function of the differential operator

2
(1 - 3_2’- which was establish in chapter 4, (6.7.6) reduces to
X
C e 2 2
u, = r'n[% e~ |¥ €|(u + ll_)t + {6(&—31:}}(15-
‘o 2 2
Integrating once with respect to t between 0 and t, then

t
u=ax) + [ [ k(x-6)u + Ljacar - € [Tk(x-¢) Y-ac
o - 2 o 2

+e [xexe-t) (0
© 2

t
= g(x) + & [xx-6) & (e)ae + [ [ ex-6)tuce,m)
- o —w

+ § uiemaear - o [Tkex-6) Y=(e,that,
—0

t
= o0 + [ [x(x-0)tu + § utlacar - ¢ [Tkex-6) Tt
m

-

o

(6.7.7a)
where

K(2) = § san(z)e™Z ana o(x) = gx) + € [Tkex-6) I(erae,
m

i.e.,
u =AU = &(x) + BU (6.7.7b)

which is the integral formula of (6.7.5) where

t
BU = [ [k(x-£)(u(e,7) + § ui(e,m)lacar - e[ k(x-£) L(g, trae.
o - ‘® 2
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We now turn to prove the existence of a solution of (6.7.7).

Existence of solution of (6.7.7)

Ienma 6.7.1

Let g(x) be a continuous function such that

sup |g(x) + g¥(x)| < b ¢ »

XeR
then there exists a to(b) » 0 and an ¢€(b) such that the
integral equation (6.7.7) has a solution u(x,t), satisfying
u(x,0) = g(x) which is bounded and continuous for x ¢ R,

t e [0, t;]. O

Proof
Let ‘é'r be the space of all continuous and bounded functions with

norm defined by

Hullg, = swp luae)l .
O<t<T

Suppose uy and u, are two elements of Z T such that
||u||€T < r, then
t
< Supluy — Uy I(1 + Fluy + uyl] j jw|k(x-e)aear
xt o ~w
+ €| Supluy; - u,|ju; + u,) ‘fmlk(x—c)dt
: -

x,t

< llug —uplig [+ 3y, + ullp, 1€

+ leflluy — uyl |pt”ul + u2“ét‘
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Taking the supremum of both sides in the strip R x [o,tO] we

have,

1 1
1Au, - Buylip < HHuy = uwllg [+ 31Hug it + 3luylig 1ty
1 &o gto [to éto

(6.7.8)
+ lellluy = ullg Cllugllg + 1wl 1.
g vl + ey
Thus,
[1Au, — Auyll € [(14r)t, + 2riel]lfuy — uyl!
17 Ml b,
which implies that A 1is continuous mapping of the space eto

into itself. Morever, the ball ||u;|!t < r satisfies a
(o]

Lipschitz condition with Lipschitz constant © < 1 if
(1+r)to + 2rje} < 6 < 1. (6.7.9)

Also in the above calculation if u, = 0 and u; = u, then
{IBul | < 6 ||ul] .
le. l.

Morever, the ball is mapped into itself if
b < (1‘6)1‘.

Thus A 1is contractive gperator. Hence according to the fixed
point theorem on Banach spaces, A has a fixed point u in the

pall “u”Zt & r which is a solution of (6.7.7). @
o :

Note that the inequality (6.7.9) restricts the amplitude of

solutions for which existence is guaranteed. Specifically we have
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that a necessary condition is that
r < % €

Now, using the same proof as was given to prove lemma 4.5.2, the

following theorem is proved.

Theorem 6.8
If g € C*(R). Then any solution of (6.7.7) which is an element

of fqp (for a given T » 0) 1is also an element of £3'®. O

Hence the result from theorem 6.8 impllies that the solution of the
integral equation (6.7.7) has sufficient regularity to be a
classical solution of the initial value problem (6.7.5) in the

infinite strip R x [0,t,].

The above theorem means that in the subset of the singular class
corresponding to the RIW (with the presence of uu, term) a

solution exists at least locally.

6.7.2 The KdV class

In the simple KAV class (i.e., no uu, temm)
Vi + Ve + Ve + Vg = 0/ ¥(X,0) = g(x) (6.7.10)

by adding the term - €Vt and using the method of
reqularization we have shown in chapter 3 that the initial value

problem (6.7.10) is well-posed.

Now, this result 1is wused to generate well-posedness of the

corresponding subset of the general class under certain data as

follows:
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Theorem 6.9

Consider the general singular subclass

Ug + Uy +ajuly + ajuuy + Aglgge + At * AgUxtt * AgUeee < 0
(6.7.11a)

where aj/a, is a triple root of the cubic equation
a; - agm + agm® - agm® = 0 (6.7.11b)

and U, U, U are prescribed on the characteristic line

if the corresponding three data v, Ver Vip Aare consistent then

the problem is well-posed. (]

Proof

Using corollary (5.3.1) the equation (6.7.11a) reduces to the Kav
equation and morever, the characteristic data u, u,, u,¢ reduces

to three bits of data v, v, v, on t = 0. Hence, if V(x'o)ﬂéﬂvo)
qﬁ(x,O) are consistent then since the KJdV is well-posed it

follows that the theorem is proved.

If the triple root of (6.7.11b) is not —% then (6.7.11a) reduces
to the KAV in the general sense, it includes vv, term. Hence,
the well-posedness of this problem is needed. Unfortunately the
method of regularization cannot be applied here and the reason is
that there are not enough conservation laws to estimate the bounds

of the corresponding reqularized problem.
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6.7.3 The Class w54

In this section we carry out an existence proof for solutions of
this class. This proof is unfortunately not very strong since it
does not lead to existence of global solutions in both x and t.
we are still trying to sort out the difficulties. So, until then

we introduce the proof below:

Consider the specific initial value problem (since the general

form is clearly treated similarly)
ut+ux+uux+uut+um¢\-ux¢t:o/—m<a<x<b<m, t»0
u(x,0) = g(x), u(x,0) = h(x). (6.7.12)
Equations (6.7.12) correspond to the system
u, +u = v(x,t), u(x,0) = g(x) (6.7.13a)
Vet t (1+u)v(x,t) = 0O, v(x,0) = h(xX) + g'(X). (6.7.13b)

Equations (6.7.13a) can be solved to give an expression for u 1in

terms of v, For this purpose subjecting (6.7.13a) to the

transformation:
X=-§{=x-¢t, t-n=¢t, u(x,t) -~ u(¢,n) and
v(x,t) - v(&n) (6.7.14)
we have
u, = v(&mn) - u(£,0) = g(e). (6.7.15)

Since the transformation (6.7.14) is a nonsingular 1linear
transformation then, to find the solution of (6.7.13a) and prove

its existence it suffices to prove that the solution of (6.7.15)
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exsits. To do this we integrate (6.7.15) with respect to n and

obtain:
n
u(é,n) = g(¢) + I v( £,n)AT. (6.7.16)
(6}
Hence
lul € Igl + Sup [v(&, M), 0<n «<T. (6.7.17)
0<n<T :

Taking the supremum of both sides with respect to ¢ and n and

using the nonsingularity of (6.7.14), we have

llullg,r < TIIVII[T + M (6.7.18)

where Z T is the function space of all continuous and bounded
functions on a £« x < b, t » 0, defined in section 6.7.1 and
sup |g(¢)l € M. Hence, the following lemma is proved:

¢

Lenma 6.7.2

If g(¢) is bounded and v({,n) exists and belongs to the space

fp then u(g,n) exists and is bounded. (J

Since the transformation (6.7.14) 1is nonsingualar then, the
gsolution of (6.7.13a) now exists under the same assumptions of the

above lemma.

We turn now to prove that v, the solution of (6.7.13b) exists,
For doing this -we shall use the relation (6.7.18) since the
nonsingularity of the transformation (6.7.14) provides similar
relation for u(x,t). Thus, integrating (6.7.13b) with respect to

x and t, a<xs<b, 0t <T, we have
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t (X
v(x,t) = v(x,0) — j j (14+u)v( ¢, T)ALAT (6.7.19a)
0o a

= Av = g'(x) + h(x) + Bv (6.7.19Db)

t x

with Bv = — j j (14+u)v( ¢, T)AEAT.
o a

lemma 6.7,3

If Sup  |g'(x)] € L and Sup I[h(x)| € N, thereexists a T
agx<b asx<b

depending on L and N such that (6.7.19) has a solution

satisfying v(x,0) = g'(x) + h(x). (O

Proof
et vy, v, eg.r such that Ilvill <R, 1=1, 2, then,

tex
< | Lj’a{(uul)vl - (14+uy)v,laar

tx
- l I I ((vy=vp) + 3 [(ug+uy )(vy-vy) + (ul—uz)(vl-!-vz)])ded‘r‘
0 a

t x N tex |
< l IO'L(Vl—vz)tl + Z(uj+uz)lagar| + | IOI "z’(ul—uz)(vlfvz)d€d1'|
a

< Sup {1v4~v5l |1 + I(uj+uy)| (b-a)t
x,t

+

Su;: 2 luy-uyl 1vitval (brajt
X,

Lvy=vallg (1 + 1 Hugduplig, ) (b-a)e

N

+ 3 Huy=ualig, Hvy#vallg (b-at. (6.7.20)
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But using (6.7.18) we have

Hugtugllg, € T 1Hvysvplig + 2, (6.7.21a)

u,-u, | | < 7T V,—V . 6.7.21b
Hug=uzl 7, Hvy=vallp,, ( )

Inserting the relations (6.7.21) into (6.7.20) we have

|Av,~AvV, | <nv1—v2|kzT {1+ 2 (T lvy+vyill ot 2M)(b-a)t
+ 27T |jvy-V vtV b-a)t

5 T 11vy Z'EZT Hvy ZIQZT (b-a)
£ {1+2 TR+ M} (ba)t ||v1—v2||zr .

Taking the supremum of both sides with respect to x and ¢,

|1Avi-Avpllg S {1 +2 TR+ M} (D-a)l ||vy-v,]| W-r

with {1+ 2 TR+ M} (b-a)T < & < 1. (6.7.23)

Hence, A is a continuous operator. Also in the above

calculations if vV, =0 and vy = v then

Hsvilg, < 1vig, . (6.7.24)

Now, if Sup |g'(x)| €< L and Sup h'(x) < N it is seen that
asx<b asx<h

the ball lIVIk?T € R is mapped into itself if in addition to

(6.7.24)

L + N < (1-96)R, (6.7.25)
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Thus, (6.7.23) and (6.7.24) imply that A 1is contractive over the
ball in Z o- Hence, using the fixed point theorem for Banach
spaces Vv(x,t), being the fixed point of A satisfies the

integral equation (6.7.19) and the lemma is proved.

Combining the two lemmas 6.7.2 and 6.7.3 implies that 1f the
initial data g(x) and h(x) are continuous and bounded then the
original equation (6.7.12) has a bounded solution over the
rectangle [O0,T] x [(a,b]. This gives existence proof for solution

of the class w54.

6.8 Applications

We turn now to provide some applications in order to make the

theory of well-posedness more understandable.

6.8.1 The KAV with gkew data

Consider the initial value problem

“t+ux+“ux+“m'°' -0 < X<, Et>»O0

(6.8.1)
u(x,kx) = g(x).

Two cases arise
(1) k = 0

The initial value problem (6.8.1) is the same problem studied in
chapter 3., Hence, for g e« Hk, k 2 3 there exists a unique

solution u(x,t) of (6.8.1) depending continuously on the data.
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(2) k # 0:
Using the transformation

X - X, t-ﬁ-lf’-'_ik—, and  uw(x,t) - w(x.t) (6.8.2)

then (6.8.1) reduces to

2
VvV, + vV, + YV, —- .-K— v, + v - _QL V. <+ _Lv

k3
- (1—k)3 Veete ™ o, (6.8.3a)
v(x,0) = g(x). (6.8.3b)

Now, (6.8.3) is an element in the nonsingular class. Let v,(x,0)

and vtt(x,O) be given, i.e.,
vi(x,0) = f(x), (6.8.3c)

Applying the well-posedness theory of the nonsingular class to the
problem (6.8.3), then, if g(x), £f(x) and h(x) are continuous
and have continuous first derivatives, (6.8.3) 1is well-posed.
Now, inserting the inverse of the transformation (6.8.2) in

(6.8.3) we have

up +u, +uuy +u.. =0, (6.8.42)
u(x,kx) = g(x) , (6.8.4b)
ue (X, kx) = (1-k)€(x) , (6.8.4C)
Uy (X, kx) = (1-k)*n(x). (6.8.44)
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Hence, (6.8.4) is well-posed provided that the data (6.8.4b, c,q)
are at least ct. But since from equation (6.8.4)
differentiability with respect to t decreases the
differentiability with respect to x by three, then prescribing
the data on the skew curve restricts the well-posedness of the K3av
equation into a smaller function space than for the usual data,

precisely, the space %: , kK » 9 which 1is a subspace of

ﬁc’;, k » 3.

6.8.2 The BBM with skew data

“t"’“x"’““x'“xxt'o‘ (6.8.5a)
u(x,kx) = g(x). (6.8.5b)
(1) Xk = 0

The initial value problem (6.8.5) is the same problem which was
studied in chapter 4, 1.e. the well-posedness is already ensured.
(2) Xk # 03

By the same nonsingular linear transformation (6.8.2), (6.8.5)

reduces to:

v, + v, + vy, - K vy -l ¢ +—2K o

2

- (_1_Lk.)_3_vttt =0 (6.8.6a)
v(x,0) = g(x) (6.8.6Db)
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which 1is an element of the nonsingular class. Hence sgimilar to
the above example this initial wvalue problem is solved for two
more arbitrary data vt(x,O) and vtt(x,O) to ensure the
well-posedness. Then, using the inverse of the transformation
(6.8.2), leads to well-posedness of (6.8.5) with two more bits of

data ut(x,kx) and utt(x,kx) which have to be in.

6.9 Conclugion

In this chapter, the well-posedness of the general class was
investigated. For this investigation it was convenient to reduce
the general class to a system of first order partial differential
equations. It is found that 1if a5 # 0 and the data are
noncharacteristic, then the general class being reduced to a
semi-linear system of first order partial Aifferential equations,
can be transformed to a system of ordinary differential equations
on its characteristics. The proof of this fact was carried out
for the case where all the characteristics are real. This proof
can be done if | some of these characteristics are complex by
reducing the system to two systems of real characteristics and the
reduction to systems of ordinary differential equations is clearly
obtained again. This result leads to a classification of the
problem into two main classes namely nonsingular and singular
classes. For the nonsingular class the method of characteristics

is applied to obtain well-posedness,

The failure of this method on the singqular class is due to: (1)
the data are characteristic (2) the singularity of A. This
singular class consists of the four equivalence classes K4V, RIW,
w54, and w53 classes, introduced in the previous chapter, with

usual data. This reduction turns the problem from being a six
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parameter problem, with characteristic data, into one with usual
data and one less t—derivative. Furthermore, the reduction is via
nonsingular linear transformations and hence preserves
well-posedness where it 1s known. Consequently the theory of
well-posedness of the KAV and the RIW, introduced in chapters 3
and 4 respectively, are used to advantage to establish
well-posedness in the corresponding simple classes. Finally, our
proof of existence for an element of Wg, can be used to imply
existence for the corresponding subset of the singular class., We
have also established two results on the well-posedness of the KAav

and the RIW on skew data.
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CHAPTER SEVEN
CONSERVATION LAWS

An important property of the general class
u +uy, +ajuu, +auup v agu . Azl + gy
+a6uttt=0 (aiéR, i=l' 2, coes 6)

is the possible existence of a number of independent conservation
laws. This property plays a significant part in both mathematical
and physical interests. The conservation law associated with a
given equation was defined in chapter 3 wherever the conserved
form for this equation is expressed by an equation of the form
i;-t T + agx X = 0, where T, the congserved density, and -X, the
flux are polynomials of X, t, u and the various derivatives of
u. This conservation law is used as an indicator of whether the
equatioﬁ has an N-soliton solution or not. Thus, it 1is a
mathematical property. Furthermore it is a physical property,
gsince it is used for deriving a priori estimates and to obtain
integrals of motion. For example, if the flux X 1is zero as

x| - o, then jm Tdx = constant.
-Q0

The idea of conservation laws was first introduced in chapter 3
where the proof of the existence of an infinite number of
conservation laws of the KAV equation was given. In chapter 4
this idea was revived and it was shown that the RLW equation has
only three conservation laws. These two equations lie in two
disjoint subclasses of the general class, as was demonstrated in
chapter 5. This demonstration was given via a reduction which

preserves the conservation law property.
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Thus, the general class includes other elements which have the

same conservation properties as the KAV and the RIW equations.

In this chapter, a number of conservation laws of the general
class are derived, followed by a careful examination of how many
of such conservation laws can be found, and consequently how much
from the general class are of the same character as the Kdav

equation.

7.1 Derivation of some possible congervation laws

we consider the general class of equations
up + Uy +ajuuy +oajuug + agUy AUy v Aglngg
+ asuttt = Q, aiékp i = 1, 2, ..., 6 (7.151)

and write its nth conservation law in the form

3Tn d
+ ﬁ - OI (7‘1‘2)
at ax

The derivations that follow are done by means of elementary
operations and are stated in two theorems. However, first we note

the following lemma

Lemma 7,1.1 (3]
Two conservation laws are said to be dependent if there exists

constants C;, C, such that

c;Ty + C,T, = Py (for some P)

where T;(1is 1, 2) are the conserved densities. (]

Note that if T-Px, X = —P¢ (for some P) the conservation law is

trivially satisfied.
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Theorewm 7.1
Te first two conservation laws of (7.1.1) have densities

fluxes given by,

2
u
Ty = U+ 35 J—F Agupy + Aglge

2
Xy = u+ 2y T ajug + gy

3 2 2

u u
u t
vay i -3, 55 + aguuy, + ag(uug, - ;—), and

)
)

[ |
Nlc

2 2
2 3 u u
X, = g- + ay g— + aj(uuy, - 55) + aguu - ag ;5 . 0

Proof

Equation (7.1.1) can be re-written in the form

and

2 2
%:[u + a, g— +aguy, + agugd + %;[u +a, ?—-+ AgUyy + aguy] = 0.

(7.1.3)

Hence T, and X, follow by (7.1.2).
Multiplying (7.1.1) by u, we have

2 2
uut + uux + alu ux + azu ut + aauuxxx + a4uuxxt + asuuxtt

+ asuuttt = 0., (7.1.4)

Now, using the relations:

3 ux F) 3 Ux
p.4
uu = = (uu - ) uu - uu - —_— =,
o = g (W = 37D KXt g Xt 5 o
(7.1.5)
L 2
3 a_ Y a uy
uu - X uu - ==, and uu = X uu -— —
xtt = or Wkt T 57 3 ttt T of (Wee — 7)
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means that (7.1.4) can be re-written in the conserved form (7.1.2)

with

2 2
2. 3 u
T, = ‘2‘— +a, -‘31- - a4%5 + aguu,, + ag(uugy - ;9) and
2 2
2 3 u u
u- - X -

Thus the theorem is proved. W3

In the above theorem two conservation laws of (7.1.1) were derived
and they are clearly independent where no one can be reduced to
the other under possible integrations. We turn, now, to study the

possibility of deriving the third conservation law.

Theorem 7.2

1f the coefficients ay satisfy the condition
: a a a
ay - a4(5§) + as(gi)‘ - as(ai)’ = o. (7.1.6)
Then this subclass has a third conservation law with

1.3 u* 2 2 _ 2 a3
T, = 5 u® + a, . + agutu,, + agu’ug, - (2kajzalu + 3, + a,K)ug

a : 2ag asa
6 4,2 b} 4 2
+ 3 U + (2ajaKu + 3 uue + (—%I— + ajasagkiu,,

2
a a a 2a,a 2a
4% 6
+( 3:6 =&y T 212235K)u + 5 Uge + ( ai 2 - a:as)uxxuxt
2333¢

*oaE Yadler T 2312236KUxtlee o
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4 a
1,3 u 2 2 3

2
X

2a a2
- (2a;ajKu + % + aja,K)uf + (2Kafayu + _a_%)“x“t + 5% uZ,
Q. ALd aca
36 375 _ 2 56 2
2a 2a,a 2a
223% 4% _ 2333¢
= 23;2;33Ku Uy + 3, ‘haxUtt + ( 3, 3, 2 )uy Uy o
where
3 '3""— .
22, aja,
Proof

To prove this theorem, we assume, without loss of generality, that
a5, 2, # 0 (since if either a; or a, vanish there always
exists a nonsingular linear transformation to put the equation in

the form (7.1.1), i.e., with both nonlinear terms present).
Now, inserting the substitution

1 1
x-5Xx ad t-at (7.1.7)

into (7.1.1), we have

1y +1u, +u, +uu + 23 + 28, + 25 u

at  apx x t 0 ags o T a2, ajal Xt
aG

+ =3 Ugee = 0 - (7.1.8)
az

Multiplying (7.1.8) by u?, the resulting equation can be

re-written in the form:
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a_ (1 ud, ut, 24 2 26 ,2 9 1u®, ut, 23
2 i uw o ,u uiu,, + u?u,, ] + (= ¥+ ¢ 32 42y
ot 323 4 a%a, ™ a3 't " ax 313 4 T}

a‘5 2 2a’3 2a4 235
+ = uTu ] - T wau - uuy - uu_u

2 tt 3 2 Uk F ey 2

2a¢
-3 Wilee T 0

a3
ioenl

3 a a 3 + a
2 ¢l u” ,u 4 ulu,, + ;% ufuge] + g;[l I M T

2a 2a 2a
+ 32 whuee) - 37 D + Wiglge) + (5 - S

2,23 a} aja,
23 [uugu,, + uugu.. ] + (EE§ - Efﬁ—g u = 0 2

- 3 x-tt t¥tt 3 2 uux tt . ( 1109)
ay ay ajas

Using the relations:

Uu U, = unu, + %; (uugu, ) - g: uug ,

(7.1.10)

ey = gt + & (unue) - 2w,

reduces (7.1.9) to the form:

1 ud Q_: 3&_ 2 _a_§ 2
[—a- ;—' + 4 + u um( + a3 u utt]
2

9 1 ud,u*t, 2 = ag 2 2a,
+ =z, —+t -t utu,, + u“u - uu, + uu
ax[al 3 L X a a2 tt] a} (uu, t Msexe

2(azay - aja,)

2ag +
- o3 (uug + uup U

)uuxuxt
a

3

- -2 - -
, H21% a2a521utuxt e 2] (333 = 33y4) 2 23 ~ 3Ag)

2
3 3 X 3
aa; ot aja, ajay

uu,uy ]
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a_ 2(ajzay — a53,) _ 2(ajag — a,3g)

+ uu u uull =0 7
3 xVt 3 t . (7.1.11)

ax aja, aja,

Hence, (7.1.11) has the form:
2a 2

a a . 3 aﬁ
s 4+ &= X3 — —= (u 4 u - — u +
s 3T 8TT (Ul + UUE Ny a3 (uuy + uugugy

. 2(ajzay — aja,) 2(a 3¢ — 2,3g)

aiaz uu,u,, + alaé Uu U,y = 0 (7.1.12a)
where,
gy o=l M3 ut  2e a3 0, 2335 ~ 3,3,) .
37 3,5 4 a plo'd 3 tt 3 uu,
122 az a;a;
2(a;ag ~ a535)
a2 uu,uy , (7.1.12b)
1 ud,ut, 3 ag 2(a,a, — asa,)
XLt == = + + -2 u€u + 2 273 147
3~ a 3 xx utug, + uugu
1 3 4 a 2 tt 3 Xt
1 a2y aja,
2(a;3¢ = 33) .2
- ala; uug . (7.1.12¢c)
But the condition (7.1.6) of the theorem implies that
a - a,a A,a, — 34Q
1%6 2%s
2.3 - 2312 . (7.1.13)
122 2332
substituting (7.1.13) in (7.1.12), we have
a . - 2 9 _rys
;E[T3 2Kuuy + 2Kuuue] + S-[X3 + 2Kuuug - 2Kuug )
2a3 2a6
- ;§—(uux + ““t)uxx - ;g—(uux + uut)utt + ZK(uux + uut)uxt = 0,
(7.1.14)
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2a
Now, multiplying (7.1.8) by ;33 Ugeycr the resulting equation can

1
be re-written in the form:
a,a 2a.a a.a 2a.a
4 3¢ 3 u + 374 ,2 375 , u + 2376 2 3 U Uy, ]
st aja, X aja, X ajay KXE T ghay X T gfay Tece

2a a a Aqa 2a
e T 0 e N

U, U
ox aja, ay a§ ™™  ajaj **  ajay ¥ttt
zf_a + =0
+a3 (uuy + uuy gl = 0. (7.1.15)

2a
Multiplying (7.1.8) by ;ﬁ Ug¢, the resulting equation has the
2

form:

2a a,a a?
—[25 ’fﬁ—s Uylly = ‘Sl;g Uplxt ~ =2 ufy + —2 u,)
ot a3 a,a} aja a%aj a$

+Q—[L“§ zaig“m“tt*‘ﬁg“xt '_ﬁﬁ“:ct“tt*'i—ﬁ“ttl

3
2
+""£6 (uuy + uug)upe = 0. (7.1.16)
2

Multiplying, finally, (7.1.%) by -2Ku, , yields:

a ag K 2a6
3 K .,2 3 2 _ _°
g =2yl + = K Ku,,u, .
at[al x ¥ 33 Uiy — aZa, a3 xtUtt
2a.K A, kK a-K
2 =K w2 - 3 UpplUyy - —2— u?, + 6 uz
(3, Yt ~ 33 YxtYoe T 77 Uxt T 337 Yee

ax 1 192 2

- 2K(uu, + Uug)uy, = 0. (7.1.17)
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aAdding the four equations (7.1.14) to (7.1.17), we have

2a a,a a.K
) 3 K 2 3 2 () 3°4 3 2
Ty -~ (S v a7l P U 3 U (5 S uy
at la2 1 aja, ala2 a;
2
a a a 2a.,a 2a.,a
33¢ 43¢ 5 2 6 .2 395 33¢
(53— e~ TNt ¥ e ke Y (35 35T Mupadxt
alaz alaz alaz 2 a1a2 alaz
2a 2a K
3
+223% oy - Upy Uy, ]
3.3 xx-tt 3 xt¥tt
aja; az

2a a
8 ryr — (28 _ 4 K 4,2 3 33 2
+ rx: - ( + ==)Juf + uu, + = u
8x[ 3 31&5 a, U aiaz x-t : KX

+ (aaig _ agag _ a4K )uz + (asae . agx)uét _ 2a3K

33 .2 z xt s 3 UxxVUxt
ala} afaj aja, a,a} aj a3
2a 2a,a 2a.a
3% 4 3%
4 —22 u + ( - u = 0, 7.1.18
aja3 et alaj ajaj MtUet ( )

Thus equation (7.1.18) represents the third conservation law of
the equation (7.1.8). Hence to establish the third conservation
law of the original equation (7.1.1), we use the inverse of

(70102)’ iOeO

x~-a;x and t - ast (7.1.19)

and the expression T3 and X3, t.e., (7.1.12b) and (7.1.12C)

( respectively).

Then (7.1.1) has a third conservation law with:
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3 u + 2 4 2 - + == &

a 2a6 234
“t + (23;a,Ku + z~—)uu, + ( - alazaal()u
a a,a a2
33g _ 343 6 2335  2ajag
+ — et — Q. BAA, K + =
(a1 T a, 12235 Wiy a, uge + (a > WUyt

2&3&6
* 3 UpnUpt — 231333gKUpeUpy

and

a
T ug
1

1,3 ut 2 2

N

2 a__6_ 2 2 2&3 a
- (2ajajKu + 3, + aja,K)uf + (2Kajaju + EI‘)“x“t + 52 “ix

[

a a,a aca
3% _ 233
+ (az al - ala2a4x)u;t + (ag s + alazaﬁx)utz:t

2a as 2a4a6 2a3a

et et (3 - 6)“xt“tt

which proves the theorem,

Note that the condition (7.1.§) of theorem 7.2 couples all the
coefficients of the general class (7.1.1). We call it <the
coupling coefficients condition. 1In the next section we shall use

this condition to classify the problem.

7.2 Clagsification of the problem ing the coupli coefficients
condition

Cowbining the definition of the characteristic equation of the
general class (7.1.1), defined in chapter 6, with the coupling
coefficients conditions (7.1.6) implies, clearly, that for all the

coefficients a;(i=1, 2, ..., 6) of the general class, the

-176-



a
coupling coefficients condition is satisfied if and only if Ei

is a root of the characteristic equation
az — agh + agh? - agr® = o, (7.2.1)

T™is leads to a classification of the problem, in terms of the

order of the roots of the cubic equation (7.2.1) as follows:

a

(1) If Ei is a root of (7.2.1) of order three, then the
corollary (5.3.1), 1introduced 1in chapter 5 1implies that the
corresponding subset of the general class reduces to equivalence

class of the KdV equation (simple KAV class) and hence has an

infinite number of conservation laws, as was proved in chapter 3.

a
(2) If 5% 1s a root of (7.2.1) of order two, then the
corresponding subset 18 reduced to the equivalence class of the
RLW equation (simple RILW class) consequently, it has only three
conservation laws, as was shown in chapter 4.

a
(3) If 5% is a simple root of (7.2.1), then corollary (5.3.1)

of the reduction theorem 5.2 implies that two subcases arise:

(1) If all the roots of (7.2.1) are real and simple, the

corresponding subset reduces to the simple Wg, class, i.e,,
u, + u, + byuu, + byu, .y + DgUyy e = 0. (7.2.2)

In the next section it will be proved that (7.2.2) has only three

conservation laws.

(ii) If (7.2.1) has two complex conjugate roots, then this subset

reduces to the simple W3 class, i.e.,
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ut+ux+b1uux+b3um+b5uxtt=0. (7.2.3)

we shall show that this also has three conservation laws.
a
(4) If 5% is not a root of (7.2.1) then the above analysis
has only given us two conservation 1laws for this subset of

equations. We sghall discuss this case in the last section.

Having classified the general class of equations into four
equivalence classes where the informations about the existence of
conservation laws of the first two classes (simple KAV and simple
RIW classes) are known, we turn now, to examine the other two
clasgses by introducing a general formalism for proving the
existence of conservation laws. This will be exploited later for
gsolving the problem of the specific equations, simple Wg, and

simple W53 classes.

7.3 ral fo sm fo rov istence of nservation laws

et N be the space of all points with coordinates X5 lﬁ,
i=1, 2, ..., nand j=1, 2,...,m and M be the space of all points
Xy j=1, 2,...,n. Define the projection operator I such that

o: N - M ie., Oxgud) = x5, i=1, 2,...,n, 3=1, 2,...,m.

Let Ny be the space of all points with coordinates X5, ul and
the various derivatives of ul with respect to Xj. Thus, if we
denote by R to the kth order differential equation with

independent variables 3 and dependent variables uj, then Rc:Nk.

Now, using the above notions we 1introduce the following

definitions:
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ini n(7.3.1 (infinite prolongation)
Iet RC N, be the kth-order differential equation, i.e., R can
be defined as Fy = F, = ...Fp. = 0 where Fi(i-l, 2, +¢4,r) are
smooth functions on N. We define the infinite prolongation
R, N, as the subspace obtained by equating F and its various

total derivatives to zero.
Example 7.3.1

Uit ™ Mg T Wy T Ukt (7.3.1)

For this example N = R?> with cooxrdinates (x,t,u) and M = RZ
with coordinates (x,t). Hence equation (7.3.1) is a subspace of

Ny and F can be taken as

F"“t"““x““xxt““xtt' (7.3.2)

Thus to obtain the infinite prolongation &n of (7.3.1), we
equate F and 1its various total derivatives to zero, i.e., by

taking into account all the differential consequences of (7.3.1)
= — - 2 -
Ugxxt = Uxt ~ Yoo — Ux = YUpectes

umt = utt - uuxt - uxut - uxttt.o‘-Q'

we arrive to the infinite prolongation R, C Ny This

prolongation admits, in fact, a global coordinate system, e.g.
x €, U, Vo W and opy (7.3.3)

where

u (k20) = Uy, . .x(k-times X), v (k31) = u,, ,(k-times t),

Wi(K22) = Uy | g(k-times t) and p(k»3) = U ((k-1-times x),
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Example 7.3.2

Uy = Up — Ul — Uy = 0. (7.3.4)

In this example N and M are chosen as in the above example and

F = up = Ul = Ugge = Ugge = O

Hence the infinite prolongation of (7.3.4) are obtained as in the

above example and it admits the global coordinate system (7.3.3).

Defintion 7.3.2 (The algebra)

The subset A of the space c® 38 called the algebra of smooth
functions if, whenever £, g € A and « any real number, f+g, fqg,

af'e A,

Let A denote the algebra of smooth functions on R, and B the

algebra of smooth functions on N, . Then
A = B/I

where I is the ideal of functions vanishing on R,. Then in the
coordinate system (7.3.3) the total derivatives with respect to x

and t on the algebra A are written as

aw
) a_ ) k 8 a

Dy = —= + L Uy + Lweyy o +E oo tL oMk

¥ y30 dug ka1 VK kpz OX OWyx 133 Ay

(7.3.5a)

a a 2 ) oy 2

Dy = 2=+ L bpyg o Y EVgyy = F LWy Z=+L —2 % +v

t et s, e x3q Wk k22 Wy x33 Ot duk L au
)

+w . 7.3.5b
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Remark

From the definition of D¢, it can be clearly shown that if
Ker D, = C®(t) (the set of all functions of t), then the linear
dependence of conserved densities implies linear dependence of

corresponding conservation laws.

Definition 7.3.3

(1) The universal operator 2p of a given equation R c N 1is

defined by the matrix

aFi
(fp)yy = % a3 De (7.3.6)
¢

for the multi-indices ¢, where F; are the components of R, as
in the above notions, and Dt is the total derivative operator

such that D =D, Dy, .. .
XjXg. - ¥p Ky X'l

(2) The conjugate operator l; of R 1is derived from (7.3.6)
by the transposition and taking the conjugate of each scalar

element of the matrix where

*

* *x X
(DiDj) - DjDi: Di - "Dl and g' = g for the function
coefficient.

Example (7,3,3)

The universal operator for the equation in example (7.3.1) is
2 2
lp = DDy + DiDy — Dy + uD, + U,

and the conjugate operator !; has the form

¥ N2 - n2
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Similarly the equation in example 7.3.2 has

3 2
#p = D3 + DfD, — Dy + uDy + uy

* 3 2

where u, which appears in 'F is the operator wmultiplication by

uy, and the conjugate of this multiplication operator vanish in

x
2p.

In the following, and without any confusion, we denote by g5 to
the restriction of the conjugate operator l; to the infinite

prolongation R, of R.

Using the above definition of the conjugate operator fp the
relation between the space of conservation laws and !; was given

in (1], {4) and is summarized as follows:

Theorem 7.3 (4]

The space of congervation laws can be injected into Ker !;. a

The above theorem implies that the dimension of the space of
conservation laws is not greater than the dimension of Ker !;.
Hence to prove the existence of conservation laws it suffices to
calculate the dimension of Ker !;. This will be used in the next
section to prove the existence of conservation laws of the simple

Wga class.

7.4 Conservation laws of the simple Wg, class

This section is devoted to the study of conservation laws of the

simple Wg, class (7.2.2). For this context we begin by the
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equation

Uyt U —ouu = Uy (7.4.1)

which is an element of the class (7.2.2) and prove that the
dimension of its space of conservation laws cannot be greater than
three. This proof will be adapted later for the original equation

(7.2.2).

Using the notions in section 7.3, the infinite prolongation R,
of (7.4.1) was obtained in example 7.3.1. Morever it was pointed

out that it admits the global coordinate system (7.3.3).

If, now, A, B stands for the algebrags of smooth functions on Ry

and N, (respectively), corresponding to (7.4.1), then
A = B/I (7.4.2)
where I is, now, differentially generated by the function

F o= Woe + Uy — U + UL, (7.4.3)

Thus, in the coordinate system (7.3.3) the total derivatives D,

and D, are obtained from (7.3.5), i.e., by using the equation
(7.4.1) we have

d k2 x-2
- k-1 T Vb T E (71" )vywg 4.3, and
i=0

Ay k=2 x_2
— 4 — M - F U W .
prraiialte SS Uy S5 1 . (P74
aw au
. X K
titutin —_— into (7.3.5
Subs d - T ( ) viela
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k=2 2 9 8
+ D [¥%og ~ Wy - L (T35 WiwWe 33— + L gy v
X2 1=0 e ka3 By
(7.4.4)
and
a a a 3
D ==+ Ly = + L Vyg o= + LWy =
LI T 8y xny e x»2 vy

k-2
+ L [uk_l = M4y L« 4 )uiuk-i—ll—— + V) T kW, —,
x»3 1=0 Oy éu duy
(7.4.5)

The above definition of the total Adifferential operators on A

leads to the following:

lemma 7.4.1

Ker D, = C(t) (the set of all C* functions of t). [

Proof
Let D, =0 (7.4.6)
where g € A,, A, being the subalgebra of functions x, ¢t,

U, Vo W and . with k £ n which satisfies

Thus coefficient of u,,, in (7.4.6), i.e., (29 ) must vanish,
aun

i.e., g does not depend on u,. Similarly the coefficients of Uy,

i.e., 2q must vanish, yielding 2q = 0, Thus we come to
aun_l aun_1
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29 .o, similarly &9 =29 o | =9 .o, (7.4.7)
aul dun aun_l aﬂg

Since the coefficients of Wni1 in (7.4.6) vanish, then

8d _ 29 .o, (7.4.8)
aw

Now, equation (7.4.1) can be re-written in the equivalent form

Uptt = Yg T Wx T Uyt (7.4.9)
Then,
ow
.—-—2 = \1 = u
ax xxt 3¢
aw3
- —-— - 2 -

e hacet T Ukt Ulyge = Uy = Upoext

=Wy - Uy - Ul - g,
i}
P = W3 — Uiz — Viuy — 2u1w2 - M3 + uuy + 3u1u2 + Hg.
d‘." k+1
de =weq, + (-1) Bspg = T T does not depend on both

Wiy and Hyeyye

Thus, the total x—derivative can be re-written equivalently in the

form:
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) 3 3 9 2,9
D, =%~+Lu Tt DwWeyy o (g 5=+ [Wy ~ pg - uuy - ui)—
X k+1 +1 3 2 4 1
9%  x30 Uy x32 vy ovy 1 ow,
9
~13K - 12— 4 a__
+ [wg—qg + (71)Hypyy = T L Mypeqq (7.4.10)
_ My k23 o
where T does not depend on Myepye
Then, coefficient B+t in (7.4.6) must vanish, i.e.
(-t 8 4 24 .o, (7.4.11)

ow, oy,
Solving (7.4.8) and (7.4.11) gives

29 w0 ana 29 =0 (since 29 = 0).
own . avn ap’n

Hence g € A, 4, and by induction, we come to g = g(x, t, u).
-~ 2 29 29 2q
us D,g = O 2 gy, + =0 - = 0 and =0,
Th x9 au 1 ax du ax

i.e. g = g(t) € C®(t), which proves the lemma. E

Similar to the proof of lemma 7.4.1 one can prove the following

Lemma 7.4.2

Ker D, = C®(x) (the set of all C® functions of x). (]

lewma 7.4,3

Ker (D, + D) € ®(x, t).

Proof

Let (Dx + Dt)g =0, ge An (7.4.12)

using (7.4.4) and (7.4.5), then
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0 = (Dy + D¢)g = (— + 'a_t)g + k£3<“k+1 + “k+1"ég

k-2
+ L (Weyy + Vk+1)‘£ + L vy~ C (k—2)v Wiem]m ]QQ
k>1 Yk k22 =0 U aw

+ E (Mg ~ kEZU‘k—l = kfz("zz uguy s 1129+ (u, + w2
x=23 1=0 i=0 Sy Wy

"(“1*"1)‘33 : (7.4.13)

Thus, the coefficients of wu,.4, U,, Vo, and v, 1in (7.4.12)

must vanish, i.e.

a9 2q = 2 2q 0 (res
= = - pectively) (7.4.14)
ou, duy , vV, IV,

and coefficient B4 =0, implies

éq +§9 = 0, (7.4.15)
My _o Hn

Similarly, coefficient wu, , = O, implies

g_q _ug_q = 0. (7.4.16)
Un-2 M

Hence, combining (7.4.15) and (7.4.16) implies %9 = 0. By the
"’n
same procedure, since the coefficients of Vh-1 and Wn-y must

vanish, then, combining the two coefficients, implies

F) a
1+u) & = 0, thus “— = 0. Consequently . By
(1+u) o ' o g e hy the
induction, we come to g € Ay, 1l.e. g = g(x, t, u, uy) and,

(D, +Dt)g=—g+——g+(ul+vl)—g+(u2+w2)—5
Yy

el
+ (wy + vz);gl = 0. (7.4.17)

In the equation (7.4.17)
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coefficient u2=0 - 29 = O, coefficient vV, =0 =~ 2q = 0,

thus 29 = coefficient (u, + v,) = 0, i.e.
po 1 1

29 4 &9 .9 - g =g(x -t) € C%x, t)
ax at

and lemma 7.4.3 1is proved.

Lemma 7.4.4
If geA=URA, 18 linear over C®(x, t) 1in uy, 1 >0 and
n

g € ImD,, then g = 0. 8]

Proof
Suppose g = D f for some f € A,. Then, in a sense similar to

that used to prove lemma 7.4.1, £ does not depend on

Vir Voo eees Vi Mo, wg, cevs W, and g, Has -.o. Ky, then
af af 2f of
D f=7=+v) = +w + LT nu =g = [ ayuy.
t 1 2 1+1 $ Bag &
at au duy;  y3a duy i
(7.4.18)

Now, equating the coefficients of 4., W, and v; in Dboth

sides, then f does not depend on uy(i » 0).
Hence oy =0, i.e., g = 0.

The above four lemmas determine the properties of the total

differential operators over the algebra A, which are required to

prove the main result of this section.

We come now to prove the existence of conservation laws of the
equation (7.4.1). The result of theorem 7.3 and the analysis,
introduced 1in section 7.3, reduce the problem of finding the

congervation laws of (7.4.1) to that of calculating the number of
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the elements in Ker !; .
* 2p, — p.DZ + D, — uD
bp = -DiD¢ Pt £ — UDy (7.4.19)

where D, and D, are given by (7.4.4) and (7.4.5) respectively.

So we ehall prove that if ¢ € A, and fg(4) = 0, then
2
= (v, + Wy + g—a +Yu+e (7.4.20)

where o, ¥ , © are constants and n € 2, For this purpose we

introduce:

lemma 7.4.5

Let & ¢ A, and 2(6) = O, then ¢ does hot depend on both u,

and p5. Furthermore ¢ is linear in u; and v,.

Proof
since ¢ € A,, then by the definition of A,, ¢ does not depend

on 3. Hlence D, and D¢ have the form

d d 2 a .
D, = T 4+ Uy = 4 Wy — + [V = U, -~ W} +w, T
X 3 3 1 1 3 2
ax au, av, o, av,
a 9
+ u, — + uy =—, 7.4.
23y, lau (7.4.21)
9 2 2 3 )
D, = — + (Vy —Uuy —Wol— + v — +wy,— + v
o at 1 17 Vel 30v, P aw, 2 sy
1
+vy d—o (7.4.22)
du e 1Y
Using the relations
Aaw, aw

2 - - —3 = - - -
e vy T uug Wy Vo m oUWy - WV~ w,
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vy 2V, W u,v we and s v 3

—2 ey, - uwy - - - —2 = - uw, - 3V.w

Ax 3 3 172 172 5 ax 4 4 173
-— 3V2W2 -— ulv3 - ws .

Then by equating the coefficients of u, and v, in 2.(¢) to

zero, we have

%y =9 a4 p (22 ) =0, ‘4.
Dt(auz) an x(avz) (7.4.23)

Hence, using lemmas 7.4.1 and 7.4.2, then
¢ = A(x)u2 + a(t)v2 + (7.4.24)

where ¢ € A, and does not depend on both u, and \ZX

Similarly coefficient w, in (0n(®) must vanish, yields

(D + D) &— + B(x,t) = 0 (7.4.25)
ow,

where B(x,t) is in terms of A(x) and «(t). Hence by using

lemma 7.4.3, ¢ 1is linear in w,, i.e.
$ = A(X)u, + a(t)vy, + B(X,t)wy, + Uy, ¥; € A;. (7.4.26)
Then (7.4.21) and (7.4.22) reduce (respectively) into

Db = Auy + A, + owy + B{v, = uu; — wy)] + Bw,

v ay oy vy
+ (2L 4y, —E +w, — 4+ u, —1}, .4,
(ax Y2 du 2 av1 1 8u } (7.4.27)

Dt¢ = A[v1 - uuy - w3] + avy + ALYy + Bwy + Bth

avy oy, oy, ay
+ (—L +w, — + v, —L 4+ v, —2L}, .
s 2 au, 2 ov, 150} (7.4.28)
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Hence,

z rF
DyP¢

Alv, — uu; — 2wy = uuy - 3uyu, + uvy - uzul = 2uwy + 2u,w,
uyvy + vy = 2v3W, - wyv, - wg] + 2A, [w, ~ uu, - ui - v,
uw, + uyvy +wal + A [vl -uu, - w3] + cx[v3 = uw,

2v4wy — WV, - wgl + a vy, - uw, = v, = Wl + B(w3 - uv,
ufu, + 2uW; - 2U4yWy - UV = Vg 4 uwy + 2V, + UV, + W)
2B, [V, — uwy - uV; = W] + By Wy + Bilw, - uu, - ui - v,

uw, + u3vy + w4] + Zth[v:L - uuy - w3] + ByetWa

83 83 83 83 82
Yy +u2-——4=——-w +w 2 + u -—L—w + u,D 4

‘9x3at dujoxet 2 ovy,exat L oudxat 2 X au,at
3 ::wat * W2Px aZ pt ¥ [V1 7 Wy~ vl az e T Pk a::tlz
u, -3-‘21—:% + wyDY ::%i + 2[{vy; - uu; - wulD, ;%L
[wz—uuz—ul—v2+uw2+u1v1+w4]-a—l+v20§?::
2w3Dx g‘:% + vy —uWp T UgVy — W] Z%L *+ VD %%l
2w;Dy —t + Loy - uuy - wy] 5—11—1 .
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2 - 2 - - -
DgDy = Alw, uvy + utuy + 2uw, u,vy 2uqw, vy + 2vyw,
+ wyv, + WS] + Ax[v2 - uw, - wvy - w4] + owg + 2a, W,

+ Wy + B(vy — uwy = 2VyW, — uyv, — wgl + 2B [v, — uw,

- wyvy - w;] + Byw, + 2B Wy + Btt[V1 -y - "3]

3 3 3
+ (E— +w, &, e 9

82
+ B w v Vq
xtt™3 axat? du, oxat 2 gv,oxot 1 suaxat

2 2 2
+ “2Dt 2 + [v1 - uuy - w3] 8 + szt [ I—
au, ot du, ot av, ot
1 1 1

2
+ u.D +w, — + w,D,D, & + w,p, 2—
1De 2 ust 2PePx g, * V3

b4
duat aul

2

2 -] 3 2 4 2
+ v,D D + v,oD + w D +w v,D, D
27t7x ov, 3"x v, e v, 4 ovy 1767 54

2 2. Q_}
2¥X a4y 2K au 3 au 1

since Ip(®) = O, then by equating the coefficients of v,, ug

and v, in both sides to zero, then

1 by w0 ana by
—= = 0, t(aul) x(au - au) = By + By + A,

(7.4.29)

Thus ¢ 1is linear in both v, and u; (by the lemmas 7.4.2 and

7.4.1). The last relation in (7.4.29) implies
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v,
Dx(;;— - ou + C(x,t)) =0 (7.4.30)

where D,C = B, + B + A,. Then, by lemma 7.4.1

awl

- ou + C(x,t) € C®(t), i.e.
au

av 2
—L = au + ¥(x,t). Thus ¥, = a8 —+ vu ana
du 2

® = A(X)u, + a(t)v, + B(x,t)w, + %‘ u? + yu + 8(t)v,

+ du1 + o(x,t)

where Y, 6§, 4 and © € C¥(x,t), A ¢ C®%(x) and «, & € C®(t).
Furthermore, from the definition of ¢, coefficient uyu, in
#r(¢) = O must vanish, then A = O i.e. & does not depend on

Uy, Hence

& = a(t)v, + B(x,t)w, + ﬁéil u? + Y(x,t)u + §(t)v,

+a(x,ty + o(x,t). @ (7.4.31)

lemma 7.4.6
Let ¢ has the expression (7.4.31) and f#g(4) = O, then all the

coefficients «, B, ¥, 8§, 4 and © are constants. (J

Proof

e

Since ¢ € A, is in the form (7.4.31), the expression of Dy and

Dt reduces to the forwms
Db = awy + Blvy — uuy - w3} + B w, + auuy + Yu; + Y,u + Swy, + du,
+auy + 6, (7.4.32)
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o
t 2
Dt¢=cxv3+0K|V2+ﬁw3+ﬁth+<mv1+2 u +W1+Ytu+6v2

+ 8,.vy +dwy +dguy + 6 . (7.4.33)
Thus, DZD, and D{D, take the forms:
Dncht = (a—B)[Vy — UWy — 2V3W, — WV, = Wg] = B W,

+

(Byx = Byt — dx)w3 (B + Y+ &+ dx)[vl - uuy - wy]

+ (Byget + Yy + Gyx)VWp + (A + BL)[W, = uuy - ui)

+~

(dy + By ) vy - uuyl + (a-B){uvy - u?u; - uwg + 2u,w,

+

+ B,y + vaz + waz + Yxxvj. + Yxt“]. + Yoyt + dtu3

+ dxtuz + at;uuz + ui] + Qxxt ’

D§Dy = Dy DDy = (a—B)Wg + (o — BeIWy + (& = By + By + 8 — d)w,
+ (Opp = Bep * Byp + B = QpIWy + (B + Y + B + dy)wy
+ (axtt + Y + stt + dx.t)w2 + (4 + Bt)[vz. - uw, - ulvl]
+ (4 + By )vy - uuy] + (a-B)[uwy + 2v,w, + uyv,]

+ (o — By ) [uw, + u vyl + (Y + Qe YWy + (Yege + dxtt)ul

+ By + PeVp + Vy¥a + WikVy + Yeet¥ + dglvy - uuy - wy)

+

AUy + Xluwy + wyvi] + appuuy + 6.
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Now, since f#p(¢) = 0, l.e.,
(D;Dt + D§Dx — Dg + uD,)o = O.

Thus, equating the coefficients of u,vy, uj, w,vy, v,, u, and
u¢ in 1;.(¢) to zero we have, respectively, the following

relations.

a-pB=0, —-(d+B)+ax =0, 8+ ax =0,
pt+Yx-Oa.nd §§+Yx-o, (xg = A4 = B )u + (a-B)vy

Solving these relations together, we have

a =pf R, Ad=0=32¢8 and Y € R.
Then 1h(4) = #5(0). Hence 6y = 6, =0, i.e., 6 ¢R. Thus
uZ
¢-a(v2+w2+5—)+m+e, a, and 6 € R. i

Now, the two lemmas 7.4.5 and 7.4.6 lead to the following:

Theorem 7.4

If ¢eAn, n<2 and n;(.»)-o, then

2
¢-a(v2+w2+;—~)+ u+o, a and 6 €R. (O

In the above we have shown that !; has a nontrivial kernel lying
in A, and since this kernel 1is three dimensional this
corresponds to the three conservation 1laws that we derived

earlier. We now show that there are no more conservation laws by
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proving that the kernel of fp lies entirely in A,. For this

purpose we introduce

Ilemma 7.4.7

Let ¢ be nontrivially in AL, n > 2, (i.e. contains terms which

are in A, and not in A, ,) and 2.(6) = O, then

(1) & is linear in its highest terms, i.e., Ups Wpo 9y and TNy

(ii) ¢ does not depend on L., W,, M, 3 and w, ,. O

P £

—m AT

By using the definitions of D, and D, (7.4.4) and (7.4.5),
respectively, and the assumption !;(¢) = 0, then equating the

x
coefficients Of WV ,,, Upior W0 and Hpy2 in IF(¢) to zero,

the following relations are obtained

2 y-0, D,(¥®)=0, (D _+D.)% =0, and
o2 )= 00 DUy =0 (0 + D0 B =y

(D, + Dy) gﬁ =0, ., (7.4.35)
n

where © and 6, are in terms of 22 ana ¢ {see appendix
1 aun avn
C).

The original equation (7.4.1) can be regarded as a coupling

relation between u, and L/ (n > 2), i.e.,,
g +wy =V - uy ,
gy — Wgq = Wy — LU, — ui - vy tuwy + vy +w,
R e D b N TR A W (7.4.36)
i.e. V¥, does not depend on Bps Wpo Bpq and w,

n-1°
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Then the last two identities of (7.4.35) imply

a
(Dy + Dy) tﬁn + (-1)° %ﬁnl = o(x,t) (7.4.37)

where © 1is in terms of 61 and 92. Thus by using the lemmas

7.4.1, 7.4.2 and 7.4.3, we obtain
o = a(x)uy, + BLEW, + Y(X, €)W, + (-1)] + v, veRn

which completes the proof. @

Le 7.4,

Let ¢ be as in the above lemma, then ¢ does not depend on both

u, and Vi (]
Proof

Since 2;(¢) = 0, then using the expression of ¢

ile‘,
¢ = a(x)u, + B(t)yv, + ¥, V; € A, ,. Hence, equating the
coefficient of v, ., to zero yields

o
D(—L ) = p(x,t) (7.4.38)

avn_1

where B' 1is in terms of «, 8 and consequently ¢ is linear in

Vp-1 PY lemma 7.4.1.

Similarly

v
coefficient wu ., =0 - D¢ ;:i = p"(x,t) + a(x)uy. (7.4.39)
n-1
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Thus by the definition of Dt and lemma 7.4.4, o = 0 1i.e. o

does not depend on u, and is linear in U, 1. By using the

coupling relation (7.4.36) and in a sense similar to that used in

lemma 7.4.7

coefficient Wp,, =0 = (Dy + D) %;— = j(x,t) ana coefficient
n

OWI
oty

v Al
where j and k are in terms of —L , —1 .| 1Tnis implies
Vo4 u, 4

that ¢ does not depend on Bp-yr Wn_ys Hp o and w, , (as in
the above lemma). But coefficient Yn in !;(¢) must vanish,

then

D.

-}
-y, — = (X, t «4.40
x 1 59 (x,t) (7.4.40)

n—-2 n

3

coefficient w, = 0, then

Dy e - rv; & 4 p, W = px,t), reRr (7.4.41)

n-2 n ¥n-2

(where ¢ and P are in terms of the derivatives with respect to
Wis Bge Y40 V4o i=n, n-1 and n-2 and }=n and n-1].
Then (7.4.40) and (7.4.41) implies

n—-2

Thus, using the definition of D¢ and lemma (7.4.4), equation

(7.4.42) implies p =0, i.e.,

¢ does not deperd on Vv, - & € A, , gives a contradiction and

the lemma is proved. IR
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The two lemma 7.4.7 and 7.4.8 lead to the following:

Theorem 7.5

let ¢ e A, (nontrivially) and 2g(6) =0, then n < 2. (]

Hence the two theorems 7.4 and 7.5 demonstrate that the dimension
* 2

of ker fp is three and is generated by 1, u and E—&»z Uy + Upqo

Then the space of conservation laws of (7.4.1) 1is three

dimensional, by theorem 7.3. Thus equation (7.4.1) has only three

conservation laws, having the form

uZ

W*“xt]*g;[‘z Uxt] = 0

x®

2
2 v ogu ¢+ X s &gl uu,, - % . o}
G xe * 31205 xt =31 '

3 . u4
U+ ugd + 5 [UE = 7~ uiuge + Ugg) — (Uge + uge)*] =0

2

where the first is obtained by re-writing (7.4.1) in a conserved
form, the second is obtained by multiplying (7.4.1) by u and
re-writing the resulting equation in a conserved form, and the
third is given by multiplying (7.4.1) by u? and re-writing the

resulting equation in a conserved form.

Now, if we replace wu,, K, and w, by -byu,, -bgu, and ~-bgw,,
(respectively) for all n # 1 in all the above calculations we

come to the proof of the following,

Theorem 7.6

The equation

Ug + Uy + Dyl + Daliet + Pl = O
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has only three independent conservation laws which is the main

result of this section.

7.5 Conservation laws of The Simple Weq

In a sense similar as to that used in section 7.4, the equation of
the class Wg, has only three conservation laws as in the

following,

Theorem 7.7,

The equation

u + u, + bl““x + bauxxx + bs“xtt = 0 (7.5.1)

has only three conservation laws and have the forms:

b
2- [u + bouy] + & fu+ 1 u? +pjugl = o, (7.5.2)

z z b ul 2
u- 9. ¢ ul 1,3 u
2—[2 +bguugl + =0 -+ tu + byuuy, - by ¥ - b —£7a o,

at ax 2 2
(7.5.3)
b b b
o ud_23 2,25 2,5 414+ 2 u 2
2. L - —2 — b, Y- 4
st 3 b, xTp YTy 1t x s 1 P34 e
2b 2b 2 b2 b
3 3 Ux 3,2 =5 2bgb
+ bouly,, + + (uu, +-%) + -2 y2 - 2424253
59 “tt Xt XX t Uyt
b, Db 2 b, b, b, t
b2 '
5 .2 =
1

where (7.5.2) is obtained by re-writing (7.5.1) in a conserved

form, (7.5.3) 1is given by multiplying (7.5.1) by u and
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re-writing the resulting equation in a conserved form, and (7.5.4)

2b 2b
is obtained by multiplying (7.5.1) by u® + —2 u, + —2 u,,
b, b,

and re-writing the resulting equation in a conserved form.

7.6 The complement of the simple classes

a.
This section is devoted to the study of the case in which 5§ is

not a root of the coupling coefficients condition

a a a
a3 - ag(zy) + ag(3;)* - 2g(z3)® = 0.

For this case it 1s thought that the corresponding subset has only
two conservation laws, which were derived earlier. We shall not
go through the proof of this results bhecause of the laborious
calculations which arise when we attempt to calculate the
dimension of Xker l;. where 1 1is the corresponding universal
operator on the algebra A, defined in section 7.3. We merely
illustrate this case by the following example to provide an

indicator to our belief.

Example 7.6.1
Upet = Up = Ul — WU + Uy (7.6.1)

In this example a,la, = 1, a4 = -ag = -1, thus the coupling

coefficient condition breaks down.

We shall show that ker fp is two dimensional and is generated by
1 and u, where
g = -D2D, + DfD, + D, - uD, — uD 7.6.2
F t tYx t x t (7.6.2)

and D,, D are the total differential operators with respect
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to x and t (respectively), defined as in section 7.3. These
two differential operators has similar properties, as were given

in section 7.4.
x

Now to calculate the dimension of ker EF, let ® €« A,

(non-trivially) and
x*
25(0) = O. (7.6.3)

On the algebra A2, the total differential operator Dx and Dt

have the forms:

D, = %; + uy %;2 + Wy %;2 + (vl - uuy - uvy + wg]%;—

+ u, %;1 + W, :39;1 + uy -g-u—-, (7.6.4)
D, = %; + [v1 - uyuy - uvy + w3]§; + vy %;2 + Wy %;;

+ Wy g—u-l + v, 3;1 + vy -3;—. (7.6.5)

Now, equating the coefficients of u,, V4, Wg, u; and v,; in

() to zero, we have

- 2 . 9
) o, (Dx + Dt) ow C(x,t), Dx(;u—) =0,

F.) A
D (— ) = 0, Dt(—
xau, v 2 1

2
and Dt(g—-) = 0 (respectively), (7.6.6)
v
1
Hence, using the properties of D, and D¢, we have

& = A(x)u, + a(t)v, + ﬁ(x,t)w2 + Y(x)ul + s(t)v1

+ ¥(x,t,u). (7.6.7)
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Inserting the expression of ¢ in (7.6.3) and equating the

coefficients of u,u,, v;v, and w3 in l;(q’) to zero we have:
3A=0, =-2(A+B+ a) +3(A +B) =0, and

—xu + A + By = A, - B, - a. + § = 0 (respectively).

(7.6.8)
The first two identities in (7.6.8) imply,

A =0, B =2a 1l.e. B = B(t): substituting the values of

A and B in the third identity of (7.6.8) implies
-a(t)u(x,t) - at(t) + §(t) =0

i.e. a=0., Thus B =0

which gives a contradiction with the choice of ¢.

If now ¢ € Ay, 1.e. ¢ = &(x,t,u) and f2g(¢) = O then it ie
easy to show that ¢ is linear in U, by equating the

coefficients of u, in 2.(¢) to zero, i.e.

Thus

¢ = A(X)u + 6(x,t).
Hence,

Db = Auy + A u + 6, ,

D ¢ = Avy + 6, ,

DiDt“’ =A(vy - uuy - uvy + wy] + 2A, W, + Axxvl + Byt ¢
and
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2 E__3
DgDy® = Awy + AV, + 644y

Since I;(Q) = 0, then equating the coefficient of w, 1in l;(o)

to zero implies Ax =0, 1.e. A € R.

Thus, f#p(®) = Ip(@) - © ¢ R

i.e. ker 2p 1is two dimensional and is generated by: 1, u and
consequently, from the relation between the Xker !; and the gpace
of conservation law, equation (7.6.1) has only two conservation

laws.

7.7 Conclusion

In this chapter, the conservation laws property was discussed,
First, two such conservation laws were established via elementary
operations. Thege operations were used to derive a third
conservation law of the problem. All the equations of the general
clags, satisfying the coupling coefficients condition, were proved
that have a third conservation law. This condition together with
the reduction theorem, introduced in chapter 5, classify the
problem into four equivalence classes, K4V, RIW, Wg, and Wga
classes in the simple sense, i.e., with the disappearence of uu
term. The informations about conservation laws of the first two
classes is already known from chapters 3 and 4, i.e., infinite
number of conservation laws exist for the KdVv, whilst only three
conservation laws of the RIW exists. The congservation laws of the
simple Wg, class is, then, studied. We prove that this class has
only three conservation laws. We, next, showed that the simple

w53 class has only three conservation laws too.
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Finally we turned to the equations which do not satisfy the
coupling coefficient condition. Here . the two nonlinear terms are
present. For this case it 1is thought that it has only two
conservation laws. This was illustrated by one example. If this
is the case, then we come to the main conclusion that the only
equations which have infinite number of conservation laws lie in
the simple K4V class. Whilst all the equations which have the RIW

feature patisfy the coupling coefficients condition.



CHAPTER EIGHT

CONCLUDING REMARKS

In this thesis we have studied a general class of semi-linear
third order partial differential equations with quadratic
nonlinearity. The original equation for this class of models is
the Korteweg-de Vries equation which was first derived as an
approximation of the Euler equations of hydrodynamics. However,
its appearance in many other physical systems meant that a
more general method of derivation was required. Broer suggested
that one could construct the equation as a structural perturbation
of the basic linear equation u, + u, = 0 by adding on the third
order dispersive term Upaex "and the quadratic nonlinearity
(% u?),. The main idea behind this construction 1is that the
properties of the KAV can be understood in terms of the
interaction between nonlinearity and dispersion. This assumption
was then used by other workers to construct alternative models to
the K3dv on the bésis that these wmodels had dispersion relations
which use more in accord with physical behaviour. Now, as models
for describing experimental behaviours these alternatives may have
been adequate, but from the mathematical point of view the
question remained as to whether the hypothesis that the properties
of the equation are due to the interaction between nonlinearity
and dispersion was itself a correct one. This question was
studied in detail by Abbas for this set of equations and he found
that the hypotheéis was not a viable one either for the KaVv or any

of its alternatives.

Since the hypothesis on Jdispersion is no 1longer wvalid, the

discussion shifts to a consideration of the properties held by
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this class of equations. All these equations share the
mathematical property of being third order with quadratic
nonlinearities and they all have stable solitary waves. However,
it was found that the Kdv has a number of exceptional properties
which are not known to be shared by any of the alternatives. This
raises questions as to whether the KAV is a unique equation of its
type and if so, whether we can develop criteria for understanding
this uniqueness. This is the motivation for the work in this
thesis. Now, this study clearly requires a much more mathematical
approach than was adopted by Abbas and in this thesis we have
provided foundations for such an approach by establishing certain
necessary conditions which the class should satisfy in order for
the questions to be meaningful. Our main effort was concentrated
on introducing a nontrivial classification scheme, establishing
the well-posedness of the class and proving the existence of
congservation laws and our contribution 1in these areas are

described below:

The general class was first reduced to a set of equations all of
which possessed linearity stable solitary wave solutions. This
eliminated equations which a priori are not similar to the Kav.
This was done on the basis that the properties we wish to
consider, e.g., the existence of solitons are generally felt to
depend upon the equations having solitary wave solutions. We then
completed the classification of solitary waves begun by Abbas and
clasgified the equations themselves in termms of the number of time
derivatives, This classification was based on the equivalence
relation that two equations are equivalent if there 1is a
nonsingular linear transformation which maps one to the other,

This reduced the set of equations to three subclasses, i.e., those
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which essentially contained three time derivatives, those which
essentially contained two time derivatives and those which had
just one time derivative. The subclasses containing one and two
time derivatives were further subdivided into two classes each
accroding to the presence of the term u,. or U » In
particular we noted that the set of equations with one time
derivative divided naturally into a generalized KAV class and a

generalized RLW class. The other two classes we called Wg, and
ws’.

Well-posedness was then discussed in terms of the equivalence
classes defined above. For equations with three time-derivatives
the method of characteristics was used to establish well-posedness
for non-charateristic data. This was done by first reducing the
equations to a first order system of partial differential
equations in the standard wanner. By going to characteristic
coordinates this system becomes a system of ordinary differential
equations and hence well-posedness followed by integration. The
proof was carried out for the case where all the characteristics
are real but it can be easily extended to the case when some of
the 1roots are complex (ultra-hyperbolic) by reducing the
corresponding equations to pairs of hyperbolic systems of first

order partial differential equations with real characteristics.

For those equivalence classes which has less than three time
derivatives the method of characteristics fails and we established
well-posedness fot certain subclasses as follows: The known
theorems on the well-posedness of the KAV and RIW, which were
discussed in chapter 3 and 4, enabled us to deduce well-posedness

for those equations which are equivalent to the KAV and RIW.
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Thegse are what we called the simple classes of KAV and RIW
equations, 1i.e., they d4id not contain uu, term. Using a
modification of the method used to prove existence for the RIW
equation, we then proved existence for the general RLW class.
However, we noted that not every equation has unique solutions.
In the case of general KdV class we have no results since the only
method we find was a modification of that used for KAV and this
fails since there were not enough conserved functionals to obtain
the necessary a priori estimates. Finally, we presented a
restricted existence proof for those equations with two time
derivatives and a u,,, temm. It is interesting to note that the
analysis of well-posedness discussed above can be extended to
corresponding modified equations where the quadratic nonlinearity
is replaced by a cubic nonlinearity, i.e. (u®), anda (u®).. We
also studied how the well-posedness of the KAV and RLW could be
extended to initial data given on lines other than t = 0, i.e.,

to skew data.

Finally, we looked at the question of the existence of
conservation laws. Since in considering local conservation laws
we are not concerned with initial data, the ag term was
eliminated by a suitable transformation and the equations reduced
to the four equivalence classes KAV, RIW, Wge and Wgy. Using
elementary operations we established the existence of two
conservation laws for the whole class. We then derived a
necessary condition for the existence of a third conservation law.
This condition was a condition on the coefficients of the
equation, which we called the coupling coefficient condition
specifically, we found that Aif a‘]_/a2 is a root of the cubic

equation
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z £
az - a4k + aSA - aGA o,

then the corresponding equations have at least three conservation
laws. Applying the condition eliminated the uu,  term and hence
reduced the equations to the simple versions of the four classes
mentioned above. According to the nature of the roots of the
cubic we then obtained the following results. If al/az is a
triple root then we have the simple KdV class and, using the
theorem for the KAV glven in chapter 3, we deduced that this class
has an infinite number of conservation laws. 1If a,/a, 1is a
double root then we have the simple RLW class and, uging the
theorem for the RIW given in chapter 4, we deduced that this class
has only three conservation laws. The other two cases, i.e., L/
and Wg, occur when a,/a, 18 one of three distinct roots and when
a,/a, is the only real root respectively. In the case of Wg,, we
proved, using methods similar to those used in the proof of the
RLW conservation laws theorem, that this class has only three
conservation laws. For Wg,, we indicated that this proof can be
extended to show that this class also has only three conservation
laws. Thus, 1f the coupling coefficient condition 1is satisfiedq,
we have a complete classification of the numbers of conservation
laws, i.e., the simple KAV class has an infinite number and the
three other classes have only three. If a,/a, 18 not a root of
the cubic then, as we have mentioned above, all the equations in
this subclass have at least two conservation laws. We conjecture
that these are the only conservation laws, but we did not carry
out the proof since the calculation becomes extremely laborious

because of the appearance of the uu, term in the equation.

we come now to the question of future research. This thesis has
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laid the basis for a strict mathematical investigation as to why
the KAV is unique in the class considered. In this study we have
not achieved all our objectives and the areas which need to be
completed are the extension of well-posedness to the general Kav
and Wg, classes, and the proof of the number of conservation laws
in the non-gimple sector. We feel that these can be attained and
hence the set of equations considered will form a well-defined
neighbourhood of the KdV. The next stage will be to develop
sequencing procedures to examine the behaviour of the properties
of the KAV as a limiting point of this neighbourhood. The most
interesting question will be why soliton solutions suddenly occur
in this limit and where they come from. We are now working on
these aspects as well as trying to complete the objectives set out

in this thesis.
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APPENDIX A

In this appendix we present the proof of lemmas 3.7.2 and 3.7.3

which were necessary for the proof of the existence theorem 3.7 of

the K4V equation (3.7.1).

A.1 Proof of lemma 3.7.2

(1) Multiplying the RKAV (3.7.9) by u, we have

uy, + uduy Ul — euuLL . (A1)

If u(x,t) vanishes together with all its x-derivatives as
|x| - o, then integrating (Al) with respect to X, - ¢ X ¢ o,

yields

q

o _[: (u?+eul)ax = 0. (A2)
Thus (A2) implies

[* utvediax = 7 (gP+egriax, (9'=99), (a3
L o ax

Now,

”u“;‘(k) - j'muzdx < f::uz+eu;)dx, (0<e<l)

-

- Im (g*+eg' ®)ax
-0

A

fm(qz+q'z)dx- Hatl
lo G

which proves (1).
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(2) Multiplying (3.7.9) by u?, gives
u?ug + ulu +utu, - ewtu . =0 (A4)

which can be arranged in the form
3 4
2 [y 4+ 2 [%— + vy - eutuy)

et 3 ot

+ 2euu, (€U — u,) = 0. (as)
Uging (3.7.9) and (AS5), we have

a_ (us 2 8 ut z 2

(2 - ull] + & [ + u€u - &u®u

at 5 ) F) [4 xx xt

+ 2uup -~ eug + (eu - u,)?l = o, (n6)
Integrating the 1last equation with respect to x, -® < x < ®,

where u, Uy and u vanish together with all their

x~derivatives as ' |x| - o, we have
a ul 2
e ‘ 2. - ax = 0
at g ¢ 3~ M) (A7)
which implies that
3 3
u, _ 2 a’ . g2
Yax = AX.
-lm(3 Uy —‘m(3 g°'®) (a8)

Now,

Hullgl = [° (u? + u2)ax
-—a0
< fw(uz + §u° +g'2 - ig’)dx (from a8)
-
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< u2dx + 1 sup |u(x.t u?ax + 12
f: L sup lu(x,€)] [: JEUA

1 3
- = tigl
3 H9llg

< 2 + l u * 2 + 2
HatZy + 2 urigtie 12y + Hien?y
-1 3

3 llgllﬂl

since Su u} <€ u .
[ Sup |ul € [lull 4]

Thus
lult?y - § Hult g 1Sy < 219112y + § Hatl2y o
i.e.,
ittty =3 1gl30% - =gl
< 2019112, - 2 (1gn13, .
H 3 H
Hence,

EY
1 2 1 1 2 2
u £ = + 2+ = + -
R IlHl o Ilgllnl IIQIIH1 { 3|I91IH1 36llgllﬂll
= § (Ilgllnl) ’ (A9)

¢(0) = 0 and £ is clearly wmwonotone increasing function,

i.e. (2) is proved.
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(3) By multiplying (3.7.9) by,

3 2
u® + 3ux + 6uuxx +

wla

the proof of (3) is obtained in a sense similar to (2).

(4) This part is proved by induction., Since from (3) u is
bounded :Ln%; with bound depending only on T, €, and |lg||gs.
Suppose, how, that u is bounded in g{ :’1 with a bound depending
only on T, ¢, and ”gllﬁk and independent of ¢ € (0, e,].
Then to prove that u 1is bounded in A{ ’; with a bound depending

1
only on T, €, llgHBk and ezllgHHk, multiply the RKAV (3.7.9)

’ i . L)
by u( 2K) e
+ + - -
u( 2K )ut u( 2K )uux u( oK )uxxx eu( 2K )“xxt o (A10)
- 2%
(where tts, axs)'
dax, I, = .
Let, Il :[: ( Zk‘;t 2 j-: U( 2k )qu
I, = ﬂu(ZK;dex and I, = I:u(Zk)umdx. (A1l)

Then by integrating (Al10) with respect to x and using (All) we

have

We calculate, now, the integrals I;, (1 =1, 2, 3, and 4], using

the assumptions on u and their derivatives. Then
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®©
I, = dx = -
. J’“’ u(2k)ut x [“(Zk—l)ut]—m Jm u

o -—Q0

u dx
(2k-1) (1),t

B rn Sxen (e B Yy 0 28 Ixime)

- —12
= rnu(zk-z)u(z),tdx

-

(in the second integration).

Then, after Xk integrations

3 k14d
I, = (-1) U/ U dx = (-1)~ =& u® ax.
1 l: (k)" (k). t 2 ac ! _(x)
(A13)
Similarly, after Xk integrations
x 1 2
I, = (-1 = u u dax , I, = O
2 = () 2_I: (k) (k+1) 3 + and
xi1 . @ J"’“ 2
Iy, = (-1 = s == u ax .
e = (2175 at ! (k+1) (Al4)
Thus, after k integrations (A10) reduces to
—j ax. (a1s)

Q—j [u® + eu?
at - (k) (k+1) k (k+1)

Using Leibintz's rule to expand the term (uz)(kﬂ), (A15)

reduces to

J»co[ - _J—m r=k+1 K+l u u
at 1 Mo ey () o HE ey ikerony
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- k+1 Kk+1
rn{ o] mJ()(-H.)u(k) ( ) u(k) u(k+1)u(k)

K+l u? +u =2 (k+1 2
1 (k) (K r£2 ( r)u(r)u(k+1—r)+ Yex-1)t0x) 19X

+

k-2

- [b,uu u + b,uu® +u b
f: 10(k+1) (K) 7 727y~ (K) r£2 Y ka1-r) (T)

h

2 ax
“(x-1)"%]

where b; are constants € R and the last term only occurs when
kx = 3 and must vanish under the integration with respect to «x.

Hence

2

ax = - a Yx)

ac Im[ 00 b € ey f:,blu ax 2 =
k-2

+ b,u,u? ax + b

[ e [ von ) ety pyiomtxe e)

since u is bounded in %"r“l (by the assumption) independently

of €, € € (0, eo), it follows that
||u(j)|| €C, for j ¢ k-1 and |[|uyll, € C for J < k-2

where C = C (T, €,, llgllgk). Then (A16) reduces to

dt["’(u(k) AR cf” ax - x: el 140k {140y Hal 14—z

<crm dx+C[Jm dx]z
-0
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< C [jmuz dx + 1] £ C [Im u? + eu?  Jax]
1o (K) 1o (x) “l(ke1d

1.e.. g%* S C (EyHl) (a17)

- 2 2
where Ek(t) [: [u(k) + € u(k+1)]dx.

By using Gronwall‘'s inequality (A17) implies
E(t) = Ex(0)eSt + & - 1

i.e., E(t) 1is bounded with bounds depending on ||q]| Iﬂk and

1 1
e? 11911 x4y (Bince Ey(0) = Iigli g + «? gl gceq)-
Hence, (4) is proved.

(5) To prove (5), re-write (3.7.9) in the form

2
(1—e§;z)ut = Ul - U . (A18)

Hence, the Green's function subject to u(tw,t) = 0 for the

2
operator (1 — € gx—z) is

1 oxp (X=£) X < ¢
2veE Ve

G(x,€) = .
2ve ve€
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Then (Al8) reduces to the integral equation
u(x,t) =~ Im K (x-¢) [uu, + u, . Ja¢
‘o
== K, * (uu, + u..) (A19)
where K (Z) = Sgn Zze"121V€ ana x 1s the convolution.

If (uy, + u ) € %’; » then by using Hausdorff-young inequality

K * (uu

’ « * Ug) 18 bounded 1in 5{ "; independently of

€, ¢ € (0,¢5), 1.e., u is bounded in%’;. independently of e,

am

ax™® u 18 bounded in %T‘

and by the properties of 5{’; ’
Furthermore u is bounded %’;'1 for each X, independently of

€, € §(0,€6q]. Thus by the induction procedure the proof of (5)

is obtained.

A2 Proof of lemma 3.7,3
(1) By using the transformed variables
15

kY
7 l1g d12 . = &) jm (1624 a2 g () ) 2an
g+l L

+3 2 z2(k+3 )] “
3 14+AC4, , 4 2 2k 2
€ Im[l.'.xz‘,...‘_)‘Zk [1+A +oootr ]|gé(k)| daa

4 z 2(k+)) , & p
.rn[iti: }‘zk ¢z(e°x)] CESLTSRSLLS T TO S TR P

A i a
[Since g (k) = &(€®k)a(k)].
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Hence

15 13 3 1
j 3 2 2(k+3)
3 2 3] 14A2+,, 42 2,6 2

£ Sup [e A .
< llgé”a’“j Aeg ( 14024, 422K * (e )]“g“tik

1 Y
If M = €%, o = «®, then A = ;,‘&"

Then
2(k+3)
M,\*.M
13 13 .0 A5 )

1+(§§)z+(%)4+‘ . +(%)

k+3

= llglI;k Sup ol 1E...4+ ‘/‘Z.k o3(M)
1+“‘+

i

i

wae e, ay2(kH))
NSl R F e

Estimating separately the ranges |M| <1 and |[M]| » 1, then

i.
3] 2 < z2  (k+j) Sup {1+M2Ie3(M)} < C 2
€ llgellam.j llgllak (k+3) Meg { o5(M)}) Ilgllak .

-&j
Hence "geuﬂkﬂ £ €% C |lg] lﬂk (1) holds uniformly for

each bounded subset of HX, where Cy does not depend on g

and e€.

(2) The proof of (2) is similar to the proof of (1).
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A A
(1) g - gelii = [ani )G - G
—m

A A .’.'A A
= fm(1+xz+...+xlk)lq - o (< )g(A)IZ ar
—m

1
I
- I“}l_ﬁ(e° )2 (1+A2+...+A2“)||%(A)||z an
-

2N A
- fm W3(e® ) 142+, 22K g0 112 ar
ben ¢ <

(A20)

where ¢y = 1 - ¢ and as € - 0 the integrand term vanishes
almost everywhere. Using the Lebesgue dominated convergence

theorem

g - gellﬂk - 0 as € - 0. (A21)

Since for all n

i

Hgpeggl 13 = 11(gpa) 112 = [ v2(e®
H -0

A A A
W12+, 4AZK) g (A)-g( A )| 2an

2 2K\ " 2 2
< [T an . T ig,00800 1% = (lgygliy
-~

But

19nenll x < HOneSell i + 1991l x + He-gq! |

< Hgngll x * llqs—qllak + llq-qnllak.

(A22)
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Hence 1if 9 = 9 in Hk and & be given, then by choosing N
so large we choose €, so small such that |g,. - gm“Hk <is,
3

1<m<N and [lg, - gll < i 5, € € (0, €,].
(A23)

Hence (A22) leads to

HOne ~ Snllge <26+ 26+ $6=8 forall nsw

i.e. e ~ In uniformly. Since sequentially compacteness

equivalent to the compacteness, ( 3 ) is proved.

(%) Since 9 € - tad (by the definition) then by lemma (3.7.2) U,

has an upper bound depending only on T, ¢, “95“ x and
8

1
&® “95”3k+1 but since

1 X 1 Y
< and €%||g_l! <el¢ ®C - Ce?
”gellﬂk ”g'lﬂk el lpk+l ”g“Hk “gHHk

13
(where &* Naell ey < CHIN )

Then ||u.l 'Bk has an upper bound depending only on T, €, and
. Similarly,

gl 'ak

gl gam € 1191l kom ¢ Kém03 €16y, 18 bounded in 5(’;““

independently of sufficient small ¢ for each finite T > o,

m > | which proves (4).

(5) Re-write the RKAV equation 3.7.9 in the form

92y Me | _ 1,2, @
(1L - ¢« o) ot [zug + ax—z—ué]x . (A24)
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Then using the Green function of the operator (1 - « gz—z), then
ax

(A24) implies

'

u u 2 + 12
Ul x_3 € 1lugll x5 115-u - u . a2

Then u, 1is bounded in 56";‘3 independently of sufficiently

a_
ot
small ¢« for all finite T » 0.

Similarly

im
K- a2 2
€ u £ |]u ~3l u .3 +
“at e"ak+m—3 ! e|'8k+m 3 lax el 'Hkﬂn 3 ||ax3“e||ﬁk+m-3

1
<m
L]

where C does not depend on sufficiently small € (from 4 )

which proves (5). &
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Proof of theorem 5.4

Using 5.7.12 in (5.7.13) then

u, + uy 4+ ajuu, + azuu + ajzu. +agu ., + AUy + AgUpyy
= [2vv, + avyy + BVl + [2vvy + av . + BVt ]

— 6a,[VZ + avy + BV ] [2vvy + avy, + BV, ]

- 6a2[vz + avy + pv ll2vv, + av,,

+ Vi) + a3l2vv g + 6V Vo + BV + MVinanc)

+ 4[2VV e + 2V Ve F AV Vo F TVt BVt ]
+aglavvyy + 2V t VeV F oV + BVyiie]

+ agl2vvipe + 6VeVee * Vptet t PVettt]

- a .a_ - 2 - 2
(2v + « ax.+ B at)[vt + vy - 6a;viv, - 6a,v Ve + ayv

+ AVt + 2Vxtt * 3Vert) + 6(33 - cxza_,.)vxvxx
+ 2(2a, - 3apa; - 3 a®a, Wy Wy + 2(24 - 30324 IV Voxe
+ 2(2ag - 3B%a; - 3082, )V + 2(ag - 3a6a, )VVy

+ 6(ag — B*ay)VyVyy.
(B.1)

v evolve : according to (5.7.11), then (B.1) reduces to

up +u, - 6a1uux - 6a2uut + AqUyen + a&“xxt + AgUytt

2
+ aguppy = 6(ay - 073 )V Ve + 2(23, - 3aBa; - 3a%ay )V, vy
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+ 2(a, - 3aBa, )V v, + 2(235 - 3nza1 - 3002, IV Vyy

+ 2(ag - 3aBay)Vyviy + 6(ag - B*ay)v vy, (B.2)
(B.2) vanishes if and only if the relations

(ag - ofa;) =0, (23, - 3afa, - 30%a,) = O,

ag - 30pa; = 0, 2a5 - 3p%, — 30Ba, = 0, ag - 3afa, =0
and

ag - p*az = O (B.3)
satify simultaneously. Hence
a; = azal, a, = 308a;, ag = 3aB8a, and ag = ﬁzaz

then the second relation in (B.3) implies, a; = £ a,.
B
Hence the cubic equation (5.7.14) implies

3
Q= -g a; - 3a®A + 3a8A2 - B3A3,

Thus

a® - 3a2BA + 308%% ~ p%* = 0, (B.4)

Equation (B.4) clearly has three real equal roots A,

(B.5)

(]
QiR

which is the necessary condition of the Kav class.
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APPENDIX C

o e 6
Without loss of generality, we assume for the proof that A is a
symmetric matrix and recall that linear hyperbolic system can be
transformed into a symmetric form (e.qg. normal form as in section
6.3). et p(¢, T) Dbe an arbitrary point in the Adomain of
determinacy with coordinates ¢, T and draw the characteristics

Cys Cgr oo and Cx backward to meet the line t = 0 at Py

pz; ) pko

Using the Green's identity (5]

(W, W), = (Wy, AW) + (W, A W) + (W, AW, ). (C1)
Then, since A 1is symmetric, then (W, AW, ) = (AW, W,).
However (C1) reduces to

2(W, AW,) = (W, AW), — (W, A,W) (c2)
[where (.,.) stands for the inner product].

Now, taking the inner product of the equation in (6.6.6) with the

vector W, then
(W, Wt) + (W, wa) + (W, BW) = 0, (C3)

Inserting (C2) in (C3), we have
1w, w +1 (W, aW), - L (W, A, W) + (W, BW) = O
> t Ty x ~ 5 (W Ay » BW) = 0. (Ca)

Introducing the transformation

W= efty, (C5)
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Then (6.6.6) reduces to

ve¥tv + eYtv, + ae¥tv + BeYtv = 0, 1.e.

Ve + AV, + (B + YL)V = 0, or for simplicity

Vp + &V, + BV =0 (cs)
where By =B + YI.

Then, by taking the inner product of (C6) with V and in a sense

similar to that used to derive (C4)

% (VoV)g + 7 (V.AV), - 2 (ViAYV) + (V,BV) = 0. (C7)

Hence V can be replaced by W 1in (C7) and yields

2wy + 1w, =W (-8 -1 AW, s

LWy + 3 (WA, = (W,B,W), (c8)
where B, = -B -1 Ay = -B -YI -1 A, . (C9)
2 2 2

If now Y is sufficiently large then B, is negative definite,
i.e. (W, ByW) < 0. (C10)

Thus integrating (C8) over the trapezoid rd which has the

boundary P;PMAy, where A, and A; are two points on the

characteristic ¢, and ¢; (respectively). Then

0> i [[ wwowy + (w,aw), Jaxat. (c11)
Fa

Now, if x, and t, Dbe the components of the outward normal unit

vector, then by using Green formula , (C1i) implies
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Ty Ta

t
| (W,W)ax + i [ xa(w.(a+ ;n"! I)W)ds (C12)
Ry Py tPyePy C1¥Cx

Py

If EQ) = i [ "owwrax, then (c12) gives
a
1

t
E(a) - B(0) = -2 [ xq(w,(a + 3 s, (c13)
2 &oy4e

The right hand side of (Ci13) is in fact nonpositive. (For the

proof of this fact it is refered to [3]).

Thus E(d) < E(O).

By E(0) = 0, from the assumptions of the lemma, then E(d) = 0,

therefore W = 0. B
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'APPENDIX D

In this appendix, some calculations, which were necessary for

proving theorem 7.5 are presented.

3
Dy = =+ Ly —+ DwWeyy —+ L (Vg — Wy
x ax 1 avk 2
- kEZ( 12wviweog 11+ Loy 2. (D1)
1=0 o x»3 Fpiye
3 2 o
Dy = 5=+ Ly = + L ¥y + L Wy
et 4 9 k31 Vg k22 dwye
( *E2%52) 1 vy ey, 2
+ E (Mg ~ Mxey — 4 Mgl g g3~ Vi o= + Wy ~—
X3 i=0 Ay 9u 0“1
(D2)

Q.z__ 4+ r Wy .Qi._.+ L [v -
+1 -
x>1 VIt k52 k-1 7 Y1

k=2 _ 2
- B (57w 12—+ Loy 2y
1=0

8wk8t X322 8ukat
3_ 8 3 a__
+ L (gD 77 ¥ B2 — 1+ L [V D T+ Wiyp 1
x>3 e U k31 vk vy

+ L (k41Px &+ vk - Wiyp - kEl(kIl)"i“'k—i]‘Q—’
k+2 " 1=0 dwye

K—Z
+ L (Hg_g — Hgyyg - E ( 1 )u jUx-j—1 1Dy :
k33 i=0 My
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Thus

k_
+ L (Mg = Bxe2d - 2 (KT ugu_y + ugue 19—

Xx=23 iy
2. 2
+ viDg & + w, & + w,D + vy —uuy —w . D3
17X gy 2 5u 2 au1 v 1 3]au1 (03)
- '83 L— + £ is————
ax?at uk+1 Bugoxat oy X*1 v, oxat
+ Vi—1 ~ E G VA ]-—-—-——-
L V-1~ %™ L 1 Viv¥k-1-1 aw, a0t

k22
auy ot

a3 92
+ Logar o aoae b L (U Dy —— + Ury, e
>3 AU BXIt 130 8u, ot

k-1 ., _ 2
+ L (%D x‘;;‘g; 0% = ¥kez = B Thwgwe 51—

C k:—:2( 2y 1D
+ L (V-1 = W41 i WVi%k-i-110x
X322 wy at

k-1 k-1
+ DW=~ V% ~Wks2 v L (T37)ViWe g
k32 i=0

k=2 1o
- 150( 1 NVi¥k-1 * “’1«&1"’k—1—1]8wk‘,t

82
+ L [Mg4aDx T + Bxe2 &y
>2 ot ot

2
+ L [MapPx T+ 2upey oDy &+ “k+3 ]
X320 X X
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+ 2wy oDy

2
+ L [vk+1Px ov,,

x>1 vy

x
x )
+ (Va1 ~ W43 ~ L (R)¥i%4i41) )
k 1=0 vy

k-l
2 2
+ E (weeyDE &+ 2 [ = Wiy — L Fhivywe 4D, ol
k=22 x < 1=0 K

X
X
+ L {wgyy - "k+1 + Weyg - E(3)ViWe g

X322 o

k-1 k-i-2 _
(k (k -1

1T WilVe 33 — Wxeg41 T g Z)Vj“k -23-1]

+ Y&+ ey - oy Ez( 2) D2 &—
w Wi —~1 TRAT A"
141%-10 oy T, +1 7 k-1-11Yx o7

k=2 3
+2 Lok - ez = E 72000y + uggme g ;)10 &—
k>3 - (o] Oy

- + 5B 02y u + 2u_,u
+ L {41 ~ Hx43 - iYx-i-1 1+1Yk-1
k>3

9 Q._
+ _ +vDZ—-—+2wD——+v—uu -w
Uj+2Yk-1 ﬂ) ou, "1PX 5y 2Px 5ot 1 1~ Y3l

2 9 o - 2 __
+ szx 2u + 2|[v1 uu,y W3]Dx a0
1 1
+ [Wy — Uuy = Ui - vy 4+ uwy, + uyvy + w4]—:; (D4)
Similarly
zn 92 2 a3

pZD L u + L 2
0% = eaxat | ag X1 sugoxat | sy K*L ovgoxat
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L {Vi41DeDx
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+ vy, .D + D, & +
ov, k+20x ov,. Wi+2D¢ ov,. Y43 }

oWy

2
L [wye41D¢ 'g;;g Wi+2 W E {(v%-3 ~ ¥4y

Px+1

vy



k—
(v = W42 — 3 (K71 yvgwe_3 D¢ ;;; + (Vs = Wy3

-1 ,_
L (TINvgwe gy + Tgweg12—) + kgg[“k—l = M

vy
k=2 1

E (*12)uguy s, DD, %;; + (e = by

X3 k=1 x-1
( Jugip 5 o = My + Hyyp + g (P17 Uy

-2
L (%72 ) gt g + ByyqUeg 31D, "‘) + oy = Byy2
duy x>3

3 *T2uyuy g + ugaue 50,00 E— o + Iy = Byyy

k-2 x-2 Xk
E(Ti sy g3 = Mgy + bpqq + g(i)uiuk-i+1
o

k_
ﬂ P20 gt gg + BygqUe g + Ugpathe 540

-] a2 -] a
- 4+ v,D.D, — + v,D, — + WD, —
Hi42Ux-i+1)1} Oy 1°t%x 5g 2°x 54 2%t 9u

) a 2 P
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3 9u * V2PPx 30x 55 ¥ 1 1 31D¢ ou;

vy — uwy = u,vy - w4]§§I' (DSs)
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82
+ Ewgyy T+ L (Vg3 — ¥y

+ L upyyDy &

duy

= Wk-y

(D6)



k-2
X-2 )

+ L [vgy ~Wker = L (T537)v3We 3110 * B Qv - Wy

k32 o O ka2

- k_2("‘2)(v +v Y& + ¢ p, 2—
E(7y 1%k-1 1+1%-1-1) = Fr+1Pe
o X k>3 by

X-1 4 _
+ L [y — Mgyp - L (kil)uiuk_ilg——. (D7)
k23 0 #x

Using the equations (D1), (D2), ..., (D6) and

25(0) = (DZD. + DID, - D + uD, )¢ = O.

Then

coefficient wu,., = D¢ € .o - ¢ is linear in u,.

coefficient v, ,, = D 22 =0 - ¢ 1is linear in Var

g 20 29
coefficient w = -(D,, + D) 2 4 2p +D =0 -
n+2 X t awn x avn t a"n

—~«D, +D,)2 +p, 2 =0 - isg linear i
¢ t) aw, ©oav, * ¥n

[since ¢ 1is in v, and ker(Dy, + D) = C¥(x,t)].

Similarly

coefficient p ., = ~(Dy + D) g— +202 + 20, 2— w0 - ¢

[T duy, du,

is linear in j, {since ¢ is linear in both u, and v,].
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If we use now the coupling relation (7.3.36), i.e.
Mtz = (1M, 4wy (D8)

where ; does not depend on Wpus , Hpyp + Wpug and .,
then replacing u, by w, from D8, in all the above calculations,

then
coefficient Wniz = 0 -

a2 n+l 3
(Dy + D= - (-1) 1 =¥ (x,t) (D9)
vy, n
where Y(x,t) is8 now in terms of the derivative of ¢ over
u, and - £

The solution Of D9 has the form f£(w, + (-1)"1u ), By using D8

again, this solution reduces to £ V), W, does not depend on

Wne Hpe Wpog and pp 4.

Then

coefficient v .4 =0 = D, % . = 3J, J 1is constant, depending
n—

only on the derivatives of ¢ over v,, and

coefficient u, .4 =0 = D, %‘g . = p"(x,t) + a(x)uy, where o(x)
n—

is the derivative of ¢ over u,, i.e. ¢ 1is linear in v, _,

and does not depend on u, [since by lemma 7.3.4, o(x) = 0],

Now, the coefficients w,, can be calculated and equated to zero,

in a similar sense to prove that ¢ does not depend on A\

either.

-236-



APPENDIX E

Glossary of spaces

fn|f(x)|zdx

-m

(1) L(R) = (£(x)| jmlflzdx <ol 1T, -

i
(2) B%R) = (g(x) € LR £9; 6 LYR) for 1 <1<k

.3 k i
”g"‘"'nk(n)’ifofm' aalax= T ”gi?ci”x.l(a)‘

-

(3) 9{1'; = C(0, Ty #%) = {u(x,t): R x [0,T] = R for each
t € [0,T], u(.,t) € B* anda u: [0,T] - H* 1is continuocus

and bounded}, |[lul| = Sup  l{u(.,E)ll 4
s O<t<T H

(4) %]';lm = {u(x,t) & ];‘ l 8%“ & : ’ 0< i< m)l

Hull x,;m = Sup  Sup na%u(x,t)uak.
O<t<T 0<i<m

(5)¥s'r“j£.r nﬂs31 f;—s'zﬂ

= {u(x,t) € :I a%u e 531 for 3§ such that
s-3j » 0O}.
(6) {?T = [C(R X [0,T])] = {v(x,t)]| v 18 continuous and uniformly
bounded on R x [0,T]},

IIV|IZ = Sup |v(x,t)].
x<R
O<t<T
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