IT City Research Online
UNIVEREIST%( ]OggLfNDON

City, University of London Institutional Repository

Citation: Mereani, F. & Howe, J. M. (2018). Preventing Cross-Site Scripting Attacks by
Combining Classifiers. In: Proceedings of the 10th International Joint Conference on
Computational Intelligence. (pp. 135-143). San Francisco, USA: SCITEPRESS. ISBN 978-
989758327-8

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/20137/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Preventing Cross-Site Scripting Attacks by Combining Classifiers

Fawaz A. Mereani'? and Jacob M. Howe!
LCity, University of London, Northampton Square, London, United Kingdom

2Umm AL-Qura University, Makkah, Saudi Arabia
{fawaz.mereani, j.m.howe} @city.ac.uk

Keywords:

Abstract:

Cascading Classifiers, Stacking Ensemble, Cross-Site Scripting

Cross-Site Scripting (XSS) is one of the most popular attacks targeting web applications. Using XSS attackers

can obtain sensitive information or obtain unauthorized privileges. This motivates building a system that can
recognise a malicious script when the attacker attempts to store it on a server, preventing the XSS attack. This
work uses machine learning to power such a system. The system is based on a combination of classifiers,
using cascading to build a two phase classifier and the stacking ensemble technique to improve accuracy. The
system is evaluated and shown to achieve high accuracy and high detection rate on a large real world dataset.

1 Introduction

Attackers exploit vulnerabilities in web applica-
tions in order to perform malicious actions such as ob-
taining sensitive information or gaining unauthorized
privileges, for example administrator access. This
makes the protection of these applications an impor-
tant topic in computer security. A number of attack
types target web application vulnerabilities, for ex-
ample SQL injection and Cross-Site Scripting (XSS),
and these remain in the top ten vulnerabilities listed in
the Open Web Application Security Project (OWASP)
(OWASP, 2017). Victims can be affected by XSS
attacks that modify a webpage, steal cookies, cap-
ture clipboard contents, perform dynamic downloads
and other attacks vectors (Raman, 2008). The tradi-
tional defence systems for web applications are based
on a database of signatures that describe known at-
tacks (Ariu and Giacinto, 2011). The most common
cause of XSS vulnerabilities in web applications is the
weakness of verification of the user’s input or the en-
vironment (Rocha and Souto, 2014), where such vul-
nerabilities are discovered by attackers and exploited
either on the client side or the server side.

This work shows how machine learning can be
used to incorporate a verification stage into a web ap-
plication with dynamic content. Machine learning is
used to build classifiers which in combination can be
used to detect and prevent attacks. The target is to pre-
vent persistent or stored XSS which is when a mali-
cious script is injected into a web application through
input points and stored in the application database.

Then on every visit to the page, the script will be
executed on the user’s browser (Kirda et al., 2009;
Malviya et al., 2013; Williams et al., 2018).

In previous work, machine learning has been used
to detect XSS attacks based on using one stage classi-
fiers (Likarish et al., 2009; Khan et al., 2017; Mereani
and Howe, 2018). In these works, the classifiers have
been shown to be successful at classifying scripts as
malicious or benign. However, in a web application
the input might well not be a script at all, but plain
text. Initial experiment showed that plain text was not
always correctly classified. This paper investigates
two ways of combining classifiers in order to improve
the prevention of XSS. Firstly, the stacking ensem-
ble technique is used to build a classifier to differen-
tiate between malicious and benign scripts. Secondly,
this is used together with a classifier to distinguish be-
tween user input that is plain text or script in order to
build a cascading classifier for user input.

The contributions of this paper as follows:

* the feature space for detecting XSS from (Mereani
and Howe, 2018) is developed

 five diverse classifiers, including a neural net-
work, are used to recognise XSS attacks

* a stacking classifier to recognise XSS attacks is
built from these five base level classifiers

* a decision tree classifier for distinguishing plain
text and scripts is built

* a cascading classifier combining the two classi-
fiers above is built to verify user input to a web
application



e the various classifiers are evaluated.

The rest of this paper is organised as follows: Sec-
tion 2 gives an overview of ensemble techniques, and
Section 3 discusses related work on detecting XSS,
and on using ensemble techniques for preventing at-
tacks. Section 4 describes the datasets, the features
used by the classifiers, and the classifiers’ optimisa-
tion. Section 5 gives, then discusses, the experimental
results, and conclusions are given in Section 6.

2 Ensemble Techniques

Ensemble techniques can be defined as combin-
ing multiple models to produce more stable, accu-
rate and powerful predictive results than using a sin-
gle model. Ensemble techniques have proved suc-
cessful, for example, the winner of the Netflix com-
petition (Salakhutdinov et al., 2007) implemented a
powerful filtering algorithm by using an ensemble
method, whilst the winner of KDD 2009 also used
ensemble methods (Niculescu-Mizil et al., 2009). A
wide range of ensemble-based algorithms have been
developed under different names: bagging (Breiman,
1996), random forests, composite classifier systems
(Dasarathy and Sheela, 1979), mixture of expert (Ja-
cobs et al., 1991; Jordan and Jacobs, 1994), stacked
generalization (Wolpert, 1992), consensus aggrega-
tion (Wolpert, 1992), combination of multiple clas-
sifiers (Xu et al., 1992), dynamic classifier selection
(Woods et al., 1997), classifier fusion (Bloch, 1996),
committee of neural networks (Drucker et al., 1994),
classifier ensembles (Kuncheva, 2004), among others.
The most prominent ensemble algorithms are:

Bagging Also called Bootstrap Aggregation
(Breiman, 1996; Dietterich, 2002), Bagging creates a
series of instances of the same type of classifier, each
built by independently training on a random sample
of the training dataset. The overall classification is
achieved by combining the results of the instances,
for example by majority voting. This method is
suitable for high variance with low bias models.

Boosting This is a class of iterative approaches for
generating a classifier. A first classifier is developed,
and then subsequent classifiers trained to avoid mis-
classifications from previous iterations (Cao et al.,
2010). The ensembles of weak classifiers of boosting
methods are suitable for high bias with low variance
models.

Stacking Also called stacked generalization
(Wolpert, 1992) combines multiple classification
models by using these different learning algorithms
to train base level models. The base level is the first
phase in the stacking process, the second phase is
to use the outputs from the first phase classifiers as
the input to another, independent, classifier which
performs the final classification. The base level uses
a standard dataset of examples abstracted to feature
vectors and class labels to build the classifiers.

The meta classifier in the second phase of stack-
ing uses the outputs of the base level to build its train-
ing dataset, the base level outputs being the features
(DZeroski and Zenko, 2004; Zhang and Ma, 2012).

Cascading Classifiers Cascading generalization
(Gama and Brazdil, 2000) is another method of com-
bining classifiers. Cascading classifiers involves mul-
tiple classifiers; the output of the first classifier will
be used in the next classifier (Zhao and Ram, 2004)
and so on, concatenating several classifiers in a cas-
cade. This method has been used to improve classifi-
cation accuracy and to reduce complexity (Baig et al.,
2014).

3 Related Work

3.1 Ensemble and Computer Security

Ensemble techniques, including cascading and stack-
ing, have been used in a number of contexts for pre-
venting exploits of vulnerabilities in networks or web
applications. This section gives a brief overview of
relevant work using multiple classifiers.

Cascaded classifiers are used in (Khor et al., 2012)
to detect network intrusion. A first classifier classifies
the input as Normal, Denial of Service, or Probing at-
tacks and a second classifier classifies the inputs as
Normal, Remote to Local, or User to Root attacks.
This allows the J48 and Bayesian Network (BN) clas-
sifiers used to work with more balanced data, leading
to an increase in detection rates (94.8% using J48-BN
and 94.2% using BN-J48). In (Xiang et al., 2008) a
multiple-level hybrid classifier based on decision tree
classifiers and Bayesian clustering methods is used to
implement an intrusion detection system. It includes
four stages of classification, the first three stages to
distinguish between attacks and the final stage to clas-
sify the attack to specific types. Different features
are used for each stage. Their approach achieves a
96.80% detection rate. The stacking of SVM with
9 other machine learning algorithms (BayesNet, Ad-
aBoost, Logistic, IBK, J48, Random Forest, JRip,



OneR and SimpleCart) is studied in the context of
intrusion detection systems in (Chand et al., 2016).
As in the previous works, the NSL-KDD dataset was
used. Experiments compare the performance of using
SVM as a meta-classifier together with the other clas-
sifiers, against a benchmark of using SVM only. The
best classifier proves to be SVM stacked with Ran-
dom Forest, which achieves 97.50% accuracy with
97.60% precision, better than using SVM only which
achieved 91.81% accuracy and 91.70% precision.

In (Ariu et al., 2011) a model to detect attacks
against a web server depending on HTTP payload
structure is proposed. The payload is analysed by
five different Hidden Markov Models (HMM) ensem-
bles. The outputs are then used as features for a
one-class classifier analysis. Experiments used two
datasets containing normal HTTP requests, the first
collected from requests towards the website of Geor-
gia Tech (GT), the second dataset collected from re-
quests toward the website of the authors’ department
at the University of Cagliari (DIEE). The dataset for
attacks came from (Perdisci et al., 2009). The re-
sults of the experiment were AUC averages of 84.7%
with DIEE dataset and 82.7% with GT dataset. A
tool called VEnsemble is presented in (Goel et al.,
2016), which used ensemble techniques for Vulner-
ability Assessment and Penetration Testing (VAPT).
VEnsemble works by scanning the target (be it sys-
tem, software, or network) using a variety of VAPT
tools, then converting their outputs to numerical form,
calculating weights based on VAPT tool accuracy and
calculating a final result based on majority voting.

3.2 Machine Learning and XSS

Single classifier approaches have been used to de-
tect XSS attacks using machine learning, achieving
good results. (Likarish et al., 2009) evaluated a
number of classifiers namely Naive Bayes, ADTree,
SVM, and RIPPER to detect obfuscated scripts (as
a proxy for malicious). Their best results used an
SVM classifier that achieved a 92% precision rate.
(Khan et al., 2017) evaluated a collection of classi-
fiers, Naive Bayes, SVM, k-NN, and Decision Trees.
Their approach achieved a 90.70% precision rate in
recognising malicious scripts with the k-NN classifier.
Both of these approaches used a small dataset of mali-
cious instances. In (Mereani and Howe, 2018) SVM,
k-NN, and Random Forests classifiers were evaluated
using a larger dataset, with the best result achieved
being a 96.79% precision with the k-NN classifier.

4 Methodology

The aim of this work is to take user input which
might be either normal text, or a benign script, or a
malicious script and in the case that the input is nor-
mal text or a benign script allow this to be stored on
the server, whilst if the input is a malicious script it
will be quarantined. This will be done by using a
combination of classifiers, in two phases. The first
phase will determine whether or not input is normal
text or a script. The second phase will determine
whether those inputs classified as scripts in the first
phase are benign or malicious. This second phase will
itself be built as a combination of five classifiers. Fig-
ure 1 illustrates the system.

4.1 Datasets

A combination of two datasets is used in this work,
and this combined dataset is used in the two phases
above. To give a real world simulation, the combined
dataset is itself divided into two. One part (the train-
ing dataset) will be used to tune parameters and train
the classifiers. The second part (the testing dataset)
will be used to evaluate the classifiers once built.

4.1.1 Text Type Dataset

Normal text was obtained from the LARA dataset
(Wang et al., 2011) which contains hotel and prod-
uct reviews from Amazon.com and TripAdvisor. The
normal text was divided into 4,972 instances for
the training dataset and 4,096 instances for testing
dataset, each instance labelled as normal text.

4.1.2 Scripts Datasets

The scripts dataset was obtained from (Mereani and
Howe, 2018) and contains 30,027 scripts, with 15,029
labelled as benign and 14,998 labelled as malicious.
These are divided into a training set of 10,027 scripts
(5,029 benign and 4,998 malicious) and a testing set
of 20,000 scripts (10,000 each of benign and mali-
cious). This dataset comes from a variety of sources
and was prepared for experiment by removing extra
spaces and lines, then lowercasing all letters.

4.1.3 Datasets for Training and Testing

The first phase classifier to determine if user input is
normal text or a script was trained using the combi-
nation of the training datasets for text type and for
scripts, a total of 14,999 instances (4,972 labelled as



Text
Type
Classifier

. 1ipt
User P!

Input

¥

<

Text

Normal

\Stage 1

N\

w
g
=

R
%a%

™
|

7‘ Level 1

Meta

w
z
o]

Classifier

Malicious

Base Level (Level )

Stage 2

Server

e
“ﬂ

Figure 1: XSS Preventing System.

normal text and 10,027 as scripts). For testing, the re-
maining combined 24,096 instances were used (4,096
labelled as normal text and 20,000 labelled as scripts).

The second phase base level classifiers were
trained on the combined text type instances and script
instances. That is, 10,001 instances that are benign
(either benign scripts or normal text) and 4,998 ma-
licious scripts. For testing again all 24,096 instances
are used, including the normal text instances (labelled
as benign). The meta level classifiers are trained and
tested on the labelled output from the base level clas-
sifiers, that is the 0/1 vectors of base level predictions.

4.2 Selecting Features

Features were selected for each stage separately.

4.2.1 Text Type Features

The features were selected to differentiate between in-
puts that are normal text or scripts. Inputs are com-
posed of letters, numbers, and punctuation symbols
(including parentheses). In order to distinguish be-
tween normal text and scripts the structure of the text
was taken into consideration; normal text is expected
to contain a lower percentage of punctuation symbols
than scripts. Table 1 gives the six text type features
that are used for the first phase classifier. All features
take a value between 0 and 1, that represents the pro-
portion of the text described by that feature.

4.2.2 Script Features

Features in this stage are categorized into two groups,
1) non-alphanumeric characters, and 2) alphanu-
meric. Adapting the 59 features given in (Mereani
and Howe, 2018) (categorized as structural and be-
havioural), in total 62 features are considered as input
for the base level classifiers.

Table 1: Text Type Features, Proportions.

] Features I Description \
Letter Proportion of letters.
Number Proportion of numbers.
Space Proportion of spaces.
Punctuation =0 <>/
Special Character 1$?7 _&
Operations +-*"

4.2.2.1 Non-alphanumeric Features These are
the non-alphanumeric characters that can be used in
scripts. The XSS attacker can use techniques to trick a
signature based protection system, such as using extra
spaces or unnecessary symbols inside a script. In ad-
dition, there are combinations of symbols that might
also be used in malicious scripts. An example of using
symbol combination is (" ><). This combination will
close the previous tag and open a new one containing
a malicious script. The full non-alphanumeric char-
acters are given in Table 2, including symbol combi-
nations that might be used in attacks. This work has
diverged from (Mereani and Howe, 2018) by adding
apostrophe to the symbols group, and double slash
and &It to the symbols combinations.

Table 2: Non-alphanumeric Features.

| Features Group || Terms ‘
&%,/ \,+,7, 0L 8= 1],
Symbo]s $, (9 )7 A’ *a 99 7y <s >s @s —5 0
{.}. ", .. space, |,1,”,
Combinations || 7 ><,”” ><,[], ==, &#, //, &It

4.2.2.2 Alphanumeric Features Alphanumeric
features includes commands and functions that might
be used in XSS attacks, where the attackers use a
range of functions or commands in their attacks. For



example, when using de-obfuscated functions, or
adding commands within HTML tags. This work
has removed one feature (createelement) from those
given in (Mereani and Howe, 2018) and furthermore
has added two new features, the proportion of letters,
and the proportion of numbers within the script.

The features used in the current work are (0/1) val-
ues for sixty of the features, that is, within the script,
either the feature exists or it does not. The remaining
two features, the proportion of letters and of numbers
within the script, are valued between 0 and 1. Table 3
gives the alphanumeric features.

Table 3: Alphanumeric Features.

| Features || Description ‘
Readability Is the script readable.
Objects document, window, iframe, location
Events Onload, Onerror.
Methods String.fromCharCode, Search.
Tags DIV, IMG, script.
Attributes SRC, Href, Cookie.
Reserved Var .
Functions eval().
Protocol HTTP.
External File Js file.
Letters ASCII Code between 97 and 122.
Numbers ASCII Code between 48 and 57.

4.3 Classifiers

A range of classifiers are used across the two phases
of this work: one for the first phase, both base level
and meta level classifiers for the second phase. The
two phases are then cascaded together.

4.3.1 Text Type Classifier

For the first phase, text type classification, the Deci-
sion Tree (DT) classifier was used to create a model
using the training dataset. The DT was optimized
by tuning the MaxNumSplits parameter to control the
maximum number of decision splits on a branch.

4.3.2 Base Level Classifiers

The motivation for using stacking is to combine clas-
sifiers so that diversity amongst them can be taken ad-
vantage of in order to improve the performance of pre-
dictions. To this end, in the second phase, five differ-
ent kinds of classifier were used for determining if a
script is malicious or benign: support vector machines
(SVM) with a linear kernal (SVM-L), SVM with a
polynomial kernal (SVM-P), k-NN, Random Forests

(RF) and a feed forward Neural Network (NN). Work-
ing with the training set, SVM-L was tuned by adjust-
ing BoxConstraint to control the maximum penalty of
misclassification, and SVM-P tuned by setting Out-
lierFraction to determine the proportion of outliers in
the instances. The k-NN classifier was tuned by ad-
justing k, the number of neighbours. For the RF clas-
sifier the number of trees was tuned. The NN classi-
fier was tuned by determining the number of hidden
layer neurons (Units) within the network, and the train
function to update the weight and bias values.

4.3.3 Meta Level Classifiers

The meta level classifier is independent of the base
level classifier. This work investigates five choices
for the meta level classifier, these again being SVM
with linear and polynomial kernals, k-NN, RF and
NN. The meta training dataset (the outputs of the
base level classifiers) is used as an input to create
Meta classifiers. SVM-L is again tuned by adjusting
BoxConstraint, SVM-P is again tuned by adjusting
OutlierFraction, k-NN tuned by adjusting the number
of neighbours, RF tuned by adjusting the number of
trees, and NN tuned by adjusting the number of hid-
den layer neurons (Units), and the train function.

5 Results

Experiments were conducted using MatLab
R2016b, with the experiments focused on the perfor-
mance of DT, SVM, k-NN, RF, and NN classifiers in
both phases using the datasets and features described
in Section 4. The classifiers were tuned using the
training dataset, and evaluation of the optimised clas-
sifiers is performed using five fold cross validation
with the training dataset. The entire training dataset
is then used to train the final classifiers for each stage
and these are evaluated with the testing dataset (which
has not been used in tuning and training). Timing ex-
periments are also given, and this section concludes
with a discussion of the results presented.

5.1 Classification Performance
5.1.1 Classifier Optimisation

Classifiers were optimised during training, leading to
the models used for evaluation, as follows. In the text
type stage DT was optimised by setting the MaxNum-
Split parameter to 30. In the script classification stage
the base level classifiers were optimised as follows:
SVM-L was optimised by setting the BoxConstraint



parameter to 0.07. SVM-P was optimised by setting
the OutlierFraction parameter to 0.1. k-NN was op-
timised by setting NumNeighbors to 1. RF was opti-
mised by setting the number of trees to 20. NN was
optimised by setting the number of hidden units to be
10, and the train function to be “trainbr”, that is us-
ing Bayesian regularisation to minimize a combina-
tion of squared errors and weights. The same settings
are used with meta level classifiers except for k-NN,
which is optimised by setting NumNeighbors to 100.

5.1.2 Cross Validation

This section gives the results of the evaluation of the
tuned classifiers on the training data. The descriptive
statistics are averaged across the five folds.

5.1.2.1 Text Type Classification Table 4 gives
the results for the DT text classifier in the first stage.

Table 4: Decision Tree Text Type Classifier Evaluation.

Accuracy | Precision | Sensitivity | Specificity
99.73% 99.63% 99.57% 99.82%
5.1.2.2 Script Classification: Base Level The

five optimised base level classifiers (SVM-L, SVM-
P, k-NN, RF, and NN) were each evaluated and the
results on the training dataset are given in Table 5.

Table 5: Base Level Classifiers Evaluation.

Table 6: Meta Level Classifiers Evaluation.

Classifiers | Acc Prec Sens Spec
SVM-L | 99.25% | 98.63% | 99.13% | 99.32%
SVM-P | 99.11% | 99.28% | 98.08% | 99.63%

k-NN 99.28% | 98.85% | 98.98% | 99.43%

RF 99.19% | 98.71% | 98.84% | 99.36%

NN 99.22% | 98.71% | 98.95% | 99.36%
5.1.3.1 Testing the Text Classifier The final DT

classifier for determining text type was tested with the
text dataset of scripts and normal text. The first stage
gave the results given in Table 7.

Table 7: Confusion Matrix of Text Type Testing.

Text | Code
Text | 4090 6
Code 0 20000

5.1.3.2 Testing Script Classifiers The base level
classifiers’ performance with the base testing dataset
(including scripts and normal text) is given in Table 8.

Table 8: Base Level Testing Performance.

Classifiers | Acc | Prec | Sens | Spec
SVM-L |99.75%{99.65%99.74%)|99.75%
SVM-P 99.78%99.83%99.66% 99.87%

k-NN  {99.88%99.87%99.85%|99.90%
RF 99.92%199.93%|99.89%99.95%
NN 99.80% |99.86%99.66%|99.90%

Classifiers | Acc Prec Sens Spec
SVM-L | 97.73% | 95.60% | 97.52% | 95.81%
SVM-P | 99.15% | 95.48% | 98.36% | 99.25%

k-NN 99.20% | 98.67% | 98.91% | 99.34%
RF 99.32% | 98.62% | 99.13% | 98.32%
NN 98.80% | 97.75% | 98.64% | 98.87%

The five meta level classifiers each using the out-
put of the five base level classifiers are tested. The
performance of these classifiers is given in Table 9.

Table 9: Meta Level Testing Performance.

5.1.2.3 Script Classification: Meta Level The
five base level classifiers are then stacked. The out-
puts from the five classifiers provide the features for
the meta classifier. Five choices of meta classifier are
investigated, again choosing SVM-L, SVM-P, k-NN,
RF, and NN. The results for the performances of these
five stackings are given in Table 6.

5.1.3 Testing Performance

The final classifiers are produced by training them us-
ing the entire training dataset. These classifiers are
then evaluated on the testing dataset (which has not
been used in the tuning and training).

Classifiers | Acc Prec | Sens | Spec
SVM-L 199.92%99.89%99.93%99.92%
SVM-P  (99.93%|99.96%|99.88%99.97%

k-NN  199.88%99.80%{99.92%99.85%
RF 99.90%99.81%99.95%|99.86%
NN 99.89%99.81%99.94%99.86%

5.1.4 Entire System

The testing dataset (to simulate a real world attack)
was used to test the entire cascading system per-
formance. To investigate the classifiers working to-
gether, the dataset containing normal text, malicious



and benign scripts was used as input to the first stage,
with the Decision Tree used to classify the data as text
or script. Then, all predictions classified as a script
in the first stage (20,006 in this experiment) are used
in the second stage as an input (the remaining 4,090
scripts were classified as normal text, hence benign in
the first stage). This stage uses a stacking classifier
with SVM with polynomial kernal as the meta level
classifier over the five base levels (SVM-L, SVM-P,
k-NN, RF and NN) in order to determine whether the
scripts are benign or malicious. Table 10 shows the
confusion matrix of both stages (where the rows are
the real result and the columns those given by the clas-
sifier). Table 11 shows the results of the entire system.

Table 10: Entire System Confusion Matrix.

First Stage Second Stage
Text | Code XSS | Benign
Text | 4090 6 XSS | 9988 4

Code| O 20000| Benign| 12 10002
Table 11: Entire System Performance.
Stages Acc Prec Sens Spec
Ist 99.97% | 99.85% | 100% | 99.97%
2nd | 99.92% | 99.96% | 99.88% | 99.96%

5.2 Timing Performance

The goal of this work is for the overall classifier to be
a layer between the user entering input and its being
entering into the database of a web application. Hence
the classification needs to be executed quickly enough
that the performance of the website is not impacted.
To this end, the time taken by the classifiers was eval-
vated. Table 12 details the system time taken (in sec-
onds) by each stage when the testing set of 24,096
scripts was classified, as in Section 5.1.4. This in-
cludes the time taken by the DT classifier for the first
stage, the time taken by each of the base level classi-
fiers to return results, and the time taken by the meta
level classifier.

Table 12: Time Performance (secs).

| Classifier | Timing [| Classifier | Timing |
DT 0.0040 RF 0.2761
SVM-L | 0.1471 NN 0.0290
SVM-P | 0.1048 || Meta SVM-P | 0.0055
k-NN 5.6169

The overall time of 6.1834 seconds is dominated

by the cost of the k-NN classifier. Whilst the cost for
each classification remains small, this mismatch moti-
vates calculating the classifier performance for the en-
tire system, omitting the k-NN classifier. The exper-
iment from Section 5.1.4 has been repeated after re-
moving the k-NN classifier from the stacking ensem-
ble. Table 13 shows the results and Table 14 shows
the confusion matrices for each meta classifier.

Table 13: Meta Level Testing Performance Without k-NN.

Classifiers | Acc Prec | Sens | Spec
SVM-L  199.92%99.93%99.92%|99.93%
SVM-P  199.85%99.85%99.79%99.85%

RF 99.86%99.95%99.78%|99.94%
NN 99.86%(99.95%199.78%|99.94%

Table 14: Meta Level Confusion Matrices Without k-NN.

SVM-L SVM-P

XSS | Ben. XSS | Ben.
XSS | 9993 7 XSS | 9985 15
Ben. 8 9998 || Ben. 21 9985

RF NN
XSS | Ben. XSS | Ben.
XSS | 9995 5 XSS | 9995 5
Ben. 22 9984 || Ben. 22 9984

5.3 Discussion

Once the classifiers have been tuned on training data,
the five fold cross-validation gives good results for
both phases of the cascading classifier. The DT clas-
sifier gives excellent results for text classification with
accuracy of 99.73%. The base level classifiers for de-
termining if an instance is benign or malicious all per-
form well, and as conjectured each of the meta-level
stacking classifiers improves on the base level results.

The final classifiers resulting from training using
the whole training dataset give strong results when
evaluated using the testing dataset (not used in the
training and tuning of the classifiers) to simulate a
real world deployment. All of the base level clas-
sifiers give over 99% accuracy, precision, sensitivity
and specificity. With the base level classifiers already
working so well, there is little room for stacking to
improve performance, however, a small improvement
can be observed, with the SVM-P classifier giving the
best results. Hence this is used as the meta-level clas-
sifier in the cascading classifier for end-to-end testing.

The first phase of the cascading classifier to dis-
tinguish between normal text and scripts gives 100%



sensitivity, meaning that no scripts are classified as
text, hence all scripts are passed to the second phase.
This is exactly the desired behaviour. A small number
of normal text instances are misclassified as scripts
and passed to the second phase. However, as it has
already been established that script classification can
correctly classify these instances as benign this is not
problematic. The second phase, using the stacked
classifier (with SVM-P as the meta level classifier),
classifies scripts with high accuracy and precision.

When examining the time required for each meta-
level classifier it was found that k-NN was consid-
erably more expensive than other classifiers. This
motivated the study of results without k-NN in the
stacking ensemble. Without k-NN, the SVM-P meta-
classifier performs a little less well, with accuracy re-
duced from 99.92% to 99.85%. In security higher
accuracy is better even if the time is longer, as long
as the application continues to work smoothly. It is
also worth observing that in this instance, the SVM-
L meta-classifier performance is best, illustrating that
with all the meta-classifiers performing well it is hard
to determine an overall best choice.

6 Conclusion

This paper has demonstrated a system that con-
tains two stages, each stage containing a classifier do-
ing a different job. The first stage classifies user input
either as normal text or as a script, with accuracy of
up t0 99.97%. The second stage depends on a stacked
classifier based on SVM-L, SVM-P, k-NN, RF, and
NN. This stacked classifier with SVM-P as the meta
classifier gives high accuracy when applied to a large
real attack dataset. The entire system cascading the
two stages together achieved high precision (99.96%)
for defending web applications from XSS.

This final accuracy result improves on the re-
sults with the same dataset from (Mereani and Howe,
2018) (where precision was 96.79%). This is partly
because of an improved feature set, and partly be-
cause of the use of stacking. It is important to note
that cascading allows the classifier to be used in a real
web application where the script classifier is preceded
by the text classifier. A proof of concept website in-
corporating the cascading classifier as a security layer
has been constructed, and with a single user operates
successfully. The cost of the k-NN classifier in the
base level of the ensemble classifier is the dominating
cost of the overall classifier. This was not problematic
at the proof of concept stage. Future work is to test the
performance of websites involving such a cascading
classifier by performing large scale load testing.

Some scripts are still misclassified. Misclassifi-
cation occurs for malicious scripts encrypted using
Base64 encoding. Base64 uses letters more than num-
bers or signs. This result hints that adding to the en-
semble a classifier aimed at this type of encryption
would add to the power of a combined classifier.

In conclusion this work demonstrates that combin-
ing classifiers can lead to better overall classification
by incorporating diversity into the classification pro-
cess, and that a security layer can be incorporated into
web applications for detecting XSS attacks.

REFERENCES

Ariu, D. and Giacinto, G. (2011). A modular archi-
tecture for the analysis of HTTP payloads based
on multiple classifiers. In Multiple Classifier
Systems, volume 6713 of LNCS, pages 330-339.
Springer.

Ariu, D., Tronci, R., and Giacinto, G. (2011). HMM-
Payl: An intrusion detection system based on
Hidden Markov Models. Computers & Security,
30(4):221-241.

Baig, A., Bouridane, A., Kurugollu, F., and Albesher,

B. (2014). Cascaded multimodal biomet-
ric recognition framework. [ET Biometrics,
3(1):16-28.

Bloch, I. (1996). Information combination operators
for data fusion: a comparative review with clas-
sification. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans,
26(1):52-67.

Breiman, L. (1996). Bagging predictors. Machine
Learning, 24(2):123-140.

Cao, D.-S., Xu, Q.-S., Liang, Y.-Z., Zhang, L.-X., and
Li, H.-D. (2010). The boosting: A new idea of
building models. Chemometrics and Intelligent
Laboratory Systems, 100(1):1-11.

Chand, N., Mishra, P., Krishna, C. R., Pilli, E. S., and
Govil, M. C. (2016). A comparative analysis of
SVM and its stacking with other classification
algorithm for intrusion detection. In Advances

in Computing, Communication, & Automation,
pages 1-6. IEEE.

Dasarathy, B. V. and Sheela, B. V. (1979). A
composite classifier system design: concepts
and methodology. Proceedings of the IEEE,
67(5):708-713.

Dietterich, T. G. (2002). Ensemble learning. The

handbook of brain theory and neural networks,
2:110-125.



Drucker, H., Cortes, C., Jackel, L. D., LeCun, Y., and
Vapnik, V. (1994). Boosting and other ensemble
methods. Neural Computation, 6(6):1289-1301.

Dzeroski, S. and Zenko, B. (2004). Is combining clas-
sifiers with stacking better than selecting the best
one? Machine Learning, 54(3):255-273.

Gama, J. and Brazdil, P. (2000). Cascade generaliza-
tion. Machine Learning, 41(3):315-343.

Goel, J. N., Asghar, M. H., Kumar, V., and Pandey,
S. K. (2016). Ensemble based approach to in-
crease vulnerability assessment and penetration

testing accuracy. In Innovation and Challenges
in Cyber Security, pages 330-335. IEEE.

Jacobs, R. A., Jordan, M. 1., Nowlan, S. J., and Hin-
ton, G. E. (1991). Adaptive mixtures of local
experts. Neural Computation, 3(1):79-87.

Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical
mixtures of experts and the EM algorithm. Neu-
ral Computation, 6(2):181-214.

Khan, N., Abdullah, J., and Khan, A. S. (2017). De-
fending malicious script attacks using machine
learning classifiers. Wireless Communications
and Mobile Computing, 2017(5360472):9 pages.

Khor, K.-C., Ting, C.-Y., and Phon-Amnuaisuk, S.
(2012). A cascaded classifier approach for im-
proving detection rates on rare attack categories
in network intrusion detection. Applied Intelli-
gence, 36(2):320-329.

Kirda, E., Jovanovic, N., Kruegel, C., and Vigna, G.
(2009). Client-side cross-site scripting protec-
tion. Computers & Security, 28(7):592—604.

Kuncheva, L. 1. (2004). Classifier ensembles for
changing environments. In Multiple classifier
systems, volume 3077 of LNCS, pages 1-15.
Springer.

Likarish, P., Jung, E., and Jo, 1. (2009). Obfuscated
malicious Javascript detection using classifica-

tion techniques. In Malicious and Unwanted
Software (MALWARE), pages 47-54. IEEE.

Malviya, V. K., Saurav, S., and Gupta, A. (2013).
On Security Issues in Web Applications through
Cross Site Scripting (XSS). In Asia-Pacific Soft-
ware Engineering Conference, pages 583-588.
IEEE.

Mereani, F. A. and Howe, J. M. (2018). Detect-
ing Cross-Site Scripting Attacks Using Machine
Learning. In Advanced Machine Learning Tech-
nologies and Applications, volume 723 of AISC,
pages 200-210. Springer.

Niculescu-Mizil, A., Perlich, C., Swirszcz, G., Sind-
hwani, V., Liu, Y., Melville, P., Wang, D., Xiao,
J., Hu, J., Singh, M., Shang, W. X., and Zhu,

Y. F. (2009). Winning the KDD cup orange
challenge with ensemble selection. In Interna-
tional Conference on KDD-Cup, pages 23-34.
JMLR.org.

OWASP (2017). OWASP Top 10 - 2017 rcl.
www.owasp.org. Accessed: 26/4/2018.

Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., and
Lee, W. (2009). McPAD: A multiple classifier
system for accurate payload-based anomaly de-
tection. Computer Networks, 53(6):864 — 881.

Raman, P. (2008). JaSPIn: JavaScript based Anomaly
Detection of Cross-site scripting attacks. PhD
thesis, Carleton University, Ottawa.

Rocha, T. S. and Souto, E. (2014). ETSSDetector: a
tool to automatically detect Cross-Site Scripting
vulnerabilities. In Network Computing and Ap-
plications, pages 306-309. IEEE.

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007).
Restricted Boltzmann machines for collaborative
filtering. In International Conference on Ma-
chine Learning, pages 791-798. ACM.

Wang, H., Lu, Y., and Zhai, C. (2011). Latent aspect
rating analysis without aspect keyword supervi-
sion. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discov-
ery and Data Mining, pages 618-626. ACM.

Williams, J., Manico, J., and Mattatall, N. (2018).
Cross-site Scripting (XSS). https://www.owasp.
org/index.php/Cross-site_Scripting (XSS). Ac-
cessed: 26/4/2018.

Wolpert, D. H. (1992). Stacked generalization. Neu-
ral Networks, 5(2):241-259.

Woods, K., Kegelmeyer, W. P, and Bowyer, K.
(1997). Combination of multiple classifiers us-
ing local accuracy estimates. /EEE Transactions
on Pattern Analysis and Machine Intelligence,
19(4):405-410.

Xiang, C., Yong, P. C,, and Meng, L. S. (2008). De-
sign of multiple-level hybrid classifier for intru-
sion detection system using Bayesian clustering
and decision trees. Pattern Recognition Letters,
29(7):918 — 924.

Xu, L., Krzyzak, A., and Suen, C. Y. (1992). Meth-
ods of combining multiple classifiers and their
applications to handwriting recognition. [EEE
Transactions on Systems, Man, and Cybernetics,
22(3):418-435.

Zhang, C. and Ma, Y. (2012). Ensemble machine
learning: methods and applications. Springer.

Zhao, H. and Ram, S. (2004). Constrained cascade
generalization of decision trees. IEEE Trans-
actions on Knowledge and Data Engineering,

16(6):727-739.



