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SYOOPSIS 

This thesis is concerned with the static and dynamic analyses and 

the model testing of deep sea flexible riser systems which are 

the key components associated with semi-submersible oil 

platforms. A numerical method based on explicit integration of 

Newton's second law is developed to predict the 3-dimensional 

dynamic behaviour of the riser due to the hydrodynamic loadings 

induced by wave and current motion. In this analysis the effects 

of waves and currents from separate directions, vessel movements, 

vortex-shedding and structural damping are included. The material 

damping for the riser is modelled by a single Kelvin system and 

the hydrodynamic loadings are assessed from the modified Morison 

equation. The effect of vortex-shedding on the riser is 

modelled by considering the interaction of drag-inertia and lift 

forces due to wave and current motion. The drag coefficient being 

modified ~ the vortex-shedding effects which are predicted by 

calculating the maximum response of the flexible riser in the 

lift force direction. 

The formfinding and static analysis of the riser when subject to 

structural self-weight and other static loadings is carried out 

by the method of Dynamic Relaxation using kinetic damping. The 

method is well suited to computer aided design procedures in 

which various shapes for the riser catenary have to be 

investigated together with the effects of boundary support 

conditions and alternative arrangements of mooring buoys. 
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The theories described above are implemented into three computer 

programs. The first program deals with the formfinding of the 

riser and the second investigates the dynamic behaviour of the 

riser due to non-linear current and wave loadings. The third 

program is concerned with the static solution of the riser due to 

current loading. The latter is employed when the hydrodynamic 

force consists of current loading only and therefore the dynamic 

solution is not desired. The iterative use of the first and third 

programs allows potential designs to be quickly investigated. 

The results predicted by the numerical analyses are compared with 

those obtained from two series of model tests in wave flumes. '!he 

tests were scaled from prototype situations using Froud number 

criteria. The first set of tests used a small scale flexible 

chain model with negligible material damping and structural 

bending stiffness and no induced vortex shedding; the aim of 

these tests being only to validate the assessement of the 

hydrodynamic forces on the riser. '!he second set investigated the 

response of a larger scale model which induced vortex-shedding 

and in which the riser system had significant structural damping. 

The comparison of experimental and computed results showed close 

agreement. 

The developed computer programs were also validated numerically 

by comparing the predicted results with those obtained from the 

well known riser program "FLEXRISER". 
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CIAPl'ER 1 

In recent years, offshore technology has experienced a remarkable 

growth and it promises efficient development of oil fields at 

greater depths. Important components for such deep operations are 

flexible risers. Considering the large financial losses 

consequent on a riser failure in deep water, it is essential to 

perform a comprehensive analysis of such structures in relation 

to the actual environmental conditions. 

A number of non-linear computer programs have been developed in 

recent years to analyse flexible risers and they are usually very 

expensive to run. The American Petroleum Institute Committee on 

the standardization of offshore structures, API ,(1977) compared 

eight existing computer programs for a simple standard set of 

riser problems. The results for the computed dynamic structural 

stresses were so different that no valid comparison could be 

made. Discrepancies in computed results were due to the 

differences in assessing hydrodynamic forces on the riser and in 

the structural modelling of the risers. 

The foregoing reveals that more research work is required to 

understand the response of flexible risers to hydrodynamic 

loadings. 

In order to advance the study of loading and response 

mechanisms, it is useful to resort to laboratory experiments with 

idealized conditions. Once a reliable model of the loading and 
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response is established, it is possible to extend the model 

towards the prototype situation by considering the effect of 

additional parameters on the idealization and empiricism of the 

adopted model. The ultimate objectives of the model are: 

1) Every aspect of hydrodynamic loading (such as vortex 

shedding) should be included. 

2) The formulation should be reasonably economical to 

incorporate in numerical integration methods for the 

non-linear dynamic response. 

1.2 - OUtliIe of Thesis 

The aim of this work was to develop a numerical analysis for 

flexible risers and to validate this theory py experimental work. 

A comprehensive knowledge of hydrodynamics and hydrodynamic 

loading on small cylinders is required in order to understand and 

assess the hydrodynamic loading due to wave and current motion on 

a flexible catenary riser. An introduction and background to this 

is presented in chapter 2. 

Chapter 3 describes the structure of flexible risers. It also 

reviews the methods adopted to idealize the riser structure and 

different numerical solution procedures for the governing 

equations of motion. 

Chapter 4 outlines hydrodynamic theory and presents the necessary 

theory for this work which is used to assess the hydrodynamic 

loading on a flexible riser. 
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Chapter 5 is concerned with the development of an explicit vector 

method of analysis for the non-linear dynamic response of a 

flexible riser. It also descibes the modification of this theory 

to cater for the formfinding and static analysis of the riser. 

The technique applied for these static analyses is known as 

Dynamic Relaxation with kinetic damping. 

Chapter 6 concerns the implementation of the above theories in 

computer programs and the optimization of control parameters in 

these programs. 

Chapter 7 describes the two sets of experimental tests used to 

validate the theory. The model for the first experiment was a 

snake main which had negligible material damping. '!he aim was to 

validate the assesment of the hydrodynamic forces on the riser. 

The second experimental model was a polythene tube filled with 

mercury am had significant material damping. The models for both 

series of tests were positioned at various angles in the wave 

flumes, am the latter series of tests modelled a single catenary 

riser arrangement incorporating an intermediate mooring buoy. 

Chapter 8 presents the results and a comparison with the 

numerical predictions. 

Chapter 9 presents the comparison of the results predicted by the 

numerical analyses with those obtained from the riser program 

"FLEXRISER" which was developed by Zentech Consultants and has 

been validated by other well known flexible riser programs. 

Chapter 10 is concerned with conclusions and recommendations. 



- 4 -

0IAPl'ER 2 

LITERATURE REVIEW OF HYDRODYNAMIC LOADINGS 00' FLEXIBLE 

RISER) 

2.1- Introduction 

This chapter covers the background study of fluid hydrodynamics 

in section 2.2, and considers hydrodynamic loadings on cylinders 

in sections 2.3, 2.4 and 2.5. Hydrodynamic loadings on a cylinder 

can be divided into two distinct components: one consisting of 

drag and inertia forces and the other of a lift force associated 

with vortex-shedding. Section 2.3 is concerned with drag-inertia 

forces on smooth or rough, inclined, flexible, and bundled 

cylinders which are the practical cases encountered for catenary 

flexible risers. Sections 2.4 and 2.5 consider respectively the 

lift forces on cylinders placed in the plane of wave and current 

motion and on randomly orientated cylinders. 

2.2- Pluid Hydrodynamics 

2.2.1- wave Hydrodynamics 

A comprehensive description of wave hydrodynamics was presented 

by Stokes U847). He assumed that the fluid was incompressible 

and inviscid and the flow was irrotational. The incompressibility 

assumption for the fluid yields the continuity equation. The 

irrotationality of the flow indicates that there exists a scalar 

function, the velocity potential ~, which describes information 
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about kinematics of the motion. The continuity equation was 

expressed in term of ~ which gave the Laplace equation. 

A solution for ~ was obtained by solving Laplace's equation 

subject to a number of boundary conditions; these conditions 

being as follows: 

a) bottom boundary condition - there is no flow 

through the rigid bottom on which the fluid rests. 

Thus, the velocity of water particles normal to the 

bottom surface is zero. 

b) free surface boundary conditions 

1) kinematic condition - the fluid particle velocity 

normal to the surface is equal to the velocity of 

the free surface in that direction. 

2) dynamic condition - the pressure at the free sur­

face is zero. So the unsteady bernouilli equation 

can be used with a zero pressure term. 

The Stokes first order theory which was identical to the linear 

wave theory was obtained by solving Laplace's equation with 

linearized boundary conditions. In addition, the free surface 

boundary conditions were applied at the still water level rather 

than the unknown free surface. 

The linear wave theory predicts the following flow behaviours: 

a) the fluid particles move in close orbits. The orbits 

are circular in deep waters and elliptical in shallow 

waters. 

b) the amplitudes of vertical and horizontal velocities 
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of the particles decrease exponentially with the depth 

of the particles below the surface. 

Stokes introduced a second order solution in which the wave 

profile and ~ had second harmonic terms, but the celerity 

remained as for first order theory. This resulted in shaqpening 

the wave crest and flattening the wave trough. The particte 

orbits were no longer closed and there was a net velocity in the 

wave propagation direction, called drift or mass transport 

velocity. 

The higher orders of the Stokes wave theory (3rd and 5th orders) 

were obtained using perturbation method by Skjelbreia (1958) and 

Skjelbreia and Hendrickson (1960, respectively. 

Since then other wave theories have been formulated. Dean 41970, 

developed a non-linear wave theory which was based on a stream 

f~nction rather than a potential velocity concept. This theory 

was extended up to the 5th order. 

The cnoidal wave theory which is used for shallow water waves was 

introduced by Korteweg and Vries (18951. The wave characteristics 

were expressed in terms of the Jacob ian ell ipt ic funct ion, cn. 

The solitary wave theory reported by Russell in 1844 can be 

considered as a limiting case of the cnoidal wave theory in 

which the crests are so far apart that they can be assumed to be 

separate from one another. 

There are some complex modern wave theories such as Schwartz 

41974, and Cokelet 41977) which can predict the flow behaviour 

more accurately than other theor ies for all types of waves but 

the use of the simpler wave theories, which give acceptable 
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results for engineering requirements, may be preferable from the 

viewpoint of economic computing of dynam ic structural response 

(Sarpakaya and Isaacson (1981)). 

Dean (1970) made a theoretical comparison of several wave 

theories. The cri ter ion for the compar ison was the closeness of 

fit of the predicted motion to the complete problem formulation. 

Therefore, he used the error of fit to the free surface boundary 

conditions in assessing the validity of the wave theories (all 

theories satisfled the bottom boundary condition). He produced a 

graphical representation of the suitability of the various wave 

theories for different water conditions (see fig. 4.3 , • He 

recommended the first order cnoidal, the linear, the Stokes fifth 

order, and the stream function wave theories over the ranges 

shown in fig. 4.3. 

Le Mehaute (1976) presented a graphical representation to 

illustrate the suitability of various wave theories (fig. 4.4). 

His graphs include the different orders of the Stokes wave theory 

which is well suited for use in validating experimental wave 

flume work. He stated, however, that his graph was not based on 

any quantitative investigation. 

A summary of the works on the compar ison of var ious wave theor ies 

on both theoretical and experimental bases was given by Sarpkaya 

and Isaacson (1981). They concluded that the cnoidal and Stokes 

fifth order wave theories were most suitable for shallow and deep 

waters respectLvely because they are relatively simple compared 

with modern theories and yet produce sufficient accuracy for most 

eng ineer ing purposes. 



- 8 -

Fenton (1979) recommended the use of the conida1 wave theory for 

wave lengths smaller than eight times the water depth, and the 

use of Stokes fifth order wave theory for other situations. 

From the foregoing discussion, it can be concluded that the 

Stokes fifth order wave theory is ideal for offshore 

applications. It produces the most realistic wave surface profile 

which is a crucial factor in designing oil production platforms. 

In the computer program which was developed in the present work, 

the Stokes theories of any order (1-5) and linear wave theory can 

be adopted. 

2.2.2- Interaction of Wave am CUrrent Motion 

In real sea comitions, a body is usually situated in a flow am 

subjected to currents as well as waves. If the current is in the 

same direction as the wave propagation, the wave length increases 

and its amplitude decreases. If the current opposes the wave, the 

wave gets shorter am steeper. Combinations of waves arrl currents 

may be treated in two ways: a) their interaction is ignored and 

the current is simply superimposed on the wave, or b) the 

interaction is considered and the problem is treated as a complex 

fluid-mechanics phenomeno~ 

There are a few experimental studies on wave and current 

interaction and a review of these works has been given by 

Sarpkaya and Isaacson (1981). A summary of the mathematical 

formulations of these interactions was presented by Peregine 

(1976) • 
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Method (a) is usually adopted in offshore engineering to take 

care of the presence of current action together with waves. The 

water particle possess an acceleration due to wave motion which 

has two convective components as well as the local one. The first 

convective component is a multiple of the horizontal particle 

velocity due to the wave action and the other component is a 

multiple of the velocity due to the current. For txx3ies with drag 

dominant loading,the inertia force due to convective acceleration 

components becomes very small, so the convective romponents of 

the acceleration are usually ignored. 

There are different opinions concerning the estimation of the 

particle velocities due to wave and current motions above still 

water level for calculating the forces on offshore structures 

such as risers. It is well known that the wave theories 

overpredict the velocities above the still water level but this 

is considered as an extra margin of safety in practice. The 

current velocity is usually measured up to the still water level 

and to adjust this velocity with wave profile, the following 

different arbitrary techniques are used in industry: 

a, by appropriate mathematical techniques the current 

velocity profile is either fattened and ronsidered just 

down to the wave trough, or made thinner and 

ronsidered up to the wave crest. 

b) the current velocity is considered up to the wave 

profile. In the case of the wave profile being above 

the still water level, the current velocity is 

considered to be ronstant and has a value equal to that 

at the still water level. 

Method (b) was adopted for this study. 
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2.3 - Drag-Inertia Hydrodynamic Forces on Cylimers 

2.3.1 - Hydrodynamic Forces on a Vertical Rigid Cylimer 

In uniform steady flow the hydrodynamic force on a cylinder is 

caused by drag action. This force which is called drag force, is 

a combination of viscous and pressure drag. The viscous or skin 

friction is caused by the shear stress of the water on the body. 

The pressure drag which is also termed form drag is the result of 

a pressure differential caused by boundary layer growth around 

the surface of the cylinder and its eventual separation from the 

body. 

There would be an analytical solution for the drag force if the 

momentum equation of fluid mechanics could be solved in the 

boundary layer, but there are no such solutions available so far. 

Therefore an empir ical drag coefficient "Cd" is introduced to 

define the drag force. Delany and Sorensey (1953) performed 

experimental work on a smooth cylinder in uniform steady flow. 

They showed that Cd had a value of 1.2 in subcritical flow and 

had a minimum value of 0.25 in critical flow. 

In evaluating hydrodynamic forces on a body in waves, the size of 

the body compared with the wave length is very important. When 

the ratio of the cylinder diameter to the wave length is smaller 

than 0.2, the body is categorized as a small body. The term small 

body implies that the wave flow remains unaffected by the 

presence of the body, that is, the cylinder does not diffract the 

wave flow. To calculate the wave forces on large bodies which 
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disturb the incident wave, a diffraction theory such as that due 

to MacCamyand Fuchs 11954) is used. The estimation of the forces 

on large bodies is outside the scope of the present study, and is 

not significant for the design of practical riser systems. 

Wave loading on small bodies is calculated by using the well 

known Morison equation. Morison et. al. 41950) proposed that the 

total force per unit length on a vertical cylinder is the linear 

sum of two components. The first component is a drag force 

proportional to the square of the horizontal fluid velocity. The 

drag force is represented by an empirical drag coefficient, Cd' 

having substantially the same value as for steady flow 

situations. The second component is an inertia force proportional 

to the horizontal component of the fluid acceleration and having 

an empirical inertia coefficient,~. The inertia force itself 

is made up of two parts1 one is the pressure of the undisturbed 

incident wave in the absence of the body which is usually known 

as the Froude-Krylov force and the other is the pressure 

disturbance due to the presence of the body which accounts for 

the added mass effect due to the flow of the water around the 

cylinder. Therefore the inertia coefficient was defined as 

"l+added mass coefficient". The force coefficients were obtained 

experimentally. 

The Morison equation has been criticised for representing the 

force on a body in time-dependent separated flow by a linear­

quadratic sum. Numerous attempts have been made either to improve 

the equation or to present a new equation but so far no success 

has been achieved. In spite of its theoretical drawbacks, the 

Morison equation has been used satisfactorily in the offshore 
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industry, perhaps with due regard to the various uncertainties 

and safety factors that are incorporated in design. Moreover, 

considerable amounts of experimental work have been carried out 

to evaluate the force coefficients, Cd and Cm, since the 

formulation of the Morison equation. 

The Morison equation force coefficients are fluid velocity and 

body geometry dependent. '!he reason for this is that their values 

must take care of the complex interaction between fluid and 

structure and also between drag and inertia forces. Generally, 

three experimental methods are used to evaluate Cd and Cm values 

as follows: 

I - placing body in a controlled wave flume 

2 - placing body in a harmonic oscillating flow 

3 - oscillating body in still water. 

Schemes 2 and 3 provide a flow with simple harmonic velocity. 

Since in waves the velocity is depth dependent, the horizontal 

flow simulated py schemes 2 and 3 can be considered as the wave 

motion around a particular section of a vertical cylinder, while 

bearing in mind that the Morison equation expresses the sectional 

force on the cylinder in terms of the horizontal fluid velocity 

and acceleration at that section. The advantage of the second and 

third methods over the first method is that the high Reynolds 

numbers 1Re) whim exist in practice can be simulated. 
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It is common practice to use constant average values of Cd and Cm 

for the whole cycle of the wave rather than local values. There 

are several analytical methods to calculate the average values of 

Cd and Cm for the exper imentally measured forces of the whole. 

cycle as follows: 

I - Fourier-averaging technique - the force is expressed 

in fourier series form and compared with the actual 

measured force to obtain the average values of Cd and 

~. 

2 - Least squares method - the equations for Cd and Cm 

are obtained by using the least squares method to 

minimize the errors between the measured and the 

calculated forces. 

3 - The values of the coefficients obtained by considering 

the measured and the calculated forces at the points 

corresponding to the maximum velocity and the maximum 

acceleration. 

4 - Wr 1 t ing the Mor ison equation once for the max imum 

force and once for the zero force with the 

corresponding velocities and accelerations. 

5 - calculating Cd over a short wave segment in which the 

drag force is dominant, and Cm over a short segment in 

which the inertia force is dominant. 

Morison et. al. used the 3rd averaging scheme to calculate the 

average values of Cd and Cm for a pile in small amplitude waves. 

The first and second averaging schemes are the most commonly used 

experimental methods to evaluate Cd and ~. 
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A comprehensive summary of data on force coefficients has been 

presented by the British Ship Research Association (1976) and 

also by Hogben et. ale (1977). A few of the important papers will 

be discussed here. 

Keulegan and Carpenter (1958) performed experiments with 

cylinders held horizontally at the node of a standing wave. They 

correlated the fourier average values of the coefficients with 

their period number. Their period number, which is known as the 

Keulegan Carpenter number, KC, expresses the ratio of the 

particle motion amplitude to the cylinder diameter. The authors 

produced graphs for the variation of Cd and Cm with KC. They 

found a critical range .at which Cd and Cm reached their maximum 

and minimum values respectively at KC values around 15. In this 

range the correlation between the measured force and that 

predicted by the Morison equation was poor. The Fourier-averaging 

technique was used to obtain the values of Cd and Cm. A residual 

force function which contained the higher harmonics of Cd and Cm 

was introduced. This residual force was larger for the critical 

range of KC numbers. These higher harmonics of Cd and Cm were 

ignored in the evaluation of the Cd and Cm values. The authors 

also did not find any variation of Cd and Cm with Reynolds 

number, Re, and thus concluded that the coeff ic ients were 

independent of Re. 

The Keulegan-Carpenter number is an important factor in assessing 

the relative magnitudes of the drag and inertia forces. At low 

values of KC, 95 percent of the forces exerted on the body are 

inertial, whilst for intermediate values of KC (i.e. in the 

critical region), the inertia and drag forces are equally 
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important. Finally at high values of Ke, 95 percent of the forces 

are of drag type. 

Sarpkaya (1976a) performed a series of experiments on horizontal 

cylinders in uniform oscillatory flow by means of a 'u' tube 

water tunnel. He introduced another nondimensional variable, 

known as the frequency parameter, e, which is the ratio of Re to 

KC. He showed the dependence of the force coefficients on KC as 

well as Re. However, the coefficients were found to be 

independent of Re for values below about 20,000, and this may 

explain the conclusion reached by Keulegan and Carpenter H958). 

The results for the coefficients were the same as the Keulgan and 

carpenter values. 

Sarpkaya and Isaacson (1981) presented the third harmonic of the 

residual force function, which was introduced by Keulegan and 

Carpenter, as the third term in the Morison equation. They 

expressed the coefficient of the new term in terms of t 2-Cm ,. 

The authors demonstrated that by using the new modified Morison 

equation, the r.m.s. value of the residual forces, which was 

presented previously by Sarpkaya (1976a), reduced by 60 percent 

in the critical range of KC numbers. They suggested that 

additional work along these lines may lead to a substantial 

improvement of the Morison equation in the critical region of KC 

nuni:>ers. 

Garrison et. ale (1977) performed a series of tests in which a 

cylinder was oscillated through stillwater. After making 

allowance for the lack of the Froude-Krylov force in the inertia 

term for this type of flow, the variations of Cd and em with Re 

were foum to be almost the same as Sarpkaya's results (1976a). 
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Susbielles et. ale (1971) carried out some experimental work on a 

vertical cylinder in a wave tank. They used the harmonic flow 

results of Keulegan and Carpenter to calculate the local wave 

forces on the cylinder and obtained agreement with measured 

forces to within 10 percent. 

Chakrabarti (1980a), performed a series of tests on a small 

section of fixed vertical cylinder in a wave flume. The wave 

kinematics were calculated using the fifth order stream-function 

wave theory and the least squares averaging technique was used to 

calculate the average values of Cd and Cm. The values of the 

force coeff icients were in good agreement with those obta ined 

from the simple harmonic flow by Sarpkaya (1976a) for values of 

KC < 40, except that for values of KC < 15 the values of Cm were 

higher. Since low and limited values of Re were used in the 

experiment, the authors could not establish the variation of the 

force coefficients with Re. The total force on the cylinder was 

measured am compared with the calculated one. In calculatLng the 

total force along the cylinder, the force coefficients were taken 

as functLons of KC numbers and allowed to vary over the length of 

the cylinder. In each case the values for the coeff icients were 

obtained from the mean Cd and Cm curves produced in the 

exper iment. 

sarpkaya (1976a and 1976b) presented comprehens ive values of Cd 

and Cm for a w ide range of Re and KC numbers for both smooth and 

rough cylinders. Several exper iments were carr ied out on 

prototype cylinder models in the following sea enviroments: 

Davenport on The Pacific coast, the Gulf of Mexico, Bass Straits 

in Australia, Christchurch Bay, and the B.P. Forties Field 
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production platform in the North Sea. The different methods used 

to analyse the measured random forces were comprehensively 

discussed by Pearcey and Bishop (1979) and will not be discussed 

here. The data obtained from these experiments for the force 

coefficients showed a very wide scatter. 

Water particle movements in waves are orbital and their 

velocities decay exponentially with distance away from the free­

surface. This means that the values of Re arxl Ke, and hence also 

Cd and Cm' are continuously dlanging along a vertical cylirxler in 

waves. Bearing in mirxl that in moving away from the free surface 

the hydrodynamic forces on a cylirxler reduce almost in proportion 

to the square of the velocity decay, the change in the values of 

the force coefficients will not be very important. In natural 

flows there are current flows as well as wave flows so the 

Reynolds numbers for such flows are very high. Hence the 

variation of the force coefficients at high Re numbers are very 

small, and the changes in the coefficients with depth can be 

neglected. For this reason, in most riser programs constant 

values for the force coefficients, which are obtained from 

available tables corresponding to the maximum values of Re and KC 

along the riser, are used. The maximum values of Re and KC along 

the riser usually occur near the free surface. 

2.3.2- Hydrodynamic Forces on a IOJgh CyUmer 

In a marine environment, growths such as barnacles, shell fish, 

and seaweeds can quickly build up on most surfaces, causing 

change in the roughness of the riser as well as its diameter, 

which should be taken into consideration in design. Heaf (1979) 
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presented a comprehensive discussion of the effect of marine 

growth on the performance of fixed offshore platforms in The 

North Sea. 

Several researchers such as Fage and Worsap (1929), Roshko 

41961), Achenbach ~1971), Szechengi 41975), and Mi11er~1977) 

studied drag force on a rough cylinder in steady flow at high Re 

numbers. Achenbach 11971) demonstrated that increas ing roughness 

of a cylinder in steady uniform flow reduced the critical Re at 

which flow separation occurs. The graph of Cd versus Re was 

presented. The results showed that at the subcritica1 region, the 

roughness of the cylinder didn't effect the values of Cd. For 

higher values of Re, the values of Cd remained constant and 

greater than the value of Cd corresponding to the postcritical 

region for a smooth cylinder. 

Sarpkaya (l976b) carr ied out experiments to observe the effects 

of roughness of cylinders in an oscillating flow. The results for 

Cd showed a great increase in value compared with those obtained 

for a smooth cylinder. 

Sarpkaya and Isaacson (1981) presented graphs of Cd and Cm versus 

roughness Reynolds number for constant values of KC and several 

different roughness heights. The Roughness Reynolds number was 

defined as having the same formulation as Re except that the 

cylinder diameter term was replaced by the roughness height. They 

suggested that these graphs accounting for the effective diameter 

of rough cylinders might be used to calculate the forces on the 

cylinders. 
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Matten (1977) performed tests on cylinders in small amplitude 

waves at the National Maritime Institute in order to observe the 

effect of roughness by comparing the ratio of the total force 

acting on a rough and a smooth cylinder situated some distance 

apart. He worked mainly in the critical region for KC but his 

results for Cd were so scattered that he was unable to present 

any drag or inertia coefficient data. Matten did, however, show 

that for a rough vertical cylinder in waves, the transition 

occurred at relatively very low Re whilst this was not the 

situation in uniform steady flow. He stated that the reason for 

early transition was the existence of axial flow along the 

cylinder which was caused by the orbital movement of water 

particles. His evidence for this statement was the unpublished 

results of an experiment cited by Miller 41977) for a horizontal 

cylinder, identical to his own, placed parallel to the wave crest 

but just beneath the water surface so that it always remained 

submerged. The results of the experiment showed that transition 

did not occur at low values of Re, as it did for a vertical 

cylinder. This observation indicated that the reason for the 

early transition on the vertical cylinder could only be the 

existence of the axial flow. , 

Gaston and Ohmart (1979) placed a smooth and a roughened 

cylinder, one at a time, in a big wave tank under conditions of 

regular and random waves. 'Ihe in-line moment was measured and the 

water particle kinematics were predicted from stream function 

wave theory. Then by us ing the leas t-squares averag ing method, 

the force coefficients were determined. Comparison of the results 

Showed that the drag coefficient was significantly affected by 

the roughness. In fact, the change from the smooth to the rough 
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surface approximately doubled the drag coefficient. Further 

increase in the roughness had a lesser effect than the initial 

change from a smooth to the first rough cylinder. They suggested 

some values for Cd and Cm for a smooth cylinder and for three 

cylinders each having a different roughness height. 

Garrison 1(1980) criticized the results obtained by Sarpkaya 

'11976b) for Cd at high Re numbers for rough cylinders. He 

contradicted Sarpkaya's statement that Cd became constant and 

independent of Re for Re > 1.5 x 105. Garr ison oscilla ted rough 

cylinders in still water and the results of the experiment showed 

a sharp decrease in Cd values for Re > 2 x 105. Similar results 

were obtained from ocean tests on a structure which were 

presented by Dean and Agaard (1970), and Kim and Hibbard (1975). 

Garrison suggested that the reason Sarpkaya obtained high values 

of Cd for rough cylinders in flows with high Re, (which were not 

revealed in real sea tests), might be caused by wake blockage in 

the test U-tube. That is, when the cylinder passed back through 

its own wake the drag force on the cylinder was affected by the 

presence of the wake, and the stronger the wake, the greater was 

the drag force generated. The water tunnel walls tended to limit 

the inflow of the surrounding fluid into the wake, so causing a 

reduced rate of wake dissipation. Thus at successive cycles the 

wake was pronounced more than it would have been if the fluid was 

of an infinite extent. 
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2.3.3- Hydrodynamic Forces on an Inclined Cyli.rder 

There are inclined members as well as vertical members in 

offshore structures, such as inclined bracing members in a 

jacket-type platform and catenary flexible risers in a semi­

submersible platform, etc. Little experimental work has been 

carried out in this area and more research work is required in 

order to understand the consequence of cylinder orientation. 

However, four methods have been established to modify the terms 

in the Morison equation to calculate the forces exerted on 

inclined cylinders. An appraisal of these schemes, reported in 

detail by Wade and Dwyer (1976), is given in the following 

section. 

In the Morison equation, the horizontal components of velocity 

and acceleration of water particles due to waves which are normal 

to the axis of a vertical cylinder, are used to calculate the 

forces on the cylinder. Thus the force on the cylinder is 

considered to be solely a function of the normal component of the 

hydrodynamic force. The tangential component which is 

proportional to the vertical velocity of the water particles is 

ignored. Borgman '<1958) used the same analogy and showed how the 

Morison equation for a vertical cylinder in waves could be 

extended to the case of a generally oriented cylinder. He derived 

expressions for velocity and acceleration normal to the axis of 

the inclined cylinder in terms of the horizontal and vertical 

velocities and accelerations of water particles. 

The above assumption was partially verified by Pode U950). He 

performed a series of experiments at The David Model Basin to 
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determine hydrodynamic forces on an inclined cable under steady 

flow condition. The normal and tangential forces on the cable 

were measured. The results showed that the measured normal force 

could be represented by the usual drag force equation using the 

velocity component normal to the cable axis. It was also shown 

that the measured tangential force which was created by the skin 

friction action had a magnitude less than two percent of the 

measured normal force, so it could be ignored. This normal 

velocity concept was confirmed by Watson (1953) when carrying out 

a series of tow ing tests on submerged wooden dow Is. Glermy (1966) 

also confirmed this concept by placing an inclined cylinder in a 

steady flow. 

Chakrabarti et. al. (1975,1977) carried out a series of 

experiments with a small inclined tube in a wave flume and 

calculated the force coefficients by using Borgman's extended 

Mor ison equation. They presented graphs of force coeff ic ients 

versus Keulegan-carpenter number which were calculated by using 

the maximum normal velocity. The above mentioned graphs were 

produced for different orientation angles of the cylinder. The 

authors also presented a second set of graphs for the ratio of 

the normal force over the in-line force versus KC. They 

suggested that the in-line force on an inclined cylinder may be 

calculated using the first set of graphs whlch gives the force 

coefficients. Then the normal force on the cyllnder may be 

calculated by multipling the in-line force by the ratio obtained 

from the second set of graphs. The values of Re used by the 

authors were limited to the subcritical range so they could not 

establish the dependence of the force coefficients on Re values. 
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A comparison of the results for the force coefficients obtained 

by Chakrabarti et al. 41977)' for an inclined cylinder with those 

obtained by Sarpkaya ~1976) for a vertical cylinder in 

harmonically oscillating flow was presented by Sarpkaya and 

Isaccson (1981). The comparison showed that the values of the 

force coefficients at the corresponding KC and frequency 

parameter, for both cases, were nearly identical. '!be authors thus 

suggested that the forces on an inclined cylinder might be 

calculated using Borgman1s extended Morison equation with the 

force coefficients obtained from the graphs presented Py Sarpkaya 

(1976a)' or the available tables for a vertical cylinder. In 

obtaining the force coefficients, the maximum Re and KC values 

were calculated using the maximum normal velocity of the water 

particles. Hogben et. ale ~ 1977)', and a publication by the 

British Ship Research Association (1976), also suggested the same 

procedure. 

2.3.4- Hydrodynamic Forces on a Flexible CyUn:1er 

When a cylinder is flexible, its motion will not be negligible. 

Therefore a complex fluid-structure interaction effect needs to 

be considered in the analysis. Very little work has been carried 

out in this area and research is required in order to understand 

the effect of the cylinder flexibility on its response in 

currents and waves. 

Two schemes have been suggested to calculate the forces on 

flexible risers. The first one is the "Relative Velocity" method 

which uses a modified form of the Morison equation. This is 
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constructed by replacing the kinematics in the original Morison 

equation ~ the vectorial difference between the kinematics of 

the incident fluid flow and the resulting kinematics of the 

cylinder. The force coefficients Cd and Cm may be found from the 

data available for rigid cylinders provided that the values of 

the corresponding Reynolds number and Keu1egan-carpenter number 

are calculated using the maximum relative velocity rather than 

purely the velocity of the water particles. This procedure was 

introduced by Mathotra and Penzien (1970) and Berge and Penzien 

H974) • 

The second method is the "independent flow field " model which is 

based on the superposition of two independent flow fields, a far 

field which is unaffected by the cylinder motion and a near field 

resulting from the cylinder motion. The force equation for each 

flow field is expressed in the same form as the Morison equation 

with each of them having its own individual force coefficients. 

The force coefficients for the first flow have the same values 

as for a rigid cylinder in the same flow, and for the second 

flow they have the same value as a rigid cylinder vibrated in 

still water. This scheme was originally postulated and 

investigated for a steady flow condition py Moe and Verley (1978, 

1980) and subsequently extended to a wave flow situation by Laya 

and Connor (1981). 

Laya and Connor (1981) carried out a numerical comparison between 

the "relative velocity" model and the "independent flow field" 

model using a vertical flexible pile as the test case. They 

concluded that the independent flow field model always predicted 

a lower hydrodynamic drag damping than the relative velocity 
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model. The difference in the damp ing value increased with the 

wave height. Therefore in extreme sea conditions which are 

assumed in the design of members of an offshore structure, the 

applicability of the independent flow field model diminishes. The 

results obtained from both models in the inertia dominant region, 

in which the drag forces were neglig ible, were in close 

agreement. Finally for intermediate sea conditions which must be 

considered for fatigue life design, the response predicted by the 

two models was significantly different. The authors believed that 

the relative velocity model predicted a higher hydrodynamic 

damping than the actual one. They therefore suggested that the 

applicability of the two models needed to be established by 

further experimental work. The relative velocity method, which is 

also known as the mod if ied Modson equation, is usually used in 

industry. 

2.3.5- Hydrodynamic Forces on Cyllmer Groups 

Numerous studies have been carried out to evaluate the 

hydrodynamic forces on a group of cylinders in order to 

understand the real response of offshore structures such as 

production risers, piles, etc. due to fluid loading. This complex 

problem was looked at initially by observing the flow 

interference between only two cylinders in various arrangements. 

Zdravkovich (1977) presented a careful review of flow 

interference between two identical cylinders in various 

arrangements in steady flow. The arrangement of the cylinders was 

categor ized into three types: 
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at tandem arrangement - one cylinder behind the other 

bl side-by-side arrangement - two cylinders placed beside 

each other so that the line joining the axes of the 

cylinders was normal to the flow direction 

cl staggered arrangement - The staggered angle was 

defined as the angle between the flow and the line 

joining the centres of the two cylinders. 

In tandem arrangement, it was shown experimentally that there was 

a critical spacing ratio for the two cylinders of 3.5. The 

spacing ratio was defined as the ratio of the distance between 

the centres of the cylinders to the diameter of the cylinder. 

Drag forces on the cylinders were affected strongly by the tandem 

arrangement and were sensitive to the spacing of the cylinders. 

Below the critical spacing, there was strong interference between 

the cylinders. The upstream cylinder contributed most of the drag 

force; with the drag force on the downstream cylinder being 

reduced partly by shielding and partly by the occurance of 

earl ier trans i tion in the boundary layers due to turbulance. At 

the critical spacing ratio, the flow became discontinuous and, 

for the upstream cylinder, this caused a jump in the drag 

coefficient, commencement of vortex shedding, and a drop in the 

base pressure. For the downstream cylinder, the base am the side 

pressure coefficients dropped, the vortex shedding frequency 

jumped, and the gap pressure and drag coefficient increased 

suddenly. Beyond the critical spacing, the downstream cylinder 

had a negligible effect on the upstream cylinder. But, even for 

large spacing, the downstream cylinder was affected by the 

presence of the upstream cylinder and had a smaller drag 
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coefficient than that for a single cylinder. In general, for any 

spacing, the total drag force on the group was smaller than the 

sum of the drag forces on the two isolated cylinders. 

In the side-by-side arrangement, the interference between the two 

cylinders was negligible for a spacing ratio greater than 5. As 

the spacing ratio was decreased from 5 to 2.2, the drag 

coefficient was slightly increased. Below the spacing ratio of 

2.2, the flow became bistable and this bistable nature of the 

flow between the cylinders resulted in two values of drag 

coefficient rather than a single one. This phenomenon was caused 

~ mutual interference of the vortices on the adjacent sides of 

the vortex streets. The sum of the bistable high and low drag 

coefficients was often less than twice the drag coefficient for 

an isolated cylinder. 

In the staggered arangements, the drag force on the upstream or 

downstream cylinders was smaller than that on an isolated 

cylinder, except when the orientation of the cylinders approached 

the side-by-side arrangement. 

It is important to note that in the above cases resonance of the 

cylinders was avoided. 

Horner (1965) stated that in steady subcritical flow, the 

interaction between two cylinders in the side-by-side and tandem 

arrangements could be neglected if the spacing ratios were 

respectively more than three or four. 

The interaction effects among three cylinders in an array were 

reported by Dalton and Szabo 1/1976). They observed a strong 

mutual interference between the middle and downstream cylinders 
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but only a partial interaction between the upstream and 

downstream cylinders. The drag forces on the middle and 

downstream cylinders were smaller and more sensitive to 

orientation of the flow direction than the drag on the upstream 

cylinder. 

Mair and Maull (1971) measured the forces on a cylinder in a 

group of similar cylinders as a function of the flow direction. 

They showed that over a small range of flow angle relative to the 

array, the force acting on the cylinder could change by nearly 

100 percent. 

L cPKen et. al. (1979) performed a ser ies of tests on a group of 

cylinders which had a core cylinder surrounded by smaller 

cylinders in a ring arrangement. They towed the cylinders in a 

uniform steady flow at the Danish Hydraulic Institute .DHI). The 

results showed that the upstream cylinders experienced more drag 

than the downstream cylinders. The most shielded cylinders 

induced the smallest drag forces. A graphical representation"of 

the relative distributions of the maximum drag force on the 

cylinders was presented. 

It is worthwhile to mention that methods such as the method of 

images which was used by Dalton et ale (1971) and Yamamoto 

(1976), and the linear potential theory (including wave 

diffraction theory) which was used by Spring et ale (1974. and 

Chakrabarti (1978) to calculate the inertia coefficient for a 

group of cylinders, are only applicable to cylinders in 

unseparated flows •. These methods are therefore irrelevant to a 

separated flow condition which is the one that exists around 
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cylinders in natural sea conditions. 

Relatively few studies have been carried out on a group of 

cylinders in oscillating flow. In this type of flow, the 

interaction between cylinders depends on, a) the spacing ratio 

(as in the case of steady flow) and b) the amplitude of the 

oscillating flow which is proportional to the Keulegan-carpenter 

number. If the amplitude of the oscillating flow is very large, 

the flow condition will be similar to the steady flow and so 

dependence of the interaction between the cylinders on the 

Keulegan-Carpenter number can be ignored. At the other extreme, 

when the amplitude of the flow is very small the interaction of 

the cylinders can be completely neglected 'fHeideman and Sarpkaya 

(1985) ). 

Sarpkaya (1980) placed two cylinders in various arrangements and 

spacings in his u-shaped water tunnel to observe the effects of 

interaction between the cylinders in oscillating flow. He 

concluded that in the side-by-side arrangement, for a spacing 

ratio greater than 2.5, the cylinders responded as if they were 

independent. The results for the drag coefficient in tandem 

arrangement were in conformity with those reported by 

Zdravkovich '11977) for cylinders in steady flow. 

Bushnell (1977) carried out a series of tests on two cylinders 

as well as arrays of 3x3 cylinders in oscillating flow. In both 

cases the spacing ratio for the cylinders was 3, and the observed 

drag forces decreased substantially on the shielded cylinders. 

The oscillating flow was applied at 0, 20, and 40 degrees to the 

centre line of the array, and it was found that interaction 

between the cylinders increased with increasing obliqueness of 
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the flow. Bushnell suggested that if a high Reynolds number 

single cylinder drag coefficient was applied throughout in 

design, the array would have a margin of safety against maximum 

drag loading due to interference effects. 

Sarpkaya (1979) performed experiments on two groups of 15 outer 

and one central cylinders in oscillating flow. He introduced 

expressions for the mass and drag coefficients of the tube-bundle 

using the Fourier averaging method. The expressions were fouoo to 

be functions of the Keulegan-Carpenter number, KC. He also showed 

that the force coefficients were independent of the Reynolds 

number. In general, the total drag on the group was 10 percent 

less than the sum of the drag forces on the individual cylinders. 

The inertia coefficient was considerably larger than that 

predicted by the potential theory and this indicated that some 

fluid mass was entrapped within the bundle as a consequence of 

"solidification" induced by the group configuration. 

Ross (1959) placed one cylinder on each side of a test cylinder 

in a large wave tank. The results indicated that the wave force 

increased significantly only when the spacing ratio between two 

cylinders was less than 2. 

Chakrabarti (1979) placed an array of 2,3,and 5 cylinders in a 

separate series of tests in a wave tank. All the cylinders were 

equally spaced in an array, and various spacing ratios and flow 

directions were used in the experiments. The total force on the 

cylinders plus the forces on I-foot sections of two adjacent 

cylinders were measured. The maximum non-dimensional forces as 

functions of KC, relative spacing, and the flow angle were 
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presented. It was stated that interaction among the cylinders 

virtually disappeared at a spacing ratio above 5. 

Verley and Every (1977, conducted a series of tests on flexible 

cylinders in a wave tank to observe the effect of flexibility on 

the cylinder responses. They measured the additional response of 

a flexible cylinder compared with that of a similar rigid 

cylinder. This was achieved b¥ subtracting the measured response 

of the rig id cylinder from that measured for the flexible 

cylinder (placed next to the rigid cylinder in the tank,. 

Experiments were also carried out on two flexible cylinders in 

both side-b¥-side and tandem arrangements, and on a group of 12 

flexible cylinders in a 3x4 matrix with a spacing ratio of 2. The 

results indicated that the type of interaction effects for the 

flexible cylinder groups was the same as that for similarly 

arranged rig id cylinders. 

Beynet and Frase (1982, carried out large scale wave loading 

experiments on four catenary risers which were used as the 

production risers in the Cadlao field. The most important 

observation was that the parallel risers did not tangle or impact 

with each other even under the severest test conditions and large 

surface buoy motions. 

In common platform design practice, the flow interference in a 

group of cylinders is usually ignored and each cylinder is 

modelled as an isolated cylinder. The total force on a group is 

obta ined by add ing the forces on each isola ted cyl inder of the 

group (as suggested b¥ Bushnell (1977)). This isolated modelling 

was ver if ied in an ocean test conducted by Beckmann and Merw in 

(1979, on a 3x7 rectangular matrix of cylinders with spacing 
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ratios of 3.6 in one direction and 5.4 in the other direction. 

The validity of the modelling was also confirmed in laboratory 

tests by Hansen and Knudson (1980) using a group of roughened 

cylinders in an oscillatory flow. Heideman and Sarpkaya H985) 

carried out experiments on rough cylinders in oscillatory flow 

and concluded that the isolated model was good for arrays with 

spacing ratios greater than 5. Sea test observations made by 

Beckmann and Merwin '11979) suggested a reduction of this ratio to 

3.6. When the spacing ratio of the cylinders in a group is 

smaller than this limit, the interaction between cylinders is 

found to be very strong and neglect of the interference effects 

would therefore be unrealistic; the interaction between closely 

spaced cylinders causing a significant decrement in the total 

force on the group. Conversely, it is possible that vortices in 

the wake of upstream cylinders may excite a dynamic response of 

the downstream cylinders, leading to an effective increase in the 

forces computed from the Morison equation. In this case only 

reliable experiments can guide the designer 'ISarpkaya and 

Issaacson (1981) ). 

2.3.6. - Hydrodynamic Forces along a Cyltmer 

The Morison equation gives only the forces normal to the 

longitudinal axis of a cylinder and assumes that the forces along 

the member are negligible. This is valid if the body has only a 

small skin friction value, which is true for most offshore 

structures with clean surfaces. The accumulation of marine growth 

on cylinders in real sea conditions may, however, invalidate this 

assumption. In such cases the forces along a cylinder should be 
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evaluated either by experimental means or by assuming values for 

the skin friction coefficient which are usually approximately 

one tenth of the drag coefficient (Hallam et ale (1978) ). The 

skin friction coefficient depends on the Reynolds number and the 

relative roughness height of the cylinder. For given values of Re 

and relative roughness height of a cylinder the skin friction 

coefficient can be obtained from the Moody·s diagram (see Massey 

H979H. The forces along the cylinder are included in the 

present work. 

2.4- Hydrodynamic Loadings Induced by vortex-Shedding on 

Cylinders Placed in the Plane of the Wave am current Motion 

When a fluid flows around a stationary cylinder, it forms a 

boundary layer around the cylinder surface. This boundary layer 

is laminar in the upstream portion of the cylinder surface but 

it becomes turbulent at some point on the downstream surface. At 

this point, the turbulent boundary layer breaks away from the 

surface and forms two separate shear layers which, eventually, 

roll into vortices and form the cylinder wake. Each time a vortex 

is shed, it alters the pressure distribution around the 

cylinder surface. Therefore, the cylinder experiences a time 

varying force due to vortex-shedding in addition to that 

calculated by the Morison equation. The forces induced by this 

vortex-shedding effect act in a direction normal to the plane of 

the cylinder in contrast to those calculated from the Morison 

equation. 
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2.4.1- Forces on a Rigid CylWer In:luced by Vortex-SheddiBJ in 

Steady Flow ~No Vibration) 

A great deal of research has been carried out to understand the 

phenomenon of vortex shedding from a stiffly mounted cylinder in 

steady flow. Strouhal (1878) discovered the relation between the 

vortex shedding frequency and the flow velocity. He made the 

frequency dimensionless by dividing it by the flow velocity and 

multiplying by the diameter of the cylinder. This dimensionless 

frequency is known as the Strouhal number. 

Although the Strouhal number was considered to be a constant for 

a wide range of velocities, Rayleigh (1896) showed that it is a 

function of the Reynolds number. Since then, various studies have 

been carried out to define the relationship between the Strouhal 

number and various Reynolds number regions and this has been 

reviewed by Narris (1964) and Sarpkaya and Isaacson (1981). 

Bishop and Hassan 1(1964) measured the forces caused by vortex­

shedding on a vertical rigid cylinder in steady flow. They 

concluded that the vortex-shedding caused two types of forces as 

follows: 

1) Lift force (transverse force) - this force was 

produced in a direction normal to the flow direction 

and it had a frequency equal to the vortex-shedding 

frequency (fv'. 

2) In-line force - this force was in the flow direction 

and had a frequency of twice fv. It was, however, one 

order of magnitude smaller than the lift force. 
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The fact that the magnitude of the in-line force is relatively 

small was also substantiated by Mcgrego U957), and Fung 11960). 

2.4.2- Vortex-Excited Vibration of Cylimers in Steady Flow 

When a cylinder is flexible or flexibly mounted, the force due to 

vortex shedding can cause the cylinder to vibrate at or near to 

one of its natural frequencies. This phenomenon is called lock-on 

or synchronization and it occurs when the frequency of the 

exciting force coincides with one of the natural frequencies of 

the cylinder. The oscillation of the cylinder at lock-on 

situations strengthens the vortices, by extracting energy from 

the fluid, and increases the correlation length of the vibration 

along the cylinder. 

Work in this field was given great impute as a result of the 

vibration observed during construction of the Immingham Jetty in 

1968-1969 '(see Sainsbury and King (1971) ). Tidal currents caused 

the supporting piles to vibrate in the direction of the fluid 

flow. As a result, Wooton (1972) carried out full scale tests at 

the Immingharn site, and King 1(1974) performed model tests in a 

laboratory. 

King used two parameters, reduced velocity ( Vr = V / fn.O ,. and 

reduced damping (c5 r = 2m c5 / p 0 2 ) to describe the vibration of 

the cylinder due to vortex shedding. 

Where V= Velocity of water particles in the in-line direction 

fn = natural frequency of cylinder 
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D = diameter of cylinder 

m = mass of cylinder and its contents also including 

added mass per unit length of cylinder 

o = logarithmic decrement of cylinder damping 

p = density of fluid 

Oscillation in the in-line direction occurred for Vr <3.8. This 

happened within two regions. The first one was in the range of 

1.25< Vr <2.5 , with maximum amplitude occurring at Vr ~ 2.1. The 

second region was in the range 2.7< Vr <3.8 with maximum 

amplitude at Vr ~ 3.2. The first instability region was 

accompanied by symmetric vortex shedding and the second region 

by alternate vortex shedding. It was shown that the in-line 

excitation was suppressed for 15 r > 1.8. Transverse excitation 

occurred for Vr >4.5 by alternate vortex shedding with maximum 

amplitude falling within the range of 6.5< Vr <8. No excitation 

in the transverse direction was observed when 15 r >10. 

A great amount of work has been carried out to study the 

oscillations of flexible cylinders in steady flow. A review of 

this work was given by King 1~1977) and Sarpkaya n979). 

Skop et. a1. (1977) presented a design chart to calculate the 

inline steady drag amplification due to resonant vortex-excited 

oscillation. 

Hallam et. a1. (1978) also presented a design chart to calculate 

the response of a single cylinder or array of nearly rigid 

cylinders due to vortex shedding. They gave the condition for 

suppressing the vortex-excited oscillation of the group as 

equivalent to cr > 30. 



- 37 -

In general, the step-by-step procedure of these design charts 

was: a) compute/measure vibration properties of the cylinder 

(na tural frequency, normal modes, modal scaling factor etc.) : b) 

compute strouhal frequencies and test for critical velocities at 

which the resonanceS occur, Vcrit.' (in-line and cross-flow) : 

c), test for reduced damping, ~r. If the flow velocity is greater 

than Vcr it. and the reduced damping is smaller than the limiting 

value given above, then oscillation is predicted to occur. 

Subsequent operations are: 1- compute the maximum amplitude of 

the oscillation, 2- calculate the increment of the steady drag 

force in the in-line direction due to vortex Shedding using the 

given relationship with previously computed amplitude, 3- compute 

the new stresses and check for the critical streSSeS and the 

fatigue life. For great detail with some practical examples, 

refer to the paper presented by Griffin (1981). 

The correlation lengths of a vortex along a cylinder depends on 

Re, turbulence, aspect ratio (L/D) , and surface roughness. 

Typical values for a stationary cylinder were summarised by King 

1(1977). As was mentioned before, in the lock-on condition the 

correlation length increases. This increment was measured by 

Toebes (1969) and Ramberg and Griffin (1976). 

Several mathematical oscillatory models have been presented to 

simulate the results obtained from experiments. These models do 

not include the analysis of the flow field and the fluid­

mechanics justification arguments but they have the ability to 

produce results which are qualitatively similar to those obtained 

experimentally. A general review of existing mathematical models 

is giVen by Parkinson ~1974) and Sarpkaya and Isaacson (1981). 
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The idea that vortex shedding vibration might be modelled by a 

simple non-linear oscillator equation was suggested by Birknoff 

and Zapantonello (1957), and reinforced by Bishop and Hassan 

~1964) through their observation of an oscillating cylinder in a 

uniform flow. This idea was pursued by Hartlen and Currie (1970). 

They used a Van der Pol-type non-linear oscillator for the lift 

force, coupled to the cylinder motion by a linear dependence on 

cylinder velocity. The model had three dimensionless parameters; 

0, a, and b. aand a were Van der Pol coefficients and b was the 

interaction parameter between the fluid and the cylinder. These 

coefficients were obtained experimentally and they varied from 

one experiment to another. 

Other models were given by Skop and Griffin (1973) and Iwan and 

Blevins '(1974). Initial studies were conducted using Iwan and 

Blevins model for vortex shedding by Nordgren (1982). But, in 

general, the wake oscillator models have not been developed to 

the stage where they can represent a practical design procedure 

I(Griffin and Pamberg a982». 

2.4.3- Forces on Rigid Cylinders due to vortex-Shedding in 

Waves 

Many investigations have been carried out in order to understand 

the characteristics of the forces induced by'vortex shedding in 

oscillatory flows (simple harmonic oscillating flows or waves). A 

summary of these studies was given by Sarpkaya and Isaacson 

(1981). The studies indicated that the induced forces are 

dependent on three parameters, a) Keulegan carpenter number, b) 
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Reynolds number, cl wave depth parameter (khl, where k = wave 

number, and h = water depth. The fluctuating transverse force 

(lift forcel can be of simllar magnitude to the flow induced In­

line force. The predominant frequency of the lift force is 

usually a multiple of the wave frequency and mainly depends on KC 

number. 

Bldde (19711' measured extensively the lift forces on a vertical 

cylinder in waves. He concluded that the lift forces were 

dependent on KC and that the lift frequency was twice the wave 

frequency for KC values up to 20. B idde's work was extended to 
I 

higher values of KC by Wiegel and Delmonte (19721, who found that 

the lift force frequency was three times the wave frequency for 

these higher KC numbers. 

Isaacson and Maull (19761 performed experiments on rigid vertical 

cylinders in waves. They presented a relationship between lift 

force coefficient and surface KC as a function of wave depth 

parameter (Khl'o 

Sarpkaya (1976a) measured the lift forces acting on smooth and 

rough cylinders for a wide range of Re and KC and relative 

roughness. He presented a relationship between the lift 

coefficient and KC as a function of his frequency parameter 46= 

Re/KCI. 

Lift force on a rig id incl ined cyl inder was measured by 

Chakrabarti et. ale (19771', who used the velocity component 

normal to the cylinder to derive the relationship between lift 

coefficient and KC. 
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There have been few studies concerning the effect of surface 

roughness of a cylinder on vortex-excited oscillation. Sarpkaya 

(1979c) measured the total transverse force on a sand-roughened 

oscillating cylinder and compared it with a similar smooth 

cylinder. A Substantial increase in the total force coefficient 

was observed due to the roughness. Additional study, however, is 

required to determine which components of the total transverse 

force are amplified due to the roughness. The components of the 

transverse force are: a) the exciting force component, by which 

energy is transferred to the cylinder, b) the reaction, or 

damping force, which is exactly out-of-phase with the velocity, 

c) the added mass force, which is exactly out-of-phase with the 

acceleration of the cylinder, and d) the flow-induced inertia 

force It Griffin H98l) ). 

2.4.4- Vortex-Excited Vibration of Flexible Cylir¥lers in Waves 

The dynamic responses of flexible or flexibly mounted cylinders 

in oscillating flows are not sufficiently understood. This is 

mainly due to the complexity of the phenomena, because of a)' the 

oscillatory nature of the incident flow, b) variation of the 

incident flow with depth in waves (possessing a vertical velocity 

component) • 

Sarpkaya and Rajabi (1979) studied the transverse response of an 

elastically-mounted cylinder in harmonic flow. They attempted to 

analyse their experimental results in the same manner as for a 

steady flow but encountered too much scatter in these results. 

Their main observation was that the response of an oscillating 
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cylinder was necessarily dependent on the dynamics of the same 

flow past a similar fixed cylinder. 

They introduced a response parameter as l1> (= m ~ / p D2 CLO)' 

where m = actual mass of cylinder per unit length, E; = damping 

ratio, CLO = lift coefficient for the similar fixed cylinder, p = 

fluid density, and D = diameter of the cylinder. Their results 

indicated the following: 

al' lock-on occured when the reduced velocity, Vr (= 

Vm/fn D) was about 5.5, where Vm = maximum water 

particle velocity in the drag-ineria force 

direction, and fn = natural frequency of cylinder. 

In this condition the lift force was nearly double 

that for a fixed cylinder. 

b~ the relative amplitude of oscillation was a 

unique function of ~. 

Zedan et. a1. (1980) studied experimentally the transverse 

oscillation of a cantilevered cylinder in waves. The results 

showed that the lock-on occured at a reduced velocity, Vr , 

somewhere between 5.5 and 7.5 depending on wave depth parameter, 

Kh. Zedan and Rajabi (1981) used the results of Zedan et. a1. 

'11980) and established the characteristics of the lift force in 

that experiment. They compared the results with those obtained by 

Sarpkaya and Rajabi 11979), in harmonic flow. Their results showed 

the fOllow ing: 

a) the maximum response was in good agreement with 

those obtained from the harmonic flow 
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b) the amplitude of the lift coefficient at lock-on 

condition was magnified by a factor of 1.6 to 1.9 (for 

different tests) compared with those of a stiffly 

mounted cylinder in harmonic flow with the same KC and 

Re numbers 

c) the correlation of the lift coefficint with only KC 

was poor because it also depended strongly on Vr • 

The lift amplification parameter, CL/CLO was shown in harmonic 

flow by Sarpkaya 111981b) and Rajabi 1(1979), and in waves by Zedan 

* and Rajabi (1981)', to be a function of KC / KC which is 

b 'l * * * '1 o V10US y equal to Vr / Vr • Where KC am Vr were respect1ve y 

equal to KC and Vr at perfect lock-on conditions. 

Rajabi et. al. ~1984) presented a vortex-shedding model for a 

vertical flexible riser in waves and currents based on the above 

discussion. They obtained the lift amplifications along a riser 

by calculating the values of Vr/Vr* and using the graphs of 

CL/CLo. Then the transverse oscillation amplitude was computed. 

From this amplitude, and using the available relationships from 

steady flow, the amplification of the drag coefficient in the in­

line direction due to the vortex-shedding was calculated. 

2.5 Forces Induced by Vortex-Shedding on Randomly Or iented 

Cylimers 

If the cylinder is not in the plane of the wave and current 

motion, the lift force on the cylinder does not lie in the 

transverse direction but acts in a direction normal to the plane 

constructed by the cylinder and drag-inertia force on the 
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cylinder. The response of the cylinder in this direction is 

purely associated with the vortex-shedding. The vortex-shedding 

forces on the cylinder are applied and the maximum response of 

the cylinder is obtained in this direction. This response is then 

used to evaluate the magnification factor for drag coefficient in 

the drag-inertia force. 

The recent vortex-shedding model suggested by Rajabi et. ale 

'4l984) is exterrled in the present study to the case of a flexible 

riser oriented in a random manner. 



FLEXIBU: RISERS 

3.1 - Introduction 

- 44 -

0IAPl'ER 3 

Floating drilling and production in deep waters has become 

increasingly important in recent years. Marine risers are 

considered key components for such operations. The importance of 

production risers occurs because output is reduced or curtailed 

when malfunctions of these risers occur. Loss of integrity of the 

riser system may also mean fouling of the environment. 

In general there are two alternative riser structural systems. 

One is a rigid type, the other is the flexible type. The two 

concepts are quite different in both structural behaviour and 

configuration. 

The rigid riser consists of a central export line with the 

individual risers clamped externally around this line. This type 

of riser will not be discussed in this thesis. 

There are three basic types of flexible riser, as shown in figure 

3.1: 

a - free hanging - this system consists simply of a free hanging 

pipe running to the bottom in a catenary shape. 
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b - single catenary - this system consists of two parts. The 

lower part is nearly vertical when connecting to a base 

plate on the bottom and is tensioned by a floating sub-buoy. 

The upper part hangs in a catenary curve with one side 

connected to the sub-buoy and the other connected to the 

floating platform deck. The sub-buoy system consists of a 

cylindrical tank (buoy) and an interconnected framework 

forming a cradle, figure 3.2. Alternatively the sub-buoy 

system can be replaced by a series of buoyant collars which 

are installed along a certain length of a riser, figure 9.4. 

c - double catenary shape - this system consists of a flexible 

pipe suspended from the deck of the platform and running in 

a catenary curve to the sub-buoy, from which it also runs in 

a catenary curve to the bottom. The sub-buoy is anchored to 

a base plate on the sea-bed by means of a chain. 

Alternatively the sub-buoy system can be replaced by buoyant 

collars, figure 9.6. 

In this chapter a typical flexible riser cross-section is 

described, and the practical implications for the analysis of 

flexible risers is subsequently presented. 

3.2- Flexible Pipe Cross Section 

The pipe cross-section is basically composed of steel and 

plastic. Steel components ensure the mechanical performance and 

plastic components render the flexible pipe leak proof. The 

typical riser cross-section used for deep water applications 

includes five principal layers, the characteristics and 
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dimensions of which are determined according to the requirements 

of the service involved. From the inside to the outside the 

flexible line is composed of, (fig 3.3): 

An interlocked stainless steel carcass (layer)' which 

provides resistance to crushing and prevents deformation of 

the pipe even when subjected to a fairly short bending 

radius or various inside or outside pressure and tensile 

stresses. 

An internal thermoplastic sheath (layer 2) and external 

thermoplastic sheath (layer 5) which render the riser leak 

proof (internally and externally) and corrosion resistan~ 

The major qualities required for these sheaths are : a) 

Their flexibility to allow the spooling of the line, b) 

Their physico chemical resistance to the fluid transported 

in the temperature operating range. 

An interlocked zeta spiral (layer 3)', called the pressure 

armour, which ensures binding of the inner sheaths and the 

integrity of the internal pressure, while reclining and 

unreclining the pipe. It is made of shaped steel which 

allows the interlocking of each spiral with its neighbour. 

Two cross-armoured steel wire layers (layer 4) which provide 

resistance to pulling and longnitudal stresses induced by 

internal pressure. In order to acheive the flexibility of 

the line, they are installed in an helicoidal pattern and to 

avoid any torsion effects, the two layers are wound in 

opposite directions. 



a) free hanging b) single catenary 

Fig 3.1 - Different shapes of flexible risers 

c) double catenary 

""" -..J 



- 48 -

BUOYANCY TANK 

SUPPORT ARCH 

Fig 3.2 - Cradle system 

1 • INI'ERLCX::KED CARCASS 
2. POLYAMIDE SHEATH 
3. PRESSURE ARMOR 
4. TENSILE ARM:>R 
5. POLYAMIDE SHEATH 

Fig 3.3 - Flexible riser cross-section 
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3.3- BackgrouOO to the Analysis of Flexible Risers 

The analysis of a riser is usually achieved by subdividing the 

riser into sets of discrete elements and the system of partial 

differential equations, describing the variables along the pipe, 

are replaced by equations of motion of the discrete nodal points 

in each global co-ordinate direction. The most successful 

discrete element t~chniques are the lumped mass (finite 

difference) scheme and the Finite Element Scheme. 

The lumped Mass Scheme involves lumping all the effects of mass, 

external forces and internal reactions at a finite number of 

points ("nodes") along the pipe. By applying the equations of 

dynamic equilibrium and continuity to each mass, a set of 

discrete equations of motion is derived. The sections of 

inextensible pipe between nodes are considered to be either 

straight lines without mass (figure 3.4a/ walton and Polachek 

1959,1960), Dominguez U97l), and Dominguez and Smith H972)), or 

Springs without mass (figure 3.4b/ Paquette and Henderson 

'11965)' ,Liu and Drelicharz 0969), Crist 11970), and Hicks and 

Clark (1972). 

(a)' - Straight line element (b)' - Spring element 

Figure - 3.4 - Type of elements used in Finite difference scheme 
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The finite Element Scheme utilises interpolation functions to 

describe the behaviour of a given variable internal to the 

element in terms of the displacement of the nodes defining the 

element. The equations of motion for a single element are 

obtained by applying the interpolation functions to kinematic 

relations (stress/strain) and the equations of dynamic 

equilibrium. Various models tased on the Finite Element Scheme 

have been presented using either linear or higher order shape 

functions (figure 3.5a,b/Strandhagen and Thomas (1963), Paul and 

Soler~1972), Morgan (1970), Leonard and Recker 0972), Fyllina 

and Wold (1979), Larsen and Fylling (1982), and Lindahl and 

Sjoberg (1983». 

·(a) - Linear Shape function (b) - Higher order Shape function 

Figure 3.5 - Type of elements used in finite element scheme 

H.J.J. Van den Boom (1985) compared the results of a developed 

computer algorithm based on the lumped mass method with results 

of harmonic oscillation tests for various cables. He concluded 

that the lumped mass method provides economic predictions of 

dynamic line motions and tensions which are sufficiently accurate 

for engineering applications. 

The three most common numerical methods used to solve the 

equations of motion of riser elements subjected to time varying 

hydrodynamic forces are: 
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1 - Frequency dorna in scheme 

2 - A deterministic time domain scheme 

3 - A nondeterministic random vibration analysis 

In the frequency domain method, (Burke ~1973), Young et. al. 

'11977), and Lawrence et.al. (1980), the total motion of the 

riser is expanded as the sum of components. By linearizing the 

differential equations, and expanding the forcing function in a 

Fourier Series, a closed form algebraic solution is achieved. The 

frequency domain computations are much faster than the time 

domain equations but the disadvantage of this method is that the 

non-linear drag force (the relative velocity square term in 

Morison's equation) must be linearized. If this awroximation is 

not chosen carefully, large inaccuracies result. The unknown 

effect of drag linearization is the major drawback of this method 

(Sarpkaya (198lc)). 

In the time domain dynamic method (Gardner and Kotch (1976), and 

Macnamara et. al. 1(1981)), discrete time steps are used to 

integrate the equations of motion which leads to the time history 

solutio~ This method allows calculation of the nonlinear drag on 

the riser and accounts for relative riser motion and dynamics. 

The disadvantage of the time domain method, however, is that it 

usually requires a lot of computer time. Time integration is 

carried out by either explicit or implicit algorithms. A 

comparison between explicit and implicit algorithms has been 

given by Soltanahmadi 1~1985). 
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In implicit schemes, the displacements at time t + f:. tare 

obtained using the equilibrium equations at time t + f:.t. 

Hydrodynamic forces on flexible risers are riser displacement 

dependent, and therefore iteration is required at each time 

incerement. The method may be termed a mixed method since it 

employs incrementation with equilibrium iterations to correct the 

riser displacements to some specified level of convergence. 

Implicit schemes have the advantage that, for linear systems, 

they are unconditionally stable for large time steps. But they 

have the major disadvantage of requiring iteration and assembly 

of the overall structural stiffness at each time step. 

In Explicit schemes, the displacement at time t + f:. t is obtained 

using the equilibrium equation at time, t. Therefore no iteration 

is required within each time step for the solution. The main 

disadvantage of such schemes is that they are only conditionally 

stable, so that small time steps must be adopted to prevent 

instability in the solution. 

The analysis of risers is carried out either by using a Finite 

Element structural idealization with an implicit or explicit 

algorithm, or by using a Lumped Mass Scheme with an explicit 

algorithm (finite difference). 

Finally, the third numerical method, nondeterministic random 

vibration scheme '(Tucker and Mutha U973)) can use either 

frequency domain or time domain solutions but instead of regular 

waves, random waves are used. In this method, the random wave 

spectrum is input to the riser model, and the riser response is 

output in the form of a spectrum. 
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A number of non-linear computer codes using the numerical 

methods discussed above have been developed in recent years to 

analyse flexible risers. In spite of this, however, the issue is 

far from resolved IISarpkaya a98lc) ). 

API 111977) compared existing computer programs for a standard set 

of riser problems. The comparison showed that different oomputer 

programs gave a considerable scatter in the resulting stresses. 

It was not certain why the different programs gave such a 

variation in results, rut the mechanisms of riser behaviour are 

such that there is ample room for different interpretations of 

how the physical effects should be formulated and how the 

hydrodynamic loading on the riser should be assessed. Therefore, 

oomparing one particular program with other available programs is 

not necessarily a measure of how accurate it is. However, it may 

give a general guide as to whether any significant deviation from 

other programs is due to programming errors or due to a more 

refined formulation of certain important effects (Natvig and 

Torset 111985) ). The only objective way to validate riser 

analysis programs is to compare computed results with 

experimental measurements. 

From the foregoing, it can be concluded that more research work 

is required to develop a riser analysis computer program which 

produces reliable results with reasonable economy. It is 

essential that every aspect of the oomputed results including the 

assesment of hydrodynamic loading on the riser and the physical 

performance of the riser should be validated experimentally. This 

was the aim of this project. 
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ClJAPl'ER 4 

THEORETICAL <DtFOTATICE AND ASSESSMEm' OF HYDImYNAHIC 

UW>DCS CE FIEXIBLE RI~ 

4.1 - Introduction 

This chapter describes the theory of basic fluid hydrodynamics 

and presents the derivation of the Linear and Stokes wave 

theories. It then considers the theories used to evaluate the 

drag-inertia and Vortex-Shedding induced hydrodynamic forces on a 

flexible riser due to wave and current motions. Finally, it deals 

with the assessment of these forces on the riser. 
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4.2 - Fluid ~ics 

4.2.1. - Derlviation of Basic Relationships fot-In<x>mpressible, 

Irrotational and Inviscid Fluid Flow 

The object is to obtain relationships between parameters such as 

velocities, accelerations and pressures in a moving fluid. 

Consider a small rectangular element of real fluid ABCD in 2-

dimensiona.1 flow, with particle velocity components of U am V in 

the x and y directions at position A, and pressure, p, at the 

centre of the element: 
h 

P+ OP6.Y/ lU ay 2, _ -1 aU )U 
u-+ --. t..'( _ - u + -- A"( + -- ~x 

~'( ,- - --e- I o'{ ~x 

y 

6.Y 

oV~t / I iN -au v +'by'6: Die f v'\-- A Y + - AX' 
.1 I lY ~x 

p_£E6.X I P I p+~6.X 
ax 2 I i I ax 2 

i L - '"2)U 
V ---- V ... _AX . ~~ 

P _ 2.~ ~'!. -;;- 7J U A X 
/ ay 2 ~x 

~----------~--------------------~ x 
6.X 

Figure 4.1. - Fluid element 

Kinematics 

As far as the velocities are concerned, Figure 4.1 can be 

considered as the sum of four distinct types of motions. These 

are: 
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1 - Linear translation 
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Figure 4.2. - Components of fluid element rrotion 
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Note the sum of the velocities at each corner of figure 4.2 

is the same as that in figure 4.1. 

The change of area (or volume)' of the element ABeD can only 

result from the linear deformation component. But the 

incompressible fluid assumption (i.e, no volume change) requires 

that this component is zero. 

au av 
Thus, + = 0 (4.1) 

ax ay 

This is the continuity equation. 

The vorticity is generated by shear stress and is defined as: 

.. av au 
w =-

ax ay 

which is twice the angular velocity. The irrotationality 

assumption of the fluid requires the vorticity to be zero. 

av au 
Thus, = 0 (4.2) 

ax aY 

For irrotational flows, there is a scalar function, the velocity 

potential ~ ,tX, Y, t), which contains all the information about 

the kinematics of the motion. particle velocities are derived 

from it as follows: 

acp acp 
u = - ,V = (4.3) 

ax ay 

Substituting ~4.3) into equation H.I), the Laplace equation is 

obtained: 

+ --- = 0 (4.4) 
ax2 Cly2 
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For incompressible flows, there is a second rather similar Scalar 

function, the stream function 1Ji I(X, Y, t), from which the 

particle velocities can be derived as follows: 

U=-,V=- (4.5) 
ay ax 

Substituting equation (4.5) into equation (4.~ gives: 

a2
1Ji a2

1Ji 

+ - = 0 ax2 ay2 
Dynamics 

Newton1s second law is used to obtain the dYtllmic relationship. 

with reference to Figure 4.1 and resolving the net force on the 

element per unit area (or volume)' due to the pressure gradients 

and gravity in the x and y directions: 

ap ah* 
x -eg -

aX aX 
(4.6 ) 

ap ah* 
y .. - -eg -

aY aY 

where Pis the fluid density and h* is a co-ordinate measured 

vertically upwards. 



- 59 -

The acceleration in each direction has local and convective 

components. Using Newton's second law: 

au au au ap ah* 
x : P (- + u- + v -- ) = - -- - pg-

at ax ay ax ax 

av av av ap ah* 
(4.7) 

y : p (- + u-- + v -- ) =----pg-
at ax ay ay ay 

dividing equation (4.7) byp, Euler's equation is obtained: 

au au au 1 ap ah* 
x · -- + U +V-=----g-• 

at ax ay p ax ax 
(4.8a) 

av av av 1 ap ah* 
y · - + u +v- = - - --<;I-· at ax ay p ay ay 

(4.8b) 

Note: if the fluid were not assumed as inviscid, an extra 

viscous force would have been added to the force terms in 

equation (4.8) which would have given the Navier-Stokes equation. 

a~ au 1 au2 

Substituting u = , u -- = - --- and 
ax ax 2 ax 

au av 1 av2 

v- =v-=- into equation (4.8a) 
ay ax 2 ax 

all terms become derivatives with respect to x. Integration with 

respect to X introduces an arbitrary function of Y and t. 

Operating similarly on equation (4.8b) and comparing the results 

leads to Bernoulli's equation which expresses the requirement of 

conservation of energy for irrotational unsteady flow: 

a~ 1 
+ -

at 2 

P 
(U

2 + V2 
) + 9 h* + - = f (t) 

p 
(4.9) 
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In equation (4.9) f(t), is an unknown function of time. Since any 

Ji(t) dt can be incorporated into 41IIX, Y, t), without modifying 
o 

the derived velocities, the right hand side of equation (4.9) can 

normally be set to zero without loss of generality. 

acp 1 
Thus, - +-

at 2 

P 
(U2 + v2 

) + g h* + - = 0 
p 

4.3 - wave 'J.'beory 

(4.10) 

The range of suitability of the different wave theories for 

different situations was given by Dean 111970) as Figure 4.3, and 

by Le Mehante (1976) as figure 4.4. The latter includes the 

different orders of Stokes wave theory, and is particularly 

useful for experimental work in a wave flume. 

In off-shore situations which usually involve deep water waves, 

Stokes 5th order or alternatively linear wave theories are 

generally adopted. One reason for preferring the use of Stokes 

5th order wave theory is its prediction of the most realistic 

wave crest height which is a critical factor in the design of 

semi-subermsible platforms. 

The definition of deep or shallow water waves is indicated by the 

range of Kh values, where K = wave number and h = depth of still 

water, as follows: 

Kh > 1T for deep water waves 

Kh < 2!.for shallow water waves 
10 
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4.3.1 - Li.necir (Airy, Wave Theory 
s.--

L' -~-----7"f-----L-~:---..---
x 

L 

Figure 4.5 
Specifications for a wave train 

h 

A particular wave train is generally described by the quantities 

H, T and h (Figure 4.5), and the objective of any wave theory is 

to determine celerity (wave speed) and hence the wave length eL) 

and a description of water particle kinematics through the 

velocity potential $(or stream function '" in the case of stream 

function wave theory). 

To determine the velocity potential (~'I, a solution of Laplace's 

equation of continuity (equation ~4.41), subject to a number of 

ooundary conditions, is required. The boundary conditions are: 

(1) The bottom boundary condition - it is assumed that the 

bottom surface is impermeable. This means that the vertical 

velocity must be zero at the bottom CY=-h), thus: 

a~ 
- = 0 at Y=-h (4.11) 
ay 

(2) The free surface boundary conditions (y=n) ~ 

(a) Kinematic condition - the surface moves with the 

fluid, and thus the vertical velocity of the particles 

on the surface is equal to that of the surface. 
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The vertical velocity of the water particles at the free surface 

I' Y= n ). =1!.. 
I 3Y • dn an ax 
The surface vertical velocity ( = - + - -

dt at ax at 

an ax 
Thus, -=-+-- (4.12) 

ay at ax at 

ax a4> 
But - = U =-, and substituting this 

£1 =£!J. +£!J. £1 
~Y at ax ax 

into equation (4.12): 

at Y = " (X,t) (4.13) 

or 

Clt ClX 

(b) Dynamic condition - it is assumed that the pressure at 

the surface is atmospheric so the term P in equation 

1(4.10) (which is the unsteady-state Bernoulli equation, 

can be neglected. Thus equation (4.10, at the free 

surface becomes: 

a4> 1 
- + - (U2 + V2 

) + 9 " = 0 
at 2 

at Y = n (X, t) 

1 a4> 1 a4> 2 34> 2 
- - + ((-) + (-) ) +" = 0 at Y = n (X, t) (4.14) 
9 at 2g ax ay 

In linear (small amplitude) wave theory, the free surface 

boundary conditions are simplified. The slope of the free 

3'1 
surface, ax ' is assumed to be negligible for all values of X. 

It is also assumed that the water prticle velocities, * and ~~ , 

are small and hence their squares are negligible. The boundary 

conditions are further simplified by applying them at the still 

water level, Y=O, rather than at y= n which is the (unknown, free 

surface. Thus the linearised free surface boundary conditions 

can be written as: 
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a$ an 
= at Y = 0 (4.15) 

ay at 

1 a~ - - + n =0 at Y = 0 (4.16) 
9 at 

A solution for the velocity potential can be obtained as follows: 

~ (X, Y, t ) = f (X) • f (y) • f (t) (4.17) 

Differentiating equation ~4.l7) twice with respect to both X and 

Y and suhstituting into the continuity equation (equation (4.4», 

we obtain: 

ftl (X) • f (Y) • f (t) + f (X) • fll (y) • f (t) = 0 

ftl (X) fll (y) 
or -:-- (4.18) 

f(X) fey) 

Equation (4.18) is only possible if we have: 

ftl (X) ftl (Y) 

--=-- = constant = - K2 
f (X) f (y) 

Thus 

f"(X) + K2 f(X) = 0 (4.19) 

ftl(y) - K2 fey) = 0 (4.20) 

The solutions for equations (4.19) and (4.20) can be written as: 

f (X) = A sin K X + B cos K X (4.21 ) 

f (y) = C e K y + D e - K Y (4.22) 

From the periodic nature of the wave train, we have: 

f (t) = F sinwt + E cosut (4.23) 
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Considering equations (4.21)' and (4.23), we may write: 

f (x) • f (t) = A sin (KX - wt ) (4.24 ) 

substituting equations 1(4.22) and 1(4.24) into equation 114.17) 

gives: 

~ = ( C e K Y + D e - K Y ) A sin ( K x - wt ) (4.25) 

A solution for equation (4.25) can be obtained by considering the 

boundary equations. From the bottom boundary equation 14.11), we 

have: d~ 
~ =0 
dY 

at Y = - h 

and substituting for ~ from equation (4.25) J 

Ce-Kh - neKh = 0 

Thus, C = ne2Kh 

Substituting equation (4.26) into equation (4.25) and simplifying 

yields: 

thus, ~ = 2neKhA.Cosh K(h+Y). Sin H<X-ut) (4.26 ) 

Considering now the dynamic free surface boundary condition, 

equation 114.16)': 

1 ()~ 
g 3E + n = 0 at Y = 0 

and substituting for ~ from equation 1(4.26) J 
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n = 12ADlIEKh Cosh Kh. cos (KX-wt) 
<r 

(4.27) 

But the free surface in linear wave theory is given by 

H 
n = - cos (RX-wt) 

2 

Comparing equations (4.27) and (4.28) gives: 

H 1 
= - 2AOWeKh cosh Kh 

2 g 

thus, 2ADeKh = (~ • ~ / cosh ,(Kh, 
2 w 

(4.28) 

(4.29) 

Substituting equation (4.29) into equation (4.26), the equation 

for the ve1oci~ potential is obtained: 

H 
4> = g (4.30) 

2w cosh Kh 

The celerity of the wave can be obtained by considering the 

kinematic free surface boundary condition (equation 114.15)', 

= 

From equation I( 4.28) : 

HW 
- sin (KX - wt) 

2 

at Y = 0 

and from equation (4.30), !! at y=o is: 
ay 

(4.15) 
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a ~ HI< 
aY = g 2w tanh Kh sin(lQ{-Ult) 

d~ an 
therefore, aY =a-t at y = 0 gives: 

HI< Hw 
9 - tanh Kh =-

200 2 

Thus, w2 = gK tanh Kh 

21T L 21T 
but 00 = - = -. - = 0< 

TTL 

Then, C2 K2 = CgK) tanh Kh 

and thus, C2 = (g/l<) tanh Kh 

(4.31 ) 

Equation (4.31) is called the dispersion equation. 

The particle velocity and acceleration can be obtained by 

differentiation of equation (4.30). 

The horizontal particle velocity and acceleration are 

respectively: 

a~ 1TH COSH (KS) 
U = - = cos 0 (4.32) 

ax T Sinh (Kh) 

• au 21T2 H cosh (KS) U = -- sin 0 
at T2 sinh (Kh) 

(4.33) 

The vertical particle velocity and acceleration are respectively: 



- 68 -

34> 1TH Sinh (KS) sin e V = = 
ay T Sinh (Kh) 

(4.34) 

• aV 21T2H Sinh (KS) cos e V = -=--
at T2 Sihh (l<h) 

(4.35) 

where s = h+Y and e = KX - wt 

This wave theory gives the particle motion under a constant still 

water plane and it do~ not include any surface movements of the 

waves. This may be corrected by setting the particle motion in 

the wave crest equal to that at the still water plane, Figure 

4.6: 

W.L. 

fluid velOCity/acceleration prof 

, ... 

Figure 4.6. - Modification of the linear wave theory 
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4.3.2. - Stokes Finite Anplitude Wave 'Ibeory 

Derivation of the Stokes 5th order wave theory is presented and 

it is used to obtain any lower order (1 - 4) theory by 

eliminating the higher order coefficients. 

Recalling the boundary equations (4.11), (4.13) and (4.14): 

bottom boundary condition is: = a at Y = -h 44.11) 

free surface conditions: 

a¢ an an a¢ 
-=-+-. at Y = l'Il(X,t)' (4.13) 
ay a t ax ax 

1 a¢ 1 a¢ 2 a¢ 
+ - f Ie -) + 'f -) 2) + I( B + Y) = 0 

g at 2g ax aY 

at Y = n (X,t) (4.14) 

where B is a constant for a given wave, related to the total head. 

It is convenient to carry out the derivation with respect to a 

frame of reference moving with the waves, so that if the wave­

induced flow is W,V), the particle velocities seen on the moving 

reference frame are 'CU-C,V). By introducing the reference frame 

the dependence of Y with t disappears so that equations (4.13) 

and 1(4.14) become as equations 1(4.36) and 114.37) respectively): 

V= ~ (U - C) at Y = nIX) 
ax ' 

an v 
thus, = -- at Y = n ,(X) (4.36) 

ax u-c 



- 70 -

1 a f2j ~X 1 
- - - - + - w2 + v2) + 'I a + Tl) = 0 at y=Tl (X) 

g ax at 9 

thus, -2UC + w2 + v2)! = -29 '(8+ Tl) at Y = Tl'IX) 

The series form for ~, which satisfies the Laplace's equation 

bottom boundary equation 1(4.11" and symmetry requirements can be 

assumed as follows: 
C 

~ = - [( ""All + ,,3 Al3 + ,,5 AIS ' cosh KS sin e 
K 

+ p.2 A22 + ,,4 A24 ), cosh 2KS sin 2 e 

+ I( A3 A33 + ,,5 A3S' cosh 3KS sin 3 e 

+ (A4 A44 cosh 4KS sin 4 e 

+ I( AS Ass cosh SKS sin S e ] 

where A = Ka, a = wave amplitude, S = h+Y and e = KX- w t. The 

equation for n which satisfies the symmetry requirement can be 

assumed as: 

I 
Tl = - [ A cos e + ( ,,2 B22 + ,,4 B24 , cos 2 e 

K 

+ ( ,,3 B33 + ,,5 B3S ' cos 3 e 

+ ,,4 B44 cos 4 e + ,,5 BSS cos 5 e 44.39, 

Further, the following equations can be assumed for the wave 

celerity am the constant a ; 
2 

c2 = Co 11 + ,,2 C1 + ,,4 C2' 
K 

I 
8 = - c ,,2 C +).4 C , 

3 4 
K 

14.40) 

~4.4l) 

Where Co is the linear wave celerity as calculated in the linear 
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wave theory (Co = 
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g 
tanh Kh) 

K 

Any lower order of Stokes wave theory is obtained by setting the 

corresponding Aij and Bij coefficients to A with powers higher 

than the considered order equal to zero. For example for the 3rd 

order wave theory, Aij and Bij coefficients corresponding to A 4 

and A5 are set to zero. In addition C2 and C4 coefficients are 

set equal to zero except for the 5th order theory, and Cl and C3 

are set equal to zero only for the 1st and the 2nd order 

theories. 

In order to obtain Aij' Bij and Ci coefficients, equations 

1(4.38), 14.39), 1\4.40) and 1\4.41) should satisfy the free surface 

boundary conditions, equations (4.36) and (4.37). This is 

achieved by solving equations 1\4.36) am H.37) for the values of 

KKK a¢ K a¢ 
- U and - V, am setting these values equal to - - am -­
C C C ax c ax 

respectively at S= h + Y. Such a procedure results in two 

equations involving the unknown constants, powers of cos ~ and 

powers of A. These equations are grouped according to powers of A 

and sub-grouped according to powers of cos~. Since the 

equations must hold for any value of~, terms in each equation 

involving the same order of approximation (i.e. the same power of 

A) and the same power of cos ~ are set equal, this results in 20 

equations. These equations are solved to obtain the 20 constants 

Aij' Bij and Ci • The solution of these equations which is taken 

from the paper presented by Skjelberia and Hendrickson (1960) is 

presented in appendix A. 
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The values of K and A, which still have not been determined, can 

be obtained by using the given wave data (i.e. H, h, and T). The 

wave height (H) is equal to the difference between the crest and 

the trough heights, that is: 

H = n (9 = 0) - n (9 = 'If ) 

Thus, using equation !(4.39) and rearranging, we get: 

Also, using equation '(4.40) and the expression for Co
2, it can 

readily be shown that: 

(4.43) 

where La = 
21T' 

Equations (4.42) and (4.43) are solved numerically to obtain 

A am K. 

The horizontal particle velocity and acceleration can be obtained 

from the velocity potential equation, '(4.38): 

U = 3<jl = C 
ax 

5 
E 

n=1 
n 1/1' Cosh (nKS) Cos (n 9) 

n 

5 
U = ill =wC (E n2 1/I'Cosh (nKS) Sin (n9) 

at n=1 n 

(4.44) 

'14.45) 

The vertical particle velocity and acceleration are respectively: 

5 
V=2.t=C(E 

ay n=1 
n 1/1' Sinh (nKS) Sin (n9) 

n 
(4.46) 
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~ 5 av 
V= - = - wC ( 1: n2 1/I~Sinh (nKS) Cos (n9) i4.47) 

at n=1 

where w = 

1/1' 1 = 

1/Ii = 

1/1' 3 = 

1/14 = 

4.3.3-

2iT 

T 

AA11 + 
3 

A A13 + 
5 

A A15 
A2~2+ AltA24 

A 3A:33+ A5~5 

A'tA
44 , 1/1' 5 

= ASA 
55 

Numerical Solution of Ek}uations 

- - = 0 
gr2 

'f 4.48) 

44.42) ard44.43) 

U.49) 

To solve the simultaneous equations ,,4.49), Newton's iteration 

method is used. The method is commonly used for the solution of 

systems of non-linear algebraic equations. Its populari~ is due 

to the fact that it has better convergence properties than does 

the method of direct iteratio~ 

The basis for Newton's iteration method is a Taylor expansion for 

each of the n equations: 

fl (Xl + A xl' ••• ,~ + A ~) 

• 

• 
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If changes 6xi in the variable values bring the function fi close 

to a root, it will be assumed that the left sides of these 

equations are zero. Thus the problem reduces to that of finding 

the changes 6xi that achieve the goal. If all higher order terms 

are dropped, the problem becomes one of finding the roots of the 

linear system: 

afl afl afl 
• • • • • • • 

dXl dX2 . oX
n 

• • 
• • 
• • 

• • • • • • • • • • • 
aXl °Xn 

6xl 
t. x2 

• = 
• 

-fl 
-f2 

• 
• 
• 

-f n 

'f 4.51) 

In this system the partial derivative matrix and the vector on 

the right side can each be evaluated at any approximate set of 

solution waves. Once the t. Xi values are known, they may be 

applied as corrections to the initial approximations: 

• · • • • 
~ = xn + 6xn 

If all correction factors are sufficiently small, the process is 

term ina ted. If not, the new values are used as root 

approximation, and the process is repeated until a solution is 

found. 

The above iteration scheme is used to solve equations (4.49). 

The variables in 114.49) are ~ and K. But ~ is a function of K 

U.e. A = Ka). Thus substituting this into (4.49) and 

simplifying: 
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2 [ a + K2 a3 B33 + K4 a5 (B35 + B55) 1 -H = 0 

41T2 
4K tanh KhH1 + K2 a2 c1 + K4 a4 C2) - 2 = 0 

gr 

Comparing equations ~4.50) and i4.53),we have: 

f - 23 45 J 1 - 2 [a + K a B33 + K a fB35 + B55) - H 

'f 4.53) 

It is important to note that B33 , B35, B55 , C1 and C2 are 

functions of nKn. 

Equation (4.51) for this case becomes: 

af1 
Cla 

af2 

Cla 

But: 

-= 
aK 

-= 

-= 
ClK 

af1 l::,.a -f 
aK 1 

Clf2 l::,.K -f 
2 

aK 

[ 2 K a3 B33 + 4 K3 a5 (B35 + B55) + 

K2 a3 BI33 +K4 a5 1BI35 + B155) ] 

'ctanh Kh) (1 + K2 a2 Cl + K4 a4 C2) + 

h 
( 2 ) K U + K2 a2 C1 + K4 a4 C2) + 
cosh Kh 

(K tanh Kh) (2 Ka2 C1 + 4K3 a4 C
2 

+ K2 a2 C'1 + 

(4.55) 

U.56) 
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Equations for B33 , B35 , B55 , Cl' and C2 are given in appendix A. 

Prime 4 I), denotes differentiation with respect to K. 

The above relations are substituted into equation (4.55) which is 

then solved for !J.a and !J.K. The values obtained for !J.a arrl bK 

are then added to the previous values of a and K and the whole 

procedure is repeated. The iteration is terminated when the 

values of fl and f2 are less than 0.01. Initial values for a and 

K are set equal to those obtained from linear wave theory which, 

for deep water, are: 

K = 4 'lT2/gr2 

a = 8/2 1(4.57 ) 
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4.4- Hydrodynamic wading 

4.4.1.- Developing the Theory to Estimate the Drag-Inertia 

Hydrodynamic Loading on a Flexible Catenary Riser 

The following theory is obtained by combining the theories for 

estimating the hydrodynamic loading on a rigid cylinder with 

those for a flexible cylinder and an inclined cylinder. Equation 

,\4.58, which is known as the Morison equation is used to 

calculate the wave loading on a rigid cylinder with a ratio of 

diameter to wave length of less than 0.2 (i.e. small body). 

~ 
HFI = 0.5 P Cd A... Vw IVwl + P ~ V (4.58) 

~p dt 

where 

P = fluid density 

Cd = drag Coefficient 

Ap = projected frontal area 

Vw = velocity of ambient flow 

Sm = inertia Coefficient 

V = displaced volume of cylinder 

dVw --- = total acceleration 
dt 

Total acceleration is the sum of local acceleration and 

convective acceleration. But since the nature of the 

hydrodynamic forces on risers is drag dominant the convective 

acceleration term is ignored. 

For a vertical rigid circular cylinder, equation (4.58) can be 

expressed as: 
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or, wave loading per meter length is: 

HF = 0.5 p Cd 0 VwlVwl + 0.25 p '1n I 'If 02) Vw ~4.60) 

The Morison equation has been modified (as discussed in the 

review) to calculate wave loading on a flexible cylinder as 

follows: 

where 

HF = 0.5 P Cd 0 'IVw - X) IVw - Xl + 0.25 P Sn 'If 02 Vw -

- 0.25 P (en - 1) 'If 02 X 
~4.6l) 

• 
X = velocity of cylinder 

X = acceleration of cylinder 

In the presence of current flow as well as waves, the current 

velocity must be added to the velocity component in equation 

(4.61). So the general formof equation (4.61) becomes: 

HF = 0.5 P Cd 0 ~Vw + Vc - X) IVw + Vc - XI + 

+ 0.25 P Sn 'If 02 Vw - 0.25 p 'ISn - 1) 'If 02 X 
~4.62) 

In the absence of wave, current or structural movements, the 

corresponding Kinematic Components in equation (4.62) must be set 

to zero. 

Orag and inertia coefficients are obtained from experiments. 

They depend on Reynolds number, Re, Keulegan-Carpenter number, 

KC, and the roughness of the riser. 

where 
VD vr 

Re = and KC = -
" 0 

with V = velocity term in equation (4.62) 



D = cylinder diameter 

T = wave per iod 
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v = kinematic viscosity 

There are three types of experimental procedures to determine 

these coefficients: 

1. placing the cylinder in a wave flume which has the 

disadvantage of not producing high Reynolds numbers 

2. placing the cylinder in a one dimensional oscillating 

flow which is usually performed in a u-tube water 

tunnel. Its disadvantage is the lack of orbital 

movement of the water particles (i.e. there is no 

vertical component of particle movement,'. Hence, for a 

particular section along the cylinder only Cd and Cm 

can be determined 

3. oscillating the cylinder in still water which gives the 

same results for Cd and Cm as the above methods after 

correcting for the lack of the Froude-Krylor force, 

0.25 p • 1T if vw' in the inertia term. 

Four theories have been suggested to estimate hydrodynamic 

loading on inclined rigid cylinders. The most popular theory, 

suggested by Borgman (1958" is adopted in the current work. He 

used the same analogy as in the Morison equation for rigid 

vertical cylinders to derive a formula to calculate the 

hydrodynamic forces on inclined rigid cylinders. Morison et.al. 

(1958, assumed that the forces caused by waves on a vertical 

cylinder are dependent only on the velocity and acceleration of 

water particles normal to the cylinder longtudinal axis in the 

wave direction. Thus, applying an analogous assumption to an 
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inclined cylinder, the relevant water particle velocity and 

acceleration components are those normal to the cylinder axis in 

the direction defined by equation (4.69). 

It is important to note that the vertical Kinematics of water 

particles due to wave motion were ignored by Morison and et. al. 

This is reasonable if the cylinder is smooth so that tangential 

forces due to friction will be a magnitude smaller than normal 

forces. But if the cylinder is a rough cylinder, this assumption 

will not be true. Considering that in a marine environment, a 

riser is usually covered with growth such as barnacles, shell 

fish and seaweeds which create a rough surface, it is desirable 

to include tangential hydrodynamic forces in the anlaysis. 

Thus, equation (4.62) for an inclined flexible riser is: 
• • 

HFn = 0.5 P Cd 0 '\Vnw + Vnc - Xn' IVnw + Vnc - Xnl + 

+ 0.25 P Sm n 02 Vn - 0.25 P (Sm - 1) n 02 ~ 

• • 
HFt = 0.5 1TPllCtd 'IVtw + Vtc - Xt ) IVtw + Vtc - Xtl 

where HFn = normal hydrodynamic force per length 

HFt = tangential hydrodynamic force per length 

(4 .. 63) 

14.64) 

Subscript (n) denotes the component normal to the riser axis 

Subscript (t) denotes the component tangential to the riser 

axis. 

The normal and tangential components of the water particles and 

the structural velocities and accelerations are determined by 

conSidering a small element of riser in space, figure 4.7. 
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y 

i 

J-j 
z 

I 
I 

1/1 ~" I ~I 
x ,~ 

,,~ 
Figure 4.7 

Orientation of a riser element in space 

The velocity and acceleration of the water particle or riser can 

be written as: 

.. . . .... 
V = Vxi + Vzj + Vyk or V=CVx Vz, Vy) 

(4.65) 

'14.66) 

Let U be the unit vector along the cylinder. Then from figure 

4.7: 

U = Uxi + Uzj + Uy k = Sin flJ ~o~ 1/J i + Sin ¢ Sin III j + 

cos flJ k 14.67) 

Where i, j and k are unit vectors parallel to the x, z and y axis 

respectively. 

Thus, 

Ux = Sin ¢ cos 1/J 

Uz = Sin ¢ Sin III 

Uy = cos flJ 

(4.68) 

The velocity component normal to the cylinder axis can be 

obtained from elementary vector algebra and the direction cosine 

relation, U2 + U2 + U2 = 1 x z Y 



- 82 -

Vn = U x 'IV x U) = 
[Vx - Ux (Ux Vx + Uy Vy + Uz Vz) i + 

+ [Vz - Uz(Ux Vx + Uy Vy + Uz Vz} j + 

+ [Vy - Uy (Ux Vx + Uy Vy + Uz Vz ) k 

Equation ,.4.69) in matrix form is: 

• 

Thus: 

Vn = [Vnx' Vny ' VnzJ = [Vx Vy 

1 - u2
x - Ux Uy 

1 - U2 
Y - Uy Uz 

1 - U2 
z 

Vnx = Vx (1 - U2
x ) + Vy (- Ux Uy ) + Uz (- Ux Uz) 

Vny = Vxl-Ux Uy} + Vy 1(1 - u2 y) + Vz i(- Uy Uz ) 

Vnz = Vx (-Ux Uz ) + Vy (- Uy Uz ) + Vz (1 - u2
z ' 

On s irnplifying: 

And 

Vnx = Vx - Ux (Ux Vx + Uy Vy + Uz Vz ' 

Vny = Vy - Uy I(UX Vx + Uy Vy + Uz Vz ' 

Vnz = Vz - Uz (Ux Vx + Uy Vy + Uz Vz ) 

~4.69) 

(4.70) 

,(4.72) 

The component of the normal velocity in the xy plane which is the 

plane of wave motion can be written as: 

v, =/ v, 2 + V, 2 nxy nx ny '14.73) 

Equations similar to '\4.71), ,(4.72, and 1(4.73, can be derived for 

water particle or structural accelerations. And, since almost 

all wave theories are two-dimensional, the term Vz is set to 

zero. 

The velocity component tangential to the cylinder axis can be 

obtained simply as follows: 
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(4.74) 

Similarly a relation like ~4.74) can be written for the 

accelerations. 

4.4.2 - Forces Induced by Vortex-Shedding on a Randomly 

Oriented Flexible catenary Riser 

Vortex shedding induced by wave and current motion around a riser 

produces two types of oscillations in the riser: one in the drag­

inertia force and the other in the lift force directions. The 

former oscillation is a magnitude smaller than the latter and is 

also negligible compared with the response induced by the drag­

inertia forces calculated from the Morison equation, so is 

usually ignored. 

The response of flexible cylinders due to vortex-shedding in 

waves has not been extensively researched and almost all of the 

available riser programs lack the capacity to predict such 

responses of risers. 

On the basis of recent studies of vortex-shedding induced from a 

cantilever cylinder, as outlined in Chapter 2, Rajabi et. ale 

(1984) suggested a method to deal with vortex-shedding induced 

response of a vertical flexible riser due to wave and current 

flows. This model is extended in the present work, and verified 

experimentally, for a riser oriented in a random manner. 

The force induced by vortex-shedding per unit length, TFvor on a 

riser, is split into two parts: namely,a lift force, TFL' and a 

resisting force TF • r 
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Thus, 

TFvor (X, t) = TFL 'IX, t) - TFr (X, t) (4.75) 

The lift force is the sum of the components induced by wave am 

current motion. 

Initially the lift force due solely to wave motion is discussed. 

The lift force per unit length on a flexible cylinder due to 

wave motion is: 

where 

TFL ,~X, t) = 0.5 p D v2
nmax CLo (CL/CLo ) cos (w vt - 9) 

'14.76) 

CL/CLo ' the lift amplification parameter, = 
the ratio of the actual lift coefficient of the 

oscillating cylinder to that of a stationary cylinder 

in a hydrodynamically similar flow 

Wv = predominant circular lift frequency 

9 = a phase angle 

t = time 

Vnrnax = amplitude of water particle velocity induced by 

wave motion normal to the riser axis in the 

direction of the drag-inertia force. 

The resisting force generated as a result of the cylinder 

oscillation in the direction of the lift force is presented as a 

Morison type equation: 

+-
4 

•• 
('1n - 1) XL 

(4.77) 

Where XL 'IX, t) is the structural displacement in the direction 

of the lift and XL and iL are the corresponding velocity and 

acceleration respectively. 
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The direction of the lift force is normal to the plane containing 

the cylinder axis and the drag-inertia force vector. The 

structural displacement in the direction of the drag-inertia 

force vector is defined as follows: 

Xn = U x eX x U) 

where U is the unit vector along the riser axis, figure 4.7. 

This relation suggests that the three vectors, Xn' U, am 'IX x U) 

are orthogonal vectors. Therefore, the structural displacement 

in the direction of the lift force is: 

Thus 

XLx = Xz Uy - Xy U z 

XLz =-~ Uy + Xy Ux 

XLy = ~ Uz - Xz Ux 

~ 2 2 2 
XL ={ XLx + XLy + XLz 

The conponent of XL in the xy plane can be written as: 

(4.78a) 

(4.78b) 

(4.78c) 

In equation '14.76), the values of CLo, wv' e am (CyCLo ) must 

be determined in order to calculate the lift force, TFL• 

CLot which is a function of both the Reynolds and the Keu1egan­

Carpenter numbers, is obtained from a graph such as that 

presented by Sarpkaya U976d) and reproduced in figure 4.8. 
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Figure 4.8 - Variation of lift coefficient with the Reynolds 

and the Keulegan-carpenter numbers for rigid cylinders 

where 
Vrunax .0 

~= 

" 14.79) 

Vnmax • T 
KC = 

0 
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Vnmax = amplitude of water particle velocity normal to riser 

axis in the direction of the drag-inertia force. 

" 

D 

T 

= kinematic viscosity (10-6 for water) 

= diameter of cylinder 

= wave period 

The lift frequency, fL, is assumed to be equal to the dominant 

vortex-shedding frequency, fv. The ratio of fvlfw' where fw is 

the wave frequency, is obtained from the following graph produced 

by Hallam et. ale '11978), figure 1~4.9) 
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Figure 4.9 - The frequency of vortex-shedding in waves (two-

dimensional results from Sarpkaya~1976a"wave 

results from Isaacson (1974)0) 
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For a given wave, the KC values along the riser can be calculated 

and hence all possible values of fv along the riser are 

determined from figure (4.9). Different natural frequencies, f n, 

of the riser structure are evaluated by the method explained in 

Chapter 5. The dominant value of fv can then be chosen as that 

corresponding most closely with one of the natural frequencies fn 

(see figure 4.10) 

* PREDICTED POSSIBlE VORTEX SHEDDING FREOUENCY 

* 
50 In. - .5 _ .....• _ ................. -.............. -..... _ ... _ ...... _-_.-._ .... _._ ....... .. 

* 
co - .4 

30 . ............................................. _................... .. ............. _ •. !!!L. .3 

Y, ..... 

(J) ..... In . .. _._ ....... _._ .... - ......... __ . 
20 . .2 

.... .. .. .. 
_ ... _ •.•• __ ..... . ... _ .......... ~:.::_. __ .... __ .. __ •• __ .•. _ •• ufn!. ... _ 
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o~ .. am===a~~~~~~··~··~··:··~··_·· __ ~ __ ~ ____ ~ __ ~ __ ~o 
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III 
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Figure 4.10 - Prediction of "lock-in" frequency from Rajabi 

et.al.H984), the dominant fv and fn are shown 

by (VI 

Having obtained the"lock-in" values of fv with f n , the reduced 

velocities,vr , along the riser are calculated from equation 

* (4.80). The values of the ratio Vr/Vr will then enable CyCLo 

(the lift amplification parameter) values to be determined from 

the graph produced by Sarpkaya (198ld), figure (4.11). 
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Figure 4.11 - Lift amplification correction 

Where 
Vnmax 

V =-
r frP 

~4.80) 

fn = natural frequency of riser 

• Vr = Vr at perfect resonance. This is defined from 

available experimental works for different ranges of 

Vr values. 

Since the values of C
Lo

, Cr/CLo, fv and hence III v are defined, if 

it is assumed that e = 0, then equations 4.76 and 4.77 (and hence 

4.75) can be evaluated for a whole period of vortex-shedding and 

the maximum values the displacements in the lift direction, 

XLrnax' along the riser can be obtained. The following well known 

relations are used to obtain the magnification factor of the drag 

coefficient, (Ca/Cdo" along the riser: 

Cd/Cdo = 1 for Wr <1 
0.65 

Cd/Cdo = 1 + 1.16 (Wr - 1) 

where Wr = (1 + 2 XIm:ix/D) / (Vr St) 

St 
fv D 

(Strouhal number) = ---

i4.8l) 

44.82) 
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A similar lift model can be used for the case of current motion. 

In equation (4.76), Vnmax is replaced by the local current 

velocity normal to the riser axis, Vnc ' and CLo values are 

obtained from the graph presented by Hallam et. ale H9781, 

figure (4.12). 

1.0 

.--- -------t----------

0.2 ------------i 

Reynolds ru.nnber Re 

Figure 4.12 - CLo against Re for current flows 
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The dominant lift frequency, fv' is evaluated as in the case of 

waves except that the Strouhal numbers along the riser are 

obtained from the Strouhal-Reynolds number correlation and then 

the fv values are calculated from equation 44.82). The value 

usually assumed for the Strouhal number is 0.2 for a wide range 

of Reynolds numbers. It does, however, change for higher 

Reynolds numbers and rough cylinders. Since there is no 

available data for the ratio (Cu/CLo) for current alone, a value 

of 1 is assumed. 

4.4.3- Modification of Drag-Inertia Force Equation due to 

Vortex-Shedding • 

Taking the magnification factor of the drag coefficient into 

account the force equation H.63) becomes: 

HFn = 0.5 pO Cd (Ca/Cdo ) (Vnw + Vnc - ~) IVnw + Vnc - ~I 
1 .. 

+ 0.25 P ~ 'If Dl Vnw - 0.25 P (~- 1) 'If D Xn 

Resolving HFn into components in the directions of the vector 

lying in the xy plane and the vector along the z axis: 

HFnxy= 0.5 PD Cd (Ca/Cdo) (Vnwxy + Vncrj - ~) IVnw + Vnc - ~I 
l. • 1 .. 

+ 0.25 P ~ 'If D Vrnncy - 0.25 P (~- 1)'If D Xnxy 

• • 
HFnz = 0.5 pD Cd (Cd/Cdo ' 4Vnwz + Vncz - Xnz ) IVnw + Vnc - Xn l 

+0.25 P ~ 'If Dl. vnwz - 0.25 P (~- 1) 'If D2 ~ 

(4.83b) 

Equations '14.83a) and 'I4.83b) are used to calculate the normal 

hydrodynamic forces on flexible risers. 
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4.5 - Assessment of Drag-Inertia Hydrodynamic Forces on 

Flexible Risers 

For numerical analysis purposes a riser can be sub-divided into 

several elements as illustrated in figure 4.13. 

wave 

current 

Figure 4.13 - An idealized flexible riser 

The hydrodynamic loading on each element is calculated and lumped 

at its nodes. 

The hydrodynamic loadings on the riser are calculated separately 

for two regions. The first region includes the forces due to 

waves and current flows in the range extending from the free 
. . z"-

surface down to the depth at which the horizontal wave velocity 

is less than 0.01 rn/sec. This depth is found to have a value of 

half the wave length. The second region, extending to the sea­

bed, inclUdes the forces due to current flows only. 
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Region 1 - Hydrodynamic IDadings Induced by Wave and 

CUrrents flows. 

This region includes the calculation of hydrodynamic loadings on 

those members for which one or both of their nodes are situated 

inside the effective depth of the region. 

To calculate water particle velocities or accelerations induced 

by a wave at any point along the riser, the phase angle of the 

point is required. For flexible risers lying in any plane other 

than that normal to the wave plane, each point on the riser will 

be subjected to wave motion which is not in phase with that at 

the top node (which is known). The phase angle at any point is 

calculated from equation '~4.841 

Phase angle = Xl{ + phase angle at the top rode (4.84) 

where X = horizontal distance of the point from the top node 

K = wave number 

Having determined the phase angles, the vertical and horizontal 

velocities and accelerations of water particles due to a wave at 

any point can be calculated using Stokes wave theory (equations 

4.44 to 4.47) or Linear Wave theory (equations 4.32 to 4.35,. 

water particle velocity induced by a current flow is assumed to 

be in the horizontal plane and to change linearly with water 

depth 1 and the rate of this change can vary over the whole depth 

of the water. The x and z components of the velocity at any 

point along the riser are evaluated by knowing the vertical c0-

ordinate of that point. 

The normal and its components in the xy plane and in the z 

direction of the water particle and structural kinematics at any 
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point along the riser are ca1ulated using equations similar to 

'(4.72), '44.73) and 14.71) respectively. Then equations 44.83a) 

and (4.83b) are used to evaluate the components of the 

hydrodynamic forces normal to the riser axis : a) in the xy plane 

and b) in the z axis direction at any point. The hydrodynamic 

forces in the wave motion plane, HFnxy' along the riser are non­

linear. But on the other hand, the contribution of hydrodynamic 

forces due to a wave in the z direction, HFnz' is relatively 

small, and the variations of these forces along any structural 

element may be assumed also to be small. 

There are two methods to lump the non-linear (HFnxy' forces 

acting on the element at its errl nodes: 

1) The number of elements is increased so that the forces 

on each element become nearly linear and can be lumped 

using a simple trapezoidal rule. This method, however, 

requires a very small time step for numerical stability 

(i.e. t:. t a member length). 

2) The forces on the element are lumped at the nodes by 

using the Simpson's rule. 

The computation time required for a similar accuracy by both 

methods has been investigated. For method 1, the riser was 

subdivided into a certain number of elements and the dynamic 

response of a typical node i for a complete wave period was 

obtained. The number of elements was then doubled and the 

response of node i was compared with that obtained from the 

previous case. This procedure was repeated until the response of 

node i for the current and previous cases was reasonably close. 

The computation time was then compared with that taken by method 
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2 to obtain a similar convergence accuracy. The comparison 

revealed that method 2 was more efficient than method 1. Method 

2 was formula ted as follows: 

Figure 4.14 shows the distributed hydrodynamic loading on member 

AB. Simpson's rule is used to calculate the total force on the 

member (i.e. the area,. The area is initially sub-divided into 2 

segments am the area' is calculated. Then the number of segments 

is doubled and ti'.e area re-calculated and is compared with the 

previously calculated area. This procedure is repeated until the 

required precision in the calculated area is met. To minimize 

the computations in subsequently calculating the nodal forces at 

A and B, Figure 4.14, the number of segments is limited to that 

used in the penultimate stage. 

f2 £3 £4 

&l .1- &l "1-- &l --i B 

Figure 4.14 - Hydrodynamic loading on member AS 
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Sliupson's rule is: 

X2 
h 

f (xldx -
3 

Xo 
(4.85) 

The nodal forces at nodes A and B are obtained as followsJ 

x 

fo f1 

~r- lIh ,- tJ1 -I m-
Xo X1 x 2 

Figure 4.15 - The first two force segments on member AS 

To find the centre of gravity of figure 4.15, the first moment of 

area of figure 4.15 is required. Using the basic formulation of 

Simpson's rule the following expression can be derived: 

2 
f(xI(x - xol dx = - ~2fl + f2' l; h2 

3 
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Equation 4.86 is the first moment of area of figure 4.15 about 

node A. Thus the centre of gravity of the figure from node A is: 

JX
2 

f(x) 'IX-Xe) dx 212fl + f 2) /). h 
Xo 

x = , = (4.87) 
ff(x) dx fO + 4fl + f2 

Equation (4.87) is used for every group of two adjacent segments 

along member AB (figure 4.14) and the distance of the centre of 

gravity of the group from its first point ( i) and hence from 

node A is calculated. All the first moments of area of the 

groups about node A are summed up to give the total first moment 

of area, and the centre of gravity for the total area is 

evaluated by dividing the total first moment of area by the total 

force area. The nodal force at node B is then obtained by taking 

moments about point A, and the nodal force at node A by statics. 

This scheme is shown to be very efficient compared with the 

alternative of taking a larger number of structural elements. 

The reason for this is that the hydrodynamic loading varies more 

rapidly than the tension along the riser. The maximum number of 

segments required for the calculation of loading on anyone 

structural element was found to be 8 during a complete cycle of 

wave loading. The number of such segments at any stage in the 

numerical procedure is varied automatically as outlined in 

appendix B. 

The nodal forces at mdes A and B of member AS due to HFnz, the z 

component of the hydrodynamic loads normal to the riser axis, are 

calculated using the trapezoidal rule, figure 4.16. However, 

Simpson's rule could also be adopted in the implementation if 

HFnz is required to be more accurately represented. 
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Figure 4.16 - Trapezoidal rule 

The components of the water particle and structural velocities 

and accelerations tangential to the riser axis at both nodes of 

any member are ca1u1ated using an equation such as (4.74). Equa­

tion ~4.64) is then employed to calculate the tangential forces 

which are lumped at the nodes by using the trapezoidal rule, 

figure 4.16. 

4.5.2 - Region 2 - Hydrodynamic wading Irdlced by 

Current Motion only 

This region includes the hydrodynamic loading on those members 

that lie below the effective wave depth. The same formulations 

of region 1 are used to calculate the hydrodynamic loadings 

normal and tangential to the riser axis, but assuming zero water 

particle velocities and accelerations due to waves. Since the 

variations in loading along any structural element due to current 

alone are srna1l,all forces are lumped at nodes using the trape­

zoidal ru1e,figure 4.16. 
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Assessment of Hydrodynamic Forces lmuced by Vortex­

Shedding on Flexible Risers 

The forces induced by vortex-shedding on a riser are assessed in 

the same way as the drag-inertia forces with the following 

changes: 

a) The lift forces induced by wave and current flows are 

calculated from an equation such as 14.76). These 

forces are then resolved into components in the xy 

plane and in the z direction using relationships such 

as equations (4.78c) and (4.78a). 

b) The component of the structural velocity and 

acceleration at any point along a riser in the 

direction of the lift force are obtained from 

relations like equations (4.78a, band c,. Hence the 

components of the resisting forces due to structural 

movement in the xy plane and in the z direction may be 

calculated. 

c, The resultant forces due to vortex-shedding are 

subsequently calculated from equation 1~4.75). 

d) Both components of the resultant forces in the xy 

plane and z direction are lumped at nodes using 

S irnpson I s rule. 

The term Vnmax in equation (4.76) for each member of the riser is 

obtained by considering the equation for water particle velocity 

normal to the riser axis, Vn: 

V.n = [ V. 2 + V. 2 - ICU V. + U v.) 2 ] 1/2 x Y x x Y y (4.88) 

Where U is the unit vector along the riser. From the Linear wave 

theory for deep water waves: 
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Vy = A f(y, sin 9 
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where 9 = KX - tilt and A = constant 

:( 4.89) 

Suootituting Vx and Vy from equation (4.89) into equation (4.88) 

arrl sirrplifying: 

Vn = A f(y, [1 - rlUx cos 9 + Uy sin 9)2] 1/2 

Vn at any position along a riser is a maximum when aVr/a9 = o. 

Thus, Vn is maximum when the following relation exists: 

Ux cos 9 + Yy sin 9 = 0 

or 
_ U

x 9 = tan 1 ( __ ) ,\4.90) 
Uy 

The values of e for each member are initially calculated and 

Vnmax is considered to be dependent only on the position along 

the riser. 

4.7 - Sinnlation of Splash Zone 

The area around the free surface of the wave is usually referred 

to as the splash zone. An iteration procedure is required to 

obtain the conjunction point of the flexible riser with this free 

surface for hydrodynamic force calculation purposes. Figure 4.17 

shows the wave profile and the position of member AB (piercing 

member) at time t and t + !::. t and the iteration procedure. The 

aim is to determine the position of the conjunction point at time 

t+!::. t, (point m'). 
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t+t.t 

'" B' " 

Figure 4.17 - Iteration procedure to obtain the conjunction 

point of the piercing member and wave profile 

The iteration is started by considering point m (the conjunction 

Point of member AB with the wave surface at the previous time 

step) to be the initial trial point. Point m is projected 

vertically to the wave surface at time t + A t to give the 

intercept, point n. This point is then projected horizontally 

onto member A'BI (the position of member AB at time t + A t, to 

give point K. Point K is subsequently considered as the new 

initial guess point and the above procedures are repeated. This 

iteration process is carried out until convergence is obtained. 

The length of member AI BI is then temporarily set equal to 
, 

B ml, though only for the purpose of calculating the hydrodynamic 

loading. When, however, the nodal forces at nodes A and B are to 

be calculated, the whole length of the member must be considered 

(figure 4.181. 
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Figure 4.18 - Nodal hydrodynamic forces 

on the piercing member 

The current velocity is given up to the still water surface. In 

order to adjust the current velocity at the wave surface the 

following modification is carried out: 

current velocity profile 
riser 

\ 
\ 
\ 
\ 

Figure 4.19 - Adjustment of current induced 

velocity with wave profile 

W.L. 
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a) When the wave surface is above the still water level, 

a constant current velocity profile which is extended 

from the still water level up to the wave surface, and 

has a value equal to that at the still water level is 

considered (figure 4.19). 

b) When the wave surface is below the still water level, 

only the standard variation for the current velocity is 

considered. 
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4.8 - Modelling of Platform tok>tion 

Platform motion is considered as a motion with six degrees of 

freedom: three translational and three rotational. The 

translational motions in the x, y and z directions are referred 

to respectively as surge, heave and sway: and the rotational 

motions about the x, y and z directions as respectively the roll, 

yaw and pitch (figure ~.20). 

sway 

~itchl 

heave 

f(yaWl 

8 ) .. 9.lrge 

(roll) 

Figure 4.20 - Platform motion 

These motions are usually given at the centre of gravity of the 

platform (point 0 in figure 4.20) which is referred to as the 

centre of motion. The motions are then transferred to the 

connector at which the riser top is attached (point B in figure 

4.20) using the given position of the connector on the platform. 

'!be translational motions on the riser top are expressed by the 

following equation: 

Xi = Ai cos (K OXI - wt + 9i' 

i = 1, 3 

(4.88) 



where 

- 106 -

Xl = surge motion 

X2 = heave motion 

X3 = sway motion 

Ai = amplitude of the motion in the 

direction considered 

K = wave number 

OXI = distance of the riser top position 

from the centre of motion in the 

surge direction 

£II = wave circular frequency 

9i = phase angle of the platform motion with 

wave motion in the directions considered 

The rotational motions, which introduce additional translational 

motions at the riser top, are described by the following 

equation: 

where 

~ = ~ ( - £lit + ej) 

j = 1, 3 

al = pitch motion 

a 2 = yaw motion 

a3 = roll motion 

'f 4.89) 

~ = amplitude of the rotation in the 

direction considered 

ej = phase angle of the platform J'IOtion with 

wave motion in the direction considered. 

These rotational motions cause the following additional 

translational motions: 

a) Pitch J'IOtion causes surge and heave J'IOtions. 

b) Yaw motion causes surge and sway motions. 

C) Roll motion causes sway and heave motion. 
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Let the components of the distance between the riser top and the 

centre of motion ICOB) along the x, y and z axes be OX1' OX2 and 

OX3 respective1y~·· The translational motions caused by pitch are 

calculated using the projected length of OB in the xy plane 

(figure 4.21). 

y 

o 

B' 
~ 

Figure 4.21 - Pitch induced translational motions 

of the riser top connector 

Let OBxy be the projected length of OB in the xy plane, where 

OBxy =!OX1
2 + Ox2

2 , and ~ = tan-l ~OX2/0XI). Suppose OBxy is 

displaced to OBI after pitch motion a
1

, and produces the xy 

translational motions, II Xlp and II X2p' at the riser top. II X1p 

and llX2p can be calculated using the simple geometry in figure 

4.21 as follows: 

II Xlp = OBxy [cos (~, - cos ( al + ~) ] 

II X2p = OBxy [sin 1~ + aI' - sin ~~) I 

(4.90) 

44.91) 

Similarly for yaw motion, using the projected length of OB in the 

xz plane: 
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~ Xly = ooxy [cos (111' - cx:>s (a 3 + 111) 1 

tJ. X2y = OBxz [sin ~ C( 3 + 111) - sin. 111 ) ) 

where 

ooxz = VDX1
2 + DX32 

111 = tan-l mX1/DX3' 

14.92, 

t4.93) 

Similarly for roll motion,using the projected length of OB in the 

zy plane: 

tJ. X3r = OOzy [cos (e) - cos (C(2 + e) ] 

tJ. X2r = OBzy [sin (a 2 + e)- sin (e)] 

where 

OBzy =~DX22 + DX32 

e=tan-l .DX2/DX3) 

44.94) 

44.95) 

Thus, the total translational motions with the consideration of 

the conventional directions used in figure 4.20 are: 

surge = Xl - tJ.Xlp + AXly 

heave = X2 + tJ.X2p + tJ.X2r 

sway = X3 - tJ.X3y - tJ.X3r 

(4.96' 

.4.97) 

(4.98) 
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0IAPrER 5 

'lmX>RETICAL DEVELOPMFN.l'S FOR 'l'BE ANAUSIS OF FLEXIBLE RISER; 

5.1 - Introduction 

In this chapter various numerical schemes to solve the motion 

equations are reviewed and the central difference scheme for the 

time integration of Newton's second law is developed in detail. 

Methods to optimize this numerical technique are subsequently 

considered. 

Static solutions for flexible risers are obtained using a similar 

technique to the dynamic analyses but with artificially high 

damping. This technique corresponds with the method known as 

Dynamic Relaxation. Natural frequencies for the riser can also 

be obtained from numerical results using Fourier analysis. As 

indicated in the previous chapter, these frequencies are required 

in order to assess the effect of vortex shedding on the 

hydrodynamic forces. 

Finally, the model scaling laws for flexible risers in waves and 

current flows are outlined as a prelude to the interpretation of 

experimental results. 
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5.2 - Dynamic Analysis of Flexible Risers 

5.2.1 - NunErical Schemes for Structural Dynamics 

Generally, there are two broad approaches to solving transient 

structural problems. One is to integrate numerically the motion 

equations by marching in a series of time steps, tJ. t, evaluating 

displacements, accelerations and velocities at each time step 

(i.e. direct integration). The second approach is the mode­

superposition method, which transforms the problem into a set of 

independent differential equations, one for each degree of 

freedom. Solution of these equations is followed by 

superposition of the results. This scheme is much faster than 

the first method but it can not readily be used for non-linear 

dynamic problems. When this scheme is used to analyse the 

flexible riser problem, it is essential to 1inearise the relative 

velocity square term in the Morison equation. If this 

approximation is not chosen carefully, large inaccuracies result. 

There are two basic classes of direct integration methods: 

explicit and implicit methods. In the implicit method the 

equations for the displacement at time t + tJ.',t involve the 

velocities and accelerations at time t + tJ.t. Considering the 

fact that in the motion equations for a flexible riser the non­

linear hydrodynamic forces are a function of the riser 

displacement, using the implicit technique therefore requires an 

iteration procedure at each time step to evaluate the 

displacements. Implicit schemes have the advantage that, for 

linear systems, they are unconditionally stable. Thus the 

magnitude of the time step is only restricted in size by accuracy 

requirements. In explicit methods, the displacement at time t +t.t 
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is obtained by solving the equations of motion at time t. This 

means that iteration in each time step is not required. However, 

such schemes are only conditionally stable which means that the 

size of the time step is restricted by numerical stability 

requirements. This will usually result in a time increment much 

smaller than that needed for the requisite accuracy. 

In this study, the dynamic response of the flexible riser is 

analysed by centera1 difference discretisation (i.e. an explicit 

scheme) of the motion equations based on Newton's Second law. 

The theory is subsequently optimized in order to adopt the 

largest possible integration time step and reduce the computation 

time. 

5.2.2 - Dynamic Solution 

The riser is subdivided into a number of segments. The external 

forces due to the hydrodynamic loadings and self weight of the 

riser are lumped at the nodes. The method for calculating and 

lumping the hydrodynamic forces were described in Olapter 4 in 

Sections 4.4 and 4.5 respectively. The self weight of each 

element is equally distributed on each node of the elemen~ 

The equation of motion for each node in any co-ordinate direction 

is established by considering Newton's Second law: 

M Xt = Rlt)t 

where M = Structural mass at the node. 

(5.1) 

x = Structural acceleration in the direction considered. 

R(t) = Time varying force in the direction considered. 

The central difference approximation for the acceleration is: 
• • 

Xt = IIXt +fl t/2 - Xt -flt/2) / fit 15.2) 
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Where X = structural velocity in the direction considered. On 

sUbstituting equation (5.2) into equation (5.1) and rearranging: 
. 

Xt+~t/2 = (~t/Ml Ret) + Xt-~t/2 (5.3) 

The time varying force R(t) should include forces due to 

hydrodynamic loading, structural self weight, structural damping, 

axial forces in structural segments and shear forces due to the 

difference in bending l!Ioments between adjacent segments. 

It is assumed that material properties of the riser are visco-

elastic and can be represented by a single Kelvin System coupled 

with an elastic response (Z ienkiew icz et. al. ~1968)). 

Considering uni-axia1 creep stress-strain relations characterized 

by a single Kelvin model (fig. 5.1), the 'creep rate' may be 

written as: 

Where a, b = 

. 
ec 
(J 

= 

= 

= 

E. 
~ 

• 
EC = a. (J - b. E C (5.4) 

constants which depend on material damping 

and are obtained from simple experiments on a 

riser segment 

accumulated creep strain 

rate of creep strain 

current stress level. 

(J 

a = El E c + n i £ c 
(J 

Figure 5.1 - Single Kelvin model 
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The material properties may be presented more accurately by 

employing several Kelvin elements placed in series: 

(5.5) 

But since in this study the vibration damping effect of visco­

elastic properties is the main concern rather than the long-term 

creep investigations, a single model is considered to be 

sufficient. The procedure outlined, however, applies equally 

well to series models for long-term creep. 

Using a central difference scheme: 

E t = ( E t+~t/2 + E t-~t/2 ) /2 
c c c 

• 
~t = (E c t+~t/2 _ E c t-~t/2 ) / ~t 

~5.6l 

(5.7) 

on substituting equations (5.6) and (5.7) into equation (5.4) and 

rearranging: 

E t+~t/2 = _a_._~t __ C1 t + I-b. ~t/2 E t-~t/2 
c I + b.~t/2 I + b.~ t/2 c 

where at = [I(EA/L
O

) / A] 4 ~Lt - e: t-~t/2. La) 
c 

EAlLo = longtudinal stiffness of the member 

A = cross-sectional area of the element 

I:L = total extension in the element 

Lo = original length of the nember. 

The elastic extension of an element is: 

tiLe t = ~ L t - e: t-~ t/2 • Lo 
c 

Where 

~Le = elastic extension in the element 

i5.8) 

(5.9) 

Considering the compatibility equation for the riser, the current 

tension ooefficient (tension/length) in an element is given by: 
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TCt = [Ti + I(FAILo' • ~ Let] / Lt 
Where 

TC = tension coefficient 

~ = longitudinal stiffness of the element 

Ti = initial specified tension in the element 

(5.10, 

The forces in the x co-ordinate direction contributed by the 

element at its end nodes are: 

Fxt = TCt • dXt at node 1 

Fxt = - TCt • dXt at node 2 

where 

'(5.11) 

(5.12) 

dX = projection of the element length in the x direction. 

Similar relations can be written for the y and z directions. 

The changes in the values of the curvatures and hence the moments 

acting across element sides at any stage from their initial 

values are determined from the normal nodal displacement of 

adjacent elements and the moments are then transferred to equiva­

lent nodal shear forces. Considering three elements (aI, (bl, 

and (c), figure 15.21, and if the norms to the element mid-point 

are constructed then for small ~¢i and ~¢j: 

rix • ~¢i = 4La + ~I /2 

rjx • ~¢j = (~+ Lcl /2 

Then, if it is assumed that rix and rjx are the mean radii of 

curvature of deformation for the flexural members in the x-y 

plane at nodes i and j respectively, the bending moments, Mi and 

M· may be expressed as: J 
1 2 IS ¢i 

Mi = EI • = EI • 
rix (La + It,, 

1 2 IS ¢j 
~ = EI • = EI • 

rjx ~~ + Lc' 



- 115 -

Where EI is the bending stiffness of the element. 

For Mi and Mj taken as a positive hogging moment, with 0 ¢i 

and 15 ¢j positive as shown in Figure (5.2), then: 
I I 

M im = Mi = - M ij i5.B) 

I I 

lot j i = ~ = - M j k (5.14 , 

The bending action is effectively idealised as a series of 

constant moments betwe.en element mid-points. The resultant rroa1 

... shear forces are: 

where 

SFbit = -
SFbjt = 

I 
~M .. 

1.] 
+M"" /r. t 

J1 ,~o 

I I 
(M •• + M •• , 

1.] J1 /Lot 

(5.15) 

(5.16) 

SFbit , SFbjt = shear force at node i and j of member b at time t 

respectively 

r. 
JX 

m 

Figure 5.2 - Definition sketch for flexure of adjacent 

members in the x-y plane 



- 116 -

Similarly the above relations for the nodal shear forces can be 

written for the z-y plane using the mean radii curvature in the 

z-y plane. 

The above shear forces are then resolved in the x, y and z 

directions. 

Since the movements of the riser are in space there are also 

twisting moments induced by swaying the elements relative to 

adjacent elements from their initial positions. These moments 

should be transformed to equivalent twisting nodal forces normal 

to the members. But the torsional stiffness of flexible risers 

is very small and hence these nodal twisting forces are ignored 

in this work. The method of calcula ting these nodal forces is, 

however, given in Appendix C. 

The time varying nodal forces R'lt) in the x, yand z directions 

are then: 

where 

R'lt)xt = Fxt + SFxt + HFxt 

R(t)zt = Fzt + SFzt + HFzt 

Rllt)yt = Fyt + SFyt + HFyt + P 

i5.17) 

P = nodal force due to self weight of adjacent elements 

HF = nodal hydrodynamic loading in the direction considered. 

Substituting R'lt) from equation (5.17) into equation (5.3), 
"0" 

Xt + 6t/2 may be evaluated. Updating the nodal displacements: 
• 

Xt+6t = Xt + Xt +6t/2 • 6t (5.18) 
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The procedures from equations ~5.3) to (5.18) represent the 

complete iteration sequence which is given in figure 5.3. 

For the initial conditions (at time = 0), X-At/ 2 is assumed to be 

equal and opposite to XAt/2 and £~At/2 is assumed zero. 

calculation of the hydrodynamic forces at time t+A t requires the 

structural velocity and acceleration at time t+At. But the 

equation of motion is solved for the velocity at time t+At/2. 

Thusthe following central difference approximations are made to 

obtain the structural velocity and acceleration at time t+At and 

are only used in calculating the hydrodynamic loadings: 

• • • 
Xt + At/2 = (Xt + At + Xt , /2 

~5.19) 

(5.20) 

Substituting for Xt from equation (5.19) into equation (5.20) and 

rearranging for Xt +At : 

The structural acceleration at time t+ At from equation (5.2) is: 

(5.21) 
• 

writing equation (5.19) for Xt +At and rearranging it for X3t+At/2 : 

Xt+3At/2 = 2Xt+At - Xt +At/2 (5.22) 

Substituting for Xt +3A t/2 from equation (5.22) into equation 

45.21) and Simplifying, gives an expression for the structural 

acceleration at time t+At: 
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Calculate residual force components 
from equations ,(5.11), '(5.12), ~5.15), 
(5.16) and hydrodynamic forces as 
described in section 4.5 and self 
weight of the riser, hence the residual 
force from equation 115.17) 

Calculate xt+~t/2 from 
equation '(5.3) 

Update the co-ordinates using 
equation 1(5.18) 

Yes 

Figure 5.3 - Flow chart of dynamic solution algorithm 
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5.2.3 - Stability of the Numerical Integration 

The central difference numerical scheme which is used in this 

work, is a conditionally stable scheme which means that if the 

integration time interval, ~t, exceeds a certain critical value 

then numerical instability may occur. The critical time step is 

given py Bath et. al. ~1976) as: 

Tn ~t = __ 
cri 1T 

where Tn is the period of the smallest natural frequency of the 

riser. This can be found by solving the eigenvalue problem for 

the structure. 

Barnes (1974) has directly derived criteria for stability of the 

numerical integration by considering the relative motion of 

adjacent nodes as follows: 

Consider the vibration of a node i in the principle-axis 

direction. Let node i have structural connections to adjacent 

nodes k. Using equation (5.3) : 

• ip ip • ip 
Xt+~t/2 = (~t/M) R{t) + Xt-~t/2 ~5.24' 

t:.t 
For simplicity let A= • 

M 

Thus, 
• ip ip • ip 
Xt+~t/2 = Ai R(t) + Xt -t:.t /2 ~5.25' 

For the next time step, assuming that the motions of rodes i and 

k are parallel to the p-axis: 

.ip ip S ikp ikP. ip 
Xt+3~t/2 = Ai [ R(t) - E t+~t. t:. Xt+~tl + Xt+~t/2 

all llnks at i 
C5.26) 
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ikp 
Where, St+ t::. t/2 = the p-axis direct stiffness of node i 

ikp 

relative to adjacent nodes k due to the 

structural elements connecting nodes i 

and k 

~t+ t::. t/2 = the increment of p-deflection of node i 

relative to adjacent node k during the 

time interval t ~ t+t::.t 

If the time interval is large when the stiffness/mass ratio 

Ilsikp /M) is large, instability in the form of successive reversal 

and build up in the amplitude of velocities and deflections may 

occur. 

Bounds to t::. t may be obtained by considering adjacent oodes I and 

K of a part of a structure at which the S/M ratio of the nodes, 

or one of the nodes (in the p-axis direction), is highest. The 

most critical structural configuration and state of motion will 

be such that all nodes k adjacent to I are different from all 

nodes i adjacent to K, with the relative vibrations of node i and 

k exactly out of phase. 

substituting Rllt)ip from equation (5.25) into equation (5.26', 

for node I, leads to: 

.Ip .Ip .Ip Ikp kp 
Xt + 3t::. t/2 - 2 Xt+t::. t/2 + Xt-t::. t/2 = - AI I [S • I( t::.x

IP 
- fiX ) ] t+t::. t 

(5.27) 

am similarly for node K 

.Kp .Kp .Kp Kip 
xt +3t::. t /2 - 2 xt +flt/ 2 + Xt -t::. t /2 = - AK I [S 

Kp ip 
• ~ t::.X - t::.X 'It+t::.t 

i5.28, 
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For the most critical condition assume that the direct 

stiffness/mass ratios of all nodes i and k are equal, and for 

oscillations which are just stable: All ~ip = tJ{IP am all 

lJ{kp = t;XKP• 

Thus, subtracting equation (5.28) from equation (5.27,: 

.IKp .IKp .IKp Ip 
[S . 

IKp 
Xt+3t;t/2 - 2 Xt+~t/2 + Xt-t;t/2 = - Ai • 2 ~x )]t+t;t 

Where iIKp = 
SIp = 

115.29, 

the velocity of I relative to K 

the direct stiffness of node I relative to 

all adjacent nodes (assumed highest in the p 

- direction, E (EA/Lo'm 
all links m connecting to node i 

for line element cable structures). 

The limiting case of stability is when iIKp during one time 

increment produces relative deflection changes AXIKp such that 

iIKp in the next time increment is equal and opposite to the 

previous value. Hence: 

.IKp Ip 
- 4 Xt+~t/2 = - AI S 

Thus, 2/A1 = SIP. ~t 

!§I 
~t i = --cr SIp 

IKp 
• 2 AXt+~t 

5.2.4 - ~timization of the Numerical Integration 

~5.30) 

i5.31) 

'!he aim of the optimization is to reduce the computation time by 

means of being able to adopt a bigger integration time step 

without introducing any numerical instability and intolerable 

inaccuracies in the dynamic response of the riser. 
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The critical integration time step, A t, from equation (5.31) is: 

Atcri = J:M 
Where 

EA 
s = E 

Lo 

One way of increasing the critical time step is to reduce EA 

values. This has been employed sugges~d by Barnes (1976) and 

Wang 1(1979). The results of numerical study (Chapter 6 section 

6.3.31 showed that reducing the EA values by 10 times for a riser 

with no top platform motion, hardly affected the response and top 

tension of the riser. Reducing EA values results in ignoring the 

higher order components of the stress wave which travels along 

the riser. But for this reason, when a longtudinal motion, such 

as platform motion is introduced to a riser, an artificial 

reduction in EA value is not desirable. This optimization is 

useful for flexible risers connecting two fixed platforms or for 

idealized experimental work. 

Reducing EA values can be compared with the modal analysis of a 

structure in which only a certain number of eigenvalues are used 

in the solution, rather than all; that is the remaining higher 

order eigenvalues are ignored. On the basis of a numerical 

study, a reduction factor of 10 times in the EA values was found 

to be generally acceptable in situations involving no platform 

IOOvernent. 

FUrther optimization of the numerical procedure (whether or not 

there is platform movement) is achieved by calculating the non­

linear hydrodynamic forces after every n time steps, rather than 
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at every time step. The value of n is chosen so that n.At does 

not exceed say 1/2 of the time taken by a transverse wave to 

travel along the critical member of the riser. 

The speed of a transverse wave travelling along the critical 

member is given ~: 

c=~ 
Pc 

Where, 

C = speed of a transverse wave 

T = tension in the critical member 

Pc = density of riser 

Thus, the time taken for a transverse wave to travel along the 

most critical member of a riser of length lcri is given by: 

Thus, 

Where, 

time of travel = ( 1 criJ PC/T) min 

n. flt < U/2) • ( lcri .j pCJT ) min 

lcri = length of the critical member 

flt = time integration step required for numerical 

stability 

The creep strain EC may also be calculated at every m.~t rather 

than at every time step (Barnes U976)). However, the 

computation time taken to evaluate EC is small compared to the 

total computation time and in the present work this optimization 

is ignored. 

5.3 - FormfWing am Static Solution of Flexible Risers 

The same dynamic formulation without structural bending and 

damping is used to obtain the shape and static solution of the 

risers. The structure is brought to a steady equilibrium state 
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by employing a fictitious damping function. This method is 

usually called Dynamic Relaxation and it was originally proposed 

by Day (1965). 

Two types of fictitious damping can be used to bring the 

structure to the equilibrium stateJ a~ Viscous damping, b) 

Kinetic energy damping. In the former case oodal viscous damping 

is introduced in the equilibrium equation. For the most 

efficient solution the value of the damping constant C is 

required to be 4 '11' f n, where fn is the fundamental frequency of 

the structure. This value of C corresponds to the critical 

damping state for the structure and it is assumed to be constant 

for the whole structure. Thus, employing this method requires 

some initial solution to obtain the fundamental frequency of the 

structure. Formulation for this kind of damping is given in 

Appendix D. 

The alternative damping scheme, Kinetic damping, is an automatic 

method which does not require any initial trial run. In this 

method, the structure is brought to a steady equilibrium state by 

tracing the structural Kinetic energy, and when a peak is reached 

(i.e. KE t - ~t > KEt+A t ) , the nodal velocities are set to zero, 

figure 5.4. This was originally suggested by Cundall 41976) and 

has been applied extensively to Compliant Structures (Barnes eta 

a1. tfI984». The restarting co-ordinates after each peak are 

calculated as follows: 

The actual K.E. peak is assumed to occur at co-ordinate 

X = Xt-~t/2. 

Thus, ~5.36) 
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Equation (5.36) is a linear approximation, alternatively a 

quadratic interpolation can be adopted. However, it was found 

that there is no great advantage in this. For computation 

purposes equation '(5.36) is required to be expressed in terms of . 
Xt+t.t ' Xt +t.t /2' and R'(t),. Recalling equations (5.3) and (5.18): 

• 
Xt +lIt/ 2 = (llt/M) R(t) + X t-llt/2 ~5.3) . 
Xt + lit = Xi + Xt + lIt/2 • llt (5.18) 

Writing equation :15.18) for Xt and rearranging for Xt - II t' then 
• 

sutstituting for Xt-~t/2 from equation (5.3), gives: 

• At Xt - llt = Xt +[ Xt - llt/ 2 -;R(t) ] ~5.37) 

Substituting equation (5.37) into equation (5.36) and then 

substituting for Xt from equation (5.18) in equation 45.36) leads 

to: 

llt llt 
X = Xt +lIt - ~2) [3 • Xt+~~/2 - 4"M)' R(t)] .5.38) 

Both damping schemes are implemented in this work but the Kinetic 

damping was found to be more efficient for formfinding. 

K.E. 

(r.d2 /2) 

t 

Figure 5.4 - Damping of kinetic energy peaks with time 
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For efficient use of the static solution optimized fictitious 

mass components should be employed instead of real masses. This 

is achieved by using the stability relation (equation 5.31): 

t.t . = v' 2M (5.31) crl 5 
where the critical time integration step, t.tcri ' for a static 

solution is an arbitrary constant. Fictitious nodal mass 

matrices with directional components Mxx' Mxy' Mxz' Myy etc., can 

be used to optimize convergence (Barnes et. a1. (1984)). 

However, for a flexible riser system there is no computational 

advantage and it is preferable to use either lumped mass 

components Mx' My and Mz or a single value with M = Mx = My .. Mz, 

in which M at each node is set according to M = t.t2• S/2, where 

FA 
S =I:- • 

L 

Time to convergence is additionally dependent on the "condition" 

number of the system i.e.: the ratio of the highest to the lowest 

eigenvalues. Hence further optimization for a static solution 

can be obtained by using a reduced fictitious axial stiffness for 

the riser which reduces the highest eigenvalue significantly. 

Since the fundamental mode is governed principally by geometric 

deformation of the riser as a mechanism the lowest eigenvalue is 

almost unaltered. Consequently the rate of convergence is 

increased. The parameter study in chapter 6 section 6.2.3 shows 

that for riser shape structures, the optimum reduced stiffnesses 

are obtained when the non-dimensional parameter, N.EA/WL is 

approximately 25, where N is the number of elements and W is the 

riser self-weight for unit length. 

The flow chart of static solution algorithm for formfinding of a 

flexible riser is given qy figure 5.5. 
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it - tk/2 = 0 KE t - t.t/2 = 0 

'NO 

LOOP EACH ELEMENT 

Calculate RI t) t from xt and rrernber 

natural stiffness relations. 

UXlP EACH NCDE 

Calculate 

x t + t.t/2 from equation (5.3) 

x t + t.t from equation 115.18) 

KE t + ~ t/2 = KE t - A t/2 + 1/2 m2 

t 
I KE t + ~ t/2 < KE t - ~ t/2 ? ~ 

• ~S 

It = t + ~t I 
Calculate re-starting 

Co-ordinates from equation 

(5.38) and set nodal 

velocities to zero 

Number of Kinetic 
energy peak > 2? 

NO t = t + t.t 

Yes 

Total length of members NO t = t + ~t 

desired riser length? 

Yes 
1 

check residuals <O.l? NO t = t + ~t 

Yes 

Figure 5.5 - Flow chart of static solution algorithm 
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5.4 calibration of ViscO-Elastic Material DalTping Constants 

The calibration method proposed by Barnes H980) is used in this 

study as follows; 

For short time dynamic loading, interest is centred on the 

immediate elastic response and primary creep. For flexible 

risers dynamically loaded, this creep is high compared with the 

secondary quasi-static creep rate. If a segment of the riser is 

subjected to a suddenly applied constant load and dynamic 

deflections are recorded in a way which does not induce external 

friction to the system, a plot of strain against time is obtained 

such as figure 5.6. 

e: 

Visco-elastic 
"...... It\3. terial 

I 

" 1 elastic 
J rrodel 
l 

\ 
\ 
\ 
\ 
\ 
\ 
\ I 
\ I 

'-

Primary creep 
Ep 

Seccndary creel 
phase 

:Irrm;rlia te elastic 
response e: e 

t 

Figure 5.6 - Strain against time for visco-elastic materials 

Restricting equation i5.8, to the region termed primary creep 

stage, during which deflections are damped by the viscous 

property of the material, at the end of this stage: 

t + II t/2 

fc 
t -ll t/2 

fc ;;: 
(5.39) 



- 129 -

hence since (J is then cxmstant: 

a (J t 
b s;-­

e:p 

(5.40) 

Also the immediate elastic modulus is of the order, but greater 

than, _cr_ 

Ee 

With these relations as guides, the material constants a, b and E 

may be evaluated by curve fitting a simple analysis to the 

experimental data. 

Since in general the material constants depend on stress level, 

calibration should be carried out as a perturbation from the 

expected initial stress. 

5.5 - Determination of Structural Natural Frequencies 

Barnes '11977) has used Fourier Analysis of the output from a 

Dynamic Relaxation Scheme to obtain the structural natural 

frequencies for cable and space structures. In this work the 

same procedure is carried out. The nethod is outlined below: 

The resultant displacement of any particle in a wave represented 

by a complex periodic vibration is: 

y = f(t), = ~ + al • cos (wt + e l ) + a2 cos ~2wt + e2) + - - - -

- - - + an • cos (nwt + en) 

r=n r=n 
or y = ~ + E Ar cos (rwt) + E Br sin (rwt) 

r=l r=l 
'~5.4l) 

Where e l etc., are phase angles and AI' Bl etc., represent the 

amplitudes of the various fundamental and harmonic terms; the 

fundamental frequency being given by w/2TI. Ao is a constant 
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term representing the mean level of the ordinates. Since by 

integrating both sides of equation .S.4U with respect to t over 

a complete vibration period T = 2'IT/w, it follows that all the 

terms on the right-hand side are zero except Ao. 

Thus, iT f(U dt = lT A"dt = A" T 

So, Ao =.! (T f (t) dt = Average value of f (t) over 
T )0 

one cycle. (S.42) 

To determine amplitude coefficients Ar and Br , consider the 

following trigonometric relations: 

But, 

sin (mwt) sin (nwt) • dt = 0 

m in 

cos (mwt) cos (nwt) • dt = 0 

m in 

1 sin (mwt) cos (nwt) • dt - 0 

m = n or m in 

1mwt) • dt = T 
"2 

Hence, the coefficients of the cosine series, Ar' and the 

coefficients of the sine series, Br , are obtained by mutliplying 

equation (S.4l) by cos (rwt) and sin(rwt) respectively and taking 



- 131 -

account of the above trigonometric relations as follows: 

[Tf(tl' cos (rwt) • dt = ~ • T 
2 

Thus, 

sin I(rwt) • dt = Br • T 
2 

A" = ; l f(tl 
o 

cos (rwt) • dt 

sin (rwt) • dt 

(5.43) 

(5.44) 

The above theory applies to periodic vibrations. The output from 

the dynamic response of the riser may be treated in the following 

rranner: 

Consider figure 5.7, the full line represents the dynamic 

response of a riser and the dashed line represents the reflected 

image of the trace from X to X + Xn' where X is the last maximum 

or minimum of the trace am X - ~ is the first. 
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Figure 5.7 - Dynamic response of a structure and its 

reflected image 

Associating 2Xn with the period T, from equation (5.42,: 

A" =.!. rx f (xl dx 
Xn JX-Xn 

hence, assuming n intervals (of length 15 x = Xz/n, from X - ~ to 

X, and f(x) = am at the mid-point of intenT~1 ro, then by discrete 

surrmation: 
m=n 

A = I 1: am o -
n 

m=l 

(5.45) 

X+Xn 

x 

f(x) cos (rwX) • dx + 2 f(x, cos (rwx). dx 

or, redefining origins for x' and x": 

I 
f(x"cos(rwx"dx' +-

Xn 

2Xn 
X 

f(x")cos(rwx'" • dx" 

and, since f (x') 2m-1 2m-I 
= f(x", = a at x· = .--) ox = (-, Xn 

m 2 2n 
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and, x" = X - I~-) I5x n 2 

m=n 
am 
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~ = 1: I~COS (rwx') 15 x + cos (rwXn - rwx') Sx) 
Xn 

m=l 

hence, since w = 1T/Xn : 

m=n 
rrrx' 

A = t r (-) (1 + cosr 1T) = 0 for all cx:ld integers r 
n ~ m=l 

rn=n 
2 

Ar = -
n 

r1T 
1: am cos (- '12m-I)) for all even integers r 

2n 
rn=l 

Similarly for the sine coefficients: 

m=n 

Br = 1: ~ '(sin (rwx') + sin (rwXn - rwx')) = 
n 

m=l 

m=n 

(5.46) 

= 1: ~ sin (rwx') (I-cos r 1T) = 0 for all even integers r 
n 

m=l 

B = 2 r -n 

m=n 
r1T 

1: am • sin (- ~ 2m-ll) for all cx:ld integers r 
2n 

m=l 

(5.47) 

TO evaluate the natural frequencies of a riser, one of its nodes 

is poked and then released and the dynamic response of the node 

is traced to obtain a graph such as figure 1~5.8). A time 

duration say ~ corresponding to two maximum ncx:lal displacements 

is chosen and equations (5.46) and (5.47) are then used to 

calculate the coefficients Ar and Br : the values for r being 

varied from I to some certain value depending on the required 
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number of structural natural frequencies. A graph such as figure 

~5.9) is produced. Each r value corresponding to maximum or 

minimum values of Ar and Br is recorded and the natural frequency 

is calculated as follows: 

1 
f =Y'~= __ r 

n 21T ~ 
(5.48) 

This theory is also validated in this work by applying it to a 

simple slack cable. The results are compared with those obtained 

from an alternative theoretical approach for simple slack cables 

developed ~ triantafyllou et. al. ~1983). 
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5.6 - Dimensional Analysis am Model ScaliI¥J 

5.6.1 - Dimensional Analysis 

The hydrodynamic forces induced by waves on a riser in terms of 

independent variables can be written as: 

where 
HF = f(p, g, H, L, h, D) 

HF = hydrodynamic forces 

p = fluid density 

g = acceleration due to gravity 

H = wave height 

L = wave length 

h = depth of still water 

D= diameter of riser 

~5.49) 

The elements of equation (5.49) in terms of primary elements1 

length, time and mass IlL, T and M respectively) are: 

HF = MLT-2 

p = ML-3 

g = LT-2 

H=L 

D = L 

h=L 

L=L 

equation (5.49) can be expressed as: 

HF a p a gh HC Lk hm rf1 (5.51) 

Substituting equation ~5.50)' into equation !15.51), one gets: 

MLT-2 a (ML-3,a (L~2)b (L)c (L)k (L)m (L,n (5.52) 

Equating the powers of the primary elerrents in equation '15.52): 

1 = a 

1 = -3a + b + C + k + m + n (5.53) 

- 2 = - 2b 
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thus, 

a = 1, b = 1 and c + k + m + n = 3 ~5.54) 

Now it is a matter of choice to give different values to c, k, m 

and n to satisfy equation (5.54). For this reason a wide variety 

of dimensionless parameters are used in the literature to define 

the wave motion. One of the most popular relationships is 

obtained by giving the following values to the variables: 

c = 2, k = -3, m = I and n = 3 

Thus, equation ~5.51) becomes: 

HF ap g H2L-3 h 03 

Or, in term of dimensionless variables: 

Thus, 

HF h H D 
-- a - • 

gHD2 L L L 

HF 

g802 

h H 
= f(-, 

L L 

D 
, -) 

L 

5.6.2 - fb3e1 Scaling of a Riser in wave Flow 

~5.55) 

~5.56) 

The aim of model scaling is to construct a small scale physical 

model of a structure and by using this model to predict full­

scale performance. To achieve this, a certain physical 

similarity should be maintained between the model and prototype. 

In general the physical similarity involves the geometric, 

kinematic and dynamic similarities. Geometric similarity exists 

when the ratio of corresponding lengths is oonstant, kinematic 

similarity exists when the ratio of corresponding velocities is 

constant and dynamic similarity exists when the ratio of 

corresponding forces is constant. The requirement of model laws 

is obtained by resort to a scale factor. The scale factor of a 

quantity f, denoted Kf , is the ratio of the value of f in the 
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model to that in the prototype, i.e. Kp = fm/fp• The constancy 

of a particular dimensionless product provides a relationship 

between various scale factors. So, the condition of geometric 

similarity implies that a single length scale factor KL applies 

to all lengths pertaining to the problem. 

Equation 1(5.56)' is used to model a riser in wave flow. Writing 

equation (5.56) for the model and prototype respectively: 

HF 
I( _) 

9HD2 
m 

HF 

p 

h 
= f(- , 

L 

H 

L 

D 
, -) 

L m 

h H D 
= f:(-, - , -) 

L L L 

45.57) 

p 

For physical similarity between the model and prototype, the 

following conditions should be satisfied: 

4 h ) P , ( H ) m = ( H ) P , am ~ D ) m -= 4 D ) P 
L L L L L 

.5.58) 

When condition equation ,ts.s8) is met, one has: 

HF HF (5.59) 
(--) = (-) 

gHD
2 m gHD

2 
p 

By calculating forces On the model and using equation i5.59), the 

forces on the prototype can be calculated. 

A wave motion is usually identified by Hand T, where T is the 

Im wave period, so the condition ~--) in equation i5.58) is 
Ip 

Tm 
satisfied if (--) = KT• The time scale factor is calculated by 

Tp 
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considering the dynamic similarity between the model and 

prototype. The corresponding force ratio for dynamic similarity 

of risers in waves is the ratio of inertia force to garvtational 

force. This condition can be met if the Froude dimensionless 

number, Fr = V~ , where V is the water particle velocity 

induced by wave motion, is kept constant for the model and 

prototype. Considering the Froude number and assuming Kg = 1: 

Kv = Vm = fi · KLl/2 (5.60) 
Vp Ip 

Thus, 
KL 

K.r = - = KL1/2 
KV 

(5.61) 

But in flow around the riser, flow separation occurs and this 

adds another condition for dynamic similarity which is Reynolds 

number (inertia force/viscous force). Vm 0/", where Vm is the 

maximum water particle velocity and "is the kinematic viscosity 

of the fluid. In small scale modelling it is very difficult to 

satisfy the constancy of Reynolds number as well as the Froude 

number. From constancy of the Froude number one has 

KV KL = KL 3/2, so to ensure the constancy of Reynolds number, 

one has to hold K" = KV KL = KL
3/ 2• And it is impossible to 

find a fluid with such a small kinematic viscosity. This is one 

of the reasons that the results of wave flume experiments do not 

correlate well with those obtained from the prototype in sea. 

In modelling the riser it is also desirable to model its elastic 

properties. This is achieved by ensuring the constancy between 

Pr 
model and prototype of ~, ~ , and FA/A~V2, where P r is the riser 

p 
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density, F; is the structural damping ratio, A is the riser cross­

sectional area, and EA is the axial stiffness of the unit 

length of the riser. It is again difficult to maintain the 

constancy of EA/ApV2 between the small model and prototype 

together with the constancy of the Froude number. However, the 

Primary Structural Stiffness is geometric and associated with 

deformation as a mechanism rather than elastic deformation. The 

value of EA may thus not be critical in the majority of cases. 

5.6.3 - fb3el Scaling of a Riser in Current Flow 

From geometric sUnilarity one has: 

'15.62) 

The dynamic Similarity is satisfied by considering the ratio of 

inertia force to gravitational force: 

inertia force 

gravitational force 
= 

0.5 p D Cd v2 
PrD2 'If g/4 

Q- i 5.63) 

Assuming Kg = 1 and Kp = 1, and ensuring Kpr = 1, from equation 

(5.63) one has: 

thus, 15.64) 

The constancy of qand perhaps EA/ApV2) for modelling the riser 

in both current flow and wave conditions is desirable. 
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rnAPTER 6 

RJMERICAL IMPIDtFNl'ATIm 

Introduction 

The theories which were presented in Chapters 4 and 5, for the 

static and dynamic analyses of flexible risers, are implemented 

in the following computer programs: 

a) Program FLEXSTATIC (Program 1) - computes the static 

configuration of the riser which is subsequently used 

in program FLEXDYNAMIC or FLEXaJRRENT. 

b, Program FLEXDYNAMIC ItProgram 2) - evaluates the dynamic 

response of the riser induced by wave and current 

motion. 

C) Program FLEXCURRENT 4Program 3) - determines the riser 

response due solely to current motion and static 

offsets of the platform. 

d) Program STOKWAVE - is used to calculate the wave 

parameters using any order 'eI-51 of Stokes Wave Theory. 

These parameters are used as input to the program 

FLEXDYNAMIC. 

'l11is chapter describes each of the above programs am presents a 

detailed parameter study for Program 1 and optimization of 

Program 2. Consideration is also given to the method of finding 

structural natural frequencies and a comparison of results for a 

simple test case with previously published results. 
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6.2 - IDplementation of Static Solution for FormfirxUng 

6.2.1 - Program FLEXSTATIC 4Program 1) -

The theory and flow chart for the program have been presented in 

chapter 5, section 5.3 and figure 5.5 respectively. The program 

is well suited to computer aided design procedures in which 

various shapes for the riser catenary can be investigated 

together with the effects of boundary support conditions and 

alternative arrangements of mooring buoys. The input data and 

computed equilibrium shapes of the three well known riser 

configurations; free hanging, single catenary and double catenary 

are given in tables 6.1 to 6.3 and figures 6.1 to 6.3 

respectively. The program has been optimized by employing 

fictitious nodal masses and reduced axial stiffnesses. The CPU 

computing time on a Gould 9005 computer system for each of the 

above test cases was 5 to 10 seconds. 

The initial input configuration of a riser is considered to be a 

vertical straight line which is subdivided into the desired 

number of elements with the loads due to structural self-weight 

applied at the nodes. The nodal motion equations are iterated 

until an equilibrium shape with required length is achieved. 

Figure 6.4 shows the convergence shape of a double catenary riser 

from its initial input shape. In computing the equilibrium shape 

of a double catenary riser, the anchoring chain which tethers the 

sub-buoy to the sea bed is considered as an element with high 

axial stiffness. 

The program is incorporated with a user interface which gives the 

list of the required input data associated with the considered 

riser type. The results of the riser equilibrium shape are output 

both in tabular and in graphical forms. 
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6.2.2 - Critical Criteria in Designing Flexible Riser catenary 

Shapes 

The critical parameters in the shape design of a flexible riser 

configuration are as follows: 

a) The bending radius at the sag part of the catenary 

must be limited by the given minimum radius of 

curvature of the riser. 

b) The vertical distance of the lowest point of the 

catenary from the sea bed should not be less than a 

given value. 

c) Tension along the riser should not exceed the maximum 

specified ~ the manufacturer. 

d), The angles at the top and bottom terminations should 

not be greater than the limiting values specified by 

the type of end connectors employed. 

For a given combination of water depth and excursion envelope of 

the floating support, each particular configuration in figure 6.5 

corresponds to a set of extreme values of the above parameters. 

That is criteria (a), and (bl in the near position and criteria 

(C) and (d)' in the far position of the riser. 

An initial guess of the riser length is usually obtained using a 

configuration similar to that shown in figure 6.6. However, 

geometry of the test cases for this study are obtained by 

proportioning the riser used in the Balmoral Oil Field. 

6.2.3 - ~timization of Program FLEXSTATIC 

As only the eventual static equilibrium solution is required, 

optimized fictitious mass components, obtained using the 
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stability criteria equation 6.1, are used in the equations of 

motion. 
S 

M = b. t 2 • 
2 

where b. t = an arbitrary constant. 

S = the greatest possible direct stiffness at 

a node = 1: II EA/ L) for adjacent members 

M = the fictitious nodal mass. 

~6.l) 

Further optimization is achieved by using reduced element 

stiffnesses. In computing the riser equilibrium shape, the 

length of the riser is adjusted to that of the given length in 

the stressed state. Therefore, the accuracy in the computed 

equilibrium shape is not affected by using reduced element 

stiffnesses. 

The choice of the value for the element stiffness is the most 

important iteration control factor. The optimized value of the 

reduced element stiffness is dependent on self-weight and shape 

of the structure. The parameter study showed that for catenary 

flexible risers the minimum number of iterations is achieved when 

the non-dimensionalised parameter, EA/ (W.L/N), was approximately 

25, figure 6.7. 

where EA = Axial stiffness of one metre length. 

W = Self-weight per metre length. 

L = Length of riser. 

N = Number of elements. 

W.L(N = Average nodal force. 

A further parameter study was carried out to optimize the number 

of iterations by controlling the number of computed kinetic 
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energy peaks between each "initial n length modification during 

the computation. The most efficient procedure w~ found to be the 

resetting of specified initial lengths of elements at every third 

kinetic energy peak, figure 6.8. 

6.2.4 - Validation of Program FLEXSI'ATIC 

The accuracy of the computed equilibrium shape of a riser can be 

examined from the equilibrium of the vertical and horizontal 

external forces. 

Total vertical forces = apparent self-weight 

+ vertical reaction forces 

+ buoyancy force of sub-buoy = o. 

Total horizontal forces = horizontal reaction forces = O. 

The above criteria are checked for a single catenary riser test 

case as follows: 

290 KN 

L -- 36.11 KN I + - 165.75 KN 

220.74 KN 

f_ 36.11 KN 

Computed reaction forces of a single catenary riser 

Apparent self-weight of riser = -344.99 KN 
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Total vertical force = -344.99 + 220.74 - 165.75 + 290 = O. 

Total horizontal force = -36.11 + 36.11 = O. 

A snake chain of 2mm in diameter and 400mm in length was hung in 

two shapes in order to compare with computed equilibrium shapes. 

The first shape was arranged in the shape of the upper catenary 

part of a single or double catenary riser (plate 1). The secorrl 

shape was arranged in the form of a free hanging riser (plate 2). 

These arrangements were photographed and digitized and then 

compared with the computed shapes, figures 6.9 and 6.10 

respectively. The number of elements for both computations was 

11. The comparisons were in <pod agreement. 

6.2.5 - Parameter Study on the Number of Elements Used to 

CatpIte the Riser Equilibrium Shape 

Element size in dynamic analysis of a flexible riser is a crucial 

parameter regarding the computation effort. This is because the 

integration time step, f:. t, is proportional to the element length. 

Thus, a parameter study was carried out to determine the minimum 

required number of elements to give acceptable accuracy in the 

analysis. The single catenary riser, for which data is given in 

table 6.2, was adcpted as the ~est case. The tests were carried 

out by computing the static solution of the riser with differing 

numbers of elements and then comparing the reaction forces and 

nodal co-ordinates. The numbers of elements used in the analyses 

were 7, 11 and 22 (figure 6.11). The comparisons of the 

reactions and nodal co-ordinates are given in tables 6.4 and 6.5 

respectively. These comparisons show that an analysis with 11 

elements produces acceptable resu1 ts for engineer ing 

applications • 
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6.3 - 1Bp1eDeltation of Dynamic Solution 

6.3.1 - Program S'T(J(WAVE 

'!he theory to determine the wave parameters of any order (1-5) of 

the Stokes Wave Theory, which was described in Chapter 4 Section 

4.3 , has been implemented in the program STOKWAVE. The program 

solves the simultaneous equations 44.49) for). and K and then 

calculates the wave oonstants Aij' Bij and Ci using the relations 

given in Appendix A. 

where ). = 
L 

a = Wave amplitude. 

L .: wave length. 

K III wave mnnber, -. 
L 

The program was validated by using the example whidl is given in 

the paper presented by Skjelberia and Hendrickson (1960). The 

wave which was considered in the example had the following 

parameters: 
Water depth, h.. 30 ft (9.l37m) 

Wave height, H .. 18 2/3 ft i5.685m) 

Wave period, T .. 7.72 sec. 

The results of the example are given in Table 6.6 and those 

obtained from program STOKWAVE are given in Table 6.7. 

d/L • 0.12, ).. 0.1885 

B22 • 2.5024, B33 • 5.7317, B44 • 14.034 

B24 • - 3.7216, B35 • -4.8893, B55 • 37.200 

All • 1.2085, A22 .. 0.7998, A35 • -1.5042 

A13 • - 5.1153, A24 .. -4.9710, A44 • 0.0587 

A15 • -10.6530, A33 .. 0.3683, AsS • -0.0750 

Table 6.6 - Results of the example given by 

Skjelberia and Hendrickson 
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6.3.2 - Program FLEXDYNAMIC (Program 2) 

The theory and flow chart for the program were presented in 

Chapters 4 and 5 and figure 5.3 respectively. The program 

calculates the 3-dimensional dynamic behaviour of a flexible 

riser due to the effects of waves and currents from any 

direction, vessel movements, vortex-shedding and structural 

damping. The input data is established in the following two data 

files: 

1) A data file which is created by program 1 containing 

the nodal geometry, nodal external forces due to riser 

self-weight, and tensions in the elements in the 

equilibrium shape. 

2) A data file which contains the data associated with the 

wave and current profile, magnification factors for 

nodal drag coefficients in the drag-inertia force 

direction due to the vortex-shedding, and vessel 

movement. The list of required input data is given by 

a user-friendly program which is incorporated in 

FLEXDYNAMIC. 

The vessel movement associated with wave motion is considered to 

have six degrees of freedom: three translational and three 

rotational, with each having an amplitude and a Fbase angle. The 

translational motions are: surge, sway and heave and rotational 

motions are: roll, pitch and yaw. These motions are illustrated 

in figure 6.12. 

The sub-buoy is considered as part of the flexible riser and its 

mass and the hydrodynamic forces exerted on it are lumped at the 

node to which it is attached. 
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6.3.3 - Optimization of Program FLEXDYNAMIC 

The single catenary riser which is described by table 6.2., was 

chosen as the test case and wave and current loadings with no 

platfor.m motions were applied. 

Descriptions of the data are given in table 6.8a. Table 6.8b 

gives the wave parameters for the 5th order Stokes Wave Theory 

corrputed by program Sl'OKWAVE. 

The dynamic response of the test case was computed three times to 

observe the effect of the different optimizing effects described 

in Chapter 5, Section 5.2.4. The influence of these is 

summarised below: 

1) With no optimization the CPU computing time on a Gould 

9005 computer system was 15 minutes am 50 seconds, 

2, with hydrodynamic forces on the riser calculated at 

every 30 time steps, the CPU computing time was 2 

minutes and 24 seconds, 

3) with EA values reduced by a factor of 10 ~allowing a 

time integration step V10 times larger), and 

hydrodynamic forces on the riser clculated at every 10 

time steps, the CPU computing time was just 1 minute 

and 22 seconds. Four further runs were made for this 

test case with the hydrodynamic forces calculated at 

every 1, 5, 10 and 15 time intervals. Comparisons of 

the results for the horizontal top tension and the 

horizontal displacement of node 10 for these runs are 

given in figure 6.13. The comparisons show that the 

differences are negligible. 
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The results from all of the above sets of computations were in 

good agreement and the maximum difference in the results was 0.5 

percent. Figure 6.2 shows the static equilibrium shape of the 

riser and figure 6.14 shows "snap shots" of the riser dynamic 

response at the 5th wave cycle. The time histories of the 

horizontal and vertical nodal displacements are given py figure 

6.15 and 6.16 respectively. The important conclusion from these 

time history graphs is that the steady uniform response of the 

riser is closely approached after only one wave cycle. Thus 3 

wave cycles are sufficient to analyse a flexible riser using 

program FLEXDYNAMIC. 

Another set of runs was carried out using the above test riser 

subject to platform motion. The data is given in Table 6.9. The 

static equilibrium shape, figure 6.2., corresponds to the initial 

configuration of the riser with the platform having the maximum 

heave and zero surge motions at time zero. Runs were made with 

and without optimization with the following results: 

1) With no optimization the CPU computing time on a Gould 

9005 computer system was 16 minutes and 57 seconds, 

2) with hydrodynamic forces on the riser calculated at 

every 30 time steps, the CPU computing time was only 2 

minutes and 25 seconds. 

The results from both runs were in good agreement. Figures 6.17, 

6.18 aoo 6.19 show respectively the "snap shots" at the 5th wave 

cycle and the time histories of horizontal and vertical nodal 

displacements. 

The comparison of the snap shots of the riser with and without 

platform motion shows that the response of the sag part of the 

riser is strongly dependent on the platform motion. 
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The computed dynamic response of a flexible riser by program 

FLEXDYNAMIC is postprocessed and presented in the form of tables 

at required time intervals, together with time history graphs, 

and snap shots of riser displacements. 

6.4 - Program FLEXCDRRENr ~Program 3) 

The same theory used for the static program (FLEXSTATIC) is 

implemented in the program FLEXaJRRENT. The flow chart for the 

program is given in figure 6.20. 

The program computes the response of a riser due to steady 

current motion, any static loading on the riser and static 

displacement of the platform. It is well suited to investigate 

critical design criteria for a flexible riser as outlined in 

section 6.2.2 of this chapter. Of particular interest is the 

extreme position of the platform induced by waves, or drifting of 

the platform due to the failure of any platform anchoring chain. 

The iterative use of programs FLEXSTATIC and FLEXCURRENT allow 

potential designs to be quickly investigated. 

The simple catenary riser for which data is given in Table 6.2 

was chosen as the test case. Figure 6.21 shows the static 

response of the riser due to the current loading described by 

Table 6.10. Figures 6.22 and 6.23 show respectively the response 

of the riser due to current forces together with heave and surge 

displacement of the platform. The amplitude of the heave and 

surge were 9 and 10 metres respectively. The CPU computing times 

in a Gould computer system for these runs were only 5 to 6 

seconds. 
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The program is incorporated with a user-friendly program which 

gives the list of the required input data. The results are 

output in both tabular and graphical forms. 

6.5 - Validation of Programs FLEXSTATIC, FLEXCURRENT and 

FLEXDYNAMIC CaIpltations by HaIXl calculations 

The results from every computation of the programs were checked 

with those obtained by lengthy hand calculations for two simple 

test cases (figures 6.24 and 6.25' for the first two time steps. 

This procedure ensured that the theories described in Chapters 4 

and 5 were ~lernented correctly. 

6.6 - Implementation am Numerical Validation of the Method 

Used to Determine Structural Natural Frequencies 

The theory which was described in Chapter 5, Section 5.5, is 

implemented into a computer program and is used to obtain the 

structural natural frequencies of any ~ of flexible riser. 

Triantafyllou et. ale H983, presented an analytical method and 

gave graphs to calculate the natural frequencies of catenary 

cables. The graphs give the first four structural natural 

frequencies for different top angles of the cable configuration 

for any constant value of WL!H, where W = self-weight of cable 

per metre length, L = cable length, and H = horizontal component 

of top tension. The specifications of a cable and a typical 

natural frequency graph are given in figures 6.26 and 6.27 

respectively. 

A catenary riser was chosen as the test case and its static 
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equilibrium shape was obtained using program FLEXSTATIC, figure 

6.28. The parameters for the test case were: 

WL(H = 1.5, top angle = 59 degrees 

Figure 6.27 was then used to obtain the first four structural 

natural frequencies and these are given in Table 6.11. 

These natural frequencies were also evaluated by the method 

described in Chapter 5, Section 5.5. This was carried out by 

displacing a node, (say node 8, along the riser) by applying a 

horizontal load of -10 kN and a vertical load of 10 kN at the 

node and computing the displaced equilibrium shape of the riser 

using program FLEXCURRENT. This new equilibrium shape (but 

without the applied vertical and horizontal nodal forces), was 

then used as input data for the program FLEXDYNAMIC and the 

natural vibration of the node following release from the 

displaced state was traced, figure 6.29. A section of the 

displacement trace between any two maxima, figure 6.29, was 

chosen and discretized using the Fourier analysis to evaluate the 

Fourier coefficients Ar and Br• These coefficients are plotted 

against the variable r, figure 6.30. Each maximum or minimum 

value of Ar and Br corresponds to a structural natural frequency. 

Figure 6.30 shows the first four natural frequencies of the 

riser. It can be seen that each frequency possesses a close 

spectrum rather than a single value. This is explained by the 

fact that the flexible riser is a mechanism system. The above 

procedures were repeated also for node 7 and the resulting 

natural frequencies were found to be in good agreement with those 

calculated using an initial displacement of node 8. 
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The natural frequencies which were obtained from the Trianafyllou 

et. ale method and the method used in this work are presented in 

Table 6.11. The comparison shows that the results are generally 

in good agreement. 



Water depth 

Water density 

Riser outside diameter 
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Riser and its oontents weight in air 

Axial stiffness, EA 

Total length 

Horizontal span 

Vertical span 

Number of elements 

300 m 

1.025 t/m3 

0.275 rn 

1.34 kN/m 

98 E4 KN 

381 m 

180 m 

320 m 

11 

Table 6.1 - Input data for the free hanging riser 

Water depth 

Water density 

Riser outside diameter 

Riser and its oontents weight in air 

Axial stiffness, EA 

catenary length 

Taut length 

Horizontal span 

Vertical span 

Buoyancy of sub-buoy 

Number of elements for catenary part 

Number of elements for taut part 

300 m 

1.025 t/m3 

0.275 m 

1.34 kN/rn 

98 E4 KN 

325 m 

112m 

180 m 

320 m 

290 KN 

11 

1 

Table 6.2 - Input data for the single catenary riser 
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~------------------------'---------r--------------------~ Water depth 

Water density 

Riser outside diameter 

Riser and its a:mtents weight in air 

Axial stiffness, EA 

Upper catenary length 

Lower catenary length 

Horizontal span 

Vertical span 

Buoyancy of sub-buoy 

Tethered length 

Horizontal distance of tether base 

from riser base 

Nt..m1ber of elements for upper catenary 

Number of elements for lower catenary 

300 m 

1.025 t/m3 

0.275 m 

1.34 kN/m 

98 E4 KN 

325 m 

118m 

320 m 

180 m 

150 KN 

III m 

50.5 m 

10 

4 

Table 6.3 - Input data for the double catenary riser 

Nt..m1ber of Reaction at Reaction at 
elements Riser Top (KN) Riser Base (Km 

Hor. Vert. Hor. Vert. 
--

6 35.8 221.1 -35.8 -165.4 

11 36.1 220.7 -36.1 -165.7 
- ---

22 36.1 220.6 -36.1 -165.5 

Table 6.4 - Reaction forces of the single catenary 

riser with different nt..m1ber of elements 
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Corresponding Node 
Numbers along riser 6 Elements 11 Elements 22 Elements 

6 11 22 x-coords y-coords x-ooords y-ooords x-coords y-ooords 
(m) '1m) (m)' (m) '1m) (m)' 

1 1 1 o. o. o. o. o. o. 
2 2 3 19.0 110.7 19.2 111. 19.4 111.1 

3 4 7 76.3 86.0 75.1 89.5 75.1 90.3 

4 6 11 122.9 128.1 122.1 129.4 121.9 129.6 

5 8 15 149.1 187.2 148.7 187.9 148.7 188.1 

6 8 19 166.8 251.8 166.6 252.2 166.6 252.2 

7 12 23 180.0 320.0 180.0 320.0 180.0 320.0 

Table 6.5 - Horizontal and vertical co-ordinates of the single 

catenary riser with different number of elements 
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==-=:==========================~============:===:===== ==:== 
HEIGHT OF WAVE = 5.685 
FlHIOD or WAVE = 7.72 
UEPTH Of STILL WATER: 9.137 
==;~======:=======:==:==cz=======z==============&==:a= ===== 

===&==========z=====z===sz====x===~==========c==c:==== =:&:= 
LANOA K 

========z=====.=======~====a&=a&=============K====.==Z ===== 
0.1885 

CONVtHGENCE IS ObTAINED 
IT£HATION HUMBER:l 

0.~825 

=====:==:===.=====:===:=:=:=:=z==============~======z= ===== 
RATIO Of STILL WAT~H DEPTH TO WAVE LENGTH (OIL) = 0.1200 

========:===============Z&:C&:ZZ===============3:========== 

All A 13 A15 

~.120b5E+01 -0.51153£+01 -",.10653£+02 

A22 A24 A3l 

f6.799lj4E+00 -0.49709£+01 ".36627£+00 

A35 A44 ASS 

-16.15042£+01 ".58722£-01 -0.74979£-01 

022 B24 filJ 

0.25024£+01 -0.37215£+01 0.57317£+01 

BJ5 B44 ass 
-0.48890E+'" 0.14034£+02 0.3720~E+~2 

Table 6.7 - Predicted wave parcureters 

for Stckes 5th order 



Wave height 

\'lave period 
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Wave phase angle at the centre of gravity 

of the platform 

Rise is situated at the centre of gravity 

of the platform 

Current velocity profile is 

at water-free surface 

25 m 

16 sec. 

1.5 m/sec 

at 100 metres below water level 1.0 m/sec 

at sea bed 

Axial stiffness, EA 

Bending stiffness, EI 

Buoy diameter 

Buoy overall height 

Buoy voltnne 

Buoy mass 

Drag coefficient, Cd' for riser 

Inertia coefficient, Sm, for riser 

Tangential drag coefficient, Cdt, for riser 

Drag coefficient for buoy 

Inertia coefficient for buoy 

1.0 rn,Isec 

98 E4 KN 

480 KN/m2 

4 m 

5 m 

46.0 m3 

16500 kg 

0.6 

1.5 

0.02 

0.6 

1.5 

Table 6.8a - Data for dynamic run with no platform motion 
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================================== 
HEIGHI' OF WAVE = 25. m 
PERIOO OF WAVE = 16. sec 
DEPl'H OF STILL WATER = 3~. m 

-================== 

=======-
K 

============================= 
¢.1872 
¢.H69 
¢.1869 

CGNERGENCE IS OBTAINED 
ITERATIOO NUMBER=3 
======= 

¢.¢152 
¢.¢152 
¢.~n52 

============== 
RATIO OF STILL WATER DEP'IH 'ID WAVE LENGTH mIL) = ¢.7243 

=--======= 

All Al3 Al5 
= 

¢.2l114E-¢1 -¢.132¢9E-¢1 -¢.163¢3E-¢1 

A22 A24 A33 
====--============================ 

¢.74521E-¢7 -¢.1l153E-¢3 ¢.26l97E-¢9 

A35 A44 ASS 
=================--================== 

-¢.19726E-¢6 ¢.76623E-12 -¢.18¢9¢E-14 

B22 B24 B33 
============================= 

¢.5~4SE+9J 

B35 

-¢.11973E+9Jl 

-¢.7¢917E~ 

B44 

¢.33394E~ 

¢.3755~ 

BS5 
===== 

¢.32627E~ 

Table 6.8b - Predicted wave parameters of 

Stokes 5th order wave theory 

for the dynamic test case 



Wave height 

Wave period 
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Wave phase angle at the centre of gravity 

of the platform 

Riser is situated at the centre of gravity 

of the platform 

Current velocity profile is 

at water-free surface 

25 rn 

16 sec 

1.5 m/sec 

at 100 metres below water level 1.0 m/sec 

at sea bed 1.0 m/sec 

Axial stiffness, EA 98 E4 KN 

Bending stiffness, EI 480 KN/m2 

Buoy diameter 

Buoy overall height 

Buoy volume 

Drag coefficient, Cd' for riser 

Inertia coefficient, Sm, for riser 

Tangential drag coefficient, Cdt, for riser 

Drag coefficient for buoy 

Inertia coefficient for buoy 

Platform surge amplitude 

Surge phase angle 

Platform heave amplitude 

Heave phase angle 

4 m 

Sm 

46.0 m3 

0.6 

1.5 

0.02 

0.6 

1.5 

7 m 

900 

7 m 

o. 

Table 6.9 - Data for dynamic run of the single 

catenary riser with platform motion 
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Current velocity profile is 

at water-free surface 1.5 m/sec 

at 100 metres below water level 1.0 m/sec 

at sea bed 1.0 m/sec 

Axial stiffness, EA 

Buoy diameter 

Buoy overall height 

Buoy volume 

Buoy mass 

Drag coefficient, Cd' for riser 

Inertia coefficient for buoy 

98 E4 KN 

4 m 

Sm 

46.0 m3 

16500 kg 

0.6 

0.6 

Table 6.10 - Data for static run with 

current loadings 



fn 

(published paper) 

Present r 15 
Work 

fn 2.17 

fnl fn2 fn3 fn4 

2.57 3.91 5.28 6.58 

16 17 25 26 27 33 34 35 45 46 47 
, 

2.32 2.46 3.62 3.76 3.91 4.77 4.92 5.06 6.51 6.66 ~~~~J 
Table 6.11 - Comparison of structural natural frequencies predicted by 

Trianfy1lou et. a1. (1983)' and the present work 

1 
(From equation .5.48), fn = r = 0.1447r) 

2 x 3.456 
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HORIZONTAL DISTANCE (M) 
IN WAVE DIRECTION 

-. 
If.L. 

Figure 6.1 - canputed static equilibrium shape of a free hangincr 
riser 
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r.L. 
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HORIZONTAL DISTANCE (M' 
IN NAVE DIRECTION 

Figure 6.2 - canputed static equilibrium shape of a single 
catenary riser 
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IN WAVE DIRECTION 

Figure 6.3 - catp.lted static equililirium shape of a double 
catenary riser 

4OQ! 

I 
I 
! 
I 
I 

I 
! 



-Ii -
:r: ..... 
~ 

- 167 -

initial shape 

N.L. 
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HORIZONTAL DISTANCE (mm) 

IN WAVE DIRECTION 

Figure 6.4 - canputation of static equilibrium shape 'of a double 
catenary riser fran the initial input shape 



- 168 -

CUrrent 
--4 ....... 

Heave 

Figure 6.5 - Critical Configurations of a single catenary 
riser corresponding to far and near rcovements 
of the platform 

.. , 
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A 

\J W.L. 
------------~~----------------_.--~L_ 

riser 

mininum clearance 
from sea bed 

min. rad. 
of 

curvature 

D 
~ 

B \( C 

r, 
E 

total riser length = AS + Ie + CD + DE 

'Water depth 

Figure 6.6 - Key configuration to estirrate the length· of a 
single catenary riser 
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Figure 6. 7 - Optimization of static solution with reduced axial 
stiffness 
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<', Figure 6.8 - Optimization of static solution with nurrber of kinetic 
energy peaks at which the riser length is corrected 
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Figure 6.9 - Canparison of the digitized and canp.lted static 
confiqurations of the catenary snake chain representing 
the upper part of a single or doUble catenary riser 
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Figure 6. 11 - Reaction forces of a Sing Ie Catenary Riser with Different Nt.mber of Elerrents 
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Figure 6.12 - Definition Sketch of Platfonn Motion 



-

-Cl 

-
-
is -ffi 
l-

n. o 
I-. 
~ 

- 176 -

TINE (Sec.) 

TINE (Sec.) 

AT EVERY 1 INT£RVAL 
--- AT EVERY 5 INT£RVALS 
----. AT 09i'Y 10 INTERVALS 

------- AT EVERY 15 INTERVALS 

Fiqure 6. 13 - Comparison of the cCI11pUted dynamic responses of a single 
catenary riser with calculating the wave and current induced 
hydrodynamic forces at every 1, 5, 10 or 15 intearation time 
intervals 
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Figure 6.14 - Snap-shots of the dynamic response of a sinqle catenary 
riser subjected to wave and current induced hydrodynamic 
loadings 
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Figure 6. 15 - Tine histories of horizontal nodal displace.rrents of a 
single catenary riser subjected to wave and current 
induced hydrodynamic loadings 
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Figure 6.16 - Time histories of vertical nodal displacements of a 
single catenary riser subjected to wave and current 
induced hydrodynamic loadings 
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Fic::rure 6. 17 - Snap-shots of the dynamic response of a single catenary 
riser subjected to wave and current induced hydrcx:1ynamic 
forces and platform notion 
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Fiqure 6.18 - Time histories of horizontal nodal displacerrents of a 
single catenary riser subjected to wave and current 
induced hydrodynamic loadinqs and platfonn notion 
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Figure 6.19 - Time histories of vertical nodal displacements of a 
single catenary riser subjected to wave and current 
induced hydrodynamic forces and platfonn rot1on 
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Input the static configuration with mdal 
forces am tensions in the members which 
are all calculated by program FLEXSTATIC 

Set initial conditions 

xt = Xi 

xt-~t/2 = 0 ; KEt-~t/2 = 0 

Loop each elemeAt 

t 
Calculate R~t) from xt and 
member natural stiffness 
relations 

t 
Move riser top to offset 
position 

Loop each element 

Calculate 

xt+6t/ 2 from equation (5.3) 

xt+6t from equation 1~5.18) 

KEt +6t/ 2 = KEt - at/ 2 + 1/2 M X2 

t 
I KEt+~t/2 < KEt- 6t/ 2 ? I 

NO 
+ I t=t+~t 

Yes 

Calculate restarting co-ordinates 
from equation (5.38) and set 
nodal velocity to zero 

t NO 
Check residual 

< 0.1 ? 

t Yes 

Apply static current loadingl 

f NO 
Check residual 

< 0.1 ? 

tYes 

Figure 6.20 - Flow chart for static solution of a flexible riser 

subjected to current induced loadings am platform movements 
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Wave height 25 m 

Wave period 16 sec 

Current velocity profile At water-free surface 1.5 m/sec 

At 100 metres below water 1 m/sec 

At sea bed 1 m/sec 

wave + current 

70.2 J ... 
-'- 20 rn 

141 m 
300 rn 

108.8 m 

92 rn 50.4 rn 17.6 m 

~ ~.. ~ I .. 

Figure 6.24 - Hand calculation test case 
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Wave height 25 m 

Wave period 16 sec 

Current velocity profile: At water-free surface 1.5 m/sec 

At 100 metres below water 1 m/sec 

\\6ve + current 
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Figure 6.25 - Hand calculation test case 
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Weight of cable per unit length = W 

Length of Cable = L 

o 

TOp Angle 
"'1 

Figure 6.26 - Specifications of a catenary cable 

used by Triantafyllou et. ale ~l983) 

to calculate the structural natural 

frequencies. 

I 
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HORIZONTAL DISTANCE (mm) 
IN KAVE DIRECTION 

Figure 6.28 - Static e:.JUillbrium shape of the natural fre:.JUency 
validation test case 
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Figure 6.29 - Tirre history of the "poked" natural frequency 
validation test case 

I 
I 

i 

I 
I 
t 
i 
l 

I 
f 

i 
! 
I 
\ t, 
t . 
I 
I 

I 
f 
I r 
I 

! 
I 
I 
I 



.. 
en .. 

.. 
< .. 

- 197 -
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Figure 6.30 - Values of coefficients A and B against r for 
the natural frequency validation test case 
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ClJAPTER 7 

7.1 - Introduction 

Experimental investigations of the behaviour of flexible risers 

under hydrodynamic loading have usually been carried out in two 

categories; prototype testing and small scale laboratory tests. 

The former procedure is notoriously expensive to carry out and 

also the resulting data is difficult to analyse. In contrast, 

small scale testing is not expensive to perform but suffers from 

the major disadvantage of not being able to simulate high 

Reynold's numbers. Thus, the correlation between predicted 

results and those of the real sea oonditions may be IX>or. 

7.2 - Cbjectives of the Experiments 

The main aim of the experimental work was to validate the 

oomputer programs for; a)' assessment of hydrodynamic loading on 

the riser, and b) the material properties and physical 

performance of the riser. To achieve this it was decided to 

carry out the testing in two stages. The first series required a 

model with negligible material damping and bending stiffness so 

that the assessment of current and wave loadings on different 

shapes of risers could be validated. Having validated the load 

modelling, a further series of tests was carried out in a large 

wave flume using a bigger model with significant material 

damping. The purpose of these tests was to investigate the 

effects of material damping and vortex-shedding. 
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Model Scaling am Description of Test Models, Regular 

waves am CUrrent Flows 

For each test series the model, current and wave flows were 

scaled from prototype conditions. 

7.3.1 - First Series of ExperinEnts 

1 - Scaling the riser 

a) prototype riser - a Dunlop high pressure drilling 

flexible riser with the following properties was 

considered as the typical prototype: 

pipe internal diameter = 250 nm 

pipe external diameter = 326 mm 

body weight in air 

assumed mud density 

= 99.3 kg/m 

= 3000 kg/m3 

99.3 
Thus, density of pipe + mud = ----- + 3000 = 

1\0.3262 
'IT /4) 

4190 kg/m3 

b) model riser - a geometric scaling factor of 1/200 was 

adopted. 
Dm 1 326 

From equation ~5.58) - = , thus Om = - = 1.63 nun 
Dp 200 200 

Modelling the mass properties requires P rm = P rp 

thus, the density of the nodel = 4190 kg/m3 

A snake chain with the following properties was found to 

meet reasonably well the required nodel specifications: 

Chain diameter = 2 nun 

Chain density = 5882 kgjm3 0.1) 



- 200 -

2 - Scaling the current flow 

a) prototype current flow: 

current velocity = 1.4 m/sec 

b) model current flow: 
1 1/2 1 

from equation ~5.64) I<v = KLI/2 = 4-) = 
200 14.14 

1.4 
'Ihus, Vc = --- = 0.099 m/sec (7.2) 

14.14 

3 - Scaling the wave 

a)' prototype wave: 

wave height, H = 13.6 m 

wave period, T = 12 sec 

water depth, h = 100 m 

This wave is almost a deep water wave considering the 

following definitions: 

for shallow water waves Kh < 'IT /10 

for deep water waves 0.3) 

Where K is the wave number and h is the still water 

depth. 

Using the linear wave theory, equation (7.3) can be 

expressed as: 

for shallow water waves < 'IT /10 

0.4) 

for deep water waves > 'IT 
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For the chosen wave: 

4 1T 2 h 4 1T 2 • 100 
--- = ----- = 0.9 'If 

gT2 g x 122 
deep water waves 

b), IOOde1 wave: 
l\n ~ 1 

Fran equation 1(5.58), 11> = ~ = KL = 200 

1 1/2 
Fran equation 115.61), T<'_ = K 1/2 = c-) 

-~l' L 200 

(7.5) 

Thus, l\n = 0.068 m, ~ = 0.5 m, and Tm = 0.85 sec 

'17.6) 

4 - Scaling the arrangement of the chain in the wave flume -

this arrangement was obtained by scaling the dimensions of 

the single catenary flexible riser used in the Ba1moral Oil 

Field. The shape of the single catenary riser was 

simplified because of the limited size of the flume and 

water depth. This was done by replacing the lower stretched 

part of the riser by a thin plate with sharpened edges to 

minimize its disturbance on the wave flow, plate 6. The 

plate was made of PVC I(Polyviny1 Chloride). The dimensions 

of the chain arrangement and the plate are given in figure 

17.1). 

7.3.2 - Secord Series of Experiments 

The scaling factors for the second series of tests were obtained 

from water depth criteria corresponding to the maximum water 

depth which could be used in the large wave flume at The City 

University. Assuming the same prototype conditions as before: 

~ 1.20 1 
K =-=--

L ~ 100 83 
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Figure 7.1 - Arrangerrent of the snake chain in catenary shape 
1..1t_' _________ at 00 to wave flow 
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Thus, the ratio of geometric scaling factor between the two test 

83 1 
series is • 

200 2.4 

The scalings for the second series are thus obtained by 

multiplying the first series parameters by 2.4 for dimensions and 

by (2.4)1/2 for wave period. 

1 - Scaling the riser rrodel 

Dm = 2.4 x 2 nm = 4.8 mm 

Prm = 4190 kgjm3 

i 
1 
1 
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In order to model material damping a plastic tube filled with 

mercury was chosen. This had the following properties: 

Om = 5.23 nun 

P rm = 5543 kg/m3 

2 - Scaling the wave flow 

The scaled properties of the prototype wave flow are: 

l\n = 2.4 x 0.068 = 0.163 m 

~ = 2.4 x 0.5 = 1.2 m 

Tm = 42.4)1/2 • 0.85 = 1.32 sec 

n.7) 

However, to ensure initially that there would be no vortex­

shedding effect the following wave was adopted: 

l\n = 0.15 m 

~ = 1.2 m 

Tm = 1.22 sec 

(7.81 

In a further set of tests on the same model, intended to examine 

the effects of the vortex-shedding, a bigger wave with the 

following description was generated: 

l\n = 0.25 m 

~ = 1.2 m 

Tm = 1.4 sec 

(7.91 

5 - Scaling the arrangements of the model in the wave flume 

Again the dimensions were obtained by scaling the single catenary 

flexible riser used in the Balmoral Oil Field. In this series of 

tests, however, there were two different tube arrangements. In 

the first arrangement the lower stretched part of the single 

catenary riser was replaced by a thin plate made of PVC. This 

simplification was used in order to avoid employing an 
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Figure 7.2 - Arrangerrent of the tube Irodel .in catenary 
shape at 00 to wave flow 
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intermediate sub-buoy. The arrangement was used principally for 

examining the effects of material damping and to assess the 

chosen force coefficients Cd and Cm• The dimensions of the 

arrangement and the base plate are given in figure {7.21. 

The second tube arrangement had an intermediate sub-buoy system 

consisting of the S4b-buoy and a cradle system, plate 10. A 

smooth ball was chosen as the sub-buoy and its size was governed 

by the approximate required buoyancy force which was calculated 

from the static solution. The point on the cradle, at which the 

ball was attached, was obtained by considering the equilibrium of 

the overturning Il'Ornents as follows: 
75 nm 

-I 
~nm 

rP~~~~----~~ ____ ~T 
38 

y 
Side view 

x 

F ~ 21 a 

8 I IF====================:::f1 I Plan view 
2 T t=::=====================t. 10 nm 

Figure 7.3 - Experimental cradle system 
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The position of point P was obtained by using simple geometry 

from figure 7.3: 

Taking nnment about point P: 

x-y tan a C7 • 5-x )'-y tan a 
( ) Fa = Ie -) Fb 

cos 13 cos Cc. 

fram the static solution: 

F a = 938 NxlO-3 

Fb = 271 NxlO-3 

a = 12.3 degrees 

a = 47.4 degrees 

Giving y = 30 nun, from equation (7.10), x = 27 mn 

(7.10) 

(7.11) 

The dimensions of the tube arrangenent are given in figure a .4). 

7.4 - ExperinEntal Apparatus 

The experiments were carried out in a current channel and in the 

small and large wave flumes in the Department of Civil 

Engineering at The City University. 

7.4.1 - Current Channel 

The channel was glass-s ided and was 16 metres long and 300 mm 

wide with a maximum working water depth of 250 mm. There was a 

controlling tap at one end and a gate at the other end of the 

channel. The current velocity and the desired water depth in the 

channel were controlled by adjusting the tap and raising or 

lowering the gate. 



1500 

~ : 35 t -208 - 715 nrn 

Scale 1:100 

Figure 7.4 - Arrangerrent of the tube m:xlel in single catena~ 
riser shape 
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7.4.2 - Small wave Flmne 

The flume was glass-sided, and was 750 mm in width and 18 metres 

in length and had a maximum working water depth of 500 nun. 

Regular waves were generated by means of a wedge oscillating 

vertically to the surface of the water at one end of the flume. 

The generated wave energies were absorbed by installing a sloping 

beach at the other end (i.e. downstream end)' of the flume. The 

beach had a 9 degree slope and terminated at the still water 

level. 

A well known phenomenon associated with laboratory generated 

waves is the presence of higher harmonics due to; a) the 

secondary effect of the wedge type wave make~ b) reflected waves 

from the beach. These phenomena have been considered for 

this particular wave flume by Ellix (1984). The wave which was 

chosen for this study I(Section 7.3) was selected from Ellix's 

work which had negligible secondary wave components and this fact 

was also observed during the present work. 

7.4.3 - Large wave Flmne 

This flume measured 62 m long by 1.8 m wide with a 1.2 m maximum 

working water depth. It was equipped at one end with a wedge 

type wave maker and at the other eoo with a wave absorbing beach. 

The beach was fixed at 8 degrees and finished at undisturbed 

water level. Half of one side of the flume, near the downstream 

side, had glass wiooows for viewing. 
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Two sets of waves were generated in this flume which were an 

increased scale of the waves used in the small flume in order to 

minimize the secondary effects on the waves due to the beach and 

the generator. 

7.5 - Description of MeasuriBj Inst.runEntation 

7.5.1 - CUrrent Meter 

A current meter was used to measure the velocity of the current 

flow. The system consisted of a propeller attached to a digital 

counter box by means of a wire. The box had a button which when 

depressed set the digital counter to zero, and when released 

recorded the number of revolutions of the propeller. 

velocity of the flow was calculated using the formula: 

where 

v = c 
0.1827 N + 0.098 
-------

3.25 

Vc = current velocity 

number of revolutions 
N = ---------

60 

7.5.2 - Wave Probe 

0.12) 

The 

The wave probe was used to measure the wave profile. The 

measurement was carried out by detecting the change of voltage 

due to the change of resistance of the wire probe using the 

equation. 

where 

IxR=V 

I = the constant alternating current 

v = the variable D.C Voltage 

R = the var iable res is tance of the probe w ire due to 

the change of the wave profile 
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Alternating current prevented polarization of the water in the 

region of the probe. 

The probe itself consisted of two stainless wires having a 

diameter of 3 mm and a length of 500 mm with a resistance of 

0.006 ohms per metre. The two wires were separated by a constant 

distance of 25 mm, perpendicular to the direction of wave 

propagation, and were fixed to a perspex plate suspended over 

the flume by means of an adjustable boom. The probe formed one 

element of a wheatstone bridge circuit. the output voltages were 

monitored by a Bryans X-Y plotter Model 26000 A3 and the graphs 

of voltage against time were plotted. The height and period of 

the generated wave were measured from this graph. 

7.5.3 - Ibrizontal Top Tension Measurir¥j Strain Gauges 

The horizontal components of top tension in the tube for the 

second series of tests was obtained by employing two 120 ohm S~4 

strain gauges, one each side of a vertical stainless cantilever 

beam supporting the tube at the top. These gauges were coupled 

with an ultra violet IIU.v., recorder model SEO 6012. The changes 

in the strain in the cantilever beam due to the horizontal 

component of top tension in the tube were plotted against time by 

the u.v. recorder. The traces of these horizontal components 

with time were evaluated from the U.V. graphs. 

7.5.4 - Ultra Violet Recorder 

The U.V. recorder was used to plot graphs of output voltages 

against time. This system was coupled with the strain gauges to 

record top tension components, and with a frictionless transducer 
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to record displacements of the tube with time in the material 

damping test (see plate 15). 

7.5.5 - High Speed camera 

A 16 mm motion picture (Handland Rotating Prism) High Speed 

camera with a 30 mm focal length lens and running at 100 frames 

per second was used to record the displacements of the points 

along the models in the wave direction. It was also used to film 

the wave profiles. 

7.5.6 - 'ltle Modular Film Anal..,YSis System (Digitizer System) 

This system was used to digitize all the filmed data and outputs 

from the U.V. recorder. 

The system was composed of: 

a) rootion analyser 

b) SAC GP7 Sonic digitizer 

c) BBC microcomputer 

d) I?r inter. 

The Sonic digitizer itself consisted of a screen and an 

electronic eye pen. The particular frame of the film was fed on 

to the screen by the motion analyser and then the points of . 
interest on the frame were digitized and the results stored in 

the BBC microcomputer. In the case of the U.V. output, the graph 

was attached on the screen and the points were digitized 

directly. 

The first stage in utilizing this technique was to calibrate the 

data. In this calibration stage, an initial reference point was 

fixed and the scales to be used for the axes were computed 
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directly by digitizing marked distances along both axes. Once 

this calibration was completed the data was stored and the film 

was digitized frame by frame. 

7.6 - calibration of Measuring Instruments 

7.6.1 - wave Probe 

The aim of the wave probe calibration was to determine the 

relationship between the amplitude of the graphically obtained 

and the actual water surface displacement. 

The calibration was achieved by recording the variation in the 

amplitude of the graph by raising and lowering the probe by 10 cm 

in 1 cm steps in still water. The results of the calibration in 

the small and large flumes show a linear relationship between the 

output and the variation of the immersion depth. 

7.6.2 - Strain Gauges 

The strain gauged cantilever beam was clamped in a horizontal 

position and known weights of 0.1 Newton were hung from the hook 

at the free end of the beam. These weights were added up to a 

total of 1 Newton and then removed. The corresponding changes in 

the strain of the beam were recorded to calibrate the U.V. 

recorder. 

7.6.3 - Displacement Transducer 

The transducer was calibrated by applying known constant 

incremental displacements to the transducer by a Digimatic Head 

instrument with 0.001 mm sensitivity. The reSUlting output 

voltages were recorded on the U.V. recorder. 
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7.7 - Experinental Procedure 

The experimental procedures were carried out in two stages as 

previously described. The first series employed the snake chain 

and the second series the plastic tube filled with mercury. 

7.7.1 - 'Ibe First Series of Tests 

7.7.1.1 - CUrrent Olannel Experiment 

The aim of this test was to obtain a value for the drag 

coefficient, Cd' and to validate the static analysis program 3. 

The snake chain of 402 mm in length was subdivided into 6 

elements and the nodes of the elements were marked, figure (7.5). 

The chain was then placed in the middle of the channel and a 

surveying theodolite camera was set up beside the channel aligned 

with the model chain so that the ray from the camera to the chain 

was normal to the channel longtudinal axis. The purpose of 

employing this camera was to obtain the nodal displacements of 

the chain due to current flow by measuring the angles between the 

initial and displaced positions of the nodes. The horizontal 

distance between the theodolite and the chain was established by 

measuring the distance and vertical angle to a point above the 

model chain. The horizontal and vertical angles of the nodes at 

their initial positions were then recorded. 

A current flow was established by opening the tap situated at the 

inlet of the channel, and the water depth was adjusted to 0.25 m 

by raising or lowering the gate at the end of the channel. The 

propeller of the current meter was placed at the middle of the 

channel width and at mid-depth. The velocity of the current was 
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adjusted to 0.097 m/sec and the water depth to 0.25 m by 

controlling the inlet tap and outlet gate. The propeller was 

situated at different depths and the current velocities were 

measured to obtain a profile. 

152 nun 

6 
50 

5 -=:z-

4 50 

50 
3 

2 50 

50 nun I .. 300 nun 
1 

Figure 7.5 - Model chain and current channel 

Deflections of the Chain 

'!he nodal displacements were calculated as follows: 

'Iheodolite 

1 

Olrrent direction 
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node A 
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node A 
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Figure 7.6 - Geometry of nodal displacement 
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From figure (7.6), 

where 

displacement (ron, = 1 tan g 

1 = distance of the initial position of node A from 

the theodolite. 

a = measured horizontal angle. 

1 = Ih/cOS (61 .. 

Ih = horizontal distance of the theodolite from the 

chain. 

Si = vertical angle of node A at its initial position. 

The vertical co-ordinate of node A was obtained by: 

Vertical co-ordinate of node A = Ih tan (131 - co-ordinate of node 1 

7.7.1.2 - wave Flume Exper~ts 

The main concern of these tests was to validate the assessment of 

wave loadings on various arrangements of the chain. The 

arrangements used simulated the following conditions: 

a, a catenary riser at zero degrees to the wave direction 

b" a catenary riser at 30 degrees to the wave direction 

c, a u-shape flexible riser at 30 degrees to the wave 

direction (u-shaped risers may be used between two 

platforms, 

d) disconnected flexible riser (such as may occur in 

emergency situations),. 

Plates 4, 5, 7 and 8 show respectively the above arrangements. 

The base plate used for cases a and b is shown in plate 6. 

The following experimental procedure was carried out for all of 

the 4 chain arrangements. 

: I 
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The chain was subdivided into 10 elements and the shape of the 

catenary chain was found from the numerical analysis. Then 3 

representative nodes along the chain were selected and marked. 

The chain was placed inside the wave flume and 3 cross shape 

reference points at the same levels of the marked nodes were 

established on one flume wall with a coloured tape. These 

reference points were used in digitizing the nodal displacements. 

The specified wave was generated by adjusting the frequency and 

amplitude of the wave generator and the wave height and period 

were evaluated from the graphs plotted by the X-Y plotter 

attached to the wave probe system. 

The nodal displacements of the 3 marked nodes were filmed by the 

high speed camera for a duration of ten wave periods. In filming 

the displacements of each node, special care was taken to fix the 

camera on the same horizontal level as the node in order to 

minimize the errors caused by the filming. When the filming of 

the nodal displacements was finished a 30 mm wide stainless steel 

ruler was placed in the locations of the nodes and then was 

filmed. This was done in order to establish the scale factors 

for the nodal displacements which were used in digitizing the 

displacements. 

The films were fed into the Modular Film Analysis System and were 

digitzed. 

7.7.2 - '!he Secom Series of Tests 

7.7.2.1 - CUrrent Channel Experiment 

'!he Plrpose of this test was to evaluate the drag coefficient for 



- 218 -

the plastic tube. The same testing procedure, current channel 

and current flow as in the first experimental tests were used. 

The arrangement of the tube in the current channel is shown in 

plate 9. 

7.7.2.2 - wave Flume Experiments 

The tests were carried out in the large wave flume and can be 

classified in two main groups. The aim of the first group was to 

examine the validity of the numerically predicted behaviour of 

the tube which had significant material damping to wave loadings. 

The second group was performed to verify experimentally the 

applicability of the adopted vortex-shedding model. 

The first group consisted of three tests. The first of these 

used a simplified form of a single catenary riser as in the 

preliminary series of tests. The purpose of the simplification 

was to avoid the influence of the intermediate sub-buoy on the 

behaviour of the tube due to wave loadings. This test was 

carried out to confirm the selected values of the force 

coefficients, Cd and Cm, and to observe the simulation and the 

effect of the material damping on the response of the tube to 

wave loadings. The model was placed at zero degrees to the wave 

direction, plate 11. The second and third tests used a single 

catenary riser model with an intermediate sub-buoy. The model 

was placed at zero and 45 degrees to the wave direction for these 

second and third tests respectively, plates 12 and 13. 
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The model with an intermediate sub-buoy was mounted at zero 

degrees to the wave direction for the next section of the tests, 

and a larger wave was generated in which the transverse vibration 

of the tube due to vortex-shedding was visible. 

The buoyancy force of the intermediate sub-buoy was obtained by 

subtracting the weight of the sub-buoy and cradle from that of 

the volume of water displaced by the sub-buoy and the cradle. 

The experimental procedures were carried out in the same way as 

in the first series of the tests. In addition, the U.V. recorder 

was calibrated and was used to obtain the trace of the horizontal 

top tensions with time. 

The films and the graphs obtained from the U.V. recorder were 

digitized, as before, by the Modular Film Analysis System. 

7.7.2.3 - Material DanpiBJ Test 

The aim of this test was to determine the material damping 

constants a and b and the short term modulus of elasticity of the 

tube. 

The displacement transducer attached to the U.V. recorder was 

calibrated. Two equal straight segments of the empty tube, 500 

mm in length, were arranged as shown in figure (7.7) and plates 

14 am 15. A dead weight corresponding to the self-weight of the 

tubes when filled with mercury was applied on the hanger and the 

system was allowed to settle down for 5 hours. Since constants a 

and b depend on the initial stress level in the tube the tests 

were carried out five times with different imposed loadings. 

Four of these loadings employed weights corresponding to the 
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maximum top tension in the second series of tests. The fifth was 

a slightly larger weight of 0.5 Newton which was applied for 

greater clarity in observing the tube response. A thin wire was 

installed in the middle of the system and the applied imposed 

load was initially carried by this wire. The wire was then 

suddenly cut without causing any lateral movement in the tubes, 

and the trace of the tube displacements was recorded by the U.V. 

recorder attached to the transducer. 

The plots for all five tests were digitized using the digitizer 

system. 160 nm 

15 -L 

tube 

500 nm thin wire 

20 x 100 x 1 plate 

applied load 

(4)40 x 1) 

transducer 

Figure 7.7 - Material damping test arrangement 



Q.. 



a.. 

a.. 



i 

! 
j 
! 
; 
\ 
I 

l • 

I 
j 

J 

u .... 
"' a.. 



1.~f 
, .« 

cl;'." , 

co 

a.. 

~ ..... 
." 

a.. 



o 

0.. 



PI ate II 



" 

r·:'~>ll'~";"J"~'C' r\~"'I.,' 
~ 

Plate 12 



Plate 13 



cu .... 
"' c.. 

cu .... 
", 

c.. 



RESOI:l'S 

8.1 - Introduction 

- 221 -

0IAP'mR 8 

This chapter describes and compares the experimentally and 

numerically predicted results of the test cases which were 

presented in chapter 7. It is divided into the following two 

sections: 

1 - results for the chain model 

2 - results for the tube model 

Each section consists of the results from tests carried out in 

the current channel and the wave flume. The numerical results 

for the model in the current channel were obtained by determining 

the model configuration using program 1, and then program 3 was 

used to compute the response of the model induced by the current 

loading. The configuration and dynamic response of the model in 

waves were obtained using programs 1 and 2 respectively. 

8.2 - Results for the Olain ttxlel 

8.2.1 - Determination of YOUDJI S Modulus, E, for the Chain 

An extensometer machine was used to obtain the E value for the 

chain. A graph of load against deflection was recorded and 

Young's modulus was calculated from the slope of this graph. The 

E value for the chain was 26.1 N/mm2• 

8.2.2 - Determination of the Drag Coefficient, Cd' for the 

Model in Steady Current Flow am validation of Static 

Program 3 

The distance arrl vertical angle of the point above the model from 

the theodolite were 1395 mm arrl 90 361 50" respectively. Thus, 
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the horizontal distance of the model from the theodolite = 
1395. cos 1190 361 50") = 1374 mm. 

The chain configuration was obtained using program 1, figure 7.5, 

and the nodes along the chain were marked. The nodal 

displacements of the chain, due to current forces, were measured 

and calculated as described in chapter 7, Section 7.7.1.1. These 

results are given in table 8.1. 

The vaJ;'iations of the current velocity with water depth, which 

were measured by the current meter, are given in table 8.2. An 

equivalent current velocity profile along the chain was 

calculated as shown in figure 8.1. This velocity profile was 

input into static program 3. Trial values of the drag 

coefficient, Cd' were then considered and the corresponding nodal 

displacements were computed. A solution for Cd was obtained when 

the experimental and computed values of the nodal displacement 

corresponding to the lowest node were in close agreement. The 

value of Cd was determined as 1.37. The proportionality of the 

other nodal displacements confirmed the validity of program 3. 

The comparison is given in table 8.3 and figure 8.2. 

8.2.3 - Determination of Drag Coefficient, Cd' and Inertia 

Coefficient, C1n 

An approximate value of the drag coefficient for the chain was 

obtained from the current channel test as described above. 

Sarpakaya et. a1. (1974) measured drag-inertia forces on 

cylinders for sub-critical Reynolds numbers in oscillating flow. 

They determined the drag coefficient, Cd' and inertia 



F''' 

i 

Intitial Position Ini tial Co-ords Final Position Horizontal Final Position 
angle 

Horizonta vertical Vertical Distance Horizontal Vertical Horizontal vertical vertical =[SrSiJ Horizontal Vertical 
Node angle (Bi , angle angle e from angle (Sf' angle angle displace- co-ords 

reading Theodolite reading rent 
0 • " 0 • " 0 • n l=lWros e nm rom 0 • " 0 • n 0 • n 0 • n nm rom 

1 8 39 20 98 59 40 8 59 40 1391 1.5 0.0 7 26 30 99 08 40 9 08 40 1 12 50 29.5 0.8 

2 8 41 20 96 59 40 6 59 40 1384 0.7 50.4 7 38 20 97 02 40 7 02 40 1 03 00 25.4 50.6 

3 8 42 00 94 58 20 4 58 20 1379 0.5 100.2 7 48 50 94 59 10 4 59 10 0 53 10 21.3 100.5 

4 8 42 00 92 55 10 2 55 10 1376 0.5 150.0 7 59 00 92 55 00 2 55 00 0 43 00 17.2 150.4 

5 8 42 30 90 50 20 o 50 20 1374 0.3 200.0 8 10 00 90 50 20 o 50 20 0 31 50 12.7 200.2 

6 8 43 10 88 44 20 -1 15 40 1374 0.0 250.4 8 21 50 88 45 40 1 14 20 0 21 20 8.5 250.1 
! 

7 8 43 10 82 29 50 -7 30 10 1386 0.0 402.7 8 43 10 82 28 10 7 31 50 0 00 00 0.0 402.0 

Table 8.1 - ColIpItation of the experimental oodal displacements 

induced by the Current I 
t\.) 
t\.) 
w 
I 

. 
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-----
Depth from Number of Velocity 
Charnel Bed Propeller m/sec 

(nun) Revolution 
-

230 65 0.091 
-- _._- -- ._---

220 66 0.092 
----

210 70 0.096 _. - --
200 71 0.097 

----
ISS 71 0.097 

65 71 0.097 

55 66 0.092 

45 63 0.089 

35 62 0.088 

Table 8.2 - Variation of the current 

velocity with water depth 

----r-~~:__250 mn -0.091 
232 rrm 

0.094 

182 rrm 
0.097 rn/sec 

82 rrm 

0.097 

32 rrm 
0.089 

Figure 8.1 - Equivalent current velocity 

variation with water depth 
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Exper imental Computed 
Node displacement displacement 

(mn) (mm) 
-

1 29.5 29.4 
----- - --

2 25.4 25.5 
1--' 

3 21.3 21.1 

4- 17.2 16.9 

5 12.7 12.3 
- . 

6 8.5 8.3 

7 o. o. 
--

Table 8.3 - Comparison of the computed and 

experimental horizontal nodal 

displacements 
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coefficient, Cm' as a function of KC. These are shown in figures 

8.3 and 8.4 respectively. The force coefficients for the chain 

in waves were obtained as follows: 

The horizontal velocity of water particles induced by waves at 

mean water level using the linear wave theory for deep water 

waves is: 

where Hand T are the wave height and period respectively. 

The Keulegan Carpenter number for the considered wave is: 

Vx T 
KC =-­

D 

where 0 is the diameter of the chain. 

(8.2) 

substituting equation (8.1) into equation (8.2) and evaluating 

the KC number for the wave: 

1T H 1TX 0.068 
KC = --- = = 106.8 

D 0.002 

Thus, from graphs 8.3 and 8.4 for KC > 50: 

Cd = 1.37 

Sn = 1.25 

(8.3)' 

8.2.4 - Results of the Generated Wave in the Small Flmne 

It was essential to ensure that the input criteria for the 

generated wave was accurate. This was achieved by measuring the 

wave profile using both the X-Y plotter and the high speed 

camera. Results from the X-Y plotter are shown in figure 8.5. 

The height and period of the wave were measured from figure 8.Sa. 

The values were 0.068 metres and 0.85 seconds respectively. 
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These results were in conformity with those obtained from the 

filming. Figure 8.5b shows the uniformity of the wave in the 

flume and hence confirms the fact that the effect of the 

secondary components of the wave are negligible as reported by 

Ellix (1984). 

The most suitable wave theory for the considered wave was 

determined from figure 4.4 which was the Stokes 3rd order theory. 

A comparison of the computed and filmed wave profiles is given in 

figure 8.6. This indicates that the adopted wave theory 

represents the wave accurately. 

The wave parameters which were obtained using the program 

STOKWAVE, are given in table 8.4. 

Wave Wave Water 
~eight Period Depth K 

mm sec mm 

68 0.85 500 0.1824 0.0054 0.13264 -0.08614 O. 0.116E-3 O. 

B55 

-.266E-5 O. o. O. 0.51769 O. 0.39514 O. O. O. 

Table 8.4 - Wave parameters of the wave 

generated in the small flume 

8.2.5 - Iesults of the Tests in the Small Wave Flmoo 

The chain model was arranged in the following four different 

configurations in the wave flume: 

1 - catenary shape at zero degrees to the wave direction. 

2 - Catenary shape at 30 degrees to the wave direction. 
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3 - U-Shape at 30 degrees to the wave direction. 

4 - Straight line shape. 

FOr each arrangement, the static equilibrium shape of the chain 

was obtained using program 1. Then program 2 was used to compute 

the dynamic response of the chain due to the wave motion. 

Comparisons of the computed and experimental dynamic response of 

3 nodes are presented graphically. 

The computed static configuration of the chain in the first case 

is given in figure 8.7. The computed and experimental envelopes 

of the dynamic response of the chain are given in figure 8.8. 

Figure 8.9 shows a comparison of the computed and experimental 

nodal displacements. 

Graphs corresponding with those listed above for the second, 

third and fourth cases are given in figures 8.10 to 8.12, 8.13 to 

8.15 and 8.16 to 8.18 respectively. 

The above comparisons show a very close agreement between the 

computed and experimentally measured amplitudes of the nodal 

displacements. The degree of accuracy is partly due to employing 

the Simpson's rule to calculate the wave loadings on the chain. 

These results complete the validation of the adopted scheme for 

assessing the hydrodynamic loadings on a flexible catenary riser. 
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8.3 - JesuIts for the 'l\Jbe Model 

8.3.1 - Results of the Material Danping Tests 

The applied dead load on the system was 1.4 Newtons and the live 

loads were 0.09, 0.18, 0.32 and 0.5 Newtons. The time history of 

the system displacements associated with the applied live loads 

were obtained from the U.V. recorder and were then digitized. 

A curve fitting procedure was carried out for the case with 0.5 N 

live load by giving trial values for the material constant, a, 

and the Young's modulus, E, and computing the corresponding 

displacement curve. This curve was then compared with that 

obtained from the test. The criteria for fitting the curves were 

to satisfy the first peak and the rate of displacement decay with 

time. These fitted curves are shown in figure 8.19. The 

corresponding values for the material damping constants, a, and 

b, and the Young's modulus, E, were as follows: 

a = 4.9 x 10-6 m2/N.sec. , b = 30 l/sec. , E = 8.3xl06 N/m2 

The above values of a, band E were used to compute the system 

response for the other live load cases. The resulting graphs 

fitted well with those obtained from the experiments. 

8.3.2 - Determination of the Drag Coefficient, Cd' for the 

Model in Steady CUrrent Flow 

The same current velocity field which was used for the chain 

model was generated. The computed and measured experimental 

nodal displacements due to the current flow are given in table 

8.5 and figure 8.20. The value for Cd was 1.37. 
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Node 1 2 3 4 5 6 
r---' 
Experimental 
Displacements 55.8 43.1 35.3 29.4 20. 14.1 

(mm), 

Computed 
Displacements 55.2 45.0 37.2 29.5 21.6 14.3 

(mm)1 

Table 8.5 - Compari~on of the computed and experimental 

horizontal nodal displacements 

7 

o. 

o. 

8.3.3 - Determination of Drag Coefficient, Cd' and Inertia 

Coefficient, Cut 

The Keulegan number, KC, at the mean water level for the chosen 

wave, using equation 1~8.3), is: 

'lTH 'IT xO.15 
KC = - = --- = 88.9 

D 0.0053 

Thus, from figures 8.3 and 8.4 for KC > 50: 

Cd = 1.37 

'1n = 1.25 

8.3.4 - Results for the Generated wave in the Large wave Flmne 

The results for the wave height and period from the X-Y plotter, 

figure 8.2la, are 0.15 metres and 1.22 seconds respectively. 

These results were in conformity with those obtained from the 

filming process. Figure 8.2lb shows reasonable uniformity of the 

wave in the flume. 

The most suitable wave theory for the wave was Stokes 3rd order 

theory. A comparison of the computed and filmed wave profiles is 

given in figure 8.22. The wave parameters are given in table 

8.6. 
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Wave Wave Water 
Height Period Depth K 

mm sec mm 

150 1.22 1200 0.1934 0.0026 0.0868 -0.0552 0.0 0.2lE-4 0.( 

,..0.30E-6 O. o. O. 0.50756 o. 0.3836 o. o. 

Table 8.6 - Wave parameters of the first wave 

generated in the large flume 

8.3.5 - calculation of the Buoyancy Force Induced by the Sub­

Buoy am the Cradle 

The mass of the cradle = 42.3 grams 

The mass of the ball = 7.3 grams 

Thus, total rrass of the sul::r-buoy system == 49.6 grams 

The total weight of the sul::r-buoy system = 0.486 N 

Volume of the cradle = 23.2 em3 

Diameter of the ball = 6.25 em 

Thus, volume of the ball = (4/3) 03 
'I\' /8 = 127.8 

The total volume of the sul::r-buoy system = 151 em3 

Density of water p = 1000 Kg/m3 

Equivalent weight of displaced water == 

151 x 10-6 x 1000 x 10 == 1.51 N 

Buoyancy of the sul::r-buoy = 1.51 - 0.486 == 1.024 N 

8.3.6 - Results of the Tests in the large wave Flmne 

The model was arranged in the following three different 

configurations in the wave flume: 

O. 
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1 - Catenary shape at zero degrees to the wave direction. 

2 - Single catenary riser shape at zero degrees to the wave 

direction. 

3 - Single catenary riser shape at 45 degrees to the wave 

direction. 

For each arrangement, the static equilibrium shape of the tube 

was obtained using program 1. Program 2 was then used to compute 

the dynamic response of the tube due to wave motion. Compar isons 

of the computed and experimental dynamic horizontal top tension 

and nodal displacements of 3 nodes are presented graphically. 

The computed static configuration of the tube in the first 

case is given in figure 8.23. The computed and experimental 

envelopes of the tube dynamic response are given in figure 8.24. 

Figure 8.25 shows a compar is on of the computed and experimental 

horizontal top tension and nodal displacements in the wave 

direction. Figure 8.26 shows a typical output for the horizontal 

top tension from the U.V. recorder. 

Graphs corresponding with those listed above for the second and 

third configurations of the tube are given in figures 8.27 to 

8.29 and 8.30 to 8.32 respectively. 

The above comparisons showed close agreement between the computed 

and exper imental results. The program for the first 

configuration of the tube was also run without material damping. 

These results showed a 6% error (i.e. increase)- in the amplitude 

of the horizontal top tension. 
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The results from the above comparisons complete the validation of 

the adopted scheme to model the physical characteristics and 

response of the flexible catenary riser due to drag-inertia 

hydrodynamic forces induced by wave and current motion. 
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Figure 8.2 - Conparison of the rooasured and canp..1ted nodal 
displacerrents along the chain due to current 
induced hydrodynamic loadings 
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2·0 

~5 

1-0 

0·5 
30 '0 50 0 10 20 

KC 

Figure 8.3 - Drag coefficient (Cd> against Keulegan-carpenter number 
(Kc) in subcritical Reynolds nunber region (after Sarpakya 
et. al. (1974» 

05~~--~--T-~--~--~~~~--~--+ 
o 10 20 30 40 50 

KC 

Figure 8.4 - Inertia coefficient (C ) against Keulegan-carpenter number 
(KC) in subcritical Re~Olds number region (after Sarpakaya 
et. al. (1974» 
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Figure 8.6 - Canparison of the camp..lted and digitized wave profile 
for the wave generated in the small wave flUIOO 
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-. 
W.L. 

HORIZONTAL DISTANCE (am) 
IN WAVE DIRECTION 

Figure 8. 7 - canputed static equilibrium shape of the chain nodel 
at cP to the wave direction 
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Figure 8.8 - carputed and treasured envelopes for the dynamic 

response of the chain m::x:1el at cP to the wave 
direction 
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Figure 8.9 - ~ison of the computed and rreasured horizontal 
nodal displacements along the chain m:x1el at (jJ to 
the wave direction 
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Figure 8.10 - Computed static equililirillm shape of the chain 
m:xlel at 300 to the wave direction • 
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the wave direction 
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Figure 8. 12 - Conparison of the computed and measured horizontal 
nodal displacenents in the wave direction along the 
chain rrodel at 300 to the wave direction 



\ , 

-I -

o tOO 

- 244 -

200 

-• 
W.L. 

HORIZONTAL DISTANCE (ma) 
IN WAVE DIRECTION 

Figure 8.13 - Conp-lted static equilibrium shape of the chain 
m:x1el in u-shape at 300 to the wave direction 
used as the initial shape for corresponding 
dynamic response calculations 

I : 
I 

I 
i 



-iii 
II -

- 245 -

A 
\\ / I 
\\ // 
\\ / J 
\'\.~/ J ........... ......-r--

a 

--

HORIZONTAL DISTANCE (mm) 

EXPERIMENT 

THEORY 

Figure 8. 14 - Complted and rreasured envelopes in the wave d~rection 
for the dynamic response of the chain in u-shape at 

. 300 to the wave direction 
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chain IOOdel in u-shape at 300 to the wave direction 



-Ii -. 
~ 
~ 

- 247 -

1a 

• 
• 
7 If.L. 
I 

• 
.c 

• 
Z 

t 

-152 52 

HORIZONTAL DISTANCE (mm) 
IN WAVE DIRECTION 

Figure 8.16 - carputed static equilibrium shape of the chain 
nodel in disconnected shape . 
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Figure 8.17 - Calplted and rreasured envelopes for the dynarni~ 
response of the chain m:xlel in disconnected shape 
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8.4 - Results for the Vibrating Tube Model due to Vortex-

Shedding 

8.4.1 - Results for Higher Amplitude Wave Generated in the 

Large wave FllJIle 

The values for the wave height and period obtained from the X-Y 

plotter, figure 8.33a, are 0.25 metres and 1.40 seconds 

respectively. These results were in conformity with those 

obtained from the filming. Figure 8.33b shows the reasonable 

uniformity of the wave in the flume. 

The most suitable wave theory for the wave was Stokes 3rd order 

theory. A comparison of the computed and filmed wave profiles is 

given in figure 8.34. The wave parameters are given in table 

8.7. 

Wave Wave Water 
Height Period Depth 

sec nun 
K 

150 1.40 1200 0.2406 0.002 0.18945 -0.12794 O. 0.48E-3 

B55 

-0.14E-4 o. O. O. 0.53629 O. 0.41685 O. o. 

Table 8.7 - Wave parameters of the second wave 

generated in the large flume 

8.4.2 - Determination of Drag Coefficient, Cd' and Inertia 

Coefficient, <in 

o. 

O. 
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The Keulegan number, KC, at the mean water level for the chosen 

wave, using equation ,\8.3)" is: 

'11' x 0.25 
KC = --- = 148.2 

0.0053 

Thus, from figures 8.3 and 8.4 for KC > 50: 

Cd = 1.37 

'1n = 1.25 

8.4.3 - Evaluation of the Model Natural Frequencies 

The equilibrium configuration of the model was obtained using 

program 1. Then a node along the model (node 6)' was displaced by 

applying horizontal and vertical point loads (-2N and -20N 

respectively), and the new equilibrium shape was obtained using 

the static program 3. This shape was the input into the dynamic 

program 2 and the natural vibration of node 6 with time was 

recorded when the loads were released, figure 8.35. Fourier 

analysis was carried out for a part of this recorded time history 

of displacement which was chosen so that the ends corresponded to 

maximum displacements, figure 8.35. The Fourier amplitude 

coefficients, Ar and Br , were evaluated, figure 8.36J each peak 

value of Ar and Br corresponding with a structural natural 

frequency. These frequencies were calculated using equation 

,\5.48), as follows: 

1 
fn = r = 0.090 r 

2 x 5.568 

The results are given in table 8.8. 
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r 6 7 10 11 20 21 32 33 40 -- . - -
fn ~.539 0.629 0.898 0.988 1.796 1.886 2.874 2.963 3.592 

- -- --_. 
T=l/fn 1.86 1.59 1.11 1.01 0.56 0.53 0.35 0.34 0.28 

(sec) 

Table 8.8 - Natural frequencies of the single catenary model 

8.4.4 - Determination of the Model Response due to Vortex-

Shedding 

The effect of vortex-Shedding on the tube was assessed by the 

method which was suggested by Rajabi et. al. U984)1 as outlined 

in chapter 4 Section 4.4.2. This was achieved by using the 

calculated maximum nodal displacement in the direction of the 

lift force and the well known relationships to evaluate the 

amplification factors for the nodal drag coefficient, Cd/Cdo• 

Nodal KC and Re values for the considered wave were calculated 

using the water particle velocity components normal to the 

members of the modelJ and possible vortex-shedding frequencies, 

fv' along the model were determined from figure 4.9 and are given 

in table 8.9. These frequencies were compared with the 

structural natural frequencies (fn)l, figure 8.37, and the 

dominant values of fv and corresponding fn were determined. This 

was achieved by choosing the most closely agreeing values of fv 

and f n• From figure 8.37 these values are 2.857 and 2.874 

respectively. 

41 

3.682 

-
0.27 
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Vert. 
Node Co-ords Re KC fv/fw fv 

nm 

1 o. - - - -
2 406 694 36 4 2.857 
3 272 593 30 4 2.857 
4 234 572 29 4 2.857 
5 338 638 33 5 3.571 
6 488 782 40 5 3.571 
7 652 1022 52 6 4.286 
8 818 1379 70 6 4.286 
9 986 1901 97 6 4.286 

10 1156 2654 l36 6 4.286 
11 1327 3733 191 6 4.286 
12 1500 - - - -

Table 8.9 - Possible vortex-shedding frequencies 

along the model from figure 4.9 

The nodal reduced velocities, Vr , were then calculated. At the 

dominant vortex-shedding area along the tube (i.e. the area with 

fv = 4fn", the reduced velocities varied from 7.28 to 8.11. 

Experimental results for a cantilever cylinder in a wave flume, 

obtained by Angrilli and Cossalter (1982», show that perfect 

resonance of a cylinder will occur at a reduced velocity of 8.98 

when fv is equal to 4fn• Therefore, the reduced velocity at 

* perfect resonance, Vr , was assumed to be 8.98 for the present 

* work. The nodal values Vr/Vr were calculated and the 

corresponding values of the lift amplification factor (CL/CLO)I 

were determined from figure 4.11. The nodal lift coefficients, 

CLo' were determined from figure 8.38 which is reproduced from 

the work by Sarpakaya et. ale U974), who obtained the graph from 

experimental work in the subcritical region of Reynolds numbers. 

The dynamic program 2 was then used to find the maximum nodal 

displacements in the lift force direction and hence the nodal 
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amplification factors of the nodal drag coefficients, Cd/Cdo• 

The results are summarized in table 8.10. These amplification 

factors were re-input into program 2 and the dynamic response of 

the tube in the drag-inertia force direction was computed. 

* Max. Cd 
Node Vr/Vr CL/CLo CLo Disp1. -

rrun Cdo 

1 - - - - -
2 0.98 2.80 1.11 23.15 4.1 
3 0.84 2.63 1.33 21.32 4.3 
4 0.81 2.50 1.35 17.96 4.0 
5 0.90 2.75 1.22 15.34 3.5 
6 1.11 2.71 1.0 12.82 2.8 
7 1.45 2.23 0.9 11.56 2.2 
8 1.95 1.83 0.9 10.17 1.6 
9 2.69 1.67 0.9 8.18 1.0 

10 3.76 1.62 0.9 5.61 1.0 
11 5.29 1.62 0.9 2.75 1.0 
12 - - - - -

Table 8.10 - Computed results fram the vortex-shedding model 

8.4.5 - Comparison of the Model Response to the Wave with am 

without taking accoont of Vortex-shedding Effects 

The static configuration of the tube in the wave flume was 

obtained using program 1, figure 8.39. Program 2 was then used 

to compute the dynamic response of the tube with and without 

taking account of the nodal drag amplification factors, Cd/Cdo' 

in the drag-inertia force direction. A comparison of the 

computed results is given in figure 8.40. Figure 8.41 shows a 

comparison of both of these computed results with the 

experimental horizontal top tension and nodal displacements 

induced by the wave loadings. The comparison shows close 

agreement between the experimental results and those computed by 

taking account of the vortex-shedding effect. The results 
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computed without taking vortex-shedding into account show a 10 to 

15% error in both the amplitude of the horizontal top tension and 

the nodal displacements. 

The vortex-shedding, which was experienced in the present test, 

(i.e. with fv = 4fn" tended to have a beneficial effect on 

damping the dynamic response of the tube in the drag-inertia 

force direction. However, the lift force had a frequency of 4 

times that of the wave. This is important in the context of 

fatigue life, particularly at the end connections. 

The results of this comparison may be considered as an 

experimental verification of the vortex-shedding theory suggested 

py Rajabi eta al. (1984). 
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CBAPl'ER 9 

lU4ERICAL VALIIlATIOO 

Introduction 

'!his chapter is concerned with a comparison of the numerically 

predicted results using the programs developed in the present 

work (termed FLEXSTATIC, FLEXCURRENl' and FLEXDYNAMIC) with those 

obtained from the well known general purpose program "FLEKRISER". 

Program FLEXRISER is a 3-dimensional flexible riser program which 

has been developed by Zentech Consultants of London in 

conjunction with Professor Larsen of the Royal Institute of 

Technology in Stockholm. FLEXRISER has undergone comparative 

checks with well known Finite Element Packages such as ABACUS and 

FENRIS. The analysis am the numerical Solution Scheme which are 

used by FLEXRISER to predict the behaviour of a flexible riser 

are completely different from those used by the programs 

developed in this thesis. FLEXRISER uses a solution scheme which 

is analogous to the system describing the hydrodynamics of an 

open channel flow and the equation of motion is solved using an 

implicit numerical scheme. 

The chapter includes comparisons for the static equilibrium 

configurations with and without current loadings, and the dynamic 

behaviour induced by wave and current loadings and platform 

motions for various flexible risers. The number of elements used 

to model the riser were the same for program FLEXRISER and the 

three programs developed in the present work for each test case. 

Most of the test cases used in this chapter were data 

corresponding to real cases. The input for these data are given 
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in Appendix E. 

The static comparisons without current loadings include the 

following test cases: 

a)1 Free hanging risers - this type of riser is further 

divided into the following two configurations: 

1) Single hanging riser - a riser which is attached 

to the platform at the top and to the sea bed 

manifold at the sea bed, figure 9.1. 

2) Double hanging riser - a riser which forms a U 

shape and connects two platforms, figure 9.2. 

b) Single catenary risers - these risers are divided into 

the following two configurations with respect to the 

type of sub-surface sub-buoys employed: 

1) Steep-S risers - in this type of riser the 

buoyancy at the sub-surface is supplied by a 

discrete sub-buoy, figure 9.3. 

2) Steep wave risers - in this type the buoyancy is 

supplied by employing buoyant collars which are 

installed along a certain length of a riser with 

constant or varying gaps between them, figure 9.4. 

c) Double catenary risers - this type of riser, like 

single catenary risers, is divided into two 

configurations in respect of their sub-surface buoyancy 

systems as follows: 

1) A Lazy-S riser - which has a discrete sub-buoy, 

figure 9.5. 

2)' A Lazy wave riser - which has a collar buoyancy 

system, figure 9.6. 
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The static comparisons with current loadings, and the dynamic 

comparisons, include the following test cases: 

a)i Double hanging riser which is referred to in the text 

as the simple catenary riser. 

b) Stee};rS riser. 

All the comparisons are presented in graphical form. The results 

predicted by program FLEXRISER are plotted as full lines and 

those predicted by the programs which have been developed in the 

present work are plotted as dotted lines. 

9.2 - Static Test Cases without Current IDadings 

Figures 9.1 to 9.6 show the comparison of the static 

configurations for flexible risers with nO current loadings 

predicted by programs FLEXRISER and FLEXSTATIC. The comparisons 

are in close agreement. The sequence of the figure numberings 

for the test cases are as follows: 

Figure 9.1 Single hanging riser 

Figure 9.2 Double hanging riser 

Figure 9.3 SteelrS riser 

Figure 9.4 Steep wave riser 

Figure 9.5 Lazy-S riser 

Figure 9.6 Lazy wave riser 

Program FLEXSTATIC had to be modified to take account of sea bed 

reaction forces when the riser was lying on the sea bed. This 

was done by setting the negative vertical velocities and vertical 

co-ordinates of the nodes on the sea bed to zero. The same 

modifications were made for both FLEXDYNAMIC and FLEXCURRENT 

programs. 
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9.3 - Static Test Cases with Current LoadiDJs 

Figures 9.7 and 9.8 show respectively the comparison of the 

static equilibrium shapes for a double hanging riser and a Steep­

S riser, subjected to current loadings, predicted by programs 

FLEXRISER and FLEXCURRENT. The comparisons are in close 

agreement. 

9.4 - Dynamic Test Cases 

The comparison of the dynamic behaviour for the test cases was 

carried out ~ computing the riser response for 6 wave cycles by 

programs FLEXRISER and FLEXDYNAMIC and comparing the snap shots 

of the riser response (i.e. frozen riser response with respect to 

time) at the ~ 6th wave cycle. Four snap shots corresponding to 

times 5T, 5T + T/4, 5T + T/2, and 5T + 3T/4 (where T is the wave 

period), are considered for the comparisons. In all the test 

cases the hydrodynamic loadings included both wave and current 

induced loadings. 

The Steep-S riser for which the static configuration was ex>mputed 

in section 9.2, figure 9.3, was considered as the test case to 

carry out the dynamic ex>mparisons. The comparisons were carried 

out in four steps. First the catenary part of the riser was 

considered as a double hanging riser (it is referred to in the 

text as the simple catenary riser). The dynamic response of this 

riser section due to hydrodynamic loadings with and without 

platform motion were then compared. The whole Steep-S riser was 

subsequently considered. Again first the riser response with 

hydrodynamic loading and no platform motion and then with 

platform motion was computed am compared. All comparisons show 
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close agreement. The sequence for the figure numbering is as 

follows: 

Figure 9.9 Snap shots of simple catenary riser with ro 

platform motion 

Figure 9.10 Snap shots of simple catenary riser with 

platform motion 

Figure 9.11 Snap shots of steep-S riser with ro 

platform motion 

Figure 9.12 Snap shots of steep-S riser with 

pIa tform motion 
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CIAPl'ER 10 

10.1 Conclusions 

Flexible risers are the simplest and most economical means of 

linking subsea equipment and floating facilities. From an 

economic standpoint, the benefits associated with incorporating 

flexible pipes into production systems are: 

a)' Simplicity in system design 

b)1 Easy arrl rapid installation 

c,' Possibility of retrieval for re-use elsewhere 

d) Built-in flexibility: systems can be easily adapted to 

changing economic objectives as field development 

progresses. 

Therefore, the flexible riser systems can be regarded as one of 

the key components for the more advanced future exploitation of 

oil and gas reserves in deep waters, and a comprehensive 

knowledge of their behaviour due to any wave arrl current irrluced 

hydrodynamic loading is required. 

A number of 3-dimensional non-linear computer programs have been 

developed in recent years to analyse flexible riser systems but 

most of them are unusually expensive to run and they do not 

inclUde the wave and current induced vortex shedding which is 

essential to simulate the 3-dimensional behaviour of risers. The 

aim of the present work was to develop an efficient and cost­

effective scheme to analyse flexibie riser systems. 
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A numerical method for the analysis of flexible risers by 

explicit integration of Newtonls second law has been presented. 

The time integration step was calculated automatically using a 

simple stability criteria. The theory had the advantage of 

simple formulation and included the effects of material damping 

and vortex-shedding due to wave and current flows on flexible 

risers. The theory was implemented in four computer programs, 

FLEXSTATIC, FLEXDYNAMIC, FLEXOJRRENT and STCKWAVE. 

program STOKWAVE calculated the wave parameters for any order (1-

5) of Stokes wave theory. The predicted values of the wave 

parameters for a wave were identical to those published by other 

authors '(Skjelberia and Hendrickson U960)) who extended Stokes 

wave theory to fifth order. 

program FLEXSTATIC can be regarded as an efficient 3-dimensional 

static program which can compute any flexible riser configuration 

with given boundary-conditions. The CPU computing times on a 

GOULD 9005 computer system for predicting various riser 

configurations varied from just 5 to 10 seconds. These computed 

static configurations compared well with those measured from a 

hanging snake chain in two different catenary shapes and those 

predicted by program FLEXRISE~ 

The results of the parameter studies, which were performed in 

order to optimize program FLEXSTATIC, indicated the following: 

a), Employing ficticious mass of components together with 

a reduced axial stiffness for the riser, considerably 
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reduced the computation effort. The optimized value of 

the axial stiffness for a riser structure was achieved 

when the magnitude of the non-dimensional parameter 

FA/(W.L/N) was equal to 25. 

FA = axial stiffness of a metre of riser 

W = self weight of riser and contents per metre length 

L = length of riser 

W.L/N = average nodal force 

bl' The sufficient number of elements required to represent 

a flexible riser for engineering applications was found 

to be about 12. However, a total number of 20 to 30 

elements are recommended for the final design stage of 

a flexible riser in order to investigate in detail the 

local effects such as angles at the top and bottom 

connectors due to wave and current induced loadings. 

Program FLEXCURRENr can be regarded as an efficient 3-dimensional 

program for computing the static equilibrium state of a flexible 

riser subjected to current loadings and static platform 

movements. The CPU computing times on a GOULD 9005 computer 

system for calculating the static responses of some test cases 

due to current loadings and platform offsets varied from just 5 

to 6 seconds. The accuracy of the results for various test cases 

predicted by program FLEXCURRENT were verified by the results 

whidl were measured from the current channel experiment and those 

predicted by the industry standard program FLEXRIS~ The quick 

computations for static equilibrium configurations of a flexible 
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riser by programs FLEXsrATIC and FLEXaJRRENT enable a designer to 

investigate various possible layouts of a riser and to check 

critical design criteria such as top and bottom angles, beooing 

radius and distance of the sag from the sea-bed. 

FLEXDYNAMIC is an efficient 3-dimensiona1 dynamic program which 

calculates the dynamic behaviour of a flexible riser subjected to 

wave and current loadings, vessel movements and loadings due to 

vortex-shedding. The program was optimized successfully by 

calculating the hydrodynamic loadings only at every n integration 

time steps (n. ~ tl which were then assumed to be constant during 

the fOllowing n time steps. The value of n. ~ t was set equal to 

1/2 of 'the shortest time which is taken by a transverse wave to 

travel along any member of the riser. Further optimization was 

achieved by reducing the EA value of the riser elements by a 

factor of 101 though this optimization was strictly applicable 

only when there was no top platform motion. 

Numerous runs were performed for various flexible risers 

subjected primarily to platform movements and subsequently to 

such movements together with wave induced hydrodynamic forces. 

The results showed that the response of the sag part (or 

generally the lower part) of the riser is governed by the 

platform motion. When a sub-surface sub-buoy is employed, the 

transformation of the platform movement to the manifold at the 

sea bed is prevented. Further runs were performed to investigate 

the effect of bending in the riser dynamic behaviour. The 

bending had damping effect on the riser dynamic response, rut due 
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to the fact that flexible risers possess very low bending 

stiffness, the total effect of the bending was insignifican~ 

The results predicted by program FLEXDYNAMIC compared well with 

those obtained from extensive experimental work in two wave 

flumes and also with those predicted by program FLEXRISER. The 

CPU computing time on a GOULD Computer System to predict the 

dynamic response of a typical flexible riser for 5 wave cycles 

was only about 2 minutes. Furthermore, the computed results 

showed that the periodic response of the riser is achieved after 

one wave cycle which suggests that only 3 wave cycles can be 

sufficient for a dynamic solution. Program FLEXDYNAMIC is a 

general dynamic riser program and is coded so that it can be 

easily modified to handle any dynamic problem involving a 

flexible riser. The program has recently been used to predict 

the dynamic behaviour of a disconnected flexible riser. The 

riser was arranged in a U shape between a Jack-up fixed platform 

and a semi-submersible platform. The dynamic behaviours of the 

riser and semi-submersible platform were to be investigated when 

the riser was disconnected from the semi-submersible platform 

during stormy sea conditions. The riser was subjected to wave 

and current loadings and also to platform motions (surge, heave 

and pitch). 

The comparison of the numerically predicted and measured dynamic 

responses in the plastic tube model test showed that material 

damping can be successfully modelled by a single Kelvin system. 

When the effect of the material damping was ignored the predicted 

results shOWed a 6% error in the amplitude of the horizontal top 
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tension. It is expected that this discrepancy would be higher 

for an actual flexible riser due to its complex structure which 

contains thermoplastic sheaths and cross-armoured steel wire 

layers which are installed in an helicoidal pattern. 

The results for the natural frequencies of a free-hanging riser 

predicted by the scheme used in the present work were in 

agreement with those given in a published paper (Triantafyllou 

et. al. H983) )1. This scheme is well suited to determine the 

natural frequencies of any flexible riser. 

The computed dynamic responses of the tube model test, taking 

account of vortex-shedding effects, were in good agreement with 

those measured from the exper iment. The frequency of the lift 

force was 4 times that of the wave frequency, which is important 

from the viewpoint of fatigue design of the riser around the tqp 

and bottom connectors. The results of the test helped to 

validate the vortex-shedding model suggested by Rajabi et. a1. 

(1984),. This model was extended in the present work to predict 

the effect of vortex-shedding on a randomly oriented flexible 

riser. This modification was essential in order to predict the 

3-dimensiona1 behaviour of a flexible riser. 

one of the Undesirable features of laboratory generated waves in 

wave flumes is the presence of the higher harmonic components. 

These are usually introduced by the secondary effect of a wedge 

type wavemaker and reflected waves from the beach. '!'hese effects 

can be minimized by generating various waves and adjusting the 

beach slope am measuring the higher components of the incident 
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wave for each individual wave flume. The waves for the present 

work were chosen so that they had negligible secondary 

components. The wave generated in the small flume was taken from 

Ellix's (1984) experimental work, and the waves for the larger 

flume were proportioned from this wave. 

The explicit integration method described in this thesis for the 

analysis of flexible risers was found to be at least an order of 

magnitude faster than a widely used matrix based implicit scheme. 

The main reason for this is that the principal deformation modes 

of flexible risers are mechanical (rather than "structural"). 

10.2 - ~tions 

The concept of floating compliant systems has brought promise of 

efficient petroleum production from deep water gas and oil fields 

at a wide range of depths. As these explorations move to deeper 

water, the riser system faces more hostile environmental 

conditions and the effect of vortex-shedding on the riser system 

becomes important. If the vortex-shedding frequency coincides 

with the fundamental structural frequency of the riser, it may 

endanger the riser integrity which is not desirable. Thus an 

investigation of the effect of vortex-shedding on flexible risers 

is recommended. Simple material damping calibration tests such 

as those carried out in the present work are also recommended for 

actual flexible risers. Such tests can provide vital information 

about the actual behaviour of flexible risers which have complex 

structures containing thermoplastic sheaths and cross-armoured 

steel wire layers installed in an helicoidal pattern. 
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Programs FLEXsrATIC and FLEXCURRENT have been modified further by 

the author at Zen tech Consultants to predict the response of 

several flexible risers sharing a common discrete sub-buoy 

system. The risers are placed relative to each other in a manner 

such that there is no bundling effect among them regarding the 

hydrodynamic loadings. The modification was carried out by 

considering the sub-buoy as a separate system which is subjected 

to tension forces from the lower and upper parts of each riser, 

self weight and hydrodynamic loadings. An experimental work for 

such riser systems in a large wave tank is recommended for future 

work. 

The fast computation of a flexible riser dynamic response by 

program FLEKDYNAMIC gives an opportunity to perform the lengthy 

and costly non-deterministic analysis of flexible risers more 

quickly and economically. A method such as that described below 

is recommended for future work to deal with random wave analysis. 

A random wave can be assumed to be constructed by n numbers of 

incident regular waves with random phase angles. A spectral 

density grath such as the Jonswap wave spectrum which is suitable 

for the North Sea environment, or the Pierson-Moskowitz wave 

spectrum can be used to identify the regular waves. Figure 10.1 

shows a typical spectral density graph. In order to specify the 

regular wave elements, the lower and upper frequencies and the 

number of regular waves (usually between 10 to 30), n, are 

identified am then the x-axis (frequency axis) between the lower 

and upper frequencies is divided into n intervals and 

subsequently the area under the curve is subdivided into n 
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segments. Each segment represents a regular wave. The area of 

the segment is the wave height which can be calculated using a 

trapezoidal rule and the frequency of the wave is the average 

frequency of the segment. The phase angles for the waves can be 

chosen from random numbers. Similar spectral density graphs can 

be used for each degree of freedom of platform movement. The 

water particle velocities and accelerations induced by the random 

wave at each node at any time are considered to be the sum of the 

values induced by each wave and then these total kinematics are 

used to calculate the nodal hydrodynamic loadings. Similarly the 

platform motions and the wave profile at any time are considered 

to be the sum of the individuals. 

Spectral 
density 

Lower cut-off Upper cut-off 
frequency frequency 
I I 

S I I 
nn 

I I 
(m2sec) I , wave spectrum 

I I 
I I I I area A , 
l~ I 

I 
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(Hz) 

Figure 10.1 - Spectral density graph 
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19lenlix A 

Coefficients Aij' Bij am Ci of Stokes Wave '.lbeory 

Let m = Sinh Kh, am n = cosh Kh 

1 
All =­

m 

- (ll84 n10 - 1440 n8 - 1992 n6 + 2641 n4 - 249 c2 + 18) 

1536 mll 

4192 n8 - 424 n6 - 312 n4 + 480 n2 - 17) 

748 m10 

(412 n12 + 4224 n10 - 6800 n8 - 12808 n6 + 16704 n4 - 3154 n2 + 107) 

4096 m13 C6n2 - 1) 

480 n6 - 816 n4 + 1338 n2 - 197) 
A44 = --

-(2880 n10 - 72480 n8 + 324000 n6 - 432000 n4 + 163470 n2 - 16245) 
A5S= ------------------------~------~---.-----~~------------------

61440 mll C 6n2 - 1) (8n4 - lln2 + 3) 

-
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n (272 n8 - 504 n6 - 192 n4 + 322 n2 + 21) 

384 m9 

3 ( n6 + l' 
B33 = -.• ----

64 m6 

B35= ------------------------------------~~~2--------------------------....--
12288 m12 46n - 1, 

B55 = 

+ 

n 4768 n10 - 448 n8 - 48 n6 + 48 n4 + 106 n2 - 21, 

384 m9 46n2 - It 

(192000 n16 - 262270 n14 + 83680 n12 + 20160 n10 - 7280 n8, 

12288 m10 ~6n2 - 1, (8n4 - 11 n2 + 3, 

~7160 n6 - 1800 n4 - 1050 n2 + 225, 

1288 m10 46n2 - 1, (8n4 - 11n2 + 3, 

.3840 n12 - 4096 n10 + 2592 n8 - 1008 n6 + 5944 n4 - 1830 n2 + 147, 

512 m10 (6n2 - l' 

1 
C3 =-

4rnn 

(12 n8 + 36 n6 - 162 n4 + 141 n2 - 27, 

192 n ~ 
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APPEmIX B 

Derivation of Formulae for Determining the Hydrodynamic Forces on 

a Riser Element 

Consider Simpson's rule 

let C = f1 + f3 + ••••••••••• + f 2n- 1 

D = f2 + f4 + ••••••••••• + f 2n- 2 

4B.1) 

where 2n is the mnnber of subintervals. 

tn For the next step the number of subintervals is doubled, i.e. ~+1 • -. 
2 

~+1 '2' f thus In+ 1 = - 4 fo + 4 C + 0 + 2n' 
3 

~B.2) 

where 0' = D + C. 

The difference between In+ 1 and In is: 

hn+1 
E = In+1 - In = -;- 4fo + 4 C' + 2 40 + C) + f 2n, -

Rearranging and simplifying equation (B.3): 

hn+1 , 
E = - 44 C - 2 C) 

3 

1 
- - I 2 n 

(B.3) 

(B.4) 

The following steps are carried out to calculate the area using 

equation (B.4): 
1 
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1 
and set I = - h (fo + 4 fl + f 2) and CI = fl 

3 

1 
1~2) replace n by 2n, h by - h, C by Cland evaluate the new CI, i.e. 

2 

the mid-ordinates, fll f3' •••• , f 2n- l for the new h. 

thus, C' = fl + f3 + •••••••• + f 2n- l 

1 1 
13) Calculate the correction E = - h 14 C' - 2 C) I and 

3 2 
replace I by I + E. 

,(4) The integration is terminated if E is smaller than a 

specified accuracy parameter, otherwise repeat from step 2. 
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APPElIDIX C 

Calculation of Nodal TWisting due to Torsion of Flexible Risers 

Consider the orientation of member b with adjacent members a and 

c in space, figure C.l. 

k 
y 

i 

}-j 

~~ ______ +-____ ~ __ ~ ____ ~ Z 

x 

Figure C.I - Three adjacent members in space 

For a lUITq?ed idealisation, the twist angle, S, of member b is the 

angle between the planes defined by Jrernbers a, b and b, c. 

To obtain a, the members are considered to be vectors as follows: 

-> 

a = xa i + zaj + Yak 

-> 

b = xbi + z~ + Ybk (e.l) 

-> 

c = Xci + zcj + Yck 

where i, j and k are parallel axes to the x, z and Y axes 

respectively. The angle between the planes is the angle between 

the normals to the planes. The normal line of a plane composed 

of two vectors is obtained by the cross product of the vectors. 
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Thus: 

i j k 
~ ~ 

a x b = det 

Xb zb Yb 

- ( xao Yb - Ya• xb~ j + ( xao zb - za· Xb, k 

= ml i + m2j + m3 k (Co2) 

where ml = xa· Yb - Yao zb 

m2 =-xao Yb + Ya· xb 

m3 = xao zb - zao xb 

similarly, 

~ ~ 

b x c = nl i + n2 j + n3 k (Co3) 

The angle between two vectors can be evaluated from their dot producto 

Thus, 

Thus, 

~Co4' 

The corresponding torque can be obtained from the following 

relation: 

where 

e 
T = JG -r 1 

Tr = Torque 

1 = length of the member 

e = Twisted angle 

JG = Torsion constant 
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The twisting nodal forces of member b in figure C.l can be 

obtained as follows: 

(C.6) 

Where % is the external diameter of the riser. 

However, because of the very small torsional stiffness of risers, 

the induced twisting forces are practically insignificant and 

have been ignored in the present work. It is, however, worth 

noting that torsion in the riser will increase the structural 

darrping, am it can be considered as an extra factor of safety in 

the design. 
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AWerdix D 

Static Solution for the Riser Structure usiDj Dynamic Relazation 

with Viscous DaDping 

The equation of motion of any node i in the x direction is, from 

Newton's second law: 

(D.l) 

where M = nodal mass 

x = nodal structural acceleration in the x direction 

At any time t the total force acting on the node in this 

direction, Fix' comprises two parts, the current residual R~t'ix 

of applied and member loads acting on the node, and an imposed 

viscous damping force acting in the opposite sense to the nodal 
• 

velocity Xix : 

t t t 
Mi Xix = R(t) ix - C *ix 

where C = viscous damping constant • 
• 
X = nodal structural velocity. 

using the central difference concept for velocity and 

acceleration: 

xt = (Xt +t.t /2 + X t-t.t/2,. /2 (D.3. 

it = ~xt+t.t/2 _ X t-t.t/2) / ~t ~D.4' 

substituting equations (D.3, and (D.4" into equation (D.2) and 

rearranging for xt+t. t/2 leads to: 

.t+t.t/2 1 t. t t l-C/2. t-~t/2 
Xix = 1---'. • R(t, ix + '1-)' Xix 

1+C/2 Mi 1+C/2 
or 

• t+ t.t/2 t t- t.t/2 
Xix = A R(t" ix + B Xix 
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1 tot 
Where A= ~-) 

ItC/2 M 

l-C/2 
B = 

ltC/2 

Nodal oo-ordinates may then be updated for the structure: 

t+ tot t • t+ tot/2 
Xix = Xix + to t • Xix (0.6) 

Current nodal residuals R(t)t+dt may then be calculated from 

equilibrium equations and the next stage of the analysis 

recommenced at equation (0.5). 

The optimum efficiency of this scheme is obtained when the 

damping constant, C, has a value close to that corresponding to 

the critically damped state of the structural response, figure 

0.1: 

C ;; 4 1\' fn 

where fn is the fundamental frequency of the structure. 

Deflecticn 
~+-____ ~ ______________ ~~~=-_________ static solution 

Time 

under damping 

Figure 0.1 - Definition of different damping states 
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APPEH>IX E 

Inp1t Data of the Test cases in Olapter 9 

water depth 

water density 

Riser outside diameter 

Riser and its cxmtents weight in air 

AXial stiffness, EA 

TOtal length 

vertical span 

HOrizontal span 

Number of elements used for numerical solution 

500 m 

1.025 ton/m3 

0.2171 m 

0.789 KN/m 

245000 kN 

950 

480 

750 

70 

m 

m 

m 

Table E.l - Input data for the static run of 

the free hanging riser 

water depth 

Wa ter dens i ty 

Riser outside diameter 

Riser and its contents weight in air 

AXial stiffness, EA 

Total length 

Vertical dis tance of riser top from sea bed 

Vertical distance of riser base from sea bed 

Vertical span 

Hor izontal span 

320 m 

1.025 ton/m3 

0.295 m 

1.857 kN/rn 

72100 kN 

356 m 

310 

95 

215 

180 

m 

m 

m 

m 

Number of elements used for numerical solution 35 

-
Table E.2 - Input data for the static run of the 

free hanging riser (s~le catenary) 

--- - ---------. 
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water depth 

water density 

Riser outside diameter 

Riser and its contents weight in air 

Axial stiffness, FA 

Catenary length 

Taut length 

vertical span 

Horizontal span 

Buoyancy of sulrruoy 

Ntmber of elements used for numerical solution 

catenary part 

taut part 

320 

1.025 

0.295 

1.857 

72100 

356 

86 

310 

200 

370 

35 

9 

Table E.3 - Input data for the static run 

of the steep-S riser 

m 

ton/m3 

m 

kN/m 

kN 

m 

m 

m 

m 

m 
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water depth 

water density 

Number of riser sections 

Data for section 1 

Riser outside diameter 

Riser and its contents weight in air 

Axial stiffness, FA 

Section length 

Number of elements used for numerical solution 

Data for section 2 

Riser outside diameter 

Riser and its contents weight in air 

Axial stiffness, FA 

Section length 

Number of elements used for numerical solution 

Data for section 3 

-

Riser outside diameter 

Riser and its contents weight in air 

Axial stiffness, FA 

Section length 

Number of elements used for numerical solution 

vertical distance of riser top from sea bed 

vertical distance of riser mse from sea bed 

vertical span 

aorizontal span 

500 m 

1.025 tonjm3 

3 

0.2171 m 

0.789 kN/m 

245000 kN 

598.5 m 

49 

0.759 m 

3.029 kN/m 

245000 kN 

119.7 m 

15 

0.2171 m 

0.789 kN/m 

245000 kN 

68.4 m 

9 

480 

o 

480 

360 

m 

m 

m 

m 

Table E.4 - I~t data for the static run 

of the steep wave riser 



water depth 

water density 

Riser outside diameter 
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Riser and its contents weight in air 

Axial stiffness, FA 

Upper catenary length 

lOwer catenary length 

vertical span 

Horizontal span 

Buoyancy of sulrbuoy 

Tethered length 

Horizontal distance of tether base from riser base 

Nt.mDer of elements used for nunerica1 solution 

Upper catenary 

IDwer catenary 

250 

1.025 

0.243 

1.089 

1.35E5 

285 

130 

232 

220 

280 

60 

102 

39 

18 

Table E.5 - Input data for the static run 

of the lazy-S riser 

m 

ton/m3 

m 

kN/m 

kN 

m 

m 

m 

m 

kN 

m 

m 



-

water depth 

Wa ter dens i ty 

Number of riser sections 

Data for section 1 

Riser outside diameter 
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Riser am its contents weight in air 

Axial stiffness, FA 

Section length 

500 rn 

1.025 ton/m3 

3 

0.2171 rn 

0.789 kN/rn 

245000 kN 

500 rn 

Ntnnber of elements used for m.nnerical solution 49 

Data for section 2 

Riser outside diameter 

Riser am its contents weight in air 

Axial stiffness, FA 

Section length 

Ntnnber of elements used for numer ieal solution 

Data for section 3 

Riser outside diameter 

Riser am its contents weight in air 

Axial stiffness, FA 

Section length 

Ntnnber of elements used for numerical solution 

vertical distance of riser top from sea bed 

Vertical distance of riser base fran sea bed 

Vertical span 

HOrizontal span 

0.500 rn 

1.34 kN/rn 

245000 kN 

120 

15 

rn 

0.2171 rn 

0.789 kN/rn 

245000 kN 

200 rn 

29 

480 

o 

480 

400 

rn 

m 

m 

rn 

Table E.6 - Input data for the static run 

of the lazy wave riser 
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Table E.7 - Data for the simple catenary riser 

subjected to current induced 

hydrodynamic loadings 



L. 
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current velocity profile 

at water free surface 

at 25 metres below water level 

at 50 metres below water level 

at 100 metres below water level 

at 200 metres below water level 

at 3 metres above sea bed 

1.71 rn/sec 

1.42 m/sec 

1.25 rn/sec 

0.85 m/sec 

0.7 m/sec 

0.5 m/sec 

Direction of current flow 

AXial stiffness, EA 

from riser top to riser base 

Bending stiffness, EI 

Drag coefficient for riser, Cd 

Drag force on sub-buoy due to 1 mVsec fluid velocity 

Sub-buoy mass 

Data for riser as 

72100 kN 

480 kNm2 

0.7 

7.4 kN 

l3.5 tonnes 

in table E.3 

Table E.8 - Data for the steep-S riser subjected 

to current induced hydrodynamic loadings 



water height 

Wave period 

Wave direction 

Used wave theory 

CUrrent velocity profile 

Axial stiffness, EA 

Bending stiffness, EI 
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Drag coefficient for riser, Cd 

Inertia coefficient for riser, em 
Tangential drag coefficient, Cdt 

No platfo~ motion 

Data for riser 

31 

15 

m 

sec 

from riser top to riser base 

Linear wave theory 

as in table E.7 

72100 kN 

480 kNm2 

0.7 

1.8 

o 

as in table E.2 

Table E.9 - Data for the dynamic run of the simple catenary 

riser subjected to wave and current induced 

hydrodynamic loadings with no platfo~ motion 



Wave data 

CUrrent data 

Data for riser 
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Data for hydrodynamic force coefficient 

Platform notion 

Surge amplitude 

Surge phase angle with wave flow 

Heave amplitude 

Heave phase angle with wave flow 

Biser top is situated at the centre of gravity of 

the platform 

Wave phase angle at the centre of gravity of 

the platform 

as in table E.9 

as in table E.7 

as in table E.2 

as in table E.7 

10.5 m 

900 

9.0 

00 

Table E.IO - Data for the dynamic run of the simple 

catenary riser subjected to wave and 

current induced hydrodynamic loadings 

with platform motion 



wave height 

Wave period 

Wave direction 

used wave theory 

CUrrent velocity profile 

Axial stiffness, EA 

Bending stiffness, EI 
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Drag coefficient for riser, Cd 

Inertia coefficient for riser, em 

31 

15 

m 

sec 

from riser top to riser base 

Linear wave theory 

as in table E.8 

72100 kN 

480 kNm2 

0.7 

1.8 

Tangential drag coefficient, Cdt 0 

Drag force on sub-buoy due to 1 mVsec fluid velocity 7.4 kN 

Inertia coefficient for sub-buoy 

Sub-buoy mass 

Sub-buoy volume 

No platform motion 

Data for riser 

1.8 

13.5 tonnes 

50 m3 

as in table E.3 

Table E.ll - Data for the dynamic run of the steep-S riser 

subjected to wave and current induced 

hydrodynamic loadings with no platform motion 



Wave data 

Current data 

Data for riser 
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Data for hydrodynamic force coefficient 

Drag force on sul:rbuoy due to 1 m/sec 

fluid velocity 

Inertia coefficient for sul:rbuoy 

Sub-buoy mass 

Sub-buoy volume 

Platform motion 

Surge amplitude 

Surge phase angle with wave flow 

Heave amplitude 

Heave phase angle with wave flow 

Riser top is situated at the centre of gravity 

of the platform 

Wave phase angle at the centre of gravity of 

the platform 

as in table E .11 

as in table E.8 

as in table E.3 

as in table E.ll 

7.4 kN 

1.0 

13.5 tonnes 

50 m3 

10.5 m 

900 

9.0 m 

00 

Table E.12 - Data for the dynamic run of the steep-S 

riser subjected to wave and current induced 

hydrodynamic loadings with platform motion 
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