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Abstract 

The Korteweg–de Vries (KdV) equation is often adopted to simulate phase-resolved random waves on large scale 

in shallow water. It shows that the KdV equation is computationally efficient and can give sufficiently accurate results, 

but it is not always suitable and the error by using it cannot be predicted. This paper attempts to give the quantitative 

formulas for estimating the error of the statistics when simulating random waves in shallow water by using it. The 

formulas are obtained by fitting the errors of the KdV equation in comparison with the fully nonlinear model using 

the same initial condition based on the Wallops spectrum with a wide range of parameters. This paper also 

demonstrates how the formulas would be used, e.g., to estimate the error of the results by using the KdV model, or to 

justify its suitability for modelling random waves on large scale in shallow water.  

Keywords: KdV equation; Fully nonlinear model; Random ocean waves; Large scale simulation; Phase-resolved 

models  

1 Introduction 

Shallow water random waves play an important role in engineering practices, and it is now increasingly recognized 

that accurate numerical simulation of such waves with sufficient nonlinearities is very necessary. The random feature 
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of ocean waves and the nonlinear effects render the simulations being very challenging, let alone it needs to be carried 

out on a large scale for a long duration [1]. 

Successful numerical studies on modeling the shallow water waves have been carried out. Some employed the 

phase-averaged models, such as SWAN, etc., which are very popular among the oceanographers [2-7]. However, in 

engineering practice, direct phase-resolved information is always desired, e.g., velocity and acceleration field, free 

surface elevation and slope, etc., which requires simulation with the phase-resolved models. Among them, numerical 

models based on the Navier-Stokes (NS) equation or coupled potential-NS model is computationally prohibitive for 

large scale simulations and such applications in literature are rare. In contrast, the potential model is much faster and 

can give quite accurate results, thus a brief review is given below. 

One class of such models are the fully nonlinear potential methods, such as Boundary Element Method [8, 9], 

Finite Element Method [10, 11] and Quasi Arbitrary Lagrangian-Eulerian Finite Element Method [12, 13]. However, 

they are still computationally expensive, thus barely applied so far to model waves in a scale of hundred wave lengths 

and thousand wave periods. Another category of the fully nonlinear potential methods is based on or associated with 

the Fast Fourier Transform (FFT), e.g., FFT mixed method [14-16], Irrotational Green-Naghdi model [17], Higher-

Order Spectral (HOS) method [18, 19], Spectral Continuation method [20], Spectral Boundary Integral method [21-

24] and Enhanced Spectral Boundary Integral (ESBI) method [25]. This class of models is relatively faster but still 

needs significant amount of time. For an example, a 3D random sea simulation covering 42×42 peak wave lengths for 

250 peak wave periods takes 10 CPU days on a 3 GHz-Xeon single processor PC by using the HOS method [26]. 

In order to be more efficient, simplified models are employed for modeling random waves. One group of the 

models is the second order wave models, but they could not describe the continuous spectral energy transfer between 

wave components as the amplitude of each wave component was independent of time, and thus they were only accurate 

when the wave steepness was quite small (i.e., when the energy transfer between wave components was insignificant) 

[27, 28]. Another group is the envelope-type equations, such as the Zakharov equation [29-31] and the nonlinear 

Schrödinger equations [29-33]. However, these equations are only suitable for finite and deep water [34], thus will 

not be further discussed as our focus is the waves in shallow water in this paper.  

Another class of the simplified models are the shallow water equations, such as the original Korteweg–de Vries 

(KdV) equation [35], the Benjamin-Bona-Mahony (BBM) equation [36], the Kadomtsev-Petviashvili (KP) equation 

[37], coupled KdV equation [38], perturbed KdV equation [34, 39-41], and the Boussinesq equation [42-45]. In this 



paper, we only focus on 2-dimensional slip flat bottom situations where waves only propagate to the main direction, 

thus the original KdV equation, the BBM equation and Boussinesq model may be suitable for this purpose. However, 

the BBM equation is not convenient for numerical simulation in time domain. Meanwhile, although applications of 

the higher order version of Boussinesq equation on simulating random waves on local scale are extensive [46-50], and 

is more accurate compared with the KdV equation, its computational efficiency is relatively slow, even slower than 

some fully nonlinear models, which will be shown later in this paper. Therefore, it will not be employed either.  

The authors are aware that the KdV equation can be very efficient and acceptable in terms of accuracy for 

modelling random waves on a large-spatial and long-temporal scale. For example, the statistical analysis based on the 

direct simulations of random wave fields and associated spectrum evolution in shallow water using the KdV equation 

[51, 52] provided useful information for understanding the behaviour of shallow water random waves. Sergeeva, et 

al. [53] also employed the KdV equation to study the statistics of random waves on a variable depth seabed and found 

that the probability of rogue waves increases in the transition zone. Dutykh, et al. [54] developed a geometric 

numerical scheme and employed it for solving the KdV equation. This scheme has been shown great robustness over 

simulating random seas on large scale, and it is found the probability of the free surface can be well represented by 

the truncated Gram-Charlier distribution. Toffoli, et al. [55] adopted the weakly three-dimensional version of KdV 

model (the so-called Kadomtsev-Petviashvili equation) to simulate random waves in crossing sea states, which 

indicated that interactions between the crossing wave trains can generate steep and high-amplitude waves. Very 

recently, the KdV equation is adopted to study the spectrum evolution in shallow water on large-scale (128 peak wave 

lengths) by specifying different wave steepness and Ursell numbers, and demonstrated that the equation can give a 

good prediction on the wave spectrum after a long-time (1000 peak periods) evolution when the Ursell number and 

wave steepness are both large [56].  

However, one should be aware that the KdV equation is accurate in limited conditions, as it has limited capacity 

in resolving the nonlinearities [57], e.g., it becomes less accurate when the nonlinear effects of the second and higher 

order harmonics are large [58]. Osborne, et al. [59] had discussed the applicability of the KdV equation and indicated 

that it may be applicable only when the product of water depth and wave number is less than 1.14. While, a direct 

comparison between the results from FEM and KdV model is made by Sriram, et al. [60, 61] for simulating the 

propagation of solitary waves, where it is shown that good agreement is achieved if the Ursell number is small, 

otherwise the difference between the free surface simulated by using the FEM and KdV model becomes larger when 



the Ursell number increases. Later, it has been pointed out that the KdV equation failed to describe the spectrum 

evolution in the cases where Ursell number is large while wave steepness is small [56]. As discussed above, the KdV 

equation, on the one hand, has been shown to be very efficient and sufficiently accurate in some cases, but on the other 

hand, its results are poor in some other cases. It is desired that one can quantitatively estimate the error of the KdV 

model when it is employed to simulate random waves. However, according to the existing literatures, the way to 

predict the error of the KdV model is unavailable.  

Therefore, the main purpose of this paper is to give the quantitative formulas for estimating the error of using KdV 

equation to model the random waves on large scale for long duration, such as 128 peak wave lengths and 1000 peak 

periods. Besides, discussions about how to use this formula are also presented.    

2 Methodologies 

In order to obtain the quantitative errors, the fully nonlinear method (ESBI) and the KdV model will be applied to 

simulate a large number of cases, where the initial conditions are defined by the Wallops spectrum with a wide range 

of wave parameters. For each of the cases, the errors of the KdV models are estimated by comparing the skewness of 

the free surface with these obtained by using the ESBI. After the errors of all cases are obtained, the formulas are 

formulated by using a data fitting technique.   

All the numerical models have been documented in the publications cited above and so their formulations will be 

only briefed for completeness. For convenience, all the variables involved will be non-dimensionalised in a consistent 

way, e.g., the length variables multiplied by peak wave number 𝑘0, and the time variables multiplied by peak circular 

frequency 𝜔0 , where 𝜔0 = √𝑔𝑘0tanh⁡(𝑘0ℎ′) , 𝑔  is the gravitational acceleration, ℎ′  the dimensional water depth. 

More specifically, all the dimensionless variables used in this paper are listed in Table 1.  

Table 1 Dimensionless variables 

𝜂 Surface elevation multiplied by 𝑘0 

𝑿 = (𝑋, 𝑌) Horizontal space coordinate multiplied by 𝑘0 

ℎ Water depth multiplied by 𝑘0 

𝑇 Time multiplied by 𝜔0 

𝑐 Wave phase speed, which equals to √𝑔ℎ′ for shallow water multiplied by 𝑘0/𝜔0 

𝐻⁡𝑜𝑟⁡𝐻𝑠 
Characteristic wave height 𝐻′ or significant wave height 𝐻𝑠

′  multiplied by 𝑘0. They 

actually represent wave steepness.  

𝑘𝑗 Wave number of an individual component multiplied by 𝑘0
−1 



𝑎𝑗 Wave amplitude of an individual component multiplied by 𝑘0 

𝜔𝑗 Wave circular frequency of an individual component multiplied by 𝜔0
−1 

𝑇0 Peak period multiplied by 𝜔0 

𝜙, �̃� Velocity potential and that at free surface multiplied by √𝑘0
3/𝑔 

𝑲 = (𝜅, 𝜁), 𝐾 Wave number coordinate and its module multiplied by 𝑘0
−1  

𝛺 Wave circular frequency coordinate multiplied by 𝜔0
−1  

 

2.1 The KdV model 

The original KdV equation is adopted in this study, which can be expressed as [35],  
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where 𝑊 is the Weber number measuring the effects of surface tension and is taken as zero in this study due to its 

neglectable effects, 𝜀 = 𝐻/ℎ ≪ 1 , 𝜇 = ℎ ≪ 1  and 𝑂(𝜀)~𝑂(𝜇2) . Eq. (1) has also been employed to study the 

formation of rogue waves in shallow water [62].   

It should be noted that Eq.(1) can also be reformulated without accounting for the error order term as [52]  
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after the following substitutions are made 

𝜁 =
𝜂

𝐻
, 𝜉 = 𝑋 − 𝑐𝑇, 𝜏 =

3𝑐𝐻𝑇

2ℎ
 (3) 

and the Ursell number 𝑈𝑟 = 𝜀 𝜇2⁄ = 𝐻/ℎ3. Eq.(2) implies that the solution of KdV equation only depends on the 

magnitude of 𝑈𝑟 . However, if higher order terms are preserved in Eq. (1) during the derivation of the KdV equation, 

then the solution to the KdV equation will also depend on the magnitude of 𝜀, which means that the error by using Eq. 

(2) depends on not only Ursell number 𝑈𝑟  but also wave height to depth ratio  𝜀. This will be further discussed to 

explore the error of the KdV equation in Section 3 and 4. 

In order to solve the KdV equation numerically, Eq.(2) can be integrated by using the fourth order Runge-Kutta 

method [63]. For completeness of this paper, this technique is briefed as follows. 

i) At time step 𝜏0, 𝜁(𝜉, 𝜏 = 𝜏0) is given initially or obtained from previous time step, then gradient 𝜕𝜁/𝜕𝜉 and 

𝜕3𝜁/𝜕𝜉3 can be estimated through FFT; 

ii) Estimate the Runge-Kutta coefficients, i.e., 𝜕𝜁/𝜕𝜏𝓀, where 𝓀 = 1, 2, 3 and 4; 



iii) Update the rescaled free surface by using the formula 𝜁(𝜉, 𝜏 = 𝜏0 + Δ𝜏) = 𝜁(𝜉, 𝜏 = 𝜏0) + (𝜕𝜁/𝜕𝜏1 +

2𝜕𝜁/𝜕𝜏2 + 2𝜕𝜁/𝜕𝜏3 + 𝜕𝜁/𝜕𝜏4)Δ𝜏/6; 

iv) If it has reached the end of the simulation, quit the simulation, otherwise go to step i). 

To validate the numerical code for regular waves, cnoidal waves are simulated and its analytical solution is used 

as the initial condition. The solution for the cnoidal wave based on KdV equation, i.e., Eq.(1), has been derived by 

Korteweg & de Vries [35], which is presented here without further details, 

𝜂 =
𝐻

ℳ
(1 −ℳ −

𝐸

𝒦
) + 𝐻𝑐𝑛2 (

𝒦

𝜋
𝑋) (4) 

where 𝑐𝑛 is the Jacobi elliptic function, ℳ is the modulus determined by 𝑈𝑟 , and 𝒦 and⁡𝐸 are the complete elliptic 

integral of first kind and second kind, respectively. Each specified 𝑈𝑟  corresponds to a unique solution with respect to 

Eq.(4).  

During numerical simulation, the domain covers 1 cnoidal wave length and is resolved into 64 points. The 

simulation lasts for 1000 cnoidal wave periods and the wave profiles at the initial and the end of the simulation by 

using different 𝑈𝑟  are displayed in Figure 1. It is understood that there should be no phase shift between the profiles 

at the beginning and the end of the simulation if the numerical scheme is accurate enough. By looking at the results in 

Figure 1, it is found that the profiles at the end of the simulation coincides with the initial one for each specific 𝑈𝑟 , in 

which the maximum error is about 0.5%. Thus the numerical scheme used for solving Eq.(2) is quite accurate.  

 

Figure 1. Free surface profiles for different Ursell number 

Additionally, in order to validate our code for simulating random waves, another case reported in Pelinovsky & 

Sergeeva [52] is repeated here, where the Gaussian spectrum was employed as initial spectrum and evolution of 

spectrum was studied, where 𝑈𝑟 = 𝐻𝑠/ℎ
3 = 0.95  and 𝜎 = 0.27 . The simulation is carried out to the 1000 peak 

periods in a domain covering 30 peak wave lengths, which is resolved into 1024 points. The spectrum at 𝑇/𝑇0 = 0, 



194 and 970 by using the KdV model, in comparison with the results in Pelinovsky & Sergeeva [52] is shown in 

Figure 2. It implies that the results obtained by using the present code is consistent with that in Pelinovsky & Sergeeva 

[52], apart from minor differences which may be caused by using different random phases. Thus, the numerical code 

for solving the KdV model has been validated and will be adopted for the following study.  

 

Figure 2. Spectra at different instant. ‘—’: Pelinovsky & Sergeeva [52], ‘x’: present KdV code; Red is for 

𝑇/𝑇0 = 0, green 𝑇/𝑇0 = 194 and blue 𝑇/𝑇0 = 970. 

 

2.2 The ESBI model 

The fully nonlinear model, referred as the Enhanced Spectral Boundary Integral (ESBI) method, has been recently 

developed by Wang & Ma [25], based on the formulations by Clamond & Grue [21], Grue [23], Fructus, et al. [22], 

Clamond, et al. [64] and Grue [24]. Details about the method will not be given here. However, the summary of main 

equations is presented for completeness.  

The prognostic equation is given by 

𝜕𝑴

𝜕𝑇
+ 𝐴𝑴 = 𝑵 (5) 

where 

𝑴 = (
𝐾𝐹{𝜂}

𝐾Ω𝐹{�̃�}
), 𝐴 = [

0 −Ω
Ω 0

], 𝑵 = (
𝐾(𝐹{𝑉} − 𝐾𝑡𝑎𝑛ℎ𝐾ℎ𝐹{�̃�})

𝐾Ω𝐹 {
1

2
[
(𝑉+∇𝜂∙∇�̃�)

2

1+|∇𝜂|2
− |∇�̃�|

2
]}
) (6) 

𝜂 and 𝜙 are the free surface elevation and velocity potential, respectively (�̃� is the value at free surface),  ∇=
𝜕

𝜕𝑿
=

𝜕

𝜕𝑋
𝒊 +

𝜕

𝜕𝑌
𝒋 is the horizontal gradient operator, 𝑉 = 𝜕𝜙/𝜕𝑛√1 + |∇𝜂|2 is the vertical velocity, 𝑲 = (𝜅, 𝜆) is the wave 



number, ⁡𝐾 = |𝑲| = √𝜅2 + 𝜆2  and the circular frequency 𝛺 = √𝐾𝑡𝑎𝑛ℎ(𝐾ℎ)/tanh⁡(ℎ) . All the aforementioned 

variables are nondimensionlized as shown in Table 1. The Fourier transform 𝐹{⁡} and the inverse transform 𝐹−1{⁡} are 

defined as 

�̂�(𝑲, 𝑇) = 𝐹{𝜂} = ∫ 𝜂(𝑿, 𝑇)𝑒−𝑖𝑲∙𝑿𝑑𝑿
∞

−∞

 (7) 

𝜂(𝑿, 𝑇) = 𝐹−1{�̂�} =
1

4𝜋2
∫ �̂�(𝑲, 𝑇)𝑒𝑖𝑲∙𝑿𝑑𝑲
∞
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 (8) 

Fast Fourier Transform (FFT) is adopted to perform the Fourier and inverse transform numerically. 

The solution to Eq.(5) is given as 

𝑴(𝑇) = 𝑒−𝐴(𝑇−𝑇0) [𝑴(𝑇0) + ∫ 𝑒𝐴(𝑇−𝑇0)𝑵𝑑𝑇
𝑇

𝑇0

] (9) 

where 

𝑒𝐴∆𝑇 = [
cosΩ∆𝑇 − sinΩ∆𝑇
sinΩ∆𝑇 cosΩ∆𝑇

] (10) 

In addition, the solution to the vertical velocity can be derived with the help of the boundary integral equations, 

which is given as 𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 involving the convolution and integration parts, and the formulations are 

presented in the appendix. The calculation of the convolutions is very fast owing to the algorithm of FFT whereas the 

integration parts are quite time consuming.  

In the study by Wang & Ma [25], some numerical techniques have been proposed in order to improve the 

computational efficiency. Firstly, a new numerical de-singularity technique is introduced to evaluate the integration 

parts more efficiently. Secondly, they have reformulated the equations for 𝑉3,𝑠 in Eq. (A.5) and 𝑉4,𝑠 in Eq. (A.6) as 

𝑉3,𝑠 ⁡= 𝑉3,𝐶 + 𝑉3,𝐼 = 𝑉3
(1)
⏟
4𝑡ℎ⁡

+ 𝑉3
(2)
⏟
6𝑡ℎ

+ 𝑉3,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 
(11) 

𝑉4,𝑠 = 𝑉4,𝐶 + 𝑉4,𝐼 = 𝑉4
(1)
⏟
3𝑟𝑑

+ 𝑉4
(2)
⏟
5𝑡ℎ

+ 𝑉4
(3)
⏟
7𝑡ℎ

+ 𝑉4,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 
(12) 

During the simulation, the wave condition is examined. The integration parts are evaluated only when necessary; 

otherwise they are neglected. In such a way, computational time is saved without affecting the accuracy of numerical 

results. Thirdly, a new technique for anti-aliasing is developed for eliminating aliasing problems associated with 

convolutions. More details of the numerical scheme for the ESBI model and validation examples could be found in 

Wang & Ma [25] and will not be repeated here.  



In order to validate and illustrate the efficiency of the ESBI, a comparison is made between the Boussinesq model 

[65] and the ESBI for simulating a focusing wave. In addition, the the fully nonlinear QALE-FEM model [12] is also 

used to demonstrate the accuracy of the ESBI model. The tank covers 32 peak wave lengths and is resolved into 128 

points per peak wave length with a water depth ℎ = 0.5. A focusing wave is generated at 𝑋𝑓 = 3𝐿0 and 𝑇𝑓 = 25𝑇0 

based on Bretschneider spectrum [66] where 𝐻𝑠 = 0.0013 (𝑈𝑟 = 𝐻𝑠/ℎ
3 ≈ 0.01), and the simulation lasts for 35 peak 

periods. Good agreement is observed between the three models, as seen in Figure 3, where the error of the maximum 

surface elevation is about 4.3%. It indicates that the ESBI can be accurately used to simulate shallow water waves. In 

addition, the ESBI is about 11 times faster than the Boussinesq model, as the former costs 299s while the latter takes 

3310s based on single-thread computation on a workstation with Intel® Xeon® CPU E5620@2.4GHz. Thus, the 

Boussinesq model will not be employed in this paper due to its relatively slower performance (more examples are 

reported in [67]).  

 

Figure 3. Time history at focusing location 

3 Numerical simulations and results 

The main purpose of this section is to identify the error of the results given by KdV model in Eq. (1), or 

equivalently, Eq. (4), by comparing its results with these from the fully nonlinear ESBI method in various different 

conditions in shallow water.  



3.1 Computational parameters 

In order to identify the error, the computational parameters need to be properly selected. The numerical simulation 

starts by specifying the initial values on the free surface, which are determined by using the Wallops spectrum and its 

parametric form [66] in terms of the wave number is used here, i.e., 

𝑆(𝑘) =
𝛽𝐻𝑠

2

𝑘𝑚
𝑒𝑥𝑝 (−

𝑚

4𝑘4
) (13) 

where 𝛽 = 0.06238𝑚(𝑚−1)/4/(4(𝑚−5)/4Γ[(𝑚 − 1)/4])[1 + 0.7458(𝑚 + 2)−1.057]. The bandwidth parameter 𝑚 =

3 is used in this study, which is recommended for modelling shallow water waves [66]. 

Then the initial free surface is determined by using   

𝜂 =∑𝑎𝑗 cos(𝑘𝑗𝑋 + 𝜑𝑗)

𝑁𝐽

𝑗=1

 (14) 

where 𝑎𝑗 = √2𝑆(𝑘)Δ𝑘 is the amplitude, 𝑘𝑗 is the wave number, 𝜑𝑗 is the random phase of jth component and⁡𝑁𝐽 is 

the total number of the components. In this study, we choose Δ𝑘 = 1/128 and cut-off wave number 𝑘𝑚𝑎𝑥 = 8, which 

means that a total number of 1024 components are considered. It implies that the conclusion drawn by using Eq. (14) 

as the initial condition can also be applied to the cases where the random amplitude technique [69] is adopted as 

indicated in [70]. For a specific water depth, the wave train needs a considerable distance to relax towards a new 

equilibrium state as pointed out by Sergeeva, et al.[53], where they had simulated waves propagating on a scale of 

more than 26km~170 peak wave lengths. For the numerical studies, the computational domain is set as 128 peak wave 

lengths, which is more than 20 km if the peak wave period is 10 second or more. The domain is resolved into 8192 

points for both the models, which is sufficient based on the pre-test. As pointed out by Pelinovsky & Sergeeva [52], 

the simulation duration of 1000 peak periods is sufficient to reach the equilibrium condition. Thus, the duration of the 

simulation lasts for 1000 peak periods, corresponding to a 3-hour sea state [56], which will be shown later to be 

sufficient for this study. 

In order to estimate the error in the results of the KdV model, the skewness is employed [53] 

𝛾 =
𝐸[𝜂3]

𝜎3
≈

𝐸[𝜂3]

(𝐻𝑠/4)
3
 (15) 

where 𝐸[∗]  denotes the expectation, 𝜎  is the standard deviation of free surface. The skewness is always used to 

measure the vertical asymmetry of the sea surface elevation, and larger value denotes stronger nonlinearity, e.g., 



sharper crest and flatter trough [62]. The relationship between the skewness and spectral bandwidth was established 

in [73], in which it is found that a variation of the spectral bandwidth is always accompanied by a variation of the 

skewness: the spectrum broadens until a new equilibrium is reached and the skewness becomes constant again. Based 

on that, the error is then estimated through 

𝐸𝑟𝑟 =
1

𝑛2 − 𝑛1
∑ ∆𝛾(𝑇 = 𝑛𝑇0)

𝑛2

𝑛=𝑛1+1

 (16) 

where 

∆𝛾(𝑇 = 𝑛𝑇0) =
|𝐸[𝜂1

3] − 𝐸[𝜂2
3]|

(𝐻𝑠/4)
3

 (17) 

𝜂1 and 𝜂2 are the free surface obtained by using the ESBI and KdV models, respectively, 𝑛1 and 𝑛2 are integers. To 

determine 𝑛1  and 𝑛2 , two examples with 𝐻𝑠 = 0.08⁡&⁡𝑈𝑟 = 3  and  𝐻𝑠 = 0.04⁡&⁡𝑈𝑟 = 2  are simulated, and the 

corresponding results are shown in Figure 4. By looking at the results, it is found that the skewness reached quasi-

stationary state [53] very soon (within 100 peak periods) in some cases, e.g., Figure 4(b), while it didn’t become 

stabilized until 𝑇/𝑇0 = 500, e.g., Figure 4(a). It further confirms the importance of long-time simulation, and in this 

study, the skewness averaged within the last 500 peak periods will be employed to estimate the error, i.e., 𝑛1 = 500 

and 𝑛2 = 1000.  

 

(a) 𝐻𝑠 = 0.08, 𝑈𝑟 = 3                                                       (b)⁡𝐻𝑠 = 0.04, 𝑈𝑟 = 2 

Figure 4. Skewness at different time instances based on ESBI (‘x’) and KdV (‘o’) 

For the Wallops spectrum, the range of the nondimensional significant wave height 𝐻𝑠 needs to be determined, 

which actually represents the steepness or nonlinearity of the initial free surface elevation as defined in Table 1. If it 

is very small, the waves can be well described by the linear model. Based on our pre-tests, 0.001 can be taken as the 

lower end of the range of 𝐻𝑠 (i.e. its smallest value for the numerical study), and the linear model can very well predict 

the evolution of waves with 𝐻𝑠 < 0.001.  



The next question is how to determine the upper end of the range for 𝐻𝑠. It is understandable that with the increase 

of the wave steepness, the nonlinearities become stronger, so that the accuracy of the KdV model worsens and its error 

becomes larger. In practice, one just needs to quantify the error in a certain range, e.g., up to the error named as 𝐸𝑟𝑟𝑢𝑝. 

The KdV model should be considered as unsuitable if its error exceeds 𝐸𝑟𝑟𝑢𝑝, which is chosen as 10% in this paper. 

The upper end of 𝐻𝑠 should be chosen to be the value, corresponding to which the error of the KdV model is smaller 

than 𝐸𝑟𝑟𝑢𝑝. According to our later numerical tests, the upper end of  𝐻𝑠 can be taken as 0.2, due to that numerical 

blow-up occurs for all cases when 𝐻𝑠 > 0.2, which as indicated by Fructus, et al. [71], corresponds physically to the 

onset of wave breaking. Despite that the range of 𝐻𝑠 is carefully selected, wave breaking is observed in some cases 

after a long-time propagation due to nonlinear effects. In that case, wave breaking is not suppressed through numerical 

techniques and the simulation is interrupted. And the authors choose to only consider cases of nonbreaking waves, 

which will be later shown to be sufficient to achieve the goal of this study, i.e., to quantify the error of the KdV model 

and to demonstrate its suitability. Whereas for the cases without observation of wave breaking, the probability of wave 

breaking is very unlikely if the duration is longer, since 1000 peak periods as the duration is already sufficiently long. 

In addition, the range of the Ursell number should be chosen as well. According to Ursell [72], the KdV equation 

is derived by assuming 𝑈𝑟 ≈ 1, which implies that the KdV equation is not suitable when 𝑈𝑟  is too large or too small. 

Thus we need to choose some values lower and higher than one, respectively. Based on our pre-tests, it is found that 

the error of the KdV model seems to converge to a stable value for a fixed 𝐻𝑠 when 𝑈𝑟  is sufficiently small. For 

example, the maximum deviation of the error between the cases 𝑈𝑟 = 0.1 and 𝑈𝑟 = 0.01 is 0.01. Therefore 𝑈𝑟 = 0.01 

is sufficiently small to quantify the error of the KdV model. It has been found during our numerical tests that the error 

quickly builds up and turns unacceptable when 𝑈𝑟  increases. As aforementioned, the KdV model should be considered 

as unsuitable if its error is larger than Errup. Similar with the way to choose the upper end of 𝐻𝑠, the maximum value 

for  𝑈𝑟   considered in this study is 10. Based on the above discussions, the ranges of 𝐻𝑠  and 𝑈𝑟   chosen here are 

sufficient to quantify the error of the KdV model, and the values of each parameter are given in Table 2.   

Table 2 Choice of parameters 

𝐻𝑠 
0.001, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.11, 

0.12, 0.13, 0.15. 0.16, 0.18, 0.2 

𝑈𝑟  
0.01, 0.1, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 

0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2, 3, 5, 10 

 



3.2 Error of the KdV model 

The errors of the KdV model are then presented and discussed. In each case, both the models start with the same 

initial free surface determined by Eq.(14). Then Eq. (17) is used to calculate ∆𝛾 at every peak period and the error is 

estimated by using Eq. (16). The values of the skewness by using both the methods are displayed in Figure 5, where 

some data points are missing due to the calculated wave breaking.  As shown in the figure, the skewness calculated 

by using the ESBI model depends both on wave steepness and Ursell number, while that of the KdV model only 

depends on the Ursell number and is independent of wave steepness. Then by using the calculated skewness, the 

obtained numerical errors are shown in Figure 6, where the error larger than 0.1 is not displayed. As can be seen, for 

each fixed 𝐻𝑠, i.e., along the curve of 𝐸𝑟𝑟 in terms of 𝑈𝑟 , there is a minimum point, denoted by (𝐻𝑠0, 𝑈𝑟0). Connected 

all these points, one has a dash line on the 𝐻𝑠 − 𝑈𝑟 plane as seen in the figure. This line can be regarded as the optimum 

points for the KdV model for simulating random seas, i.e., minimum errors are obtained. Based on that, the whole 

surface can be split into two parts: on the left, the error of the KdV model generally increases with the decrease of 𝑈𝑟 , 

while it is opposite on the right side. It is understandable that the KdV model becomes less accurate when 𝑈𝑟  is too 

small or too large, as pointed out earlier in this paper. In particular, the error becomes very large (more than 0.1) when 

𝑈𝑟 > 1.6. 

To mathematically represent the calculated errors in Figure 6, we assume that the dash line can be fitted by  

𝑈𝑟0 = 𝛼𝐻𝑠0
𝛽
+ 𝛿, while the errors on each side of the dash line can be fitted by  𝐸𝑟𝑟𝑖 = 𝑎𝑖(𝐻𝑠 + 𝑏𝑖𝑈𝑟 + 𝑐𝑖)(𝑈𝑟 + 𝑑𝑖) +

𝑒𝑖, where 𝛼, 𝛽, 𝛿, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and 𝑒𝑖 are constants to be determined, i = 1 or 2 corresponding to the left or right part 

respectively. This function gives the best fitting results, which is selected through competing with other functions 

(details are omitted). The optimization is performed by using the toolbox (Optimization-fminsearch) in MATLAB. 

The details can be found in MATLAB help manual which will not be provided here for simplicity. Since the error 

larger than 0.1 may just indicate the KdV model is not suitable, only the data corresponding to  𝐸𝑟𝑟 < 0.1  are 

considered for fitting. After the constants are optimised, the mathematical expressions are given by 

𝑈𝑟0 = 2.58 × 𝐻𝑠0
0.608 + 0.059 (18a) 

𝐸𝑟𝑟1 = −0.127(𝐻𝑠 + 0.55𝑈𝑟 + 4.432)(𝑈𝑟 − 7.092) − 3.985,⁡⁡⁡𝑈𝑟 ≤ 𝑈𝑟0 (18b) 

𝐸𝑟𝑟2 = −0.386(𝐻𝑠 − 0.146𝑈𝑟 − 0.209)(𝑈𝑟 + 1.24) − 0.15,⁡⁡⁡𝑈𝑟 > 𝑈𝑟0 (18c) 



where 𝐸𝑟𝑟𝑖 = 0 (i=1 or 2) if its value is negative. The fitted curve by Eq. (18a) and the fitted surfaces by Eqs.(18b) 

and (18c) are shown in Figure 7 and Figure 8, respectively. Excellent consistency is observed between the calculated 

and fitted results. The maximum error between the calculated and fitted results in Figure 7 is only 2.4%. Meanwhile, 

the maximum deviations between the calculated and fitted errors in Figure 8 (a) and (b) are 0.013 and 0.036 

respectively.  

It is noted that Eqs.(18) are obtained by using the parameters in Table 2, thus it is understandable that they can 

only be applied within the range 0.001 ≤ 𝐻𝑠 ≤ 0.2 and 0.01 ≤ 𝑈𝑟 ≤ 10. However, taking all the facts into accounts 

and based on the discussions in this section, one may conclude that: (i) When 𝐻𝑠 < 0.001, the linear model can be 

used without significant error; (ii) When 𝐻𝑠 > 0.2, wave breaking likely occurs or the error is larger than 10% and the 

KdV model cannot be used; (iii) When 0.001 ≤ 𝐻𝑠 ≤ 0.2, the error of the KdV model is larger than 0.1 if 𝑈𝑟 > 1.6, 

so that it cannot be employed; (iv) Since the error of the KdV model approximately equals to the case 𝑈𝑟 = 0.01 if 

𝑈𝑟 < 0.01, one can estimate the error of the KdV model by using Eqs.(18) when 𝑈𝑟 ≤ 1.6: if the error is less than 

0.1, one may accept this error by using the KdV model, while if the error is larger than 0.1, the KdV model may not 

be employed. More discussions about how to use Eqs.(18) will be provided in the following section.  

  

(a)  ESBI                                                                             (b) KdV  

Figure 5. Calculated skewness 



 

Figure 6. Error against 𝐻𝑠 and 𝑈𝑟  

 

 

Figure 7. Target and fitted 𝑈𝑟0 and 𝐻𝑠0 



  

(a)                                                                                           (b)  

Figure 8. Calculated errors ‘ ● ’ and fitted results ‘—’. Red dash line denotes 𝑈𝑟0-𝐻𝑠0  

 

4 Discussion on the applications 

Eqs.(18) obtained above may be employed for different purposes. Firstly, if the KdV equation is employed due to 

its advantage on the efficiency, such as a rough estimation of wave dynamics for conception design, one can use those 

equations to estimate the error of results obtained by using the KdV equation. To indicate the efficiency of the KdV 

model, the computational time is given here which is taken from a single case of 𝐻𝑠 = 0.15&𝑈𝑟 = 0.8: the ESBI costs 

4500s~1.25hour, meanwhile the KdV equation only needs 413s~6.8min to finish one run with single thread computing 

on Intel® Xeon CPU (E5-2630 v2@2.6GHz). Secondly, one may reformulate those equations to justify the suitability 

of the KdV model for simulating random waves in shallow water. Details and some examples are provided below.  

4.1 Error estimation 

To illustrate the effectiveness of Eqs.(18) for estimating the error, extra numerical tests are carried out for the cases 

with parameters listed in Table 3, which are in the range of Table 2 but are different from those used for Figure 6. In 

the table, the values of 𝐸𝑟𝑟 are obtained in the same way as for Figure 6, while the values of 𝐸𝑟𝑟𝑖  are predicted by 

using Eqs.(18). It is found that although the choices of the parameters differ from that in Figure 6, Eqs.(18) can still 

satisfactorily give accurate prediction of the error as long as 𝐸𝑟𝑟 ≤ 0.1, even in some cases where 𝐸𝑟𝑟 > 0.1. The 

maximum deviation between the calculated and predicted errors in these cases is about 0.024, which is below the 

maxima obtained in section 3.  



The errors given in Eqs.(18) are based on skewness of the free surface, the next question is what the probability 

density of the free surface or the spectrum looks like if the error in terms of the skewness is less than 0.1. To answer 

this question, some results of the probability density of the free surface and the corresponding spectra with respect to 

different levels of errors are displayed in Figure 9, where only 𝜂/𝐻𝑠 ≥ 0 for probability density is shown for clarity. 

As can be seen in the figures, when the error is small, e.g., less than 0.05, the curve of the probability density obtained 

by using the KdV model looks very similar with that by using the ESBI model, so are the spectra, as shown in Figure 

9 (a) and (b), respectively. While the difference between them becomes larger and larger when the error increases, and 

turns to be unacceptable when the error exceeds 0.1 as shown in Figure 9 (g) and (h).  

Table 3 Comparison between the numerical and predicted results 

 
𝑈𝑟 = 1.1 𝑈𝑟 = 0.45 𝑈𝑟 = 0.2 𝑈𝑟 = 0.1 

𝐸𝑟𝑟 𝐸𝑟𝑟𝑖 𝐸𝑟𝑟 𝐸𝑟𝑟𝑖 𝐸𝑟𝑟 𝐸𝑟𝑟𝑖 𝐸𝑟𝑟 𝐸𝑟𝑟𝑖  

𝐻𝑠 = 0.005 0.193 0.179 0.034 0.026 0.004 0.000 3E-4 4E-3 

𝐻𝑠 = 0.05 0.159 0.139 0.007 0.000 0.026 0.034 0.032 0.043 

𝐻𝑠 = 0.09 0.119 0.103 0.022 0.038 0.058 0.069 0.065 0.079 

 

 
 

(a)                                                                                    (b)  



 

(c)                                                                                    (d)  

 

(e)                                                                                    (f)  

 

(g)                                                                                    (h)  



Figure 9. Probability density of free surface (a, c, e & g) and corresponding spectra (b, d, f & h) 

 

In addition, the kurtosis is also an important factor that represents the probability of the extreme waves [62], and 

one may also ask if Eqs.(18) can be used to predict the error of kurtosis. To answer this question, the error of the 

kurtosis is estimated by using the formula 

𝐸𝑟𝑟𝜅 =
1

𝑛2 − 𝑛1
∑ ∆𝜅(𝑇 = 𝑛𝑇0)

𝑛2

𝑛=𝑛1+1

 (19) 

where 

∆𝜅(𝑇 = 𝑛𝑇0) =
|𝐸[𝜂1

4] − 𝐸[𝜂2
4]|

(𝐻𝑠/4)
4

 (20) 

In order to find the relationship between 𝐸𝑟𝑟𝜅  and 𝐸𝑟𝑟, in each case being simulated, the error of kurtosis can be 

estimated by using Eq.(19), and a data pair (𝐸𝑟𝑟, 𝐸𝑟𝑟𝜅) is obtained. Summarizing the cases where 𝐸𝑟𝑟 ≤ 0.1, the error 

of kurtosis against the error of skewness is displayed in Figure 10, where the symbol ‘x’ denotes the cases for  𝑈𝑟 ≤

𝑈𝑟0 and ‘o’ for  𝑈𝑟 > 𝑈𝑟0, while the dash line indicates 𝐸𝑟𝑟𝜅 = 𝐸𝑟𝑟. It can be observed that if 𝐸𝑟𝑟 is small, 𝐸𝑟𝑟𝜅  is 

small as well; when 𝐸𝑟𝑟 increases, 𝐸𝑟𝑟𝜅 does not necessarily become larger. However, it is found that the estimated 

errors of kurtosis are all below the dash line, which implies that if the estimated error of skewness is less than 0.1, the 

corresponding error of kurtosis should be less than the error of skewness, i.e., 𝐸𝑟𝑟𝜅 ≤ 𝐸𝑟𝑟 . Therefore, it is 

understandable that Eqs.(18) can also be used to predict the maximum error of kurtosis by using the KdV model.  

 



Figure 10. Error of kurtosis versus error of skewness. ‘x’: 𝑈𝑟 ≤ 𝑈𝑟0; ‘o’: 𝑈𝑟 > 𝑈𝑟0; ‘---’: 𝐸𝑟𝑟𝜅 = 𝐸𝑟𝑟. 

 

 

4.2 Justification of the KdV model’s suitability 

In order to model random waves in shallow water efficiently and accurately, one may employ a tool which can 

automatically determine whether to select the KdV model or not. For this purpose, Eqs. (18) can be reformulated and 

serve as such a criterion.  

To do so, the user should specify a tolerance (𝑇𝑜𝑙), such as 0.05 by looking at Figure 9, and allow the KdV model 

to be used when the condition 𝐸𝑟𝑟𝑖 ≤ 𝑇𝑜𝑙 is met. With this, Eqs. (18) may be replaced by an expression in terms of 

the dimensionless significant wave height, i.e.,  

𝐻𝑠1 = −0.127−1(𝑇𝑜𝑙 + 3.985)(𝑈𝑟𝑀𝑖𝑛 − 7.092)−1 − 0.55𝑈𝑟𝑀𝑖𝑛 − 4.432 (21a) 

𝐻𝑠2 = −0.386−1(𝑇𝑜𝑙 + 0.15)(𝑈𝑟𝑀𝑎𝑥 + 1.24)−1 + 0.146𝑈𝑟𝑀𝑎𝑥 + 0.209 (21b) 

where 𝑈𝑟𝑀𝑖𝑛  and 𝑈𝑟𝑀𝑎𝑥  are the minimum and maximum Ursell number respectively for the KdV model to be 

employed. Based on Eqs.(21), the graphs of 𝐻𝑠1~𝑈𝑟𝑀𝑖𝑛  and 𝐻𝑠2~𝑈𝑟𝑀𝑎𝑥  with respect to 𝑇𝑜𝑙 = 0.05 is shown in 

Figure 11, which illustrates the regions in which a suitable model should be employed.  

 

Figure 11. Suitability of the KdV equation.  

𝐻𝑠1~𝑈𝑟𝑀𝑖𝑛: ‘- - -’, 𝐻𝑠2~𝑈𝑟𝑀𝑎𝑥: ‘- ∙ -’, 𝐻𝑠 = 0.001: ‘∙∙∙’, 𝐻𝑠 = 0.2: ‘—’ 



Based on these aforementioned, it is suggested that the following conditions 

0.001 ≤ 𝐻𝑠 ≤ 0.2 (22a) 

𝑀𝑎𝑥{0, 𝑈𝑟𝑀𝑖𝑛} ≤ 𝑈𝑟 ≤ 𝑈𝑟𝑀𝑎𝑥  (22b) 

as the criterion for selecting the KdV equation for modelling the unidirectional (two-dimensional) random waves in 

shallow water on large-spatial and long-temporal scale. That is to say, if the conditions of Eqs.(22) are met, the KdV 

equation is sufficient. Otherwise, linear or fully nonlinear model should be employed, depending on the magnitude of 

the dimensionless significant wave height. It is noted that for very strong nonlinear cases wave breaking will occur, 

so that potential models will not be suitable and NS model should be employed.   

 

5 Conclusion 

The main contribution of this paper is to give a group of formulas for estimating the error in terms of skewness 

when the KdV equation is employed to simulate nonlinear random shallow water waves on a large scale for a long 

duration in a phase resolved manner. The suggested formulas can give good predictions on the errors of the statistics 

by using the KdV model as long as the errors are less than 10% within the range 0.001 ≤ 𝐻𝑠 ≤ 0.2 and 0.01 ≤ 𝑈𝑟 ≤

10, where the ranges of wave steepness and Ursell number are considered to cover the most cases in practice.  

Based on the formulas, the suitable region for the KdV model is presented in terms of wave steepness and Ursell 

number. For a fixed wave steepness, the KdV model can only be employed in a certain range of Ursell number 

determined by that steepness and user specified tolerance, which is quite different from the qualitative indication 

available in literature.  

The contribution of this study is twofold, e.g., it shows how reliable are the results obtained by using the KdV 

model after running the code, and whether it should be employed in order to obtain acceptable results before running 

any code. However, it should be pointed out that the formulas given in this paper are based on the cases of 

unidirectional waves, whereas for spreading seas, the Boussinesq equation should be adopted and will be studied in 

the future. Furthermore, the wind input and dissipation due to wave breaking are important factors for wave 

propagation on large spatiotemporal scale to achieve the equilibrium. However, the effects of wind input can be 

neglected, and the conclusion of this paper may still hold for waves featuring narrow spectrum, provided the wave 

age is not too small [74]. Additionally, as pointed out in this study, the KdV model is considered unsuitable in cases 

involving wave breaking, while dissipation due to breaking is insignificant in nonbreaking cases. Nevertheless, to 



investigate the suitability of the KdV model before achieving the equilibrium, simulations of transient waves on local 

scale are required, which will be studied systematically in the future. 
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Appendix 

The formulations for each part of the vertical velocity are given as 

𝑉1 = 𝐹−1 {𝐾𝑡𝑎𝑛ℎ(𝐾ℎ)𝐹{�̃�}} (A. 1) 

𝑉2 = 𝐹−1 {−𝐾𝑡𝑎𝑛ℎ(𝐾ℎ)𝐹{𝜂𝑉1} − 𝑖𝑲 ∙ 𝐹{𝜂∇�̃�}} (A. 2) 

𝑉3 = 𝐹−1{𝐾𝐶ℎ[𝐹{𝑉3,𝑠 + 𝑉3,𝑏}]} 
(A. 3) 

𝑉4 = 𝐹−1 {𝐾𝐶ℎ [𝑒ℎ𝐹{𝜂(𝑉 − 𝑉1)} + 𝐹 {𝜂𝐹−1{𝑒ℎ𝐹{𝑉 − 𝑉1}}} + 𝐹{𝑉4,𝑠 + 𝑉4,𝑏}]} 
(A. 4) 

where 𝑒ℎ = 𝑒−2𝐾ℎ, 𝐶ℎ = (1 + 𝑒ℎ)
−1, and 

𝑉3,𝑠 =
1

2𝜋
∫ �̃�′[1 − (1 + D2)−3/2]∇′ ∙ [(𝜂′ − 𝜂)∇′𝑅−1] 𝑑𝑿′ 

(A. 5) 

𝑉4,𝑠 =
1

2𝜋
∫𝑉′𝑅−1[1 − (1 + 𝐷2)−1/2]𝑑𝑿′ 

(A. 6) 

𝑉3,𝑏 = −
1

2𝜋
∫12h2(𝜂′ + 𝜂)RB

−5�̃�′ 𝑑𝑿′ +
1

2𝜋
∫ �̃�′[𝐑 ∙ ∇′𝜂′ − (𝜂′ + 𝜂) − 2h] ∙ (rB

−3 − RB
−3) 𝑑𝑿′ 

(A. 7) 

𝑉4,𝑏 =
1

2𝜋
∫𝑉′[𝑅𝐵

−1 − 2ℎ(𝜂′ + 𝜂)𝑅𝐵
−3 − 𝑟𝐵

−1]𝑑𝑿′ 
(A. 8) 

with⁡𝑟𝐵 = √𝑅2 + (𝜂′ + 𝜂 + 2ℎ)2 , 𝑅 = |𝑹| = |𝑿′ − 𝑿| , 𝐷 = (𝜂′ − 𝜂)/𝑅 , 𝐷𝐵 ⁡= (𝜂′ + 𝜂)/𝑅𝐵 , 𝑅𝐵 = √𝑅2 + 4ℎ2  and 

the variables with the prime indicate those at source point (𝑿′, 𝑍′). Note that 𝑉3,𝑠 and 𝑉4,𝑠 are the surface integral parts 

and 𝑉3,𝑏 and 𝑉4,𝑏 are the bottom integral parts. In deep water situations, the latter is not involved, and Fructus, et al. 

[22] has rewritten 𝑉4,𝑠 and transformed the dominant part into the third order convolutions, i.e., 

𝐹{𝑉4,𝑠} = −
𝐾

2
[𝐾𝐹{𝜂2𝑉} − 2𝐹 {𝜂𝐹−1{𝐾𝐹{𝜂𝑉}}} + 𝐹 {𝜂2𝐹−1{𝐾𝐹{𝑉}}}]

+
𝐾

2𝜋
𝐹 {∫

𝑉′

𝑅
(1 −

1

√1 + 𝐷2
−
1

2
𝐷2) 𝑑𝑿′} 

(A. 9) 



The rest formulations are omitted for simplicity which can be found in Fructus, et al. [22].  
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