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SYNOPSIS

This thesis is concerned with the static and dynamic analyses and
the model testing of deep sea flexible riser systems which are
the key components associated with semi-submersible oil
platforms. A numerical method based on explicit integration of
Newton's second law is developed to predict the 3-dimensional
dynamic behaviour of the riser due to the hydrodynamic loadings
induced by wave and current motion. In this analysis the effects
of waves and currents from separate directions, vessel movements,
vortex~shedding and structural damping are included. The material
damping for the riser is modelled by a single Kelvin system and
the hydrodynamic loadings are assessed from the modified Morison
equation. The effect of vortex-shedding on the riser |is
modelled by considering the interaction of drag-inertia and lift
forces due to wave and current motion. The drag coefficient being
modified by the vortex-shedding effects which are predicted by
calculating the maximum resp;mse of the flexible riser in the

lift force direction.

The formfinding and static analysis of the riser when subject to
structural self-weight and other static loadings is carried out
by the method of Dynamic Relaxation using kinetic damping. The
method is well suited to computer aided design procedures in
which various shapes for the riser catenary have to be
investigated together with the effects of boundary support

conditions and alternative arrangements of mooring buoys.
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The theories described above are implemented into three computer
programs. The first program deals with the formfinding of the
riser and the second investigates the dynamic behaviour of the
riser due to non-linear current and wave loadings. The third
program is concerned with the static solution of the riser due to
current loading. The latter is employed when the hydrodynamic
force consists of current loading only and therefore the dynamic
solution is not desired. The iterative use of the first and third

programs allows potential designs to be quickly investigated.

The results predicted by the numerical analyses are compared with
those obtained from two series of model tests in wave flumes. The
tests were scaled from prototype situations using Froud number
criteria. The first set of tests used a small scale flexible
chain model with negligible material damping and structural
bending stiffness and no induced vortex shedding; the aim of
these tests being only to validate the assessement of the
hydrodynamic forces on the riser. The second set investigated the
response of a larger scale model which induced vortex-shedding
and in which the riser system had significant structural damping.
The comparison of experimental and computed results showed close

agreement.,

The developed computer programs were also validated numerically
by comparing the predicted results with those obtained from the

well known riser program "FLEXRISER",
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CHAPTER 1

GENERAL INTRODUCTION

1.1 - Introduction

In recent years, offshore technology has experienced a remarkable
growth and it promises efficient development of oil fields at
greater depths. Important components for such deep operations are
flexible risers. Considering the large financial losses
consequent on a riser failure in deep water, it is essential to
perform a comprehensive analysis of such structures in relation

to the actual environmental conditions.

A number of non-linear computer programs have been developed in
recent years to analyse flexible risers and they are usually very
expensive to run. The American Petroleum Institute Committee on
the standardization of offshore structures, API (1977) compared
eight existing computer programs for a simple standard set of
riser problems. The results for the computed dynamic structural
stresses were so different that no valid comparison could be
made. Discrepancies in computed results were due to the
differences in assessing hydrodynamic forces on the riser and in

the structural modelling of the risers.

The foregoing reveals that more research work is required to
understand the response of flexible risers to hydrodynamic

loadings.

In order to advance the study of loading and response
mechanisms, it is useful to resort to laboratory experiments with

idealized conditions. Once a reliable model of the loading and
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response is established, it is possible to extend the model

towards the prototype situation by considering the effect of
additional parameters on the idealization and empiricism of the

adopted model. The ultimate objectives of the model are:

1) Every aspect of hydrodynamic loading (such as vortex
shedding) should be included.

2) The formulation should be reasonably economical to
incorporate in numerical integration methods for the

non-linear dynamic response.

1.2 - Outline of Thesis

The aim of this work was to develop a numerical analysis for

flexible risers and to validate this theory by experimental work.

A comprehensive knowledge of hydrodynamics and hydrodynamic
loading on small cylinders is required in order to understand and
assess the hydrodynamic loading due to wave and current motion on
a flexible catenary riser. An introduction and background to this

is presented in chapter 2.

Chapter 3 describes the structure of flexible risers. It also
reviews the methods adopted to idealize the riser structure and
different numerical solution procedures for the governing

equations of motion.

Chapter 4 outlines hydrodynamic theory and presents the necessary
theory for this work which is used to assess the hydrodynamic

loading on a flexible riser.



Chapter 5 is concerned with the development of an explicit vector
method of analysis for the non-linear dynamic response of a
flexible riser. It also descibes the modification of this theory
to cater for the formfinding and static analysis of the riser.
The technique applied for these static analyses is known as

Dynamic Relaxation with kinetic damping.

Chapter 6 concerns the implementation of the above theories in
computer programs and the optimization of control parameters in

these programs.

Chapter 7 describes the two sets of experimental tests used to
validate the theory. The model for the first experiment was a
snake chain which had negligible material damping. The aim was to
validate the assesment of the hydrodynamic forces on the riser.
The second experimental model was a polythene tube filled with
mercury and had significant material damping. The models for both
series of tests were positioned at various angles in the wave
flumes, and the latter series of tests modelled a single catenary
riser arrangement incorporating an intermediate mooring buoy.
Chapter 8 presents the results and a comparison with the

numerical predictions.

Chapter 9 presents the comparison of the results predicted by the
numerical analyses with those obtained from the riser program
"FLEXRISER" which was developed by Zentech Consultants and has

been validated by other well known flexible riser programs.

Chapter 10 is concerned with conclusions and recommendations.



CHAPTER 2

LITERATURE REVIEW OF HYDRODYNAMIC LOADINGS ON FLEXIBLE
RISERS

2.1- Introduction

This chapter covers the background study of fluid hydrodynamics
in section 2.2, and considers hydrodynamic loadings on cylinders
in sections 2.3, 2.4 and 2.5. Hydrodynamic loadings on a cylinder
can be divided into two distinct components: one consisting of
drag and inertia forces and the other of a lift force associated
with vortex-shedding. Section 2.3 is concerned with drag-inertia
forces on smooth or rough, inclined, flexible, and bundled
cylinders which are the practical cases encountered for catenary
flexible risers. Sections 2.4 and 2.5 consider respectively the
lift forces on cylinders placed in the plane of wave and current

motion and on randomly orientated cylinders.

2.2~ Fluid Bydrodynamics
2,2.1- Wave Hydrodynamics

A comprehensive description of wave hydrodynamics was presented
by Stokes (1847). He assumed that the fluid was incompressible
and inviscid and the flow was irrotational. The incoméressibility
assumption for the fluid yields the continuity equation. The
irrotationality of the flow indicates that there exists a scalar

function, the velocity potential ¢ , which describes information
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about kinematics of the motion. The continuity equation was

expressed in term of ¢ which gave the Laplace equation.

A solution for ¢ was obtained by solving Laplace's equation
subject to a number of boundary conditions; these conditions

being as follows:

a) bottom boundary condition - there is no flow
through the rigid bottom on which the fluid rests.
Thus, the velocity of water particles normal to the
bottom surface is zero.
b) free surface boundary conditions :
1) kinematic condition - the fluid particle velpcity
normal to the surface is equal to the velocity of

the free surface in that direction.

2) dynamic condition - the pressure at the free sur-
face is zero. So the unsteady bernouilli equation

can be used with a zero pressure term,

The Stokes first order theory which was identical to the linear
wave theory was obtained by solving Laplace's equation with
linearized boundary conditions. In addition, the free surface
boundary conditions were applied at the still water level rather

than the unknown free surface.

The linear wave theory predicts the following flow behaviours:
a) the fluid particles move in close orbits, The orbits
are circular in deep waters and elliptical in shallow
waters,

b) the amplitudes of vertical and horizontal velocities
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of the particles decrease exponentially with the depth

of the particles below the surface.
Stokes introduced a second order solution in which the wave
profile and ¢ had second harmonic terms, but the celerity
remained as for first order theory. This resulted in sharpening
the wave crest and flattening the wave trough. The particle
orbits were no longer closed and there was a net velocity in the
wave propagation direction, called drift or mass transport

velocity.

The higher orders of the Stokes wave theory (3rd and 5th orders)
were obtained using perturbation method by Skjelbreia (1958) and

Skjelbreia and Hendrickson (1960) respectively.

Since then other wave theories have been formulated. Dean ¢1970)
developed a non-linear wave theory which was based on a stream
function rather than a potentlial veloclty concept. This theory

was extended up to the 5th order.

The cnoidal wave theory which Is used for shallow water waves was
Introduced by Korteweg and Vries (1895). The wave characteristics
were expressed in terms of the Jacoblan elliptic function, cn.
The solitary wave theory reported by Russell in 1844 can be
considered as a limlting case of the cnoidal wave theory in
which the crests are so far apart that they can be assumed to be

separate from one another.

There are some complex modern wave theories such as Schwartz
(1974) and Cokelet ¢1977) which can predict the flow behaviour
more accurately than other theories for all types of waves but

the use of the simpler wave theories, which give acceptable
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results for engineering requirements, may be preferable from the
viewpoint of economic computing of dynamic structural response

(Sarpakaya and Isaacson (1981)).

Dean (1970) made a theoretical comparison of several wave
theories. The criterlon for the comparison was the closeness of
fit of the predicted motion to the complete problem formulation.
Therefore, he used the error of fit to the free surface boundary
conditions in assessing the validity of the wéve theories (all
theories satisfled the bottom boundary condition). He produced a
graphical representation of the suitability of the various wave
theories for different water conditions (see fig. 4.3 ) . He
recommended the first order cnoldal, the linear, the Stokes fifth
order, and the stream function wave theories over the ranges

shown in fig. 4.3.

Le Mehaute (1976) presented a graphical representation to
illustrate the suitability of various wave theories (fig. 4.4).
His graphs include the different orders of the Stokes wave theory
which is well sulted for use in validating experimental wave
flume work. He stated, however, that his graph was not based on

any quantitative investigation.

A summary of the works on the comparison of various wave theories
on both theoretical and experimental bases was given by Sarpkaya
and Isaacson (1981). They concluded that the cnoidal and Stokes
fifth order wave theories were most suitable for shallow and deep
waters respectively because they are relatively simple compared
with modern theories and yet produce sufficient accuracy for most

engineering purposes.
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Fenton (1979) recommended the use of the conidal wave theory for

wave lengths smaller than eight times the water depth, and the

use of Stokes fifth order wave theory for other situations.

From the foregoing discussion, it can be concluded that the
Stokes fifth order wave theory is ideal for offshore
applications. It produces the most realistic wave surface profile

which is a crucial factor in designing oil production platforms.

In the computer program which was developed in the present work,
the Stokes theories of any order (1-5) and linear wave theory can

be adopted.

2.2.2- Interaction of Wave and Current Motion

In real sea conditions, a body is usually situated in a flow and
subjected to currents as well as waves. If the current is in the
same direction as the wave propagation, the wave length increases
and its amplitude decreases. If the current opposes the wave, the
wave gets shorter and steeper. Combinations of waves and currents
may be treated in two ways: a) their interaction is ignored and
the current is simply superimposed on the wave, or b) the
interaction is considered and the problem is treated as a complex

fluid-mechanics phenomenon.

There are a few experimental studies on wave and current
interaction and a review of these works has been given by
Sarpkaya and Isaacson (1981), A summary of the mathematical
formulations of these interactions was presented by Peregine

(1976) .
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Method (a) is usually adopted in offshore engineering to take
care of the presence of current action together with waves. The
water particle possess an acceleration due to wave motion which
has two convective components as well as the local one. The first
convective component is a multiple of the horizontal particle
velocity due to the wave action and the other component is a
multiple of the velocity due to the current. For bodies with drag
dominant loading,the inertia force due to convective acceleration
components becomes very small, so the convective components of

the acceleration are usually ignored.

There are different opinions concerning the estimation of the
particle velocities due to wave and current motions above still
water level for calculating the forces on offshore structures
such as risers. It is well known that the wave theories
overpredict the velocities above the still water level but this
is considered as an extra margin of safety in practice. The
current velocity is usually measured up to the still water level
and to adjust this velocity with wave profile, the following
different arbitrary techniques are used in industry:

a) by appropriate mathematical techniques the current
velocity profile is either fattened and considered just
down to the wave trough, or made thinner and
oconsidered up to the wave crest.

b) the current velocity 1is considered up to the wave
profile. In the case of the wave profile being above
the still water level, the current velocity is
oonsidered to be constant and has a value equal to that
at the still water level.

Method (b) was adopted for this study.
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2.3 - Drag-Inertia Bydrodynamic Forces on Cylinders

2.3.1 - HBydrodynamic Forces on a Vertical Rigid Cylinder

In uniform steady flow the hydrodynamic force on a cylinder is
caused by drag action. This force which is called drag force, is
a combination of viscous and pressure drag. The viscous or skin
friction is caused by the shear stress of the water on the body.
The pressure drag which is also termed form drag is the result of
a pressure differential caused by boundary layer growth around
the surface of the cylinder and its eventual separation from the
body.

There would be an analytical solution for the drag force if the
momentum equation of fluid mechanics could be solved in the
boundary layer, but there are no such solutions available so far,
Therefore an empirical drag coefficient "C4" is introduced to
define the drag force. Delany and Sorensey (1953) performed
experimental work on a smooth cylinder in uniform steady flow.
They showed that Cy had a value of 1.2 in subcritical flow and

had a minimum value of 0.25 in critical flow.

In evaluating hydrodynamic forces on a body in waves, the size of
the body compared with the wave length is very important. When
the ratio of the cylinder diameter to the wave length is smaller
than 0.2, the body is categorized as a small body. The term small
body implies that the wave flow remains unaffected by the
presence of the body, that is, the cylinder does not diffract the

wave flow. To calculate the wave forces on large bodies which
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disturb the incident wave, a diffraction theory such as that due
to MacCamyand Fuchs (1954) is used. The estimation of the forces
on large bodies is outside the scope of the present study, and is

not significant for the design of practical riser systems.

Wave loading on small bodies is calculated by using the well
known Morison equation. Morison et. al. (1950) proposed that the
total force per unit length on a vertical cylinder is the linear
sum of two components. The first component is a drag force
proportional to the square of the horizontal fluid velocity. The
drag force is represented by an empirical drag coefficient, Car
having substantially the same value as for steady flow
situations. The second component is an inertia force proportional
to the horizontal component of the fluid acceleration and having
an empirical inertia coefficient, Cp. The inertia force itself
is made up of two parts; one is the pressure of the undisturbed
incident wave in the absence of the body which is usually known
as the Froude-Krylov force and the other is the pressure
disturbance due to the presence of the body which accounts for
the added mass effect due to the flow of the water around the
cylinder. Therefore the inertia coefficient was defined as
"l+added mass coefficient”. The force coefficients were obtained
experimentally.

The Morison equation has been criticised for representing the
force on a body in time-dependent separated flow by a linear-
quadratic sum. Numerous attempts have been made either to improve
the equation or to present a new equation but so far no success
has been achieved. In spite of its theoretical drawbacks, the

Morison equation has been used satisfactorily in the offshore



-12 -

industry, perhaps with due regard to the various uncertainties
and safety factors that are incorporated in design. Moreover,
considerable amounts of experimental work have been carried out
to evaluate the force coefficients, C3 and C,, since the

formulation of the Morison equation.

The Morison equation force coefficients are fluid velocity and
body geometry dependent. The reason for this is that their values
must take care of the complex interaction between fluid and
structure and also between drag and inertia forces. Generally,
three experimental methods are used to evaluate Cq and C,, values

as follows:

1 - placing body in a controlled wave flume
2 - placing body in a harmonic oscillating flow
3 - oscillating body in still water,

Schemes 2 and 3 provide a flow with simple harmonic velocity.
Since in waves the velocity is depth dependent, the horizontal
flow simulated by schemes 2 and 3 can be considered as the wave
motion around a particular section of a vertical cylinder, while
bearing in mind that the Morison equation expresses the sectional
force on the cylinder in terms of the horizontal fluid velocity
and acceleration at that section. The advantage of the second and
third methods over the first method is that the high Reynolds

numbers {Re) which exist in practice can be simulated.
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It is common practice to use constant average values of Cy and C
for the whole cycle of the wave rather than local values., There
are several analytical methods to calculate the average values of
Cq and C, for the experimentally measured forces of the whole .

cycle as follows:

1 - Fourler-averaging technique - the force is expressed
in fourler series form and compared with the actual
measured force to obtain the average values of Cy and
Cne

2 - Least squares method - the equations for C3 and C
are obtained by using the least squares method to
minimize the errors between the measured and the
calculated forces.

3 - The values of the coefficients obtained by considering
the measured and the calculated forces at the points
corresponding to the maximum velocity and the maximum
acceleration.

4 - Writing the Morison equation once for the maximum
force and once for the zero force wlth the
corresponding velocities and accelerations.

5‘ - Calculating C4 over a short wave segment in which the
drag force is dominant, and Cp, over a short segment in

which the inertia force ls dominant,

Morison et. al. used the 3rd averaging scheme to calculate the
average values of C4 and C for a pile In small amplitude waves.
The first and second averaging schemes are the most commonly used

experimental methods to evaluate Cd and Cm
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A comprehensive summary of data on force coefficients has been

presented by the British Ship Research Assocliation (1976) and

also by Hogben et. al. (1977). A few of the important papers will
be discussed here.

Keulegan and Carpenter (1958) performed experiments with
cylinders held horizontally at the node of a standing wave. They
correlated the fourier average values of the coefficients with
their period number. Their period number, which is known as the
Keulegan Carpenter number, KC, expresses the ratlo of the
particle motion amplitude to the cylinder diameter. The authors
produced graphs for the variation of Cy and Cp with KC. They
found a critical range at which C3 and C; reached their maximum
and minimum values respectively at KC values around 15. In this
range the correlation between the measured force and that
predicted by the Morison equation was poor. The Fourier-averaging
technique was used to obtain the values of C3 and C;. A residual
force functlon which contained the higher harmonics of Cq and Cp,
was Introduced. This residual force was larger for the critical
range of KC numbers. These higher harmonics of C4q and C, were
ignored in the evaluation of the C4 and C;, values. The authors
also did not find any variation of Cy and C, with Reynolds
number, Re, and thus concluded that the coefficients were

independent of Re.

The Keulegan-Carpenter number is an important factor in assessing
the relative magnitudes of the drag and inertia forces. At low
values of KC, 95 percent of the forces exerted on the body are
lnertial, whilst for intermedlate values of KC (i.e. in the

critical region), the inertia and drag forces are equally
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important. Finally at high values of KC, 95 percent of the forces

are of drag type.

Sarpkaya (1976a) performed a series of experiments on horizontal
cylinders in uniform oscillatory flow by means of a 'U' tube
water tunnel. He introduced another nondimensional variable,
known as the frequency parameter, 8, which is the ratio of Re to
KC. He showed the dependence of the force coefficients on KC as
well as Re, However, the coefficients were found to be
independent of Re for values below about 20,000, and this may
explain the conclusion reached by Keulegan and Carpenter {1958).
The results for the coefficients were the same as the Keulgan and

Carpenter values.

Sarpkaya and Isaacson (1981) presented the third harmonic of the
residual force function, which was introduced by Keulegan and
Carpenter, as the third term in the Morison equation. They
expressed the coefficient of the new term in terms of { 2-Cp e
The authors demonstrated that by using the new modified Morison
equation, the r.m.s. value of the residual forces, which was
presented previously by Sarpkaya (1976a), reduced by 60 percent
in the critical range of KC numbers. They suggested that
additional work along these lines may lead to a substantial

improvement of the Morison equation in the critical region of KC
numbers.,

Garrison et. al. (1977) performed a series of tests in which a
cylinder was oscillated through still water. After making
allowance for the lack of the Froude-Krylov force in the inertia
term for this type of flow, the variations of Cq and C; with Re

were found to be almost the same as Sarpkaya's results (1976a).
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Susbielles et. al. (1971) carried out some experimental work on a
vertical cylinder in a wave tank. They used the harmonic flow
results of Keulegan and Carpenter to calculate the local wave
forces on the cylinder and obtained agreement with measured

forces to within 10 percent.

Chakrabarti (1980a), performed a series of tests on a small
section of fixed vertical cylinder in a wave flume, The wave
kinematics were calculated using the fifth order stream-function
wave theory and the least squares averaging technique was used to
calculate the average values of Cy and Cp. The values of the
force coefficients were in good agreement with those obtained
from the simple harmonic flow by Sarpkaya (1976a) for values of
KC < 40, except that for values of KC < 15 the values of Cp were
higher. Since low and limited values of Re were used in the
experiment, the authors could not establish the variation of the
force coefficients with Re. The total force on the cylinder was
measured and compared with the calculated one. In calculating the
total force along the cylinder, the force coefficlents were taken
as functions of KC numbers and allowed to vary over the length of
the cylinder. In each case the values for the coefficients were
obtained from the mean C3 and Cp curves produced In the

experiment,

Sarpkaya (1976a and 1976b) presented comprehensive values of Cj
and Cp for a wide range of Re and KC numbers for both smooth and
rough cylinders. Several experiments were carried out on
prototype cylinder models in the following sea enviroments:
Davenport on The Pacific coast, the Gulf of Mexico, Bass Straits

in Australia, Christchurch Bay, and the B,p, Forties Field
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production platform in the North Sea. The different methods used
to analyse the measured random forces were comprehensively
discussed by Pearcey and Bishop (1979) and will not be discussed
here. The data obtained from these experiments for the force

coefficients showed a very wide scatter.

Water particle movements in waves are orbital and their
velocities decay exponentially with distance away from the free-
surface. This means that the values of Re and KC, and hence also
Cq and C, are continuously changing along a vertical cylinder in
waves, Bearing in mind that in moving away from the free surface
the hydrodynamic forces on a cylinder reduce almost in proportion
to the square of the velocity decay, the change in the values of
the force coefficients will not be very important. In natural
flows there are current flows as well as wave flows so the
Reynolds numbers for such flows are very high. Hence the
variation of the force coefficients at high Re numbers are very
small, and the changes in the coefficients with depth can be
neglected. For this reason, in most riser programs constant
values for the force coefficients, which are obtained from
available tables corresponding to the maximum values of Re and KC
along the riser, are used. The maximum values of Re and KC along

the riser usually occur near the free surface.

2.3.2- Bydrodynamic Forces on a Rough Cylinder

In a marine environment, growths such as barnacles, shell fish,
and seaweeds can quickly build up on most surfaces, causing
change in the roughness of the riser as well as its diameter,

which should be taken into consideration in design. Heaf (1979)
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presented a comprehensive discussion of the effect of marine

growth on the performance of fixed offshore platforms in The

North Sea.

Several researchers such as Fage and Worsap (1929), Roshko
11961), Achenbach ¢1971), Szechengi (1975), and Millery1977)
studied drag force on a rough cylinder in steady flow at high Re
numbers. Achenbach (1971) demonstrated that increasing roughness
of a cylinder in steady uniform flow reduced the critical Re at
which flow separation occurs., The graph of Cq versus Re was
presented. The results showed that at the subcritical region, the
roughness of the cylinder didn't effect the values of Cq- For
higher values of Re, the values of Cq remained constant and
greater than the value of Cy corresponding to the postcritical

region for a smooth cylinder.

Sarpkaya (1976b) carried out experiments to observe the effects
of roughness of cylinders in an oscillating flow. The results for

Cq showed a great increase in value éompared with those obtalned

for a smooth cylinder.

Sarpkaya and Isaacson (1981) presented graphs of Cq and Cj versus
roughness Reynolds number for constant values of KC and several
different roughness heights. The Roughness Reynolds number was
defined as having the same formulation as Re except that the
cylinder diameter term was replaced by the roughness height. Théy
suggested that these graphs accounting for the effective diameter

of rough cylinders might be used to calculate the forces on the
cylinders.
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Matten (1977) performed tests on cylinders in small amplitude
waves at the Nétional Maritime Institute in order to observe the
effect of roughness by comparing the ratio of the total force
acting on a rough and a smooth cylinder situated some distance
apart. He worked mainly in the critical region for KC but his
results for Cq were so scattered that he was unable to present
any drag or inertia coefficient data. Matten did, however, show
that for a rough vertical cylinder in waves, the transition
occurred at relatively very low Re whilst this was not the
situation in uniform steady flow. He stated that the reason for
early transition was the existence of axial flow along the
cylinder which was caused by the orbital movement of water
particles. His evidence for this statement was the unpublished
results of an experiment cited by Miller (1977) for a horizontal
cylinder, identical to his own, placed parallel to the wave crest
but just beneath the water surface so that it always remained
submerged. The results of the experiment showed that transition
did not occur at low values of Re, as it did for a vertical
cylinder. This observation indicated that the reason for the
early transition on the vertical cylinder could only be the

existence of the axial flow.

Gaston and Ohmart (1979) placed a smooth and a roughened
cylinder, one at a time, in a big wave tank under conditions of
reqular and random waves. The in-line moment was measured and the
water particle kinematics were predicted from stream function
wave theory. Then by using the least-squares averaging method,
the force coefficients were determined. Comparison of the results
showed that the drag coefficient was significantly affected by

the roughness. In fact, the change from the smooth to the rough
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surface approximately doubled the drag coefficient. Further
increase in the roughness had a lesser effect than the initial
change from a smooth to the first rough cylinder. They suggested
some values for Cq and C,, for a smooth cylinder and for three

cylinders each having a different roughness height.

Garrison (1980) criticized the results obtained by Sarpkaya
(1976b) for Cq at high Re numbers for rough cylinders. He
contradicted Sarpkaya's statement that Cq became constant and
independent of Re for Re > 1.5 x 10°. Garrison oscillated rough
cylinders in still water and the results of the experiment showed
a sharp decrease in Cq values for Re > 2 x 10°. similar results
were obtained from ocean tests on a structure which were

presented by Dean and Agaard (1970), and Kim and Hibbard (1975).

Garrison suggested that the reason Sarpkaya obtained high values
of Cy for rough cylinders in flows with high Re, (which were not
revealed in real sea tests), might be caused by wake blockage in
the test U-tube. That is, when the cylinder passed back through
its own wake the drag force on the cylinder was affected by the
presence of the wake, and the stronger the wake, the greater was
the drag force generated. The water tunnel walls tended to limit
the inflow of the surrounding fluid into the wake, so causing a
reduced rate of wake dissipation. Thus at successive cycles the

wake was pronounced more than it would have been if the fluid was

of an infinite extent.
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2.3.3- Hydrodynamic Forces on an Inclined Cylinder

There are inclined members as well as vertical members in
offshore structures, such as inclined bracing members in a
jacket-type platform and catenary flexible risers in a semi-
submersible platform, etc. Little experimental work has been
carried out in this area and more research work is required in
order to understand the consequence of cylinder orientation.
However, four methods have been established to modify the terms
in the Morison equation to calculate the forces exerted on
inclined cylinders. An appraisal of these schemes, reported in

detail by Wade and Dwyer (1976), is given in the following

section.

In the Morison equation, the horizontal components of velocity
and acceleration of water particles due to waves which are normal
to the axis of a vertical cylinder, are used to calculate the
forces on the cylinder. Thus the force on the cylinder is
considered to be solely a function of the normal component of the
hydrodynamic force. The tangential component which is
proportional to the vertical velocity of the water particles is
ignored. Borgman (1958) used the same analogy and showed how the
Morison equation for a vertical cylinder in waves could be
extended to the case of a generally oriented cylinder. He derived
expressions for velocity and acceleration normal to the axis of
the inclined cylinder in terms of the horizontal and vertical

velocities and accelerations of water particles.

The above assumption was partially verified by Pode (1950). He

performed a series of experiments at The David Model Basin to
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determine hydrodynamic forces on an incllined cable under steady
flow condition. The normal and tangential forces on the cable
were measured. The results showed that the measured normal force
could be represented by the usual drag force equation using the
velocity component normal to the cable axis. It was also shown
that the measured tangential force which was created by the skin
friction action had a magnitude less than two percent of the
measured normal force, so it could be ignored. This normal
velocity concept was confirmed by Watson (1953) when carrying out
a series of towing tests on submerged wooden dowls. Glenny (1966)

also confirmed this concept by placing an inclined cylinder in a
steady flow.

Chakrabarti et., al. (1975,1977) carried out a series of
experiments with a small inclined tube in a wave flume and
calculated the force coefficlents by using Borgman's extended
Morison equation. They presented graphs of force coefficients
versus Keulegan-carpenter number which were calculated by using
the maximum normal velocity. The above mentioned graphs were
produced for different orientation angles of the cylinder. The
authors also presented a second set of graphs for the ratio of
the normal force over the in-line force versus KC. They
suggested that the in-line force on an inclined cylinder may be
calculated using the first set of graphs which gives the force
coefficients. Then the normal force on the cylinder may be
calculated by multipling the in-line force by the ratio obtained
from the second set of graphs. The values of Re used by the
authors were limited to the subcritical range so they could not

establish the dependence of the force coefficients on Re values.



-23 -

A comparison of the results for the force coefficients obtained
by Chakrabarti et al. (1977) for an inclined cylinder with those
obtained by Sarpkaya (1976) for a vertical cylinder in
harmonically oscillating flow was presented by Sarpkaya and
Isaccson (1981). The comparison showed that the values of the
force coefficients at the corresponding KC and frequency
parameter, for both cases,were nearly identical. The authors thus
suggested that the forces on an inclined cylinder might be
calculated using Borgman's extended Morison equation with the
force coefficients obtained from the graphs presented by Sarpkaya
(1976a) or the available tables for a vertical cylinder. In
obtaining the force coefficients, the maximum Re and KC values
were calculated using the maximum normal velocity of the water
particles. Hogben et. al. (1977), and a publication by the
British Ship Research Association (1976), also suggested the same

procedure.

2.3.4~ Hydrodynamic Forces on a Flexible Cylinder

When a cylinder is flexible, its motion will not be negligible.,
Therefore a complex fluid-structure interaction effect needs to
be considered in the amalysis. Very little work has been carried
out in this area and research is required in order to understand
the effect of the cylinder flexibility on its response in

currents and waves.

Two schemes have been suggested to calculate the forces on
flexible risers. The first one is the "Relative Velocity" method

which uses a modified form of the Morison equation. This is
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constructed by replacing the kinematics in the original Morison
equation by the vectorial difference between the kinematics of
the incident fluid flow and the resulting kinematics of the
cylinder. The force coefficients Cq and C, may be found from the
data available for rigid cylinders provided that the values of
the corresponding Reynolds number and Keulegan-Carpenter number
are calculated using the maximum relative velocity rather than
purely the velocity of the water particles. This procedure was
introduced by Mathotra and Penzien (1970) and Berge and Penzien
{1974).

The second method is the "independent flow field " model which is
based on the superposition of two independent flow fields, a far
field which is unaffected by the cylinder motion and a near field
resulting from the cylinder motion. The force equation for each
flow field is expressed in the same form as the Morison equation
with each of them having its own individual force coefficients.
The force coefficients for the first flow have the same values
as for a rigid cylinder in the same flow, and for the second
flow they have the same value as a rigid cylinder vibrated in
still water. This scheme was originally postulated and
investigated for a steady flow condition by Moe and Verley (1978,

1980) and subsequently extended to a wave flow situation by Laya
and Connor (1981).

Laya and Connor (1981) carried out a numerical comparison between
the "relative velocity" model and the "independent flow field"
model using a vertical flexible pile as the test case. They
concluded that the independent flow field model always predicted

a lower hydrodynamic drag damping than the relative velocity
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model. The difference in the damping value increased with the
wave height. Therefore in extreme sea conditions which are
assumed in the design of members of an offshore structure, the
applicability of the independent flow field model diminishes. The
results obtained from both models in the inertia dominant region
in which the drag forces were negligible, were in close
agreement. Finally for intermedlate sea conditions which must be
considered for fatigue life design, the response predicted by the
two models was significantly different. The authors believed that
the relative velocity model predicted a higher hydrodynamic
damping than the actual one. They therefore suggested that the
applicability of the two models needed to be established by
further experimental work. The relative velocity method, which is
also known as the modified Morison equation, is usually used in

industry.

2.3.5~ Bydrodynamic Forces on Cylinder Groups

Numerous studies have been carried out to evaluate the
hydrodynamic forces on a group of cylinders in order to
understand the real response of offshore structures such as
production risers, piles, etc., due to fluid loading. This complex
problem was looked at initially by observing the flow

interference between only two cylinders in various arrangements.

Zdravkovich (1977) presented a careful review of flow
interference between two identical cylinders in various
arrangements in steady flow. The arrangement of the cylinders was

categorized into three types:
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a) tandem arrangement - one cylinder behind the other

b) side-by-side arrangement - two cylinders placed beside
each other so that the line joining the axes of the
cylinders was normal to the flow direction

c) staggered arrangement - The staggered angle was
defined as the angle between the flow and the line

joining the centres of the two cylinders.

In tandem arrangement, it was shown experimentally that there was
a critical spacing ratio for the two cylinders of 3.5. The
spacing ratlo was defined as the ratio of the distance between
the centres of the cylinders to the diameter of the cylinder.
Drag forces on the cylinders were affected strongly by the tandem
arrangement and were sensitive to the spacing of the cylinders.
Below the critical spacing, there was strong interference between
the cylinders. The upstream cylinder contributed most of the drag
force; with the drag force on the downstream cylinder being
reduced partly by shielding and partly by the occurance of
earlier transition in the boundary layers due to turbulance. At
the critical spacing ratio, the flow became discontinuous and,
for the upstream cylinder, this caused a jump in the drag
coefficient, commencement of vortex shedding, and a drop in the
base pressure. For the downstream cylinder, the base and the side
pressure coefficients dropped, the vortex shedding frequency
jumped, and the gap pressure and drag coefficlent Increased
suddenly. Beyond the critical spacing, the downstream cylinder
had a negligible effect on the upstream cylinder. But, even for
large spacing, the downstream cylinder was affected by the

presence of the upstream cylinder and had a smaller drag
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coefficient than that for a single cylinder. In general, for any
spacing, the total drag force on the group was smaller than the

sum of the drag forces on the two isolated cylinders.

In the side-by-side arrangement, the interference between the two
cylinders was negligible for a spacing ratio greater than 5. As
the spacing ratio was decreased from 5 to 2.2, the drag
coefficient was slightly increased. Below the spacing ratio of
2.2, the flow became bistable and this bistable nature of the
flow between the cylinders resulted in two values of drag
coefficient rather than a single one. This phenomenon was caused
by mutual interference of the vortices on the adjacent sides of
the vortex streets. The sum of the bistable high and low drag
coefficients was often less than twice the drag coefficient for

an isolated cylinder.

In the staggered arangements, the drag force on the upstream or
downstream cylinders was smaller than that on an isolated
cylinder, except when the orientation of the cylinders approached

the side-by-side arrangement.

It is important to note that in the above cases resonance of the

cylinders was avoided.

Horner (1965) stated that in steady subcritical flow, the
interaction between two cylinders in the side-by-side and tandem
arrangements could be neglected if the spacing ratios were

respectively more than three or four.

The interaction effects among three cylinders in an array were
reported by Dalton and Szabo (1976). They observed a strong

mutual interference between the middle and downstream cylinders
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but only a partial interaction between the upstream and
downstream cylinders. The drag forces on the middle and
downstream cylinders were smaller and more sensitive to
orientation of the flow direction than the drag on the upstream

cylinder.

Mair and Maull (1971) measured the forces on a cylinder in a
group of similar cylinders as a function of the flow direction.
They showed that over a small range of flow angle relative to the

array, the force acting on the cylinder could change by nearly

100 percent.

L$Ken et, al. (1979) performed a series of tests on a group of
cylinders which had a core cylinder surrounded by smaller
cylinders in a ring arrangement. They towed the cylinders in a
uniform steady flow at the Danish Hydraulic Institute (DHI). The
results showed that the upstream cylinders experienced more drag
than the downstream cylinders. The most shielded cylinders
induced the smallest drag forces. A graphical representation of
the relative distributions of the maximum drag force on the

cylinders was presented.

It is worthwhile to mention that methods such as the method of
images which was used by Dalton et al. (1971) and Yamamoto
(1976), and the linear potentlial theory (including wave
diffraction theory) which was used by Spring et al, (1974} and
Chakrabarti (1978) to calculate the inertia coefficient for a
group of cylinders, are only applicable to cylinders in
unseparated flows. These methods are therefore irrelevant to a

Separated flow condition which is the one that exlsts around
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cylinders in natural sea conditions.

Relatively few studies have been carried out on a group of
cylinders in oscillating flow. In this type of flow, the
interaction between cylinders depends on; a) the spacing ratio
(@as in the case of steady flow) and b) the amplitude of the
oscillating flow which is proportional to the Keulegan-Carpenter
number. If the amplitude of the oscillating flow is very large,
the flow condition will be similar to the steady flow and so
dependence of the interaction between the cylinders on the
Keulegan-Carpenter number can be ignored. At the other extreme,
when the amplitude of the flow is very small the interaction of

the cylinders can be completely neglected {Heideman and Sarpkaya
(1985) ).

Sarpkaya (1980) placed two cylinders in various arrangements and
spacings in his u-shaped water tunnel to observe the effects of
interaction between the cylinders in oscillating flow. He
concluded that in the side-by-side arrangement, for a spacing
ratio greater than 2.5, the cylinders responded as if they were
independent. The results for the drag coefficient in tandem
arrangement were in conformity with those reported by

Zdravkovich (1977) for cylinders in steady flow.

Bushnell (1977) carried out a series of tests on two cylinders
as well as arrays of 3x3 cylinders in oscillating flow. In both
cases the spacing ratio for the cylinders was 3, and the observed
drag forces decreased substantially on the shielded cylinders.
The oscillating flow was applied at 0, 20, and 40 degrees to the
centre line of the array, and it was found that interaction

between the cylinders increased with increasing obliqueness of
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the flow. Bushnell suggested that if a high Reynolds number
single cylinder drag coefficient was applied throughout in
design, the array would have a margin of safety against maximum

drag loading due to interference effects.

Sarpkaya (1979) performed experiments on two groups of 15 outer
and one central cylinders in oscillating flow. He introduced
expressions for the mass and drag coefficients of the tube-bundle
using the Fourier averaging method. The expressions were found to
be functions of the Keulegan-Carpenter number, KC. He also showed
that the force coefficients were independent of the Reynolds
number. In general, the total drag on the group was 10 percent
less than the sum of the drag forces on the individual cylinders.
The inertia coefficient was considerably larger than that
predicted by the potential theory and this indicated that some
fluid mass was entrapped within the bundle as a consequence of

"solidification" induced by the group configuration.

Ross (1959) placed one cylinder on each side of a test cylinder
in a large wave tank. The results indicated that the wave force
increased significantly only when the spacing ratio between two

cylinders was less than 2.

Chakrabarti (1979) placed an array of 2,3,and 5 cylinders in a
separate series of tests in a wave tank. All the cylinders were
equally spaced in an array, and various spacing ratios and flow
directions were used in the experiments. The total force on the
cylinders plus the forces on l-foot sections of two adjacent
cylinders were measured. The maximum non-dimensional forces as

functions of KC, relative spacing, and the flow angle were
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presented, It was stated that interaction among the cylinders

virtually disappeared at a spacing ratio above 5.

Verley and Every (1977) conducted a series of tests on flexible
cylinders in a wave tank to observe the effect of flexibility on
the cylinder responses. They measured the additional response of
a flexible cylinder compared with that of a similar rigid
cylinder., This was achieved by subtracting the measured response
of the rigid cylinder from that measured for the flexible
cylinder (placed next to the rigid cylinder in the tank).
Experiments were also carried out on two flexible cylinders in
both side-by~side and tandem arrangements, and on a group of 12
flexible cylinders in a 3x4 matrix with a spacing ratio of 2. The
results indicated that the type of interaction effects for the
flexible cylinder groups was the same as that for similarly

arranged rigid cylinders.

Beynet and Frase (1982) carried out large scale wave loading
experiments on four catenary risers which were used as the
production risers in the Cadlao field. The most important
observation was that the parallel risers did not tangle or impact
with each other even under the severest test conditions and large

surface buoy motions.

In common platform design practice, the flow interference in a
group of cylinders is usually lgnored and each cylinder is
modelled as an isolated cylinder. The total force on a group ls
obtained by adding the forces on each isolated cylinder of the
group (as suggested by Bushnell (1977)). This isolated modelling
was verified in an ocean test conducted by Beckmann and Merwin

(1979) on a 3x7 rectangular matrix of cylinders with spacing
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ratios of 3.6 in one direction and 5.4 in the other direction.
The validity of the modelling was also confirmed in laboratory
tests by Hansen and Knudson (1980) using a group of roughened
cylinders in an oscillatory flow. Heideman and Sarpkaya (1985)
carried out experiments on rough cylinders in oscillatory flow
and concluded that the isolated model was good for arrays with
spacing ratios greater than 5. Sea test observations made by
Beckmann and Merwin (1979) suggested a reduction of this ratio to
3.6. When the spacing ratio of the cylinders in a group is
smaller than this limit, the interaction between cylinders is
found to be very strong and neglect of the interference effects
would therefore be unrealistic; the interaction between closely
spaced cylinders causing a significant decrement in the total
force on the group. Conversely, it is possible that vortices in
the wake of upstream cylinders may excite a dynamic response of
the downstream cylinders, leading to an effective increase in the
forces computed from the Morison equation. In this case only

reliable experiments can guide the designer (Sarpkaya and

Issaacson (1981) ).

2.3.6. — Bydrodynamic Forces along a Cylinder

The Morison equation gives only the forces normal to the
longitudinal axis of a cylinder and assumes that the forces along
the member are negligible. This is valid if the body has only a
small skin friction value, which is true for most offshore
structures with clean surfaces. The accumulation of marine growth
on cylinders in real sea conditions may, however, invalidate this

assumption. In such cases the forces along a cylinder should be -
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evaluated either by experimental means or by assuming values for
the skin friction coefficient which are usually approximately
one tenth of the drag coefficient (Hallam et al. (1978) ). The
skin friction coefficient depends on the Reynolds number and the
relative roughness height of the cylinder. For given values of Re
and relative roughness height of a cylinder the skin friction
coefficient can be obtained from the Moody's diagram (see Massey

{1979)). The forces along the cylinder are included in the

present work.

2.4~ Hydrodynamic Loadings Induced by Vortex-Shedding on

Cylinders Placed in the Plane of the Wave and Current Motion

When a fluid flows around a stationary cylinder, it forms a
boundary layer around the cylinder surface. This boundary layer
is laminar in the upstream portion of the cylinder surface but
it becomes turbulent at some point on the downstream surface, At
this point, the turbulent boundary layer breaks away from the
surface and forms two separate shear layers which, eventually,
roll into vortices and form the cylinder wake. Each time a vortex
is shed, it alters the pressure distribution around the
cylinder surface. Therefore, the cylinder experiences a time
varying force due to vortex-shedding in addition to that
calculated by the Morison equation. The forces induced by this
vortex-shedding effect act in a direction normal to the plane of

the cylinder in contrast to those calculated from the Morison

equation.
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2.4.1- Forces on a Rigid Cylinder Induced by Vortex-Shedding in
Steady Flow {No Vibration)

A great deal of research has been carried out to understand the
phenomenon of vortex shedding from a stiffly mounted cylinder in
steady flow. Strouhal (1878) discovered the relation between the
vortex shedding frequency and the flow velocity. He made the
frequency dimensionless by dividing it by the flow velocity and
multiplying by the diameter of the cylinder. This dimensionless

frequency is known as the Strouhal number.

Although the Strouhal number was considered to be a constant for
a wide range of velocities, Rayleigh (1896) showed that it is a
function of the Reynolds number. Since then, various studies have
been carried out to define the relationship between the Strouhal
number and various Reynolds number regions and this has been

reviewed by Narris (1964) and Sarpkaya and Isaacson (1981).

Bishop and Hassan (1964) measured the forces caused by vortex-
shedding on a vertical rigid cylinder in steady flow. They

concluded that the vortex-shedding caused two types of forces as

follows:

1) Lift force (transverse force) - this force was
produced in a direction normal to the flow direction
and it had a frequency equal to the vortex-shedding
frequency (fv).

2) In-line force - this force was in the flow direction

and had a frequency of twice f. It was, however, one

order of magnitude smaller than the lift force.
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The fact that the magnitude of the in-line force is relatively

small was also substantiated by Mcgrego (1957), and Fung {1960).

2.4.2- Vortex-Excited Vibration of Cylinders in Steady Flow

When a cylinder is flexible or flexibly mounted, the force due to
vortex shedding can cause the cylinder to vibrate at or near to
one of its natural frequencies. This phenomenon is called lock-on
or synchronization and it occurs when the frequency of the
exciting force coincides with one of the natural frequencies of
the cylinder. The oscillation of the cylinder at lock-on
situations strengthens the vortices, by extracting energy from
the fluid, and increases the correlation length of the vibration

along the cylinder.

Work in this field was given great impute as a result of the
vibration observed during construction of the Immingham Jetty in
1968-1969 {see 'Sainsbury and King (1971) ). Tidal currents caused
the supporting piles to vibrate in the direction of the fluid
flow. As a result, Wooton (1972) carried out full scale tests at

the Immingham site, and King (1974) performed model tests in a
laboratory.

King used two parameters, reduced velocity ( Vp=V / fn.D ) and
reduced damping ( § r=2ms/ pD2 )to describe the vibration of

the cylinder due to vortex shedding.

Where V = Velocity of water particles in the in-line direction

f,, = natural frequency of cylinder
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w)
i

diameter of cylinder

=
"

mass of cylinder and its contents also including
added mass per unit length of cylinder
§ = logarithmic decrement of cylinder damping

p = density of fluid

Oscillation in the in-line direction occurred for V, <3.8. This
happened within two regions. The first one was in the range of
1.25¢ Vp <2.5 , with maximum amplitude occurring at V, # 2.1. The
second region was in the range 2.7< V. <3.8 with maximum
amplitude at V, ¥ 3.2, The first instability region was
accompanied by symmetric vortex shedding and the second region
by alternate vortex shedding. It was shown that the in-line
excitation was suppressed for & . > 1.8, Transverse excitation
occurred for V, >4.5 by alternate vortex shedding with maximum
amplitude falling within the range of 6.5< V, <8. No excitation

in the transverse direction was observed when Gr >10.

A great amount of work has been carried out to study the
oscillations of flexible cylinders in steady flow. A review of

this work was given by King (1977) and Sarpkaya 41979).

Skop et. al. (1977) presented a design chart to calculate the

inline steady drag amplification due to resonant vortex-excited

oscillation.

Hallam et. al. (1978) also presented a design chart to calculate
the response of a single cylinder or array of nearly rigid
cylinders due to vortex shedding. They gave the condition for
suppressing the vortex-excited oscillation of the group as

equivalent to Gr > 30.
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In general, the step-by-step procedure of these design charts
was: a) compute/measure vibration properties of the cylinder
(natural frequency, normal modes, modal scaling factor etc.) ; b)
compute strouhal frequencies and test for critical velocities at
which the resonances occur, Verit,r (in-line and cross-flow ) ;
c) test for reduced damping, .. If the flow velocity is greater
than Vi and the reduced damping is smaller than the limiting
value given above, then oscillation is predicted to occur.
Subsequent operations are: 1l- compute the maximum amplitude of
the oscillation, 2- calculate the increment of the steady drag
force in the in-line direction due to vortex shedding using the
given relationship with previously computed amplitude, 3~ compute
the new stresses and check for the critical stresses and the

fatigue life. For great detail with some practical examples,

refer to the paper presented by Griffin (1981).

The correlation lengths of a vortex along a cylinder depends on
Re, turbulence, aspect ratio (L/D), and surface roughness.
Typical values for a stationary cylinder were summarised by King
(1977). As was mentioned before, in the lock-on condition the
correlation length increases. This increment was measured by

Toebes (1969) and Ramberg and Griffin (1976).

Several mathematical oscillatory models have been presented to
simulate the results obtained from experiments. These models do
not include the analysis of the flow field and the fluid-
mechanics justification arguments but they have the ability to
produce results which are qualitatively similar to those obtained
experimentally. A general review of existing mathematical models

is given by Parkinson {1974) and Sarpkaya and Isaacson (1981).
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The idea that vortex shedding vibration might be modelled by a
simple non-linear oscillator equation was suggested by Birknoff
and Zapantonello (1957), and reinforced by Bishop and Hassan
{1964) through their observation of an oscillating cylinder in a
uniform flow. This idea was pursued by Hartlen and Currie (1970).
They used a Van der Pol-type non-linear oscillator for the 1lift
force, coupled to the cylinder motion by a linear dependence on
cylinder velocity. The model had three dimensionless parameters;
% B, and b.cand B were Van der Pol coefficients and b was the
interaction parameter between the fluid and the cylinder. These

coefficients were obtained experimentally and they varied from

one experiment to another,

Other models were given by Skop and Griffin (1973) and Iwan and
Blevins (1974). Initial studies were conducted using Iwan and
Blevins model for vortex shedding by Nordgren (1982). But , in
general, the wake oscillator models have not been developed to
the stage where they can represent a practical design procedure

(Griffin and Ramberg (1982)).

2.4.3- Forces on Rigid Cylinders due to Vortex-Shedding in

Waves

Many investigations have been carried out in order to understand
the characteristics of the forces induced by vortex shedding in
oscillatory flows (simple harmonic oscillating flows or waves). A
summary of these studies was given by Sarpkaya and Isaacson
(1981). The studies indicated that the induced forces are

dependent on three parameters, a) Keulegan carpenter number, b)
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Reynolds number, c) wave depth parameter (kh), where k = wave
number, and h = water depth. The fluctuating transverse force
(1ift force) can be of similar magnitude to the flow induced in-
line force. The predominant frequency of the lift force is

usually a multiple of the wave frequency and mainly depends on KC
number.

Bidde (1971) measured extensively the lift forces on a vertical
cylinder in waves. He concluded that the 1lift forces were
dependent on KC and that the lift frequency was twice the wave
frequency for KC values Iup to 20, Bidde's work was extended to
higher values of KC by Wiegel and Delmonte (1972), who found that
the lift force frequency was three times the wave frequency for
these higher KC numbers.

Isaacson and Maull (1976) performed experiments on rigid vertical
cylinders in waves. They presented a relatlonship between lift
force coefficient and surface KC as a function of wave depth

parameter (Kh}).

Sarpkaya (1976a) measured the 1lift forces acting on smooth and
rough cylinders for a wide range of Re and KC and relatlve
roughness. He presented a relationship between the lift

coefficient and KC as a function of his frequency parameter (B =
Re/KC).

Lift force on a rigid inclined cylinder was measured by
Chakrabarti et. al. (1977), who used the veloclty component
normal to the cylinder to derive the relationship between 1lift
coefficient and KC.



- 40 -

There have been few studies concerning the effect of surface
roughness of a cylinder on vortex-excited oscillation. Sarpkaya
(1979¢) measu::ed the total transverse force on a sand-roughened
oscillating cylinder and compared it with a similar smooth
cylinder. A Substantial increase in the total force coefficient
was observed due to the roughness. Additional study, however, is
required to determine which components of the total transverse
force are amplified due to the roughness. The components of the
transverse force are: a) the exciting fdrce component, by which
energy is transferred to the cylinder, b) the reaction, or
damping force, which is exactly out-of-phase with the velocity,
c) the added mass force, which is exactly out-of-phase with the
acceleration of the cylinder, and d) the flow-induced inertia

force ( Griffin (1981) ).

2.4.4- Vortex-Excited Vibration of Flexible Cylinders in Waves

The dynamic responses of flexible or flexibly mounted cylinders
in oscillating flows are not sufficiently understood. This is
mainly due to the complexity of the phenomena, because of a) the
oscillatory nature of the incident flow, b) variation of the

incident flow with depth in waves (possessing a vertical velocity

component) .

Sarpkaya and Rajabi (1979) studied the transverse response of an
elastically-mounted cylinder in harmonic flow. They attempted to
analyse their experimental results in the same manner as for a
steady flow but encountered too much scatter in these results.

Their main observation was that the response of an oscillating
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cylinder was necessarily dependent on the dynamics of the same

flow past a similar fixed cylinder.

They introduced a response parameter as Rp (=mg/ p p2 CLg)
where m = actual mass of cylinder per unit length, £ = damping
ratio, CLy = lift coefficient for the similar fixed cylinder, o =
fluid density, and D = diameter of the cylinder. Their results

indicated the following:

a) lock-on occured when the reduced velocity, V, (=
Vin /fn D) was about 5.5, where V; = maximum water
particle velocity in the drag-ineria force
direction, and f, = natural frequency of cylinder.
In this condition the lift force was nearly double

that for a fixed cylinder.

by the relative amplitude of oscillation was a

unique function of Rp

Zedan et. al. (1980) studied experimentally the transverse
oscillation of a cantilevered cylinder in waves. The results
showed that the lock-on occured at a reduced velocity, Vie
somewhere between 5.5 and 7.5 depending on wave depth parameter,
Kh. Zedan and Rajabi (1981) used the results of Zedan et. al.
(1980) and established the characteristics of the 1lift force in
that experiment. They compared the results with those obtained by
Sarpkaya and Rajabi (1979) in harmonic flow. Their results showed
the following:

a) the maximum response was in good agreement with

those obtained from the harmonic flow
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b) the amplitude of the 1lift coefficient at lock-on
condition was magnified by a factor of 1.6 to 1.9 (for
different tests) compared with those of a stiffly
mounted cylinder in harmonic flow with the same KC and
Re numbers

c) the correlation of the lift coefficint with only KC

was poor because it also depended strongly on V..

The lift amplification parameter, CL/CLO was shown in harmonic
flow by Sarpkaya (1981b) and Rajabi {1979), and in waves by Zedan
and Rajabi (1981), to be a function of KC / KC* which is
obviously equal to v, / Vf*. where KC* and Vf* were respectively

equal to KC and V, at perfect lock-on conditions.

Rajabi et. al. (1984) presented a vortex-shedding model for a
vertical flexible riser in waves and currents based on the above
discussion. They obtained the lift amplifications along a riser
by calculating the values of Vr/vr* and using the graphs of
CL/CLy. Then the transverse oscillation amplitude was computed.
From this amplitude, and using the available relationships from
steady flow, the amplification of the drag coefficient in the in-

line direction due to the vortex-shedding was calculated.

2.5 Forces Induced by Vortex-Shedding on Randomly Oriented
Cylinders

If the cylinder is not in the plane of the wave and current
motion, the 1lift force on the cylinder does not lie in the
transverse direction but acts in a direction normal to the plane

constructed by the cylinder and drag-inertia force on the
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cylinder. The response of the cylinder in this direction is
purely associated with the vortex-shedding. The vortex-shedding
forces on the cylinder are applied and the maximum response of
the cylinder is obtained in this direction. This response is then

used to evaluate the magnification factor for drag coefficient in

the drag-inertia force.

The recent vortex-shedding model suggested by Rajabi et. al.
11984) is extended in the present study to the case of a flexible

riser oriented in a random manner.



- 44 -
CHAPTER 3

FLEXTBIE RISERS
3.1 - Introduction

Floating drilling and production in deep waters has become
increasingly important in recent years. Marine risers are
considered key components for such operations. The importance of
production risers occurs because output is reduced or curtailed
when malfunctions of these risers occur. Loss of integrity of the

riser system may also mean fouling of the environment.

In general there are two alternative riser structural systems.
One is a rigid type, the other is the flexible type. The two

concepts are quite different in both structural behaviour and

configuration.

The rigid riser consists of a central export line with the
individual risers clamped externally around this line, This type

of riser will not be discussed in this thesis.

There are three basic types of flexible riser, as shown in figure

3.1:

a - free hanging - this system consists simply of a free hanging

pipe running to the bottom in a catenary shape.
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b - single catenary - this system consists of two parts. The

lower part is nearly vertical when connecting to a base
plate on the bottom and is tensioned by a floating sub-buoy.
The upper part hangs in a catenary curve with one side
connected to the sub~buoy and the other connected to the
floating platform deck. The sub-buoy system consists of a
cylindrical tank (buoy) and an interconnected framework
forming a cradle, figure 3.2. Alternatively the sub-buoy
system can be replaced by a series of buoyant collars which

are installed along a certain length of a riser, figure 9.4.

double catenary shape - this system consists of a flexible
pipe suspended from the deck of the platform and running in
a catenary curve to the sub-buoy, from which it also runs in
a catenary curve to the bottom. The sub-buoy is anchored to
a base plate on the sea-bed by means of a chain.
Alternatively the sub-buoy system can be replaced by buoyant
collars, figure 9.6.

In this chapter a typical flexible riser cross-section is

described, and the practical implications for the analysis of

flexible risers is subsequently presented.

3.2~ Flexible Pipe Cross Section

The pipe cross-section is basically composed of steel and

plastic. Steel components ensure the mechanical performance and

plastic components render the flexible pipe leak proof. The

typical riser cross-section used for deep water applications

includes five principal layers, the characteristics and
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dimensions of which are determined according to the requirements
of the service involved. From the inside to the outside the

flexible line is composed of, (fig 3.3):

- An interlocked stainless steel carcass (layer) which
provides resistance to crushing and prevents deformation of
the pipe even when subjected to a fairly short bending

radius or various inside or outside pressure and tensile

stresses,

- An internal thermoplastic sheath (layer 2) and external
thermoplastic sheath (layer 5) which render the riser leak
proof (internally and externally) and corrosion resistant.
The major qualities required for these sheaths are : a)
Their flexibility to allow the spooling of the line, b)
Their physico chemical resistance to the fluid transported

in the temperature operating range.

- An interlocked zeta spiral (layer 3), called the pressure
armour, which ensures binding of the inner sheaths and the
integrity of the internal pressure, while reclining and
unreclining the pipe. It is made of shaped steel which

allows the interlocking of each spiral with its neighbour,

- Two cross—armoured steel wire layers (layer 4) which provide
resistance to pulling and longnitudal stresses induced by
internal pressure. In order to acheive the flexibility of
the line, they are installed in an helicoidal pattern and to
avoid any torsion effects, the two layers are wound in

opposite directions.
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Fig 3.1 - Different shapes of flexible risers

c)

double catenary
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Fig 3.2 - Cradle system
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Fig 3.3 - Flexible riser cross-section
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3.3- Background to the Analysis of Flexible Risers

The analysis of a riser is usually achieved by subdividing the
riser into sets of discrete elements and the system of partial
differential equations, describing the variables along the pipe,
are replaced by equations of motion of the discrete nodal points
in each global co-ordinate direction. The most successful
discrete element techniques are the lumped mass (finite

difference) scheme and the Finite Element Scheme.

Thg lumped Mass Scheme involves lumping all the effects of mass,
external forces and internal reactions at a finite number of
points ("nodes") along the pipe. By applying the equations of
dynamic equilibrium and continuity to each mass, a set of
discrete equations of motion is derived. The sections of
inextensible pipe between nodes are considered to be either
straight lines without mass (figure 3.4a/ Walton and Polachek
1959,1960), Dominguez (1971), and Dominguez and Smith (1972)), or
Springs without mass (figure 3.4b/ Paquette and Henderson

(1965),Liu and Drelicharz 11969), Crist {1970), and Hicks and
Clark (1972)).

(@) - Straight line element (b} - Spring element

Figure - 3.4 - Type of elements used in Finite difference scheme
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The finite Element Scheme ut;lises interpolation functions to
describe the behaviour of a given variable internal to the
element in terms of the displacement of the nodes defining the
element. The equations of motion for a single element are
obtained by applying the interpolation functions to kinematic
relations (stress/strain) and the equations of dynamic
equilibrium. Various models based on the Finite Element Scheme
have been presented using either linear or higher order shape
functions (figure 3.5a,b/Strandhagen and Thomas (1963), Paul and
Soler{1972), Morgan (1970), Leonard and Recker ¢1972), Fyllina

and Wold (1979), Larsen and Fylling (1982), and Lindahl and
Sjoberg (1983)).

{a) - Linear Shape function (b) - Higher order Shape function

Figure 3.5 - Type of elements used in finite element scheme

H.J.J. Van den Boom (1985) compared the results of a developed
computer algorithm based on the lumped mass method with results
of harmonic oscillation tests for various cables. He concluded
that the lumped mass method provides economic predictions of
dynamic line motions and tensions which are sufficiently accurate

for engineering applications.

The three most common numerical methods used to solve the

equations of motion of riser elements subjected to time varying

hydrodynamic forces are:
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1 - Frequency domain scheme
2 - A Jeterministic time domain scheme
3 ~ A nondeterministic random vibration analysis

In the frequency domain method, (Burke (1973), Young et. al.
{1977), and Lawrence et.al. (1980)), the total motion of the
riser is expanded as the sum of components. By linearizing the
differential equations, and expanding the forcing function in a
Fourier Series, a closed form algebraic solution is achieved. The
frequency domain computations are much faster than the time
domain equations but the disadvantage of this method is that the
non-linear drag force (the relative velocity square term in
Morison's equation) must be linearized. If this approximation is
not chosen carefully, large inaccuracies result. The unknown
effect of drag linearization is the majozl drawback of this method

(Sarpkaya (1981c)).

In the time domain dynamic method (Gardner and Kotch (1976), and
Macnamara et. al. (1981)), discrete time steps are used to
integrate the equations of motion which leads to the time history
solution. This method allows calculation of the nonlinear drag on
the riser and accounts for relative riser motion and dynamics.
The disadvantage of the time domain method, however, is that it
usually requires a lot of computer time, Time integration is
carried out by either explicit or implicit algorithms., A
comparison between explicit and implicit algorithms has been

given by Soltanahmadi (1985).
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In implicit schemes, the displacements at time t + At are
obtained using the equilibrium equations at time t + A4t,
Hydrodynamic forces on flexible risers are riser displacement
dependent, and therefore iteration is required at each time
incerement. The method may be termed a mixed method since it
employs incrementation with equilibrium iterations to correct the

riser displacements to some specified level of convergence.

Implicit schemes have the advantage that, for linear systems,
they are unconditionally stable for large time steps. But they
have the major disadvantage of requiring iteration and assembly

of the overall structural stiffness at each time step.

In Explicit schemes, the displacement at time t +24 t is obtained
using the equilibrium equation at time, t. Therefore no iteration
is required within each time step for the solution. The main
disadvantage of such schemes is that they are only conditionally
stable, so that small time steps must be adopted to prevent

instability in the solution.

The analysis of risers is carried out either by using a Finite
Element structural idealization with an implicit or explicit
algorithm, or by using a Lumped Mass Scheme with an explicit

algorithm (finite difference).

Finally, the third numerical method, nondeterministic random
vibration scheme (Tucker and Mutha (1973)) can use either
frequency domain or time domain solutions but instead of regular
waves, random waves are used. In this method, the random wave
spectrum is input to the riser model, and the riser response is

output in the form of a spectrum.
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A number of non-linear computer codes using the numerical
methods discussed above have been developed in recent years to
analyse flexible risers. In spite of this, however, the issue is

far from resolved (Sarpkaya 1981c) ).

API (1977) compared existing computer programs for a standard set
of riser problems. The comparison showed that different computer
programs gave a considerable scatter in the resulting stresses.
It was not certain why the different programs gave such a
variation in résults, but the mechanisms of riser behaviour are
such that there is ample room for different interpretations of
how the physical effects should be formulated and how the
hydrodynamic loading on the riser should be assessed. Therefore,
comparing one particular program with other available programs is
not necessarily a measure of how accurate it is, However, it may
give a general guide as to whether any significant deviation from
other programs is due to programming errors or due to a more
refined formulation of certain important effects (Natvig and
Torset (1985) ). The only objective way to validate riser

analysis programs is to compare computed results with

experimental measurements.

From the foregoing, it can be concluded that more research work
is required to develop a riser analysis computer program which
produces reliable results with reasonable economy. It is
essential that every aspect of the computed results including the
assesment of hydrodynamic loading on the riser and the physical
performance of the riser should be validated experimentally. This

was the aim of this project.
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CHAPTER 4

THEORETICAL COMPUTATION AND ASSESSMENT OF HYDRODYNAMIC

IOADINGS (N FLEXTBLE RISERS

4.1 - Introduction

This chapter describes the theory of basic fluid hydrodynamics
and presents the derivation of the Linear and Stokes wave
theories. It then considers the theories used to evaluate the
drag-inertia and Vortex-Shedding induced hydrodynamic forces on a
flexible riser due to wave and current motions. Finally, it deals

with the assessment of these forces on the riser.
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4.2 - Fluid Mechanics

4.2.1. —.Der;viation of Basic Relationships for-Incompressible,

Irrotational and Inviscid Fluid Flow

The object is to obtain relationships between parameters such as

velocities, accelerations and pressures in a moving fluid.

Consider a small rectangular element of real fluid ABCD in 2-
dimensional flow, with particle velocity components of U and V in

the x and y directions at position A, and pressure, p, at the

centre of the element:

h
B /
oP AY
P+ & 5=
M Y 2 ___.—7 22U P
U+_2Y. A\f’_‘___.—- "_’u +, 2y AY + X AX
1
Y W 1 I 2V 22U
v+=4at {p o aAY
AY ~ 9P Ax / P P &x
P= %2 | II P32
L—Z »U
1 v 1 // ~—~-—IB"It Ve —gaxX
o P AY T dU ,
u / p 3Y 2 + X X
= X
Je gl
AX

Figure 4.1. - Fluid element

Kinematics

As far as the velocities are concerned, Figure 4.1 can be

considered as the sum of four distinct types of motions. These

are:



- 56 =

1 - Linear translation
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Figure 4.2. - Components of fluid element motion
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Note the sum of the velocities at each corner of figure 4.2

is the same as that in figure 4.1.

The change of area (or volume) of the element ABCD can only
result from the linear deformation component. But the
incompressible fluid assumption (i.e, no volume change) requires

that this component is zero.

U E\Y
Thus, — + — =0 (4.1)

oX oY

This is the continuity equation.

The vorticity is generated by shear stress and is defined as:

« OV U
] = emee - ——
X oY

which is twice the angular velocity. The irrotationality

assumption of the fluid requires the vorticity to be zero.

v 18]
Thus, - - — =0 (4.2)

oX oY .

For irrotational flows, there is a scalar function, the velocity
potential ¢{X, ¥, t), which contains all the information about

the kinematics of the motion. particle velocities are derived

from it as follows:

3¢ L)
U = 5 V =2 - (4 03)
)4 oY

Substituting (4.3) into equation {4.1), the Laplace equation is

obtained: 324 324
—_— 4+ — =0 (4.4)
ax?2 ay?



For incompressible flows, there is a second rather similar Scalar
function, the stream function ¢ (X, ¥, t), from which the
particle velocities can be derived as follows:

Y Y

U='—'V=— (4-5)
Y X

Substituting equation (4.5) into equation (4.9) gives:

3%y %y
ax2 ay?

Dynamics

Newton's second law is used to obtain the dymamic relationship.
With reference to Figure 4.1 and resolving the net force on the
element per unit area (or volume) due to the pressure gradients

and gravity in the x and y directions:

P oh*
x: -— =0g—
X oX

(4.6)
B 3h
y L — _eg ——
Y oY

~where Pis the fluid density and h* is a co-ordinate measured

vertically upwards.
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The acceleration in each direction has local and convective

components. Using Newton's second law:

U 3U 14| 3P oh*
x spl—= +U— +V—) =-— - pg—
ot ): oY E):¢ aX

4.7
v 3V v 3P oh*
Y tp(— +U0U— +V—) =~ — = pg—
ot )¢ 3Y 3Y 3Y

. dividing equation (4.7) byp, Euler's equation is obtained:

oU 3U U 1 9P oh*

X 2 ~=+U0 — 4+Ve—===— g— (4.8a)
3t X dY o 8X X
AYS v Vv 1 3P sh* :

Y ¢ — + U _+V-—=—-————g—~ (4.8b)
ot aX Y o 3Y Y

Note: if the fluid were not assumed as inviscid, an extra
viscous force would have been added to the force terms in

equation (4.8) which would have given the Navier-Stokes equation.

3¢ U 1 oU?
Substituting U= — , U — =« — \ and
X - 93X 2 X
3U v 1 av? .
Ve— =V o=z o —— into equation  (4.8a)
Y aX 2 X

all terms become derivatives with respect to X. Integration with
respect to X introduces an arbitrary function of Y and t.
Operating similarly on equation (4.8b) and comparing the results
leads to Bernoulli's equation which expresses the requirement of
conservation of energy for irrotational unsteady flow:

a¢ 1 P

_+_(U2+V2)+gh*+-=f(t) (4-9)
at 2 P
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In equation (4.9) f(t) is an unknown function of time. Since any
t
f(t) dt can be incorporated into ¢¢X, Y, t) without modifying
o)

the derived velocities, the right hand side of equation (4.9) can

normally be set to zero without loss of generality.

3¢ 1 P
Thus, — += (U +V?®) +gh*+-=o0 (4.10)

ot 2 P
4.3 - Wave Theory
The range of suitability of the different wave theories for
different situations was given by Dean (1970) as Figure 4.3, and
by Le Mehante (1976) as figure 4.4. The latter includes the

different orders of Stokes wave theory, and is particularly

useful for experimental work in a wave flume.

In off-shore situations which usually involve deep water waves,
Stokes 5th order or alternatively linear wave theories are
generally adopted. One reason for preferring the use of Stokes
5th order wave theory is its prediction of the most realistic
wave crest height which is a critical factor in the design of

semi-subermsible platforms.

The definition of deep or shallow water waves is indicated by the
range of Kh values, where K = wave number and h = depth of still

water, as follows:

Kh > wfor deep water waves

Kh <lfor shallow water waves
10
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4.3.1 - Linear (Airy) Wave Theory

Figure 4.5
Specifications for a wave train
A particular wave train is generally described by the quantities
H, T and h (Figure 4.5), and the objective of any wave theory is
to determine celerity (wave speed) and hence the wave length (L)
and a description of water particle kinematics through the

velocity potential ¢(or stream function ¥ in the case of stream

function wave theory).

To determine the velocity potential (¢), a solution of Laplace's
equation of continuity (equation (4.4)), subject to a number of

boundary conditions, is required. The boundary oonditions are:

(1) The bottom boundary condition - it is assumed that the

bottom surface is impermeable. This means that the vertical

velocity must be zero at the bottom (Y=-h), thus:

3¢
— =0 at Y=-h (4.11)
Y

(2) The free surface boundary conditions (Y=n);

(@) Kinematic condition — the surface moves with the
fluid, and thus the vertical velocity of the particles

on the surface is equal to that of the surface.
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The vertical velocity of the water particles at the free surface
L

I‘Y:T] ) =—
o dn N an X
The surface vertical velocity ( — ) = — + — —
dt ot X ot

3¢ on on X
Thus, — = — 4 — — at Y =n (X,t) (4.12)
3Y 3t  oX st

X ¢
But == U =—, and substituting this into equation (4.12):

ot X
8 3,30 3 sty =qx,t) (4.13)
3Y ot 9X X
(b) Dynamic condition - it is assumed that the pressure at

the surface is atmospheric so the term P in equation
(4.10) (which is the unsteady-state Bernoulli egquation)
can be neglected. Thus equation (4.10) at the free

surface becomes:

3 1

—+- (U2 +V2)+gn=o0 atY=n (X, t)
it 2

or

1 3% 1 ¢, 3,
- =+ — ((=) +(=))+n=0aty¥Y=n(X,t) (4.14)
g 29 X 3Y

In linear (small amplitude) wave theory, the free surface
boundary conditions are simplified. The slope of the free
surface, -:-)-Z » is assumed to be negligible for all values of X.
It is also assumed that the water prticle velocities, -%% and —g% ’
are small and hence their squares are negligible. The boundary
conditions are further simplified by applying them at the still
water level, Y=0, rather than at Y="which is the (unknown) free
surface, Thus the linearised free surface boundary conditions

can be written as:
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3¢ an

-—= - at Y =o (4.15)
oY ot

1 3¢

~ —+n =0 at Y=o (4.16)
g 3t

A solution for the velocity potential can be obtained as follows:

¢ X, Y, t)=£f (X . £ () .£ () (4.17)

Differentiating equation (4.17) twice with respect to both X and

Y and substituting into the continuity equation (equation (4.4)),

we obtain:
" (X) .f(Y) JE(t) + £ (X)L £ (Y) . £ () =0
f“ (X) f" (Y)

or =- (4.18)
£(X) £(Y)

Equation (4.18) is only possible if we have:

£"(x) £" (V)
= - = constant = - K?
£ X) £ (V)
Thus
£"(X) + K> £(X) = o (4.19)
£"(Y) - K2 £(Y) = o (4.20)

The solutions for equations (4.19) and (4.20) can be written as:

f (X) =Asin KX + Bcos KX (4.21)

£ (v)=ceXY¥spe KY¥ (4.22)

From the periodic nature of the wave train, we have:

f (t) = F sinwt + E cosuwt (4.23)
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Considering equations (4.21) and (4.23), we may write:

f(X) . £ (t) =Asin (KX - wt) (4.24)

Substituting equations (4.22) and (4.24) into equation (4.17)

gives:

¢=(CeKY+De-KY

) Asin (KX = wt) (4.25)
A solution for equation (4.25) can be obtained by considering the

boundary equations. From the bottom boundary equation 14.11), we

have: 3¢
— =0 atY = - h
Y '

and substituting for ¢ from equation (4.25);

ce”Kh - pefh =
Thus' C= De2Kh

Substituting equation (4.26) into equation (4.25) and simplifying
yields:

o= (KIY+hy o K(Y+h)) pKRha oin (kx-ut)

thus, ¢ = 2DeKPA,Cosh K(h+Y). Sin (KX-ut) (4.26)

Considering now the dynamic free surface boundary condition,

equation (4.16);

>
S

n=0 at¥=0

qj-
o
+

and substituting for ¢ from equation (4.26);
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n=émueKh Cosh Kh. cos (KX-ut) (4.27)
But the free surface in linear wave theory is given by

H :
N= - cos (KX-ut) (4.28)
2

Comparing equations (4.27) and (4.28) gives:

H 1
- = - 22Due®M cosh Kb
2 g
thus, 2ADeKh = (§ . 2)/COShI(Kh) (4.29)

2 w

Substituting equation (4.29) into equation (4.26), the equation
for the velocity potential is obtained:
H cosh Kih+y)

$=g - ———————— sin (KX-ut) (4.30)
2w cosh Kh

The celerity of the wave can be obtained by considering the

kinematic free surface boundary condition (equation (4.15)),

3¢ an
Y at

From equation (4.28):

n HW
= — sin (KX - wt)
2 .

and from equation (4.30), 2 at ¥=0 is:
)’
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3¢ HK ' .
Y -9 tanh Kh sin(KX-wt)
3¢ 3n

therefore,a“Y =5t at Y = 0 gives:

g — tanh Kh =

HK Huw
2w 2

Thus, % = gK tanh Kh

2T, 2T
but (V] = e = — W= = m
T T L
Then, €2 K2 = (gk)tanh Kh (4.31)

and thus, C2 =(g/K) tanh Kh
Equation (4.31) is called the dispersion equation.

The particle velocity and acceleration can be obtained by

differentiation of equation (4.30).

The horizontal particle velocity and acceleration are

respectively:

39 m™H COSH (KS) o
X T Sinh (Kh)

0SS e (4 932)

, .
g = _a_t_Ja 2t H cosh (KS) sin © (4.33)

ot T2  ginh (Kh)

The vertical particle velocity and acceleration are respectively:
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H Sinh (KS) _,
vV = 2 _ m Sinh ®S) g : (4.34)

Y T  Sinh (Kh)

. 2 .
\.7 = .a_v=...27T H Sinh (KS) cos ©

. (4.35
3t T2 Sinh (Kh) ( )

where s = h+Y and 6= KX —wt

This wave theory gives the particle motion under a constant still
water plane and it does not include any surface movements of the
waves. This may be corrected by setting the particle motion in

the wave crest equal to that at the still water plane, Figure
4.6

fluid velocity/acceleration prof

7= /B 7 7 TRS

Figure 4.6. ~ Modification of the linear wave theory
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4.3.2. - Stokes Finite Amplitude Wave Theory
Derivation of the Stokes 5th order wave theory is presented and
it is used to obtain any lower order (1 - 4) theory by

eliminating the higher order coefficients.

Recalling the boundary equations (4.11), (4.13) and (4.14):

3@
bottom boundary condition is: — =0 at Y= -h (4.11)

oY

free surface conditions:

3 osn  an @
—_———, — at Y
Y at X oX

niX,ty (4.13)

1 3¢ 1 g 9 0 2
- - + —((=)" + (—)°) +
gt 29 X Y

—,

B+ Y) =0

at Y =1 (X,t) (4.14)

where Bis a constant for a given wave, related to the total head.

It is convenient to carry out the derivation with respect to a
frame of reference moving with the waves, so that if the wave-
induced flow is (U,V), the particle velocities seen on the moving
reference frame are (U-C,V). By introducing the reference frame
the dependence of Y with t disappears so that equations (4.13)

and 44.14) become as equations (4.36) and 14.37) respectively):

v=a -0 at Y

n X)

an
thus, _—= —— at Y = ni{X) (4.36)
3X
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13g 8x 1

—-—--+—wz+v2)+|(8+n)=o at ¥Y=n(X)
gXidt g
thus, -2UC + (U2 + V) = =29 (B+ n) at Y = n(x)
(U-C)2 + v2 = 2 - 2g(g+ n) at Y = n(x) (4.37)

The series form for @, which satisfies the Laplace's equation
bottom boundary equation 4.11), and symmetry requirements can be
assumed as follows:

g= ;—: [( VA, + 23 A3 + A3 A;5) cosh KS sin @

+ (>\2 Ay, + A4 Ayy) cosh 2KS sin 2 ©

+ 23 Ay + A3 A3g) cosh 3KS sin 3 ©

+ (4 Ay, cosh 4KS sin 4 ©

AW Agc cosh 5KS sin 5 6 ] 14.38)

where A = Ka, a = wave amplitude, S = h+Y and © = KX-w t. The

equation for n which satisfies the symmetry requirement can be

assumed as:

1
N ==[1icos®+ (A By, + X By,) cos 26
K

+ M Byy cos 4 6 + A3 Bgg cos 586 14.39)
Further, the following equations can be assumed for the wave

celerity and the constant B ;

2
C
c2 = 2 {1+ A2 C + 24 C,) 14.40)
K _
1l
B = - ¢ A2 Cy + % Cy) 14.41)
K

Where C, is the linear wave celerity as calculated in the linear
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2 g
wave theory Co = -; tanh Kh)

Any lower order of Stokes wave theory is obtained by setting the
corresponding Aij and Bij coefficients to A with powers higher
than the considered order equal to zero. For example for the 3rd
order wave theory, Aij and Bij coefficients corresponding to 24
and X> are set to zero. In addition C, and C, coefficients are

set equal to zero except for the 5th order theory, and Cy and C3

are set equal to zero only for the lst and the 2nd order

theories,

In order to obtain Aij' Bij and Cj coefficients, eguations
(4.38), (4.39), (4.40) and 4.41) should satisfy the free surface
boundary conditions, equations (4.36) and (4.37). This is

achieved by solving equations (4.36) and {4.37) for the values of

K K K 3@ K 3@
- U and -V, and setting these values equal to - — and - —
C C c 8x C3x

respectively at S= h + Y. Such a procedure results in two
equations involving the unknown constants, powers of cos @ and
powers of A, These equations are grouped according to powers of
and sub-grouped according to powers of cos @. Since the
equations must hold for any value of @, terms in each equation
involving the same order of approximation (i.e. the same power of
A) and the same power of cos ¢ are set equal, this results in 20
equations. These equations are solved to obtain the 20 constants
Ajyr Bjj and Cj. The solution of these equations which is taken

from the paper presented by Skjelberia and Hendrickson (1960) is
presented in appendix A.



-T2 -
The values of K and A, which still have not been determined, can
be obtained by using the given wave data (i.e. H, h, and T). The
wave height (H) is equal to the difference between the crest and
the trough heights, that is:
H=n (6=0) - n (8@=7)
Thus, using equation (4.39) and rearranging, we get:

H== [A+1 Byy #15 (Bye +Beo)]  (4.42)

=N

Also, using equation (4.40) and the expression for Coz, it can

readily be shown that:

4 2 "
Lo ,
gT2
where L0 =
21

Equations (4.42) and (4.43) are solved numerically to obtain

3% anmd K.

The horizontal particle velocity and acceleration can be obtained

from the velocity potential equation, (4.38):

5
v=%. C(z: n y¢' Cosh (nkS) Cos (n ©) (4.44)
oX n=1 n
* _ 35U 5,
U=2% =%C (1 n? y!Cosh (nKS) Sin(nd) 14.45)
n=1

The vertical particle velocity and acceleration are respectively:

5
v=® -c(:  ny'sinh (nkS) Sin (nO) 14.46)
Y n=1 n
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. 5
V= v =-wC (I n2 Ibr'lsinh (nKS) Cos (n8) 14.47)
ot - n=1
M
where w = ——
_ 3 5
R R R
V2 T Myt Ay
1 - 43 5 (4.48)
V3 MVAggk AMAgg

Vg MBgg 0 b= AR

4,3.3- Numerical Solution of Equations (4.42) and (4.43)

2
= [A+23 Byy +15 (Bye + Bee) = H= 0
K 33 305 5 14.49)
4n
(K tanh Kh)(1 +22 ¢, +74¢c,) = — =0
1 2 gTz

To solve the simultaneous equations 14.49), Newton's iteration
method is used. The method is commonly used for the solution of
systems of non-linear algebraic equations. Its popularity is due
to the fact that it has better convergence properties than does

the method of direct iteration.

The basis for Newton's iteration method is a Taylor expansion for

each of the n equations:

£ A )44 et +oeeoth 21 + higher
+ ses = eseey X AX — sene -
1(xl Xl’ ‘ 'xn + Axn) fl (xl' ' 4n 1 3)(1 Xn 3Xn orders
(4.50)
£, Y

n [
3n +eosatax, o n + higher

axl 3%, orders

fn(xl + Axl""'xn + Axn) = fn (xl,.-oo’ xn)"‘AXI



-4 -

If changes Ax; in the variable values bring the function f; close
to a root, it will be assumed that the left sides of these
equations are zero. Thus the problem reduces to that of finding
the changes Ax; that achieve the goal. If all higher order terms

are dropped, the problem becomes one of finding the roots of the

linear system:

ofi  fy of1 |
- _— LI —— AXI -fl
3xl aXZ 3Xn AXZ -f2
. ° ] = . "4051)
afn | afn
- ® » o o & o 2 o &6 0 ¢ ™ Axn -fn
axl an

In this system the partial derivative matrix and the vector on
the right side can each be evaluated at any approximate set of
solution waves., Once the Axj values are known, they may be
applied as corrections to the initial approximations:

X = X1 + A%

14.52)

% so e

Xy = X + A%,
If all correction factors are sufficiently small, the process is
terminated. If not, the new values are used as root

approximation, and the process is repeated until a solution is

found.

The above iteration scheme is used to solve equations (4.49).
The variables in (4.49) are Aand K. But A is a function of K

{i.e. X = Ka). Thus substituting this into (4.49) and
simplifying:
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2 [a+K%a3By; +K 2% By +Bgg) 1 -H=0

"4053)
4'rr2
(K tanh Kh)(l + K2 a2 ¢, +K¥ atc) - — =0
1 2 2
qT
Comparing equations (4.50) and (4.53),we have:
f, =2 [a + k2 a3 By3 + K4 a5 (Byg +Bgg)] - H
(4.54)
A 4w2
f, = tarh ky(1+ K2 2% ) + k¥ at ¢y - —
qT

It is important to note that B33, B3g, Bgg, C; and C, are

functions of "K".

Equation (4.51) for this case becomes:

"‘af1 af1— — — ]

B K ba _ -£

_ (4.55)

3f2 af2 AK f2
L__Ba BK_ ] | ]

But:

of 4
5""=2[l+3K2azB33+5K4a4'(B35+B55)]
a

o1 3 3.5

— = [ 2K a3 Byy + 4 K> a° (Bae + Bee) +

- 33 ( 35 * P55

o,

2 _ 2 4 3

; (K tanh Kh){2 K a C; + 4K* a’ Cy)

a

3£,

—= = (tanh Kh) (1 + k2 a2c +Ktatcy +

h 2 4 _4
( 3 )K11+K2a C; +K* a® Cy) +
cosh* kh

(K tanh Kh) (2 Ka2 ¢ + 4K3 a% ¢, + K2 a2 C'; +

kat ¢’y 14.56)
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Equations for B33+ B3gsr Bggs C3/ @and C, are given in appendix A.

Prime (') denotes differentiation with respect to K.

The above relations are substituted into equation (4.55) which is
then solved for Aa and AK. The values obtained for Aa and AK
are then added to the previous values of a and K and the whole
procedure is repeated. The iteration is terminated when the
values of f; and f, are less than 0.01. Initial values for a and

K are set equal to those obtained from linear wave theory which,

for deep water, are:

= 4 n2/g12
(4.57
a=H/2 (4.57)

~
I
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4,.4- Hydrodynamic ILoading

4.4.1.- Developing the Theory to Estimate the Drag-Inertia
Hydrodynamic lLoading on a Flexible Catenary Riser

The following theory is obtained by combining the theories for

estimating the hydrodynamic loading on a rigid cylinder with

those for a flexible cylinder and an inclined cylinder. Equation

(4.58) which is known as the Morison equation is used to

calculate the wave loading on a rigid cylinder with a ratio of

diameter to wave length of less than 0.2 (i.e. small body).

HF} = 0.5 ° Cqg B, Vi IVl +° Gy ¥ I (4.58)
dt

where

P = fluid density

Cg = drag Coefficient

A, = projected frontal area

Vy = velocity of ambient flow

Cn = inertia Coefficient

¥ = displaced volume of cylinder

av,

d_t- = total acceleration

Total acceleration is the sum of local acceleration and
convective acceleration. But since the nature of the

hydrodynamic forces on risers is drag dominant the convective

acceleration term is ignored.

For a vertical rigid circular cylinder, equation (4.58) can be
expressed as:
'er2 .
HF} = 0.5 p Cq D1 VIVl +, Cp ¢ —4— ) 1V, 14.59)
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or, wave loading per meter length is:

HF = 0.5 pCq DV, IV,| + 0.25 oGy (nD?) V,,  14.60)
The Morison equation has been modified (as discussed in the
review) to calculate wave loading on a flexible cylinder as
follows:

HF = 0.5 PCgq D (V, - X) |V, - X| +0.25 pC, "D? V, -

- 0.25 0 (G - 1) "D X
14.61)

where

Be
n

velocity of cylinder

»:
!

acceleration of cylinder

In the presence of current flow as well as waves, the current
velocity must be added to the velocity component in equation
(4.61). Sothe generalformofequation (4.61) becomes:
HF = 0.5p Cg D (V, + Vo = X) |V, + V, = X| +
+0.25p Cym D2 ¥, - 0,25 p (G - 1) v D? X
(4.62)
In the absence of wave, current or structural movements, the

corresponding Kinematic Components in equation (4.62) must be set

to zero.

Drag and inertia coefficients are obtained from experiments.
They depend on Reynolds number, Re, Keulegan-Carpenter number,

KC, and the roughness of the riser.

where
VD
Re = — and KC =
v

ol S

with V = velocity term in equation (4.62)
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D = cylinder diameter

T

wave period

\Y

kinematic viscosity
There are three types of experimental procedures to determine
these coefficients:
l. placing the cylinder in a wave flume which has the
disadvantage of not producing high Reynolds numbers
2. placing the cylinder in a one dimensional oscillating
flow which is usually performed in a u-tube water
tunnel. 1Its disadvantage is the lack of orbital
movement of the water particles (i.e. there is no
vertical component of particle movement). Hence, for a
particular section along the cylinder only Cqand Cj
can be determined
3. oscillating the cylinder in still water which gives the
same results for C4 and C as the above methods after
correcting for the lack of the Froude-Krylor force,

0.25p « 7 D? \'Iw, in the inertia term.

Four theories have been suggested to estimate hydrodynamic
loading on inclined rigid cylinders. The most popular theory,
suggested by Borgman (1958), is adopted in the current work. He
used the same analogy as in the Morison equation for rigid
vertical cylinders to derive a formula to calculate the
hydrodynamic forces on inclined rigid cylinders. Morison et.al.
(1958) assumed that the forces caused by waves on a vertical
cylinder are dependent only on the velocity and acceleration of
water particles normal to the cylinder longtudinal axis in the

wave direction. Thus, applying an analogous assumption to an
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inclined cylinder, the relevant water particle velocity and
acceleration components are those normal to the cylinder axis in

the direction defined by equation (4.69).

It is important to note that the vertical Kinematics of water
particles due to wave motion were ignored by Morison and et. al.
This is reasonable if the cylinder is smooth so that tangential
forces due to friction will be a magnitude smaller than normal
forces. But if the cylinder is a rough cylinder, this assumption
will not be true. Considering that in a marine environment, a
riser is usually covered with growth such as barnacles, shell
fish and seaweeds which create a rough surface, it is desirable

to include tangential hydrodynamic forces in the anlaysis.

Thus, equation (4.62) for an inclined flexible riser is:

HFp = 0.5 pCy D {Vpy, + Voo = Xp) [V + Ve = Xnl +
+0.25 P Cy "D2 V, - 0,25 p (G - 1) D% X,
(4.63)
(4.64)
where HFy = normal hydrodynamic force per length
HFy = tangential hydrodynamic force per length

Subscript (n) denotes the component normal to the riser axis

Subscript (t) denotes the component tangential to the riser

axis.,

The normal and tangential components of the water particles and
the structural velocities and accelerations are determined by

considering a small element of riser in space, figure 4.7.
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Figure 4.7
Orientation of a riser element in space
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The velocity and acceleration of the water particle or riser can

be written as:

V= Vel V3 + Wk or V= (Vy Vg V) (4.65)
V=Vl + V5 + Tk or V= 4l V. V) 14.66)

Let U be the unit vector along the cylinder. Then from figure
4.7:
U=Ul + 0,5 +Uy k=5ingcos yi+8Sin@gsinyj+
cos @ k (4.67)

Where i, j and k are unit vectors parallel to the x, z and y axis

respectively.

Thus,
Uy = Sin @ cos ¢
U, = Sin @ Sin ¥ (4.68)
Uy = cos @

The velocity component normal to the cylinder axis can be
obtained from elementary vector algebra and the direction cosine

relation, sz + U2z + 02y =1
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V,=Ux (VXU =
[Vy = Uy (Uy Vg + 0y Ve + 0, V) 1+

z " Uz Uy Vg + 0,V + 0, V) | ]+ 4.69)

* Vg = Uy (Uy Vg + 0y Vg + 0, V) ]k
Equation (4.69) in matrix form is:

Vp = [an' Vg vnz] = [vx vy, vz].

+ [V

- y2 -
1- 02 - Uy Uy U, U,
2
2
- U, U, - Uy U, 1-102,

Thus:

Vnx = Vg (1= U%) +V, (- Uy Uy + U, (- Uy Uy

(= (1 - vl -
Vny = Vg (-Uyg Uy) + Vg (1 = US) +V, (= Uy, Uy)

y
Vz = Vg (Uy Up) + Vy (- Uy Up) +V, (1 - U2
On simplifying: |

Vng = Vy = Uy (Uy Vy + Uy Vo + Uy V)

y
Vny = Vy = Uy Uy Vy + Uy Vy + Uy V) 14.71)
Vnz = Vz - Uz (Ux Vx + Uy Vy + Uz Vz)
And
i, 2 2 2 .
Vo =V Vi + Vo 2 + Y, (4,72)

The component of the normal velocity in the xy plane which is the

plane of wave motion can be written as:

- 2 2 .
any -\/an + Vny (4,73)
Equations similar to (4.71), (4.72) and 14.73) can be derived for
water particle or structural accelerations. And, since almost

all wave theories are two-dimensional, the term v, is set to

Zero.

The velocity component tangential to the cylinder axis can be

obtained simply as follows:
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Ve = V. U=V, Uy +V, U, +Y,0, (4.74)

Similarly a relation like (4.74) can be written for the

accelerations.

4.4.2 - Forces Induced by Vortex-Shedding on a Randomly
Oriented Flexible Catenary Riser

Vortex shedding induced by wave and current motion around a riser

produces two types of oscillations in the riser: one in the drag-

inertia force and the other in the lift force directions. The

former oscillation is a magnitude smaller than the latter and is

also negligible compared with the response induced by the drag-

inertia forces calculated from the Morison equation, so is

usually ignored.

The response of flexible cylinders due to vortex-shedding in
waves has not been extensively researched and almost all of the

available riser programs lack the capacity to predict such

responses of risers.

On the basis of recent studies of vortex-shedding induced from a
cantilever cylinder, as outlined in Chapter 2, Rajabi et. al.
(1984) suggested a method to deal with vortex-shedding induced
response of a vertical flexible riser due to wave and current
flows. This model is extended in the present work, and verified

experimentally, for a riser oriented in a random manner.

The force induced by vortex-shedding per unit length, TF,,, on a

riser,is split into two parts; namely,a lift force, TF[, and a

resisting force TF.
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Thus,
TFyor (Xr t) = TFp (X, t) - TF, (X, t) (4.75)

The lift force is the sum of the components induced by wave and

current motion.

Initially the lift force due solely to wave motion is discussed.
The 1ift force per unit length on a flexible cylinder due to
wave motion is:

TFp, (X, £) = 0.5 pD V2 . CLy (CL/CL, ) cos (wyt = ©)

{4.76)
where

CL/CL, , the lift amplification parameter, =
the ratio of the actual 1lift coefficient of the
oscillating cylinder to that of a stationary cylinder

in a hydrodynamically similar flow

w; = predominant circular lift frequency
© = a phase angle
t= time
Vimax = amplitude of water particle velocity induced by

wave motion normal to the riser axis in the
direction of the drag-inertia force.
The resisting force generated as a result of the cylinder
oscillation in the direction of the 1lift force is presented as a

Morison type equation: 2
' pnD

(Cp - 1) X,
(4.77)

TF, X, t) = 0.5 0 CqD 4Xp) | Xy | +

Where Xy (X, t) is the structural displacement in the direction
of the lift and ).(L and X; are the corresponding velocity and

acceleration respectively.
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The direction of the lift force is normal to the plane containing
the cylinder axis and the drag-inertia force vector. The
structural displacement in the direction of the drag-inertia
force vector is defined as follows:
Xn =Ux (X xU)

where U is the unit vector along the riser axis, figure 4.7.
This relation suggests that the three vectors, Xy U, and X x U)
are orthogonal vectors. Therefore, the structural displacement
in the direction of the lift force is:

i j k

X X5 Xy
X Z
Uy Uy Uy

= Xy Uy = X, Up) 3+ Xy Uy = X5 Up) K

X, =XxU= = (X, Uy - X, Up) 1

X1x = X, Uy = X, U,

X1z =Xy UY + xy U, (4.78a)
xLY=X1-{Uz"szx
And 2 2 2

The component of Xr, in the xy plane can be written as:

2 2

In equation 4.76), the values of Cr,r wyr © and (C;/Cr, ) must
be determined in order to calculate the lift force, TFp.

CLo Which is a function of both the Reynolds and the Keulegan-~
Carpenter numbers, is obtained from a graph such as that

presented by Sarpkaya (1976d) and reproduced in figure 4.8.
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Figure 4.8 - Variation of 1ift coefficient with the Reynolds

and the Keulegan—Carpenter numbers for rigid cylinders

where
V. D
nmax
Re =
v (4.79)
V. « T
KC = nmax

D
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<
[

mmax = amplitude of water particle velocity normal to riser
axis in the direction of the drag-inertia force.

kinematic viscosity (10'6 for water)

v 3
D = diameter of cylinder
T = wave period

The lift frequency, f;, is assumed to be equal to the dominant
vortex-shedding frequency, f,» The ratio of £,/f , where f, is
the wave frequency, is obtained from the following graph produced
by Hallam et. al. 11978), figure (4.9)



Vortex shedding frequency ratio fL'/ f,,
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Figure 4.9 - The frequency of wortex-shedding in waves (two-
dimensional results from Sarpkaya(l1976a),wave

results from Isaacson (1974))
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For a given wave, the KC values along the riser can be calculated
and hence all possible values of f, along the riser are
determined from figure (4.9). Different natural frequencies,
of the riser structure are evaluated by the method explained in
Chapter 5. The dominant value of f;, can then be chosen as that

corresponding most closely with one of the natural frequencies f

(see figure 4.10)

Vr * PREDICTED POSSBLE VORTEX SHEDDING FREQUENCY fy(w:)
. we}
Ke % fa(ne
S0 foe = .S
*
<0} .4
*
. LLETI I
* & %
Vo
20%- 1 .c' -1 .2
(\/) * k %k ¥ % ¥ R in2
ER
{m
1 1 Q

.1 2 3 .4 .5 .6 4 .8 .9 1.
m

Figure 4,10 - Prediction of "lock-in" frequency from Rajabi
etal(1984), the dominant fV and £,, are shown

by (V)
Having obtained the"lock-in" values of £, with £, the reduced
velocities,vr, along the riser are calculated from equation
(4.80). The values of the ratio Vr/\;r will then enable C;/C; .

(the 1lift amplification parameter) values to be determined from

the graph produced by Sarpkaya (1981d), figure (4.11).
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Figure 4.11 - Lift amplification correction

Where
Vrmax
v, = — 4.80)
£rD
£, = natural frequency of riser
V; =V, at perfect resonance. This is defined from

available experimental works for different ranges of

V, values.
Since the values of Cp,, Cr/Cror f, and hence w , are defined, if
it is assumed that © = 0, then equations 4.76 and 4.77 (and hence
4.75) can be evaluated for a whole period of vortex-shedding and
the maximum values the displacements in the lift direction,
Xrmaxe along the riser can be obtained. The following well known
relations are used to obtain the magnification factor of the drag
coefficient, (Cy3/Cgo) s along the riser:

Ca/Cao=1 . forw, <1 14.81)

0.65
C4/Cq0 = 1 + 1.16 (W, - 1)

where W = (1 + 2 Xp../D) / (V, St

£, D

St (Strouhal number) = 14.82)

Vnmax
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A similar lift model can be used for the case of current motion.

In equation (4.76), Vomax 1S replaced by the local current

velocity normal to the riser axis, Vher and Cro values are

obtained from the graph presented by Hallam et. al. (1978),
fiqure (4.12).

10r———

Range of results for
stationary cylinders

0.2 V%A
D

108 1

10° 0’

Reynolds number Re

Figure 4.12 - Cio against Re for current flows
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The dominant 1ift frequency, fv, is evaluated as in the case of
waves except that the Strouhal numbers along the riser are
obtained from the Strouhal-Reynolds number correlation and then
the f, values are calculated from equation (4.82). The value
usually assumed for the Strouhal number is 0.2 for a wide range
of Reynolds numbers. It does, however, change for higher
Reynolds numbers and rough cylinders. Since there is no

available data for the ratio (Cy/Co) for current alone, a value

of 1 is assumed.

4.4.3 - Modification of Drag-Inertia Force Equation due to
Vortex-Shedding.
Taking the magnification factor of the drag coefficient into
account the force equation (4.63) becomes:
HF, = 0.5 0D C3 (C3/Cg0) (Vepy + Vine ).(n) Ving + Ve = kn'
+0.25 0 Cp 7 D Vp, - 0,250 (Cp= 1) ™ D* X
Resolving HF, into components in the directions of the vector

lying in the xy plane and the vector along the z axis:

HFnyy™ 045 D Cq (Ca/Cao) (Vipy + Vnexy = ¥nxy! Vi * Vne = %nl

+0.250 Cy 7 D \'fnwxy- 0.25 ¢ (Cp - 17 D* Xnxy
(4.83a)
HFp, = 0.5 #D Cg (C3/Ca0) Viwz * Vnez = Xnz) WVaw * Vne = Xnl
+0-259 Cln‘" DZ {Imz—0.25p (Crﬂ-l’ ﬂDz xnz
(4.83b)

Equations (4.83a) and 14.83b) are used to calculate the normal

hydrodynamic forces on flexible risers.
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4,5 - Assessment of Drég—Inertia Hydrodynamic Forces on

Flexible Risers

For numerical analysis purposes a riser can be sub-divided into

several elements as illustrated in fiqure 4.13.

wave

current

Y
/ALY

7 (AN A o

Figure 4.13 - An idealized flexible riser

The hydrodynamic loading on each element is calculated and lumped

at its nodes.

The hydrodynamic loadings on the riser are calculated separately
for two regions. The first region includes the forces due to
waves and current flows in the range extendir}f;. from the free
surface down to the depth at which the horiz'ont;al wave velocity
is less than 0.01 m/sec. This depth is found to have a value of

half the wave length. The second region, extending to the sea-

bed, includes the forces due to current flows only.
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4.5.1 - Region 1 - Hydrodynamic ILoadings Induced by Wave and
Currents flows.

This region includes the caiculation of hydrodynamic loadings on

those members for which one or both of their nodes are situated

inside the effective depth of the region.

To calculate water particle velocities or accelerations induced
by a wave at any point along the riser, the phase angle of the
point is required. For flexible risers lying in any plane other
than that normal to the wave plane, each point on the riser will
be subjected to wave motion which is not in phase with that at
the top node (which is known). The phase angle at any point is

calculated from equation 4.84)

Phase angle = XK + phase angle at the top node (4.84)
where X

horizontal distance of the point from the top node
K

wave number

Having determined the phase angles, the vertical and horizontal
velocities and accelerations of water particles due to a wave at
any point can be calculated using Stokes wave theory (equations

4.44 to 4.47) or Linear Wave theory (equations 4.32 to 4.35).

Water particle velocity induced by a current flow is assumed to
be in the horizontal plane and to change linearly with water
depth; and the rate of this change can vary over the whole depth
of the water. The x and z components of the velocity at any

roint along the riser are evaluated by knowing the vertical co-

ordinate of that point,

The normal and its components in the xy plane and in the z

direction of the water particle and structural kinematics at any
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point along the riser are calulated using equations similar to
(4.72), 14.73) and 14.71) respectively. Then equations (4.83a)
and (4.83b) are used to evaluate the components of the
hydrodynamic forces normal to the riser axis : a) in the xy plane
and b)in the z axis direction at any point. The hydrodynamic
forces in the wave motion plane, Hany, along the riser are non-
linear. But on the other hand, the contribution of hydrodynamic

forces due to a wave in the z direction, HF is relatively

nz’
small, and the variat_ions of these forces along any structural
element may be assumed also to be small,
There are two methods to lump the non-linear (Hany) forces
acting on the element at its end nodes:
1) The number of elements is increased so that the forces
on each element become nearly linear and can be lumped
using a simple trapezoidal rule. This method, however,

requires a very small time step for numerical stability

(i.e. Ato member length).

2) The forces on the element are lumped at the nodes by
using the Simpson's rule.

The computation time required for a similar accuracy by both
methods has been investigated. For method 1, the riser was
subdivided into a certain number of elements and the dynamic
response of a typical node i for a complete wave period was
obtained. The number of élements was then doubled and the
response of node i was compared with that obtained from the
previous case. This procedure was repeated until the response of
node i for the current and previous cases was reasonably close,

The computation time was then compared with that taken by method



- 96 -

2 to obtain a similar convergence accuracy. The comparison
revealed that method 2 was more efficient than method 1. Method

2 was formulated as follows:

Figure 4.14 shows the distributed hydrodynamic loading on member
AB. Simpson's rule is used to calculate the total force on the
member (i.e. the area). The area is initially sub-divided into 2
Segments and the area is calculated. Then the number of segments
is doubled and the area re-calculated and is compared with the
previously calculated area. This procedure is repeated until the
required precision in the calculated area is met. To minimize
the computations in subsequently calculating the nodal forces at
A and B, Figure 4.14, the number of segments is limited to that

used in the penultimate stage.

e

fo f1 f2 » f3 f‘1

l— ah—sfe— Ah—sfe— Ah—efe— th —~{B

Figure 4.14 - Hydrodynamic loading on member AB
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Simpson's rule is:

X2
h
E(x)dx = — (£, + 4f) + 2f5 + 4f3 +ooee + 265 o + 4f5 ) + £5p)
3

X0

(4.85)

The nodal forces at nodes A and B are obtained as follows;

X
4
C.G
£
£, £ 2
A m-
[+~ th —sj«— th —o
xo x1 XZ

Figure 4.15 - The first two force segments on member AB

To find the centre of gravity of figure 4.15, the first moment of

area of figure 4.15 is required. Using the basic formulation of

Simpson's rule the following expression can be derived:

)
2
£(x) (x - x5) dx = - (2f) + £5) & h? (4.86)
3
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Equation 4.86 is the first moment of area of figure 4.15 about

node A. Thus the centre of gravity of the figure from node A is:

X
2
I f(x) (x-x,) dx 2:(2fl + f2) Ah
X
F o= ol = (4.87)
ey ax fq + 4f) + £,

Equation (4.87) is used for every group of two adjacent segments
along member AB (figure 4.14) and the distance of the centre of
gravity of the group from its first point ( %) and hence from
node A is calculated. All the first moments of area of the
groups about node A are summed up to give the total first moment
of area, and the centre of gravity for the total area is
evaluated by dividing the total first moment of area by the total
force area. The nodal force at node B is then obtained by taking
moments about point A, and the nodal force at node A by statics,
This scheme is shown to be very efficient compared with the
alternative of taking a larger number of structural elements.
The reason for this is that the hydrodynamic loading varies more
rapidly than the tension along the riser. The maximum number of
segments required for the calculation of loading on any one
structural element was found to be 8 during a complete cycle of
wave loading. The number of such segments at any stage in the

numerical procedure is varied automatically as outlined in

appendix B.

The nodal forces at nodes A and B of member AB due to HF,,, the z
component of the hydrodynamic loads normal to the riser axis, are
calculated using the trapezoidal rule, figure 4.16. However,
Simpson's rule could also be adopted in the implementation if

HF), is required to be more accurately represented.
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a
A B
L
- -
2f. + £ f +2fb
RA= a b.L RB= a L
6 6

Figure 4.16 - Trapezoidal rule

The components of the water particle and structural velocities
and accelerations tangential to the riser axis at both nodes of
any member are calulated using an equation such as (4.74). Equa-
tion (4.64) is then employed to calculate the tangential forces

which are lumped at the nodes by using the trapezoidal rule,

figure 4.16.

4.5.2 - Region 2 - Hydrodynamic Loading Induced by
Current Motion only

This region includes the hydrodynamic loading on those members
that lie below the effective wave depth. The same formulations
of region 1 are used to calculate the hydrodynamic loadings
normal and tangential to the riser axis, but assuming zero water
particle velocities and accelerations due to waves. Since the
variétions in loading along any structural element due to current

alone are small, all forces are lumped at nodes using the trape-

zoidal rule,figure 4.16.
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4.6 - Assessment of Hydrodynamic Forces Induced by Vortex-
Shedding on Flexible Risers

The forces induced by vortex-shedding on a riser are assessed in

the same way as the drag-inertia forces with the following

changes:

a) The lift forces induced by wave and current flows are
calculated from an equation such as (4.76). These
forces are then resolved into components in the xy
plane and in the z direction using relationships such
as equations (4.78c) and (4.78a).

b) The component of the structural velocity and
acceleration at any point along a riser in the
direction of the lift force are obtained from
relations like equations (4.78a, b and c¢). Hence the
components of the resisting forces due to structural
movement in the xy plane and in the z direction may be
calculated.

C) The resultant forces due to vortex-shedding are
subsequently calculated from equation 4.75).

d) Both components of the resultant forces in the xy
Plane and z direction are lumped at nodes using
Simpson's rule.

The term Vhmax in equation (4.76) for each member of the riser is
obtained by considering the equation for water particle velocity
normal to the riser axis, Vit

Vo = [ V2 + V2 -, v+, V)2 112 (4.88)

Where U is the unit vector along the riser. From the Linear wave

theory for deep water waves:
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Vy =A f(y) cos 6

Vy A f(y) sin e {4.89)
where © = KX - wt and A = constant
Substituting Vy, and Vy from equation (4.89) into equation (4.88)
and simplifying:

Vo= A £(y) [1 - (U, cos © + U, sin 6)2] 1/2
Vn at any position along a riser is a maximum when 3V,/36 = 0.
Thus, V,, is maximum when the following relation exists:

Uy cos ®+Y,sin =0

y

U.
or ©=tan-1l (- X, 14.90)

Uy

The values of © for each member are initially calculated and

Vnmax 1S considered to be dependent only on the position along

the riser.

4.7 - Simulation of Splash Zone

The area around the free surface of the wave is usually referred
to as the Splash zone. An iteration procedure is required to
obtain the conjunction point of the flexible riser with this free
surface for hydrodynamic force calculation purposes. Figure 4.17
shows the wave profile and the position of member AB (piercing
member) at time t and t + At and the iteration procedure. The

aim is to determine the position of the conjunction point at time

t+At, (point m').
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<l
<3

Figure 4.17 - Iteration procedure to obtain the conjunction

point of the piercing member and wave profile

The iteration is started by considering point m (the conjunction
point of member AB with the wave surface at the previous time
step) to be the initial trial point. Point m is projected
vertically to the wave surface at time t +a t to give the
intercept, point n. This point is then projected horizontally
onto member A'B' (the position of member AB at time t +4 t) to
give point K. Point K is subsequently considered as the new
initial guess point and the above procedures are repeated. This
iteration process is carried out until convergence is obtained.
The length of member A' B' is then temporarily set equal to
B'm', though only for the purpose of calculating the hydrodynamic
loading. When, however, the nodal forces at nodes A and B are to

be calculated, the whole length of the member must be considered
(figure 4.18).
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HEEEN .

Ry Rar
Figure 4.18 - Nodal hydrodynamic forces

on the piercing member

The current velocity is given up to the still water surface. 1In
order to adjust the current velocity at the wave surface the

following modification is carried out:

current velocity profile /\/
riser

Ww.L.

Figure 4.19 - Adjustment of current induced

velocity with wave profile
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a) When the wave surface is above the still water level,
a constant current velocity profile which is extended
from the still water level up to the wave surface, and
has a value equal to that at the still water level is

considered (figure 4.19).

b) When the wave surface is below the still water level,

only the standard variation for the current velocity is

considered.
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4.8 - Modelling of Platform Motion

Platform motion is considered as a motion with six degrees of
freedom: three translational and three rotational. The
translational motions in the x, y and z directions are referred
to respectively as surge, heave and sway; and the rotational
motions about the x, y and z directions as respectively the roll,

yaw and pitch (figure 4.20).

heave
sway (yaw)
S\(pitch) y
X
\

8 N J— sarge
+ ) (roll)

N\ -

riser

Figure 4.20 - Platform motion

These motions are usually given at the centre of gravity of the
platform (point O in figure 4.20) which is referred to as the
centre of motion. The motions are then transferred to the
connector at which the riser top is attached (point B in figure
4.20) using the given position of the connector on the platform.
The translational motions on the riser top are expressed by the
following equation:
Xj = Aj cos (K DXy —wt + 6;) (4.88)

i=1,3
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where X, = surge motion
X5 = heave motion
X3 = sway motion
A; = amplitude of the motion in the

direction considered

K = wave number

DX; = distance of the riser top position
from the centre of motion in the
surge direction

w = wave circular frequency

6; = phase angle of the platform motion with
wave motion in the directions considered
The rotational motions, which introduce additional translational

motions at the riser top, are described by the following

equation:
o =Ry (= ot +By) 14.89)
j =1, 3
where ay = pitch motion
a, = yaw motion
@3 = roll motion ’

amplitude of the rotation in the

g
"

direction considered

o)
L]

i phase angle of the platform motion with
wave motion in the direction considered.
These rotational motions cause the following additional
translational motions:
@) Pitch motion causes surge and heave motions.
b)  Yaw motion causes surge and sway motions.

€)  Roll motion causes sway and heave motion.
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Let the components of the distance between the riser top and the
centre of motion (OB) along the %, y and z axes be DX;, DX, and
DX3 respectively. ~ The translational motions caused by pitch are

calculated using the projected length of OB in the xy plane
(figure 4.21).

vi
Bl
Xy
-—A
" Xp
Q
Xy
By
¢ [ —
O L

Figure 4.21 - Pitch induced translational motions

of the riser top connector

Let OBQ be the projected length of OB in the xy plane, where

OByy =\/DX12 + DX,? , and @ = tan~! (DX,/DX;). Suppose OB, is

V4
displaced to OB'xy after pitch motion aq s and produces the

translational motions, Axlp and A xzp, at the riser top. A xlp
and AXpp can be calculated using the simple geometry in figure
4.21 as follows:

A le = xy [cos (@) = cos ( o] + &)1 (4.90)

A Xop = OByy [sin «% + ap) - sin «@)| 14.91)

Similarly for yaw motion, using the projected length of OB in the

XZ plane:
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5Xyy = OByy [cos (¥) —cos (a3 + ¥)] 14.92)
AXy, = OBy, [sin Ca3 + §) = sin ()] 14.93)
where

Ny 2
0By, = \/DXy“ + DX3
¢ = tan™l «Dx,/Dxg)

Similarly for roll motion, using the projected length of OB in the

zy plane:
AX3p = 0B, [cos (8) - cos (op + ©)] (4.94)
A Xyr = OB,y [sin (a 5 + ©)- sin (6)] 14.95)
where

= 2 2
OBy =\/t5? + o2

e=tan™l (DX,/Dxy)
Thus, the total translational motions with the consideration of

the conventional directions used in figure 4.20 are:

surge = X, - Axlp + Axly (4.96)
heave = x2 + AX2p + Aer ‘4.97)
sway = X3 = 8X3, - 83, (4.98)
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CHAPTER 5
THEORETICAL DEVELOPMENTS FOR THE ANALYSIS OF FLEXIBLE RISERS
5.1 - Introdﬁction
In this chapter various numerical schemes to solve the motion
equatioris are reviewed and the central difference scheme for the
time integration of Newton's second law is developed in detail.

Methods to optimize this numerical technique are subsequently

considered.

Static solutions for flexible risers are obtained using a similar
technique to the dynamic analyses but with artificially high
damping. This technique corresponds with the method known as
Dynamic Relaxation. Natural frequencies for the riser can also
be obtained from numerical results using Fourier analysis. As
indicated in the previous chapter, these frequencies are required
in order to assess the effect of vortex shedding on the

hydrodynamic forces.

Finally, the model scaling laws for flexible risers in waves and

current flows are outlined as a prelude to the interpretation of

experimental results,
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5.2 = Dynamic Analysis of Flexible Risers

5.2.1 - Numerical Schemes for Structural Dynamics

Generally, there are two broad approaches to solving transient
structural problems. One is to integrate numerically the motion
equations by marching in a series of time steps, at, evaluating
displacements, accelerations and velocities at each time step
(i.e. direct integration). The second approach is the mode-
superposition method, which transforms the problem into a set of
independent differential equations, one for each degree of
freedom. Solution of these equations is followed by
superposition of the results. This scheme is much faster than
the first method but it can not readily be used for non-linear
dynamic problems. When this scheme is used to analyse the
flexible riser problem, it is essential to linearise the relative
velocity square term in the Morison equation. If this

approximation is not chosen carefully, large inaccuracies result.

There are two basic classes of direct integration methods:
explicit and implicit methods. In the implicit method the
equations for the displacement at time t + At involve the
velocities and accelerations at time t + At. Considering the
fact that in the motion equations for a flexible riser the non-
linear hydrodynamic forces are a function of the riser
displacement, using the implicit technique therefore requires an
iteration procedure at each time step to evaluate the
displacements. Implicit schemes have the advantage that, for
linear systems, they are unconditionally stable. Thus the
magnitude of the time step is only restricted in size by accuracy

requirements. In explicit methods, the displacement at time t +at
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is obtained by solving the equations of motion at time t. This
means that iteration in each time step is not required. However,
such schemes are only conditionally stable which means that the
size of the time step is restricted by numerical stability
requirements. This will usually result in a time increment much

smaller than that needed for the requisite accuracy.

In this study, the dynamic response of the flexible riser is
analysed by centeral difference discretisation (i.e. an explicit
scheme) of the motion equations based on Newton's Second law.
The theory is subsequently optimized in order to adopt the

largest possible integration time step and reduce the computation

time,

5.2.2 - Dynamic Solution

The riser is subdivided into a number of segments. The external
forces due to the hydrodynamic loadings and self weight of the
riser are lumped at the nodes. The method for calculating and
lumping the hydrodynamic forces were described in Chapter 4 in
Sections 4.4 and 4.5 respectively. The self weight of each
element is equally distributed on each node of the element.

The equation of motion for each node in any co-ordinate direction

is established by considering Newton's Second law:

M X, = Rit), (5.1)
where M = Structural mass at the node.
X = Structural acceleration in the direction considered.

R(t) = Time varying force in the direction considered.

The central difference approximation for the acceleration is:
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Where X = structural velocity in the direction considered. On

substituting equation (5.2) into equation (5.1) and rearranging:
Xepdesa = (a8/M) Rit) + )Et_At/z (5.3)

The time varying force R(t) should include forces due to

hydrodynamic loading, structural self weight, structural damping,

axial forces in structural segments and shear forces due to the

difference in bending moments between adjacent segments.

It is assumed that material properties of the riser are visco-
elastic and can be represented by a single Kelvin System coupled
with an elastic response (Zienkiewicz et. al. (1968)).
Considering uni-axial creep stress-strain relations characterized

by a single Kelvin model (fig. 5.1), the ‘creep rate' may be
written as:

Where a, b= constants which depend on material damping
and are obtained from simple experiments on a

riser segment

& = accumulated creep strain
éc = rate of creep strain
o = current stress level.

o

!

l o=Ejeg+njeg
o

Figure 5.1 - Single Kelvin model
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The material properties may be presented more accurately by

employing several Kelvin elements placed in series:

s 0 < z b s £ (505)
l,n r =rl,nc

Ec =L ap

r=

But since in this study the vibration damping effect of visco-
elastic properties is the main concern rather than the long-term
creep investigations, a single model is considered to be

sufficient. The procedure outlined, however, applies equally

well to series models for long-term creep.

Using a central difference scheme:

€t (€ tit/2 , € t=Bt/2 ,
b= (B2 e teAt/2) (5.6)

et _ (e t+At e t-At/2
b= (B2 e A2 (5.7)

on substituting equations (5.6) and (5.7) into egquation (5.4) and

rearrangings
L tHit/2 0 4 —— e t-at/2 (5.
c 1 + b.at/2 l+b.at/2 ¢
where ot = [\EA/L) / A] ¢ ALt - € EAE/2,
c
EA/L, = longtudinal stiffness of the member
A = cross-sectional area of the element
AL = total extension in the element
Lo = original length of the member.

The elastic extension of an element is:

Lt =arLt - ctat/2 g (5.9)

c
wWhere

AL, = elastic extension in the element
Considering the compatibility equation for the riser, the current

tension coefficient (tension/length) in an element is given by:
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TCp = [Ty + (EA/Ly) . ALY / L, (5.10)
Where

TC = tension coefficient

EA/L, = longitudinal stiffness of the element

Ty = initial specified tension in the element

The forces in the x co-ordinate direction contributed by the

element at its end nodes are:

F xt
where

- TCt . dxt at node 2 15.12)

dX = projection of the element length in the x direction.,

Similar relations can be written for the y and z directions.

The changes in the values of the curvatures and hence the moments
acting across element sides at any stage from their initial
values are determined from the normal nodal displacement of
adjacent elements and the moments are then transferred to equiva-
lent nodal shear forces. Considering three elements (a), (b),
and (c), figure (5.2), and if the norms to the element mid-point
are constructed then for small é@; and 6¢j=

Lix » 805 = ALy + LIy) /2

Lix « 085 = (I + L) /2
Then, if it is assumed that rjx and r; are the mean radii of

jx
curvature of deformation for the flexural members in the x-y

plane at nodes i and j respectively, the bending moments, M { and
Mj may be expressed as:

1 250
M{=FEl . — = EI , ————
Lix | (L&"'Ib’
1 28¢J

Mj=EI o T = EI .
Tix Iy, + L)
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Where EI is the bending stiffness of the element.
For M; and Mj taken as a positive hogging moment, with §@;

and 5¢j positive as shown in Figure (5.2), then:

' 1
M im = Mi = - M ij 15.13)
'

M ji = Mj = - M'jk (5.14)

The bending action is effectively idealised as a series of

constant moments between element mid-points. The resultant nodal

_shear forces are:

SFbit

' ' t
- (M i] + M ]l’ /Lb (5.15)

O N (5.16)

t
SFbj
where

SFbit ’ SFbjt = shear force at node i and j of member b at time t
respectively

Figure 5.2 - Definition sketch for flexure of adjacent

members in the x-y plane
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Similarly the above relations for the nodal shear forces can be
written for the z-y plane using the mean radii curvature in the

z-y plane,

The above shear forces are then resolved in the x, y and z

directions.

Since the movements of the riser are in space there are also
twisting moments induced by swaying the elements relative to
adjacent elements from their initial positions. These moments
should be transformed to equivalent twisting nodal forces normal
to the members. But the torsional stiffness of flexible risers
is very small and hence these nodal twisting forces are ignored
in this work. The method of calculating these nodal forces is,

however, given in Appendix C.

The time varying nodal forces R{t) in the x, y and z directions

are then:

R“ t) xt = Fxt + SFXt + HFxt

R(t, zZt = th + Sth + Hth 15017)
where

P = nodal force due to self weight of adjacent elements

HF = nodal hydrodynamic loading in the direction considered.
Substituting R¢t) from equation (5.17) into equation (5.3),
;(£+ At/2 May be evaluated. Updating the nodal displacements:

Xesar = X + xt+At/2 . At (5.18)
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The procedures from equations 5.3) to (5.18) represent the

complete iteration sequence which is given in figure 5.3.

For the initial conditions (at time = 0), )'(_ At/2 is assumed to be
equal and opposite to ’.(At /2 and e‘;At/ 2 is assumed zero.

Calculation of the hydrodynamic forces at time t+At requires the
structural velocity and acceleration at time t+At. But the
equation of motion is solved for the velocity at time t+at/2.
Thusthe following central difference approximations are made to
obtain the structural velocity and acceleration at time t+At and

are only used in calculating the hydrodynamic loadings:

Xp = Kegars2 + Xe-tey2) /2 (5.19)
Xeepts2 = Keaae + Xp) /2 (5.20)
Substituting for ).(t from equation (5.19) into equation (5.20) and

rearranging for )Et+At s

-

Xerat = 5 € 3 Xppar/2 = Xe-ty2)

The structural acceleration at time t+at from equation (5.2) is:

Xeest =  Xazary2 = Xeasryd) /0t {5.21)
Weiting equation (5.19) for Xy, and rearranging it for Xyp,p /5

Xea3at/2 = Zetar ~ Xerat/2 5.22)

Substituting for ;(t+3A t/2 from equation (5.22) into equation

15.21) and simplifying, gives an expression for the structural

acceleration at time t+At:

Kesat = 12/80) { Xegpp = Xpypr/2)
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Calculate residual force components
from equations (5.11), (5.12), ¢5.15),
(5.16) and hydrodynamic forces as
described in section 4.5 and self
weight of the riser, hence the residual
force from equation (5.17)

Y

Calculate it+At/2 from
equation (5.3)

Update the co-ordinates using
equation (5.18)

Yes

ore time step?

t=tia t

Figure 5.3 - Flow chart of dynamic solution algorithm



- 119 -

5.2.3 - Stability of the Numerical Integration

The central difference numerical scheme which is used in this
work, is a conditionally stable scheme which means that if the
integration time interval, At, exceeds a certain critical value
then numerical instability may occur. The critical time step is
given by Bath et. al. (1976) as:

T
At oD ,
cri = {5.23
where T, is the period of the smallest natural frequency of the

riser. This can be found by solving the eigenvalue problem for

the structure.

Barnes (1974) has directly derived criteria for stability of the

numerical integration by considering the relative motion of

adjacent nodes as follows:

Consider the vibration of a node i in the principle-axis
direction. Let node i have structural connections to adjacent

nodes k. Using equation (5.3):

. ip ip , ip
Xeears2 = (8EM) R(Y)  + Xe_ /2 15.24)
. At
For simplicity let A= — ,
M
Thus,
. ip ip ip

Xerpt/2 = Ap R(E) + Xpoppsp 15425
For the next time step, assuming that the motions of nodes i and

k are parallel to the p-axis:

Ap ip S ikp ikp , ip
Xeadar/2 = By DRO) = I Zeppe c8Xpppel + Xeypeya (50260
all links at i
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Where, é:EAt/Z = the p-axis direct stiffness of node i
relative to adjacent nodes k due to the
structural elements connecting nodes i
and k
ikp
AX¢+ oty2 = the increment of p-deflection of node i

relative to adjacent node k during the
time interval t —> t+At
If the time interval is large when the stiffness/mass ratio
'(Sikp/M)‘ is large, instability in the form of successive reversal

and build up in the amplitude of velocities and deflections may

occur.

Bounds to At may be obtained by considering adjacent nodes I and
K of a part of a structure at which the S/M ratio of the nodes,
or one of the nodes (in the p-axis direction), is highest. The
most critical structural configuration and state of motion will
be such that all nodes k adjacent to I are different from all

nodes i adjacent to K, with the relative vibrations of node i and

k exactly out of phase.

Substituting R'(t)‘ip from equation (5.25) into equation (5.26),

for node I, leads to:

.Ip Ip JIp Ikp Ip kp

xt+3At/2 -2 xt+At/2 + Xt—At/2 = - AI I [S o Ax - AX )lt‘.'At
(5.27)

and similarly for node K

Kp Kp Kp Kip kp ip

xt‘.-i-3At/2 -2 Xt+At/2 + xt—At/Z =- AK (s o« { AX = AX ”t‘FAt
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For the most critical condition assume that the direct
stiffness/mass ratios of all nodes i and k are equal, and for
oscillations which are just stable: All aXiP = axTP and all
ixKP = xKP,

Thus, subtracting equation (5.28) from equation (5.27):

IKp IKp IKp Ip IKp

Xea3t/2 = 2 Xpaprya ¥ Rppr2 =B (8 0 28X Dlpyt
"5029)
where XIEP = the velocity of I relative to K
sIP = the direct stiffness of node I relative to

all adjacent nodes (assumed highest in the p

- direction, I (EA/LO)m
all links m connecting to node i

for line element cable structures).
The limiting case of stability is when XIKP quring one time
increment produces relative deflection changes xIKP such that
xIKP in the next time increment is equal and opposite to the

previous value. Hence:

IKp Ip IKp
Thus, 2/a; = TP . At

[2m
Mgy = [ —= {5.31)
stP

5.2.4 - Optimization of the Numerical Integration

The aim of the optimization is to reduce the computation time by
means of being able to adopt a bigger integration time step
without introducing any numerical instability and intolerable

inaccuracies in the dynamic response of the riser.
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The critical integration time step, A t, from equation (5.31) is:

2M

S

Atepj =

Where

One way of increasing the critical time step is to reduce EA
values. This has been employed suggestd by Barnes (1976) and
Wang (1979). The results of numerical study (Chapter 6 Section
6.3.3) showed that reducing the EA values by 10 times for a riser
with no top platform motion, hardly affected the response and top
tension of the riser. Reducing EA values results in ignoring the
higher order components of the stress wave which travels along
the riser. But for this reason, when a longtudinal motion, such
as platform motion is introduced to a riser, an artificial
reduction in EA value is not desirable. This optimization is
useful for flexible risers connecting two fixed platforms or for

idealized experimental work.

Reducing EA values can be compared with the modal analysis of a
structure in which only a certain number of eigenvalues are used
in the solution, rather than all; that is the remaining higher
order eigenvalues are ignored. On the basis of a numerical
study, a reduction factor of 10 times in the EA values was found

to be generally acceptable in situations involving no platform

movement.

Further optimization of the numerical procedure (whether or not
there is platform movement) is achieved by calculating the non-

linear hydrodynamic forces after every n time steps, rather than
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at every time step. The value of n is chosen so that n.pt does
not exceed say 1/2 of the time taken by a transverse wave to

travel along the critical member of the riser.

The speed of a transverse wave travelling along the critical

member is given by:

Pe
Where,
C = speed of a transverse wave
T = tension in the critical member

pe = density of riser
Thus, the time taken for a transverse wave to travel along the

most critical member of a riser of length 1.,y is given by:

time of travel = (1 cri, p;7f ) min 15.35)

Thus, noAt < 41/2) o ( 1oy [oc/T ) min 15.35)
Where, 1.ri = length of the critical member

At = time integration step required for numerical
stability
The creep strain €c May also be calculated at every m.At rather
than at every time step (Barnes (1976)). However, the
computation time taken to evaluate e 1s small compared to the

total computation time and in the present work this optimization
is ignored.

5.3 - Formfinding and Static Solution of Flexible Risers
The same dynamic formulation without structural bending and
damping is used to obtain the shape and static solution of the

risers. The structure is brought to a steady equilibrium state
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by employing a fictitious damping function. This method is
usually called Dynamic Relaxation and it was originally proposed
by Day (1965).

Two types of fictitious damping can be used to bring the
structure to the equilibrium state; a) Viscous damping, b)
Kinetic energy damping. In the former case nodal viscous damping
is introduced in the equilibrium equation. For the most
efficient solution the value of the damping constant C is
required to be 4 nf,, where £, is the fundamental frequency of
the structure. This value of C corresponds to the critical
damping state for the structure and it is assumed to be constant
for the whole structure. Thus, employing this method requires
some initial solution to obtain the fundamental frequency of the

structure. Formulation for this kind of damping is given in

Appendix D.

The alternative damping scheme, Kinetic damping, is an automatic
method which does not require any initial trial run. In this
method, the structure is brought to a steady equilibrium state by
tracing the structural Kinetic energy, and when a peak is reached
(i.e. KE}AL 5 gpt*At ) the nodal velocities are set to zero,
figure 5.4. This was originally suggested by Cundall {1976) and
has been applied extensively to Compliant Structures (Barnes et.
al. (1984)). The restarting co-ordinates after each peak are
calculated as follows:

The actual K.E. peak is assumed to occur at co-ordinate

X = Xeept/2e
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Equation (5.36) is a linear approximation, alternatively a
quadratic interpolation can be adopted. ﬁowever, it was found
that there is no great advantage in this. For computation
purposes equétion 15.36) is required to be expressed in terms of
Xegate }Et+At/2' and R(t). Recalling equations (5.3) and (5.18):

}Et+At/2 = (At/M) R(t) + X t-At/2 45.3)

Keppp =¥ t it+At/2 . At (5.18)
Writing equation (5.18) for Xy and rearranging for - Ate then
substituting for it-At/Z from equation (5.3), gives:

Xe-nt = Xe+l Xeoyp /o =oR(E) | (5.37)
Substituting equation (5.37) into equation (5.36) and then
substituting for X, from equation {5.18) in equation (5.36) leads
to:

At . At
X = xt'l-At - 17) [3. Xt‘*'At/z - '(—El) R(t)] 15.38)

Both damping schemes are implemented in this work but the Kinetic

damping was found to be more efficient for formfinding.

K.E.

(M%?/2)

Figure 5.4 - Damping of kinetic energy peaks with time
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For efficient use of the static solution optimized fictitious
mass components should be employed instead of real masses. This

is achieved by using the stability relation (equation 5.31):

Atcri =\/ oM (5.31)

S
where the critical time integration step, At

crir for a static
solution is an arbitrary constant. Fictitious nodal mass
matrices with directional components Myxr Mxy' Myor Myy etc., can
be used to optimize convergence (Barnes et. al. (1984)).
However, for a flexible riser system there is no computational
advantage and it is preferable to use either lumped mass

components My, My and M, or a single value with M = M, = My = M,

in which M at each node is set according to M = At2. s/2, where

Time to convergence is additionally dependent on the "condition"
number of the system i.e.: the ratio of the highest to the lowest
eigenvalues. Hence further optimization for a static solution
can be obtained by using a reduced fictitious axial stiffness for
the riser which reduces the highest eigenvalue significantly,
Since the fundamental mode is governed principally by geometric
deformation of the riser as a mechanism the lowest eigenvalue is
alm_.OSt unaltered. Consequently the rate of convergence is
increased. The parameter study in chapter 6 section 6.2.3 shows
that for riser shape structures, the optimum reduced stiffnesses
are obtained when the non-dimensional parameter, N.EA/WL is
approximately 25, where N is the number of elements and W is the
riser self-weight for unit length.

The flow chart of static solution algorithm for formfinding of a

flexible riser is given by figure 5.5.
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*t-At/2=0 . KEt"At/2=0

Y

—

LOCP EACH ELEMENT

NO

Calculate R(t)t from xt and member

natural stiffness relations.

Y LOOP EACH NODE

Calculate

x 8 /2 g equation (5.3)

< t+ At

from equation (5.18)

!

}

t=t+ At

Yes

Calculate re;starting
Co-ordinates from equation
(5.38) and set nodal

velocities to zero

Number of Kinetic

NO t=t¢t + At
-

energy peak > 22

e

Total length of members

desired riser length?

NO t=1¢t + At

ves

check residuals <0.1?

Yes

NO t=t + At

Figure 5,5 - Flow chart of static solution algorithm
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5.4 Calibration of Visco-Elastic Material Damping Constants
The calibration method proposed by Barnes ¢1980) is used in this
study as follows;

For short time dynamic loading, interest is centred on the
immediate elastic response and primary creep. For flexible
risers dynamically loaded, this creep is high compared with the
secondary quasi-static creep rate. If a segment of the riser is
subjected to a suddenly applied constant load and dynamic
deflections are recorded in a way which does not induce external

friction to the system, a plot of strain against time is obtained

such as figure 5.6.

} Visco—-elastic Secondary creey
material phase
e e ]
e
€
‘\ ’\ \ . Inmediate elastic
\ | Selastic \ respanse €
\ ) model \
\ / \
\/ \
~7 N\ —
t

Figure 5.6 - Strain against time for visco-elastic materials

Restricting equation 15.8) to the region termed primary creep
stage, during which deflections are damped by the viscous

property of the material, at the end of this stage:

t +At/2 t-at/2
E'c = Ep

15.39)
Re
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hence since ¢ is then constant:

t .40
b= 209 (5.40)
°p
Also the immediate elastic modulus is of the order, but greater
t!‘lan’ [o] .
€e

With these relations as guides, the material constants a, b and E

may be evaluated by curve fitting a simple analysis to the

experimental data.

Since in general the material constants depend on stress level,
calibration should be carried out as a perturbation from the

expected initial stress.

5.5 - Determination of Structural Natural Frequencies

Barnes (1977) has used Fourier Analysis of the output from a
Dynamic Relaxation Scheme to obtain the structural natural
frequencies for cable and space structures. In this work the

same procedure is carried out. The method is outlined below:

The resultant displacement of any particle in a wave represented
by a complex periodic vibration is:
y=£(t) =A, +a . cos (ut+©)) +aycos (2ut +8,) +=-~=-=

-=-=-+a, . cos (nut + 6,)

r=n r=n
or Y =2+ I B oos (rut) + By sin (rut) (5.41)
= =

Where ©, etc., are phase angles and Ay, By etc., represent the
amplitudes of the various fundamental and harmonic terms; the

fundamental frequency being given by w/2r . A, is a constant
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term representing the mean level of the ordinates. Since by
integrating both sides of equation (5.41) with respect to t over
a complete vibration period T=27/w, it follows that all the
terms on the right-hand side are zero except A,

T T
Thus, If(t) at =/ Adt = AT
(o] (o}

T
So, Aj=1 [ f(t) dt = Average value of f(t) over
T 0
one cycle. (5.42)
To determine amplitude coefficients A, and B, consider the

following trigonometric relations:

T
sin (Mt) sin (nwt) . dt
o]

= 0
m #n
T
cos (mwt) cos (nwt) . dt = o
o
m #n

T
sin (mwt) cos (nwt) . dt = o
o]

m=n or m#n

But,
T T
/ sin? mwt). dt = cos? (myt) . dt = T
o o 2
Hence, the coefficients of the cosine series, A,, and the

coefficients of the sine series, B,, are obtained by mutliplying

equation (5.41) by cos(rwt) and sin(rut) respectively and taking
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account of the above trigonometric relations as follows:

T
£(t) cos (ryt) . dt=A. . T
2
J0
T
£(t) sin (rwt) . dt =B, . T
2
(o]
Thus,
T
A =% £(t) cos (ryt) . dt (5.43)
(o]
T
By =% £(t) sin (rwt) . dt (5.44)
(o]

The above theory applies to periodic vibrations. The output from

the dynamic response of the riser may be treated in the following

manner:

Consider figure 5.7, the full line represents the dynamic
response of a riser and the dashed line represents the reflected
image of the trace from X to X + X,» where X is the last maximum

or minimum of the trace and X - X, is the first,
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Figure 5.7 ~ Dynamic response of a structure and its

reflected image

Associating 2Xn with the period T, from equation (5.42):

hence, assuming n intervals (of length §x

X

Po=1
X, JXXp

f(x) dx

xn/n) from X - xn to

X, and £(x) = o at the mid-point of interval m,then by discrete

summations:

= 2

—_—

A

X-Xn

£(x) cos (rux) . dx + _2

Zn

or, redefining origins for x' and x'':

. ' 2m-1
and, since f(x') = f(x'') =a, at x' = (Zm_-_l’ §x = o

1

f(x'loos(mx')dx' + —

Xy

Xn

X-l-)(rl

X

(5.45)

f(x) cos (rux). dx

f(x''Yoos(rux''y . dx"!

o)

2

—) X
2n n
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2m-1
and, x'' = X, - l(-—z--) §x
m=n
am
Ar = I {cos (rwx') §x + cos (ran - rex') §x)
. xn
m=1

hence, since w = "/Xn :

m=n
am rrx'
A =1 cos ( ) (1 + cosr 1) = o for all odd integers r
n %,
m=1
m=n (5.46)
2 rT
Ap == L ap cos (— (2m-1)) for all even integers r
n 2n
m=1

Similarly for the sine coefficients:

m=n
By = 0;1_m (sin (rux') + sin (rwX, - rwx')) =
m=1
m=n
= ; %msin (ryx') (1-cos r q) = o for all even integers r
n
m=1
m=n (5.47)
rm
Bp=2 ; op » Sin (— ¢2m-1)) for all odd integers r
n 2n
m=1
To

evaluate the natural frequencies of a riser, one of its nodes
is poked and then released and the dynamic response of the node
is traced to obtain a graph such as fiqgure 45.8). A time
duration say X,, corresponding to two maximum nodal displacements
is chosen and equations (5.46) and (5.47) are then used to
calculate the coefficients A, and B;; the values forr being

varied from 1 to some certain value depending on the required
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number of structural natural frequencies. A graph such as figure
{5.9) is produced. Each r value corresponding to maximum or

ninimum values of A, and B, is recorded and the natural frequency

is calculated as follows:

1
f,="=— r (5.48)
2m 2%,
This theory is also validated in this work by applying it to a
simple slack cable. The results are compared with those obtained

from an alternative theoretical approach for simple slack cables

developed by triantafyllou et. al. {1983).
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5.6 - Dimensional Analysis and Model Scaling
The hydrodynamic forces induced by waves on a riser in terms of

independent variables can be written as:

HF = f(p, g, H, L, h, D) 15.49)
where

HF = hydrodynamic forces

p = fluid density

g = acceleration due to gravity

H = wave height

L = wave length

h = depth of still water

D= diameter of riser
The elements of equation (5.49) in terms of primary elements;

length, time and mass (L, T and M respectively) are:

HF = MLT 2

o =M3

g = 1772 15.50)
H=L

D=1

h=1L

L=L

equation (5.49) can be expressed as:
HF o 02 oP BC 1K nM D? (5.51)
Substituting equation 45.50) into equation 15.51), one gets:
M2 o erdd @b @ @k @ @t (5.52)

Equating the powers of the primary elements in equation 15.52):

l=a
l=-3a+b+c+k+m+n (5433)
-2=-12
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thus,

a=l,b=landc+k+m+n=3 15.54)
Now it is a matter of choice to give different values to ¢, k, m
and n to satisfy equation (5.54). For this reason a wide variety
of dimensionless parameters are used in the literature to define
the wave motion. One of the most popular relationships is
obtained by giving the following values to the variables:

c=2,k==3, m=1land n=3
Thus, equation (5.51) becomes:
HF op g B2L™3 h D3 (5.55)

Or, in terms of dimensionless variables:

HF h H D

I

gi) L L L

Thus,
HF h H D
—_— = =, -, =) (5.56)
gHD? L L L

5.6.2 = Model Scaling of a Riser in Wave Flow

The aim of model scaling is to construct a small scale physical
model of a structure and by using this model to predict full-
scale performance. To achieve this, a certain physical
similarity should be maintained between the model and prototype.
In general the physical similarity involves the geometric,
kinematic and dynamic similarities. Geometric similarity exists
when the ratio of corresponding lengths is oconstant, kinematic
similarity exists when the ratio of corresponding velocities is
constant and dynamic similarity exists when the ratio of
corresponding forces is constant. The requirement of model laws
is obtained by resort to a scale factor. The scale factor of a

quantity £, denoted K¢y is the ratio of the value of £ in the
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model to that in the prototype, i.e. Kp = fm/fp. The constancy
of a particular dimensionless product provides a relationship
between various scale factors. So, the condition of geometric
similarity implies that a single length scale factor K;, applies

to all lengths pertaining to the problem.

Equation (5.56) is used to model a riser in wave flow. Writing

equation (5.56) for the model and prototype respectively:

HF h H D
( > =) =f(-,-,-) 45.57)
gHD m L L L m
HF h H D
( > ) = f(-, =4+
gHD p L L L D

For physical similarity between the model and prototype, the

following conditions should be satisfied:

{h)_ =«(h) (H) . =(H) ard { D) ., = (D)
_— m = ’ n 1 4 — —
L . P ¢ ™ '¢P T ™ §P
D
m5=ﬁ=ﬂ=b=& 15.58)
bp Hp Dp Ip
When condition equation (5.58) is met, one has:
HF HF (5.59)
(—) = (—)
g2, gw? |

By calculating forces on the model and using equation (5.59), the

forces on the prototype can be calculated.

A wave motion is usually identified by H and T, where T is the

wave period, so the condition (--) in equation (5.58) is
. Ip

satisfied if (-7) = Kpe The time scale factor is calculated by

To
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considering the dynamic similarity between the model and
prototype. The corresponding force ratio for dynamic similarity
of risers in waves is the ratio of inertia force to garvtational
force. This condition can be met if the Froude dimensionless
number, F,. = V/ gL , where V is the water particle velocity
induced by wave motion, is kept constant for the model and

prototype. Considering the Froude number and assuming Kg = 1:

A" ’
\"2

Lp

ol

Thus,

Kp = — = K /2 (5.61)

But in flow around the riser, flow separation occurs and this
adds another condition for dynamic similarity which is Reynolds
number (inertia force/viscous force). V, D/v, where V is the
maximum water particle velocity and vis the kinematic viscosity
of the fluid. In small scale modelling it is very difficult to
satisfy the constancy of Reynolds number as well as the Froude
number, From constancy of the Froude number one has
Ky Ky, = KL3/ 2, so to ensure the constancy of Reynolds number,
one has to hold K, =Ky Kg = KL3/2. and it is impossible to
find a fluid with such a small kinematic viscosity. This is one

of the reasons that the results of wave flume experiments do not

correlate well with those obtained from the prototype in sea.

In modelling the riser it is also desirable to model its elastic
properties. This is achieved by ensuring the constancy between
e

model and prototype of =z ¢ £, and EA/APV2; where P, is the riser
P
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density, £is the structural damping ratio, A is the riser cross-
sectional area, and EA is the axial stiffness of the unit
length of the riser. It is again difficult to maintain the
constancy of EA/ApV2 between the small model and prototype
together with the constancy of the Froude number. However, the
Primary Structural Stiffness is geometric and associated with
deformation as a mechanism rather than elastic deformation. The

value of EA may thus not be critical in the majority of cases.

5.6.3 ~ Model Scaling of a Riser in Current Flow

From geometric similarity one has:

Dy

— =K, 15.62)
Dp

The dynamic similarity is satisfied by considering the ratio of

inertia force to gravitational force:

inertia force 0.5p D Cg v DV2
= O 15063)
gravitational force ",_.D2 Tg/4 e,Dg

Assuming Kg=1land Ky = 1, and ensuring Ky, = 1, from equation

(5.63) one has:

2 V. D,

m m
KV = y(—) 2 = e = KL
Vp Pp
thus, Ky = KL1/2 15.64)

The constancy of & (and perhaps EA/Asz) for modelling the riser

in both current flow and wave conditions is desirable.
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CHAPTER 6

NUMERICAI, TMPLEMENTATICN

Introduction

The theories which were presented in Chapters 4 and 5, for the

static and dynamic analyses of flexible risers, are implemented

in the following computer programs:

a)

b)

c)

d)

Program FLEXSTATIC (Program 1) -= computes the static
configuration of the riser which is subsequently used
in program FLEXDYNAMIC or FLEXCURRENT.

Program FLEXDYNAMIC (Program 2) - evaluates the dynamic
response of the riser induced by wave and current
motion.

Program FLEXCURRENT (Program 3) - determines the riser
response due solely to current motion and static
offsets of the platform.

Program STOKWAVE - is used to calculate the wave
parameters using any order (1-5) of Stokes Wave Theory.

These parameters are used as input to the program

FLEXDYNAMIC.

This chapter describes each of the above programs and presents a

detailed parameter study for Program 1 and optimization of

Program 2,

Consideration is also given to the method of finding

structural natural frequencies and a comparison of results for a

simple test case with previously published results.
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6.2 - Implementation of Static Solution for Formfinding

6.2.1 - Program FLEXSTATIC {Program 1) -

The theory and flow chart for the program have been presented in
chapter 5, section 5.3 and figure 5.5 respectively. The program
is well suited to computer aided design procedures in which
various shapes for the riser catenary can be investigated
together with the effects of boundary support conditions and
alternative arrangements of mooring buoys. The input data and
computed equilibrium shapes of the three well known riser
configurations; free hanging, single catenary and double catenary
are given in tables 6.1 to 6.3 and fiqures 6.1 to 6.3
respectively. The program has been optimized by employing
fictitious nodal masses and reduced axial stiffnesses. The CPU
computing time on a Gould 9005 computer system for each of the
above test cases was 5 to 10 seconds.

The initial input configuration of a riser is considered to be a
vertical straight line which is subdivided into the desired
number of elements with the loads due to structural self-weight
applied at the nodes. The nodal motion equations are iterated
until an equilibrium shape with required length is achieved.
Figure 6.4 shows the convergence shape of a double catenary riser
from its initial input shape. In computing the equilibrium shape
of a double catenary riser, the anchoring chain which tethers the
sub-buoy to the sea bed is considered as an element with high
axial stiffness.

The program is incorporated with a user interface which gives the
list of the required input data associated with the considered
riser type., The results of the riser equilibrium shape are output
both in tabular and in graphical forms.
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6.2.2 - Critical Criteria in Designing Flexible Riser Catenary
Shapes

The critical parameters in the shape design of a flexible riser

configuration are as fol}ows:

a) The bending radius at the sag part of the catenary
must be limited by the given minimum radius of
curvature of the riser.

b) The vertical distance of the lowest point of the
catenary from the sea bed should not be less than a
given value.

C) Tension along the riser should not exceed the maximum
specified by the manufacturer.

d) The angles at the top and bottom terminations should
not be greater than the limiting values specified by
the type of end connectors employed.

For a given combination of water depth and excursion envelope of
the floating support, each particular configuration in figure 6.5
corresponds to a set of extreme values of the above parameters.
That is criteria (a) and (b) in the near position and criteria

(c) and (d) in the far position of the riser.

An initial guess of the riser length is usually obtained using a
configuration similar to that shown in figure 6.6. However,
geometry of the test cases for this study are obtained by

proportioning the riser used in the Balmoral 0il Field.

6.2.3 - Optimization of Program FLEXSTATIC
As only the eventual static equilibrium solution is required,

optimized fictitious mass components, obtained using the



- 144 -

stability criteria equation 6.1, are used in the equations of

motion.
2 S
M =A t . - ‘601)
2
where At = an arbitrary constant.
S = the greatest possible direct stiffness at
a node = szA/L) for adjacent members
M = the fictitious nodal mass.

Further optimization is achieved by using reduced element
stiffnesses. In computing the riser equilibrium shape, the
length of the riser is adjusted to that of the given length in
the stressed state. Therefore, the accuracy in the computed

equilibrium shape is not affected by using reduced element

stiffnesses.,

The choice of the value for the element stiffness is the most
important iteration control factor. The optimized value of the
reduced element stiffness is dependent on self-weight and shape
of the structure. The parameter study showed that for catenary
flexible risers the minimum number of iterations is achieved when

the non-dimensionalised parameter, EA/(W.L/N), was approximately
25, figure 6.7.

where EA = Axial stiffness of one metre length.
W = Self-weight per metre length.
L = Length of riser.
N = Number of elements.
W.L/N = Average nodal force.

A further parameter study was carried out to optimize the number

of iterations by controlling the number of computed kinetic
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energy peaks“between each "initial" length modification during
the computation. The most efficient procedure w5 found to be the
resetting of specified initial lengths of elements at every third

kinetic energy peak, figure 6.8.

6.2.4 - Validation of Program FLEXSTATIC
The accuracy of the combuted equilibrium shape of a riser can be

examined from the equilibrium of the vertical and horizontal

external forces.

Total vertical forces = apparent self-weight

+ vertical reaction forces

+ buoyancy force of sub-buoy = 0.
Total horizontal forces = horizontal reaction forces = 0.

The above criteria are checked for a single catenary riser test
case as follows:

220,74 KN

36.11 KN

290 KN

X
-——

- 36.11 KN
- 165.75 KN

Computed reaction forces of a single catenary riser

Apparent self-weight of riser = -344.99 KN
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Total vertical force = -344.99 + 220.74 - 165.75 + 290 = 0.

Total horizontal force = -36.11 + 36.11 = 0.

A snake chain of 2mm in diameter and 400mm in length was hung in
two shapes in order to compare with computed equilibrium shapes.
The first shape was arranged in the shape of the upper catenary
part of a single or double catenary riser (plate 1l). The second
shape was arranged in the form of a free hanging riser (plate 2).
These arrangements were photographed and digitized and then
compared with the computed shapes, figures 6.9 and 6.10
respectively. The number of elements for both computations was

11. The comparisons were in good agreement.

6.2,5 - Parameter Study on the Number of Elements Used to
Compute the Riser Equilibrium Shape
Element size in dynamic analysis of a flexible riser is a crucial
parameter regarding the computation effort. This is because the
integration time step, At, is proportional to the element length.
Thus, a parameter study was carried out to determine the minimum
required number of elements to give acceptable accuracy in the
analysis. The single catenary riser, for which data is given in
table 6.2, was adopted as the test case. The tests were carried
out by computing the static sc;lution of the riser with differing
numbers of elements and then comparing the reaction forces and
nodal co-ordinates. The numbers of elements used in the analyses
were 7, 11 and 22 (figure 6.11). The comparisons of the
reactions and nodal co-ordinates are given in tables 6.4 and 6.5
respectively, These comparisons show that an analysis with 11

elements produces acceptable results for engineering

applications.
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6.3 - Implementation of Dynamic Solution

6.3.1 = Program STORWAVE

The theory to determine the wave parameters of any order (1-5) of
the Stokes Wave Theory, which was described in Chapter 4 Section
4.3 , has been implemented in the program STOKWAVE. The program
solves the simultaneous equations (4.49) for A and K and then
calculates the wave oconstants Aij' Bij and C; using the relations
given in Appendix A.

2Ta
where A=

L
a = Wave amplitude.
L = Wave length.
27
K = Wave number, =—.
L
The program was validated by using the example which is given in
the paper presented by Skjelberia and Hendrickson (1960). The

wave which was considered in the example had the following

parameters:
Water depth, h = 30 ft (9.137m)

Wave height, H= 18 2/3 £t {5.685m)
Wave period, T = 7.72 sec.
The results of the example are given in Table 6.6 and those

obtained from program STOKWAVE are given in Table 6.7.

d/L = 0.12, A= 0.1885
822 - 2.5024, B33 = 5.7317’ B44 = 14.034

o2
(%]
wv

[}

All = 1.2085' A22 = 0.7998' A35

Ajg = -10.6530, A33 = 0.3683, Age = -0.0750

Table 6.6 — Results of the example given by
Skjelberia and Hendrickson
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6.3.2 -~ Program FLEXDYNAMIC (Program 2}

The theory and flow chart for the program were presented in
Chapters 4 and 5 and figure 5.3 respectively. The program
calculates the 3-dimensional dynamic behaviour of a flexible
riser due to the effects of waves and currents from any
direction, vessel movements, vortex-shedding and structural
damping. The input data is established in the following two data
files:

1) A data file which is created by program 1 containing
the nodal geometry, nodal external forces due to riser
self-weight, and tensions in the elements in the
equilibrium shape.

2) A data file which contains the data associated with the
wave and current profile, magnification factors for
nodal drag coefficiénts in the drag-ineftia force
direction due to the vortex-shedding, and vessel
movement. The list of required input data is given by
a user-friendly program which is incorporated in
FLEXDYNAMIC.

The vessel movement associated with wave motion is considered to
have six degrees of freedom: three translational and three
Iotational, with each having an amplitude and a phase angle. The
translational motions are: surge, sway and heave and rotational

Mmotions are: roll, pitch and yaw. These motions are illustrated

in figure 6.12.

The sub-buoy is considered as part of the flexible riser and its

Mass and the hydrodynamic forces exerted on it are lumped at the

Node to which it is attached.
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6.3.3 - Optimization of Program FLEXDYNAMIC
The single catenary riser which is described by table 6.2., was
chosen as the test case and wave and current loadings with no

platform motions were applied.

Descriptions of the data are given in table 6.8a. Table 6.8b
gives the wave parameters for the 5th order Stokes Wave Theory

computed by program STOKWAVE.

The dynamic response of the test case was computed three times to
observe the effect of the different optimizing effects described
in Chapter 5, Section 5.2.4. The influence of these is
summarised below:

1) With no optimization the CPU computing time on a Gould
9005 computer system was 15 minutes and 50 seconds,

2) with hydrodynamic forces on the riser calculated at
every 30 time steps, the CPU computing time was 2
minutes and 24 seconds,

3) with EA values reduced by a factor of 10 tallowing a
time integration step\V 10 times larger), and
hydrodynamic forces on the riser clculated at every 10
time steps, the CPU computing time was just 1 minute
and 22 seconds. Four further runs were made for this
test case with the hydrodynamic forces calculated at
every 1, 5, 10 and 15 time intervals. Comparisons of
the results for the horizontal top tension and the
horizontal displacement of node 10 for these runs are
given in figure 6.13. The comparisons show that the

differences are negligible.
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The results from all of the above sets of computations were in
good agreement and the maximum difference in the results was 0.5
percent. Figure 6.2 shows the static equilibrium shape of the
riser and figure 6.14 shows "snap shots" of the riser dynamic
response at thev 5th wave cycle. The time histories of the
horizontal and vertical nodal displacements are given by figure
6.15 and 6.16 respectively. The important conclusion from these
time history graphs is that the steady uniform response of the
riser is closely approached after only one wave cycle, Thus 3
wave cycles are sufficient to analyse a flexible riser using
program FLEXDYNAMIC.

Another set of runs was carried out using the above test riser
Su$ject to platform motion. The data is given in Table 6.9. The
static equilibrium shape, figure 6.2., corresponds to the initial
configuration of the riser with the platform having the maximum
heave and zero surge motions at time zero. Runs were made with
and without optimization with the following results:

1) Wwith no optimization the CPU computing time on a Gould
9005 computer system was 16 minutes and 57 seconds,

2) with hydrodynamic forces on the riser calculated at
every 30 time steps, the CPU computing time was only 2
minutes and 25 seconds. |

The results from both runs were in good agreement. Figures 6.17,
6.18 and 6.19 show respectively the "snap shots" at the S5th wave
cycle and the time histories of horizontal and vertical nodal
displacements.

The comparison of the snap shots of the riser with and without
Platform motion shows that the response of the sag part of the

Iiser is strongly dependent on the platform motion.
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The computed dynamic response of a flexible riser by program
FLEXDYNAMIC is postprocessed and presented in the form of tables
at required time intervals, together with time history graphs,

and snap shots of riser displacements,

6.4 - Program FLEXCURRENT (Program 3)
The same theory used for the static program (FLEXSTATIC) is
implemented in the program FLEXCURRENT. The flow chart for the

program is given in figure 6.20.

The program computes the response of a riser due to steady
current motion, any static loading on the riser and static
displacement of the platform. It is well suited to investigate
critical design criteria for a flexible riser as outlined in
section 6.2.2 of this chapter. Of particular interest is the
extreme position of the platform induced by waves, or drifting of
the platform due to the failure of any platform anchoring chain,
The iterative use of programs FLEXSTATIC and FLEXCURRENT allow

potential designs to be quickly investigated.

The simple catenary riser for which data is given in Table 6.2
was chosen as the test case. Figure 6.21 shows the static
response of the riser due to the current loading described by
Table 6.10. Figures 6.22 and 6.23 show respectively the response
of the riser due to current forces together with heave and surge
displacement of the platform. The amplitude of the heave and
surge were 9 and 10 metres respectively. The CPU computing times
in a Gould computer system for these runs were only 5 to 6

seconds.
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The program is incorporated with a user-friendly program which
gives the list of the required input data. The results are

output in both tabular and graphical forms.

6.5 - Validation of Programs FLEXSTATIC, FLEXCURRENT and
FLEXDYNAMIC Computations by Hand Calculations

The results from every computation of the programs were checked

with those obtained by lengthy hand calculations for two simple

test cases (figures 6.24 and 6.25) for the first two time steps.

This procedure ensured that the theories described in Chapters 4

ard 5 were implemented correctly.

6.6 - Implementation and Numerical Validation of the Method
Used to Determine Structural Natural Frequencies

The theory which was described in Chapter 5, Section 5.5, is

implemented into a computer program and is used to obtain the

structural natural frequencies of any type of flexible riser.

Triantafyllou et. al. {1983) presented an analytical method and
gave graphs to calculate the natural frequencies of catenary
cables. The graphs give the first four structural natural
frequencies for different top angles of the cable configuration
for any constant value of WL/H, where W = self-weight of cable
per metre length, L = cable length, and H = horizontal component
of top tension. The specifications of a cable and a typical
natural frequency graph are given in figures 6.26 and 6.27

respectively.

A catenary riser was chosen as the test case and its static
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equilibrium shape was obtained using program FLEXSTATIC, fiqure
6.28. The parameters for the test case were:

WL/H = 1.5, top angle = 59 degrees
Figure 6.27 was then used to obtain the first four structural

natural frequencies and these are given in Table 6.11.

These natural frequencies were also evaluated by the method
described in Chapter 5, Section 5.5. This was carried out by
displacing a node, (say node 8, along the riser) by applying a
horizontal load of -10 kN and a vertical load of 10 kN at the
node and computing the displaced equilibrium shape of the riser
using program FLEXCURRENT. This new equilibrium shape (but
without the applied vertical and horizontal nodal forces), was
then used as input data for the program FLEXDYNAMIC and the
natural vibration of the node following release from the
displaced state was traced, figure 6.29. A section of the
displacement trace between any two maxima, figure 6.29, was
chosen and discretized using the Fourier analysis to evaluate the
Fourier coefficients A, and B,. These coefficients are plotted
against the variable r, figure 6.30. Each maximum or minimum
value of A, and B, corresponds to a structural natural frequency.
Figure 6.30 shows the first four natural frequencies of the
riser., It can be seen that each frequency possesses a close
spectrum rather than a single value. This is explained by the
fact that the flexible riser is a mechanism system. The above
procedures were repeated also for node 7 and the resulting
natural frequencies were found to be in good agreement with those

calculated using an initial displacement of node 8.



- 154 -

The matural frequencies which were obtained from the Trianafyllou

et. al. method and the method used in this work are presented in

Table 6.11. The comparison shows that the results are generally

in good agreement.
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Water depth 300 m
Water density 1.025 t/m3
Riser outside diameter 0.275 m
Riser and its contents weight in air 1.34 kN/m
Axial stiffness, EA 98 E4 KN
Total length 381m
Horizontal span 180 m
Vertical span 320 m
Number of elements 11

Table 6.1 - Input data for the free hanging riser

Water depth 300 m
Water density 1.025 tAn3
Riser outside diameter 0.275 m
Riser and its contents weight in air 1.34 kKN/m
Axial stiffness, EA 98 E4 KN
Catenary length 325 m
Taut length 112 m
Horizontal span 180 m
Vertical span 320 m
Buoyancy of sub-buoy 290 KN

Number of elements for catenary part 11

Number of elements for taut part 1

Table 6.2 - Input data for the single catenary riser
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Water depth

Water density

Riser outside diameter

Riser and its contents weight in air

Axial stiffness, EA

Upper catenary length

Lower catenary length

Horizontal span

Vertical span

Buoyancy of sub~-buoy

Tethered length

Horizontal distance of tether base
from riser base

Number of elements for upper catenary

Number of elements for lower catenary

300 m
1.025 t/m3
0.275 m
1.34 kKN/m
98 E4 KN
325 m

118 m

320 m
180 m

150 KN
111 m

50.5 m
10

Table 6.3 = Input data for the double catenary riser

Number of Reaction at Reaction at
elements Riser Top (KN) Riser Base (KN)
Hor. Vert. Hor. Vert.
6 35.8 221.1 -35.8 -165.4
11 36.1 220.7 -36.1 -165.7
22 36.1 220.6 -36.1 -165.5

Table 6.4 - Reaction forces of the single catenary

riser with different number of elements
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Corresponding Node

Numbers along riser |

6 Elements

11 Elements

22 Elements

6 11 22

x-coords y-coords

x-coords y-coords

x-coords y-coords

(m) (m) (m) (m) {(m) (m)
1l 1 1 0. 0. O. 0. 0. 0.
2 2 3 19.0 110.7 19.2 111, 19.4 11.1
3 4 7 76.3 86.0 75.1 89.5 75.1 90.3
4 6 1 122.9 128.1 122.1 129.4 121.9 129.6
5 8 15 149.1 187.2 148.7 187.9 148.7 188.1
6 8 19 166.8 251.8 166.6 252,2 166.6 252,2

7 12 23

180.0 320.0

180.0 320.0

180.0 320.0

Table 6.5 — Horizontal and vertical co—ordinates of the single

catenary riser with different number of elements
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Table 6.7 - Predicted wave parameters

for Stckes 5S5th order
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Wave height
Wave period
Wave phase angle at the centre of gravity
of the platform
Rise is situated at the centre of gravity
of the platform
Current velocity profile is
at water-free surface
at 100 metres below water level

at sea bed

Axial stiffness, FA

Bending stiffness, EI

Buoy diameter

Buoy overall height

Buoy volume

Buoy mass

Drag coefficient, C4, for riser

Inertia coefficient, Cye for riser
Tangential drag coefficient, Catr for riser
Drag coefficient for buoy

Inertia coefficient for buoy

25 m

16 sec.

1.5 m/sec
1.0 m/sec
1.0 m/sec

98 E4 KN
480 KN/m?
4 m

5m

46.0 m3
16500 kg
0.6

1.5

0.02

0.6

1.5

Table 6.8a - Data for dynamic run with no platform motion
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HEIGHT OF WAVE = 25. m e ‘
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ITERATION NUMBER=3

RATIO OF STILL WATER DEPTH TO WAVE LENGTH (D/L) = @.7243

All Al3 Al5
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B.74521E-@7 -@.11153E-23 2.26197E-29
A35 A44 A55
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2.5@PASEHD -3. 7189 1TE+BJ . 37550+
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Table 6.8b - Predicted wave parameters of
Stokes 5th order wave theory

for the dynamic test case
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Wave height
Wave period
Wave phase angle at the centre of gravity
of the platform
Riser is situated at the centre of gravity
of the platform
Current velocity profile is
at water-free surface
at 100 metres below water level
at sea bed
Axial stiffness, EA
Bending stiffness, EI
Buoy diameter
Buoy overall height
Buoy wvolume
Drag coefficient, Cy, for riser
Inertia coefficient, C,, for riser
Tangential drag coefficient, Cgqpr for riser
Drag coefficient for buoy
Inertia coefficient for buoy
Platform surge amplitude
Surge phase angle
Platform heave amplitude

Heave phase angle

25 m

16 sec

1.5 m/sec
1.0 m/sec
1.0 m/sec
98 E4 KN
480 KN/m?
4m

5m

46.0 m3
0.6

1.5

0.02

0.6

1.5

7 m

90°

7m

0.,

Table 6.9 - Data for dynamic run of the single

catenary riser with platform motion
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Current velocity profile is
at water-free surface 1.5 m/sec
at 100 metres below water level | 1.0 m/sec
at sea bed 1.0 m/sec
Axial stiffness, EA 98 E4 KN
Buoy diameter 4 m
Buoy overall height 5m
Buoy wvolume 46.0 m3
Buoy mass 16500 kg
Drag coefficient, Car for riser 0.6
Inertia coefficient for buoy 0.6

Table 6.10 - Data for static run with

current loadings



fn1 fho fn3 fha
fl’l
(published paper) 2.57 3.91 5.28 6.58
Present r 15 16 17 25 26 27 33 34 35 |45 46 47
Work
£, | 2.17 2.32 2.46 | 3.62 3.76 3.91 | 4.77 4.92 5.06 | 6.51 6.66 6.80

Table 6.11 - Comparison of structural natural frequencies predicted by

Trianfyllou et. al. {1983) and the present work

(From equation {5.48),

1

2 x 3.456

r = 0.1447r)

- €9 -
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riser corresponding to far and near movements
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total riser length = AB + BC + CD + DE

Fiqure 6.6 - Key configuration to estimate the length of a
single catenary riser
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Input the static configuration with nodal
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Figure 6.20 - Flow chart for static solution of a flexible riser

subjected to current induced loadings and platform movements
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Wave height 25 m
Wave period 16 sec
Current velocity profile : At water-free surface 1.5 m/sec

At 100 metres below water 1 m/sec

At sea bed 1 m/sec
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Figure 6.24 - Hand calculation test case
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Wave height 25 m
Wave period 16 sec
Current velocity profile : At water-free surface 1.5 m/sec

At 100 metres below water 1 m/sec

At sea bed 1 m/sec
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Figure 6.25 - Hand calculation test case
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Weight of cable per unit length = W

Length of Cable = L

Figure 6.26 - Specifications of a catenary cable
used by Triantafyllou et. al. ¢1983)
to calculate the structural natural

frequencies.
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Figure 6.28 - Static equilibrium shape of the natural frequency
validation test case
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Figure 6.30 - Values of coefficients A and B against r for |

the natural frequency validation test case
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CHAPTER 7

COMPUTED RESULTS

7.1 - Introduction

Experimental investigations of the behaviour of flexible risers
under hydrodynamic loading have usually been carried out in two
categories; prototype testing and small scale laboratory tests.
The former procedure is notoriously expensive to carry out and
also the resulting data is difficult to analyse. In contrast,
small scale testing is not expensive to perform but suffers from
the major disadvantage of not being able to simulate high
Reynold's numbers. Thus, the correlation between predicted

results and those of the real sea conditions may be poor.

7.2 - Objectives of the Experiments

The main aim of the experimental work was to validate the
computer programs for; a) assessment of hydrodynamic loading on
the riser, and b) the material properties and physical
performance of the riser. To achieve this it was decided to
carry out the testing in two stages. The first series required a
model with negligible material damping and bending stiffness so
that the assessment of current and wave loadings on different
shapes of risers could be validated. Having validated the 1load
modelling, a further series of tests was carried out in a large
wave flume using a bigger model with significant material
damping. The purpose of these tests was to investigate the

effects of material damping and vortex-shedding.
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7.3 - Model Scaling and Description of Test Models, Regular
Waves and Current Flows
For each test series the model, current and wave flows were

scaled from prototype conditions.

7.3.1 = First Series of Experiments
1l - Scaling the riser
a) prototype riser - a Dunlop high pressure drilling
flexible riser with the following properties was

considered as the typical prototype:

pipe internal diameter = 250 mm
pipe external diameter = 326 mm
body weight in air = 99,3 kg/m
assumed mud density = 3000 kg/m3
99.3

Thus, density of pipe + mud + 3000 =

10.3262 1 /4)
4190 kg/m3

b) model riser - a geometric scaling factor of 1/200 was

adopted.
1 326
From equation {5.58) == = — , thus Dm = = = 1,63 mm
D 200 200

p
Modelling the mass properties requires p m= Prp

thus, the density of the model = 4190 kg/m3

A snake chain with the following properties was found to

meet reasonably well the required model specifications:

Chain diameter = 2 mm

5882 kg/m> (7.1

Chain density
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2 -~ Scaling the current flow
a) prototype current flow:

current velocity = 1.4 m/sec

b) model current flow:

1 172 1
from equation (5.64) K, = KLl/2 ={—) = ——
200 14.14
1.4
Thus, VE = ———— = 0,099 m/sec (7.2)
14,14

3 - Scaling the wave

a) prototype wave:

wave height, H= 13.6 m
wave period, T = 12 sec
water depth, h = 100 m

This wave is almost a deep water wave considering the
following definitions:
for shallow water waves Kh < 7 /10
for deep water waves Kh >7 (7.3)
Wﬁere K is the wave number and h is the still water
depth.
Using the linear wave theory, equation (7.3) can be

expressed as:

ar® p
for shallow water waves 3 < 7 /10
gT
{7.4)
472 h
for deep water waves >m




4 -

- 201 -

For the chosen wave:

4.%hn 472 . 100

= z 0.9 deep water waves
gT? g x 122
(7.5)
b) model wave:

1
From equation (5.58), Pin = h—m =Kp, = —
Hp hp 200

1 1/2
From equation 15.61), Kp = KLl/2 = {—)
200

Th,us, Hm = 0.068 m, th = 0.5 m, and Tm = 0.85 sec
"706)

Scaling the arrangement of the chain in the wave flume -
this arrangement was obtained by scaling the dimensions of
the single catenary flexible riser used in the Balmoral 0il
Field. The shape of the single catenary riser was
simplified because of the limited size of the flume and
water depth. This was done by replacing the lower stretched
part of the riser by a thin plate with sharpened edges to
minimize its disturbance on the wave flow, plate 6. The
plate lwas made of PVC (Polyvinyl Chloride). The dimensions
of the chain arrangement and the plate are given in figure

{7.1).

7.3.2 = Second Series of Experiments

The scaling factors for the second series of tests were obtained

from water depth criteria corresponding to the maximum water

depth which could be used in the large wave flume at The City

University. Assuming the same prototype conditions as before:

hy, 120 1

h.p 100 83
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Figure 7.1 - Arrangement of the snake chain in catenary shape

at 0° to wave flow
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Thus, the ratio of geometric scaling factor between the two test

83 1
series is — =z —= ,
200 2.4

The scalings for the second series are thus obtained by

multiplying the first series parameters by 2.4 for dimensions and

by (2.4)1/2 for wave period.

1 - Scaling the riser model

Dm==2.4:(2 mm = 4.8 mm

o = 4190 kg/m3
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In order to model material damping a plastic tube filled with

mercury was chosen. This had the following properties:

Dy

Pm

5.23 mm

2 - Scaling the wave flow
The scaled properties of the prototype wave flow are:

Hy, = 2.4 x 0.068 = 0.163 m

hp,=2.4x05 =1.2m ;

T = 12.4)/2 | 0.85 = 1,32 sec |
However, to ensure initially that there would be no vortex-
shedding effect the following wave was adopted:

Hp=0.15m

hp,=1.2 m (7.8)

Tp = 1.22 sec
In a further set of tests on the same model, intended to examine
the effects of the vortex-shedding, a bigger wave with the
following description was generated:

Hy,=0.25m

By

Tm = 1,4 sec

1.2 m ' (7.9)

5 - Scaling the arrangements of the model in the wave flume

Again the dimensions were obtained by scaling the single catenary
flexible riser used in the Balmoral 0il Field. In this series of '
tests, however, there were two different tube arrangements. 1In
the first arrangement the lower stretched part of the single ‘
catenary riser was replaced by a thin plate made of PVC. This

simplification was used in order to avoid employing an
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Figure 7.2 - Arrangement of the tube model in catenary
shape at 0° to wave flow




- 206 -

intermediate sub-buoy. The arrangement was used principally for
examining the effects of material damping and to assess the
chosen force coefficients Cq and Cp. The dimensions of the

arrangement and the base plate are given in figure (7.2).

The second tube arrangement had an intermediate sub-buoy system
consisting of the sub-buoy and a cradle system, plate 10. A
smooth ball was chosen as the sub-buoy and its size was governed
by the approximate required buoyancy force which was calculated
from the static solution. The point on the cradle, at which the

ball was attached, was obtained by considering the equilibrium of

the overturning moments as follows:
L 75 mm

o
14mm

Side view

b

SI :1: Plan view

10 nm

Figure 7.3 -~ Experimental cradle system
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The position of point P was obtained by using simple geometry

from figure 7.3:

Taking moment about point P:

x-y tana {7.5-x)-y tang
Cos B Ccos &

from the static solution:
= -3
F_ = 938 NxI0
Fp = 271 Nx1073
o = 12,3 degrees
]

47.4 degrees
Giving y = 30 mm, from equation (7.10), x = 27 mm
(7.11)

The dimensions of the tube arrangement are given in figure (7.4).

7.4 - Experimental Apparatus
The experiments were carried out in a current channel and in the
small and large wave flumes in the Department of Civil

Engineering at The City University.

7.4.1 - Current Channel

The channel was glass-sided and was 16 metres long and 300 mm
wide with a maximum working water depth of 250 mm, There was a
controlling tap at one end and a gate at the other end of the
channel. The current velocity and the desired water depth in the
channel were controlled by adjusting the tap and raising or

lowering the gate.
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Figure 7.4 - Arrangement of the tube model in single catenary
riser shape
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7.4.2 - Small Wave Flume
The flume was glass-sided, and was 750 mm in width and 18 metres

in length and had a maximum working water depth of 500 mm.

Regular waves were generated by means of a wedge oscillating
vertically to the surface of the water at one end of the flume.
The generated wave energies were absorbed by installing a sloping
beach at the other end (i.e. downstream end) of the flume, The
beach had a 9 degree slope and terminated at the still water
level,
A well known phenomenon associated with laboratory generated
waves is the presence of higher harmonics due to; a) the
secondary effect of the wedge type wave maker, b) reflected waves
from the beach. These phenomena have been considered for
this particular wave flume by Ellix (1984). The wave which was
chosen for this study (Section 7.3) was selected from Ellix's
work which had negligible secondary wave components and this fact

was also observed during the present work.

7.4.3 - large Wave Flume

This flume measured 62 m long by 1.8 m wide with a 1.2 m maximum
working water depth. It was equipped at one end with a wedge
type wave maker and at the other end with a wave absorbing beach.
The beach was fixed at 8 degrees and finished at undisturbed
water level. Half of one side of the flume, near the downstream

side, had glass windows for viewing.

s it ki
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Two sets of waves were generated in this flume which were an
increased scale of the waves used in the small flume in order to

minimize the secondary effects on the waves due to the beach and

the generator.

7.5 - Description of Measuring Instrumentation

7.5.1 = Current Meter

A current meter was used to measure the velocity of the current
flow. The system consisted of a propeller attached to a digital
counter box by means of a wire. The box had a button which when
depressed set the digital counter to zero, and when released
recorded the number of revolutions of the propeller. The
velocity of the flow was calculated using the formula:

0.1827 N + 0.098

V. =
© 3.25 7.12)
where V. = current velocity
nurber of revolutions
N =

60

7.5.2 - Wave Probe
The wave probe was used to measure the wave profile. The
measurement was carried out by detecting the change of voltage
due to the change of resistance of the wire probe using the
equation.
IxR=V

where T = the constant alternating current

V = the variable D.C Voltage

R = the variable resistance of the probe wire due to

the change of the wave profile

o R




- 211 -

Alternating current prevented polarization of the water in the

region of the probe.

The probe itself consisted of two stainless wires having a
diameter of 3 mm and a length of 500 mm with a resistance of
0.006 ohms per metre, The two wires were separated by a constant
distance of 25 mm, perpendicular to the direction of wave
propagation, and were fixed to a perspex plate suspended over
the flume by means of an adjustable boom. The probe formed one
element of a wheatstone bridge circuit. the output voltages were
monitored by a Bryans X-Y plotter Model 26000 A3 and the graphs
of voltage against time were plotted. The height and period of

the generated wave were measured from this graph.

7.5.3 = Horizontal Top Tension Measuring Strain Gauges

The horizontal components of top tension in the tube for the
second series of tests was obtained by employing two 120 ohm SR-4
strain gauges, one each side of a vertical stainless cantilever
beam supporting the tube at the top. These gauges weré coupled
with an ultra violet (U.V.) recorder model SEO 6012, The changes
in the strain in the cantilever beam due to the horizontal
component of top tension in the tube were plotted against time by
the U.V. recorder. The traces of these horizontal components

with time were evaluated from the U.V. graphs.

7.5.4 - Ultra Violet Recorder
The U.V. recorder was used to plot graphs of output voltages
against time. This system was coupled with the strain gauges to

record top tension components, and with a frictionless transducer
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to record displacements of the tube with time in the material

damping test (see plate 15).

7.5.5 - High Speed Camera

A 16 mm motion picture (Handland Rotating Prism) High Speed
Camera with a 30 mm focal length lens and running at 100 frames
per second was used to record the displacements of the points
along the models in the wave direction. It was also used to film

the wave profiles.

7.5.6 = The Modular Film Anal ysis System (Digitizer System)
This system was used to digitize all the filmed data and outputs
from the U.V. recorder.
The system was composed of:

a) motion analyser

b) SAC GP7 Sonic digitizer

c) BBC microcomputer

d) printer.
The Sonic digitizer itself consisted of a screen and an
electronic eye pen. The particular frame of the film was fed on
to the screen by the motion analyser and then the points of
interest on the frame were digitized and the results stored in
the BBC microcomputer. In the case of the U.V. output, the graph
was attached on the screen and the points were digitized

directly.

The first stage in utilizing this technique was to calibrate the
data. In this calibration stage, an initial reference point was

fixed and the scales to be used for the axes were computed
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directly by digitizing marked distances along both axes. Once
this calibration was completed the data was stored and the film

was digitized frame by frame.

7.6 - Calibration of Measuring Instruments

7.6.1 - Wave Probe

The aim of the wave probe calibration was to determine the
relationship between the amplitude of the graphically obtained

and the actual water surface displacement.

The calibration was achieved by recording the variation in the
amplitude of the graph by raising and lowering the probe by 10 cm
in 1 cm steps in still water. The results of the calibration in
the small and large flumes show a linear relationship between the

output and the variation of the immersion depth.

7.6.2 = Strain Gauges

The strain gauged cantilever beam was clamped in a horizontal
position and known weights of 0.1 Newton were hung from the hook
at the free end of thé beam. These weights were added up to a
total of 1 Newton and then removed. The corresponding changes in

the strain of the beam were recorded to calibrate the U,V.

recorder.

7.6.3 - Displacement Transducer

The transducer was calibrated by applying known constant
incremental displacements to the transducer by a Digimatic Head
instrument with 0.001 mm sensitivity. The resulting output

voltages were recorded on the U.V. recorder.
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7.7 - Experimental Procedure
The experimental procedures were carried out in two stages as
previously described. The first series employed the snake chain

and the second series the plastic tube filled with mercury.

7.7.1 - 'The First Series of Tests
7.7.1.1 = Current Channel Experiment
The aim of this test was to obtain a value for the drag

coefficient, Cqr and to validate the static analysis program 3.

The snake chain of 402 mm in length was subdivided into 6
elements and the nodes of the elements were marked, figure (7.5).
The chain was then placed in the middle of the channel and a
surveying theodolite camera was set up beside the channel aligned
with the model chain so that the ray from the camera to the chain
was normal to the channel longtudinal axis. The purpose of
employing this camera was to obtain the nodal displacements of
the chain due to current flow by measuring the angles between the
initial and’ displaced positions of the nodes. The horizontal
distance between the theodolite and the chain was established by
measuring the distance and vertical angle to a point above the
model chain. The horizontal and vertical angles of the nodes at

their initial positions were then recorded.

A current flow was established by opening the tap situated at the
inlet of the channel, and the water depth was adjusted to 0.25 m
by raising or lowering the gate at the end of the channel. The
propeller of the current meter was placed at the middle of the

channel width and at mid-depth. The velocity of the current was
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adjusted to 0.097 m/sec and the water depth to 0.25 m by
controlling the inlet tap and outlet gate. The propeller was

situated at different depths and the current velocities were

measured to obtain a profile.

Chain
7 T /
152 mm
o / A
6 4 1
50 Y,
5 = = t
k 50
%F 250 mm
50
3 + [ 132
2 | :tso
300 mm
14 50 1m0 - -

Figure 7.5 - Model chain and current channel

Deflections of the Chain

The nodal displacements were calculated as follows:

Theodolite

1 o

Current direction

B — >—
m n
initial final position of
position of node A
node A

Figure 7.6 - Geometry of nodal displacement



- 216 -

From figure (7.6),
displacement (mn) = 1 tang

where 1 = distance of the initial position of node A from
the theodolite.
e = measured horizontal angle.
l-= lh/bos mi.
1, = horizontal distance of the theodolite from the
chain.
B; = vertical angle of node A at its initial position.

The vertical co-ordinate of node A was obtained by:

Vertical co-ordinate of node A = 1, tan (ei - co-ordinate of node 1

7.7.1.2 - Wave Flume Experiments
The main éoncern of these tests was to validate the assessment of
wave loadings on various arrangements of the chain. The
arrangements used simulated the following conditions:
a) a catenary riser at zero degrees to the wave direction
by a catenary riser at 30 degrees to the wave direction
C) a u-shape flexible riser at 30 degrees to the wave
direction (u-shaped risers may be used between two
platforms)
d) disconnected flexible riser (such as may occur in
emergency situations).
Plates 4, 5, 7 and 8 show respectively the above arrangements.

The base plate used for cases a and b is shown in plate 6.

The following experimental procedure was carried out for all of

the 4 chain arrangements.
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The chain was subdivided into 10 elements and the shape of the
catenary chain was found from the numerical analysis. Then 3
representative nodes along the chain were selected and marked.
The chain was placed inside the wave flume and 3 cross shape
reference points at the same levels of the marked nodes were
established on one flume wall with a coloured tape. These

reference points were used in digitizing the nodal displacements.

The specified wave was generated by adjusting the frequency and
amplitude of the wave generator and the wave height and period
were evaluated from the graphs plotted by the X-Y plotter

attached to the wave probe system.

The nodal displacements of the 3 marked nodes were filmed by the
high speed camera for a duration of ten wave periods. In filming
the displacements of each node, special care was taken to fix the
camera on the same horizontal level as the node in order to
minimize the errors caused by the filming. When the filming of
the nodal displacements was finished a 30 mm wide stainless steel
ruler was placed in the locations of the nodes and then was
filmed. This was done in order to establish the scale factors

for the nodal displacements which were used in éigitizing the

displacements.

The £ilms were fed into the Modular Film Analysis System and were
digitzed.

7.7.2 = 'The Second Series of Tests
7.7.2.1 - Current Channel Experiment

 The purpose of this test was to evaluate the drag coefficient for
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the plastic tube. The same testing procedure, current channel

and current flow as in the first experimental tests were used.

The arrangement of the tube in the current channel is shown in

plate 9.

7.7.2.2 - Wave Flume Experiments

The tests were carried out in the large wave flume and can be
classified in two main groups. The aim of the first group was to
examine the validity of the numerically predicted behaviour of
the tube which had significant material damping to wave loadings.
The second group was performed to verify experimentally the

applicability of the adopted vortex-shedding model.

The first group consisted of three tests. The first of these
used a simplified form of a single catenary riser as in the
preliminary series of tests. The purpose of the simplification
was to avoid the influence of the intermediate sub-buoy on the
behaviour of the tube due to wave loadings. This test was
carried out to confirm the selected values of the force
coefficients, Cq and C,, and to observe the simulation and the
effect of the material damping on the response of the tube to
wave loadings. The model was placed at zero degrees to the wave
direction, plate 11. The second and third tests used a single
catenary riser model with an intermediate sub-buoy. The modei
was placed at zero and 45 degrees to the wave direction for these

second and third tests respectively, plates 12 and 13,
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The model with an intermediate sub-buoy was mounted at zero
degrees to the wave direction for the next section of the tests,
and a larger wave was generated in which the transverse vibration

of the tube due to vortex-shedding was visible.

The buoyancy force of the intermediate sub-buoy was obtained by
subtracting the weight of the sub-buoy and cradle from that of

the volume of water displaced by the sub-buoy and the cradle.

The experimental procedures were carried out in the same way as
in the first series of the tests. In addition, the U.V. recorder
was calibrated and was used to obtain the trace of the horizontal

top tensions with time.

The films and the graphs obtained from the U.V. recorder were

digitized, as before, by the Modular Film Analysis System.

7.7.2.3 - Material Damping Test

The aim of this test was to determine the material damping
constants a and b and the short term modulus of elasticity of the
tube.

The displacement transducer attached to the U.V. recorder was
calibrated. Two equal straight segments of the empty tube, 500
mm in length, were arranged as shown in figure (7.7) and plates
14 and 15. A dead weight corresponding to the self-weight of the
tubes when filled with mercury was applied on the hanger and the
system was allowed to settle down for 5 hours. Since constants a
and b depend on the initial stress level in the tube the tests
were carried out five times with different imposed loadings.

Four of these loadings employed weights corresponding to the
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maximum top tension in the second series of tests. The fifth was
a slightly larger weight of 0.5 Newton which was applied for
_greater clarity in observing the tube response. A thin wire was
installed in the middle of the system and the applied imposed
load was initially carried by this wire. The wire was then
suddenly cut without causing any lateral movement in the tubes,
and the trace of the tube displacements was recorded by the U.V.

recorder attached to the transducer.

The plots for all five tests were digitized using the digitizer
system.

. 160 mm B

15 L 40 40 1
ety

:i‘ { 1

u J
__’_5.2 mm tube
500 mm . / thin wire

v

20 x 100 x 1 plate

applied load

. ml‘ /rcular plate (440 x 1)
smm:EJ_ -

transducer ad

Figure 7.7 - Material damping test arrangement
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CHAPTER 8

RESULTS
8.1 - Introduction
This chapter describes and compares the experimentally and
numerically predicted results of the test cases which were
presented in chapter 7. It is divided into the following two
sections:

1 - results for the chain model

2 -~ results for the tube model
Each section consists of the results from tests carried out in
the current channel and the wave flume. The numerical results
for the model in the current channel were obtained by determining
the model configuration using program 1, and then program 3 was
used to compute the response of the model induced by the current
loading. The configuration and dynamic response of the model in

waves were obtained using programs 1 and 2 respectively.

8.2 - Results for the Chain Model

8.2.1 - Determination of Young's Modulus, E, for the Chain

An extensometer machine was used to obtain the E value for the
chain. A graph of load against deflection was recorded and
Young's modulus was calculated from the slope of this graph. The

E value for the chain was 26.1 N/mmz.

8.2.2 - Determination of the Drag Coefficient, Cz, for the

~ Model in Steady Current Flow and Validation of Static
Program 3

The distance and vertical angle of the point above the model from

the theodolite were 1395 mm and 9° 36' 50" respectively. Thus,
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the horizontal distance of the model from the theodolite =
1395. cos (9° 36' 50") = 1374 mm.

The chain configuration was obtained using program 1, figure 7.5,
and the nodes along the chain were marked. The nodal
displacements of the chain, due to current forces, were measured
and calculated as described in chapter 7, Section 7.7.1.1. These

results are given in table 8.l.

The variations of the current velocity with water depth, which
were measured by the current meter, are given in table 8.2. An
equivalent current velocity profile alohg the chain was
calculated as shown in figure 8.1. This velocity profile was
input into static program 3. Trial values of the drag
coefficient, Cqr were then considered and the corresponding nodal
displacements were computed. A solution for Cq was obtained when
the experimental and computed values of the nodal displacement
corresponding to the lowest node were in close agreement. The
value of Cy was determined as 1.37. The proportionality of the
other nodal displacements confirmed the validity of program 3.

The comparison is given in table 8.3 and figure 8.2.

8.2.3 - Determination of Drag Coefficient, Cqr and Inertia
Coefficient, Ca

An approximate value of the drag coefficient for the chain was

obtained from the current channel test as described above.

Sarpakaya et. al. (1974) measured drag-inertia forces on

cylinders for sub-critical Reynolds numbers in oscillating flow.

They determined the drag coefficient, Cqr and inertia



. Intitial Position Initial Co-ords Final Position Horizontal Final Position
angle
Horizonta} Vertical{ Vertical {Distance |[Horizontal| Vertical| Horizontal] Vertical| Vertical{ =[ B84l Horizontal | Vertical
Node| angle (Bi) angle angle 6 | from angle(Bg) | angle angle displace- | co-ords
reading Theodolite reading ment
c ' " o' "o * " 1=lh/cose mm mm o "o * "L 0" "t 0 " Tm mm
1 8 39 20|98 59 40| 8 59 40 1391 1.5 0.0 7 26 30|99 08 40 | 90840} 1 12 50 29.5 0.8
2 8 41 20196 59 40 | 6 59 40 1384 0.7 50.4 7 38 20|97 02 40 | 7 02 40 1 03 00 25.4 50.6
3 8 42 00]9458 20} 458 20 1379 0.5 100.2 7 48 5019459 10 t45910| 0 53 10 21.3 100.5
4 8 42 001925510 f 255 10 1376 0.5 150.0 7 59 00925500 j25500)] 0 43 00 17.2 150.4
5 8 42 30}9050 20} 050 20 1374 0.3 200.0 8 10 00 |90 50 20 | 0 50 20 0 31 50 12.7 200.2
6 8 43 10| 88 44 20 |-1 15 40 1374 0.0 250.4 8 21 50188 45 40 |11420] 0 21 20 8.5 250.1
7 8 43 10|82 29 50 |-7 30 10 1386 0.0 402.7 8 43 10822810 |73150]0 00 00 0.0 402.0

Table 8.1 — Computation of the experimental nodal displacements

induced by the Current

- €¢C -
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Depth from Number of Velocity
Channel Bed Propeller m/sec
() Revolution
230 65 0.091
220 66 0.092
210 70 0.096
200 71 0.097
155 71 0.097
65 71 0.097
55 66 0.092
45 63 0.089
35 62 0.088

Table 8.2 - Variation of the current

Figure 8.1 - Equivalent current velocity

velocity with water depth

0.091

0.094

0.097 m/sec

0.097

0.089

variation with water depth

I

250 mm

232 mm

182 mm

82 mm

== 32 mm

'T’////,///I

77 47777
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Experimental Computed

Node displacement | displacement
(Tm) (mm)
1 29,5 29.4
2 25,4 25.5
3 21.3 21.1

4 17.2 16.9 ]
5 12.7 12.3
6 8.5 8.3
7 0. 0.

Table 8.3 -~ Comparison of the computed and
experimental horizontal nodal

displacements
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coefficient, Cpr @ @ function of KC. These are shown in figures

8.3 and 8.4 respectively. The force coefficients for the chain
in waves were obtained as follows:
The horizontal velocity of water particles induced by waves at

mean water level using the linear wave theory for deep water

waves is:
V, = mH/T (8.1)

where H and T are the wave height and period respectively.

The Keulegan Carpenter number for the considered wave is:

V.

« T

KC = (8.2)

D

where D is the diameter of the chain.

Substituting equation (8.1) into equation (8.2) and evaluating
the KC number for the wave:
KC = =— = =————e——— = 106.8 (8.3)
D 0.002
Thus, from graphs 8.3 and 8.4 for KC > 50:
Cq = 1.37
C, = 1.25

8.2.4 - Results of the Generated Wave in the Small Flume
It was essential to ensure that the input criteria for the
generated wave was accurate. This was achieved by measuring the
wave profile using both the X-Y plotter and the high speed
camera. Results from the X-Y plotter are shown in figure 8.5.
The height and period of the wave were measured from fvigure 8.5a.

The values were 0.068 metres and 0.85 seconds respectively.
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These results were in conformity with those obtained from the
filming. Figure 8.5b shows the uniformity of the wave in the
flume and hence confirms the fact that the effect of the

secondary components of the wave are negligible as reported by

Ellix (1984).

The most suitable wave theory for the considered wave was
determined from figure 4.4 which was the Stokes 3rd order theory.
A comparison of the computed and filmed wave profiles is given in
figure 8.6. This indicates that the adopted wave theory

represents the wave accurately.

The wave parameters which were obtained using the program

STOKWAVE, are given in table 8.4.

Wave Wave Water
Height Period Depth A K

Aj; A3 A1 By
mm sec mm

Agy

68 0.85 500 0.1824 0.0054 0.13264 -0.08614 0. O0.1l16E-3 O.

BA33 A5 Ayy  Agg  Byy  Byy B3y Byg By Bgg

"'.266E—5 0. 00 0. 0051769 00 0039514 0' 00

c.

Table 8.4 - Wave parameters of the wave

generated in the small flume

8.2.5 - Results of the Tests in the Small Wave Flume
The chain model was arranged in the following four different
configurations in the wave flume:

1 - Catenary shape at zero degrees to the wave direction.

2 - Catenary shape at 30 degrees to the wave direction.
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3 - U-Shape at 30 degrees to the wave direction.

4 - Straight line shape.
For each arrangement, the static equilibrium shape of the chain
was obtained using program 1. Then program 2 was used to compute
the dynamic response of the chain due to the wave motion.
Comparisons of the computed and experimental dynamic response of

3 nodes are presented graphically.

The computed static configuration of the chain in the first case
is given in figure 8.7. The computed and experimental envelopes
of the dynamic response of the chain are given in figure 8.8.
Figure 8.9 shows a comparison of the computed and experimental

nodal displacements.

Graphs corresponding with those listed above for the second,
third and fourth cases are given in figures 8.10 to 8.12, 8.13 to

8.15 and 8.16 to 8.18 respectively.

The above comparisons show a very close agreement between the
computed and experimentally measured amplitudes of the nodal
displacements. The degree of accuracy is partly due to employing
the Simpson's rule to calculate the wave loadings on the chain.
These results complete the validation of the adopted scheme for

assessing the hydrodynamic loadings on a flexible catenary riser.
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8.3 - Results for the Tube Model

8.3.1 - Results of the Material Damping Tests

The applied dead load on the system was 1.4 Newtons and the live
loads were 0.09, 0.18, 0.32 and 0.5 Newtons. The time history of
the system displacements associated with the applied live loads

were obtained from the U.V. recorder and were then digitized.

A curve fitting procedure was carried out for the case with 0.5 N
live load by giving trial values for the material constant, a,
and the Young's modulus, E, and computing the corresponding
displacement curve. This curve was then compared with that
obtained from the test. The criteria for fitting the curves were
to satisfy the first peak and the rate of displacement decay with
time. These fitted curves are shown in figure 8.19. The
corresponding values for thé material damping constants, a, and
b, and the Young's modulus, E, were as follows:

a=4.9x 107° mz/N.sec. s b=30 1/sec. , E= 8.3x10° N/m2
The above values of a, b and E were used to compute the system
response for the other live load cases. The resulting graphs

fitted well with those obtained from the experiments.

8.3.2 - Determination of the Drag Coefficient, Cqr for the
Model in Steady Current Flow

The same current velocity field which was used for the chain

model was generated. The computed and measured experimental

nodal displacements due to the current flow are given in table

8.5 and figure 8.20. The value for C4 was 1.37,
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Node 1 2 3 4 5 6 7

Experimental

Displacements| 55.8 43.1 35.3 29.4 20. 14.1 0.
(rom)

Computed
Displacements| 55.2 45.0 37.2 29.5 21.6 14.3 0.
(mm)

Table 8.5 - Comparison of the computed and experimental

horizontal nodal displacements

8.3.3 - Determination of Drag Coefficient, C3, and Inertia
Coefficient, Cn
The Keulegan number, KC, at the mean water level for the chosen

wave, using equation ¢8.3), is:

D 0.0053
Thus, from figures 8.3 and 8.4 for KC > 50:

Cp = 1.25

8.3.4 - Results for the Generated Wave in the Large Wave Flume
The results for the wave height and period from the X-Y plotter,
figure 8.21a, are 0.15 metres and 1.22 seconds respectively.
These results were in conformity with those obtained from the

filming process. Figure 8.21b shows reasonable uniformity of the

wave in the flume.

The most suitable wave theory for the wave was Stokes 3rd order
theory. A comparison of the computed and filmed wave profiles is

given in figure 8.22. The wave parameters are given in table

8.6.
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Wave Wave Water
feight Period Depth A K A;; A3 Ajs By By
mm sec mm

150 1,22 1200 0.1934 0.0026 0.0868 -0.0552 0.0 0.21E-4 0.C

~0.30E-6 0. 0. 0. 0.50756 0. 0.3836 0. 0. 0.

Table 8.6 - Wave parameters of the first wave

generated in the large flume

8.3.5 - Calculation of the Buoyancy Force Induced by the Sub~
Buoy and the Cradle

The mass of the cradle

42,3 grams

The mass of the ball 7.3 grams
Thus, total mass of the sub-buoy system = 49,6 grams
The total weight of the sub-buoy system = 0.486 N

Volume of the cradle = 23,2 cm3

Diameter of the ball

6.25 cm

Thus, volume of the ball = (4/3) D3 % /8 = 127.8

The total volume of the sub~buoy system = 151 cm3
Density of water p = 1000 Kg/m3

Equivalent weight of displaced water =
151 x 107° x 1000 x 10 = 1.51 N
Buoyancy of the sub-buoy = 1.51 - 0.486 = 1.024 N

8.3.6 = Results of the Tests in the Large Wave Flume
The model was arranged in the following three different

configurations in the wave flume:
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1l - Catenary shape at zero degrees to the wave direction.
2 - single catenary riser shape at zero degrees to the wave
direction.
3 - Single catenary riser shape at 45 degrees to the wave
direction.
For each arrangement, the static equilibrium shape of t:.he tube
was obtained using program 1. Program 2 was then used to compute
the dynamic response of the tube due to wave motion. Comparisons
of the computed and experimental dynamic horizontal top tension

and nodal displacements of 3 nodes are presented graphically.

The computed static configuration of the tube in the first
case is given in figure 8.23. The computed and experimental
envelopes of the tube dynamic response are given in figure 8.24.
Figure 8.25 shows a comparison of the computed and experimental
horizontal top tension and nodal displacements in the wave
direction. Figure 8.26 shows a typical output for the horizontal

top tension from the U.V. recorder.

Graphs corresponding with those listed above for the second and
third configurations of the tube are given in figures 8.27 to

8.29 and 8.30 to 8.32 respectively.

The above comparisons showed close agreement between the computed
and experimental results. The program for the first
configuration of the tube was also run without material damping.
These results showed a 6% error (i.e. increase) in the amplitude

of the horizontal top tension.



- 233 -

The results from the above comparisons complete the validation of
the adopted scheme to model the physical characteristics and
response of the flexible catenary riser due to drag-inertia

hydrodynamic forces induced by wave and current motion.
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Figure 8.6 - Comparison of the computed and digitized wave profile
for the wave generated in the small wave flume
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Figure 8.7 - Computed static equilibrium shape of the chain model
at 0P to the wave direction
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8.4 - Results for the Vibrating Tube Model due to Vortex-
Shedding

8.4.1 - Results for Higher Amplitude Wave Generated in the
Large Wave Flume

The values for the wavé height and period obtained from the X-Y

plotter, figure 8.33a, are 0.25 metres and 1.40 seconds

respectively. These results were in conformity with those

obtained from the filming. Figure 8.33b shows the reasonable

uniformity of the wave in the flume.

The most suitable wave theory for the wave was Stokes 3rd order
theory. A comparison of the computed and filmed wave profiles is

given in figure 8.34. The wave parameters are given in table

8.7.

Wave Wave Water
Height Period Depth A K Ay Ay3 Ag LY) Aoy
mm sec m

150 1.40 1200 0.2406 0.002 0.18945 -0.12794 0. O0.48E-3 0.

-0014E-4 0. 0- 00 0.53629 0. 0041685 0. 0. 0.

Table 8.7 - Wave parameters of the second wave

generated in the large flume

8.4.2 - Determination of Drag Coefficient, C4, and Inertia

Coefficient, Cn
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The Keulegan number, KC, at the mean water level for the chosen
wave, using equation ¢8.3), is:
11-x 0.25
KC = ———— = 148.,2
0.0053

Thus, from figures 8.3 and 8.4 for KC > 50:

Cp = 1.25

8.4.3 - Evaluation of the Model Natural Frequencies

The equilibrium configuration of the model was obtained using
program 1. Then a node along the model (node 6) was displaced by
applying horizontal and vertical point loads (-2N and -20N
respectively), and the new equilibrium shape was obtained using
the static program 3. This shape was the input into the dynamic
program 2 and the natural vibration of node 6 with time was
recorded when the loads were released, figure 8.35. Fourier
analysis was carried out for a part of this recorded time history
of displacement which was chosen so that the ends corresponded to
maximum displacements, figure 8.35. The Fourier amplitude
coefficients, A, and B, were evaluated, figure 8.36; each peak
value of A, and B, corresponding with a structural natural
frequency. These frequencies were calculated using equation
{5.48) as follows:

1
fp=————1r=0.090Tr
2 x 5.568

The results are given in table 8.8.
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r 6 7 10 11 20 21 32 33 40

41

f, pP.539 0.629 0.898 0.988 1.796 1.886 2.874 2.963 3.592 3.682

(sec)

T=1/f,}1.86 1.59 1.11 1.01 0.56 0.53 0.35 0.34 0.28

0.27

Table 8.8 -~ Natural frequencies of the single catenary model

8.4.4 - Determination of the Model Response due to Vortex-
Shedding

The effect of Vortex-Shedding on the tube was assessed by the

method which was suggested by Rajabi et. al. (1984) as outlined

in chapter 4 Section 4.4.2. This was achieved by using the

calculated maximum nodal displacement in the direction of the

lift force and the well known relationships to evaluate the

amplification factors for the nodal drag coefficient, C3/Cy..

Nodal KC and Re vaiues for the cohsidered wave were calculated
using the water p;rticle velocity components normal to the
members of the model; and possible vortex-shedding frequencies,
f,» along the model were determined from figure 4.9 and are given
in table 8.9. These frequencies were compared with the
structural natural frequencies (fn)r, figure 8.37, and the
dominant values of f, and corresponding £, were determined. This
was achieved by choosing the most closely agreeing values of £,
and f,. From figure 8.37 these values are 2.857 and 2.874

respectively.
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Vert.
Node | Co~ords] Re | KC fv/fw
mm
1 00 hd - - -
2 406 694 | 36 4 (2,857
3 272 593 | 30 4 12,857
4 234 572 | 29 4 |2.857
5 338 638 | 33 5 13.571
6 488 782 | 40 5 13.571
7 652 1022 | 52 6 {4.286
8 818 1379 | 70 6 [4.286
9 986 1901 | 97 6 |4.286
10 1156 2654 |136 6 (4.286
11 1327 3733 (191 6 [4.286
12 1500 - - - -

Table 8.9 ~ Possible vortex-shedding frequencies

along the model from figure 4.9

The nodal reduced velocities, V,r were then calculated. At the
dominant vortex-shedding area along the tube (i.e. the area with
f; = 4f,), the reduced velocities varied from 7.28 to 8.11.
Experimental results for a cantilever cylinder in a wave flume,
obtained by Angrilli and Cossalter (1982), show that perfect
resonance of a cylinder will occur at a reduced velocity of 8.98
when £, is equal to 4f,. Therefore, the reduced velocity at
perfect resonance, J;, was assumed to be 8,98 for the present
work. The nodal values Vr/sr were calculated and the
corresponding values of the 1lift amplification factor (CL/CLg,)
were determined from fiqure 4,11, The nodal lift coefficients,
CLy, were determined from figure 8.38 which is reproduced from
the work by Sarpakaya et. al. (1974) who obtained the graph from
experimental work in the subcritical region of Reynolds numbers.

The dynamic program 2 was then used to find the maximum nodal

displacements in the lift force direction and hence the nodal
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amplification factors of the nodal drag coefficients, Cd/Cd.
The results are summarized in table 8.10. These amplification
factors were re-input into program 2 and the dynamic response of

the tube in the drag-inertia force direction was computed.

* Max. | Cd

Node| V.V, |CL/CL,| C;, |Displ.—
mm Cdo

1 - - - - -

2 0.98 2.80 | 1.11} 23.15 | 4.1

3 0.84 2,63 | 1.33|21.32 | 4.3

4 0.81 2,50 | 1.35(17.96 | 4.0

5 0.90 2,75 | 1.22 | 15.34 | 3.5

6 1.11 2.71 { 1.0 12.82 { 2.8

7 1.45 2.23 | 0,9 |11,56 | 2.2

8 1.95 1.83 | 0.9 }|10.17 { 1.6

9 2.69 1.67 | 0.9 8.18 | 1.0

10 3.76 1.62 | 0.9 5.61 | 1.0
11 5.29 1.62 | 0.9 2.75 | 1.0
12 - - - - -

Table 8,10 = Computed results from the vortex-shedding model

8.4.5 - Comparison of the Model Response to the Wave with and
without taking account of Vortex-Shedding Effects
The static configuration of the tube in the wave flume was
obtained using program 1, figure 8.39. Program 2 was then used
to compute the dynamic response of the tube with and without
taking account of the nodal drag amplification factors, cd/cd,,
in the drag-inertia force direction. A comparison of the
computed results is given in figure 8.40. Figure 8.41 shows a
comparison of both of these computed results with the
experimental horizontal top tension and nodal displacements
induced by the wave loadings. The comparison shows close
agreement between the experimental results and those computed by

taking account of the vortex-shedding effect. The results
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computed without taking vortex-shedding into account show a 10 to
15% error in both the amplitude of the horizontal top tension and

the nodal displacements.

The vortex-shedding, which was experienced in the present test,
(i.e. with f, = 4f,) tended to have a beneficial effect on
damping the dynamic response of the tube in the drag-inertia
force direction. However, the 1lift force had a frequency of 4
times that of the wave. This is important in the context of

fatigue life, particularly at the end comnections.

The results of this comparison may be considered as an
experimental verification of the vortex-shedding theory suggested
by Rajabi et. al. (1984).
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CHAPTER 9
NUMERICAL VALIDATION
9.1 - Introduction
This chapter is concerned with a comparison of the numerically
predicted results using the programs developed in the present
work (termed FLEXSTATIC, FLEXCURRENT and FLEXDYNAMIC) with those

obtained from the well known general purpose program "FLEXRISER".

Program FLEXRISER is a 3-dimensional flexible riser program which
has been developed by Zentech Consultants of London in
conjunction with Professor Larsen of the Royal Institute of
Technology in Stockholm. FLEXRISER has undergone comparative
checks with well known Finite Element Packages such as ABAQUS and
FENRIS. The analysis and the numerical Solution Scheme which are
used by FLEXRISER to predict the behaviour of a flexible riser
are completely different from those used by the programs
developed in this thesis. FLEXRISER uses a solution scheme which
is analogous to the system describing the hydrodynamics of an
open channel flow and the equation of motion is solved using an

implicit numerical scheme.

The chapter includes comparisons for the static equilibrium
configurations with and without current loadings, and the dynamic
behaviour induced by wave and current loadings and platform
motions for various flexible risers. The number of elements used
to model the riser were the same for program FLEXRISER and the
three programs developed in the present work for each test case.
Most of the test cases used in this chapter were data

corresponding to real cases. The input for these data are given
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in Appendix E.

The static comparisons without current loadings include the

following test cases:

ay

b)

c)

Free hanging risers - this type of riser is further

divided into the following two configurations:

1) Single hanging riser - a riser which is attached
to the platform at the top and to the sea bed
manifold at the sea bed, figure 9.1.

2) Double hanging riser - a riser which forms a U
shape and connects two platforms, figure 9.2.
Single catenary risers - these risers are divided into
the following two configurations with respect to the

type of sub-surface sub-buoys employed:

1) Steep-S risers - in this type of riser the
buoyancy at the sub-surface is supplied by a
discrete sub-buoy, figure 9.3.

2) Steep wave risers - in this type the buoyancy is
supplied by employing buoyant collars which are
installed along a certain length of a riser with
constant or varying gaps between them, figure 9.4.

Double catenary risers - this type of riser, 1like

single catenary risers, is divided into two

configurations in respect of their sub-surface buoyancy
systems as follows:

1) A Lazy-S riser - which has a discrete sub-buoy,
figure 9.5.

2) A Lazy wave riser - which has a collar buoyancy

system, figure 9.6.
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The stat-;ic comparisons with current loadings, and the dynamic
comparisons, include the following test cases:
a) Double hanging riser which is referred to in the text
as the simple catenary riser.

by Steep-S riser.

All the comparisons are presented in graphical form. The results
predicted by program FLEXRISER are plotted as full lines and
those predicted by the programs which have been developed in the

present work are plotted as dotted lines.

9.2 - Static Test Cases without Current Loadings
Figures 9.1 to 9.6 show the comparison of the static
configurations for flexible risers with no current loadings
predicted by programs FLEXRISER and FLEXSTATIC. The comparisons
are in close agreement. The sequence of the figure numberings
for the test cases are as follows:

Figure 9.1 Single hanging riser

Figure 9,2 Double hanging riser

Figure 9.3 Steep-S riser

Figure 9.4 Steep wave riser

Figure 9.5 Lazy-S riser

Figure 9.6 Lazy wave riser
Program FLEXSTATIC had to be modified to take account of sea bed
reaction forces when the riser was lying on the sea bed. This
was done by setting the negative vertical velocities and vertical
co-ordinates of the nodes on the sea bed to zero. The same

modifications were made for both FLEXDYNAMIC and FLEXCURRENT

programs,
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9.3 - Static Test Cases with Current Loadings

Figures 9.7 and 9.8 show respectively the comparison of the
static equilibrium shapes for a double hanging riser and a Steep-
S riser, subjected to current loadings, predicted by programs

FLEXRISER and FLEXCURRENT. The comparisons are in close

agreement.,

9.4 - Dynamic Test Cases

The comparison of the dynamic behaviour for the test cases was
carried out by computing the riser response for 6 wave cycles by
programs FLEXRISER and FLEXDYNAMIC and comparing the snap shots
of the riser response (i.e. frozen riser response with respect to
time) at the: 6th wave cycle. Four snap shots corresponding to
times 5T, ST +T/4, 5T + T/2, and 5T + 3T/4 (where T is the wave
period) are considered for the comparisons. In all the test

cases the hydrodynamic loadings included both wave and current

induced loadings.

The Steep~-S riser for which the static configuration was computed
in section 9.2, figure 9.3, was considered as the test case to
carry out the dynamic comparisons. The comparisons were carried
out in four steps. First the catenary part of the riser was
considered as a double hanging riser (it is referred to in the
text as the simple catenary riser). The dynamic response of this
riser section due to hydrodynamic loadings with and without
platform motion were then compared. The whole Steep-S riser was
subsequently considered. Again first the riser response with
hydrodynamic loading and no platform motion and then with

Platform motion was computed and compared. All comparisons show
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close agreement. The sequence for the figure \numbeting is as
follows:
Figure 9.9 Snap shots of simple catenary riser with no
platform motion
Figure 9.10 Snap shots of simple catenary riser with
platform motion
Figure 9.11 Snap shots of steep-S riser with no
platform motion
Figure 9.12 Snap shots of steep-S riser with

platform motion
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CHAPTER 10
CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

Flexible risers are the simplest and most economical means of
linking subsea equipment and floating facilities. From an
economic standpoint, the benefits associated with incorporating
flexible pipes into production systems are:
a) Simplicity in system design
b) Easy and rapid installation
C) Possibility of retrieval for re-use elsewhere
d) Built-in flexibility: systems can be easily adapted to
changing economic objectives as field development
progresses.
Therefore, the flexible riser systems can be regarded as one of
the key components for the more advanced future exploitation of
oil and gas reserves in deep waters, and a comprehensive

knowledge of their behaviour due to any wave and current induced
hydrodynamic loading is required,

A number of 3-dimensional non-linear computer programs have been
developed in recent years to analyse flexible riser systems but
most of them are unusually expensive to run and they do not
include the wave and current induced vortex shedding which is
essential to simulate the 3-dimensional behaviour of risers. The
aim of the present work was to develop an efficient and cost-

effective scheme to analyse flexible riser systems.
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A numerical method for the analysis of flexible risers by
explicit integration of Newton's second law has been presented.
The time integration step was calculated automatically using a
simple stability criteria. The theory had the advantage of
simple formulation and included the effects of material damping
and vortex-shedding due to wave and current flows on flexible
risers. The theory was implemented in four computer programs,

FLEXSTATIC, FLEXDYNAMIC, FLEXCURRENT and STOKWAVE.

Program STOKWAVE calculated the wave parameters for any order (1=
5) of Stokes wave theory. The predicted values of the wave
parameters for_a wave were identical to those published by other
authors (Skjelberia and Hendrickson {1960)) who extended Stokes

wave theory to fifth order.

Program FLEXSTATIC can be regarded as an efficient 3-dimensional
static program which can compute any flexible riser configuration
with given boundary-conditions. The CPU computing times on a
GOULD 9005 computer system for predicting various riser
configurations varied from just 5 to 10 seconds. These computed
static configurations compared well with those measured from a
hanging snake chain in two different catenary shapes and those

predicted by program FLEXRISER.

The results of the parameter studies, which were performed in

order to optimize program FLEXSTATIC, indicated the following:

a) Employing ficticious mass of components together with

a reduced axial stiffness for the riser, considerably
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reduced the computation effort. The optimized value of
the axial stiffness for a riser structure was achieved
when the magnitude of the non-dimensional parameter

EA/(W.L/N) was equal to 25.

where EA = axial stiffness of a metre of riser

W = self weight of riser and contents per metre length
L = length of riser

; W.L/N = average nodal force

by  The sufficient number of elements required to represent
a flexible riser for engineering applications was found
to be about 12. However, a total number of 20 to 30
elements are recommended for the final design stage of
a flexible riser in order to investigate in detail the

local effects such as angles at the top and bottom

connectors due to wave and current induced loadings.

Program FLEXCURRENT can be regarded as an efficient 3-dimensional

program for computing the static equilibrium state of a flexible
riser subjected to current loadings and static platform
movements. The CPU computing times on a GOULD 9005 computer
system for calculating the static responses of some test cases
due to current loadings and platform offsets varied from just 5
to 6 seconds. The accuracy of the results for various test cases
predicted by program FLEXCURRENT were verified by the results
which were measured from the current channel experiment and those
predicted by the industry standard program FLEXRISER. The quick

computations for static equilibrium configurations of a flexible
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riser by programs FLEXSTATIC and FLEXCURRENT enable a designer to
investigate various possible layouts of a riser and to check
critical design criteria such as top and bottom angles, bending
radius and distance of the sag from the sea-bed.

FLEXDYNAMIC is an efficient 3-dimensional dynamic program which
calculates the dynamic behaviour of a flexible riser subjected to
wave and current loadings, vessel movements and loadings due to
vortex-shedding. The program was optimized successfully by
calculating the hydrodynamic loadings only at every n integration
time steps (n. At) which were then assumed to be constant during
the following n time steps. The value of n. At was set equal to
1/2 of the shortest time which is taken by a transverse wave to
travel along any member of the riser, Further optimization was
achieved by reducing the EA value of the riser elements by a
factor of 10; though this optimization was strictly applicable

only when there was no top platform motion.

Numerous runs were performed for various flexible risers
subjected primarily to platform movements and subsequently to
such movements together with wave induced hydrodynamic forces.
The results showed that the response of the sag part (or
generally the lower part) of the riser is governed by the
platform motion. When a sub-surface sub-buoy is employed, the
transformation of the platform movement to the manifold at the
sea bed is prevented. Further runs were performed to investigate
the effect of bending in the riser dynamic behaviour. The

bending had damping effect on the riser dynamic response, but due
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to the fact that flexible risers possess very low bending

stiffness, the total effect of the bending was insignificant.

The results predicted by program FLEXDYNAMIC compared well with
those obtained from extensive experimental work in two wave
flumes and also with those predicted by program FLEXRISER. The
CPU computing time on a GOULD Computer System to predict the
dynamic response of a typical flexible riser for 5 wave cycles
was only about 2 minutes. Furthermore, the computed results
showed that the periodic response of the riser is achieved after
one wave cycle which suggests that only 3 wave cycles can be
sufficient for a dynamic solution. Program FLEXDYNAMIC is a
general dynamic riser program and is coded so that it can be
easily modified to handle any dynamic problem involving a
flexible riser, The program has recently been used to predict
the dynamic behaviour of a disconnected flexible riser. The
riser was arranged in a U shape between a Jack-up fixed platform
and a semi-submersible platform. The dynamic behaviours of the
riser and semi-submersible platform were to be investigated when
the riser was disconnected from the semi-submersible platform
during stormy sea conditions. The riser was subjected to wave

and current loadings and also to platform motions (surge, heave

and pitch).

The comparison of the numerically predicted and measured dynamic
responses in the plastic tube model test showed that material
damping can be successfully modelled by a single Kelvin system.
When the effect of the material damping was ignored the predicted

results showed a 6% error in the amplitude of the horizontal top
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tension. It is expected that this discrepancy would be higher
for an actual flexible riser due to its complex structure which
contains thermoplastic sheaths and cross-armoured steel wire

layers which are installed in an helicoidal pattern.

The results for the natural frequencies of a free-hanging riser
predicted by the scheme used in the present work were in
agreement with those given in a published paper (Triantafyllou
et. al. (1983)). This scheme is well suited to determine the

natural frequencies of any flexible riser.

The computed dynamic responses of the tube model test, taking
account of vortex-shedding effects, were in good agreement with
those measured from the experiment. The frequency of the 1lift
force was 4 times that of the wave frequency, which is important
from the viewpoint of fatigue design of the riser around the top
and bottom connectors. The results of the test helped to
validate the vortex-shedding model suggested by Rajabi et. al.
(1984). This model was extended in the present work to predict
the effect of vortex-shedding on a randomly oriented flexible
riser. This modification was essential in order to predict the

3~dimensional behaviour of a flexible riser.

One of the undesirable features of laboratory generated waves in
wave flumes is the presence of the higher harmonic components.
These are usually introduced by the secondary effect of a wedge
type wavemaker and reflected waves from the beach. These effects
can be minimized by generating various waves and adjusting the

beach slope and measuring the higher components of the incident
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wave for each individual wave flume. The waves for the present
work were chosen so that they had negligible secondary
components. The wave generated in the small flume was taken from

Ellix's (1984) experimental work, and the waves for the larger

flume were proportioned from this wave.

The explicit integration method described in this thesis for the
analysis of flexible risers was found to be at least an order of
magnitude faster than a widely used matrix based implicit scheme.
The main reason for this is that the principal deformation modes

of flexible risers are mechanical (rather than "structural®).

10.2 - Recommendations

The concept of floating compliant systems has brought promise of
efficient petroleum production from deep water gas and oil fields
at a wide range of depths. As these explorations move to deeper
water, the riser system faces more hostile environmental
conditions and the effect of vortex-shedding on the riser system
becomes important. If the vortex-shedding frequency coincides
with the fundamental structural frequency of the riser, it may
endanger the riser integrity which is not desirable., Thus an
investigation of the effect of vortex-shedding on flexible risers
is recommended. Simple material damping calibration tests such
as those carried out in the present work are also recommended for
actual flexible risers., Such tests can provide vital information
about the actual behaviour of flexible risers which have complex
structures containing thermoplastic sheaths and cross-armoured

steel wire layers installed in an helicoidal pattern.,
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Programs FLEXSTATIC and FLEXCURRENT have been modified further by
the author at Zentech Consultants to predict the response of
several flexible risers sharing a common discrete sub-buoy
system. The risers are placed relative to each other in a manner
such that there is no bundling effect among them regarding the
hydrodynamic loadings. The modification was carried out by
considering the sub-buoy as a separate system which is subjected
to tension forces from the lower and upper parts of each riser,
self weight and hydrodynamic loadings. An experimental work for

such riser systems in a large wave tank is recommended for future

work.

The fast computation of a flexible riser dynamic response by
program FLEXDYNAMIC gives an opportunity to perform the lengthy
and costly non-deterministic analysis of flexible risers more
quickly and economically. A method such as that described below

is recommended for future work to deal with random wave analysis.

A random wave can be assumed to be constructed by n numbers of
incident reqular waves with random phase angles, A spectral
density graph such as the Jonswap wave spectrum which is suitable
for the North Sea environment, or the Pierson-Moskowitz wave
spectrum can be used to identify the regular waves. Figure 10.1
shows a typical spectral density graph. In order to specify the
regular wave elements, the lower and upper frequencies and the
number of regular waves (usually between 10 to 30), n, are
identified and then the x-axis (frequency axis) between the lower
and upper frequencies is divided into n intervals and

subsequently the area under the curve is subdivided into n
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segments. Each segment represents a regular wave. The area of
the segment is the wave height which can be calculated using a
trapezoidal rule and the frequency of the wave is the average

frequency of the segment. The phase angles for the waves can be

chosen from random numbers. Similar spectral density graphs can

be used for each degree of freedom of platform movement. The

water particle wvelocities and accelerations induced by the random
wave at each node at any time are considered to be the sum of the
values induced by each wave and then these total kinematics are

used to calculate the nodal hydrodynamic loadings. Similarly the

platform motions and the wave profile at any time are considered

to be the sum of the individuals.
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Figure 10.1 - Spectral density graph
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Appendix A

Coefficients A;

ij* Bij and C; of Stokes Wave Theory

Let m = Sinh Kh, and n = cosh Kh

All=—

A3 =

m

- n2 15n2 + 1)

8m5

- (1184 n10 - 1440 n® - 1992 n® + 2641 n? - 249 2 + 18)

1536 mil

(192 n8 - 424 n - 312 n* + 480 n? - 17)

748 mi0

(13 - 4 n?)

64 m7

(412 n12 + 4224 n10 - 6300 n® - 12808 n® + 16704 n% - 3154 n2 + 107)

4096 mi3 (6n? - 1)

(80 n® - 816 n% + 1338 n? - 197)

1536 mi0 (6n2 - 1)

-12880 n10 - 72480 n8 + 324000 n® - 432000 n? + 163470 n? - 16245)

61440 m!l (6n2 - 1) (8n? - 11n2? + 3)

(2n2 + 1)

-
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n (272 n8 - 504 n - 192 n? + 322 n? + 21)
B =
24 384 m°

3(n6+l)

64 m6

(88128n14 - 208224n12 + 70848n10 + 54000n8 - 21816n + 6264n? - s54n2 81)
Byc = —
3 12288 mi? (6n - 1)
n (768 n10 - 448 8 - 48 n® + 48 nt + 106 n? - 21)
B =
44 384 m? (6n° - 1)
1192000 nl6 - 262270 n14 + 83680 nl2 + 20160 nl0 - 7280 n8)
B =
35 12288 m® (6n2 - 1) (8n? - 11 n2 + 3)
(7160 n® - 1800 n? - 1050 n? + 225)
+
1288 m10 (6n% - 1)¢8n? - 11n? + 3)
8n? - 8n2 + 9)
C =
1 8m4
13840 n12 - 4096 n!0 + 2592 n8 - 1008 n® + 5944 n% - 1830 n2 + 147)
C2 =
512 mi0 (6n2 - 1)
1
C [
3 4mn
(12 n® + 36 n® - 162 n? + 141 n2 - 27)
C =
4

192 n 0
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APPENDIX B
Derivation of Formulae for Determining the Bydrodynamic Forces on
a Riser Element

Consider Simpson's rule

h
n

let C= fl + f3 + ceseveccees T f2n_l
D= f2 + f4 + covesessees + fzn__z
hn
thusIn=-;1fo+4C+2D+f2n) {B.1)

vhere 2n is the number of subintervals.

For the next step the number of subintervals is doubled, i.,e. hoy = -h-g,
2

+1

where D' = D + C.

The difference between It and I, is:

]
E=In+l—1n=-;-!fo+4C' + 24¢D+ Q) +f2n)'-
hn
'—31f°+4C+2D+f2n) (B.3)

Rearranging and simplifying equation (B.3):

E s ac -20 . I (B.4
e Y - [ B. )
3 2

The following steps are carried out to calculate the area using

equation (B.4):
1
(1) Setn=1, h= ; (X5 = X))« Evaluate £, f;, £



- 308 -

1
and set I = -h (fo+4fl+f2) and C! =f1
3

1
{2) replace n by 2n, h by - h, C by C'and evaluate the new C', i.e.
2

the mid-ordinates, fl' f3, essar f2n-l for the new h,

thus, C' = fl + f3 + esecsees + fzn_l

1 1l
{3) Calculate the correction E=-h ¢4 C' - 2 C) - - I and
3 2

replace I by I + E.

{4) The integration is terminated if E is smaller than a

specified accuracy parameter, otherwise repeat from step 2.
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APPENDIX C
Calculation of Nodal Twisting due to Torsion of Flexible Risers
Consider the orientation of member b with adjacent members a and

¢ in space, figqure C.1.

Figur_e C.l - Three adjacent members in space
For a lumped idealisation, the twist angle, ©, of member b is the

angle between the planes defined by members a, b and b, c.

To obtain 6, the members are considered to be vectors as follows:

—_

a= xi+ z.j + yik
-_D

b= xbi + zbj + ybk (C.1)
—_— '

c= x.i+ zcj +  yck

where i, Jj and k are parallel axes to the x, z and y axes
respectively. The angle between the planes is the angle between
the normals to the planes. The normal line of a plane composed

of two vectors is obtained by the cross product of the vectors.
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" Thus:

i 3 k
—— — = { Za. yb - Yao Zb)’ i+
a x b=4det Xg 25 Ya

X Zp Yp

= ml i+ mzj + m3 k (C.2)

where my = X.. ¥, = Y5 Zp

m3 = xa. Zb - za. Xb

similarly,
—> —>
bx ¢ = ni+nj+nzk (C.3)

The angle between two vectors can be evaluated from their dot product.
Thus,

cos 8 = (m i+m2j + my k). (nl i+n2j+n3 k) =m ny +my ny +m3ng
Thus,

9scos™1 {my ny + my ny +my ng) {C.4)
The corresponding torque can be obtained from the following
relation:

Z]
T, = JG -—l— (C.5)

where T, = Torque

.—l
n

Length of the member
© = Twisted angle

d

Torsion constant
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The twisting nodal forces of member b in figure C.1 can be
obtained as follows:

th = —— ’ Ftl = - (cv 6)

&
& |+

Where R, is the external diameter of the riser.

However, because of the very small torsional stiffness of risers,
the induced twisting forces are practically insignificant and
have been ignored in the present work. It is, however, worth
noting that torsion in the riser will increase the structural

damping, and it can be considered as an extra factor of safety in
the design.
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Appendix D
Static Solution for the Riser Structure using Dynamic Relaxation
with Viscous Damping

The equation of motion of any node i in the x direction is, from

Newton's second law:

Mixi = Fix (D.1)
where M

nodal mass

e
[}

nodal structural acceleration in the x direction

At any time t the total force acting on the node in this
direction, Fy,, comprises two parts, the current residual R(t) {4
of applied and member loads acting on the node, and an imposed

viscous damping force acting in the opposite sense to the nodal
velocity Xlx :
.t t t
M; Xjx = R(t)j, = C Xyy (D.2)
where C = viscous damping constant.
X = nodal structural velocity.

Using the central difference concept for velocity and

acceleration:

it = @tret/2 g g tat/2) g (D.3)

Substituting equations (D.3) and (D.4) into equation (D.2) and

rearranging for Xt*%2 jeads to:

JtHat/2 1 At t 1-C/2 ,t-At/2
Xs = "——)o ol R(t) + )' X
1X
1+C/2 Mi x 1+C/2 1x
or
JL+at/2 ) t - At/2

xix = A R(t)‘ix + B Xix {D.5)
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1 At
Where A= {(—m) —
1+C/2 M

1-C/2

B=s —

1+4C/2

Nodal co-ordinates may then be updated for the structure:

t+at t JLat/2

Current nodal residuals R(t:)tJrAt may then be calculated from
equilibrium equations and the next stage of the analysis
recommenced at equation «(D.5).

The optimum efficiency of this scheme is obtained when the
damping constant, C, has a value close to that corresponding to

the critically damped state of the structural response, figure
D.1:

C =4 ﬂfn

where £ is the fundamental frequency of the structure,

over damping
Deflection

critical damping Time

Figure D.1 - Definition of different damping states

static solution
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APPENDIX E
Input Data of the Test Cases in Chapter 9

—;;ter depth 500 m
Water density 1.025 ton/m3
Riser outside diameter 0.2171 m
Riser and its contents weight in air 0.789 KN/m
Axial stiffness, EA 245000 kN
Total length 950 m
Vertical span \ 480 m
Horizontal span 750 m
Number of elements used for numerical solution - 70

[ —

Table E.l1 - Input data for the static run of
the free hanging riser

P;ater depth 320 m
water density 1.025 ton/m3
Riser outside diameter 0,295 m
Riser and its contents weight in air , 1.857 kN/m
Axial stiffness, EA 72100 kN
Total length 356 m
Vvertical distance of riserthp from sea bed 310 m
vertical distance of riser base from sea bed 95 m
Vertical span 215 m
Horizontal span 180 m
Number of elements used for numerical solution 35

Table E.2 - Input data for the static run of the

free hanging riser (simple catenary)
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Water depth

Water density

Riser outside diameter

Riser and its contents weight in air

Axial stiffness, EA

Catenary length

Taut length

Vertical span

Horizontal span

Buoyancy of sub-buoy

Number of elements used for numerical solution
catenary part

taut part

320
1.025
0.295
1.857
72100
356
86
310
200
370

35

ton/m3

kN/m

Table E.3 - Input data for the static run

of the steep-S riser
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Water depth 500 m
Water density 1.025 ton/h@
Number of riser sections 3
pata for section 1
Riser outside diameter 0.2171 m
Riser and its contents weight in air 0.789 kN/m
Axial stiffness, EA 245000 kN
Section length 598.5 m
Number of elements used for numerical solution 49
pata for section 2
Riser outside diameter 0.759 m
Riser and its contents weight in air | 3.029 KkN/m
Axial stiffness, EA 245000 kN
Section length 119.7 m
Number of elements used for numerical solution 15
pata for section 3
Riser outside diameter 0.2171 m
Riser and its contents weight in air 0.789 KkN/m
Axial stiffness, EA 245000 kN
Section length 68,4 m
Number of elements used for numerical solution 9
vertical distance of riser top from sea bed 480 m
vertical distance of riser base from sea bed 0 m
Vertical span 480 m
Horizontal span 360 m

Table E.4 - Input data for the static run

of the steep wave riser
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water depth

Water density

Riser outside diameter

Riser and its contents weight in air

Axial stiffness, EA

Upper catenary length

Iower catenary length

Vertical span

Borizontal span

Buoyancy of sub-buoy

Tethered length

Horizontal distance of tether base from riser base

Nurmber of elements used for numerical solution
Upper catenary

Iower catenary

250
1.025
0.243
1.089
1.35E5
285
130
232
220
280
60
102

39
18

ton/m3

kN/m

Table E.5 - Input data for the static run

of the lazy-S riser

TR G
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Data

Data

Water depth
Water density

Number of riser sections

for section 1

Riser outside diameter

Riser and its contents weight in air

Axial stiffness, FA

Section length

Number of elements used for numerical solution
for section 2

Riser outside diameter

Riser and its contents weight in air

Axial stiffness, EA

Section length

Number of elements used for numerical solution
for section 3

Riser outside diameter

Riser and its contents weight in air

Axjal stiffness, EA

Section length

Number of elements used for numerical solution

Vertical distance of riser top from sea bed

Vertical distance of riser base from sea bed
Vertical span

Horizontal span

500 m
1.025 ton/m3
3

0.2171 m
0.789 KkN/m
245000 kN
500 m
49

0.500 m
1.34  kN/m
245000 kN
120 m
15

0.2171 m
0.789 kN/m
245000 kN
200 m
29

480 m

0 m
480 m
400 m

e

Table E.6 - Input data for the static run

of the lazy wave riser
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Current velocity profile
at water free surface
at 25 metres below water level
at 50 metres below water level
at 100 metres below water level
at 200 metres below water level
at 3 metres above sea bed

pDirection of current flow

Axial stiffness, EA

Bending stiffness, EI

prag coefficient for riser, C4

pata for riser

1.71 m/sec|
1.42 1w/sec
1.25 my/sec
0.85 nm/sec
0.7 m/sec
0.5 m/sec

from riser top to riser bas

72100 kN
480  kNm?
0.7

as in table E.2

Table E.7 - Data for the simple catenary riser

subjected to current induced

hydrodynamic loadings
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Current velocity profile
at water free surface 1.71 m/sec
at 25 metres below water level 1.42 m/sec
at 50 metres below water level 1l.25 m/sec
at 100 metres below water level 0.85 m/sec
at 200 metres below water level 0.7 m/sec
at 3 metres above sea bed 0.5 m/sec
Direction of current flow from riser top to riser base
Axial stiffness, EA 72100 kN
Bending stiffness, EI 480 KNm?
Drag coefficient for riser, C4 0.7
prag force on sub-buoy due to 1 m/sec fluid velocity 7.4 KN
sub-buoy mass 13,5 tonnes
pata for riser as in table E.3

Table E.8 - Data for the steep-S riser subjected

to current induced hydrodynamic loadings
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Water height 31 m
Wave period 15 sec
Wave direction from riser top to riser bhase

Used wave theory Linear wave theory

Current velocity profile as in table E.7
Axial stiffness, EA 72100 kN
Bending stiffness, EI 480 KNm2
Drag coefficient for riser, Cy 0.7

Inertia coefficient for riser, C, 1.8
Tangential drag coefficient, Cg: 0

No platform motion

Data for riser as in table E.2

Table E.9 - Data for the dynamic run of the simple catenary
riser subjected to wave and current induced

hydrodynamic loadings with no platform motion




- 322 -

Wave data
Current data
Data for riser
pata for hydrodynamic force coefficient
Platform motion
Surge amplitude
Surge phase angle with wave flow
Heave amplitude

Heave phase angle with wave flow

Riser top is situated at the centre of gravity of

the platform

Wave phase angle at the centre of gravity of

the platform

8 8 8 B

in table E.9
in table E.7
in table E.2
in table E.7
10,5 m

90°

9.0

00

00

Table E.10 - Data for the dynamic run of the simple

catenary riser subjected to wave and

current induced hydrodynamic loadings

with platform motion
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Wave height 31 m
Wave period 15 sec
Wave direction from riser top to riser hase

Used wave theory Linear wave theory

Current velocity profile as in table E.8
Axial stiffness, EA 72100 kN
Bending stiffness, EI 480  knm2
prag coefficient for riser, C3 0.7

Inertia coefficient for riser, ¢ 1.8

Tangential drag coefficient, Cqp 0

prag force on sub~buoy due to 1 m/sec fluid velocity 7.4 kN

Inertia coefficient for sub~buoy 1.8
Sub-buoy mass 13.5 tonnes
Sub-buoy volume 50 m3

No platform motion

pata for riser as in table E.3

s

Table E.ll - Data for the dynamic run of the steep-S riser
subjected to wave and current induced

hydrodynamic loadings with no platform motion
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Wave data ' as in table E.ll
Current data - as in table E.8
Data for riser B as in table E.3
Data for hydrodynamic force coefficient as in table E,11
Drag force on sub-buoy due to 1 m/sec 7.4 kN

fluid velocity

Inertia coefficient for sub-buoy ‘ 1.0
Sub-buoy mass 13.5 tonnes
Sub~-buoy volume 50 m3

Platform motion

Surge amplitude 10,5 m
Surge phase angle with wave flow 90°

Heave amplitude 9.0 m |
Heave phase angle with wave flow 0°

Riser top is situated at the centre of gravity
of the platform

Wave phase angle at the centre of gravity of

the platform 0°

Table E.12 - Data for the dynamic run of the steep-S
riser subjected to wave and current induced

hydrodynamic loadings with platform motion
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