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Abstract: The mean water surface (interface) under the air cushion of a surface effect ship (SES) or
an air cushion supported platform (ACSP) is generally lower than the outside water surface due to
the overpressure of the air cushion. To precisely analyze the hydrodynamics under the air cushion,
multiple water levels should be considered in numerical models. However, when using free surface
Green’s functions as numerical methods, the water level difference cannot be taken into account,
because free surface Green’s functions normally require users to set in the whole water domain
a unique datum water surface that completely separates the air domain and the water domain.
To overcome this difficulty, a multi-domain approach is incorporated into a 2.5D method that is based
on a time domain free surface Green’s function with viscous dissipation effects in this paper. In the
novel multi-domain 2.5D method, the water domain is partitioned into inner and outer domains, and
the interface is located in the inner domain while the outside water surface is placed in the outer
domain. In each domain there exists only one unique water level, while water levels in different
domains are allowed to be different. Benefited from this characteristic, the multi-domain 2.5D
method is able to precisely consider the water level difference and its influence on hydrodynamics.
The newly proposed multi-domain 2.5D method is employed to predict the hydrodynamics of an
SES, and it is confirmed that the multi-domain 2.5D method can give better numerical results than
the single-domain one for the given case.

Keywords: multi-domain; Green’s function; 2.5D method; hydrodynamics; water level

1. Introduction

In water-related engineering, there might exist multiple water surfaces with different levels, such
as water separated by a dam or seawall, water flows passing through the channels of a M-craft, water
under the air cushion of a surface effect ship (SES) or air cushion supported platform (ACSP), and
so on. The water level difference could have an influence on the hydrodynamics of fixed or floating
bodies in the water. For example, the pressurized air under an SES could reduce about 25% of the
draught inside the cushion, whose impact should not be ignored.

There exist various numerical methods for solving the multiple water level hydrodynamics of
an SES, e.g., Rankine source methods [1], finite element methods [2], unsteady Reynolds-averaged
Navier-Stokes equation (URANS) methods [3], or even free surface Green’s functions [4–6]. Among
these methods, the free surface Green’s functions are considered to be the most efficient due to the
fact that source points are only distributed on the wetted surface rather than all water boundaries.
In free surface Green’s functions, however, only a unique datum water surface can be defined in the
flow field, and the water domain and air domain must be completely beneath and above this surface,
respectively. The free surface condition for any water surface should be satisfied on the datum water
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surface. To meet this requirement, the datum surface is generally set on the highest water surface, i.e.,
water surface outside of the SES [6]. Obviously, this will cause the actual interface to be lower than
the datum surface, which inevitably causes an adverse impact on predicting the hydrodynamics of
the SES.

To overcome the abovementioned difficulties, a multi-domain concept, which divides the water
domain into several domains and respectively solves the problem on each domain, is introduced
into this paper. The multi-domain concept is used in fluid dynamics for several purposes. One
is to realize the parallel computation technique [7–9], which decomposes the fluid domain into
multiple regions, thus allowing calculations to be simultaneously performed in each region. Another
purpose is to construct boundary conditions for shielded domains, which may be unknown in their
original boundary value problems. To investigate waves passing through two vertical thin plates
on the free surface, Shin and Cho [10] partitioned the fluid domain into three pieces using the two
plates and their extension to the bottom, and respectively built up three boundary value problems
(BVP) for three domains. Moreover, it was demonstrated that the multi-domain methods have
better performance in predicting hydrodynamics. Chen and Duan [11] found that the multi-domain
boundary element method (MD-BEM) is faster and more accurate in solving the hydrodynamics of
a moonpool in comparison to the conventional BEM. Nonetheless, as far as we know, none of the
existing multi-domain methods has been employed in tackling multiple water level problems.

In this paper, the multi-domain concept is first incorporated into the 2.5D (two and a half
dimensional) method [12,13] based on the time domain free surface Green’s function with viscous
dissipation effects [14] to form a multi-domain 2.5D method. The 2.5D method is a high-speed slender
body method that could be able to predict the hydrodynamics of high-speed ships such as SES.
The newly proposed method partitions the water domain into an inner domain and an outer domain,
which contain, respectively, the interface and outside free surface. Thus, the interface could remain at its
original position and the multi-domain 2.5D method would be able to precisely consider the multiple
water levels and the influence of water level difference on hydrodynamics. The newly proposed
multi-domain 2.5D method is validated by solving the hydrodynamics of an SES and comparing the
numerical results with experimental ones.

2. Mathematical Models of the Multi-Domain 2.5D Method

2.1. Partition of Water Domain and Boundary Value Problem

It is assumed that the water domain of an SES. Ω is enclosed by free surface SF, wetted surface SB,
interface SP, and the boundary at infinite S∞. The fluctuating air cushion pressure on the interface of
an SES can be expressed as:

p̃(x, y, t) = p̂(x, y)eiωt = −ρwgeiωt
6+NP

∑
j=7

ηjnj(x, y) (1)

where ρw is the density of water, g is the gravity, ω is the pulsating frequency, ηj is the equivalent
waterhead of the fluctuating air pressure in the j-th mode, NP is the number of modes, and nj(x, y) a
complete set of orthogonal Fourier modes expanded on the interface defined as [15]:

nj(x, y) =

(
cos(απ(x− xm)/l)
sin(απ(x− xm)/l)

)(
cos(βπy/b)
sin(βπy/b)

)
(2)

where α, β are 0 and even for the modes corresponding to the cosine or odd for the sine; and l, b, xm

are the length, breadth, and longitudinal center of the air cushion, respectively.
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Within the framework of a linear high speed slender body assumption, the unsteady disturbance
potential of water around the SES can be written as:

φT =

{
η0φ0 +

6

∑
j=2

ηjφj +
6+NP

∑
j=7

ηjφj

}
eiωt (3)

where η0 is the amplitude of the incident wave, ηj (j = 2, . . . , 6) the amplitude of the j-th motion
mode, φ0 the diffraction potential, φj(j = 2, . . . , 6) the radiation potential in the j-th motion mode, and
φj(j = 7, . . . , 6 + NP) the radiation potential in the j-th pressure mode.

The hydrodynamic BVP for the SES in water domain could be formulated as:

∂2φj
∂y2 +

∂2φj
∂z2 = 0, in Ω[(

iω−U ∂
∂x

)2
+ g ∂

∂z

]
φj =

{
g
(

iω−U ∂
∂x

)
nj(x, y),

0,

on SP, j = 7, . . . , 6 + NP

on SF ∪ (SP, j = 0, 2, . . . , 6)

∂φj
∂n =


− ∂φI

∂n , j = 0
iωnj + Umj, j = 2, . . . , 6
0, j = 7, . . . , 6 + NP

, on SB

φj = ∇φj = 0, on S∞

φj =
∂φj
∂x = 0, at x > xb

(4)

where φI is the incident wave with unit amplitude; U the advancing speed of the SES; xb the x-axis of
the bow; nj(j = 1, . . . , 6) the generalized normal vector; mj is defined as (m1, m2, m3) = (0, 0, 0) and
(m4, m5, m6) = (0, n3,−n2).

Normally, the interface SP is lower than the free surface SF. To consider the water level difference
between SP and SF using the 2.5D method, the water domain Ω is partitioned by the splitter SC into
the outer domain Ωe and the inner domain Ωi (Ω = Ωi ∪Ωe) (see Figure 1). As a result, the wetted
surface SB is divided into an outer wetted surface Se

B and an inner one Si
B
(
SB = Se

B ∪ Si
B
)
. The free

surface SF and interface SP are located in the outer domain Ωe and inner domain Ωi, respectively.
The splitter SC could have any shape and is not limited to the one shown in Figure 1.

Let φe
j and φi

j be the water velocity potential in the outer domain Ωe and inner domain Ωi,
respectively. It is not difficult to obtain the BVP in the outer domain Ωe:

∂2φe
j

∂y2 +
∂2φe

j
∂z2 = 0, in Ωe[(

iω−U ∂
∂x

)2
+ g ∂

∂z

]
φe

j = 0, on SF

∂φe
j

∂n =


− ∂φe

I
∂n , j = 0

iωnj + Umj, j = 2, . . . , 6
0, j = 7, . . . , 6 + NP

, on Se
B

φe
j = ∇φe

j = 0, on S∞

φe
j =

∂φe
j

∂x = 0, at x > xb

(5)

where φe
I is the incident wave in the outer domain.
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Analogously, the BVP in the inner domain Ωi can be written as:

∂2φi
j

∂y2 +
∂2φi

j
∂z2 = 0, in Ωi[(

iω−U ∂
∂x

)2
+ g ∂

∂z

]
φi

j =

{
g
(

iω−U ∂
∂x

)
nj(x, y),

0,

on SP, j = 7, . . . , 6 + NP

on SP, j = 0, 2, . . . , 6

∂φi
j

∂n =


− ∂φi

I
∂n , j = 0

iωnj + Umj, j = 2, . . . , 6
0, j = 7, . . . , 6 + NP

, on Si
B

φi
j =

∂φi
j

∂x = 0, at x > xb

(6)

where φi
I is the incident wave in the inner domain.
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Figure 1. Water flow domains Ωi, Ωe and their boundaries around the transverse section of an SES.
The outer domain Ωe is surrounded by free surface SF, outer wetted surface Se

B, splitter SC, and
boundary at infinity S∞. The inner domain Ωi is enclosed by interface SP, inner wetted surface Si

B, and
splitter SC.

In addition, the velocity potentials φe
j , φi

j and their derivatives should be the same on the
splitter SC:  φe

j = φi
j,

∂φe
j

∂n =
∂φi

j
∂n ,

on SC (7)

One can easily verify that the combination of BVPs from Equations (5)–(7) yields the BVP given
by Equation (4), i.e., the original BVP for the SES in the water domain Ω with multiple water levels is
equivalent to a BVP in the outer domain Ωe and another one in the inner domain Ωi, and each domain
from Ωe and Ωi only contains a unique water level. Thereby, one can employ the free surface Green’s
function method (2.5D method) to solve these two BVPs.

2.2. Multi-Domain 2.5D Method

If the 2.5D method is based on the source and dipole mixed distribution model, one only needs to
formulate the boundary integral equations along boundaries of the domain Ωe or Ωi. However, the
pure source distribution model is preferred in the 2.5D method. Thus, the pure source distribution
model is employed in this paper. To this end, the outer domain Ωe is artificially extended to the
interior domain (denoted by Ωe

i ) enclosed by the outer wetted surface Se
B, splitter SC, and artificial

free surface SFi (Figure 2a), while the inner domain Ωi is artificially extended to the exterior domain
(denoted by Ωi

e) surrounded by the inner wetted surface Si
B, splitter SC, artificial free surface SFe, and

boundary at infinity S∞ (Figure 2b). It is worth noting that artificial free surfaces SFi and SFe have the
same water level as SF and SP, respectively. This is a novel multi-domain approach, which is different
from the multi-domain approaches without domain extension adopted in the literature, such as in
Reference [11].
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Since the free surface conditions are only satisfied on the datum water level z = 0, one has to
define two local coordinate systems for two domains. As shown in Figure 2a, an SES-accompanied
inertial coordinate system oe − xeyeze is defined in the outer domain Ωe, which moves with speed
U. When the SES is located at its mean position, the xe-axis points upstream and the ze-axis points
vertically upward through the center of gravity (COG) of the SES. The origin oe is placed in the plan
of the mean outside free surface SF. Analogously, in Figure 2b another SES-accompanied inertial
coordinate system oi− xiyizi is defined in the inner domain Ωi, which is almost the same as oe− xeyeze,
except that the origin oi is located on the interface SP. For simplicity, the notations “e, i” on the top
right of coordinates are ignored in following texts if no ambiguity occurs. However, one should note
that the variables in each domain are always defined in their own coordinate systems.

The main difference between the current multi-domain method and those used in the literature for
other purposes is that, in the current method, multiple local coordinate systems should be respectively
defined for each domain and quantities in each domain must be defined in their own coordinate
system, while in other multi-domain methods, generally only one global coordinate system is defined
and quantities in different domains are defined in the same coordinate system.
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Figure 2. Outer and inner domains and their extended domains. The coordinate system oe − xeyeze

and oi − xiyizi are defined in the outer domain and inner domain, respectively. The origins oe and oi

are located on the mean outside free surface SF and interface SP, respectively. (a) Outer domain Ωe and
its extension Ωe

i ; (b) Inner domain Ωi and its extension Ωi
e.

Before employing 2.5D methods to solve the potentials, variable substitutions should
be performed: 

x(t) = xb −Ut
ψj(t, y, z) = eiωtφj(x(t), y, z)
Πj(t, y) = eiωtnj(x(t), y)

(8)

Let ψe
j , σe

j be the time-domain potential and source density in the outer domain, and ψi
j, σi

j
be those in the inner domain. All outer domain potentials ψe

j (j = 0, 2, 3, . . . , 6 + NP) and sidehulls

related inner domain potentials ψi
j(j = 0, 2, 3, . . . , 6) can be solved using the tranditional time-domain

Green’s function method [13], while fluctuating air cushion pressure-related inner domain potentials
ψi

j(j = 7, . . . , 6 + NP) are associated with the mixed BVP and should be solved using the method
presented in Appendix A.
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The boundary integral equations and source density equations (j = 0, 2, 3, . . . , 6 + NP) in the
outer domain are given as:

2πψe
j (t, p) +

∫
Se

B+SC
Gσe

j (t, q)dsq =
∫ t

0 dτ
∫

Se
B+SC

G̃σe
j (τ, q)dsq, p ∈ Se

B ∪ SC∫
Se

B+SC
σe

j (t, q) ∂G
∂ne

p
dsq − πσe

j (t, p) = −2π
∂ψe

j (t,p)
∂ne

p
+∫ t

0 dτ
∫

Se
B+SC

∂G̃
∂ne

p
σe

j (τ, q)dsq,
p ∈ Se

B

2π
∂ψe

j (t,p)
∂ne

p
+
∫

Se
B+SC

σe
j (t, q) ∂G

∂ne
p
dsq − πσe

j (t, p) =∫ t
0 dτ

∫
Se

B+SC
∂G̃
∂ne

p
σe

j (τ, q)dsq,
p ∈ SC

(9)

where p, q, q are the field point, source point, and mirror of the source point on the mean free surface,
respectively; rpq, rpq are the distance between p and q, p and q, respectively.

On the other hand, the equations in the inner domain are given as:

2πψi
j(t, p) +

∫
Si

B+SC
Gσi

j(t, q)dsq =
∫ t

0 dτ
∫

Si
B+SC

G̃σi
j(τ, q)dsq−∫ t

0 dτ
∫

SP
Πj(τ, η) ∂G̃

∂τ dsq,
p ∈ Si

B ∪ SC ∪ SP∫
Si

B+SC
σi

j(t, q) ∂G
∂ni

p
dsq − πσi

j(t, p) =
∫ t

0 dτ
∫

Si
B+SC

∂G̃
∂ni

p
σi

j(τ, q)dsq−

2π
∂ψi

j(t,p)

∂ni
p
−
∫ t

0 dτ
∫

SP
Πj(τ, η) ∂2G̃

∂z∂τ dsq,
p ∈ Si

B

2π
∂ψi

j(t,p)

∂ni
p

+
∫

Si
B+SC

σi
j(t, q) ∂G

∂ni
p
dsq − πσi

j(t, p) =∫ t
0 dτ

∫
Si

B+SC
∂G̃
∂ni

p
σi

j(τ, q)dsq −
∫ t

0 dτ
∫

SP
Πj(τ, η) ∂2G̃

∂z∂τ dsq,
p ∈ SC

(10)

In addition, the potentials and their normal derivative from two domains should be equal to
each other:  ψe

j (t, p)− ψi
j(t, p) = 0,

∂ψe
j (t,p)
∂ne

p
+

∂ψi
j(t,p)

∂ni
p

= 0,
p ∈ SC (11)

In Equations (9) and (10), G̃ and G are the free surface memory term and instantaneous term of
the free surface Green’s function with viscous dissipation effects, respectively. G̃ is defined as [14]:

G̃(p, t; q, τ) = 2
∫ ∞

0

√
g
k e(k+

ν2
g )(y+η)e−ν(t−τ)ek(z+ζ) cos

((
k + ν2

g

)
(y− η)

)
sin
(√

gk(t− τ)
)
dk (12)

where ν is the viscosity dissipation coefficient. G is expressed as [14]:

G(p, q) = Re
{

E1

(
−ν2

g
Rpq

)
− E1

(
−ν2

g
Rpq

)}
(13)

with {
Rpq = z + ζ + i(y− η)

Rpq = −|z− ζ|+ i(y− η)
(14)

E1(z) =
∫ ∞

z

e−r

r
dr, z 6= 0 (15)

Equations (9)–(11) are essential equations for the multi-domain 2.5D method. Each variable in
these equations is exactly defined in its own coordinate system. They are different from those given by
the conventional single-domain 2.5D method, in which the variables on the interface and inner side of
the wetted surface are not properly defined due to the water level difference.

At any time t > 0, the potentials and source densities at the left hand side of Equations (9)–(11)
are unknown, while those at the right hand side are already known. Combining Equations (9)–(11),
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one could solve all unknown potentials ψe
j (t, p), p ∈ Se

B and ψi
j(t, p), p ∈ Si

B ∪ SP. To avoid confusion,

ψe
j (t, p) and ψi

j(t, p) are denoted by ψj(t, p) = ψj(t, y, z). Applying the inverse transformation to
ψj(t, y, z), one obtains:

φj(x, y, z) = ψj(t(x), y, z)e−iωt(x) (16)

Once potentials φj(x, y, z) on the wetted surface and interface are obtained, the fluctuating air
cushion pressure response could be solved using the equations given in Appendix B. It is worth noting
that Bernoulli’s equation on the free surface or interface is:

(
iω + 2ν−U ∂

∂x

)
φj + gζ j = 0, j = 0, 2, . . . , 6(

iω + 2ν−U ∂
∂x

)
φj + g

(
ζ j − nj

)
= 0, j = 7, . . . , 6 + NP

(17)

which contain the additional term 2ν that does not exist in inviscid Green’s function methods.

3. Application of the Multi-Domain 2.5D Method for Multi Water Level Hydrodynamics

In this section, the multi-domain 2.5D method is validated and employed for evaluating
the hydrodynamics of an SES. A single-domain 2.5D method is proposed for comparison.
The single-domain 2.5D method could be directly obtained from Equation (10) by deleting the splitter
SC and replacing the inner wetted surface Si

B with the whole wetted surface SB.

3.1. Validation of the Multi-Domain 2.5D Method

Before applying the multi-domain 2.5D method to an SES, the catamaran Delft 372 [16–18] is
employed to validate this method. The Delft 372 [18] was firstly proposed by the Delft University of
Technology as one of the “Standard Series” models for academic research. The principal parameters of
the Delft 372 are listed in Table 1.

Table 1. Main characteristics of the Delft 372 catamaran [16,17].

Parameters (Symbol) Value Parameters (Symbol) Value

Length between perpendiculars (L) 3.0 m Longitudinal center of gravity (xg) 1.41 m
Beam overall (B) 0.94 m Vertical center of gravity (zg) 0.34 m

Beam demihull (b) 0.24 m Pitch radius of gyration (kyy) 0.782 m
Distance between center of demihulls (d) 0.70 m Displacement (∆) 87.07 kg

Draft (T) 0.15 m Moment of inertia for pitch (I55) 53.245 kg·m2

As it is known, the level of the water surface between the demihulls of the Delft 372 catamaran is
the same as that of the outside free surface. Thereby, the numerical results from the multi-domain 2.5D
method with a splitter of an arbitrary shape should theoretically be the same as those obtained using
the conventional single-domain 2.5D method, though numerical errors in calculations may occur.

As shown in Figure 3, four splitter shapes: (a) straight, (b) triangle, (c) rectangle, and (d) semicircle,
are selected for the study. The splitters connect the lowest points of the demihulls. In Figure 3b, the
vertical distance between the vertex of the triangle and the lowest point of the demihull is equal to d.
In Figure 3c, the height of the rectangle is d/2.
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Figure 3. Various splitters for partitioning water domain around a transverse section of the Delft 372.
(a) Straight splitter; (b) Triangular splitter; (c) Rectangular splitter; (d) Semicircular splitter.

The viscosity dissipation coefficient is set as ν = 0, since no viscous dissipation effects need to
be considered in this case. Figure 4 depicts the heave and pitch RAO (response amplitude operator)
of the Delft 372 advancing under Frouder number Fr = 0.60 in regular head waves of wavelength
λ. The lines labeled with “MD:Straight”, “MD:Triangle”, “MD:Rectangle”, and “MD:Semicircle” are
numerical results from the multi-domain (MD) 2.5D method with straight, triangular, rectangular,
an semicircular splitters, respectively. The lines labeled with “SD” and “EFD” are numerical results
from the single-domain (SD) 2.5D method and results from experimental fluid dynamics (EFD) [16],
respectively. Generally, it is desirable that all numerical results agree with the experimental ones.
Nonetheless, one can observe that the numerical results from “MD:Straight” agree best with those
from the single-domain 2.5D method. On the other hand, there exist notable discrepancies between
the numerical results from “MD:Triangle”, “MD:Rectangle”, “MD:Semicircle” and the single-domain
2.5D method, which indicates that the multi-domain 2.5D method with triangular, rectangular, and
semicircular splitters could induce slight numerical errors. It can be deduced that the numerical errors
are positively associated with the length of the splitter.

The numerical results from this case suggest that the multi-domain 2.5D method developed in
this paper is numerically stable, and that the straight design is the most suitable shape for the splitter.



Water 2018, 10, 232 9 of 14

Water 2018, 10, x FOR PEER REVIEW  9 of 14 

 

(a) (b) 

Figure 4. Comparison of motion response of the Delft 372 catamaran using the multi-domain 2.5D 
method with various splitters (straight, triangle, rectangle, semicircle) with results from single- 
domain 2.5D methods and experiments. ߣ is the wavelength. (a) Heave response amplitude 
operator (RAO); (b) Pitch RAO. 

3.2. Multi-Domain 2.5D Method for the Hydrodynamics of an SES 

The multi-domain 2.5D method with a straight splitter is employed to study an SES–partial air 
cushion supported catamaran (PACSCAT) [6]. The principal parameters of the PACSCAT are given 
in Table 2. More details and the body plan for the PACSCAT can be found in Guo et al. [6]. Since the 
PACSCAT only runs in head waves, the variation of the fluctuating air pressure along the transverse 
direction can be ignored. Thereby, two orthogonal Fourier modes from Equation (2): ݊଻(ݔ, (ݕ ,ݔ)଼݊	,1= (ݕ = sin(πݔ ݈⁄ ୫ݔ) ( ≅ 0 for the PACSCAT) are sufficient for capturing the feature of the 
fluctuating air pressure. In addition, when the PACSCAT runs in waves, there exist averaged sinkage 
and trim for the hull, which are obtained from the experimental data [6] and given in Table 2. The 
plane of the interface in the multi-domain 2.5D method is approximately acquired by connecting the 
outer water surface at the bow and the averaged draft of air cushion at the center of gravity of the 
PACSCAT. 

Table 2. Main characteristics of the PACSCAT [6]. 

Parameters (symbol) Value Parameters (Symbol) Value 
Length overall (ܮ) 3.0 m Averaged trim (ߦହ) 3.42° 

Beam overall (ܤ) 0.7 m Moment of inertia for pitch (ܯହହ) 77.4 kg·m2 

Cushion length (݈) 2.5 m Static cushion overpressure (݌଴) 760 Pa (ܨ௥௟ = 0.73) 
Cushion breadth (ܾ) 0.24 m Air inflow rate (ܳ଴) 150 mଷ/s 

Displacement (ܯ) 145 kg Fan characteristic value ቀ߲ ୧ܳ୬ ൗ݌߲ ቁ −7.2 × 10−5 mଷ/(s · Pa) 
Averaged sinkage (ߦଷ) 0.73 cm   

The strip panels of the PACSCAT for the single-domain and multi-domain 2.5D method are 
portrayed in Figure 5a,b, respectively. It can be observed that in Figure 5b the water level of the 
interface is lower than that of the outside free surface. One of most intuitive approaches to 
investigating the hydrodynamic effects of the water level difference is observing the radiation wave 
on the interface caused by fluctuating air pressure. If the water level difference has an impact on the 
hydrodynamics of the PACSCAT, the radiation wave obtained by the multi-domain 2.5D method 
should be different from that obtained by the single-domain 2.5D method. It is worth mentioning 
that the sidehulls of the PACSCAT have an “L” shape (see Figure 5), which could generate viscous 
effects when heaving or pitching in waves. Thereby, the viscosity dissipation coefficient is 
approximately set as ߥ = 1(rad s⁄ )  for the single-domain and multi-domain 2.5D methods to 
compensate the viscous dissipation effects of the “L” shape sidehulls. 

Figure 4. Comparison of motion response of the Delft 372 catamaran using the multi-domain 2.5D
method with various splitters (straight, triangle, rectangle, semicircle) with results from single- domain
2.5D methods and experiments. λ is the wavelength. (a) Heave response amplitude operator (RAO);
(b) Pitch RAO.

3.2. Multi-Domain 2.5D Method for the Hydrodynamics of an SES

The multi-domain 2.5D method with a straight splitter is employed to study an SES–partial
air cushion supported catamaran (PACSCAT) [6]. The principal parameters of the PACSCAT are
given in Table 2. More details and the body plan for the PACSCAT can be found in Guo et al. [6].
Since the PACSCAT only runs in head waves, the variation of the fluctuating air pressure along
the transverse direction can be ignored. Thereby, two orthogonal Fourier modes from Equation (2):
n7(x, y) = 1, n8(x, y) = sin(πx/l) (xm ∼= 0 for the PACSCAT) are sufficient for capturing the feature
of the fluctuating air pressure. In addition, when the PACSCAT runs in waves, there exist averaged
sinkage and trim for the hull, which are obtained from the experimental data [6] and given in Table 2.
The plane of the interface in the multi-domain 2.5D method is approximately acquired by connecting
the outer water surface at the bow and the averaged draft of air cushion at the center of gravity of
the PACSCAT.

Table 2. Main characteristics of the PACSCAT [6].

Parameters (Symbol) Value Parameters (Symbol) Value

Length overall (L) 3.0 m Averaged trim (ξ5) 3.42◦

Beam overall (B) 0.7 m Moment of inertia for pitch (M55) 77.4 kg·m2

Cushion length (l) 2.5 m Static cushion overpressure (p0) 760 Pa (Frl = 0.73)

Cushion breadth (b) 0.24 m Air inflow rate (Q0) 150 m3/s

Displacement (M) 145 kg Fan characteristic value (∂Qin/∂p) −7.2 × 10−5 m3/(s·Pa)

Averaged sinkage (ξ3) 0.73 cm

The strip panels of the PACSCAT for the single-domain and multi-domain 2.5D method are
portrayed in Figure 5a,b, respectively. It can be observed that in Figure 5b the water level of the
interface is lower than that of the outside free surface. One of most intuitive approaches to investigating
the hydrodynamic effects of the water level difference is observing the radiation wave on the interface
caused by fluctuating air pressure. If the water level difference has an impact on the hydrodynamics
of the PACSCAT, the radiation wave obtained by the multi-domain 2.5D method should be different
from that obtained by the single-domain 2.5D method. It is worth mentioning that the sidehulls of the
PACSCAT have an “L” shape (see Figure 5), which could generate viscous effects when heaving or
pitching in waves. Thereby, the viscosity dissipation coefficient is approximately set as ν = 1(rad/s)
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for the single-domain and multi-domain 2.5D methods to compensate the viscous dissipation effects
of the “L” shape sidehulls.Water 2018, 10, x FOR PEER REVIEW  10 of 14 
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Figure 5. Strip panels of the PACSCAT for the single-domain and multi-domain 2.5D method. (a) The
strip panels for the single-domain 2.5D method, in which the interface and outside free surface are at
the same water level; (b) The strip panels for the multi-domain 2.5D method, in which the interface is
lower than the outside free surface.

Figure 6 portrays the radiation wave profiles ζ7, ζ8 at the central longitudinal section y = 0
of the interface due to the fluctuating air pressure of the PACSCAT advancing in waves of length
λ (λ/l = 3.2) under Froude number Frl = 1.0. The waves ζ7, ζ8 can be calculated through Equation
(15). The results “SD” and “MD” are obtained using the single-domain and multi-domain 2.5D
methods, respectively.
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Figure 6. The comparison of profiles of radiation waves ζ7, ζ8 on the interface due to fluctuating air
pressure at y = 0. The Froude number of the air cushion in the PACSCAT is Frl = 1.0, and the wave
length to air cushion length ratio is λ/l = 3.2. (a) Real part of ζ7; (b) Imaginary part of ζ7; (c) Real part
of ζ8; (d) Imaginary part of ζ8.
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From Figure 6, one can observe that the radiation wave obtained by the multi-domain 2.5D
method is very different from that obtained using the single-domain 2.5D method, which suggests that
the water level difference between the outside free surface and interface has a significant influence
on the radiation wave on the interface, and the omission of the water level difference could bring
inevitable errors to calculation of the the hydrodynamics of the PACSCAT. The numerical results also
confirm the importance and necessity of applying the multi-domain 2.5D method to accurately predict
the hydrodynamics of an SES.

In Figure 7, the numerical results on the fluctuating air pressure RAO of the PACSCAT are
compared with the experimental ones “EFD” under Frl = 1.0. The results “SD” and “MD” are obtained
using the single-domain and multi-domain 2.5D methods, respectively. From Figure 7, one can find
that the fluctuating air pressure RAO from “MD” agrees better with “EFD” than “SD”. Moreover,
“MD” varies more smoothly with wave length, while “SD” significantly oscillates in the vicinity of
resonance waves.
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single-domain 2.5D methods with experimental results.

The numerical results in this case suggest that the multi-domain 2.5D method can take water level
difference into account and significantly improve the numerical results on the fluctuating air pressure.

4. Conclusions

This paper first presents a multi-domain 2.5D method for solving the hydrodynamics of an SES,
whose water level of the interface is lower than that of the outside free surface. The novel multi-domain
2.5D method partitions the water domain into an outer domain and an inner domain, and keeps the
potential and its derivative continuous on the adjacent boundaries of the two domains. The outer
domain contains the outside free surface, while the inner domain includes the interface. The interface
and the outside free surface are allowed to be at different water levels. Therefore, the multi-domain
2.5D method is able to precisely consider the water level difference in the SES.

The multi-domain 2.5D method is validated by predicting the motion response of a high-speed
catamaran Delft 372 running in head waves, and the straight design is demonstrated to be an excellent
splitter shape. Then, the multi-domain 2.5D method is employed to investigate the radiation wave
on the interface of an SES (PACSCAT) caused by the fluctuating air pressure, and the numerical
results suggest that the water level difference has a significant influence on the radiation wave.
The multi-domain 2.5D method is also applied to solve the fluctuating air pressure RAO of the
PACSCAT advancing in head waves, and the numerical results confirm that the multi-domain 2.5D
method can improve the fluctuating air pressure of the PACSCAT.
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The multi-domain concept proposed in this paper can be also applied to other free surface Green’s
function methods to solve other hydrodynamic problems associated with multiple water levels.
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Appendix A

Substituting Equation (8) into Equation (6), the frequency domain fluctuating air cushion
pressure-related potential φi

j is transformed to the time domain potential ., which satisfies the following
definite conditions: 

∂2ψi
j

∂y2 +
∂2ψi

j
∂z2 = 0, in Ωi(

∂2

∂t2 + g ∂
∂z

)
ψi

j = g
∂Πj
∂t , on SP

∂ψi
j

∂n = 0, on Si
B

∂ψi
j

∂t = gΠj(0, y), on SP, at t = 0

(A1)

Let G̃(p, t; q, τ) and G(p, q) be the free surface memory term and instantaneous term of the free
surface Green’s function with viscous dissipation effects, respectively. Applying Green’s theorem to
ψj(τ, q) and G̃(p, t; q, τ) yields:

∫
Si

B+SP+SC

(
ψi

j(τ, q)
∂G̃
∂nq
− G̃

∂ψi
j(τ, q)

∂nq

)
dsq = 0 (A2)

Since the Equation (A2) holds at τ ∈ [0, t], integrating (A2) results in:

∫ t

0
dτ
∫

Si
B+SP+SC

(
ψi

j(τ, q)
∂G̃
∂nq
− G̃

∂ψi
j(τ, q)

∂nq

)
dsq = 0 (A3)

Taking the interface condition into account, the integral on SP in Equation (A3) could be
transformed to:

∫ t

0
dτ
∫

SP

(
ψi

j(τ, q)
∂G̃
∂nq
− G̃

∂ψi
j(τ, q)

∂nq

)
dsq =

∫
SP

ψi
j(t, q)

∂G
∂ζ

dsq +
∫ t

0
dτ
∫

SP

Πj(τ, η)
∂G̃
∂τ

dsq (A4)

On the other hand, applying Green’s theorem to ψj(τ, q) and G(p, q) comes to:

2πψi
j(t, p)−

∫
Si

B+SC

(
ψi

j(t, q)
∂G
∂nq
− G

∂ψi
j(t, q)

∂nq

)
dsq =

∫
SP

ψi
j(t, q)

∂G
∂ζ

dsq (A5)

Combining Equations (A1)–(A5) yields the boundary intergral equation (BIE):

2πψi
j(t, p) +

∫
Si

B+SC

(
G

∂ψi
j(t,q)
∂nq

− ψi
j(t, q) ∂G

∂nq

)
dsq=

∫ t
0 dτ

∫
Si

B+SC

(
G̃

∂ψi
j(τ,q)
∂nq

− ψi
j(τ, q) ∂G̃

∂nq

)
dsq −

∫ t
0 dτ

∫
SP

Πj(τ, η) ∂G̃
∂τ dsq (A6)
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The BIE (A6) is based on the source and dipole mixed distribution model. In this paper, the pure
source distribution model is adopted, based on which the BIE can be written as:

2πψi
j(t, p) +

∫
Si

B+SC
Gσi

j(t, q)dsq

=
∫ t

0 dτ
∫

Si
B+SC

Gσi
j(t, q)dsq −

∫ t
0 dτ

∫
SP

Πj(τ, η) ∂G̃
∂τ dsq

(A7)

where σi
j is the source density.

Appendix B

According to Sørensen and Egeland [4], the fluctuating air cushion pressure p̂(x, y) satisfies the
wave equation: (

∂2

∂x2 +
∂2

∂y2 + k2
a

)
p̂(x, y) = −1

h
∂p
∂z

∣∣∣∣∣ h
z = 0

(A8)

where ka = ω/c and c is the sound speed. Substituting Equation (1) into (A8) and using the momentum
equation for the air, one obtains:

6+NP

∑
j=7

ηj

(
∂2

∂x2 +
∂2

∂y2 + k2
a

)
nj(x, y) = − iωρa

ρwgh
w

∣∣∣∣∣ z = h
z = 0

(A9)

where ρa is the density of air cushion, and w is the vertical velocity of air flow.
Multiplying Equation (A9) by ni(x, y), i = 7, . . . , 6 + NP, and integrating the resulting equation

with respect to x, y yields the equations for fluctuating air pressure:

ηi

(
k2

a − 4π2
((

α
l
)2

+
(

β
b

)2
))

s
SP

n2
i (x, y)dxdy

= ω2ρa
ρwgh

(
s

SD
ni(x, y)(η3 − xη5 + yη4)dxdy−

s
SP

ni(x, y)ζ(x, y)dxdy +
Nout
∑

j=1
ni
(
xj, yj

)
qout

j −
Nin
∑

j=1
ni
(
xj, yj

)
qin

j

) (A10)

where Nout, Nin are the number of air leakage holes and/or gaps and the number of air charge inflow
holes, respectively; qout

j , qin
j are air leakage and inflow rate through the j-th hole (gap), respectively;(

xj, yj
)

is the centroid of the j-th hole (gap); and ζ(x, y) are the unsteady waves on the interface, which
can be decomposed into:

ζ(x, y) = ζI(x, y) + ζD(x, y) + ζR(x, y) + ζP(x, y) = ζI(x, y) + ∑6+NP
j=0 ηjζ j(x, y)

ζI(x, y) = η0e−ik0(x cos θ+y sin θ)

ζD(x, y) = η0ζ0(x, y) = − η0
g

(
iω−U ∂

∂x

)
φ0(x, y, 0)

ζR(x, y) = ∑6
j=2 ηjζ j(x, y)− 1

g

6
∑

j=2
ηj

(
iω−U ∂

∂x

)
φj(x, y, 0)

ζP(x, y) = ∑6+NP
j=7 ηjζ j(x, y) =

6+NP
∑

j=7
ηj

(
nj(x, y)− 1

g

(
iω−U ∂

∂x

)
φj(x, y, 0)

)
(A11)

References

1. Connell, S.B.; Milewski, M.W.; Goldman, B.; Kring, C.D. Single and multi-body surface effect ship simulation
for T-Craft design evaluation. In Proceedings of the 11th International Conference on Fast Sea Transportation
(FAST 2011), Honolulu, HI, USA, 26–29 September 2011; pp. 130–137.

2. García-Espinosa, J.; Capua, D.D.; Serván-Camas, B.; Ubach, P.A.; Oñate, E. A FEM fluid–structure interaction
algorithm for analysis of the seal dynamics of a surface-effect ship. Comput. Methods Appl. Mech. Eng. 2015,
295, 290–304. [CrossRef]

3. Bhushan, S.; Mousaviraad, M.; Stern, F. Assessment of URANS surface effect ship models for calm water
and head waves. Appl. Ocean Res. 2017, 67, 248–262. [CrossRef]

http://dx.doi.org/10.1016/j.cma.2015.07.010
http://dx.doi.org/10.1016/j.apor.2017.07.013


Water 2018, 10, 232 14 of 14

4. Sørensen, A.J.; Egeland, O. Design of ride control system for surface effect ships using dissipative control.
Auromadca 1995, 31, 183–199. [CrossRef]

5. Bandas, J.C.; Falzarano, J.M. A numerical investigation into the linear seakeeping ability of the T-Craft.
In Proceedings of the 11th International Conference on Fast Sea Transportation (FAST 2011), Honolulu, HI,
USA, 26–29 September 2011; pp. 99–105.

6. Guo, Z.Q.; Ma, Q.W.; Yang, J.L. A seakeeping analysis method for a high-speed partial air cushion supported
catamaran (PACSCAT). Ocean Eng. 2015, 110, 357–376. [CrossRef]

7. Xia, Z.; Shi, Y.; Cai, Q.; Wan, M.; Chen, S. Multiple states in turbulent plane Couette flow with spanwise
rotation. J. Fluid Mech. 2018, 837, 477–490. [CrossRef]

8. Wang, J.; Ma, Q.W.; Yan, S.; Chabchoub, A. Breather rogue waves in random seas. Phys. Rev. Appl. 2018, 9.
[CrossRef]

9. Guo, Z.Q.; Ma, Q.W.; Hu, X.F. Seakeeping analysis of a wave-piercing catamaran using URANS-based
method. Int. J. Offshore Polar 2016, 26, 48–56. [CrossRef]

10. Shin, D.M.; Cho, Y. Diffraction of waves past two vertical thin plates on the free surface: A comparison of
theory and experiment. Ocean Eng. 2016, 124, 274–286. [CrossRef]

11. Chen, X.B.; Duan, W.Y. Multi-domain boundary element method with dissipation. J. Mar. Sci. Appl. 2012, 11,
18–23. [CrossRef]

12. Faltinsen, O.; Zhao, R. Numerical predictions of ship motions at high forward speed. Philos. Trans. R. Soc.
Lond. A 1991, 334, 241–252. [CrossRef]

13. Ma, S.; Duan, W.Y.; Song, J.Z. An efficient numerical method for solving “2.5D” ship seakeeping problem.
Ocean Eng. 2005, 32, 937–960. [CrossRef]

14. Guo, Z.Q.; Ma, Q.W.; Qin, H.D. A time-domain Green’s function for interaction between water waves and
floating bodies with viscous dissipation effects. Water 2018, 10, 72. [CrossRef]

15. Lee, C.H.; Newman, J.N. An extended boundary integral equation for structures with oscillatory free-surface
pressure. Int. J. Offshore Polar 2015, 1, 347–353. [CrossRef]

16. Bouscasse, B.; Broglia, R.; Stern, F. Experimental investigation of a fast catamaran in head waves. Ocean Eng.
2013, 72, 318–330. [CrossRef]

17. Broglia, R.; Jacob, B.; Zaghi, S.; Stern, F.; Olivieri, A. Experimental investigation of interference effects for
high-speed catamarans. Ocean Eng. 2014, 76, 75–85. [CrossRef]

18. Van’t Veer, R. Experimental Results of Motions and Structural Loads on the 372 Catamaran Model in
Head and Oblique Waves; Technical Report, Report No. 1130; Delft University of Technology: Delft,
The Netherlands, 1998.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0005-1098(94)00090-6
http://dx.doi.org/10.1016/j.oceaneng.2015.10.031
http://dx.doi.org/10.1017/jfm.2017.869
http://dx.doi.org/10.1103/PhysRevApplied.9.014016
http://dx.doi.org/10.17736/ijope.2016.mk38
http://dx.doi.org/10.1016/j.oceaneng.2016.07.013
http://dx.doi.org/10.1007/s11804-012-1101-x
http://dx.doi.org/10.1098/rsta.1991.0011
http://dx.doi.org/10.1016/j.oceaneng.2004.10.018
http://dx.doi.org/10.3390/w10010072
http://dx.doi.org/10.17736/ijope.2016.mk44
http://dx.doi.org/10.1016/j.oceaneng.2013.07.012
http://dx.doi.org/10.1016/j.oceaneng.2013.12.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Models of the Multi-Domain 2.5D Method 
	Partition of Water Domain and Boundary Value Problem 
	Multi-Domain 2.5D Method 

	Application of the Multi-Domain 2.5D Method for Multi Water Level Hydrodynamics 
	Validation of the Multi-Domain 2.5D Method 
	Multi-Domain 2.5D Method for the Hydrodynamics of an SES 

	Conclusions 
	
	
	References

