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Abstract: 

To evaluate the cyclic performance of composite latticed columns, experiments and numerical 

modelling of three-legged concrete filled steel tube (CFST) latticed columns under constant axial 

compressive force and lateral cyclic loadings were conducted. Experiments of eight specimens, 

including 6 CFST latticed columns and 2 steel latticed columns, were carried out with various axial 

compression ratio and diameter-to-thickness ratio of the tube section in the limb. The failure pattern, 

hysteretic behaviour, bearing capacity, initial stiffness and accumulated energy dissipation of the 

specimens were investigated. The experimental results reveal that, under cyclic loadings, CFST 

latticed columns have better performance than the corresponding steel latticed columns; however, 

three-legged CFST latticed specimens show different behaviour in two loading directions owing to 

the different capacity of the CFST members under tension and compression. A finite element 

analysis (FEA) model was developed to simulate the performance of three-legged CFST latticed 

columns under lateral cyclic loadings, and the feasibility of the FEA model was verified by the 

comparison against test results.
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1. Introduction

Single concrete filled steel tube (CFST) members are widely used in building structures and bridges 

owing to their high strength, high ductility and toughness, fast track construction and low cost 

features, which is due to the composite action between steel tube and its core concrete (Han et al. 

2014)[1]. However, in engineering practice, tensile stresses can be observed in the concrete core of 

CFST when the members undertake a load with a larger eccentricity ratio or when it is used as a 

column with a larger slenderness ratio, which results in a weaker confinement of steel tube to its 

core concrete, and therefore, the advantage of CFST cannot be fully explored. To tackle this 

problem, the CFST latticed members are designed as it is shown in Fig. 1. Through a rational 

combination of limbs and lacings, CFST latticed members have relative large moment of inertia 

owing to their main load-bearing limbs being placed away from the centroid axis, which in turn, 

resulting a lighter weight, a better stability and a larger flexural rigidity in comparison to the single 

CFST members. Currently, CFST latticed members are mainly used as bridge piers, bridge towers, 

key arch rib element in the arch bridge, transmission tower or wind power tower, supporting pillar 

in high-rise buildings, bracing system of large-span structures, etc. (Kawano and Sakino 2003; Ou 

et al. 2011; Huang 2015)[2-4], and in these engineering fields the anti-seismic capacity of CFST 

latticed members is crucial to guarantee the safety of structures located at the earthquake 

fortification zone. 

Compared with the conventional four-legged CFST latticed member, three-legged CFST latticed 

member is more stable due to its triangle shape and is more economical as one limb and a column 

of lacings are removed. Moreover, three-legged CFST latticed member has obvious directionality 

and is more applicable for structures with supporting on one side. As a result, three-legged CFST 

latticed members are more suitable to be used as the edge or corner columns for a factory building, 

arch rib of arch bridge and truss beams of a bridge or building.

The earliest experimental research on the structural behaviour of two-legged CFST latticed 

columns [Fig. 1(a)] under lateral cyclic loadings was conducted by Kawano et al. (1996)[5], and it 



3

was shown that the rigidity and strength of connections between CFST limbs and tube lacings were 

improved compared to the corresponding steel latticed columns. After that, the scholars began to 

pay close attention to the seismic behaviour of four-legged CFST latticed members with various 

lacing arrangements, and more experimental and theoretical investigations had been carried out, as 

summarized in Table 1, where  is the height of the specimen,  and  are the tube external H sD sT

diameter and thickness of the limbs respectively,  and  are the tube external diameter and wd wt

thickness of the lacings respectively,  and  are the steel yield strength of the limbs and ysf ywf

lacings respectively,  is the cube compressive strength of core concrete in the limbs,  is the cuf *

conversion slenderness ratio of the specimen determined according to a specification related to 

design of CFST structures (DBJ13-51 2003)[10], and  is the axial compression ratio. Both n

pseudo-static (Kawano et al. 1996; Deng 2012; Luo 2013; Chen et al. 2014; Huang 2015; Yuan et al. 

2016)[4-9] and pseudo-dynamic (Deng 2012)[6] testing methods were considered in the 

experimental investigation, and numerical simulations were further carried out by using the 

software packages ABAQUS (Deng 2012; Luo 2013)[6,7] and OpenSees (Huang 2015; Yuan et al. 

2016)[4,9]. It can be concluded from the literature review that there is little research on the 

performance of three-legged CFST latticed columns subjected to cyclic loadings, which indicates 

the study of this subject is timely.

The objective of this paper is to present an experimental and numerical investigation on the 

behaviour of three-legged CFST latticed columns subjected to constant axial compressive force and 

lateral cyclic loadings. The effect of axial compression ratio and diameter-to-thickness ratio of the 

tube section in the limb on the performance of this type of columns under lateral cyclic loadings 

was investigated through the test. The comparison between CFST latticed specimens and the steel 

counterparts was also carried out. Apart from that, a finite element analysis (FEA) model was 

constructed to predict the responses of three-legged CFST latticed columns under lateral cyclic 

loadings, and the comparison between the numerical and experimental results was made to assess 

the accuracy of the FEA model.
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2. Experimental program

2.1. Specimen preparation

Eight three-legged specimens, including 6 CFST latticed columns and 2 steel latticed columns, were 

prepared. The schematic diagram of CFST and steel latticed specimens is demonstrated in Fig. 2, 

and the detailed setting up of the tested specimens is given in Table 2, where  is the length wl

between internodes,  is the centroid distance of two limbs,  is the constant axial 0h 0N

compressive force applied to the latticed columns,  and  are the measured bearing ue+P ue-P

capacity in push and pull loading direction respectively (see Fig. 3),  and  are the uc+P uc-P

predicted bearing capacity in push and pull loading direction respectively, and  is the initial iS

stiffness of the tested specimens. 

An important goal during the design of the experimental program is to evaluate the influence of 

the following parameters on the cyclic performance of the tested specimens:

● Axial compression ratio, : from 0.05 to 0.52;n

● Diameter-to-thickness ratio of the tube section in the limb, : 24.9 and 51.5; ands s/D T

● Type of the limb: CFST and steel tube.

The conversion slenderness ratio ( ) of CFST and steel latticed specimens, which represents the *

effect of the shear deformation of lacings on the stability strength, was calculated according to the 

formulae in DBJ 13-51 (2003)[10] and GB 50017 (2003)[11], respectively. The detailed formulae 

for  are as follows:*

             (1)
2
y s

2

w*

2
1y
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where,  is the slenderness ratio of the specimen about the bending neutral axis (Y-Y axis in Fig. y

2);  and  are the steel tube area of single limb and lacing, respectively;  and  are the sA wA A 1A



5

total area of all limbs and diagonal lacings within the cross-section respectively, and  is the angle 

between the plane with diagonal lacings and solid axis (X-X axis in Fig. 2).

The axial compression ratio ( ) of the tested specimens is defined as:n

                                (2)0

u

Nn
N




where,  is the stability factor related to the conversion slenderness ratio ( ), and  is the  * uN

sectional bearing capacity under concentric compression determined using the formulae in DBJ 13-

51 (2003)[10] and GB 50017 (2003)[11] for CFST and steel latticed columns, respectively.

Two types of cold-formed circular hollow sections (CHS) were chosen for the tube in the limbs 

and tube lacings. The mechanical properties of steel tube in the limbs were obtained by tensile tests 

of three coupons randomly cut from the CHS members. In the meantime, compressive tests on three 

stub specimens with length-to-diameter of 3.0 were performed to acquire the properties of the tube 

lacings. From the tests, the average yield strength, tensile strength, elastic modulus, Poisson’s ratio 

and elongation after fracture were received, as presented in Table 3. 

Self-consolidating concrete (SCC) was prepared to fill the tube in the limbs of CFST latticed 

specimens. Table 4 shows the mix proportions and properties of the SCC. To measure the 

compressive strength and elastic modulus of the SCC, several cubes with a length of 150 mm and 

prisms of size 150 mm×150 mm×300 mm were cast and cured in conditions similar to the CFST 

latticed specimens. The curing conditions for the SCC standard specimens were maintained 

constant at 20 oC±2 oC and 95% relative humidity. The measured cube compressive strength ( ) cuf

of the SCC at 28 days and during the loading tests was equal to 50.1 MPa and 55.9 MPa 

respectively, and the mean elastic modulus of the SCC was 33,600 N/mm2. 

2.2. Test set-up and instruments

Tests of three-legged latticed specimens were carried out under combined constant axial 

compressive force and lateral cyclic loadings, and the schematic view and real scenario of the test 

set-up and instruments are demonstrated in Fig. 3. A 2000 kN actuator was used to exert the 
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constant axial compressive force ( ) during the tests, and the maximum deviation of  was 0N 0N

within 10%, as shown in Fig. 4. The loadings were applied by imposing lateral cyclic displacements 

at the top of the specimens via an actuator with 500 kN capacity. The bottom endplate of the 

specimens was connected to a baseplate using 20 high-strength bolts, and the baseplate was further 

fixed to the ground through 2 reaction beams and 4 anchor rods. A total of thirteen displacement 

transducers (DTs) were used in each test, in which ten DTs acted on limbs C1 and C2 (DT1i and 

DT2i, i=1-5) were used to obtain the lateral displacements at the connection between the limb and 

lacings, two DTs located at the ends of the top endplate (DTt1 and DTt2) were used to acquire the 

possible relative torsion angles according to the lateral displacement differences over the width of 

the endplate, and one DT located at the middle of the top endplate (DT0) was used to monitor the 

lateral displacements at the top of specimen. Moreover, six strain gauges were mounted at the 

exterior surface of the selected position of limbs C1 and C3 and one lower lacing to measure the 

development of the strains in both longitudinal and transverse directions, and their detailed 

positions are shown in Fig 3. 

As is known, cyclic seismic testing of single CFST columns following the procedures in the 

ATC24 (1992)[12] had been reported by the researchers (Varma et al. 2004; Zhou and Xu 

2016)[13,14], and the precise bearing capacity of the member under constant axial compression and 

lateral loading, which determines the loading histories in the force control stage and the yield 

displacement of the specimens, should be known in advance. However, for the three-legged CFST 

latticed members, there is no accurate method available to date for assessing the bearing capacity 

while subjected to compression and bending, and an inaccurate value may result in the premature 

failure of the specimens or the inaccurate displacement reading when yielding starts. As a result, the 

loading histories with the displacement control were adopted to ensure accurate data acquisition in 

the test of three-legged CFST latticed specimens under combined constant axial compressive force 

and lateral cyclic loadings. The history of the lateral displacements at the top of the column ( ) top

was divided into increments and the peak displacement of each step  was given as , j j



7

                        (3)
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where,  is equal to 10 mm. The load increment was controlled by displacement through setting 0

the loading frequency (fL) to be 0.01 Hz, 0.008 Hz, 0.005 Hz, 0.004 Hz and 0.002 Hz while j≤20 

mm, j=30 mm, j=40 and 50 mm, j=60 mm and j≥70 mm, respectively. One cycle was applied at 

each displacement level when  was less than 4 and after that three cycles were applied at each j

displacement level. The curve of the loading protocol is given in Fig. 5, where  is the number of cn

cycles. The testing was ceased when the lateral load resistance decreased below 50% of the 

maximum bearing capacity of the specimen in either loading direction or the severe deterioration to 

the limbs, lacings or the connection between them were observed. 

3. Test results and discussion

3.1. Overall observations and failure pattern

The structural responses of the specimens under constant axial compressive force and lateral cyclic 

loadings were initially dominated by a combination of local deformation and global displacement, 

and the specimens demonstrated the conventional cantilever beam-column failure mechanism due 

to both compression and bending. 

To evaluate the torsion effect of the specimens, relative torsion angle of the top endplate ( ) of rt

the specimens is defined as:

                              (4)t1 t2DT DT
rt

eD


  


where,  and  are the measured lateral displacements using the displacement transduces 
t1DT

t2DT

DTt1 and DTt2 (see Fig. 3), respectively, and  is the width of the endplate.eD

Variation of  with  is shown in Fig. 6. It can be seen that, for any given specimen, a rt top / H

symmetric distribution of  in two loading directions can be observed, which increases in pace rt
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with increase of . Overall, the maximum  is less than 0.8%, and during the cyclic top / H rt

loading process of specimens the torsion effect is not obvious, i.e. three-legged CFST latticed 

specimens have good out-of-plane stability and no further out-of-plane constraint is needed in the 

tests. It is believed that the lateral displacements along the height of the specimens generally 

belongs to the in-plane deformation.

It was found that the lateral displacements at limbs C1 and C2 were kept almost same except for 

the last few loading steps, and this is due to the serious damage of both limbs and lacings. The 

lateral displacements at measurement point  ( ) of the typical specimens during the first cycle i i

of each step are shown in Fig. 7, where  is the distance from the bottom end of specimens, and y

 (=  or , in which  is the applied lateral load by the actuator) is the load level p ue+/P P ue-/P P P

and the minus values represent the descending stage after peak load. It can be seen that, in general, 

there is an approximate linear relationship between  and  regardless of the type of 0/i  /y H

the limb. Under the same  , steel latticed specimens generally have similar  values in two i p

loading directions; however, for CFST latticed specimens the value of  in pull loading direction p

is evidently different from those in push loading direction. This means that the effect of the 

asymmetry caused by the triangular layout of the limbs in the CFST latticed specimens is severer 

than that of the steel counterparts, which is due to the fact that the difference in mechanical property 

under tension and compression of steel tube is less than that of CFST under the same dimensions 

and material properties. Furthermore, before achieving the peak load,  increases with increase of p

 under the same  irrespective of the type of the limb, i.e. three-legged latticed specimens s s/D T i

with a larger  are more vulnerable to damage due to the weaker confinement from the tube s s/D T

in the limb to its core concrete.

From the tests, it was observed that the failure process of single limb (C1) on one side of the 

centroid axis was different from that of the corresponding double limbs (C2 and C3) on the other 

side of the centroid axis due to the different capacity of CFST limbs under tension and compression. 
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For CFST latticed specimens the tensile fracture and/or compressive buckling of single limb were 

formed obviously earlier than those of the corresponding double limbs; however, for steel latticed 

specimens the tensile fracture and/or compressive buckling of single limb were slightly earlier than 

those of the corresponding double limbs. This can be explained by that the difference in tensile and 

compressive performance of CFST limbs is obviously larger than that of steel tube limbs. 

Fig. 8 shows the failure pattern of CFST and steel latticed specimens after the completion of 

tests. It can be seen that, in general, the fracture or/and buckling of the limbs in the specimens are 

observed at the location close to the bottom stiffeners; however, weld cracking appears at the top 

surface of baseplate of specimens Cb-0.05 and Cb-0.26, which has a certain effect on the 

performance while loaded in push loading direction due to the change of load-transfer mechanism. 

The damage of CFST latticed specimens with a larger  becomes more serious due to a greater n

second-order effect of axial compressive force. Under the same  value the damage of limbs in n

the CFST latticed specimens is severer than that in the steel counterparts based on the comparison 

of the fractures and buckles recorded in the tests. For specimens with  of 51.5, length and s s/D T

width of fracture in single limb of steel specimen are 2.5-3.0 times of those of CFST specimen, and 

length of buckles and buckling range in double limbs of steel specimen are 1.5-2.0 times of those of 

CFST specimen. For specimens with  of 24.9, length and width of fracture in single limb of s s/D T

steel specimen are 0.75  and 5.38 mm respectively; however, there is no fracture in single limb sD

of CFST specimen. Moreover, height of buckles and buckling range of double limbs in the steel 

specimen are 1.2-1.5 times of those in the CFST specimen. This means that the capacity of steel 

tube in the CFST limbs can be fully utilized owing to the existence of the filled concrete. Generally, 

only a few oblique lacings of four CFST latticed specimens and one steel latticed specimen possess 

overall out-of-plane deflection, i.e. one oblique lacing within the first internode of specimens Ca-

0.26, Ca-0.52 and Sb-0.26, and five oblique lacings within the first two and the fourth internodes of 

specimens Cb-0.26 and Cb-0.52. This indicates that the lacings have larger influence on specimens 

with a smaller  and a larger . Moreover, for CFST latticed specimens with  of s s/D T n s s/D T
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51.5, cracking in weld heat-affected zone near the bottom stiffeners causes the partial failure of 

connection between limb and lacings; however, there is no obvious damage to the connections of 

CFST latticed specimens with  of 24.9. This may be due to the fact that cracking of weld s s/D T

between single limb and bottom endplate with  of 0.05 and 0.26 and overall out-of-plane n

deflection of more oblique lacings of specimen with  of 0.52 reduce the connection stresses. n

Steel latticed specimens have no obvious connection damage owing to their more obvious fracture 

of single limb than the corresponding CFST latticed specimens, which can also play a role in 

reducing the connection stresses.

3.2. Load versus deformation curves

The lateral load ( ) versus lateral displacement at the top of specimen over the height ( ) P top / H

hysteretic curve of all specimens is plotted in Fig. 9 by the solid line, where ‘○’ denotes the starting 

of the tube fracture of the limb or the weld cracking (see Fig. 8). It can be seen that, the bearing 

capacity of the specimens decreases quickly below 80% of the maximum bearing capacity once 

fracture of the limb or weld cracking happens, and thus the fracture of the limb or weld cracking is 

considered to be a failure ultimate for the specimens. Irrespective of  and  values, s s/D T n

 hysteretic curve of CFST latticed specimens exhibits obvious asymmetric top /P H 

characteristics, and plumper hysteretic loops of a specimen are achieved while under pull loadings 

than under push loadings. The limb fracture of a CFST latticed specimen occurs in single limb (C1) 

when subjected to push loadings. These are obviously different from the observations of two-legged 

and four-legged CFST latticed specimens subjected to cyclic loadings (Kawano et al. 1996; Deng 

2012; Luo 2013; Chen et al. 2014; Huang 2015; Yuan et al. 2016)[4-9]. This indicates that, for 

three-legged CFST specimens, single limb on one side of the centroid axis should have the similar 

compressive and tensile response as double limbs on the other side of the centroid axis. However, 

for steel latticed specimens, the difference in  hysteretic curve under push and pull top /P H 

loadings is smaller than that exhibited in the CFST latticed specimens. The difference in the 
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hysteretic curves between CFST and the corresponding steel latticed specimens is caused by the fact 

that, under the same dimensions and material properties, the different property in tension and 

compression of CFST members is much greater than that of steel members, which produces the 

different distance between centroid of limbs and the centroid axis of overall section in two loading 

directions. The lateral bearing capacities (  and ) defined as the peak load recorded in the ue+P ue-P

tests are listed in Table 2.

Fig. 10 plots the  backbone curve of the tested specimens. It can be seen that, for top /P H 

CFST latticed specimens, the axial compression ratio ( ) not only affects the bearing capacities but n

also determines the initial slope and ductility. Furthermore, under the same  value, CFST latticed n

specimen has obviously larger bearing capacity, initial slope and ductility compared with the 

corresponding steel latticed specimen owing to the existence of the filled concrete in the limbs, 

which has good interaction with its outer steel tube (Han et al. 2014)[1]. It can also be seen from 

Figs. 9 and 10 that, most of the hysteretic curves have a descending stage followed by a re-

ascending stage in push loading direction; however, this phenomenon does not appear in pull 

loading direction. This may be due to the fact that, in push loading direction all lacings gradually 

participate in carrying the tensile forces after tube fracture of single limb (C1); however, in pull 

loading direction the stress of double limbs (C2 and C3) fails to reach hardening stage, which is 

partially demonstrated in Fig. 11, i.e. the strain of double limbs (C2 and C3) can steadily grow to 

about twice the strain corresponding to the tube fracture of single limb (C1).

The comparison of lateral load ( ) versus strain ( ) hysteretic curves at the predetermined three P 

points (see Fig. 3) between CFST and the corresponding steel latticed specimens is illustrated in Fig. 

11, where  is the yield strain of steel, and the capital letters ‘L’ and ‘T’ denote the longitudinal y

and transverse strains, respectively. It can be seen that, the  hysteretic curves of three P 

positions are generally stable, and no abrupt changes occur. Both longitudinal and transvers strain 

developments at positions A and B exhibit the characteristics subjected to compression and bending, 

i.e. the hysteretic loops bias towards tension or compression side, and the maximum strain is larger 
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than  except for the transverse strain of specimen Sa-0.26. At position E, the longitudinal strain y

development of steel latticed specimen is nearly symmetrical whilst CFST latticed specimen has an 

evident asymmetric longitudinal strain development, which is similar to the change in  top /P H 

hysteretic curves. The maximum strain at position E is smaller or slightly larger than . Under the y

same  value, specimens with a smaller  possess a more sufficient strain development n s s/D T

regardless of the type of the limb and the CFST latticed specimens lead to a relatively fully 

developed strain value compared with the steel latticed specimens because the steel tube of CFST 

limbs could be made full use of owing to its interaction with the filled concrete.

The effect of parameters considered in the tests on lateral load ratio ( ) versus longitudinal p

strain ( ) backbone curves at the predetermined three points is plotted in Fig. 12, where the red and 

blue lines represent the results under push and pull loadings, respectively. It can be seen that, for 

CFST latticed specimens, the effect of  and  on the changing rules of  curves of n s s/D T p 

the limbs is different in two loading directions, and generally specimens with a larger  value n

have a larger compressive strain in pull loading direction and a smaller tensile strain in push loading 

direction under the same lateral load ratio ( ) due to the response difference in two loading p

directions. Steel latticed specimens possess similar trend of  curves of the limbs as CFST p 

latticed specimens; however, under the same  value compressive strain in pull loading direction p

and tensile strain in push loading direction of CFST latticed specimens are larger than those of the 

steel counterparts as a larger initial compressive strain is produced in the CFST limbs. Furthermore, 

for  curves at position E, the discrepancy is mainly from the difference in the initial p 

compressive strain due to axial compressive force and there is no obvious difference in the curve 

trends except for the results of specimen Ca-0.52, which results in an evident increasing in the 

compressive strain in both loading directions due to the extremely serious deterioration of the limbs 

near the bottom stiffeners, as shown in Fig. 8(a4). 
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3.3. Bearing capacity

Fig. 13 shows the effect of parameters on lateral bearing capacities. It can be seen that, under the 

same  value, specimens with a lower  exhibit a larger bearing capacity in both loading n s s/D T

directions irrespective of the type of the limb due to the increase of steel area and confinement of 

steel tube to its core concrete, and the bearing capacities of CFST latticed columns are obviously 

higher than those of the steel counterparts owing to the composite action between steel tube in the 

limbs and its core concrete.  ( ) of CFST latticed specimens with  of 51.5 and 24.9 ue+P ue-P s s/D T

is 85.9% (248.0%) and 18.7 (37.1%) higher than those of the steel counterparts, respectively. For 

CFST latticed specimens,  shows increasing and decreasing trends before and after =0.26, ue-P n

respectively; however,  increases with increasing . The increased bearing capacities of ue+P n

CFST latticed specimens are due to the fact that, when  is relatively small (about 0.26 in the n

current tests), the constraint of axial compression to the tensile stress in the limbs caused by the 

lateral cyclic loadings increase with increase of . Compared with the corresponding CFST n

latticed specimens with  of 0.26, the decreased  of CFST latticed specimens with  of n ue-P n

0.52 in pull loading direction is caused by the increased second-order effect under axial 

compression, and the increased  of CFST latticed specimens with  of 0.52 in push loading ue+P n

direction may be induced by the increased constraint of axial compression to the premature tensile 

fracture of the single limb (C1).

3.4. Initial stiffness

The average initial stiffness ( ) of the tested specimens in two loading directions is given in Table iS

2. The variation of  is demonstrated in Fig. 14. It can be seen from Table 2 and Fig. 14 that,  iS iS

increases with decrease of  regardless of the type of the limb because of the increased s s/D T

moment of inertia of steel section, and CFST specimens have a larger  value compared to the iS

steel counterparts due to the existence of the concrete core in the limbs.  of CFST latticed iS

specimens with  of 51.5 and 24.9 is 88.2% and 37.7% higher than that of the steel s s/D T
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counterparts, respectively. Moreover, owing to the increased inhibiting effect of axial compressive 

force on the tensile stresses in the limbs caused by the lateral cyclic loadings,  of CFST latticed iS

specimens increases with increasing .n

3.5. Accumulated energy dissipation

The area surrounded by the complete hysteretic loops of  curve during each step is used to topP  

assess the accumulated energy dissipation capacity of the specimens (ATC 24 1992)[12]. Fig. 15 

shows the comparison of the accumulated energy dissipation ( ) of CFST and steel latticed E

specimens with increasing , and the specimen is considered to have lost its energy top / H

dissipation ability while the fracture of the limb or weld cracking appeared. It can be seen that, 

generally, specimens with a smaller  have a larger  regardless of the type of the limb and s s/D T E

CFST latticed specimens have a larger  compared to the steel counterparts. This is due to the E

increase of both bearing capacity and initial stiffness with decrease of  and the existence of s s/D T

the filled concrete in the limbs, which generates plumper hysteretic loops in both loading directions. 

Moreover, under the same  value  of CFST latticed specimens decrease with increase top / H E

of  due to the increased second-order effect of axial compression.n

4. Finite element analysis (FEA) modelling

4.1. General description of FEA model

As mentioned earlier, numerical study on the seismic behaviour of four-legged CFST latticed 

members has been performed (Deng 2012; Luo 2013; Huang 2015; Yuan et al. 2016) [4,6,7,9], and 

there is little numerical work reported for three-legged CFST latticed members subjected to cyclic 

loadings. In this study, a nonlinear finite element analysis (FEA) model was constructed by 

ABAQUS/Standard solver [15] to simulate the responses of three-legged CFST latticed columns 

subjected to constant axial compressive force and lateral cyclic loadings.

4.2. Details of FEA model

It is shown that stress versus strain backbone curve of structural steel under cyclic loading is 
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remarkably different from that subjected to monotonic loading mainly due to the improved strain 

hardening effect and decreased ductility (Shi et al. 2011; 2012)[16,17]. Thus, the accuracy of the 

simulation on stress versus strain backbone curve of structural steel under cyclic loading directly 

determine the preciseness of the FEA modelling results. In this study, the metal plasticity model in 

ABAQUS [15] using the Mises yield surfaces with the associated plastic flow was chosen to 

replicate the mechanical behaviour of steel tube in the limbs and tube lacings, and the mixed 

hardening model incorporating both isotropic hardening and nonlinear kinematic hardening 

provided in ABAQUS [15] was also adopted. 

For the isotropic hardening model of steel, the development of the yield surface size ( ) is 0

defined as a function of the equivalent plastic strain ( ):pl

                             (5)0
0

(1 )
plbQ e    

   

where,  is the yield stress corresponding to zero plastic strain,  is the maximum variation 
0

 Q

of the dimension of the yield surface and  represents the rate at which the dimension of the yield b

surface varies as plastic straining develops. 

For the nonlinear kinematic hardening model of steel, the back stress vector ( ) describing the k

transition of the yield surface in stress space is defined as a function of the plastic strain ( ): pl

                         (6),1(1 )
pl pl

k kk
k k

k

C e e    


       

where,  is the initial kinematic hardening modulus,  determine the rate at which the kC k

kinematic hardening modulus decreases with increasing plastic deformation, and  denotes the ,1k

 back stress vector at the first data point (initial value of the  back stress).thk thk

Shi et al. (2012)[17] investigated the performance of structural steel under cyclic loading through 

tests, and further derived the mixed hardening parameters from the measured and calculated data. In 

this study, the cyclic hardening parameters of steel tube in the limbs and tube lacings were obtained 

by the linear interpolation of the results suggested by Shi et al. (2012)[17] according to the yield 
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stress corresponding to zero plastic strain ( ) and calibrated by the measured results of three-
0



legged CFST latticed specimens, as presented in Table 5, where four back stresses are considered 

for the nonlinear kinematic hardening model. 

To accurately simulate the fracture failure of limbs during the tests, the ductile damage (fracture) 

of steel was considered in the FEA model. While defining the ductile damage of steel, the 

relationship between the fracture initiation strain and the stress triaxiality suggested in Yu and 

Jeong (2010)[18] was adopted as the damage initiation criterion, and the function between the 

damage variable ( ) and the plastic displacement ratio ( ) presented in Zhou et al. (2014)[19] sd pl
f/u u

was adopted as the damage evolution criterion, as given in the following equation: 

                          (7)pl 7.6
s f1.3( / )d u u

where,  is the plastic displacement, and  is the ultimate displacement at failure.plu fu

The cyclic stress ( ) versus strain ( ) relationship for structural steel with progressive damage s s

degradation is schematically demonstrated in Fig. 16, where  is the elastic modulus of steel, sE

 and  are the stress and equivalent plastic strain at the onset of damage, and  is the sd pl
s0 pl

sf

equivalent plastic strain at failure.

In the modelling, the steel tubes of the specimens had an elastic modulus of 2.06×105 N/mm2 and 

a Poisson’s ratio of 0.3. Both endplates, stiffeners, loading plate, rollers and connector were set to 

be elastic material with elastic modulus of 1.0×1012 N/mm2 and Poisson’s ratio of 0.001. 

The concrete damaged plasticity model in ABAQUS [15] was adopted to simulate the nonlinear 

behaviour of core concrete under cyclic loading, which can describe the stress versus strain 

backbone curve, the degradation of the elastic stiffness due to the damage accumulation, the 

stiffness recovery when the load changes from tension to compression and vice versa and the 

plasticity parameters.

For concrete subjected to compression, the nonlinear stress versus non-elastic strain relationship 

needs to be defined, which can be derived from the relationship of engineering stress versus 
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engineering strain of core concrete in CFST presented in Han et al. (2007)[20] with the confinement 

effect of steel tube considered. The compressive engineering stress ( ) versus engineering strain (c

) relationship of concrete is as follows:c

                     (8)










 )(

/)1/(
/

)()/()/(2

0c
0c

2
0c

0c

0c
2

0c0c

'
c

c







f

where, , ,  is 62.0'
c0 10)8005.121300(   f 12.02/)()1036.2( 5.0'

c
])5.0(25.0[5 7

  f '
cf

the cylinder compressive strength of concrete from  of SCC when tests conducted according to cuf

the suggested relationship between them in EN1992-1-1 (2005)[21] and  is the confinement 

factor (Han et al. 2007)[20].

For concrete under tension, the stress versus cracking displacement model suggested by Goto et 

al. (2010)[22] was incorporated into ABAQUS to simulate the tension stiffening effect. The tensile 

strength of the concrete ( ) equals to 10% of the peak compressive stress in this study. t0

The concrete damaged plasticity model assumes that the degradation of elastic stiffness induced 

by plastic straining both in tension and compression is characterized in terms of two damage 

variables (i.e. compression damage factor  and tension damage factor ), which are the cd td

function of the stress state and the uniaxial damage variables. Based on the iterative calculation, it 

was found that the calculation convergence could be well achieved by the equation of compression 

damage factor  suggested by Birtel and Mark (2006)[23]:cd

                         (9)
1

c c
c 1

c c c c

1
(1/ 1)pl

Ed
b E


 






 

   

where,  is the compressive stress,  is the elastic modulus, and  is the ratio of plastic c cE cb

strain over non-elastic strain and equals to 0.7 in this study.

To ensure the convergence and precision of the FEA modelling, the tension damage factor  td

was calculated using the equation suggested by Goto et al. (2010)[22]:
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                          (10)t
t t

t0

1.24 0.99ckkd u


  

where,  is the tensile strength,  is the cracking displacement, and  is the slope of the t0 t
cku tk

stress versus cracking displacement curve.

The recovery of the tensile and compressive stiffness subjected to load reversal was adopted to 

consider the opening and closure of microcracks within core concrete in the limbs. The compression 

stiffness recovery factor ( ) and the tension stiffness recovery factor ( ) were set to be 0.2 and cw tw

0.0 respectively, which had been successfully adopted in the simulation of cyclic behavior of 

recycled aggregate concrete filled steel tube beam-columns (Yang 2015)[24]. Therefore, the 

compressive stiffness of the concrete core in the limbs partially recovered (which in this case was 

20% of the initial undamaged stiffness) and no tensile stiffness recovery was considered.

In the FEA simulation, the Poisson’s ratio of concrete was set to be 0.2 (Goto et al. 2010; Yang 

2015; Ma et al. 2018)[22, 24, 25] and the elastic modulus of concrete ( ) was determined by the cE

formula in ACI 318-11 (2011)[26]: 

                         (11)' 2
c c4730 (N/mm )E f

Furthermore, the plasticity parameters of concrete used in the FEA model were based on the 

results by Goto et al. (2010)[22] and individually calibrated according to the current experimental 

results, as given in Table 6, where  is the dilation angle,  is the eccentricity of flow potential,  e

 is the ratio of initial equibiaxial compressive yield stress to initial uniaxial compressive b0 c0/f f

yield stress,  is the ratio of the second stress invariant on the tensile meridian to that on the cK

compressive meridian, and  is the viscosity parameter. The cyclic stress ( ) versus strain ( )  c c

relationship of core concrete in the limbs is schematically demonstrated in Fig. 17.

In the model, three-dimensional shell elements with 4-node reduced-integration (S4R) were 

selected to model the steel tube in the limbs and tube lacings. The Simpson integration with 9 

integration points was adopted along the thickness of the shell elements. Core concrete in the limbs, 
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two endplates, stiffeners, loading plate, rollers and connector were simulated using three-

dimensional brick elements with 8-node reduced-integration (C3D8R). Due to irregularity of the 

oblique lacings, the mesh density has a great impact on the convergence of the calculation using 

FEA model. The structured meshing technology was adopted, and gradually refined meshing was 

performed to inspect the mesh convergence, until the discrepancy of FEA modelling between two 

adjacent mesh densities was less than 5%. Moreover, local encryption within the lower 150 mm of 

the limbs was adopted to accurately capture the fracture process of steel tube. Mesh density applied 

to the specimens is listed in Table. 7. After the completion of mesh convergence study, the eventual 

meshing of three-legged CFST latticed columns with the calculation accuracy and efficiency 

satisfied was accomplished, as shown in Fig. 18. 

The surface to surface contact with finite sliding available in ABAQUS [15] was chosen to model 

the contact between steel tube in the limbs and its core concrete, and the inner wall of steel tube in 

the limbs and surface of core concrete were defined as master and slave surface, respectively. The 

surface to surface contact was achieved by ensuring the coincidence of nodes of steel tube and its 

core concrete at the same position (i.e. having the same normal and tangential directions) and 

building the contact algorithm based on the ‘finite slippage’ to strengthen the constraints in the 

normal and tangential directions. The contact properties along normal and tangential directions of 

interface between steel tube in the limbs and its core concrete were set to be the ‘hard contact’ and 

‘Coulomb friction’ with friction coefficient of 0.6 (Ma et al. 2018)[25], respectively. In ABAQUS, 

the recommended value for the friction coefficient between two surfaces is 0-0.6, and three values 

were adopted in the FEA modelling, i.e. 0.2, 0.4 and 0.6. It was found that the simulated hysteretic 

behaviour of three-legged CFST latticed columns with friction coefficient of 0.6 was closer to the 

experimental results than that with other two friction coefficients. The node to surface contact with 

small sliding in ABAQUS [15] was adopted to simulate the contact between the rollers and 

connector (loading plate), and there was only ‘hard contact’ between them. The ‘Tie’ constraint in 

ABAQUS [15] was used to simulate the welds between steel tube in the limbs and tube lacings, the 
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contact between CFST limbs and both endplates and the contact between stiffeners and steel tube in 

the limbs (bottom endplate). Moreover, the rollers and the loading plate were connected as a whole 

by the ‘Tie’ constraint to improve the calculation convergence, although the limited free rolling 

happened to the rollers in the tests.

All degrees of freedom (DOFs) of bottom endplate were restrained to replicate the fixed 

boundary conditions in the tests. The translational displacements at X and Y direction and rotations 

at X and Z direction of barycenter line on the loading plate were restricted except for the 

translational displacements at Z direction and rotations at Y direction. Two reference points, 

including one located above the barycenter of specimen cross-section coincided with the loading 

plate and another located on the side of the centroid of the vertical plate of connector coupled with 

the vertical plate of connector, were set. The constant axial compressive force was first applied on 

the reference point coincided with the loading plate, and then the cyclic horizontal displacements (

) were acted on the reference point coupled with the vertical plate of the connector. The top

adopted boundary conditions for a typical three-legged CFST latticed column under lateral cyclic 

loadings are shown in Fig. 18. The responses of the model were obtained by the Newton-Simpson’s 

method.

4.3. Comparison between the simulated and measured results

Fig. 19 demonstrates the predicted failure pattern of three-legged CFST and steel latticed specimens 

under lateral cyclic loadings, where only specimen Cb-0.52 has no tube fracture. It can be seen from 

the comparison between Fig. 19 and Fig. 8 that, in general, the predicted failure range, fracture and 

deformation pattern of the limbs and out-of-plane deformation of the tube lacings of the specimens 

with a larger  are in good agreement with the experimental results. The comparison between the n

predicted and measured  and  hysteretic curves is shown in Fig. 9 and Fig. 20, top /P H  P 

respectively, where ‘Δ’ stands for the predicted starting of the tube fracture of the limb in Fig. 9. It 

can be observed that a reasonably good agreement is obtained between both results. However, there 

are actually certain differences between the numerical and experimental hysteretic curves. This can 
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be explained by the following reasons: 1) initial imperfection and performance variability of 

materials always exists in the tested specimens; 2) constant axial compression applied to the top 

endplate of the specimens is hard to be realized through the loading process due to the deviation of 

axial compressive forces (see Fig. 4); 3) load eccentricity may be introduced to the specimens due 

to manufacturing deviation; and 4) there are weld residual stress and heat affected zone in the joints 

between limb and lacings. These factors cannot be completely taken into account in the FEA model. 

The comparison between the numerical and experimental bearing capacities is indicated in Fig. 21 

and Table 2. It can be found that a good agreement between  and  is attained as the mean ucP ueP

value and standard deviation of  are 1.012 and 0.105, respectively.uc ue/P P

4.4. Effect of typical parameters on  hysteretic curvestopP  

To confirm the universality of the FEA model and analyze the influencing law of parameters which 

are not considered in the tests, the verified FEA model was further adopted to investigate the effect 

of typical parameters on  hysteretic curves of three-legged CFST latticed columns with topP  

one end fixed and another end free, and the modelling results are plotted in Fig. 22. It should be 

noted that, the effect of ductile damage (fracture) of steel is not included in the parametric analysis 

because the parameters for the ductile damage (fracture) of steel need to be determined by the tests 

of material property. The basic computing conditions were: =100 mm, =41.7, =34 sD s s/D T wD

mm, =15, =4500 mm, =345 MPa, =60 MPa, =10, =1.09, w w/D T H ys ywf f cuf w/H l w 0/l h

and =0.4. The calculated bearing capacities (  and ), initial stiffness ( ) and n ue+P ue-P iK

accumulated energy dissipation while  equal to 100 mm ( ) under different parameters are top tE

presented in Table 8. It can be seen from Fig. 22 and Table 8 that, similar to the measured results in 

this study, the simulated  hysteretic curves possess different backbone curve in two topP  

loading directions. Generally, , , ,  and  have remarkable impact on the s s/D T ysf w/H l w 0/l h n

 hysteretic curves and mechanical index of three-legged CFST latticed columns subjected topP  
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to lateral cyclic loading, and the ( ),  and  increase with decrease of ,  ue+P ue-P iK tE s s/D T w/H l

and  and increase of  and . The effect of key parameters on cyclic performance of w 0/l h ysf n

three-legged CFST latticed columns can provide a reference for the follow-up experimental and 

theoretical research.

5. Conclusions

Experimental and numerical investigation on the performance of three-legged CFST and steel 

columns subjected to constant axial compressive force and lateral cyclic loadings is presented in 

this study. Based on the tests and the analytical results, the following conclusions can be obtained:

(1) CFST latticed specimens have better hysteretic performance than the steel counterparts; 

however, three-legged CFST latticed specimens generally demonstrate different behaviour in two 

loading directions owing to the different property of the CFST members under tension and 

compression.

(2) Failure pattern of all specimens is either fracture or buckling of limbs or both at the section 

close to the bottom stiffeners and failure of oblique lacings, and CFST latticed specimens have 

severer limb damage and more oblique lacings failure than the steel counterparts. The damage 

becomes more serious for CFST latticed specimens with a larger . Failure of connection between n

limb and lacings happens to CFST latticed specimens with  of 51.5, and steel latticed s s/D T

specimens have no obvious connection damage.

(3) For CFST latticed specimens,  hysteretic curve is asymmetric in two loading top /P H 

directions and the hysteretic loops in pull loading direction are plumper than those in push loading 

direction. However, steel latticed specimens have almost symmetric  hysteretic curve top /P H 

in both loading directions. Moreover, the obtained  hysteretic curves of all specimens are P 

generally stable and no sudden changes occur.

(4) ,  and  of the specimens increase with decreasing  irrespective of the type ueP iS E s s/D T

of the limb. CFST latticed specimens have a larger ,  and  than the steel counterparts due ueP iS E
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to the composite action between steel tube in the limbs and its core concrete. CFST latticed 

specimens with a larger  have a larger  and  and a lower . Moreover,  of CFST n ue+P iS E ue-P

latticed columns shows increasing and decreasing trends before and after =0.26, respectively.n

(5) The modelling results of three-legged CFST and steel latticed columns subjected to cyclic 

loadings by the FEA model constructed in this study achieved good agreement with the 

experimental observations, and the effect of typical parameters on  hysteretic curve of topP  

three-legged CFST latticed columns under lateral cyclic loadings is further investigated.

It is clear that, for three-legged CFST latticed columns under lateral cyclic loadings, the tensile 

fracture of single limb is formed earlier than that of the corresponding double limbs when all limbs 

have the same dimensions and material properties. It is necessary to reasonably match geometric 

and physical parameters of steel tube and its core concrete in the limbs of three-legged CFST 

latticed columns to achieve equal or similar tensile and compressive property of single limb and the 

corresponding double limbs, and accordingly stable and almost symmetric hysteretic performance 

in both loading directions can be obtained. In the future, experimental and numerical investigation 

on the cyclic responses of three-legged CFST latticed columns under different material and 

geometric property of limbs, ,  and  needs to be further carried out. With the w/H l w 0/l h n

progress of experimental and theoretical research, the failure criterion of three-legged CFST latticed 

members subjected to lateral cyclic loadings and the restoring force model for the elastoplastic 

seismic response analysis and dynamic time history analysis of structures including three-legged 

CFST latticed members can be established, which will provide the basis for developing a reasonable 

seismic design method of such composite structures.
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Tables:

Table 1. Summary of studies on seismic behaviour of CFST latticed columns.

No. Cross-section
H

(mm)

Dimension of 
limbs (mm)

s sD T

Dimension of 
lacings (mm)

w wd t
ysf

(MPa)

cuf

(MPa)

ywf

(MPa)
* n Number of 

specimens
Ref.

1 Two-legged 2474 C: 60.5×2.3 C: 34.0×2.0 378 30.0 389 36.9 0~0.2 8 [5]+

2 Four-legged 1200 C: 87×1.5 C: 48×2.5 315 43.7~60.0 / 20.1 0.2~0.4 8 [6]&

3 Four-legged 1200~3000 C: 86×1.5 C: 48×2.0~3.0 315 20.4 320 19.4~41.5 0.2~0.3 6 [7]&

4 Four-legged 1700 C: 90×3.4

S: 80×3.0

C: 42×2.7 259 71.7 259 29.6, 28.6 / 3 [8]+

5 Four-legged 2500 C: 110×2.0 C: 50×2.0 345 40.3~57.5 374 37.1 0.15 6 [4]&

6 Four-legged 2500 C: 114×2.0 C: 48×2.0 345 43.6~66.5 374 23.1 0.15 7 [9]&

Notes: 1) ‘C’ and ‘S’ represent circular and square cross-section, respectively; 2) ‘+’ means that only tests were carried out; and 3) ‘&’ means that both tests and numerical 
simulation were performed.
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Table 2. Information of the tested specimens.

No. Label sD
(mm)

sT
(mm) s s/D T H

(mm)
wl

(mm)
0h

(mm)
cuf

(MPa)
* n 0N

(kN)
ue+P

(kN)
ue-P

(kN)
uc+P

(kN)
uc-P

(kN)
uc+

ue+

P
P

uc-

ue-

P
P

iS
(kN/m)

1 Sa-0.26 100 1.94 51.5 1960 320 320 -- 29.4 0.26 144.0 41.9 -39.4 46.9 -35.3 1.119 0.896 2851

2 Ca-0.05 100 1.94 51.5 1960 320 320 55.9 34.2 0.05 79.0 47.0 -113.1 55.1 -113.5 1.172 1.004 3737

3 Ca-0.26 100 1.94 51.5 1960 320 320 55.9 34.2 0.26 395.0 77.9 -137.1 82.7 -130.1 1.062 0.949 5366

4 Ca-0.52 100 1.94 51.5 1960 320 320 55.9 34.2 0.52 780.0 110.5 -116.0 103.1 -122.9 0.933 1.059 6220

5 Sb-0.26 100 4.01 24.9 1960 320 320 -- 32.6 0.26 260.0 102.7 -126.3 121.4 -107.8 1.182 0.854 4142

6 Cb-0.05 100 4.01 24.9 1960 320 320 55.9 40.6 0.05 104.5 108.1 -161.5 107.3 -152.2 0.993 0.942 4360

7 Cb-0.26 100 4.01 24.9 1960 320 320 55.9 40.6 0.26 522.5 121.9 -173.2 139.6 -159.5 1.145 0.921 5702

8 Cb-0.52 100 4.01 24.9 1960 320 320 55.9 40.6 0.52 1045.0 159.0 -156.5 143.0 -167.2 0.899 1.068 6750

Table 3. Properties of steel.

External diameter
(mm)

Thickness
(mm)

Yield strength
(MPa)

Tensile strength
(MPa)

Elastic modulus
(N/mm2) Poisson’s ratio

Elongation after 
fracture

(%)

=100sD =1.94sT 325.2 413.2 1.80×105 0.289 19.9

=100sD =4.01sT 303.4 426.2 1.96×105 0.274 20.1

=34wd =2.46wt 332.4 452.3 2.0×105 0.300 --
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Table 4. Mix proportions and properties of the SCC.

Mix proportion (kg/m3) Properties

Cement Fly ash Coarse 
aggregate Sand Water

Water 
reducing 

agent

Slump
(mm)

Spreading
(mm)

420 130 832 800 184 6.3 270 660

Table 5. Cyclic hardening parameters of steel.

Dimension
(mm)

0


(MPa)
Q

MPa
b 1C

(MPa) 1 2C
(MPa) 2 3C

(MPa) 3 4C
(MPa) 4

○-100×1.94 325.2 21 1.2 7636.6 174.6 6458.2 116.7 2885.0 33.6 1367.2 30.1

○-100×4.01 303.4 21 1.2 7244.2 174.2 6111.6 117.5 2919.0 33.2 1276.0 31.3

○-34×2.46 332.4 21 1.2 7766.2 174.8 6572.7 116.5 2873.7 33.8 1397.3 29.7

Table 6. Plasticity parameters of concrete.

 e b0 c0/f f cK 

30o 0.1 1.16 2/3 0.0005

Note:  and  are calibrated according to the current experimental results. 
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Table 7. Mesh density applied to the specimens.

Item
Label Details Tube in the 

limb
Concrete in the 

limb
Oblique 
lacing

Horizontal 
lacing Endplate Stiffener Total model

Number of nodes 1620 / 240 110 768 340 26194

Number of elements 1600 / 230 100 450 204 20968Sa-0.26
Mesh size (mm) 29.5×15

(15.0×7.5)
/ 13.9×11.1 22.8×9.0 34.7×34.7×10 6.9×6.9×1.5 /

Number of nodes 1620 4455 240 110 768 340 39559

Number of elements 1600 3520 230 110 450 204 31528Ca series
Mesh size (mm) 29.5×15

(15.0×7.5)
29.5×12.8×12.8
(12.8×12.8×7.5)

13.9×11.1 22.8×9.0 34.7×34.7×10 6.9×6.9×1.5 /

Number of nodes 1296 / 250 192 1083 400 25932

Number of elements 1280 / 240 180 648 240 20340Sb-0.26
Mesh size (mm) 29.5×17.9

(17.9×7.5)
/ 13.5×11.1 15.5×7.5 28.9×28.9×10 6.4×6.4×1.5 /

Number of nodes 1296 3321 250 192 1083 400 35895

Number of elements 1280 2560 240 180 648 240 28020
Cb series

Mesh size (mm) 29.5×17.9
(17.9×7.5)

29.5×14.4×14.4
(14.4×14.4×7.5)

13.5×11.1 15.5×7.5 28.9×28.9×10 6.4×6.4×1.5 /

Note: For the mesh size detail, the values in the brackets represent the results in the local encryption area.
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Table 8. Computed results of three-legged CFST columns under different parameters.

s s/D T w w/d t (MPa)ysf (MPa)ywf (MPa)cuf w/H l w 0/l h n
Parameters

29.4 41.7 83.3 10 15 20 235 345 420 235 345 420 40 60 80 8 10 12 1.0 1.09 1.19 0.2 0.4 0.6

(kN)ue+P 45.6 35.1 21.9 35.5 35.1 34.8 27.5 35.1 39.8 35.1 35.1 35.1 34.6 35.1 35.3 47.5 35.1 26.5 39.7 35.1 30.8 33.8 35.1 36.7

(kN)ue-P -38.2 -33.2 -25.6 -33.3 -33.2 -33.2 -27.2 -33.2 -36.3 -33.2 -33.2 -33.2 -30.6 -33.2 -35.7 -41.7 -33.2 -26.8 -36.2 -33.2 -30.2 -41.5 -33.2 -24.7

(kN/m)iS 774 687 553 719 687 658 706 687 679 687 687 687 625 687 678 1288 687 399 816 687 577 727 687 567

(kN.m)tE 20.8 19.3 14.8 20.1 19.3 18.6 20.0 19.3 17.1 19.3 19.3 19.3 19.4 19.3 19.3 35.7 19.3 9.5 22.9 19.3 16.1 19.6 19.3 19.4
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Figures:

(a) Two-legged                       (b) Three-legged              

(c) Four-legged

Fig. 1. Typical CFST latticed members.

CFST limb

Tube
lacing

CFST limb

Tube
lacing

CFST limb

Tube
lacing
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Fig. 2. Schematic diagram of the specimens. (unit: mm)
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(a) Schematic view
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(b) Real scenario

Fig. 3. Test set-up and instruments. (unit: mm)

Restriction strip

Actuator

Actuator

Connector

Roller

Stiffener

Specimen

C1 C2 C3

Bolt

Anchor rod

Baseplate Strain gauge

Bolt

Reaction beam

Displacement 
transducer

Displacement 
transducer

Reaction beam



35

-20

-10

0

10

20

0 300 600 900 1200
N 0 (kN)

M
ax

im
um

 d
ev

ia
tio

n 
(%

)

Sa-0.26 Sb-0.26
Ca-0.05 Cb-0.05
Ca-0.26 Cb-0.26
Ca-0.52 Cb-0.52

Fig. 4. Maximum deviation of axial compressive forces.



36

nc

1
2
3
4
5
6
7

 /0

j=
1~

3
j ≥6j=

4 
an

d 
5

0

Fig. 5. Loading protocol.



37

0

0.5

1

1.5

2

-0.04 -0.02 0 0.02 0.04
 top/H


rt
 (%

)

Sa-0.26 Sb-0.26
Ca-0.05 Cb-0.05
Ca-0.26 Cb-0.26
Ca-0.52 Cb-0.52

Fig. 6. Variation of relative torsion angle of the top endplate.

Pull Push



38

0

0.2

0.4

0.6

0.8

1

-15 -7.5 0 7.5 15
 i / 0

y/
H

0

0.2

0.4

0.6

0.8

1

-15 -7.5 0 7.5 15
 i / 0

y/
H

    (1) Sa-0.26                         (2) Ca-0.26

    (a) Ds/Ts=51.5

0

0.2

0.4

0.6

0.8

1

-15 -7.5 0 7.5 15
 i / 0

y/
H

0

0.2

0.4

0.6

0.8

1

-15 -7.5 0 7.5 15
 i / 0

y/
H

    (1) Sb-0.26                         (2) Cb-0.26

    (b) Ds/Ts=24.9

Fig. 7. Overall lateral displacements of the typical specimens.

p=0.48
p=0.75
p=0.84
p=1.00
p=-0.87

p=0.49
p=0.83
p=0.97
p=-0.76
p=-0.66

□1=0
◇2=20
△3=30
○4=40
×5=50

■5=50
◆6=60
▲7=70
●8=80
×9=90

Pull Push

□1=0
◇2=20
△3=30
○4=40

Pull Push

■5=50
◆6=60
▲7=70
●8=80

□1=0
◇2=20
△3=30
○4=40

■5=50
◆6=60
▲7=70
●8=80
×9=90

□1=0
◇2=20
△3=30
○4=40

p=0.46
p=0.72
p=0.77
p=0.89
p=-0.85

p=0.34
p=0.59
p=0.78
p=0.88
p=0.97
p=0.98
p=0.99
p=1.00
p=-0.96

p=-0.48
p=-0.50
p=-0.60
p=-0.63

Pull Push Pull Push

p=0.34
p=0.53
p=0.67
p=0.80
p=0.89

p=0.29
p=0.50
p=0.65
p=0.75
p=0.86
p=0.94
p=1.00
p=-0.94

p=0.94
p=0.96
p=-0.94

p=0.42
p=0.66
p=0.70
p=0.77
p=0.87

p=0.29
p=0.58
p=0.73
p=0.82
p=0.91
p=0.94
p=0.98
p=1.00
p=-0.96

p=0.89
p=0.95
p=-0.87
p=-0.75



39

                          

(1) Sa-0.26                                (2) Ca-0.05

                          

                (3) Ca-0.26                            (4) Ca-0.52

(a) Ds/Ts=51.5

Fig. 8. (Continued)

(①-Tube buckling of limb; ②-Tube fracture of limb; ③-Connection damage; ④-Overall out-of-plane 
deflection of lacing; ⑤-Weld cracking)
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(1) Sb-0.26                           (2) Cb-0.05

                          
              (3) Cb-0.26                           (4) Cb-0.52

    (b) Ds/Ts=24.9

Fig. 8. Failure pattern of the tested specimens.

(① -Tube buckling of limb; ②-Tube fracture of limb; ③-Connection damage; ④-Overall out-of-plane 
deflection of lacing; ⑤-Weld cracking)
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Fig. 17. Cyclic stress ( ) versus strain ( ) relationship of core concrete in the limbs.c c

1
Ec

1
Ec

O c

c

fc
’

wt=0

1
(1-dci)Ec

(1-dti)Ec

1
(1-dcj)Ec

(1-dtj)Ec

1

(1-dci)(1-dti)Ec

(1-dcj)(1-dtj)Ec

1

1 1

t0

Tension

Compression

wc=0.2

i, j=1, …, n



52

Limb

Connector

Loading plate

Roller

Stiffener

Barycenter line
N0

UX=UY=0;
URX=URZ=0

P(top)

Core concrete

UX=UY=UZ=0;
URX=URY=URZ=0

Z
Y

X
Lacing

Fig. 18. Meshing and boundary conditions of three-legged CFST columns.



53

   

(1) Sa-0.26               (2) Ca-0.05               (3) Ca-0.26             (4) Ca-0.52

(a) Ds/Ts=51.5

   

(1) Sb-0.26             (2) Cb-0.05                (3) Cb-0.26            (4) Cb-0.52

(b) Ds/Ts=24.9

Fig. 19. Predicted failure pattern of three-legged CFST specimens using the FEA model.
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Fig. 20. Typical comparison between the predicted and measured  hysteretic curves.P 
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Fig. 21. Comparison between the predicted and measured bearing capacities.



57

-60

-30

0

30

60

-160 -80 0 80 160
 top (mm)

P 
(k

N
)

Ds/Ts=29.4
Ds/Ts=41.7
Ds/Ts=83.3

-60

-30

0

30

60

-160 -80 0 80 160
 top (mm)

P 
(k

N
)

dw/tw=10
dw/tw=15
dw/tw=20

(a) Variation of                (b) Variation of         s s/D T w w/d t

-60

-30

0

30

60

-160 -80 0 80 160
 top (mm)

P 
(k

N
)

fys=235MPa
fys=345MPa
fys=420MPa

-60

-30

0

30

60

-160 -80 0 80 160
 top (mm)

P 
(k

N
)

fyw=235MPa
fyw=345MPa
fyw=420MPa

  (c) Variation of                   (d) Variation of            ysf ywf

Fig. 22. (Continued)
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Fig. 22. Effect of typical parameters on  hysteretic curve of three-legged CFST columns.topP  




