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Abstract. The purpose of this paper is to provide theory, results, discussion and conclusions arising 

from an in-depth investigation on the modal behaviour of high aspect ratio aircraft wings. The 

illustrative examples chosen are representative of sailplane and transport airliner wings. To achieve this 

objective, the dynamic stiffness method of modal analysis is used. The wing is represented by a series 

of dynamic stiffness elements of bending-torsion coupled beams which are assembled to form the 

overall dynamic stiffness matrix of the complete wing. With cantilever boundary condition applied at 

the root, the eigenvalue problem is formulated and finally solved with the help of the Wittrick-Williams 

algorithm to yield the eigenvalues and eigenmodes which are essentially the natural frequencies and 

mode shapes of the wing. Results for wings of two sailplanes and four transport aircraft are discussed 

and finally some conclusions are drawn.  

 
1. Introduction 

Sailplane and transport aircraft wings are slender and flexible because of their high aspect ratios 

resulting from large spans and relatively short chords. As a consequence, they are easily prone to 

vibration problems. In this respect, modal analysis of aircraft wings, particularly those with high 

aspect ratios is very important.  Sailplane and transport airliner wings are typical examples for which 

the investigation is of great significance. Indeed modal analysis plays an important role in the design 

of aircraft wings. An analysis of this kind is an obligatory airworthiness requirement which is 

rigorously enforced by the civil aviation authorities. The purpose of this paper is to carry out such an 

analysis and investigate the modal behaviour of sailplane and transport aircraft wings by applying the 

dynamic stiffness method.  

 

One of the main motivations for modal analysis of aircraft wings originates from that fact that it is a 

fundamental prerequisite to carry out an aeroelastic or response analysis, particularly when using the 

normal mode method. There are some published papers in this and related areas [1-7]. In general, the 

finite element method (FEM) is widely used to investigate the modal behaviour of aircraft wings. The 

FEM is an approximate method where the stiffness and mass properties of all individual elements are 

assembled to form the overall stiffness matrix [K] and mass matrix [M] of the structure which is an 

aircraft wing here. Then for modal analysis, upon imposing the boundary conditions, the typical 

eigenvalue problem of the type [[K] - [M]]{} = 0 is solved where {} is the nodal displacement 

vector and the square root of  gives the natural frequencies of the structure. The corresponding mode 

shapes are recovered in the usual way.  In the FEM it is generally true that by increasing the number of 

elements in the analysis, the results become more and more accurate. It is acknowledged that the FEM 

is numerically intensive and the degrees of freedom identified by the order of [K] and [M] matrices 

decide the number of eigenvalues (which are essentially the natural frequencies) that can be computed. 
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The higher order natural frequencies will of course, be considerably less accurate. Against this 

background, there is an elegant and powerful alternative to the FEM for modal analysis of aircraft 

wings or any other structures. This method is the so-called dynamic stiffness method (DSM). The 

DSM unlike the FEM, relies on an exact single frequency dependent dynamic stiffness element 

containing both the mass and stiffness properties of the element as the basic building block.  The 

assembly procedure in the DSM is essentially the same as it is in the FEM, but a single dynamic 

stiffness element matrix is used for each structural component instead of separate mass and stiffness 

matrices to form the overall frequency-dependent dynamic stiffness matrix [KD] of the complete 

structure (wing). The eigenvalue problem is formulated as [KD]{}=0 where {} is the nodal 

displacement vector comprising the amplitudes of nodal displacements. The next step is to extract the 

eigenvalues of the structure. At this point a significant difference with the FEM arises with regard to 

the solution technique. The formulation [KD]{}=0 leads to a transcendental (nonlinear) eigenvalue 

problem as opposed to the linear eigenvalue problem generally encountered in the FEM. The best 

available solution technique to extract the eigenvalues in the DSM is to apply the algorithm of 

Wittrick and Williams [8], known as the Wittrick-Williams algorithm in the literature which has 

featured in literally hundreds of papers. The algorithm which monitors the Sturm sequence property of 

the dynamic stiffness matrix is robust and it ensures that no natural frequency of the structure is 

missed.  

 
Within the above context, a range of aircraft wings is investigated for their free vibration 

characteristics in this paper. Two different categories of aircraft wings are analysed. They are 

essentially for sailplane and transport airliner wings. Two illustrative examples for the former and four 

for the latter are demonstrated when presenting numerical results. The investigation required 

considerable efforts for data preparation to model each of the wings.  The dynamic stiffness method 

which provides the best possible model accuracy is used as mentioned. In idealising the wing, an 

assembly of the frequency dependent dynamic stiffness elements of bending-torsion coupled beams 

[9-10], comprising both the mass and stiffness properties is efficiently utilised. Natural frequencies 

and mode shapes computed from the dynamic stiffness method are compared and contrasted and 

finally some conclusions are drawn. 

 
2. Theory 

 

2.1 Dynamic stiffness matrix of a bending-torsion coupled beam 

An aircraft wing such as the one shown in figure 1 is a classic example of a bending-torsion coupled 

beam. Such a representation is particularly relevant to analyse a high aspect ratio wing. 

 
Figure 1 An aircraft wing idealised as a bending-torsion coupled beam. 
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In essence, the coupling between the bending and the torsional motions arises due to non-coincident 

mass and elastic axes which are respectively the loci of the centroid and shear centres of the beam 

cross-section. Thus for an aircraft wing it is not generally possible to realize a torsion-free bending 

displacement or a bending-free torsional rotation during its dynamic motion unless the load or the 

torque is applied through or about the shear centre. Given this perspective, a high aspect ratio non-

uniform aircraft wing can be accordingly modelled as an assemblage of bending-torsion couple beams 

of the type shown in figure 1. This paper uses a dynamic stiffness approach and develops the dynamic 

stiffness matrix of a uniform bending-torsion coupled beam and then extends it to model a non-

uniform wing.  

 
The governing partial differential equations of motion of the bending-torsion coupled beam (wing) 

shown in figure 1 are given by [9, 10] 

 

𝐸𝐼ℎ′′′′ + 𝑚ℎ̈ − 𝑚𝑥𝛼�̈� = 0                                                             (1) 

𝐺𝐽𝜓′′ + 𝑚𝑥𝛼ℎ̈ − 𝐼𝛼�̈� = 0                                                         (2) 

where EI and GJ are the bending and torsional rigidities of the beam, m is the mass per unit length, 

𝐼𝛼is the polar mass moment of inertia per length about the Y-axis and the primes and over dots denotes 

partial differentiation with respect to position y and time t,  respectively.  

 
For harmonic oscillation, sinusoidal variation in h and 𝜓 with circular frequency 𝜔 may be assumed 

to give 

 
ℎ(𝑦, 𝑡) = 𝐻(𝑦)𝑠𝑖𝑛𝜔𝑡,        𝜓(𝑦, 𝑡) =  𝛹(𝑦)𝑠𝑖𝑛𝜔𝑡                              (3) 

 
where 𝐻(𝑦) and 𝛹(𝑦) denote the amplitude of the bending displacement and torsional rotation 

 
Substituting equation (3) into equations (1) and (2) eliminates the time component and gives the 

following ordinary differential equations 

𝐸𝐼𝐻′′′′ − 𝑚𝜔2𝐻 + 𝑚𝑥𝛼𝜔2Ψ = 0                                            (4) 
𝐺𝐽Ψ′′ + 𝐼𝛼𝜔2Ψ − 𝜔2𝑚𝑥𝛼𝐻 = 0                                                        (5) 

 
where prime now denotes full differentiation with respect to y. 

 
Equations (4) and (5) can be combined into a sixth order ordinary differential equation by 

eliminating either H or  to give  

𝑊′′′′′′ + (
𝐼𝛼𝜔2

𝐺𝐽
) 𝑊′′′′ − (

𝑚𝜔2

𝐸𝐼
) 𝑊′′ − (

𝑚𝜔2

𝐸𝐼
) (

𝐼𝛼𝜔2

𝐺𝐽
) (

𝐼𝛼−𝑚𝑥𝛼
2

𝐼𝛼
) 𝑊 =  0              (6) 

where 

𝑊 = 𝐻 𝑜𝑟 𝛹                                                                   (7) 

 

Equation (6) can be non-dimensionalised by using the non-dimensionalised length  where  

𝜉 =
𝑦

𝐿
                                                                                    (8) 

Thus, with the help of equation (8), the non-dimensional form of equation (6) becomes 

 

(𝐷6 + 𝑎𝐷4 − 𝑏𝐷2 − 𝑎𝑏𝑐)𝑊 = 0                                                    (9) 
 
where a, b and c are non-dimensional parameters given by 
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𝑎 =  (
𝐼𝛼𝜔2𝐿2

𝐺𝐽
),  𝑏 = (

𝑚𝜔2𝐿4

𝐸𝐼
) ,         𝑐 = (

𝐼𝛼−𝑚𝑥𝛼
2

𝐼𝛼
)                      (10) 

 
and D is the following differential operator 

 

𝐷 =
𝑑

𝑑𝜉
                                                                                        (11) 

 
The differential equation given by equation (9) can be solved using standard procedure [9, 10] to 

give 

𝑊(𝜉) =  𝐶1𝑐𝑜𝑠ℎ𝛼𝜉 + 𝐶2𝑠𝑖𝑛ℎ𝛼𝜉 + 𝐶3𝑐𝑜𝑠𝛽𝜉 + 𝐶4𝑠𝑖𝑛𝛽𝜉 + 𝐶5𝑐𝑜𝑠𝛾𝜉 + 𝐶6𝑠𝑖𝑛𝛾𝜉               (12) 
 

where 

                                                        𝛼 = [2 (
𝑞

3
)

1

2
𝑐𝑜𝑠 (

𝜙

3
) −

𝑎

3
]

1

2

 

𝛽 = [2 (
𝑞

3
)

1

2
𝑐𝑜𝑠 (

(𝜋−𝜙)

3
) +

𝑎

3
]

1

2

                                                      (13) 

𝛾 =  [2 (
𝑞

3
)

1
2

𝑐𝑜𝑠 (
(𝜋 + 𝜙)

3
) +

𝑎

3
]

1
2

 

with  

𝑞 = 𝑏 +
𝑎2

3
                                                                          (14) 

and 

𝜙 =  𝑐𝑜𝑠−1 [
27𝑎𝑏𝑐−9𝑎𝑏−2𝑎3

{2(𝑎2+3𝑏)
3
2}

]                                                (15) 

 
In equation (12), C1-C6 are the integration constants resulting from the solution of the governing 

differential equation (9). 

 
𝑊(𝜉) of equation (12) is the solution for both the bending displacement H and the torsional rotation 

𝛹, but with different sets of constants. Therefore, 

 
𝐻(𝜉) =  𝐴1𝑐𝑜𝑠ℎ𝛼𝜉 + 𝐴2𝑠𝑖𝑛ℎ𝛼𝜉 + 𝐴3𝑐𝑜𝑠𝛽𝜉 + 𝐴4𝑠𝑖𝑛𝛽𝜉 + 𝐴5𝑐𝑜𝑠𝛾𝜁 + 𝐴6𝑠𝑖𝑛𝛾𝜉          (16) 

and 

𝛹(𝜉) =  𝐵1𝑐𝑜𝑠ℎ𝛼𝜉 + 𝐵2𝑠𝑖𝑛ℎ𝛼𝜉 + 𝐵3𝑐𝑜𝑠𝛽𝜉 + 𝐵4𝑠𝑖𝑛𝛽𝜉 + 𝐵5𝑐𝑜𝑠𝛾𝜁 + 𝐵6𝑠𝑖𝑛𝛾𝜉          (17) 
 

The two different sets of constants 𝐴1 − 𝐴6 and 𝐵1 − 𝐵6 in equations (16) and (17) can be related 

with the help of either equation (4) or equation (5) to give. 

 
     𝐵1 =  𝑘𝛼𝐴1,                 𝐵3 = 𝑘𝛽𝐴3,              𝐵5 =  𝑘𝛾𝐴5 

                                                                   (18) 

𝐵2 =  𝑘𝛼𝐴2,              𝐵4 =  𝑘𝛽𝐴4            𝐵6 =  𝑘𝛾𝐴6 

 
where  

𝑘𝛼 =
𝑏−𝛼4

𝑏𝑥𝛼
,     𝑘𝛽 =

𝑏−𝛽4

𝑏𝑥𝛼
,      𝑘𝛾 =

𝑏−𝛾4 

𝑏𝑥𝛼
                                             (19) 
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The expressions for bending rotation 𝜃(𝜉), bending moment  𝑀(𝜉), shear force 𝑆(𝜉) and torque 

𝑇(𝜉) are given by 

 

𝜃(𝜉) = 𝐻′ (
𝜉

𝐿
) = (

1

𝐿
) {𝐴1𝛼𝑠𝑖𝑛ℎ𝛼𝜉 +  𝐴2𝛼𝑐𝑜𝑠ℎ𝛼𝜉 − 𝐴3𝛽𝑠𝑖𝑛𝛽𝜉 + 𝐴4𝛽𝑐𝑜𝑠𝛽𝜉 

                  −𝐴5𝛾𝑠𝑖𝑛𝛾𝜉 + 𝐴6𝛾𝑐𝑜𝑠𝛾𝜉}            (20) 

 

𝑀(𝜉) =  − (
𝐸𝐼

𝐿2) 𝐻′′(𝜉) =  − (
𝐸𝐼

𝐿2) {𝐴1𝛼2𝑐𝑜𝑠ℎ𝛼𝜉 +  𝐴2𝛼2𝑠𝑖𝑛ℎ𝛼𝜉 −  𝐴3𝛽2𝑐𝑜𝑠𝛽𝜉 − 𝐴4𝛽2𝑠𝑖𝑛𝛽𝜉 −

𝐴5𝛾2𝑐𝑜𝑠𝛾𝜉 − 𝐴6𝛾2𝑠𝑖𝑛𝛾𝜉}        (21) 

 

𝑆(𝜉) =   (
𝐸𝐼

𝐿3) {𝐴1𝛼3𝑠𝑖𝑛ℎ𝛼𝜉 +  𝐴2𝛼3𝑐𝑜𝑠ℎ𝛼𝜉 +  𝐴3𝛽3𝑠𝑖𝑛𝛽𝜉 −  𝐴4𝛽3𝑐𝑜𝑠𝛽𝜉 +  𝐴5𝛾3𝑠𝑖𝑛𝛾𝜉 −

 𝐴6𝛾3𝑐𝑜𝑠𝛾𝜉}     (22) 

 

𝑇(𝜉) = (
𝐺𝐽

𝐿
) Ψ′(𝜉) = (

𝐺𝐽

𝐿
) {𝐵1𝛼𝑠𝑖𝑛ℎ𝛼𝜉 +  𝐵2𝛼𝑐𝑜𝑠ℎ𝛼𝜉 −  𝐵3𝛽𝑠𝑖𝑛𝛽𝜉 +  𝐵4𝛽𝑐𝑜𝑠𝛽𝜉 −  𝐵5𝛾𝑠𝑖𝑛𝛾𝜉 +

𝐵6𝛾𝑐𝑜𝑠𝛾𝜉}    (23) 

 

With the help of equations (16)-(23), the dynamic stiffness matrix of the coupled bending-torsion 

beam element which is essentially an aircraft wing element can be developed by applying the 

boundary conditions for displacements and forces at the ends of the elements. 

 
Referring to figure 2, the boundary conditions for displacements are 

 

At y = 0 ( =0):  H = H1,  = 1   = 1 

            (24) 

At y = L ( = 1): H = H2,  = 2   = 2 

 
Similarly, referring to figure 3, the boundary conditions for the forces are 

 

At y = 0 ( =0): S = S1,  = 1  = -1 

(25) 

At y = L ( = 1): S = -S2, = -2   = 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Boundary conditions for displacements of an aircraft wing element. 


1
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H
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
1
 

H
2
 

=0 


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Figure 3. Boundary conditions for forces of an aircraft wing element. 

 
Substituting the boundary conditions for displacements given by equation (24) into equations (16), 

(20) and (17), one obtains the following matrix relationship  

 























































































6

5

4

3

2

1

2

2

2

1

1

1

//////

000

/0/0/0

010101

A

A

A

A

A

A

SkCkSkCkSkCk

LCLSLCLSLCLS

SCSCSC

kkk

LLL

H

H

hh

hh

hh























            (26) 

or 

 = BA                                                                         (27) 
 
where A is the contact vector comprising the constants A1 - A6 and 

 

𝐶ℎ𝛼
= cosh 𝛼;  𝑆ℎ𝛼

= sinh 𝛼; 𝐶𝛽 = cos 𝛽; 𝑆𝛽 =  sin 𝛽; 𝐶𝛾 =  cos 𝛾; 𝑆𝛾 = sin 𝛾        (28) 

 
Substituting the boundary conditions for forces given by equation (25) into equations (22), (21) and 

(23), one obtains the following matrix relationship 

 





























































































6

5

4

3

2

1

111111

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

111

2

2

2

2

2

2

3

3

3

3

3

3

2

2

2

1

1

1

000

000

000

A

A

A

A

A

A

CkWSkWCkWSkWCkWSkW

SWCWSWCWSWCW

CWSWCWSWCWSW

kWkWkW

WWW

WWW

T

M

S

T

M

S

hh

hh

hh



























   (29) 

 

or 

 

y 

=1 

=0 

S
1
 

M
1
 

S
2
 

M
2
 

T
1
 

T
2
 

L 
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F = DA                                                                                    (30) 

where  

𝑊1 =
𝐺𝐽

𝐿
;   𝑊2 =

𝐸𝐼

𝐿2 ;   𝑊3 =
𝐸𝐼

𝐿3                                                             (31) 

 
The constant vector A can now be eliminated from equations (27) and (30) to give the following 

force-displacement relationship 

F = K                                                                                  (32) 

 
where K is the 6×6 frequency dependent dynamic stiffness matrix given by 

 
K = D B-1                                                                               (33) 

 
The dynamic stiffness matrix of equation (33) representing a bending-torsion coupled beam such as 

an aircraft wing can now be used to model an aircraft wing. A non-uniform aircraft wing can be 

modelled as an assembly of many uniform dynamic stiffness elements.  For instance, the unswept 

cantilever wing of figure 4 can be modelled as a stepped cantilever beam (wing) as shown in figure 5 

where the non-uniform wing is split into 10 uniform dynamic stiffness elements. The dynamic 

stiffness elements of each of the 10 elements can be assembled to form the overall dynamic stiffness 

matrix of the complete wing. The straight unsweep wing and its idealisation in figures 4 and 5 are 

shown only for convenience, but the theory given above is sufficiently general and can handle swept 

and other wings with complex geometries. 

 
The solution procedure to extract the natural frequencies and mode shapes from the overall dynamic 

stiffness matrix of the wing is based on the application of the Wittrick-Williams algorithm [8] which 

has featured in hundreds of papers. The algorithm is particularly suitable in solving free vibration 

problem using the dynamic stiffness method. The working principle of the algorithm is briefly 

summarised in the next section. 

 

 

 

 

 

 

 

 

 
Figure 4. A non-uniform cantilever wing. 

 

 

 

 

 

 

 

 

 
Figure 5. A non-uniform cantilever wing idealised as a stepped beam. 
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2.2 Application of the Wittrick-Willams algorithm 

The dynamic stiffness matrix of equation (33) can now be used to compute the natural frequencies and 

mode shapes of aircraft wings. A non-uniform and/or swept wing can be analysed for its natural 

frequencies and mode shapes by idealising it as an assemblage of many uniform dynamic stiffness 

elements of bending-torsion coupled beams. The natural frequency calculation is accomplished by 

applying the Wittrick-Williams algorithm [8] which has received extensive coverage in the literature. 

Before applying the algorithm the dynamic stiffness matrices of all individual elements (see figures 4 

and 5) need to be assembled to form the overall dynamic stiffness matrix Kf of the complete wing. The 

algorithm monitors the Sturm sequence condition of Kf in such a way that there is no possibility of 

missing any natural frequency of the wing. The application procedure of the algorithm is briefly 

summarised as follows. 

 

Suppose that denotes the circular (or angular) frequency of the vibrating wing. Then according to 

the Wittrick-Williams algorithm [8], j, the number of natural frequencies passed, as  is increased 

from zero to , is given by 

j = j0 + s{Kf}                                                                           (34) 

 

where Kf, the overall dynamic stiffness matrix of the wing whose elements depend on  is evaluated 

at  = ; s{Kf} is the number of negative elements on the leading diagonal of Kf
, Kf

 is the upper 

triangular matrix obtained by applying the usual form of Gauss elimination to Kf , and j0 is the number 

of natural frequencies of the wing still lying between  =0 and  = * when the displacement 

components to which Kf corresponds are all zeros. (Note that the structure can still have natural 

frequencies when all its nodes are clamped, because exact member equations allow each individual 

member to displace between nodes with an infinite number of degrees of freedom, and hence infinite 

number of natural frequencies between nodes.) Thus 

 

mjj 0                                                                    (35) 

 

where jm is the number of natural frequencies between = 0 and  = * for an individual component 

member with its ends fully clamped, while the summation extends over all members of the structure. 

Thus, with the knowledge of equations (34) and (35), it is possible to ascertain how many natural 

frequencies of the wing lie below an arbitrarily chosen trial frequency (*). This simple feature of the 

algorithm can be used to converge upon any required natural frequency to any desired accuracy. As 

successive trial frequencies can be chosen, computer implementation of the algorithm is very simple. 

However, for a detailed understanding, readers are referred to the original work of Wittrick and 

Williams [8].  

 

3. Results and discussion 

Using the above theory, two categories of aircraft wings with cantilever boundary condition at the root 

are analysed for their modal characteristics. In the first category, a class of high aspect ratio, high 

performance sailplane wings are considered. A typical layout of such a sailplane is shown in figure 6. 

Results for natural frequencies and mode shapes are computed for two sailplanes (S1 and S2) with 

spans 22m and 15m, respectively. Some particulars of the two sailplanes are given in Table 1.  The 

second category of aircraft wings analysed belongs to transport airliners. A typical layout is shown in 

figure 7. Four wings of transport airliners (T1, T2, T3 and T4) with particulars given in Table 2 are 

analysed. In all cases, 10 dynamic stiffness elements were used to represent each wing. The data used 

for the stiffness (EI and GJ) and mass/inertia (m and I) properties of the wings and the shear centre 

locations (x) were calculated from the cross-sectional drawings of the wings expending considerable 

efforts. These data for the six aircraft are far too extensive to report in this paper. 
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Figure 6. A general lay-out of a typical sailplane. 

 
 

 
Figure 7. A general lay-out of a typical transport aircraft. 

 

Table 1. Particulars of sailplanes 

 

Parameters 
Sailplane 

Sailplane-S1 Sailplane-S2 

Wing Span (m) 22 15 

Wing Area (m2) 15.44 10.05 

Aspect Ratio 31.35 22.4 

Wing Root Chord (m) 1.0 0.9 

Wing Tip Chord (m) 0.4 0.4 

Sweep angle (deg) 0 0 

Length overall (m) 7.6 6.72 

Height Overall (m) 2.0 2.0 

Weight Empty (kg) 390 234 

Max Take-off weight (kg) 550 440 

Max Wing Loading (kg/m2) 37 36 

Max Cruising Speed (knots) 135 105 
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Table 2. Particulars of transport airliners. 

 

Parameters 

Transport airliner 

T1 T2 T3 T4 

Wing Span (m) 40 30 35 60 

Wing Area (m2) 162 93 123 362 

Aspect Ratio 10 9 10 10 

Wing Root Chord (m) 5.0 5.5 6.0 10.5 

Wing Tip Chord (m) 2.5 1.5 1.5 2.5 

Sweep angle (deg) 0 28 28 28 

Length overall (m) 30 36 38 60 

Height Overall (m) 12 11 12 17 

Weight Empty (kg) 34,000 26,000 42,000 130,000 

Max Take-off weight (kg) 70,000 46,000 74,000 275,000 

Max Wing Loading (kg/m2) 434 511 600 760 

Max Cruising Speed (knots) 348 529 516 569 

Range (nmi) 2835 2400 2592 8000 

 
The first five natural frequencies of the six aircraft wings (two for sailplanes and four for transport 

airliners) are shown in Table 3. The letters B and T shown in the parenthesis indicate bending and 

torsion dominated modes, respectively whereas the letter C indicates a coupled mode with substantial 

amount of both bending and torsional displacements. It should be noted that sailplane wings do not 

carry engines whereas the transport airline wings have engine(s) with mass and inertia properties 

which have significant effects on natural frequencies. (Engine mass is a huge proportion of the total 

wing mass.) The mode shapes for the two sailplanes corresponding to the natural frequencies of Table 

3 are shown in figure 8 whereas those of the four transport airliner wings are shown in figures 9 and 

10, respectively. 

 
Table 3. Natural frequencies of sailplane and transport airliner wings. (B): Bending 

dominated mode; (T): Torsional dominated mode;(C): Bending-Torsion coupled mode. 

 

 

Aircraft Category 
Natural Frequencies (i) 

(rad/s) 

1 2 3 4 5 

Sailplane S1 10.64(B) 42.62(B) 109.6(B) 111.5(T) 201.4(B) 

Sailplane S2 13.38(B) 42.09(B) 93.35(B) 164.2(T) 167.4(C) 

Transport Airliner T1 11.52(B) 33.09(B) 45.43(C) 87.85(B) 97.76(C) 

Transport Airliner T2 19.71(B) 55.29(B) 100.2(B) 120.9(C) 197.7(C) 

Transport Airliner T3 11.99(B) 34.69(B) 67.66(B) 74.14(T) 118.4(C) 

Transport Airliner T4 8.994(B) 26.45(B) 47.64(T) 72.70(B) 94.64(T) 
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

Figure 8. Natural frequencies and mode shapes of Sailplane wings S1 and S2. 

Clearly, the first three modes of the cantilever wings of the two sailplanes S1 and S2 are bending 

modes whereas the fourth mode for each of them is a pure torsional mode, see figure 8. The fifth mode 

for the S1 wing is a bending mode. By contrast, for the S2 wing it is a coupled mode.  
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Figure 9. Natural frequencies and mode shapes of transport airliner wings T1 and T2. 

 

Referring to Table 3 and figure 9, the first two modes of the cantilever wings of transport airliner T1 

and T2 are essentially bending modes, but the nature of the third mode for the two wings differs quite 

significantly. For T1, it is basically a coupled mode dominated by torsional displacement, but for T2, it 

is a bending dominated mode. The fourth mode for T1 is bending dominated, but for T2 it is actually a 

bending-torsion coupled mode. To all intents and purposes, the fifth mode for both T1 and T2 is a 

coupled mode. Now referring to figure 10, the mode shapes for T3 and T4 wings are discussed. The 

first two modes for these two cantilever wings are essentially bending modes as was the case with T1 

and T2 wings. However, the third mode for T3 and T4 are different. For the T3 wing, it is a bending-

torsion coupled mode, but dominated by bending whereas for the T4 wing, it is a pure torsional mode. 

The fourth mode for the T3 wing is mainly a torsion dominated mode with some bending deformation 

present, but for the T4 wing it is a bending dominated mode with a small amount of torsion present. 

The fifth mode for T3 is a coupled mode whereas for T4, it is a torsional mode. 
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Figure 10. Natural frequencies and mode shapes of transport airliner wings T3 and T4. 

 
4. Conclusions 

Using the dynamic stiffness method and by applying the Wittrick-Williams algorithm, the modal 

behaviour of two sailplane and four transport aircraft wings is investigated. Natural frequencies and 

mode shapes for these wide ranging aircraft wings for cantilever boundary conditions are illustrated. 

The results are examined and discussed. In general, the first two modes for each of the six aircraft are 

effectively bending modes, but the third mode is either bending or torsional or a coupled mode 

depending on the type of the wing analysed. The fourth mode is again either torsion or bending 

dominated or even coupled. The same observation is made for the fifth mode. The investigation paves 

the way to establish trends for the modal behaviour of high aspect ratio aircraft wings. 
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