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Abstract

A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method
for modal analysis of plane elastodynamic problems based on both plane stress
and plane strain assumptions is presented in this paper. First, the general solu-
tion satisfying the governing differential equation exactly is derived by applying
two types of one-dimensional modified Fourier series. Then the SDS matrix for an
element is formulated symbolically using the exact general solution. The SDS ma-
trices are assembled directly in a similar way to that of the finite element method,
demonstrating the method’s capability to model complex structures. Any arbi-
trary boundary conditions are represented accurately in the form of the modified
Fourier series. The Wittrick-Williams algorithm is then used as the solution tech-
nique where the mode count problem (.Jp) of a fully-clamped element is resolved.
The proposed method gives highly accurate solutions with remarkable computa-
tional efficiency, covering low, medium and high frequency ranges. The method
is applied to both plane stress and plane strain problems with simple as well as
complex geometries. All results from the theory in this paper are accurate up to
the last figures quoted to serve as benchmarks.

Keywords: Spectral dynamic stiffness method (SDSM), plane stress vibration,
plane strain vibration, modal analysis, modified Fourier series, Wittrick-Williams
algorithm.

1. Introduction

A wide range of three-dimensional elastodynamic problems are generally treated
by two-dimensional (plane) theories, which include plane stress and plane strain
theories. The plane stress theory assumes that the stress perpendicular to the plane
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under consideration is always zero. This is often the case for plates whose upper
and bottom surfaces are free. The vibration of such a plate in its own plane is gen-
erally called inplane vibration. Despite the fact that the transverse vibration [I]
is usually given more importance for plate-like structures which are more easily
excited by transverse external forces rather than inplane forces, there are many
instances when inplane vibration can have pronounce effects. As a consequence,
there has been an increasing interest in the inplane vibration of plates and plate
assemblies. For instance, inplane vibrations are very important for built-up struc-
tures [2] where two or more plates are connected at a certain angle such that the
transverse and inplane vibrations are directly coupled. The inplane vibrations be-
come even more important in the mid to high frequency ranges for noise control
and energy transmission analyses of structures [3, #]. Examples include the walls
of aerospace structures, the hulls of ships and cutting tools. The plane strain theory
on the other hand, is widely used to investigate the free vibration of engineering
structures like earth dams [5], shear wall structures [6] and thin or thick hollow
cylinders [[7-T0]. For example, the earth dams and shear wall structures are de-
signed to counter the effect of lateral dynamic loads caused by earthquake or wind.
The plane strain theory is also widely used in plane wave propagation problems
[I1], which have applications in non-destructive testing [I2, T3] and phononic
crystal analysis [T4]. Some other investigators have used the plane strain theory
to study the mechanism of edge effects on the natural vibration and wave propaga-
tion properties of thick multi-layered plates [15, If]. As the natural mode shapes
can be regarded as the standing waves of a structure with the prescribed bound-
ary conditions, the plane strain free vibration can provide important information
for wave propagation problems with respect to different boundary conditions or
discontinuities.

Without doubt, the above problems can be solved by the finite element method
(FEM) with many well-developed commercial packages which can handle com-
plex geometries. However, the FEM may become inadequate and unreliable when
modelling structures within medium to high frequency ranges. In order to capture
the relatively short wavelengths of structural deformations in these frequencies, an
FEM model may require prohibitively large number of degrees of freedom (DOF)
and even then the results can be still unreliable. Furthermore, for optimisation and
parametric studies, the FEM becomes less attractive because of the considerable
computational cost and/or the requirement of remeshing the structures. Therefore,
analytical methods that are both efficient and accurate should be developed, which
will facilitate efficient parametric and optimisation studies by varying significant
parameters.

There are a few exact or analytical methods for plane elastodynamic prob-
lems, but even so, these methods are generally limited to simple geometries and
restricted boundary conditions. It is well known that the closed-form exact solu-
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tion for free inplane vibration (plane stress) is available only for rectangular plates
with a pair of opposite edges simply supported. The earliest research on this topic
was probably conducted by Lord Rayleigh [T7]. Much later, Gorman [I&] car-
ried out a thorough investigation for exact solutions of simply supported plates
by using Levy-type solutions. Xing and Liu [T9—21]] provided closed-form exact
solutions for all possible cases of simply supported plates by using the Rayleigh
quotient method. The classical dynamic stiffness method [22-25], first developed
for plates in the 70s [22], can be applied to plate assemblies but restricted to cases
with two opposite plate edges simply supported. Plates with other boundary con-
ditions are solved resorting to other analytical methods. Bardell et al. [23] used
the Rayleigh-Ritz method to discuss the free inplane vibration of single plates with
simply supported, fully clamped and completely free boundary conditions. Dozio
[26] used the Ritz method in conjunction with a set of trigonometric functions to
study the free inplane vibration of plates with elastic boundaries. Farag and Pan
[77, 78] made use of two types of series solution in the forced response analysis to
examine the inplane vibration of rectangular plates with a pair of opposite edges
clamped and other two edges being either clamped or free. The same cases were
solved by Wang and Wereley [29], utilising the Kantorovich variational method.
Gorman employed a systematic superposition method to study the free inplane vi-
bration of completely free [B(] and fully clamped [18] plates. Nefovska-Danilovic
et al [31] developed the dynamic stiffness method for isotropic rectangular plates
based on Gorman’s superposition method. Du et al. [32, B3] used a Fourier series
based analytical method to examine the free inplane vibration of plates with dif-
ferent boundary conditions. More recently, Papkov [34] provided the lower and
upper bounds of natural frequencies for the free inplane vibration of completely
free and fully clamped plates by an analytical method which makes use of the
asymptotic behaviour of quasi-regular infinite systems. There is much less work
on the free vibration of 3D solid structures under plane strain deformation. Such
analysis is generally based on numerical methods. Tsiatas and Gazetas [5] applied
an FEM model for plane-strain free vibration of earth dams. Nardini and Brebbia
[6] developed a boundary element method for plane strain vibrations. There are
even less papers on analytical methods for plane strain vibration. Gazis [7] derived
the exact solution for the plane-strain vibration of a thick hollow cylinder. Ahmed
[8] used a generalised Fourier-series technique for the axisymmetric plane-strain
vibrations of a thick-layered orthotropic cylinder. Dong et al [I5, T6] made use
of a direct-iterative eigensolution technique to investigate the edge effects in lam-
inated plates. However, most of the above analytical methods are limited to single
rectangular or annular domain and thus can not be applied to complex geometries.

There is a recently developed analytical method called the SDS method (SDSM
[B5-37], by the authors) which can handle complex geometries with any arbi-
trary boundary conditions. This method has been developed for the biharmonic
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equation [B5-37] which governs the transverse vibration of thin plates.  The
formulated SDS matrices can be assembled directly to allow the modelling of
complex geometries just like the FEM, but importantly the adopted shape func-
tion in the SDS method (SDSM) is exact instead of approximate as in the FEM.
Therefore highly accurate solutions can be obtained from the SDSM by using as
few elements as possible. Besides, the SDS formulation represents infinite de-
grees of freedom (DOF) accurately and efficiently by using only a very few DOF
along the structure boundaries. As a results, the proposed method can provide
highly accurate natural frequencies and modal shapes with remarkable computa-
tional efficiency, which is much superior to both the conventional FEM and BEM,
not only within low frequency range, but also within medium to high frequency
ranges. Furthermore, the SDSM has the certainty that no natural frequency of
the structure will be missed and no spurious modes will be captured. The above
superiorities of SDSM plus its analytical essence provide a huge advantage for
parametric studies and structural optimisation.

The main purpose of this paper is to generalised the previous SDSM for bi-
harmonic equation [B5-37] to Navier’s equation governing plane elastodynamic
problems covering both plane stress and plane strain assumptions. However, the
SDSM development for plane elastodynamic problems in the current research is
different and indeed a formidable challenge compared to that in the biharmonic
equation for thin plates [B5-37]. This is due to the fact that previous investiga-
tions [35-37] involved only one variable as opposed to two variables encountered
here. Moreover, there is a 90° phase differences between the expressions for the
two variables and between the associated boundary conditions in the plane elas-
todynamic problems. All of the above differences increase the complexity many
folds, given the fact that completely arbitrary BCs will be accounted for and an-
alytical instead of numerical formulations are to be developed. Therefore, the
earlier SDS formulation through the solution of the biharmonic equation [B5-37]
as well as the associated building blocks (e.g., the .Jy count) need to be generalised
in the new SDSM development for plane elastodynamic problems. More impor-
tantly, the differential equation governing plane elastodynamic problems repre-
sents a model for a wide range of other partial differential equations (PDEs) and
therefore the generalised SDS formulation in this paper will no-doubt establish a
more general framework for the SDS formulation for other PDEs, e.g., different
versions of Helmholtz equations and Maxwell equation. It should be noted that
the proposed method can also be applied to wave propagation (dynamic response)
analysis, but this paper focuses only on modal analysis. It is well known that the
modal analysis of structures within low frequency range is a fundamental prereq-
uisite for elastodynamic analysis, not only to avoid resonance but also for further
dynamic response and aeroelastic analyses; the modal analysis within medium to
high frequency ranges is important, for instance, to evaluate the structures’ acous-
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tic performance as well as energy flow properties.

This paper is organised as follows. After this introduction section, the govern-
ing differential equation (GDE) and general boundary conditions (BC) are derived
by using Hamilton’s principle through a coordinate-free tensor form in Section
D1l. Section 2 presents the attainment of exact general solution using two types
of modified Fourier series. Then the spectral dynamic stiffness (SDS) matrix for
an individual element is formulated through symbolic manipulation; the element
SDS matrices can be assembled to form a global SDS matrix to model complex
geometries subject to any arbitrary boundary conditions, see Section 4. In Sec-
tion 5, the Wittrick-William algorithm is applied and the so-called .J, count
problem is resolved. Convergence, accuracy and computational efficiency studies
are presented in Section BI. The theory of this paper is applied to both plane
stress (Section B2) and plane strain (Section B3) problems for benchmark cases
as well as engineering applications. Finally, the principal conclusions of this work
are reported in Section &.

2. Theory

2.1. Governing differential equation and general boundary conditions

The governing differential equation (GDE) and the corresponding natural bound-
ary conditions (BCs) for plane elastodynamic problems are derived using Hamil-
ton’s principle. The application of the Hamilton’s principle will not only lead
to the GDE but also relate the generalised forces and displacements BCs which
facilitate the spectral dynamic stiffness (SDS) formulation in the next step. The
GDE and BCs are derived in a coordinate-free tensorial form which is applicable
to both plane stress and plane strain vibration problems.

Assuming that a three-dimensional (3D) elastic body undergoing vibration de-
scribed by the contravariant basis B = {g;, 95,93} with g; - g, = g5 - g, = 0,
the geometry, material properties, deformation and boundary conditions of the 3D
body may then be considered not to vary in the g, direction. Therefore, the defor-
mation of the 3D body can be represented by the deformation of the cross section
occupying €2 bounded by 0€). Hamilton’s principle for the cross section {2 can
then be written in the usual notation as

to
5/ (K—W+W.)dt =0, 0
t1

where KC and VWV are respectively the kinetic and elastic energies of the body on
the cross section €2, and W, is the work done by external loads g on the boundary
0% (assuming no body force is applied) so that

1 1
IC:—/p'a-'udA, W:—/a:edA, W, = q-uds, (2)
2 Jo 2 Jg

o0
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where p is the density of the elastic body; () denotes the derivative of () with
respect to time; e and o are linear strain and Cauchy stress tensors respectively
with {

e:§(u®V+V®u)::(V®u)S 3)

and
o= Mr(e)l +2ue = AV - -u)l +2u4(V @ u)’ 4)

and where A and p are the effective Lamé constants of the cross section made of
a certain isotropic material. Here, \ takes different expressions for plane stress
(A°) and plane strain (A*) deformation in terms of engineering elastic constants
E and v; whereas p (which is essentially the shear modulus G) takes a unique
expression, namely

Ev
A= plane stress E
A= L= p=G=——
A= it )(I; 20 plane strain 2(1+v)
v)(1—2v

(&)

It should be mentioned in passing that A° or \® can be obtained by letting 033 = 0
or €3 = 0, respectively when reducing the Hooke’s law from a 3D problem into
a 2D (plane) problem. A close inspection on the Eq. (B) reveals that \* > \°
for v € [0,0.5). It is therefore expected that the natural frequencies for the plane
strain deformation will be always larger than those under plane stress deformation
when all other factors are identical. Also, it is easily seem that A* is the same as
that of 3D solid whereas \° is somehow different.
After routine manipulations, Eq. (0) leads to

to
5/[/(V~a—pfu)-5udz4+/(q—a'-n)-éuds dt =0. (6)
Q o0

t1
In view of Eq. (@) and due to the complete arbitrariness of du, the first terms in
the square brackets on the left hand side of Eq. (B) leads to the GDE in the form

V.o—piu=N+p)V(V-u)+uViu—pi=0, (7)

which is the so-called Navier’s equation. Now introducing the local coordinates
{m, s} attached to the boundary Jf2 where n and s are normal and tangent unit
vectors forming an orthonormal basis, the second term in the square brackets on
the left hand side of Eq. (B) becomes

/(q—a-n)-éuds:/ (g—o-n)-(du,n+dus)ds=0  (8)
G
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Figure 1: Coordinate system and notations for a rectangular element.

By substituting Eq. (&) into Eq. (B), the natural BCs can now be written in the
form

Oy : =0 -1n-n=AV -u+2uV,u, =(A+2u)V,u, + \Vus, (9a)
dus: g =0 -n-8=pu(Vyus + Viuy,), (9b)

where ¢, =qg-nandq, = q - s.

We will first aim to obtain the spectral dynamic stiffness (SDS) matrix of a
rectangular element for the plane elastodynamic problems, see Fig. [, following
which, complex geometries will be modelled as an assembly of SDS elements.
If Cartesian coordinate system (z,y) is introduced with the origin placed at the
centre of the rectangular, so that (z,y) € [—a,a] x [=b,b] = Q for u = [u,v]”,
the GDE of Eq. () becomes

(A4 200U g + prth gy + (N4 1)V 4y — pii = 0, (10a)
(A +20)v 4y + (0 g0 + (A4 )ty — pt =0, (10b)

where the suffix after the comma denotes the corresponding partial derivatives. If
harmonic oscillation is assumed u = U exp(—iwt) where U = [U, V], the GDE
in the frequency domain can be derived from Eq. (I0) to give

a1 U o +Uyy + a3V + kU =0, (11a)
a1Vyy + Vi + asU sy + KV = 0, (11b)

where
ay=ag+2,a3=a9+1, ay=\p, k= puw?/G. (12)

By recalling Eq. (B), a¢ (and therefore a; and as) will have different expressions
for plane stress and plane stress deformation, namely,

2v

ag = plane stress
O 1—v
ag = ) 90 B (13)
ag = plane strain
1—-2v



The natural BCs in the frequency domain along the four boundaries B; (i=1,2,3,4)
of the rectangular element in Fig. [ are obtained by applying Eq. (9) to the four
boundaries to give

(SLz Ni; 57—; Sia 2.21,2,3,4, (14)

where the direction of L;, N;,T; and S; are given in Fig. [ with the following
expressions

Ll I U‘x:a ] Nl [ (alU,x + aOVy) |:L":a ]

Tl V|m:a Sl (U;?J + V:x) |9U:CL

L, V]y=p Ny (a1Vy + aoUy) ly=b

| _ U|y:b S5 _ (U7y + Va:) |y=b

Ly| = Ul | M| = = (@Us + a0V, o (1
T3 V‘z:fa 53 - (U,y + Vx) ‘ac:fa

L4 V’y:—b N4 - (al‘/,y + CL()U’m> |y:—b

_T4_ _U|y:— i _54_ L — (U,y + Vx) |y:—b

Here, L; and 7; are introduced to denote the normal u,, and tangent u, displace-
ments of Eq. () respectively along the ith boundary B; whereas N; and S; are
the longitudinal (¢,,) and shear (¢,) forces along the same boundaries. It is worth
emphasising that L;(N;) and T;(S;) are defined either by U (o) and V' (o,,) or by
V(oyy) and U (0, ), depending on the corresponding boundaries. For plane stress
vibration which consists of elements of different thicknesses h, the coefficient G
in Eq. (I3) will be replaced by Gh to incorporate the contribution of thickness in
each element.

Next, the exact general solution of Eq. () will be derived which provides
complete flexibility to describe any arbitrary BCs of Eq. (I3).

2.2. Spectral representation of exact general solution and general boundary con-
ditions

One of the most challenging problems in the SDSM development is the deriva-
tion of the exact general solution of GDE subject to any arbitrary BCs, which
is without doubt more challenging than the classical dynamic stiffness method
(DSM) development under simply support assumptions. This is because the SDSM
is for a real two-dimensional (2D) problem whereas the classical DSM is some-
how for a quasi-one-dimensional (1D) problem (either for beam elements or for
Levy-type plate elements with a pair of opposite edges simply supported).

As mentioned in the Introduction, the SDS formulation for plane elastody-
namic problems is expected to be very different from that developed earlier for
the biharmonic equation governing flexural free vibration of thin plates [35-37].
This is because there are two functions U (z, y) and V (z, y) involved in the GDE
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() rather than only one W (z, y) encountered earlier in the biharmonic equation.
Besides, there is a 90° phase difference between U and V' in the GDE (1) as well
as between L;(N;) and T;(S;) in the BCs, see Eq. (I9).

Accordingly, in the current SDSM development for plane elastodynamic prob-
lems, two (rather than only one [B5-377]) types of modified Fourier basis functions
(MFBF) and the corresponding modified Fourier series (MFS) need to be intro-
duced. They are given in Section ZZ21l. These two types of MFBF and MFS are
adopted not only to obtain the exact general solution of the GDE (Section IZ27)
but also to transform any arbitrary BCs into the corresponding coefficient vectors,
see Section 273,

2.2.1. Modified Fourier basis functions and the corresponding modified Fourier
series
Two types of MFBF and the corresponding MFES are presented in this section,
both of which will be used in the SDSM development later in this paper. The
first MFBF is the one that was already utilised in the SDSM development for
biharmonic equation [35-37], namely

~ Jeos(us€) 1=0 _
77(’}/156) - {Sin(’nsf) =1 ) Yis = (3 +

where § € [-L,L], s € N = {0,1,2,...}. The expressions in Eq. (If) are es-
sentially the eigenfunctions of 1D Laplace operator equipped with zero Neumann
BCs. This set of MFBF has been proved mathematically [38] to form a com-
plete orthogonal set. The corresponding MFS exhibits a much fast convergence
rate (asymptotic order two) than the classical Fourier series (asymptotic order one
only) when representing analytic, non-periodic functions, see [BY9]. Indeed, the
corresponding MFS is a powerful and elegant tool which partly contributes to the
remarkable accuracy and numerical stability of the previous SDSM in [35-37].
However, in the current SDSM formulation for plane elastodynamic problems,
apart from the above MFBF given by Eq. (), another type of MFBF is also

required, namely,
sin(y€) (=0
T (7€) = ) 17
1 (1s€) {COS(%sf) [—1 (17)

The expressions of Eq. (I1) are essentially the eigenfunctions of the Laplace
operator equipped with zero Dirichlet BCs. The notations [, s, £, ;s are the same
as those in Eq. (06). It is apparent that the two MFBF correspond to the first
derivatives of each other with respect to £. Therefore, the two MFBF of Egs. (I8)
and (7) form a conjugate pair. The above conjugate property is a crucial factor
which will be used in the current SDSM development to cope with the 90° phase

™
)T (16)

DO | =~



different between U and V' and between the BCs. The first few terms of the two
types of MFBF are illustrated in Appendix Al.

There are different adaptations of modified Fourier series (MFS) correspond-
ing to the MFBF described above in Eqs. (I8) and (7). In the current SDSM,
the following two sets of MFS related to MFBF defined in Eqgs. (If) and (7) are
proposed. For any 1D arbitrary function i(§),§ € [—L, L] subjected to Dirichlet-
type BC (with arbitrary Dirichlet BC, i.e., h(4L), but with zero Neumann BC,
i.e., deh(£L) = 0), one can write

7;(’}755) /L (’yls£>
h(&) = Hi, , Hig = h(& d¢, (18)
( ) % : \/glsL : —L ( ) Cls
le{0,1}
where
l—OandS—O. (19)
[=1lors>1
For any 1D arbitrary function h(&), —L, L] subjected to Neumann-type BC

(with arbitrary Neumann BC, i.e., dg ( L), but with zero Dirichlet BC, i.e.,
h(£L) = 0), one can write

f)/lsg /L 7?*(’715§>
E Hs , His = h(§)——==d¢. 20
seN : Cls l —L (6) glsL 6 ( )
le{0,1}

Similar to [BS], v/(;sL is introduced in Egs. (IR) and (P0) to eliminate the depen-
dence on the length of the integral range [—L, L] and to retain the symplecticity
[24] in the formulated SDSM.

Next, the above two sets of MFBF given by Eqs. (If) and (I'Z) will be applied
to derive the exact general solution of the GDE of Eq. (I]) and the corresponding
two types of MFS in Egs. (IR) and (20) will be used to transform the general BCs
given by Eq. (I3).

2.2.2. Spectral representation of exact general solution

The exact general solutions for both U(z,y) and V(x,y) of Eq. (IIl) can be
appropriately expressed by the combination of two series with the aid of the two
type of MFBF given by Eqs. (I6) and (I'7) as follows

U )= > Tim®)Uim@) + > Upn(@)T;(Biny), (21a)
ké’f{%ﬁh jetoy

Vizy)= Y Tm®)Vim@+ Y. Vin(@) T (Biny) (21b)
meN neN

ke{0,1} j€{0,1}
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where Ty, 7; and 77, T;* are MFBF defined in Eqs. (I6) and (I7) respectively
with the wavenumbers oy, = (m + k/2)7/a and 3, = (n + j/2)7/b; Upm(y),
Ujn(x), Vim(y) and Vj,(x) are 1D functions to be determined exactly from the
GDE in the next step. It should be noted here that both U(z,y) and V(x,y) are
expressed by the combination of two series: the first series is expanded using
the MFBF in x with the corresponding y-components exactly derived from the
GDE,; the second one is expanded using the MFBF in y with the corresponding -
components exactly derived. The combination of such two series instead of only
one is essential to establish a complete solution space for both U (z, y) and V (z, y)
governed by the GDE of Eq. (). Another point needs to be emphasised is that
the second series of U (x, y) and the first series of V' (x, y) in Eq. (1) are expressed
in terms of MFBF of Eq. (I[) whereas the first series of U(x,y) and the second
series of V' (z, y) are expressed in terms of the MFBF of Eq. (7). This is because
U(z,y)and V (z,y) denote the deformations in = and y directions respectively and
therefore, have a 90° phase difference. It will become more transparent in the later
formulation that Eq. (1)) is indeed the unique expansion which guarantees that the
k and 7 subscripts will correspond correctly to the symmetric and antisymmetric

properties of the related mode shapes.

Now we are in position to derive the unknown functions Uy, (y), Ujn (), Vim (y)
and Vj,,(x) of Eq. (Z1). Substituting Eq. (Z1)) into GDE of Eq. () and collecting
similar terms of the MFBF yeild the following two ordinary differential equations
(ODE) sets

d2 + k —a1a? —p1d Ukm (y) 0

Y km Y km\Y) | _ v)k 1 N tk=m= 22:
[ p1dy aldi tr—a2 | [Vim() 0 (V)k € {0,1}, m € N excep m=0 (22a)
ard; +k — B3, p2dg Ujn(z)] _ [0 . S
[ —piads 2 4 — alﬁ?n Vin(z)| = [0 (¥)j € {0,1},n € Nexceptj =n =0 (22b)

where d, = d'/da’, d! = d'/dy’ and py = (=1)*asapm, 12 = (1) az5;n.
(The two special cases when £k = m = 0 and 7 = n = 0 will be treated at
the end of this section.) Notice that Eqs. (Zd) and (Z2H) are simultaneous ODE
with constant coefficients, therefore it is appropriate to assume that Ug,,(y) =
Okm Viem (y) With Vi (y) = exp(trmy) and Vi, (z) = 0;,U;n(x) with Uj, () =
exp(rj,x). Consequently, the characteristic equations of Eqs. (22d) and (Z2H) are
respectively given by

A1ty + botiy + 2 =0 (23a)
arry, +bir, 46 =0 (23b)
where
by = (a1 + 1)k — 2a,03,, = (k—ai )(k—ana3,),
by = (a1 + 1)k — 24 ]Zn; cr = (k— fn)(ﬁ —ax ]271) .
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It is easily seen that Eq. (Z34) has four roots £t,, and +ts;,, and Eq. (Z38) also
has four roots =7, and =£7ry;,,, where

tlkm} _ \/ by ¥ /B~ darcs rljn} ) \/ S FVE o,
2a1 '

b
tokm 2a1 ’ T24n

Thus the general solutions for Uy, (v), Viem (v), Ujn () and V, (x) in Eqs. (21) are

Ukm(y) = (ilkmélkmCh(tlkm:'i) + 6lkmé2km8h(élkmy) + 62kmé3k’r~n'3h(t2kmy) + 62kmé4km5h(t2kmy)
Viem (y) = C1emch(tiemy) + Cormsh(tixmy) + C3pmch(tarmy) + Carmsh(tapmy)

(25a)

an(zt) = Dljnch(rljnx) + ngnsh(’r‘ljnx) 4+ D3jnch(’f'2jn$) + D4jnsh(r2jn:t)
Vin(2) = 01jnD1jnch(r1jnt) + 01jnD2jnsh(rijnt) + d2jn Dajnch(rejn) + 02jn Dajnsh(rajne)
(25b)

where 0;,, and d;j, (1 = 1,2) are obtained by inserting Eqs. (£3) into Eqs. (22)
to give

2 — a3 arrdy, + 65— B,
S, = — —ikm TR O s Oijn = _OTign T8 Bjn : (26)
H1tikm H2Tijn
Also, the following identities can be obtained based on Egs. (I2)
(alrizjn + K= Jzn)(r?jn +K—a jzn) + /"Lgr’?j’n =0, (27a)
(tzzkm + K= alaim)(altzzkm + K= aim) + u?t?km =0. (27b)

In what follows, the exact general solution obtained above will be partitioned
into four symmetric/antisymmetric components. This will be taken advantage of
in the subsequent SDSM development leading to analytical expressions by using
the two types of MFBF discussed earlier. This procedure will also contribute to
the reduction of the computation cost. Thus U(z,y) and V(z,y) given by Eqs
(IT) and (P3) can be decomposed into four k£j components

Ulx,y) = Z Ukl (z,y)=U" + U + U + UM, (28a)
k,je{0,1}

Vie,y)= Y V¥@y)=VO+vo0 vyl (28b)
k,jE{O,l}

where k or j taking 0 and 1 denotes symmetric and antisymmetric deformation, re-
spectively. However, the partition in the present work for the plane elastodynamic
problems requires more special attention when compared to that in the transverse
vibration problems [35-37]. It is very important to determine the appropriate sym-
metric or antisymmetric properties of U*/ and V*/. The most appropriate way is
to determine their symmetric/antisymmetric properties based on the longitudinal
deformation. Therefore, U% and V' are antisymmetric in 2 whereas U7 and V%
are symmetric in z (j € {0, 1}); U*® and V*! are symmetric in yy whereas U*! and
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VK0 are antisymmetric in y (k € {0, 1}). In this way, U* and V*/ can be repre-
sented by considering the appropriate symmetric/antisymmetric properties of the
MFBF and the hyperbolic functions

Ukj(xa y) = Z 77@ (O‘kmm) Z (‘szkm zkm%] zkmy :| + Z |: Z z]nH;:("'zjnm))ﬁ(Bjny):| s
meN 1=1,2 neN [i=1,2
(29a)
ij(.’ﬂ, y) = Z 77€(ak'm$) Z (Clka zk:'my :| + Z |: Z zynDijnHk(""ijnx)) ﬁ*(ﬁjny)} 3
meN i=1,2 neN [i=1,2

(29b)

where Cig, and D, are unknowns to be determined, and Hy, H; and Hj, H;
stand for hyperbolic functions defined as follows.

ch(tikmy) 7=0 ch(rijnz) =0
Hi(tikmy) = ,  Hr(rinzr) = , 30a
J( ’ y) {Sh( zkmy) j=1 k(rj x) Sh(rijrﬁ) k=1 ( )
. sh(tigmy) 7=0 sh(rijnx) =
e (b)) = M (raa) = 30b
7 Cikmy) {ch( tiomy) j =1 k(Tijn) eh(rijuz) _ (30b)

Attention should be drawn to the above deduction from Egs. (22) to (Z9) for two
special cases. When £k = m = 0 and 7 = n = 0, Egs. (Z23) and (2ZH) will reduce
to second-order equations both of which will lead to two roots +-tqg and +ryy with

to():?"oo: \/ —li/al. (31)

Accordingly, Eq. (Z3) becomes

Uim =0, Vim = C~'100011(7500?/) + C’zoosh(too?/) , whenk=m =0, (32a)
‘/jn = O, an = Dloo(}h(?”‘oox) + DzooSh(T‘ooJJ) , Whel’lj =n=20. (32b)
As a result, when 5 = n = 0, the zero term (n = 0) of the second series in Eq.

(293) becomes DooHf(roox); when k = m = 0, the zero term (m = 0) of the first
series in Eq. (Z9H) becomes CooH i (tooy)-

2.2.3. Spectral representation of general boundary conditions

Due to the 90° phase difference between L; (IN;) and T; (S;), the two types
of MFS of Eqs. (I6) and (2) are adopted to transform any arbitrarily prescribed
BCs L;, N; and T}, S; respectively on the ith boundary ;. To this end, one has the
corresponding modified Fourier coefficient vectors

f=[NT 8T NI s¥ NI 8T NT sT]", (33a)
d=[L7, 77, LY, 77, LY 17, LT 17]", (33b)
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where

Ni = [Ni007Ni01;"' 7N2'Os>“' 7Ni107Ni117"' 7Nilsa"']T7 (343-)
Si = [Si017"' 7Si037"‘ 7Si1075i117"‘ 7Silsa"']T7 (34b)
Li = [Li007Li017' o 7Li03,’ o 7Li10,Lz'117' o 7Lz'13:‘ "]Ta (34C)
Ti = [EOla"' 77—%057"' 77—’7;1071—’1'117"' aﬂlsa"']T- (34d)

Here, the sub-vectors IN; and L; are the modified Fourier coefficient vectors of
the BCs on B; of the element by applying the MFS (I6) to N; and L; of Eq. (I3)
respectively, and S; and T'; are the corresponding modified Fourier coefficient
vectors by applying the MFS (1) to S; and 7; of Eq. (I3) respectively. For
example,
N — LN T(’Ylsf / T* T (ns)
ils — zls S )
G \% Cls Cls

where [ € {0,1},s € N, £ denotes either = or y and 2L is the boundary length
representing either 2a or 2b in this paper. It should be noted that S;oo and T
are zero because 7, (700) = 0 based on Eq. (7). Therefore, both S;o0 and Tjgo
have been deleted from the vectors S; and T'; respectively to avoid null rows or
columns.

2.3. Development of the spectral dynamic stiffness matrix of an element

The general solution obtained in Section will serve as the exact shape
function to develop the spectral dynamic stiffness (SDS) matrix for an element in
this section. The analytical formulation procedure for the plane vibration in this
paper is similar to but different from that for the transverse vibration [B3]. First,
the formulation for the four component SDS matrices K"/ is provided in Section
D311, Then, the four component matrices K/ will be combined in a suitable way
to form the complete SDS matrix K for the whole element, see Section 2372,

2.3.1. Development of the SDS component matrix K"
Essentially, the component SDS matrix K™ relates the generalised displace-
ment and force BCs
ki 7ki ki ki ki arki qkj QkiT
[L Lb7Ta 7T ] [NaaNb aSa7Sb] ) (35)
both of which are caused by the deformation described by the kj component of
general solution, namely, U ki and V*J. In short, the formulation of the component
SDS matrices K"/ is accomplished by substituting U*/ and V* into the gener-
alised displacement and force BCs and eliminating the unknowns in U* and V.
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This includes two steps. Firstly, all unknown coefficients Cyo, Cm, Corm, Doos Dijn
and Dy, in the solution component of Eq. (EY) are determined through the pro-
cedure described in Appendix {, which is essentially based on the expressions of
L(’jj, ij , S(’f-j and S{fj in Eq. (). (Compared to the transverse vibration for-
mulation [B5], special attention should be paid here in the determination for Dy
(when n = j = 0) and Cyy (when k = m = 0). Subsequently, an infinite system
of algebraic equations is derived by substituting the above determined unknowns
into the remaining entries 7/ T,fj , Nki and N,f’j in Eq. (C) and applying the
modified Fourier series formula (A-) to the hyperbolic functions, see
D for details. This infinite system can be rewritten in the following mixed-variable

matrix form as: . b y b
{Tkj} _ {A;%& AkT”,s} [L,f.} ' (36)
N AN, ANg| |SY

The explicit expressions of the four coefficient matrices A% in Eq. (38) are given
in Appendix H, which are concise and easy to be implemented in programming.
The sub-vectors of Eq. (Bf) are defined as

Tk — [Toios Tugts > Tujny -+ s Towos Tots = > Torms =+ 17 (37a)
N™ = [Najo, Naji, -+ s Najn, =+ » Newo, Nokt, -+ Nokm, -+ 1", (37b)
L% = [Lajo, Laji, s Lajn, -+ s Liokos Lokt -+ Lok, - -+ |7 (37¢)
S* = [Sajo, Saji -+ » Sagns -+ Sokos Sokt - 5 Sokms -1 (37d)

whose entries are the Fourier coefficients in Eq. (C). Each entry of the above
vectors corresponds to a frequency-wavenumber dependent DOF. It should be
noted that when £k = m = 0 or j = n = 0, the term Sg0, Spoo and Ty00, Troo
in Eqs. (3Zd) and (B74) are zero and should be removed from the matrices S*’
and T respectively. Also, the mixed formulation of Eq. (38) facilitates resolving
the so-called J, count problem which will be described later in Section 3.

On the basis of Eq. (Bf), the SDS matrix for each £j component can be recon-
structed in the following form

7 =K"d"7, (38)
in which
) Nkj ] ij
fk] =G |:Sk]:| ) dkj = |:Tk]:| ) (39)
kj ki Akj —1 gkj ki ki —1
KY_G [ANJL — A AT AL A AR ] “0)
R i :
Ars Ay Ars
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(Note that the structure of the K" above takes different form compared to that
in the transverse vibration formulation, i.e., Eq. (29) in [B5].) In Eq. (D), G is
the shear rigidity defined in Eq. (8) which results from Eq. (CIH). As mentioned
earlier at the end of Section 1l, G’ will be replaced by GG/ in plane stress problems
to consider the contribution of different thickness of each element.

2.3.2. Integration of component SDS matrices to the elemental SDS matrix

The integration of component SDS matrices to the elemental SDS matrix is
similar to that for the transverse vibration [33]. Therefore, f, d of Eq. (B3) can be
related to f i dM of Eq. (B9) in the form

f= T[fooT’ f01T’ floT_/ fllT]T’ [dOOT,me,me, dllT]T _ ;TTd_ (41)

However, in Eq. (), the transfer matrix 7" is determined by the relationships of
Egs. (B2) and (B3) of Appendix B|, which takes the different form compared to
that in the transverse vibration formulation in [B3], namely

I, o0 oo o0 00 01,0 0000 O O
o oooI,ooo0o0O0O oO0o0I,OooO O
o oIlo o ooo oo I ooo o o
O 000 o0oO0I,ooO O 00001, O
oI,ooo0I,0 00O OO0O0O0O O
o ooooo0oo0o0o0I, oo00I,0 O
o ooI, oooIl, oo o000 0 o0
r_|© 000000000 0I,00 0 I, 42)
—I, 0o 00 000 01I,0 0000 O O |’
O o0o00-1I,00 000 0 o0I,0 0O O
o oIlo o ooooo-I'ooo o o
O o000 o0oO0I,oOoOO O0o000-1I, 0
o-1,00 0I,0 0O OO 0000 O O
O o000 o000 0O O-I,0 oo0I, O O
o o oI ooo-I'o o o000 O O
.0 o000 o0o00oO0OOO 0I,00 O0—1I,]

where I,,, I L, I, and[ ,,Tﬂ are identity matrices of dimensionn,n—1,m and m —1
respectively, and O represents null matrices. Finally, putting Egs. (B8), (B3) and
(ET) together yields the SDS matrix for the entire element as

f=Kd, (43)
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where
K" o o o

1 o K" o o)
K= QT o o K" o
o) o) o K"

T" (44)

is the SDS matrix of the entire element.

2.4. Assembly procedure and the application of any arbitrary boundary condi-
tions

One of the major advantages of the current SDSM over other analytical meth-
ods lies in the fact that the SDS elements can be assembled to allow the modelling
of complex geometries. The assembly procedure from the elemental SDS matri-
ces K to form the final SDS matrix K ¢ is similar to that of the finite element
method (FEM). The only exception is that SDS elements are connected by line
nodes whereas the FEM elements are connected by point nodes. The assembly
procedure has been described in [B&] and will not be repeated here.

The other advantage of the current SDSM over other analytical or numerical
methods is that in the SDSM any arbitrary boundary conditions (BCs) can be ap-
plied very easily and accurately in the strong form. These BCs can be arbitrarily
prescribed ranging from classical, uniform elastic BCs or arbitrary non-uniformly
distributed elastic supports, mass attachments as well as elastic coupling con-
straints [41]. For plane elastodynamic problems governed by Eq. (), there
are four types of classical BCs. For each ith boundary B;, one has the following
four possible classical BCs

Clamped (C): L;i=T;,=0, (45a)
Simply supported 1 (S;): T, =N; =0, (45b)
Simply supported 2 (S»): L;=5=0, (45¢)
Free (F): Ni=5=0. (45d)

The final SDS matrix K ; of the whole structure can be condensed directly for the
DOF fixed with zero displacement. More specifically, the rows and columns K ;
which related to L; and T'; will be condensed for ‘C’ boundaries; those related
to T'; will be condensed for ‘S;’ edges; those related to L; will be condensed for
‘S,” edges; and of course, no condensation is required for ‘F’ edges.

2.5. The Wittrick-Williams algorithm enhancement and mode shape computation

In essence, the elegance of the SDSM lies in representing a dynamical sys-
tem accurately by using an extremely small number of DOF in an analytical and
concise manner. This makes the SDSM superior to other numerical or analyti-
cal methods in terms of both accuracy and computational efficiency within low,
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medium and high frequency ranges. The merits of the SDSM are exploited by the
application of the well-known Wittrick-Williams (WW) algorithm [42] which is
further enhanced by some novel techniques as described in this section. Suppose
that w denotes the circular (or angular) frequency of a vibrating structure, then
according to the WW algorithm, as w is increased from zero to w*, the number of
natural frequencies passed (.J) is given by

J=Jo+s{K;}, (46)

where s{K s} corresponds to the negative inertia of the final SDS matrix K
evaluated at w = w™; and Jj is given by

Jo=_ Jom: (47)

m

where Jy,, is the number of natural frequencies between w = 0 and w = w™ for an
individual component member when its boundaries are fully clamped. For more
details, interested readers are referred to [BY, B, B2]. A similar strategy described
in [B3] is also adopted here to provide an efficient and reliable prediction for the
above Jy,,, which is based on the closed-form solution of each members subject to
full simple supports. Therefore, .Jy,,, of Eq. (E2) can be obtained by applying the
WW algorithm in reverse to give

J()m - JSm - S(KSm> y (48)

where Jg,, is the overall mode count of a certain member with all boundaries
subject to simple supports, and s(K g,,) is the sign count of its formulated SDS
matrix Kg,,. In the present method, the strategy based on Eq. (EX) has been
successfully implemented using the following steps.

First, the computation of Jg,, in Eq. (BX) is accomplished in an analytical
manner by solving a number theory problem. It is well-known that the exact
solution for the natural frequency of an all-round simply supported (S,) element
is available [, 19, &3]. The natural frequency w,;,; for the case can be expressed
analytically in the following nondimensionalised form

20 (2awmi\” . N
Ep( ac ) =a,(m* +n*A%), m,ne{1,2,3 ..}, (49)
m
and
2 2awmp \ 2
é’(mn) = (ay 4+ 2)(M? +n*n?), m,7 € {0,1,2,3,..} exceptn =1 =0,
™
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Figure 2: The mode counts Jg,,1 and Jg,,2 associated with Eqs. (BY9) and (B) are essentially
extended Gauss circle problems illustrated in plots (a) and (b) respectively. Black solid dots are
counted whereas empty circles are not counted. In both plots, IT; = 2p (2aw* /7)* /G.

where 17 = a/b and m and 7 are the number of half-waves in the = and y direction
respectively. Thus, Jg,,, the number of natural frequencies lying below a trial
natural frequency w*, is essentially the total number of combinations of (72, 7)
such that the left-hand sides of Eqs. (89) and (80) with w,;,; = w™* are not smaller
than the right-hand sides. Therefore,

Jsm = Jsm1 + Jsm2 - (51)

Obviously, Jg,,,1 and Jg,,2 can be obtained from a numerical search which may
be computationally expensive and the procedure may miss some of the natural
frequencies. However, there exists an analytical expression for Jg,,; and Jg,,1
and this problem is essentially an extension of the Gauss circle problem [34] in
the field of number theory. In essence, Jg,,; is the number of black solid dots
within the blue shaded region covered by the curve m? + n*n? = II/a, in Fig.
D(a); whereas Jg,,2 is the number of black solid dots within the red shaded region
covered by the curve 1h? + n*n? = II;/(a; + 2) in Fig. D(b). The analytical
expressions for Jg,,; and Jg,,2 can be deduced by solving the inequalities for
which the left-hand sides of Eqs. (B9) and (80) with wy;; = w* are greater than
the right-hand sides, hence

\_HZJ Hl \_HSJ Hl
Tom =Y | o Tl Jsme = Zwal — —?/n+ siga(m)]
m m=0

=1
(52)
where ‘|-]” is the floor function denoting the largest integer not greater than *-’
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and

20\ > 2pw*? I, e
I == Iy = | = =2, Iy =/ —n2.
! (7?) G ’ 2 aq s 2 CL1+2 g

Next, the computation of s(K g,,,) in Eq. () is achieved in an elegant way by
taking advantage of the mixed-variable formulation explained earlier in Section
231. Like in [B5], when a rectangular element is subjected to all round simple
supports as defined in Eq. (B3d), the four symmetric/antisymmetric SDS matrices
are decoupled. Hence, s(Ksin) = > jcio.1y s(K% ). Now recalling Eqs. (BR),
(B9) and (B0), the case with fully simple supports of type S5 becomes equivalent
to letting L* = §* = 0, such that s(K% ) = s(A%_l). In this way, one has

SKsm)= Y s(Afs )= Y s(Af), (53)

k,je{0,1} k,je{0,1}

which takes a simpler form than that for the transverse vibration [B3] (Eq. 45
therein). The above technique of computing Js,,, and s(K g,,) resolves with con-
clusive certainty the problem of determining .Jy in a highly efficient, accurate and
reliable manner. The mode shape computation follows similar procedure as in the
SDSM for plate transverse vibration problem [36]. Therefore the details are not
given here for conciseness (for more details please refer to [B6]).

3. Results and applications

The SDSM described above is implemented in a Matlab program which
gives highly accurate solutions for plane elastodynamic problems with remarkable
computational efficiency. The convergence, accuracy and numerical efficiency
studies are carried out in Section B below. Then the method is applied to both
plane stress problems in Section and plane strain problems in Section B3.

3.1. Convergence and efficiency investigations for low, medium and high fre-
quency modes

Unlike most of other methods that are based on domain discretisation, there
is no need to study the convergence of the current SDSM with respect to h-
refinement. This is because the SDS formulation is based on exact general so-
lution (shape function) and therefore, there is no need to discretise the analysis
domain unless discontinuity of geometry or material properties exists. However,
any arbitrarily prescribed boundary conditions along a certain line node (bound-
ary) with infinite degrees of freedom (DOF) is represented accurately by the modi-
fied Fourier series. In the numerical implementation, those modified Fourier series
should be truncated at a certain stage. Therefore, the convergence and numerical
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Table 1: Convergence and efficiency studies for the dimensionless natural frequency parameter of a
square isotropic plate (v = 0.3) with four sets of different BCs by using the SDSM. FEM solutions
in comparison are obtained by (ANSYS) using a 300 x 300 mesh of Plane 182 elements (each
element has four nodes with two DOFs at each node). The SDSM results for the SoS1S2S; case
are compared with exact solutions. Bold values are those for which the computed eignfrequencies
using SDSM converge to the last figures of the presented values.

A =2wa/7\/p/G
7 5

BC M =N T 3 3 3 7 g Sig.Dig. Time(s)
Ccccc 2 1.91223 1.91223 2.27834 2.78883 3.15033 3.16444 3.16444 3.59928 4 0.09
5 1.91282 1.91282 2.27861 2.79005 3.15218 3.17143 3.17143 3.60884 5 0.12
10 1.91284 1.91284 2.27861 2.79012 3.15218 3.17144 3.17144 3.60899 6 0.12
15 1.91284 1.91284 2.27861 2.79012 3.15218 3.17144 3.17144 3.60901 6 0.13
20 1.91284 1.91284 2.27861 2.79012 3.15218 3.17144 3.17144 3.60901 6 0.13
FEM 1.91287 1.91287 2.27863 2.79020 3.15229 3.17154 3.17154 3.60907 4 10.0
S2S1S281 2 0.00000 1.00000 1.41421 1.69031 2.00000 2.23607 2.23607 2.39046 6 0.32
5 0.00000 1.00000 1.41421 1.69031 2.00000 2.23607 2.23607 2.39046 6 0.33
10 0.00000 1.00000 1.41421 1.69031 2.00000 2.23607 2.23607 2.39046 6 0.38
Exact 0.00000 1.00000 1.41421 1.69031 2.00000 2.23607 2.23607 2.39046 6 -
FEM 0.00000 1.00001 1.41423 1.69031 2.00002 2.23614 2.23614 2.39048 5 10.0
CCCS»o 2 1.71589 1.89594 2.04652 2.61358 2.85040 3.02671 3.15582 3.47699 3 0.37
5 1.71596 1.89625 2.04678 2.61394 2.85180 3.02733 3.15932 3.47827 4 0.40
10 1.71597 1.89626 2.04679 2.61396 2.85183 3.02734 3.15932 3.47830 6 0.46
15 1.71597 1.89626 2.04679 2.61396 2.85183 3.02734 3.15932 3.47830 6 0.54
20 1.71597 1.89626 2.04679 2.61396 2.85183 3.02734 3.15932 3.47830 6 0.74
FEM 1.71596 1.89628 2.04682 2.61400 2.85189 3.02745 3.15945 3.47840 4 10.0
CCS2S2 2 1.57608 1.80432 1.95874 2.34519 2.69515 2.84183 3.04571 3.43305 4 0.72
5 1.57609 1.80450 1.95877 2.34533 2.69570 2.84248 3.04628 3.43397 5 0.76
10 1.57609 1.80450 1.95877 2.34534 2.69570 2.84250 3.04628 3.43399 6 0.81
15 1.57609 1.80451 1.95877 2.34534 2.69570 2.84250 3.04628 3.43399 6 1.04
20 1.57609 1.80451 1.95877 2.34534 2.69570 2.84250 3.04628 3.43399 6 1.26
FEM 1.57611 1.80451 1.95879 2.34539 2.69576 2.84258 3.04639 3.43407 5 11.0

efficiency investigations should be carried out. Table Il shows four sets of results
for the free inplane vibration of a square plate (v = 0.3) with different boundary
conditions, namely, CCCC, S,S:S5S;, CCCS; and CCS,S,. Notice that in this
paper, the letter C and F represent clamped and free edges respectively whereas
S; and S, denote edges with two types of simple supports: S; edges having zero
shear displacement and zero longitude forces (see Eq. (B3R)) whilst S, having
both longitude displacement and shear forces being zero, see Eq. (853H). The no-
tation comprising four letters successively represent the right, up, left and bottom
edges respectively in an anticlockwise sense. The first eight dimensionless natural
frequencies A = 2wa/m+/p/G are computed by the current SDSM using only one
SDS element with different number of terms (M, N') adopted in the series, where
M = N and both vary from 2 to 20. The results are compared with finite element
solutions computed by ANSYS using a very fine mesh with 300 x 300 Plane 182
elements. Among the four tabulated cases, closed-form exact solutions are avail-
able only for the S5S;S,S; case which all coincide with the current SDSM results.
The computation of both SDSM and FEM is performed on a PC equipped with a
3.4 GHz Intel 4-core processor and 8 GB of memory. The total execution time for
the first eight natural frequencies is given in the last column of Table [. It can be
concluded that the SDSM converges very fast to exact solutions with respect to
the terms adopted in the series. A five-term (ten-term) series gives accuracy with
five (six) significant figures but the total computation time for these eight natural

21



frequencies is less than half a second. It can be seen from the table that the SDSM
takes only 5% computation time of the well-developed commercial FEM package
ANSYS which meanwhile, provides more accurate results that the FEM. Another
important observation can be made is that the SDSM always gives exact results of
the SoS1S,S, irrespective of the number of terms adopted in the series. It is found
that this is true for all cases with at least a pair of opposite edges are S, supported.
The reason is due to the fact that the SDSM formulation is based on representing
the unknowns of the general solution by Lqr, Likm, Sqjn and Sy, see Egs. (C3)
and (C2H).

The remarkable accuracy and computational efficiency of the current SDSM
is not only evident for low frequency range as shown above but also equally valid
for medium to high frequency ranges. This is clear from Table @ where the SDSM
is used to predict the medium (10th-100th) and high (200th-1000th) natural fre-
quencies for the same four cases studied earlier in Table [l. When using the SDSM,
only one SDS element is used in the modelling with both M and N adopted as
20, and all SDSM results are given with accuracy of six significant figures. The
results computed by SDSM are compared with FE solutions computed by ANSY S
(using a 300 x 300 mesh of Plane 182 elements) with only three significant figures
for the 10th-100th modes. Higher natural modes are not computed by the FEM
since the solvers provided in the FEM becomes highly inefficient and unreliable
for higher modes. The final matrix size and total computational time for both
methods are also given in the last two rows of Table D. To solve the tabulated 11
modes with six significant figures covering medium to high frequency ranges, the
SDSM took only 0.25-1.25 s; whereas the well-developed FEM package ANSYS
took 23-28 s but compute only the first six medium modes with three significant
figures. It is apparent that SDSM is far more superior to the FEM in free vibration
analysis within medium to high frequency ranges. The major advantage of the
current SDSM lies in the fact that the SDS formulation satisfies the GDE exactly
and uses extremely low number of DOF to represent the system most accurately.
For the four case studies shown in Table [, the final matrix size of the SDSM
was only 39-158, which is in a sharp contrast to the FEM which used as many
as 1.80E05 DOF. This great advantage establishes the SDSM as an ideal tool for
parametric and optimisation studies, not only within low frequency range but also
within medium to high frequency ranges.

3.2. Applications to plane stress problems

As mentioned earlier, the modal analysis of elastodynamic problems with
plane stress assumption is essentially the free inplane vibration of plates. The
current SDSM development allows us to carry out exact modal analysis of plate
and plate assemblies subjected to any arbitrary boundary conditions.
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Table 2: Numerical stability and efficiency studies of the SDSM using the same four cases given
in Table M. The same dimensionless natural frequency parameter as in Table [ is used, i.e., A =
2wa/m/p/G. The SDSM is applied to compute 11 natural frequencies of the four cases covering
medium (10th-100th) to higher (200th-1000th) modes. Side by side are the finite element solutions
obtained by ANSYS using a 300 x 300 mesh of Plane 182 elements, only medium (10th-100th)
modes are given for the FE solutions. The final matrix size and the total computational time of
both the SDSM and FEM are given in the last two rows.

ccce 2515251 CCCSs CCS2S2
Mode SDSM FEM SDSM FEM SDSM FEM SDSM FEM
10 3.82718  3.82859 3 3.00009  3.72833 372845  3.56133  3.56150
20 517103 5.17542 412311 412342 5.07830 507865 493554  4.93602
40 691510 692134  6.08276  6.08379  6.80026  6.80100  6.59543  6.59643
60 838312 838503  7.28011  7.28172 822259 822479 801245  8.01452
80 936414 936610  8.60233  8.60544 931753 931987  9.22457  9.22677
100 105505 105549  9.84886  9.85316 103622 103655  10.1912  10.1933
200 14.5867 - 13.6277 - 14.4709 - 14.2358 -
400 20.2866 - 19.2725 - 20.1682 - 20.0177 -
600 24.5966 - 23.7697 - 24.4609 - 24.3223 -
800 28.2882 - 27.4591 - 28.1562 - 27.9424 -
1000 31.5344 - 30.6128 - 31.3854 - 31.2660 -
Sign. Fig. 6 3 6 3 6 3 6 3
Matrix Size 39 1.80E+05 158  1.80E+05 39 1.80E+05 78 1.80E+05
Time (s)/modes  0.25/11  24.6/6  125/11  235/6 106/l 2756 L1Vl 23.0/6

The free inplane vibration analysis of plates has received much less attention
compared to the out-of-plane free vibration analysis. There are only a few at-
tempts in the literature using different methods which makes the current analysis
even more important. As the first example, the current SDSM is applied to the free
inplane vibration analysis of a fully clamped plate with different aspect ratios. Ta-
ble B compares the first eight natural frequencies computed by the SDSM results
with those obtained by other methods wherever available. The comparative meth-
ods include dynamic stiffness method based on the superposition method (DSM)
[37], Gorman’s superposition method (GSM) [I&], Fourier series based analytical
method (FSA) [32] and the Ritz method [23]. The current SDSM results, which
are accurate up to the last figures quoted with six significant figures, are intended
to serve as benchmark solutions. It can be found that the results computed by GSM
[TX] and Ritz method [273] have four significant figures which all coincide with the
first four digits of the current SDSM results. The dynamic stiffness method based
on the superposition method [BT] appears to miss the repeated natural frequency
for the square plate as denoted by ‘sx’ in Table B. This might be due to the reason
that determinant method rather than the WW algorithm was applied as the solution
technique in this method [B1]. (Although WW algorithm was mentioned briefly in
the context of [B1], it is apparent that the WW algorithm was after all not applied
in its calculation, let alone how the important issue in the WW algorithm, the .J,
count, could be solved.) The first eight natural mode shapes for a fully clamped
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square isotropic plate (a/b = 1) are plotted in Fig. B with the (k, 7) notation given
as follows: (0,0) modes are doubly symmetric about both = and y axes (Figs.
B(e) and (h)) whereas (1, 1) modes are double antisymmetric modes (Figs. B(c)),
(0,1) modes are symmetric in x but antisymmetric in y (Figs. B(a) and (f)) and
(1,0) modes are antisymmetric in x but symmetric in y (Figs. B(b) and (g)). It
should be noted that the (k, j) notation here is different from the ‘S’/‘A’ notation
used by Gorman in [I8]. As evident from Fig. B, the (k, j) notation in this paper is
more physically meaningful than that by Gorman [[I8] as the (&, j) in the current
SDSM represents the actual symmetric or antisymmetric properties of the defor-
mation. Moreover, it can be seen that the Ist and 2nd modes are longitudinally
dominant whereas the 3rd mode is shear dominant. Other modes are somehow
coupled modes of both longitudinal and shear deformation.

Table 3: The first eight dimensionless inplane natural frequencies of fully clamped isotropic rect-
angular plates with three different aspect ratios (a/b). The notations k (corresponding to x axis)
and j (corresponding to y axis) of (k, j) denote symmetric (taking ‘0’) or antisymmetric (taking
‘1’) deformation with respect to the corresponding axes.

A = 2war/p(l —1v2)/E

a/b. Method — 2 3 7 3 6 7 8

1 (k,35) 0.1 (1,0) (1,1) 1.1 0,0) 0.1 (1,0) 0,0)
SDSM  3.55519 3.55519 4.23501 5.18570 5.85862 5.89441 5.89441 6.70768
DSM¢ 3.556 * 4.236 5.186 5.86 5.896 - -
GSM? 3.555 3.555 4.235 5.186 5.859 5.894 5.894 6.708
FSA¢€ 3.554 3.554 4.236 5.185 5.859 5.896 - -
Ritz ¢ 3.555 3.555 4.235 5.186 5.859 5.895 -

2 (k,4) (1,0) () (1.1) 0,0) ()] (1D (1.1) (1,0)
SDSM  4.78902 6.37856  6.71212  7.04875  7.6083 8.14019  8.99796  9.51559
GSM? 4.789 6.379 6.712 7.049 7.608 8.140 8.998 9.515
FSA¢€ 4.788 6.374 6.710 7.048 7.608 8.140 - -
Ritz? 4.789 6.379 6.712 7.049 7.608 8.140 - -

3 (k,4) (1,0) 0,0) 0,1) (1.1) .0 (1,0) (1.1) (1.1)
SDSM  6.33852  8.19699  9.39504 9.53980 10.0562 10.5429 10.7866  11.7899
FSA¢€ 6.336 8.195 9.385 9.532 10.05 10.54 - -

@ Dynamic stiffness method based on the Gorman’s superposition method [B1]
b Gorman’s superposition method [[X]

¢ Fourier series based analytical method [B7]

4 Ritz method [23]

Similar comparison can be made for the free inplane vibration of completely
free isotropic plates (v = 0.3) between the current SDSM results and those avail-
able in the literature [I8, 23, 31, 32]. All SDSM results have six significant digit
accuracy which are more accurate than those available in the literature (the latter
methods give no more than three or four significant figures). It should be noted
that the present SDSM is capable of capturing the first three zero frequencies
corresponding to rigid modes due to the application of the WW algorithm. Ap-
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(a) Mode 1, (k,7) = (0,1)

EEEEEREREE

[

(e) Mode 5, (k,j) = (0,0) (f) Mode 6, (k,j) = (0,1) (9) Mode 7, (k,j) = (1,0) (h) Mode 8, (k,j) = (0,0)
T

Figure 3: The first eight natural mode shapes of a fully clamped plate under free inplane vibration.
The (k, j) notation was given in the caption of Table B. The colour of the mesh, varying from blue
to red, indicates the normalised displacement amplitude vU? + V2 / max(v/U? + V?) varying
from O to 1.

parently, these zero frequencies were missed by other investigators [, B, B7].
The first non-rigid body inplane mode shapes of a square isotropic plate is shown
in Fig. @ where (k, j) denotes the symmetric and antisymmetric properties of the
deformation in a similar fashion to that of the previous fully clamped case.

25



Table 4: The first eight non-zero dimensionless inplane natural frequencies of completely free
isotropic rectangular plates (v = 0.3) with three different aspect ratios a/b. The (k, j) notation is
the same as that given in Table 3.

A = 2war/p(1 —v?)/E

a/b  Methods —7 5 6 7 8 9 10 T

1 (k,J) (1,1) 0,1 (1,0) 0,00 0,0) 0,0) 0,1) (1,0
SDSM 232060 247162 247162 2.62845 298739 345224 372312 3.72312
DSM® 2320 2472 2628 2988 3452 3724 =
GSMP 2320 2472 2472 2628 2988 3452 3724 3724
FSA® 2321 2472 2472 2629 2988 3452 - -
Ritz? 2321 2472 2472 2628 2987 3452 - -

2 (k,J) 0,1) 0,0 (L,1) (L,1) 0,1) 0,0) (1,0) (1,0)

SDSM 1.95365  2.96082  3.26705 4.72633 4.78411 5.20446  5.25689  5.36510
GSM? 1.956 2.960 3.268 4.726 4.784 5.208 5.258 5.370
FSA¢ 1.954 2.961 3.268 4.725 4.785 5.205 - -
Ritz? 1.954 2.961 3.267 4.726 4.784 5.205 - -

3 (k, ) 0,1 0,0) 1,0 () (1,1) (1,0) ©,1) (1,1)
SDSM 1.57065  2.98313  3.22219 4.9479 5.75158 5.82971 7.08253  7.21869
FSA© 1.571 2.983 3.224 4.951 5.754 5.83 - -

@ Dynamic stiffness method based on Gorman’s superposition method [BT]
b Gorman’s superposition method [I[X]

¢ Fourier series based analytical method [B7]

4 Ritz method (23]

Table 5: The first eight inplane natural frequencies (Hz) of a rectangular plate with three different
boundary conditions.

Mode (Hz)

BC  Method 7 2 3 7 5 6 7 8
CCCC  SDSM 266539 290529 3277.77 405014 4306.88 442941 481931 534791
Kant.® 2667 2909 3280 4089 4327 4437 - -

FRA® 2671 2914 3349 4198 4404 4607 4917 5329
FRA® 2666 2906 3279 4052 4308 4431 4820 5350
FEM? 2658 2898 3260 4024 4268 4404 4769 5300
FCCC  SDSM 180397 2658.89 2802.09 340533 349223 372925 43668  4628.53
FSA® 1802 2657 2800 3402 3492 3730 - -
Kant® 1811 2674 2845 3524 3504 3757 - -
FRA® 1892 2727 3026 3596 3624 3868 4704 4899
FEM? 1803 2656 2794 3392 3479 3704 4339 4589
FCFC ~SDSM  1447.32 251525 2568.25 2642.62 304292 3074.86 39385  4217.24
FSA® 1445 2514 2566 2642 3037 3073
FRA® 1531 2682 2697 2994 3122 3390 4165 4451
Kant.® 1455 2520 2639 2662 3187 3146 - -
FEM? 1449 2511 2567 2637 3037 3061 3917 4225

@ Kantorovich method [29]

b Forced response analysis 1 [Z€]

¢ Forced response analysis 2 [27]

4 finite element solution using NASTRAN([ZR]
¢ Fourier series based analytical method [B2]
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Figure 4: The first eight non-zero free inplane vibration mode shapes of a completely free square
(a/b = 1) isotropic plate. The (k, j) notation and the meaning of colour of mesh is the same as
those in Table 3.

Next, the current SDSM is used to revisit another interesting problem covered
in the literature [27-29, 37]. This is about a plate with three different combina-
tions of free and clamped boundary conditions. The plate is made of material
with Young’s modulus £ = 7.0 x 10'° N/m?, Poisson’s ratio v = 0.33 and den-
sity p = 2700 kg/m?, and has dimension 2a x 2b = 1.0m x 1.2m, thickness
h = 2.5mm. The computed SDSM results are accurate up to the last figures
quoted. These results are compared to those computed by Kantorovich method
[79], forced response analysis based on two different formulations [277, 2¥], the
Fourier series based analytical method [37] and the finite element solutions by
using NASTRAN taken from [Z8]. It is found that the results obtained by the
forced response analysis in [27] and Fourier series based analytical methods [32]
match better with the current SDSM compared to the other three methods. The
Kantorovich method [?Y], being a weak formulation, always give upper bound
solution of the SDSM results, as expected.

As mentioned earlier, extensive investigations on transverse free vibration of
plates have been performed by many authors using different methods. For ex-
ample, Leissa [I] and more recently Monterrubio and Ilanko [45] gave the free
transverse vibration results for all 55 possible combination of classical BC for a
square isotropic plate. However, there are very few results available for free in-
plane vibration of plates with limited BCs. To the best of the authors’ knowledge,
there has not been any meaningful research which provides systematic results for
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the modal analysis of free inplane vibrating rectangular plates. To fill this gap, a
systematic analysis of free inplane vibration of square plates with respected to 55
all possible combination of BCs for free inplane vibration in an efficient manner,
see Table B. These 55 different cases can be categorised into the following two
groups.

(1)

(ii)

Cases 1-27 have at least one pair of opposite edges being either S,-S, (Cases
1-10), or S1-S; (Cases 11-19) or S-S, (Cases 20-27), whose results are
shown in the first three sub-parts of Table B. All SDSM results with S;-
S; (Cases 11-19) and S;-S, (Cases 20-27) opposite edges coincide with the
closed-form exact solution given by Liu and Xing [20]. It is worth high-
lighting that rigid body modes with zero natural frequencies exist in cases
FSlFS1, SQSlFsl, 8251S281, SgSlng and SQFSQF

Cases 28-55 have no closed-form exact solution available due to the cou-
pling of translational and shear deformation, whose series-based exact solu-
tions are given in the last section of Table B computed by the current method.
Note that the FFFF and S;FFF cases have three and two rigid body modes re-
spectively and Cases S1S:FF, S;S1FF and S;FFF have one rigid body mode
each.

All SDSM results given in this table have six significant figures (accurate up to
the last figure quoted) which will serve as benchmark solutions.
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Table 6: Dimensionless natural frequency parameters of free inplane vibration of a square plate
(plane stress) with the 55 possible combinations of boundary conditions including free (F),
clamped (C) and two simply supported (S; and S3) conditions. All results are presented with
six significant figures.

A =2wa/7\/p/G
5 6

BC T 2 3 7 3 7 g 9 10

$25152S1 0 1 141421 1.69031 2 223607 223607 239046  2.82843 3
S9S1SoF 0 873927 141421 1.69031  1.82440  1.85577 217233 231659 274761 277719
SoFSoF 0 757300 141421 1.69031 174786  1.80990  1.88247 200828 270899  2.70951
S2S2S9S2 141421 1.69031  1.69031 223607 223607 239046  2.82843  3.16228  3.16228  3.38062
S2S282S7 845154 111803  1.80278  1.88982  2.06155 25 253546 2.69258  3.04138  3.04725
S9S2SoF 845154 100414  1.64609  1.84184  1.84285 229117 247970  2.53546 274970  2.90811
$2CS2S1 845154 118653  1.84116  2.07975 228188  2.53546 259612 293189  3.04928  3.26856
S2CS2Sa 151221 1.69031  1.85646 229452 232818 276014 294011  3.19100 338062  3.44276
S2CS2C 169031 176220 1.88026 237306  2.66720  3.02442  3.02857  3.22709  3.38062  3.68231
SoCSoF 845154 1.06399  1.64723  1.85036  2.23956 240021 253546 258759 275074 322178
FS1FS; 0 757300 1 141421 174786 1.80990  1.88247 2 200828 270899
S2S1FS1 0 1 100414 1.64609  1.84185  1.84285 2 220117 247970 2.74970

$1S1S1S1 1 1 1.41421 2 2 223607 223607 239046  2.82843 3
$25151S1 0.5 1.11803 1.5 1.80278  1.88982  2.06155 25 2.5 2.69258  3.04138
S1S1FSy 0.5 873927 1.41421 1.5 1.82440  1.85577  2.17233 231659 25 2.74761
CS1S151 1 118653 1.84116 2 207975 228188 259612  2.93189 3 3.04927
CS1S251 0.5 1.5 151221 1.85646 229452 232818 25 276014 294011  3.19100
CS1CS1 1 176220 1.88026 2 237306 2.66720 3 3.02442  3.02856  3.22709
CS1FSy 0.5 1.06399 1.5 164723 1.85037 223956  2.40021 25 258759 275074
S9S281S1 707107 119523 158114 158114  2.12132 254951 254951 267261 267261 291548
S2S1S1F 378650 941233 135475 149367 176722 1.93008 228756 243779  2.55662  2.61850
S2S2S1F 707107 904949 135449 140252 204510  2.12132 229371 253102 265621 279013
SoCS1F 860033 946752 142583 174200 221926 229673 236097 275171 279317  2.82070
SoFS1F 276567 796526 125564 131495  1.60687  1.68775 223212 225779 238948 242445
CS25151 881101 1.33360  1.61354 204957 223446 256102  2.66048 279136 298886  3.05748
CS2S5S1 940128 151428  1.89004  1.92102 251908  2.55466 273266 275266  3.18578  3.30205
CS2CSy 128380  1.66297 201761 222350  2.51968 278449 298159  3.18263 323935  3.40647
FFFF 0 0 0 124858 132984  1.32984  1.41421  1.60734  1.85745  2.00319
S1 FFF 0 0 878906  1.27148 141421 144333 181566  1.84467 200440  2.13652
S1S1FF 0 624289 115762 141421 142226  1.84076  1.85649  2.09904 222300  2.43273
S9S1FF 0 664917 1.00160 133667  1.64088 175252  1.87396  2.12165 236880  2.42507
SoFFF 0 525573 796522 1.28703 140011  1.65355 173452 177391 233104 240178
SoSoFF 707107 803669 928726 135734  1.62575  2.00999  2.12132 250031 253522 2.54821
CS1S1F 839454 1.00701 155971  1.80264  1.90621 222052 248554 257881 274932 279061
CS1SoF 455469 1.37033 150496  1.78844 193483 225224 236007  2.63402  2.80814  2.94807
CS1CF 095428  1.65619  1.82862  1.84274  2.09265 252443 278711  2.85969  3.00475  3.02279
CS1FF 419667 864225 119553 157043  1.65165  2.03228 219197 235016 244514 256180
CS2S1F 811859  1.04983 136949  1.87271  2.06533 224415 253657  2.68975 277951  2.86851
CS2SoF 901419 142058  1.66756  1.87598 226048 238362 251471 274297  3.03747  3.18318
CS5CF 121704 163944 173912 205996 244058 250237 278395  3.04201  3.18974  3.30536
CSoFF 780195 866792  1.04883  1.53192  1.90485 219056 222056  2.53739 258887 273934
CCS1S1 113931 139506  2.04362  2.09845 234596 279871  2.81142  3.05389  3.06575  3.21783
CCS1F 952706 112156 171331  1.90894 226837 248920 271018 277972  2.86280  2.89448
CCS2S1 956421 158572 191359 230920 254354  2.58552 279394  3.09703 330431  3.36484
CCS2Sa 157609  1.80451 195877 234534  2.69570  2.84250  3.04628  3.43399 345755  3.56133
CCSoF 918699 146666  1.67429  2.19408 236998 244756 256184 290484  3.17449  3.29829
CCCS; 128835  1.80570  2.18988 242064 255989  3.01154  3.11275 327972 332108  3.46010
CCCSa 171597 1.89626  2.04679  2.61396 285183  3.02734  3.15932 347830  3.61595  3.72833
ccee 191284 191284 227861 279012  3.15219  3.17144  3.17144 360901  3.82718  3.82718
CCCF 122128 170181  1.83415 231670 253854  2.66737  2.80092 320792 324602  3.44820
CCFF 790796 1.01362 121300 1.83061  2.06761 227698 232899  2.66579 276446  2.83639
CFS1F 799249 810760 131601  1.64507 177689 201372 228471 247004 253222 273372
CFSoF 406378 127806 149670 175314  1.87776  1.89279 226359 239156 273271  2.88667
CFCF 910936 1.62372 167891  1.80284  2.01402  2.09965 273897 274065 284116  3.00993
CFFF 337798 810700 909521  1.44529  1.55856  1.65413  2.08498  2.19502 242378 243925

3.3. Applications to plane strain problems

Plane strain vibration is also very important in engineering applications such
as structural health monitoring and earthquake engineering as mentioned earlier
in the Introduction section.

Similar to but different from Table B, Table [ tabulates the SDS results of all 55
possible combinations of BCs for an isotropic solid under free plane strain vibra-
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Table 7: The same as for Fig. B except that the results in this table are for an isotropic solid
subject to 55 possible BCs and under free plane strain vibration. All results are presented with six
significant figures.

A= Qwa/ﬂ'\/péG

BC T 2 3 7 3 7 3 9 10

S2515251 0 1 1.41421 1.87083 2 223607 223607 264575  2.82843 3
S581SoF 0 886170 1.41421 1.84589  1.87083  1.93400  2.17646 246570 278086  2.82843
SoFSoF 0 774502 1.41421 177234 1.87083 190726  2.00123 203558 274193  2.82554
S2S555So 1.41421 1.87083 1.87083 223607 223607  2.64575 282843  3.16228  3.16228  3.60555
S25252S1 935414 1.11803 1.80278  2.06155  2.09165 25 269258  2.80624  3.04138 320156
S2S9SoF 935414 1.01779 1.70182 1.86568 198262 235949 248178 278366  2.80624  3.05740
$2CS2S1 935414 1.19256 191350 2.08091 236975  2.60683  2.80624  3.04973  3.05974  3.33901
$2CS2S5 1.54536 1.87083 198540 229906 245687  2.85664 296377  3.19278  3.61254  3.67074
S2CSoC 1.80552 1.87083 200089 238512 282559  3.07972  3.09071 323171 374166  3.79862
SoCSoF 935414 1.09159 1.71790 1.87586 233436 250563  2.59934 278501  2.80624  3.30287
FS1FS; 0 774502 1 141421 177234 1.90726 2 2 203558  2.74193
S2S1FS1 0 1 1.01779 170182 1.86568  1.98262 2 235949 248179 278366

S151S1S1 1 1 1.41421 2 2 223607 223607 264575  2.82843 3
S25151S1 0.5 1.11803 1.5 1.80278 206155  2.09165 25 25 269258  3.04138
S181FS1 0.5 886170 1.41421 15 1.84589 193400  2.17646  2.46569 25 2.78087
CS15151 1 1.19256 1.91350 2 208091 236975  2.60683 3 3 3.05974
CS15251 0.5 15 1.54536 1.98540 229906  2.45687 25 285664 296377  3.19278
CS1CS 1 1.80552 2 2 238512 2.82559 3 3.07972  3.09071 323171
CS1FS; 0.5 1.09159 15 171790  1.87586  2.33436 25 25 259934 2.78501
S28551S1 707107 1.32288 1.58114 158114 2.12132 254951 254951 291548 291548  2.95804
S2S1S1F 387251 1953628 1.37096 153859 1.77049  2.08592 231491 245497 257172  2.62198
S9S5S1F 707107 1.000613 1.41277 142165 206381  2.12132 232247 269636 287526  2.88716
S5CS1F 1902469 1.002895 1.44932 178486 224616 232619 243692 285407 296252  2.99036
SoFS1F 286010 825215 1.27690 132947 170532 173912 226021 233302 242276  2.43447
CS2S151 902762 1.41280 161586 206362 225860  2.56170  2.89247 293410 299502  3.10269
CS2S2S1 1.000445 1.53986 1.89931 208635 256960  2.61618 273536 294661 331388  3.36403
CS2CSy 1.33327 175109 203972 232213 265368 279166  3.00376 336145  3.36403  3.43770
FFFF 0 0 0 125290 137893 137893 141421 167942 202200  2.02200
S1FFF 0 0 892215 128832 1.41421 149753  1.87372 200105 202398  2.17155
S1S1FF 0 1626450 1.18516 141421 1.44463  1.88488 192596  2.13514 237303  2.44641
S2S1FF 0 1689463 1.01100 136630  1.68545  1.82978  1.97443 216120 240967  2.44953
SoFFF 0 546239 825200 130582 145686 171237 175972 191124 237796  2.41768
SoSoFF 707107 839709 1.046181 139887  1.66037  2.03908  2.12132  2.56908  2.66536  2.66826
CS1S1F 861695 1.02134 1.58338 1.83648  1.94719 229804  2.52066 259751  2.80470  2.93115
CS1SaF 458948 138712 1.53545 192812 200084 231524 242468 266622  2.88054  2.97290
CS1CF 958235 1.73226 1.84845 196669  2.11893  2.62982  2.82344 292097  3.04468  3.08345
CS1FF 426539 898669 122124 158778 171947 208232 227530 241474 251748  2.58120
CS2S1F 851653 1.09459 1.42220 1.90089 208145 226252 273058 276128  2.88940  2.99395
CSSoF 1965629 1.44595 1.75527 1.99133 230005 243830 261430 291931  3.11868  3.23496
CSoCF 1.27369 1.71773 1.81807  2.14614 248352 263162 282748  3.14301 331249  3.38665
CSoFF 806586 936924 1.09784 157387 1.94083 223164 225118  2.65363 272780  2.87327
CCS1S1 1.14151 1.46857 204724 211462 239225 291611 296485  3.07097  3.09394  3.34217
CCS1F 996842 1.16059 1.74394 1.94545 232378 252383 276441 291311 301443  3.01755
CCS2S1 1.02172 1.59626 1.99532 237229 258332 270319 294840  3.14349 343664  3.44308
CCS2S2 1.64900 1.96896 203949 244636 270960 293694  3.09538  3.59505  3.66399  3.72085
CCSaF 989362 1.49175 176270 225570 243506  2.53755 271528 299337  3.24043  3.38483
CCCSy 1.33887 1.85710 2023298 248627 271080  3.02782  3.17454 338102  3.44897  3.57579
CCCSa 1.84360 2.02164 2.09991 268364 294423  3.08440 324572  3.65886  3.76425  3.91724
ccee 2.04343 2.04343 228302 293715 3.19252  3.19252  3.29800  3.93791  3.99063  3.99063
CCCF 1.27899 1.79281 1.86972 241536  2.67461 270193 285773 331911  3.39448  3.54525
CCFF 824049 1.09393 1.23250 1.87535  2.10789 233315 237578 284730 289610  2.99418
CFS1F 811771 853527 1.33557 172341 179899  2.03481 235903 250107 272982  2.76279
CFSoF 413047 1.29777 1.52462 191964 193112 201384 228787 243271 283645 291838
CFCF 917896 1.70331 1.72339 193126 204268  2.18917 277425 284441 2389191  3.07090
CFFF 347924 853425 1933513 149982 156978  1.73434  2.13267  2.29389 246131  2.47801

tion whose cross section is a square. All results are presented with six significant
figures which will serve as benchmark solutions. A comparison between Tables
B and [ will lead to the conclusion that the natural frequencies under plane strain
vibrations are always slightly higher than those under plane stress vibrations as
expected. This agrees with the qualitative prediction made earlier after Eq. (B) in
Section Il As it appears, there is no literature which mentions the closed-form
exact solution for plane strain vibration problems. Nevertheless, it is not diffi-
cult to realise that closed-form exact solutions for Cases 1-27 undergoing plane
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strain vibration can easily be obtained by slightly modifying the closed-form exact
solutions [20] for the corresponding plane stress cases.

The current SDSM allows the modelling of the plane strain vibration problems
of solids with complex cross section just by assembling the corresponding SDS
elements directly. In this paper, three engineering cases of practical significance
are investigated as illustrative examples, see Fig. B. Case 1 (Fig. B(a)) is an
infinite aluminium thick plate (E = 70 GPa, v = 0.3, and p = 2700 kg/m?) with
a step in the thickness. The plate is cantilevered on the left edge and free on all
other surfaces and edges. Case 2 (Fig. B(b)) is an infinite plate clamped at the
two opposite edges while stiffened by an infinite steel (£ = 210 GPa, v = 0.3,
p = 7800 kg/m?) beam in the middle with square cross section. Case 3 (Fig.
B(c)) is an infinite concrete shear wall (F = 17 GPa, v = 0.2, p = 7800 kg/m?)
fixed on its feet. All three cases are assumed to vibrate freely under plane strain
deformation in which the deformation is assumed to be uniform in the infinite
direction. The first two problems (Fig. B(a) and (b)) are ideal models to study
the interaction between plane vibration (in the form of plane waves, e.g., shear
horizontal waves and Lamb waves) and defects and discontinuities (e.g., thickness
step or junctions) whereas the third problem is a suitable model to investigate
dynamic behaviour of shear wall subject to seismic or wind loads. The first ten
natural frequencies computed by the current SDSM are included in Table B, which
are also compared with those obtained by the FEM software ANSYS. Three, four
and five SDS elements are used respectively for Cases 1, 2 and 3 whereas about
10° Plane 182 elements were adopted in the FEM modelling. All SDSM results
are accurate up to the last figures which all agree well with the FE solutions. The
first six mode shapes of Cases 2 and 3 are shown in Figs. f and [2.

Concrete 2m

2cm Aluminium .

3mm | Aluminium

2 3
M| [Steel m

(a) Plate with thickness step (b) Stiffened plate (c) Shear wall

Figure 5: Three cases under plane strain vibration. (a) is a cantilever infinite aluminium plate with
thickness step, (b) is an infinite aluminium plate clamped along two opposite edges and stiffened
by an infinite steel beam with square cross section, and (¢) depicts an infinite concrete shear wall
clamped on its feet.
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Table 8: The first ten natural frequencies of three cases described in Fig. B undergoing plane
strain vibration. The results are computed by using two methods, the current SDSM and the finite
element software ANSYS.

Cases Methods 1 2 3 4 5 6 7 8 9 10

Case 1 (kHz) SDSM 13.37 4277 76.78 1042 154.7 184.2 2369 2894 327.7 339.2
FEM 13.38 4279 76778 1042 1548 1842 237.1 2895 3277 3392
Case 2 (kHz) SDSM 6.132 9.269 2282 2843 30.68 49.17 50.69 53.83 58.64 72.60
FEM 6.135 9.281 22.82 2846 30.70 49.17 50.69 53.85 58.67 72.60
Case 3 (Hz) SDSM 47.37 99.01 1329 1364 1474 1769 2349 2742 306.6 326.8
FEM 4739 99.05 1329 1364 1474 1769 2350 2743 306.6 3269

9.269 kHz (c) Mode 3, A = 22.82 kHz

Rkl 0 SNus
0 001 002 003 004 005 006 007 008 009 0.1 0 001 002 003 004 005 006 007 008 009 01

(d) Mode 4, A = 28.43 kHz (f) Mode 6, A =49.17 kHz
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Figure 6: The first six natural plane strain mode shapes of an aluminium plate stiffened by a steel
beam with square cross-section. The colour of the mesh is the same as Fig. B.

(b) Mode 2, A =99.01 Hz (¢) Mode 3, A =132.9 Hz

(a) Mode 1, A =47.37 Hz .
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Figure 7: The first six natural mode shapes of a concrete shear wall under plane strain vibration.

Due to the vertical symmetrical geometries of Cases 2 and 3, the mode shapes
of both cases are obviously either symmetric or antisymmetric. In Fig. B, modes
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1 and 5 are symmetric whereas the other four modes are antisymmetric. In Fig.
[, modes 2, 4 and 5 are symmetric and the remaining modes are antisymmet-
ric. Of course, the current SDSM can be applied to more complex geometries by
assembling the corresponding SDS matrices.

4. Conclusions

The spectral dynamic stiffness (SDS) formation for plane elastodynamic prob-
lems has been developed which covers both plane stress and plane strain vibra-
tions. The method essentially provides a highly efficient and accurate modelling
tool for plane elastodynamic problems by a very small number of DOF. The for-
mulation is in a strong form which is based on the exact general solution derived
from the governing differential equation by using two types of modified Fourier
series. The developed spectral dynamic stiffness elements can be assembled di-
rectly to model simple as well as complex geometries. Any arbitrary boundary
conditions can be accounted for in the form of modified Fourier series. As a solu-
tion technique, the Wittrick-Williams algorithm is applied with considerable en-
hancement to overcome the troublesome .J; count problem in an elegant way. As
aresult, plane elastodynamic problems with complex geometries can be modelled
by as few SDS elements as possible. Any required natural frequencies covering
low, medium to high frequency ranges can be computed up to any desired accu-
racy by the proposed method. Benchmark solutions have been presented in this
paper both for classical cases as well as for a wide range of engineering problems
undergoing both plane stress and plane strain vibrations. The computational effi-
ciency and analytical elegance of the proposed method make it an ideal tool for
parametric studies and optimization analyses.

Note that the SDS formulation developed can also be used for dynamic re-
sponse and wave propagation problems, which will facilitate many important en-
gineering applications such as structural health monitoring, acoustic transmission
modelling and many others. Besides, although the proposed method already has
the excellent computational efficiency, it could be sped-up even further by incor-
porating the substructuring techniques, e.g., [46]. Furthermore, the framework of
the SDS method generalised in this paper has paved the way for the SDS formu-
lation for other types of Helmholtz equations or Maxwell equations.
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Appendix A. Two sets of modified Fourier basis functions and the modified
Fourier expansion of hyperbolic functions

Two types of modified Fourier basis functions (MFBF) given in Eqs. (If) and

(I7) are illustrated in Table A~Tl, where the first three functions are shown.

Table A.1: The first three Fourier basis functions 7;(y;5€) and their conjugates 7;* (y;s&).
Ti(71s€) s=0 s=1 5=2

T oA A/
To(vs€) -1 2 AN VARVE

. N AVEEANAW
T (71:€) DR N/ V:

S NN\
7?)*(7056) L —L \/‘ \/

e N\ AN WA
T (nsé) -z EVARVAREAVIAVAE

Following the MFS given in Eqs. (I8) and (20), the hyperbolic functions
H,(T€) and its conjugate H;(I'¢) in Eq. (BU) can be transformed into MFS by
using Egs. (IX) and (20), respectively. In this way,

1)*TH;(T'L) Ti(s6)

A.l
SEZN V Cls (F2 + 713) ClsL ( a)
H;‘(Fﬁ) _ Z 2(_1)S+l+17l8H7 (FL) 7;* (Vlsf) : (Alb)

V CZSL(F2 + 7[25) CZSL

where the function #;(-) was defined in Eq. (BOB).

seN
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Appendix B. The relationship between arbitrary boundary conditions and

their k5 components

Considering the symmetry/antisymmetry of U*/ and V*/ of Eq. (Z9) and their
derivatives, the relationships between the boundary conditions (BCs) in Eq. (I5)

and their four £j components in Eq. (C) are as follows

_Ll_ B Lg() + Lgl +L(1l0 +L(111 T
oS R R S
Lo LY + L9 + L0+ L}t
¢ 0 + T+ 1,° + T,
Ls = | 0o _ o1 4 L1004 pu
¢3 T(E)O + T((zn _ TalO _ Tll
Ly —Lgo + Lgl — Léo + L;l
1) | TO— T 410~

Ny [ N2+ N+ NIO4 NI T
S1 S0+ St 4+ 830 + 55!
N, NP 4+ NP+ Np© + Nyt
So| _ | S0+ S +S0+8)!
Ns| — | =N — NO* + N2+ N
Ss S0 4 891 — §l0 _ gl
Ny N+ Nt — NJO 4 N
Se| | Y089 450~

(B.1)

It should be noted that any prescribed BC on the left-hand sides of Eq. (B) can
be decomposed into a symmetric and an antisymmetric components, e.g., L; =
LY+ L} and N; = N)+ N} with subscript ‘0’ or ‘1’ denoting the symmetric or the
antisymmetric component respectively. Equating the symmetric/antisymmetric
components of both sides of Eq. (BI) leads to

and

T1:

T, —

where T;' =TT /2 (1 = 1,2,3,4).

[
[
[

[
[
[
[

59,593,548, 531" = Ta[Sy", Sy, Sp°, Sp']"
In Egs. (B22) and (B3),

1

0
1
0
1

0
1

O = O =

N
Do
Il
O = O =
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S = O

—_— O = O

LY, Ly, Ly, Ly]" = T1[L", Ly Ly, Ly
Ly, Ly, Ly, L)' = To[ Ly, Ly, L) L'
o113, ] = T[T, T8 1,0 T,
.1, 10, ) = T0 T 1,0 1,

N?’Nllﬂ NZ?? N31]T = TI[NC(L]O7 Nz(zn?Nc%Ov N;I]T
Ny, Ny, Ny, NyJT = To[ N, Ny N° N TP
S?? 5117 SZ(’))? S;]T - T3[S207 5217 SCILO7 Sall]T

_ O = O

o = O

(B.2a)
(B.2b)
(B.2¢)
(B.24d)

(B.3a)
(B.3b)
(B.3¢)
(B.3d)

(B.4a)

(B.4b)



Appendix C. Determination of the unknowns in the general solutions

The entries in Eq. (B3) can be expressed either by substituting Eq. (29) into
the corresponding BCs or by expressing them using the two types of modified
Fourier series (MFS) given in Egs. (IX) and (20), namely

L] 0hea] [ 3 222 ]
neN o (C]n )
: . E(OkmT
e I L T I e =
_ = | (f;mz) , (C.1a)
Ta’j:j ij|w:a Z Taj" : =
neN V(Cjn )
T Al L
ki ki Tbkmki
7, | LU 7]y = | mZE:N VCima |
[N Far(UX + vV |24 Najn Ti(Biny) 7
) Y 7%] /Cj’ﬂ
) . ) 77c akmx)
N} VE 4 UM, — Nk
b - ax( o TYUL )|y—b - mze:N bk m
=G =G T( . (C.1b)
Ski Uk 4 vk, _, > Sajn—? fﬁf?)
¢ v . neN Cjn
T (akm)
ki kj kj Sbkm,
_Sbj_ L U’yj "rv,gcjly:b | mze;\l bk /Ckma |

The modified Fourier coefficients Ly, Likm, Najn, Nokm and Toi0, Tokm, Sajns Stkm
are obtained by applying the MFES of Eqs. (I8) and (Z0) respectively. For example,

Sy T (@emy)
Lajn LF 2 J ]”y S m:/ Sk gy C.2
j / dy, bk » el Toa (C.2)

Next step is to solve the unknowns Co0, Cikm, Cokm, Doo, D1jn and Dyjy, in the
general solution of Eq. (Z9) by using the expressions for L/ in Eq. (C1d) and
Ski in Eq. (CIB). Thus, the following equations can be obtained

UM | _ =" LoinTi(Bjny)//Cjab (C.3a)

neN
UG + Vi, = > SanT (Bint)) /V/Giab (C.3b)
neN
which yield

Z [DzjnHk(Twna a]n/\/CjT (C4a)
i=1,2
Z (=1 Bjn + 8ijnTin) Dijn My (rijna)] = Sajn/v/Cinb (C.4b)
i=1,2
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(V) k,j € {0,1},n € N except for n = j = 0 when Eq. (C4d) becomes
DooHj(rooa) = Laoo/ v/2b. The unknown coefficients Dy, Dy, and Ds;,, can
then be determined from Eq. (C24) to give

L, .
Dqyy = 0 j=n=20 (C.59)

\/2_sz (Tooa)

[(71)j+16jn+62jn7‘2jn:|Lajnfsajn

Puin = CnbH(rajn@)Ba/ 2 otherwise (C.5b)
.D L= [(_1)j+lﬁjn+5ljnrljn]Lajn_Sajn ’ ’
2n v/ CinbH} (r2jna)Xa/ pa

where £ = a;(r};, — 73,,). Similarly, the expressions of L;” and S,” in Egs.

(C13) and (CIR) yield the unknowns Cyg, Cixy, and Cogyy, as

L b00

Chy — 000 k=m=0 C.6a
0= o) (C.6a)

[(=)* L o +82kmt2km | Lbkm—Sbkm

Clkm =
\/Ckma’H; (tlkmb)zl/ul :
otherwise C.6b
C _ [(_1)k+lakm+6lkmtlkm]Lbkm_sbkm ’ ( )
Zkm = Vim0 (b2kmb) X1/ 11

where ¥y = a1 (83, — 2.
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Appendix D. Infinite system of algebraic equations derived from T/, T}, N'*i
and N7 of Eqs. (CT)
By equating the expressions of T/, Tbk 7 in Eq. (CI3), the following two rela-

tionships are obtained

T‘fj = ij|a:=a = Z |:(_1)m Z (CﬂcmH (tzkmy))]

meN 1=1,2

+ Z |:Z (5ij'nDijnHk(Tijna') ﬁjny ] Z Ta]n ﬁjny /\/ CJTL (D.1a)

neN |[i=1,2 neN

T:j - Ukjly:b - Z [Z (5ik7nczka (tlkm )) E*(akmx)

meN |i=1,2

= Tokm T3 (hm)//Coma (D.1b)

meN

+> [(—1)" > (DignHi(rijn))

neN i=1,2

Now substituting Egs. (C3) and (C26) into Eq. (D), applying the MFS (A-TR)
to H; (tirmy) and H;(rijnr) and eliminating the common terms 7;*(3jny)// Cjnb

or T (agma)/v/Cema from both sides, the following infinite system of algebraic
equations will be arrived at

Z 2( 1)m+n+jﬂj
meN V Ck’ij’na’ 21 1km + ﬁJQn)( 2km + ﬂJQTL

— (tem — t2km)Sbkm} + %Z{ [ (61jnT22Prk(r1jna) — 02jnl'21Pr(r2jna)) Lajn

) { (L1183 5 — L1285 + (T11 —F12)ﬁ]2-n] Lokm

— (01jnPr(r1jna) — 02jnPr(r2jna)) Sajn]} =Tujn (D.2)

2(_1)m+n+kakm

"%\] \Y CkmcjnabEQ(T%jn + a%m)(r%jn + azm)

- (Tfjn - T%jn)sajn} + %{ [61km D12 P (t1kmb) — d2kmT11P; (t2kmb) | Lokm

{ L2177, —T2273, + (D21 —T22) | Lajn

- [51km7)j (tlkmb) - 62kmpj (tkab)] Sbkm,} = Crbkm . (D3)

in which P;(Z) = H,;(Z)/H;(Z). Similar procedure can be carried out for N*i
Ny " in Eq. (CIH) which will lead to another set of infinite algebraic system.
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Appendix E. Expressions of the coefficient matrices in the mixed-variable
formulation of Eq. (36)

The analytical expressions for the coefficient matrices in Eq. (36) are glven
in this appendix. After symbolic manipulation, the four coefficient matrices AT T
AM., A%, and A%l can be expressed in an extremely concise form. The fol-
lowing expressions are the only analytical expressions required for any element
undergoing plane deformation.

M . in(Ag1o1—Ag27:
ki ﬁjdlagn[ﬁj (Ba1 2 2)) V5 [BinX3X7]nm
ATL - F : opm (A11711—A127712) (E.1a)
I Vi [0kmEaX8]m,n Opdiag,, [=H5 ]
kj dlagn[%;mm] _ﬁjﬁkaﬂakmﬁjnzﬂn,m
ATS = —9.:9 Y di 11771 -T1270 (E.1b)
7 ka2[akm/6)]n S]m,n lagm[ S ]
AkI —diagn[AQIéQQT%;QE?QQéQITQQ] [AE%EZ[]‘”MA - (E.1c)
NL [2528]7”7” —diagm[ 11012 1(112*2112 11 12]
. (A —-A
Akj _ ﬁjdlagn[ﬂ] ( 21T§]12 22T22)] ﬁk[akm2427]m,n
NS 95[B5n35 58 T
(E.1d)

where ay = ag + 1,9; = (—=1)7, 9, = (—1)* and

Y1 = Hj(tirmd)/(Hi(tiemb)tiem) . Yoi = Hk(T’z‘jna)/(HZ(Tz‘jna)Tz‘jn) ;

01 = alt?km + aoaim + K, 02 = alT‘”n +ag j?’L tr,
Ay = altzzkm + aO(aim - ’%) ) Agi = ayr 'ijn + aO(Bjn N H) ’
L1i = a1t — Qi + 54 Tai = arrfjn = Bjn + 5,

Y1 = Cbl(t%km — t%km) s Yo = al(T%jn - T%]n) ’

Y3 =a1(k — B3,) — Bao +4)of,, . Ta = ai(k — ajf,,) — (3a0 +4)5,

Y5 = 4a2a%mﬁjzn — aom(aim + ]2n - K),
St = 2A=1)""/ [/ Ginbar (B + 63 G + 53)]
Zs = 2A=1)""/ [/GmGinabar (3, + ) 0350 + )| -

where the hyperbolic functions H and H* were defined in Eq. (30). In Eq. (E-),
‘diag,,[-]” represents a diagonal matrix whose diagonal terms are expressed by *-’
with the subscript n varying from 0 to co, whereas ‘[],,,," stands for a matrix
whose entries are ‘-’ with n (row number) and m (column number) taking from 0
to co. Similarly, it is easy to understand the notations ‘diag,,[-]” and ‘[-],, . Note
that since the DOFs corresponding to Sg o, 13,0 (When j = 0) and Spxo, Tpro (When
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k = 0) in Eq. (B2) have been removed, the corresponding rows and columns of the
A% matrices should also removed accordingly. If the notations A% (i, :) = () and
A (: 1) = () denote respectively the removal of the ith row and the /th column
of the matrix A% the following removal should be performed (assuming that

[ 1 24

n € [0,N —1])
A (1) =0whenj=0, AM(N+4+1,:)=0whenk=0, (E.2a)
AlL(:,1)=0whenj=0, AMN(N+1)=0whenk=0, (E.2b)

where the subscript ‘e’ in Eq. (EZ23d) stands for either L or S; the ‘e’ in Eq. (EZZR)
represents either 7" or V. A

In Eq. (E), the notation ()k] with kj taking the values ‘00°,°01°,°10” and
‘11’, implies that these definitions are for all of the four symmetric/antisymmetric
components. It is easily seem from Eq. (E) that A%, = A%T and AY, =
A%LT are symmetric matrices, while A%, = —A%ST. (This symplectic property
[40] is similar to the SDS formulation of the transverse vibration [33].)
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