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Abstract. The modal behaviour of two high aspect ratio sailplane wings with cantilever 
boundary conditions is investigated by applying the dynamic stiffness method and using the 
Wittrick-Williams algorithm as solution technique. The wing is idealised as an assembly of 
bending-torsional coupled beams for which the frequency dependent dynamic stiffness matrix is 
established. A Fortran computer program is developed to obtain the natural frequencies and 
mode shapes of the wings. The bending and torsional rigidities of each wing are varied and their 
subsequent effects on the natural frequencies and mode shapes are examined. A detailed 
parametric study with the variations of bending and torsional rigidities shows some interesting 
results which can be of practical help to the industry when designing such wings. The illustrative 
examples chosen for the baseline wings prior to changing their rigidities are representative of 
existing sailplanes. The results are presented and discussed and the paper concludes with some 
remarks.   

1.  Introduction 
Sailplane wings are slender and flexible due to their high aspect ratios resulting from large spans and 
relatively short chords. As a consequence, they are easily prone to vibration problems. Modal analysis 
of sailplane wings is thus very important and plays an important role in their design. Analysis of this 
kind is an obligatory airworthiness requirement which is rigorously enforced by the civil aviation 
authorities. The purpose of this paper is to carry out such an analysis to predict the modal behaviour of 
sailplane wings by applying the dynamic stiffness method (DSM) and subsequently examining the 
effects of the wing rigidity properties on the modal characteristics. In order to provide the context of this 
research, interested readers may find references [1-6] useful as background studies.  

One of the main motivations for modal analysis of aircraft wings originates from the fact that it is a 
fundamental prerequisite when carrying out the response analysis, particularly through the use of the 
normal mode method. It is well known that the finite element method (FEM) is generally used to solve 
such problems. Using the FEM, the stiffness and mass properties of all individual elements are 
assembled to form the overall stiffness and mass matrices of the structure. The typical eigenvalue 
problem is solved to provide the natural frequencies and the corresponding mode shapes of the structure 
upon imposing the boundary conditions. The FEM is numerically intensive and the degrees of freedom 
identified by the order of stiffness and mass matrices decide the number of eigenvalues, which are the 
natural frequencies. The higher order natural frequencies will be considerably less accurate. There is a 
powerful alternative to the FEM called the DSM for modal analysis of aircraft wings or other structures. 

mailto:huijuan.su@northampton.ac.uk
http://creativecommons.org/licenses/by/3.0


2

1234567890 ‘’“”

The 7th Symposium on Mechanics of Slender Structures IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1048 (2018) 012010  doi :10.1088/1742-6596/1048/1/012010

 
 
 
 
 
 

The DSM is based on an exact single dynamic stiffness element containing both the mass and stiffness 
properties of the element as the basic building block. The assembly procedure is the same as in the FEM, 
but a single dynamic stiffness element matrix is used for each structural component instead of separate 
mass and stiffness matrices to form the overall frequency-dependent dynamic stiffness matrix of the 
complete structure. The formulation in the DSM leads to a transcendental/nonlinear eigenvalue problem 
whereas a linear eigenvalue problem is generally encountered in the FEM. The best available solution 
technique to extract the eigenvalues in the DSM is to apply the Wittrick-Williams algorithm [7], which 
has received extensive coverage in the literature. The algorithm, which uses the Sturm sequence property 
of the dynamic stiffness matrix, is robust and ensures that no natural frequency of the structure is missed.  

The paper focuses on the modal behaviour of two cantilever sailplane wings. The wings are idealised 
as an assembly of bending-torsional coupled beams [8-9]. The frequency dependent dynamic stiffness 
matrix of a bending-torsion coupled beam required for the analysis is outlined here. A computer program 
in Fortran is developed to obtain the natural frequencies and mode shapes of such wings using the 
Wittrick-Williams algorithm. The bending and torsional rigidities of each wing are then varied and their 
subsequent effects on the natural frequencies and mode shapes are investigated. A detailed parametric 
study with the variations of bending and torsional rigidities shows some interesting results which can be 
of practical help in the design of aircraft wings. The illustrative examples chosen for the baseline wings 
are representative of those of existing sailplane wings and the paper concludes with some remarks. 

2.  Theory 

2.1.  Formulation of dynamic stiffness matrix of a bending-torsional coupled beam 
Figure 1 shows a bending-torsion coupled beam with length L, distance between the mass and elastic 
axes xα, the bending and torsional rigidities EI and GJ respectively, the mass per unit length m, the polar 
mass moment of inertia per length about the Y-axis 𝐼𝐼𝛼𝛼. The bending displacement and torsional rotation 
are h and 𝜓𝜓. The coupled bending and torsional motions occur due to non-coincident mass and elastic 
axes which are respectively the loci of the centroid and shear centres of the beam cross-section. For an 
aircraft wing, it is not generally possible to realise a torsion-free bending displacement or a bending-
free torsional rotation during its dynamic motion unless the load or the torque is applied through or about 
the shear centre. Given the perspective, a high aspect ratio non-uniform sailplane wing can be 
accordingly modelled as an assemblage of bending-torsion coupled beams. The representation in figure 
1 is particularly relevant to analyse a high aspect ratio aircraft wing. 

 
Figure 1. A wing idealised as a bending-torsion coupled beam. 

 
The dynamic stiffness matrix of a uniform bending-torsion coupled beam has been established and 

extended to model a sailplane wing. The detailed procedure can be found in [8, 9]. The governing partial 
differential equations of motion for the beam with primes and over dots denoting partial differentiation 
with respect to position y and time t respectively are: 
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 𝐸𝐸𝐼𝐼ℎ′′′′ + 𝑚𝑚ℎ̈ −𝑚𝑚𝑥𝑥𝛼𝛼�̈�𝜓 = 0                       (1) 

 𝐺𝐺𝐺𝐺𝜓𝜓′′ +𝑚𝑚𝑥𝑥𝛼𝛼ℎ̈ − 𝐼𝐼𝛼𝛼𝜓𝜓 = 0                                              (2) 
 

For harmonic oscillation with circular frequency ω, the above differential equations can be solved 
using standard procedure [8, 9] to provide the solution for the amplitudes of both the bending 
displacement (H) and the torsional rotation (𝛹𝛹) in terms of six integration constants A1 to A6 as: 

            𝐻𝐻(𝜉𝜉) =  𝐴𝐴1𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜉𝜉 + 𝐴𝐴2𝑐𝑐𝑠𝑠𝑠𝑠ℎ𝛼𝛼𝜉𝜉 + 𝐴𝐴3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 + 𝐴𝐴4𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉 + 𝐴𝐴5𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 + 𝐴𝐴6𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉   (3) 
𝛹𝛹(𝜉𝜉) =  𝐴𝐴1𝑘𝑘𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜉𝜉 + 𝐴𝐴2𝑘𝑘𝛼𝛼𝑐𝑐𝑠𝑠𝑠𝑠ℎ𝛼𝛼𝜉𝜉 + 𝐴𝐴3𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 + 𝐴𝐴4𝑘𝑘𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉 + 𝐴𝐴5𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 + 𝐴𝐴6𝑘𝑘𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉    (4) 
 
     where ξ is the non-dimensional length defined as 𝜉𝜉 = 𝑦𝑦

𝐿𝐿
, and 
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      (5) 

      𝑘𝑘𝛼𝛼 = 𝑏𝑏−𝛼𝛼4

𝑏𝑏𝑥𝑥𝛼𝛼
,     𝑘𝑘𝛽𝛽 = 𝑏𝑏−𝛽𝛽4

𝑏𝑏𝑥𝑥𝛼𝛼
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𝑏𝑏𝑥𝑥𝛼𝛼
                                       (6)                      

      𝑞𝑞 = 𝑏𝑏 + 𝑎𝑎2

3
,  𝜙𝜙 =  𝑐𝑐𝑐𝑐𝑐𝑐−1 �27𝑎𝑎𝑏𝑏𝑎𝑎−9𝑎𝑎𝑏𝑏−2𝑎𝑎

3

�2(𝑎𝑎2+3𝑏𝑏)
3
2�

�,  𝑎𝑎 =  �𝐼𝐼𝛼𝛼𝜔𝜔
2𝐿𝐿2

𝐺𝐺𝐺𝐺
�,  𝑏𝑏 = �𝑚𝑚𝜔𝜔2𝐿𝐿4

𝐸𝐸𝐼𝐼
� , 𝑐𝑐 = �𝐼𝐼𝛼𝛼−𝑚𝑚𝑥𝑥𝛼𝛼2

𝐼𝐼𝛼𝛼
�       (7) 

 
     The expressions for bending rotation 𝜃𝜃(𝜉𝜉), bending moment  𝑀𝑀(𝜉𝜉), shear force 𝑆𝑆(𝜉𝜉) and torque 𝑇𝑇(𝜉𝜉) 
are given by [8, 9] 
𝜃𝜃(𝜉𝜉) = �1

𝐿𝐿
� {𝐴𝐴1𝛼𝛼𝑐𝑐𝑠𝑠𝑠𝑠ℎ𝛼𝛼𝜉𝜉 + 𝐴𝐴2𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜉𝜉 − 𝐴𝐴3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉 + 𝐴𝐴4𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 − 𝐴𝐴5𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉 + 𝐴𝐴6𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉}      (8) 

𝑀𝑀(𝜉𝜉) =  −�𝐸𝐸𝐼𝐼
𝐿𝐿2
� {𝐴𝐴1𝛼𝛼2𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜉𝜉 +  𝐴𝐴2𝛼𝛼2𝑐𝑐𝑠𝑠𝑠𝑠ℎ𝛼𝛼𝜉𝜉 −  𝐴𝐴3𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 − 𝐴𝐴4𝑐𝑐2𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉 − 𝐴𝐴5𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 −

𝐴𝐴6𝑐𝑐2𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉}                (9) 
𝑆𝑆(𝜉𝜉) =   �𝐸𝐸𝐼𝐼

𝐿𝐿3
� {𝐴𝐴1𝛼𝛼3𝑐𝑐𝑠𝑠𝑠𝑠ℎ𝛼𝛼𝜉𝜉 +  𝐴𝐴2𝛼𝛼3𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜉𝜉 + 𝐴𝐴3𝑐𝑐3𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉 −  𝐴𝐴4𝑐𝑐3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 + 𝐴𝐴5𝑐𝑐3𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉 −

 𝐴𝐴6𝑐𝑐3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉}            (10) 
𝑇𝑇(𝜉𝜉) = �𝐺𝐺𝐺𝐺

𝐿𝐿
� �𝐴𝐴1𝑘𝑘𝛼𝛼𝛼𝛼𝑐𝑐𝑠𝑠𝑠𝑠ℎ𝛼𝛼𝜉𝜉 +  𝐴𝐴2𝑘𝑘𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼𝜉𝜉 −  𝐴𝐴3𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉 +  𝐴𝐴4𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 −  𝐴𝐴5𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝜉𝜉 +

𝐴𝐴6𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉�              (11) 
           
        Referring to figure 2, the boundary conditions for displacements are:  

At y = 0 (ξ =0): H = H1, θ = θ1, Ψ = Ψ1        (12) 

                 At y = L (ξ = 1): H = H2, θ = θ2, Ψ = Ψ2       (13) 
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Figure 2. Boundary conditions for displacements of a sailplane wing element 
 
     Similarly referring to figure 3, the boundary conditions for the forces are: 

At y = 0 (ξ =0): S = S1, Μ = Μ1, Τ= -Τ1                       (14) 

At y = L (ξ = 1): H = -S2, Μ= -Μ2, Τ = Τ2                      (15) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Boundary conditions for forces of a sailplane wing element 

 
The expressions for displacements at the ends of the beam element can be obtained by applying the 

boundary conditions of equations (12) and (13) to equations (3), (4) and (8) to provide the following 
matrix relationship as: 
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or in matrix format as: 
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    ∆ = BA          (17) 

where A is the contact vector comprising the constants A1 - A6 and 

𝐶𝐶ℎ𝛼𝛼 = cosh𝛼𝛼;  𝑆𝑆ℎ𝛼𝛼 = sinh𝛼𝛼;  𝐶𝐶𝛽𝛽 = cos𝑐𝑐;  𝑆𝑆𝛽𝛽 =  sin𝑐𝑐;  𝐶𝐶𝛾𝛾 =  cos𝑐𝑐;  𝑆𝑆𝛾𝛾 = sin 𝑐𝑐    (18) 

     The following matrix relationship can be obtained by substituting the boundary conditions of 
equations (14) and (15) for shear force, bending moment and torque into equations (9) - (11): 
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      (19) 

or in matrix format as: 

    F = DA          (20) 

where  
𝑊𝑊1 = 𝐺𝐺𝐺𝐺

𝐿𝐿
,  𝑊𝑊2 = 𝐸𝐸𝐼𝐼

𝐿𝐿2
,  𝑊𝑊3 = 𝐸𝐸𝐼𝐼

𝐿𝐿3
     (21) 

      
     The constant vector A can now be eliminated from equations (17) and (20) to give the following 
force-displacement relationship: 

          F = K ∆                         (22) 

where K is the 6×6 frequency dependent dynamic stiffness matrix given by 

                                                                   K = D B-1  (23) 

     The dynamic stiffness matrix in equation (23) representing a bending-torsion coupled beam such as 
an aircraft wing can now be used to model an aircraft wing.  
 
2.2 Application of the Wittrick-Williams algorithm 
The dynamic stiffness matrix in equation (23) can be used to compute the natural frequencies and mode 
shapes of a bending-torsion coupled beam. A non-uniform aircraft wing can be modelled as an assembly 
of many uniform bending-torsion coupled beams. For example, a non-uniform wing can be modelled as 
a stepped wing where it is split into a number of uniform elements. The dynamic stiffness matrices of 
all individual elements are assembled to form the overall dynamic stiffness matrix Kf of the complete 
wing. The natural frequency computation is accomplished by applying the Wittrick-Williams algorithm 
[7]. The algorithm monitors the Sturm sequence condition of Kf in such a way that there is no possibility 
of missing any natural frequency of the wing. The application procedure of the algorithm is briefly 
summarised here. Supposing that ω denotes the angular frequency of the vibrating wing, the number of 
natural frequencies passed (j) as ω is increased from zero to ω∗ is given by 

j = j0 + s{Kf}                                     (24) 

where Kf, the overall dynamic stiffness matrix of the wing whose elements depend on ω is evaluated at 
ω = ω∗; s{Kf} is the number of negative elements on the leading diagonal of Kf

∆, Kf
∆  is the upper 

triangular matrix obtained by applying the usual form of Gauss elimination to Kf , and j0 is the number 
of natural frequencies of the wing still lying between 0 and ω* when the displacement components to 
which Kf corresponds are all zeros.(Note that the structure can still have natural frequencies when all its 
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nodes are clamped, because exact member equations allow each individual member to displace between 
nodes with an infinite number of degrees of freedom, and hence infinite number of natural frequencies 
between nodes. Thus 

0 mj j= ∑                         (25) 

where jm is the number of natural frequencies between 0 and ω* for an individual component member 
with its ends fully clamped, while the summation extends over all members of the structure. Thus, with 
equations (24) and (25), it is possible to ascertain how many natural frequencies of the wing lie below 
an arbitrarily chosen trial frequency (ω*). This feature of the algorithm can be used to converge upon 
any required natural frequency to any desired accuracy. As successive trial frequencies can be chosen, 
computer implementation of the algorithm is simple. For a detailed explanation and understanding of 
the Wittrick-Williams algorithm, readers are referred to the original work of Wittrick and Williams [7].  

3.  Results and discussion 
Two sailplane wings with cantilever boundary conditions are analysed for their modal characteristics. 
The sailplanes are named as S1 and S2 to preserve commercial anonymity. The particulars for the two 
sailplanes are given in table 1. The unit for each parameter is provided in parentheses in the table.  

 

Table 1. Particulars of the two sailplanes. 

Parameters Sailplane-S1 Sailplane-S2 
Wing Span (m)  22 15 
Wing Area (m2) 15.44 10.05 
Aspect Ratio 31.35 22.4 
Wing Root Chord (m) 1.0 0.9 
Wing Tip Chord (m) 0.4 0.4 
Sweep angle (deg) 0 0 
Fuselage Length (m) 7.6 6.72 
Height Overall (m) 2.0 2.0 
Weight Empty (kg) 390 234 
Max Take-off weight (kg) 550 440 
Max Wing Loading (kg/m2) 37 36 
Max Cruising Speed (knots) 135 105 

 

     A computer program in Fortran was developed to compute the natural frequencies and mode shapes 
of the wings using the dynamic stiffness method and the Wittrick-Williams algorithm. The first five 
natural frequencies and mode shapes of the two sailplanes are presented in table 2 and figure 4, 
respectively. In figure 4, the horizontal axis is the non-dimensional length (𝜉𝜉) and the vertical axis is 
bending displacement (H) and/or the torsional rotation (𝛹𝛹). The letters B and T in table 2 indicate 
bending and torsion dominated modes, respectively whereas the letter C indicates a coupled mode which 
has substantial amount of both bending and torsional displacements.  
 

Table 2. The natural frequencies of the two sailplane wings. 

 
Category 

Natural Frequencies (ωi) (rad/s) 
ω1 ω2 ω3 ω4 ω5 

Sailplane S1 10.64 (B) 42.62 (B) 109.6 (B) 111.5 (T) 201.4 (B) 
Sailplane S2 13.38 (B) 42.09 (B) 93.35 (B) 164.2 (T) 167.4 (C) 
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(a) Sailplane S1    (b) Sailplane S2 

Figure 4. Natural frequencies and mode shapes of Sailplane wings S1 and S2. 

 

     A detailed parametric study with the variation of bending and torsional rigidities is then carried out. 
The bending (EI) and torsional (GJ) rigidities for each wing are varied between -25% to 25% with an 
increment of 5% in each step. Their subsequent effects on the natural frequencies and mode shapes are 
investigated. The first six natural frequencies with the variation of EI and GJ for S1 are presented in 
tables 3 and 4 respectively. Clearly in table 3, all the natural frequencies corresponding to bending modes 
increase with the variation of the bending rigidity EI from -25% to +25% whereas the 6th one remains 
unchanged because it is a high frequency torsional mode which is not expected to change greatly as the 
torsional rigidity GJ is kept constant. Interesting results can be found in that there are modal interchanges 
(flip-over) for the variation of EI as the mode shapes changes from bending to torsional mode, see the 
3rd natural frequency in table 3. Similar mode shape changes from torsional to bending mode can be 
found, for example in the 4th mode of table 3. With respect to the variation of GJ shown in table 4, the 
1st, 2nd and 5th natural frequencies remain unchanged whereas the rest increase. Similar pattern can be 
observed that the 3rd and 4th modes are changed from torsional to bending mode and bending to torsion 
mode, respectively.  

 

𝜉𝜉 𝜉𝜉 

𝐻𝐻
,𝛹𝛹

 

𝐻𝐻
,𝛹𝛹
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Table 3. The effects on the natural frequencies for S1 with the variation of EI. 

Variation in 
EI  (%) 

ωi (rad/s) 
ω1 (Β) ω2  (Β) ω3   ω4  ω5 (Β) ω6 (Τ) 

-25 9.217 36.91 94.96 (B) 111.5 (T) 174.4 260.8 
-20 9.519 38.12 98.07 (B) 111.5 (T) 180.1 260.8 
-15 9.811 39.29 101.1 (B) 111.5 (T) 185.7 260.8 
-10 10.10 40.43 104.0 (B) 111.5 (T) 191.1 260.8 
-5 10.37 41.54 106.9 (B) 111.5 (T) 196.3 260.8 
0 10.64 42.62 109.6 (B) 111.5 (T) 201.4 260.8 
5 10.91 43.67 111.5 (T) 112.4 (B) 206.4 260.8 

10 11.16 44.70 111.5 (T) 115.0 (B) 211.2 260.8 
15 11.41 45.71 111.5 (T) 117.6 (B) 216.0 260.8 
20 11.66 46.69 111.5 (T) 120.1 (B) 220.6 260.8 
25 11.90 47.65 111.5 (T) 122.6 (B) 225.2 260.8 

 
 

Table 4. The effects on the natural frequencies for S1 with the variation of GJ. 

Variation in 
GJ (%) 

ωi (rad/s) 
ω1 (Β) ω2 (Β) ω3   ω4 ω5 (Β) ω6 (Τ) 

-25 10.64 42.62 96.59 (T) 109.6 (B) 201.4 225.9 
-20 10.64 42.62 99.76 (T) 109.6 (B) 201.4 233.3 
-15 10.64 42.62 102.8 (T) 109.6 (B) 201.4 240.5 
-10 10.64 42.62 105.8 (T) 109.6 (B) 201.4 247.4 
-5 10.64 42.62 108.7 (T) 109.6 (B) 201.4 254.2 
0 10.64 42.62 109.6 (B) 111.5 (T) 201.4 260.8 
5 10.64 42.62 109.6 (B) 114.3 (T) 201.4 267.2 

10 10.64 42.62 109.6 (B) 117.0 (T) 201.4 273.5 
15 10.64 42.62 109.6 (B) 119.6 (T) 201.4 279.7 
20 10.64 42.62 109.6 (B) 122.2 (T) 201.4 285.7 
25 10.64 42.62 109.6 (B) 124.7 (T) 201.4 291.6 

 
 
      For the sailplane S2, the first six natural frequencies with the variation of EI and GJ are presented in 
tables 5 and 6 respectively. Similar patterns, like the sailplane S1, can be noted in respect of the modal 
interchanges (flip-overs), see the 4th and 5th modes. 
     It is well known that in flutter and response analysis of aeronautical and other structures, natural 
frequencies and mode shapes arising from the free vibration analysis play a very important role, 
particularly when the normal mode method is used. Essentially the mode shapes are appropriately scaled 
by the corresponding generalised coordinates when computing the flutter mode or the overall response 
of a structure such as an aircraft wing. The mode shapes provide essential information concerning the 
dynamic behaviour of a structural system and they are useful indicators of the properties of the system. 
It is also important to note that some of the modes can couple with each other which can give rise to 
instability, resulting in structural resonance causing eventual failure of the structure. In aeronautical 
applications, the presence of the aerodynamic forces alters the mode shapes significantly, triggering 
frequency coalescence phenomenon for which the classical bending-torsion flutter is a typical example. 
The importance of natural frequency and mode shape calculation cannot be overemphasised. 
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Table 5. The first six natural frequencies for S2 with the variation of EI . 

Variation in 
EI  (%) 

ωi (rad/s) 
ω1 (Β) ω2  (Β) ω3  (Β) ω4  ω5  ω6 (C) 

-25 11.64 36.51 81.19 145.8 (B) 164.3 (T) 251.8 
-20 11.97 37.69 83.66 149.9 (B) 164.3 (T) 259.3 
-15 12.34 38.84 86.20 154.4 (B) 164.4 (T) 267.0 
-10 12.69 39.96 88.65 158.7 (B) 164.5 (T) 274.5 
-5 13.04 41.04 91.04 162.6 (B) 164.9 (T) 281.6 
0 13.38 42.10 93.35 164.2 (T) 167.4 (C) 288.6 
5 13.71 43.12 95.60 164.4 (T) 171.2 (C) 295.3 

10 14.03 44.13 97.81 164.5 (T) 175.1 (C) 301.9 
15 14.34 45.11 99.95 164.6 (T) 178.8 (C) 308.3 
20 14.65 46.07 102.0 164.7 (T) 182.5 (C) 314.6 
25 14.95 47.01 104.1 164.7 (T) 186.1 (C) 320.6 

 
 

Table 6. The first six natural frequencies for S2 with the variation of GJ . 

Variation in 
GJ (%) 

ωi (rad/s) 
ω1 (Β) ω2 (Β) ω3 (Β) ω4 ω5 ω6 (C) 

-25 13.37 42.03 93.01 142.8 (T) 166.2 (C) 286.2 
-20 13.38 42.04 93.10 147.3 (T) 166.5 (C) 286.8 
-15 13.38 42.06 93.18 151.8 (T) 166.7 (C) 287.3 
-10 13.38 42.07 93.24 156.1 (T) 166.9 (C) 287.8 
-5 13.38 42.09 93.30 160.3 (T) 167.1 (C) 288.2 
0 13.38 42.10 93.35 164.2 (T) 167.4 (C) 288.6 
5 13.38 42.11 93.41 166.9 (C) 171.2 (T) 289.0 

10 13.38 42.11 93.44 167.2 (C) 172.6 (T) 289.2 
15 13.38 42.12 93.48 167.4 (C) 176.4 (T) 289.5 
20 13.38 42.13 93.51 167.5 (C) 180.1 (T) 289.7 
25 13.38 42.14 93.54 167.6 (C) 183.7 (T) 289.9 

 
 
4. Conclusions 
Using the dynamic stiffness method together with the Wittrick-Williams algorithm as the solution 
technique, the modal behaviour of two sailplane wings is investigated. Natural frequencies and mode 
shapes for these wings are presented and the results are examined and discussed. The bending and 
torsional rigidities of each wing are then varied and their subsequent effects on the natural frequencies 
and mode shapes are investigated. A detailed parametric study with the variations of bending and 
torsional rigidities provides some interesting results showing modal interchanges which can be of 
practical help in the design of such wings. The investigation paves the way for further research to 
establish trends for the modal behaviour of high aspect ratio sailplane wings. 
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