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Rogue waves are widely recognized as great threats to human oceanic activities. The 
effectiveness of using the Peregrine breather to model rogue waves has been successfully 
demonstrated in both numerical and physical wave tank. Additionally, its persistence in random 
seas has been confirmed in some cases, so that it can also be employed to model rogue waves in 
random seas. However, based on the results obtained by using the fully nonlinear numerical 
simulations in this paper, it is reported that the persistence of the Peregrine breather will be 
affected by the nonlinearities of the random seas, i.e., the spectral bandwidth and the 
background wave steepness. The investigation on the effects of the two parameters indicates 
that the Peregrine breather cannot persist thus may not be employed to model rogue waves in 
random seas in some cases. This paper provides knowledge about how to select background 
wave parameters, in order to model rogue waves by using the Peregrine breather, which can 
help saving significant time for designing the experiments.   

 
 
 
The rogue waves are defined as waves higher than two 

times the significant wave height (mean value of the 
largest one third of the wave heights), and/or crest height 
higher than 1.2 significant wave height [1]. Modern 
explanations of rogue waves are reviewed and 
summarized in [1, 2]. One of the most possible reasons for 
rogue waves is due to the modulation instability, based on 
which the ‘breather’ solutions to the Nonlinear 
Schrodinger Equation (short as NLSE) are used to model 
such rogue waves. Early analytical studies on the theory 
of the breather type solution are well documented and can 
be found in [3-8]. 

Generally, a breather may be called a soliton or the 
superposition of a classical envelope soliton of the NLSE 
with a plane wave [1]. The Peregrine breather (short as 
PB) is one of that which admits a large wave localized in 
both space and time [4]. This feature is very similar with 
the rogue waves observed in the real ocean, which ‘appear 
from nowhere and disappear without a trace’ [9]. Thus, it 
recently becomes a suitable prototype to be employed to 
model rogue waves in both laboratory and numerical 
simulations.  

For example, Shemer and Alperovich [10] successfully 
generated a rogue wave modelled by using PB in a 
physical wave tank and satisfactory agreement was 
obtained by comparing the results with that by using 
numerical simulation based on the NLSE and Dysthe 
equation. Chabchoub, et al. [11] also reproduced a rogue 
wave based on the PB in laboratory and found the results 
agreed very well with the theoretical solution. Later, 
Chabchoub, et al. [12] successfully simulated a super 
rogue wave modelled by the PB with amplitude amplified 

by 5 times of its initial value in a physical wave tank. In 
addition, Akhmediev, et al. [13] presented the solution 
describing the spectrum of the PB and pointed out that a 
triangular spectrum exists at every stage of its 
development, which suggested the potentially extremely 
important prospect of identifying spectral signatures of 
the early emergence of rogue waves resulting from 
nonlinear wave shaping.  

Nevertheless, in reality, the rogue waves are always 
observed to be accompanied by random background 
waves (short as RBW). Thus, the effectiveness of the PB 
for modeling rogue waves in random seas depends on 
whether it can persist in such situations. More recently, it 
is confirmed in both laboratory and by weakly nonlinear 
numerical simulations that the PB is able to persist in 
random seas [14], which means that the PB can also be 
adopted for modeling rogue waves in irregular seas. 
Subsequently, Klein, et al. [15] successfully reproduced 
the New Year Wave in laboratory by embedding the PB 
into RBW, and good agreement was achieved.  

Despite the fact that the PB can persist in random seas 
in some cases, one should note that the solution of PB is 
based on the NLSE, which is an equation up to the third 
order in wave steepness. That means the PB solution 
becomes less accurate if it is applied to model large 
steepness waves. As pointed out by Chabchoub, et al. [12], 
the measured wave profiles in laboratory can be related 
well to the theoretical solution only for waves with initial 
steepness (peak wave number times amplitude) less than 
0.06, otherwise the theoretical solution underestimates 
the maximum crest height measured in laboratory. It 
implies that stronger nonlinearities due to increasing 



 

 

wave steepness can affect the persistence of the PB. 
Heuristically, when the PB is embedded in RBW, the 
nonlinearities of the superimposed sea, which also 
depend on the spectral bandwidth and wave steepness of 
the background waves, can affect the persistence of the PB. 
It implies that in some cases where the PB cannot persist, 
the rogue waves in random seas cannot be modelled by 
using the PB. However, the question whether the 
persistence of the PB will be affected by the spectral 
bandwidth and wave steepness of the background waves 
has not been confirmed so far based on existing literatures. 
So that, currently, there is no evidence to support that 
whether the rogue waves in random seas can be 
successfully generated by using the PB, for a specific the 
bandwidth and wave steepness. Therefore, we will try to 
answer this question in this study by carrying out the fully 
nonlinear numerical simulations. By doing so, the effects 
of the spectral bandwidth and wave steepness of the 
background waves on the persistence of the PB will be 
explored, so that whether the PB can be used for such 
purpose is justified.  

 
TABLE I Dimensionless variables 

Variables Description 
𝜂 Surface elevation multiplied by 𝑘0 
𝑿 Horizontal space coordinate multiplied by 

𝑘0 
ℎ Water depth multiplied by 𝑘0 
𝑇 Time variable multiplied by 𝜔0 
𝜀 Wave amplitude of the uniform part of PB 

multiplied by 𝑘0 
𝐶𝑔 Wave group speed multiplied by 𝑘0/𝜔0 

𝐻𝑠 , 𝐻𝑠0 Significant wave height of background 
waves and superimposed waves multiplied 
by 𝑘0  

𝑘𝑛 Wave number of an individual component 
multiplied by 𝑘0

−1 
𝑎𝑛 Wave amplitude of an individual 

component multiplied by 𝑘0 
𝜔𝑛 Wave circular frequency of an individual 

component multiplied by 𝜔0
−1 

𝐿0 Peak wave length multiplied by 𝑘0 
𝑇0 Peak period multiplied by 𝜔0 

𝜙, �̃� Velocity potential and that at free surface 

multiplied by √𝑘0
3/𝑔 

𝑲,𝐾 Wave number coordinate and its module 
multiplied by 𝑘0

−1  
𝛺 Wave circular frequency coordinate 

multiplied by 𝜔0
−1  

 
The fully nonlinear Enhanced Spectral Boundary 

Integral (short as ESBI) method is employed, which is well 
documented in [16-20] and details are omitted here. 
However, the main formulations are briefed for 
completeness. For convenience, all the variables involved 

are dimensionless, e.g., the length variables are multiplied 
by peak wave number 𝑘0, and the time variables by peak 

circular frequency 𝜔0 , where 𝜔0 = √𝑔𝑘0tanh⁡(𝑘0ℎ′) , 𝑔 
and ℎ′ are the gravitational acceleration and water depth, 
respectively. More specifically, all the dimensionless 
variables used in this paper are listed in TABLE I. Note that 
in this study, the peak wave number of the PB is made 
identical to that of the RBW.  

The prognostic equation is given by 

𝜕𝑴

𝜕𝑇
+ 𝛬𝑴+ 𝑷 = 𝑵 (1) 

where 
 

𝑴 = (
𝐾𝐹{𝜂}

𝐾Ω𝐹{�̃�}
),⁡𝛬 = [

0 −Ω
Ω 0

], 𝑷 = (
𝐾𝐹{𝜐𝐷}

𝐾Ω𝐹{𝑝𝐺 + 𝑝𝐷}
) 

𝑵 = (
𝐾(𝐹{𝑉} − 𝐾𝑡𝑎𝑛ℎ𝐾ℎ𝐹{�̃�})

𝐾Ω𝐹 {
1

2
[
(𝑉+∇𝜂∙∇�̃�)

2

1+|∇𝜂|2
− |∇�̃�|

2
]}
)        (2) 

 
∇= 𝜕/𝜕𝑿 = 𝜕/𝜕𝑋⁡𝒊 + 𝜕/𝜕𝑌⁡𝒋  is the horizontal gradient 

operator, 𝑉 = 𝜕𝜙/𝜕𝑛√1 + |∇𝜂|2 is the vertical velocity, 𝑝𝐺  
the pressure for the pneumatic wave maker, 𝑝𝐷 and 𝜐𝐷 the 
dynamic and mass absorbing term respectively, 𝑲 = (𝜅, 𝜆) 
is the wave number and⁡𝐾 = |𝑲|. All the aforementioned 
variables are non-dimensionlised as shown in TABLE I. 
The Fourier transform 𝐹{⁡}  and the inverse transform 
𝐹−1{⁡} are defined as 

�̂�(𝑲, 𝑇) = 𝐹{𝜂} = ∫ 𝜂(𝑿, 𝑇)𝑒−𝑖𝑲∙𝑿𝑑𝑿
∞

−∞

 (3) 

𝜂(𝑿, 𝑇) = 𝐹−1{�̂�} =
1

4𝜋2
∫ �̂�(𝑲, 𝑇)𝑒𝑖𝑲∙𝑿𝑑𝑲

∞

−∞

 (4) 

where the Fast Fourier Transform (short as FFT) is 
adopted to perform the Fourier and inverse transform 
numerically. 

The solution to Eq.(1) is given as 

𝑴(𝑇) = 𝑒−𝛬(𝑇−𝑇0) [𝑴(𝑇0) + ∫ 𝑒𝛬(𝑇−𝑇0)(𝑵 − 𝑷)𝑑𝑇
𝑇

𝑇0
]     (5) 

where 

𝑒𝛬∆𝑇 = [
cosΩ∆𝑇 − sinΩ∆𝑇
sinΩ∆𝑇 cosΩ∆𝑇

] (6) 

In addition, the solution to the vertical velocity can be 
derived with the help of the boundary integral equation, 
which is given as 𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4  involving the 
convolution and integration parts. While 𝑉3 and 𝑉4 can be 
further reformulated as [20] 

𝑉3 ⁡= 𝑉3
(1)
⏟
4𝑡ℎ⁡

+ 𝑉3
(2)
⏟
6𝑡ℎ

+ 𝑉3,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 (7) 

𝑉4 = 𝑉4
(1)
⏟
3𝑟𝑑

+ 𝑉4
(2)
⏟
5𝑡ℎ

+ 𝑉4
(3)
⏟
7𝑡ℎ

+ 𝑉4,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 (8) 



 

 

and numerical techniques for improving its computational 
efficiency are proposed in [20], where more details about 
the ESBI model can be found. Waves can be generated and 
absorbed by specifying 𝑝𝐺  , 𝑝𝐷  and 𝜐𝐷  in Eq. (2), 
formulations of which can be found in [18] so are omitted 
here. The so-called the pneumatic wave maker requires 
calculating the pressure  𝑝𝐺   in Eq. (2) at each time step, 
which is a function of X and T decaying exponentially from 
its centre in space. To do that, one needs the information 
of frequency, amplitude and phase of each wave 
component. 

To simulate waves incorporating the PB, the analytical 
expression of the PB is used, which is given by [11], i.e.,  

𝐴(𝜉, 𝜏) = 𝐴1 + 𝐴2 (9a) 

where  

𝐴1 = 𝜀 exp (−
𝑖𝜀2

2
𝜏)  (9b) 

is called the carrier wave and is the uniform part, and 

𝐴2 = −𝜀 exp (−
𝑖𝜀2

2
𝜏) {

4(1−𝑖𝜀2𝜏)

1+[2√2𝜀(𝜉−𝐶𝑔𝜏)]
2
+𝜀4𝜏2

} (9c) 

is a small bulge when 𝜉 and 𝜏 are sufficiently large, which 
can develop into a large wave when both 𝜉 and 𝜏 are equal 
to 0, 𝜀 is the wave steepness of the uniform part of the PB, 
𝐶𝑔 = 0.5  is the group speed, 𝜉 = 𝑋 − 𝑋𝑓 , 𝜏 = 𝑇 − 𝑇𝑓 , 𝑋𝑓 

and 𝑇𝑓  are the specified focusing location and time, 

respectively. The free surface elevation can be obtained by 
using 

𝜂𝑃𝐵 = 𝑅𝑒𝑎𝑙{𝐴𝑒𝑥𝑝[𝑖(𝜉 − 𝜏)]} (10) 

Meanwhile, one should note that to model rogue waves 
in random seas for task related simulations, several 
approaches with specific purposes have been developed. 
Some studies target at generating rogue waves of 
specified height and surface slope, e.g., Constrained 
NewWave [21], some splitting the total energy for the 
random and focusing part, e.g., method by Kriebel & Alsina 
[22], while some maintain the spectral shape of the 
superimposed sea, e.g., method by Wang, et al. [23]. In this 
study, to embed the PB in random waves while 
investigating its effects on the persistence of the PB, the 
spectral shape of the RBW is preserved, thus the following 
equation is employed 

𝜂 = 𝜂𝑃𝐵 + 𝜂𝑅 (11) 

where 𝜂𝑅 denotes the RBW, 

𝜂𝑅 = ∑𝑎𝑛 cos(𝑘𝑛𝑋 − 𝜔𝑛𝑇 + 𝜑𝑛)

𝑁

𝑛=1

 (12a) 

the amplitude 

𝑎𝑛 = √2𝑆(𝜔𝑛)Δ𝜔 (12b) 

and 𝜑𝑛  is random number distributed in [0,2𝜋) , 𝑘𝑛  and 
𝜔𝑛  are the wave number and frequency of the nth 
component, respectively, N is the total number of the 
wave components. In this study, we use the JONSWAP 
spectrum, which is recommended for deep seas by DNV 
standard [24] and its dimensionless form is given by [25] 

𝑆(𝜔) =
𝛼𝐻𝑠

2

𝜔5
𝑒𝑥𝑝 [−

5

4
(
1

𝜔
)
4

] 𝛾𝑒𝑥𝑝[−(𝜔−1)
2/(2ς2)] (13) 

where 𝛼 = 0.062(1.094 − 0.019𝑙𝑛γ)/[0.23 + 0.0336γ −
0.185/(1.9 + γ)] , 𝐻𝑠  is the significant wave height 
representing the background wave steepness, γ ∈ [1,9] is 
the peak enhancement factor representing the spectral 
bandwidth, and ς = 0.07 if 𝜔 ≤ 1, otherwise ς = 0.09. It 
should be noted that the spectral bandwidth becomes 
narrower when γ increases.  

The method by using Eqs. (12) for generating random 
waves is called the random phase approach, the limitation 
of which has been discussed by Tucker, et al. [26], who 
suggested to use the random amplitude approach. 
However, according to Elgar, et al. [27], if the total number 
of spectral component is larger than 1000, no significant 
difference was found in the statistics produced by using 
these two approaches. In this study, we cut-off the 
spectrum at 8 times the peak frequency and let Δ𝜔 =
1/130, which means a total number of 1040 components 
are used. It implies random phase approach can be 
employed in this study, which is equivalent to the random 
amplitude approach.  
 

 
FIG. 1 Configuration of the numerical wave tank 

 
However, it is not straightforward to use Eq.(11) to 

derive 𝑝𝐺  for generating waves in the numerical wave 
tank. To deal with that, FFT is applied to Eq. (10). Then the 
resulted information of frequency, amplitude and phase, 
in addition to that of the RBW in Eq. (11) will be used to 
formulate  𝑝𝐺  in Eq. (2), of which details can be found in 
[18] and are omitted here.  

Before further investigations are carried out, the ESBI 
method is validated for relevant case. To do that, the 
simulation of the PB in laboratory [11] is reproduced here 
numerically, where 𝑘0 = 11.63𝑚−1  and other 
dimensionless variables are ℎ = 11.63, 𝜀 = 0.1047,⁡𝑋𝑓 =

11𝐿0, 𝑇𝑓 = 68𝑇0. The domain covers 64 peak wave lengths 

and is resolved into 64 points per peak wave length, which 
is sufficiently accurate according to [20].  The pneumatic 
wave maker is placed at 16𝐿0  from the left boundary of 
the tank, where waves are generated and propagated 
towards both ends, then absorbed in the damping zone to 



 

 

avoid reflection, as shown in FIG. 1. Note that only the part 
of the tank of 48𝐿0 in length on the right is effectively used 
for analysis. The free surface elevation at the focusing 
location obtained by using the ESBI method, in 
comparison with the laboratory and theoretical results, 
are shown in FIG. 2(the x-axis is shifted to make 𝑇𝑓 = 0), 

where the numerical result agrees very well with the 
laboratory data and the error of the maximum crest height 
is only 0.5%, which indicates that the ESBI is very accurate 
and can be used for the purpose of this study.  

 
FIG. 2 Free surface elevation of Peregrine breather 

 
TABLE II Choices of parameters 

Parameters Values 
𝐻𝑠/𝜀 0.333, 0.400, 0.533, 0.573, 0.600, 0.667, 

0.733, 0.800, 0.867, 1.000, 1.333, 1.667, 
2.000 

γ 1, 3, 5, 7, 9 

 
Since the ESBI is validated, the effects of RBW on the 

persistence of PB in irregular seas can now be explored. 
The configuration of the numerical wave tanks is the same 
as that in FIG.1. The duration of the simulation lasts for 
130 peak periods, which corresponds to 22 minutes’ sea 
state considering a typical period 10s in the North Sea and 
is sufficient to achieve the statistical stationary condition 
[24].    

In addition, the range of the parameters involved need 
to be properly selected, i.e., 𝜀,  𝑋𝑓 and 𝑇𝑓  in Eq. (9), and 𝐻𝑠  

and γ  in Eq. (13). According to [10], the expected PB 
amplification factor of 3 renders the initial 𝜀 no more than 
0.1, otherwise wave breaking occurs, so that we fix the 
value for 𝜀 = 0.0873. Meanwhile, due to the limited tank 
length, 𝑋𝑓  and 𝑇𝑓 cannot be arbitrarily large, thus 𝑋𝑓 =

18𝐿0 and 𝑇𝑓 = 60𝑇0 are chosen in this study. Now, only 𝐻𝑠  

and γ  are adjustable. For the range of γ , several values 
within 1~9 are selected, which considers most of the 
cases of the spectral bandwidth in reality [25]. While 
instead of determining the range of 𝐻𝑠 , we use 𝐻𝑠/𝜀  to 
represent the significance of the RBW steepness against 
that of the PB. Based on pre-tests, it is found that for 
𝐻𝑠/𝜀 < 0.333 , the RBW are nearly linear and have 
neglectable effects on the PB; While for 𝐻𝑠/𝜀 > 2 , PB 
becomes less significant and cannot produce a rogue wave 
in most of the cases. Based on that, the range of 𝐻𝑠/𝜀 and 

γ  are summarized in TABLE II, which are then used to 
perform the fully nonlinear numerical simulations. 

As aforementioned, the effectiveness of the PB for 
modeling the rogue waves in random seas depends on 
whether it can persist in the background waves. Thus, to 
associate the PB with rogue waves and quantify the 
persistence of the PB in random waves, the Abnormality 
Index is employed for judging whether the rogue waves 
occur or not due to the PB [12], i.e,  

𝐼𝐴 = 𝐻𝑚𝑎𝑥/𝐻𝑠0 (14) 

where 𝐻𝑚𝑎𝑥   is the maximum wave height and 𝐻𝑠0  is the 
significant wave height of the superimposed sea. 
Generally, a wave with 𝐼𝐴 ≥ 2 can be identified as rogue 
wave. Next, the values of 𝐼𝐴 in relationship with 𝐻𝑠/𝜀 and 
γ  are investigated through numerical simulations. To 
obtain the value of 𝐼𝐴 , the free surface time history is 
extracted at the location where the maximum surface 
elevation appears. For example, the free surface spatial 
distribution at each grid point is written to files at every 
time step, which is later used for post-process to find the 
spatial distribution of the maximum crest height, as 
shown in FIG. 3 (a). Then the location of the maximum 
crest height is obtained, i.e., the dash line, at which point 
the free surface time history is extracted at every time 
step from the output file, for example as shown in FIG. 3 
(b). Next, the up-crossing and down-crossing methods are 
adopted to estimate the height of each individual wave. 
Then the maximum wave height 𝐻𝑚𝑎𝑥  and the significant 
wave height 𝐻𝑠0 can be obtained.  

However, based on some pre-tests, it is found that for a 
case with fixed 𝐻𝑠/𝜀 and 𝛾, the value of 𝐼𝐴 changes when 
using different random phases in Eq.(12a). Thus, before 
further analysis, the investigation on the effects of random 
phases are performed. Generally, for a single case with 
specific 𝐻𝑠/𝜀 and 𝛾, the average and standard deviation of 
𝐼𝐴  will become stabilized with the increasing number of 
realizations (each realization is a simulation by using a 
unique random number sequence as the random phases). 
To find out how many realizations are required to obtain 
reliable statistics of 𝐼𝐴, two cases by using 𝐻𝑠/𝜀 = 2&𝛾 =
1  and 𝐻𝑠/𝜀 = 2&𝛾 = 9  are simulated, and the errors of 
the average and standard deviation of 𝐼𝐴  are estimated 
through 

𝐸𝑟𝑟𝑎𝑣𝑔(𝑛) =
|𝑎𝑣𝑔(𝐼𝐴)

𝑛−𝑎𝑣𝑔(𝐼𝐴)
𝑛+1|

𝑎𝑣𝑔(𝐼𝐴)
𝑛+1 × 100%  (15a) 

𝐸𝑟𝑟𝑠𝑡𝑑(𝑛) =
|𝑠𝑡𝑑(𝐼𝐴)

𝑛−𝑠𝑡𝑑(𝐼𝐴)
𝑛+1|

𝑠𝑡𝑑(𝐼𝐴)
𝑛+1 × 100%  (15b) 

where 𝑎𝑣𝑔(𝐼𝐴)
𝑛  and 𝑠𝑡𝑑(𝐼𝐴)

𝑛  denote the average value 
and standard deviation of 𝐼𝐴  based on 𝑛  realizations, 
respectively. The results are presented in FIG. 4, which 
shows that 𝐸𝑟𝑟𝑎𝑣𝑔   and 𝐸𝑟𝑟𝑠𝑡𝑑   drop below 4% after 14 

realizations for both the cases, while do not further reduce 
although number of realizations increases. It indicates 



 

 

that number of realizations larger than 14 is sufficient to 
give reliable statistics of 𝐼𝐴 , whereas we use 20 in the 
following analysis. That means for a single case with 
specific 𝐻𝑠/𝜀  and 𝛾 , the simulation is repeated 20 times 
and each is performed by using a unique random number 
sequence as the phases. Then 𝐼𝐴  is calculated for each 
realization, which is used for estimate 𝑎𝑣𝑔(𝐼𝐴)  and 
𝑠𝑡𝑑(𝐼𝐴).  
 

 
(a) 

 
(b) 
FIG. 3 Free surface spatial distribution (a) and time 
history (b) for the case 𝐻𝑠/𝜀 = 1.333 and γ = 1 
 

 
FIG. 4 𝐸𝑟𝑟𝑎𝑣𝑔  and 𝐸𝑟𝑟𝑠𝑡𝑑 against number of realizations. 

 
By doing so, the values of 𝑎𝑣𝑔(𝐼𝐴) ± 𝑠𝑡𝑑(𝐼𝐴)  are 

obtained, e.g., that of the case 𝐻𝑠/𝜀 = 1 is shown in FIG. 5. 
It is found that 𝑎𝑣𝑔(𝐼𝐴) increases and the corresponding 
standard deviation 𝑠𝑡𝑑(𝐼𝐴)  reduces when the spectrum 
becomes wider (γ decreases). If we now define the lower 
and upper limits 

𝐼𝐴
− = 𝑎𝑣𝑔(𝐼𝐴) − 𝑠𝑡𝑑(𝐼𝐴) (16a) 

𝐼𝐴
+ = 𝑎𝑣𝑔(𝐼𝐴) + 𝑠𝑡𝑑(𝐼𝐴) (16b) 

then it is understandable that the values of 𝐼𝐴  are most 
likely to be in the range [𝐼𝐴

−, 𝐼𝐴
+]. To judge whether the PB 

can be used to model rogue waves, the minimum value, i.e., 
𝐼𝐴
− , needs to be examined. If 𝐼𝐴

− ≥ 2, it means the whole 
range [𝐼𝐴

−, 𝐼𝐴
+] ≥ 2 , so that the rogue wave criterion is 

satisfied and the PB can be employed. Otherwise, partial 
or the whole range of [𝐼𝐴

−, 𝐼𝐴
+] is less than 2, thus rogue 

wave criterion cannot always be met so that the PB cannot 
be used.  
 

 
FIG. 5 𝑎𝑣𝑔(𝐼𝐴) ± 𝑠𝑡𝑑(𝐼𝐴) against γ 
 

 
FIG. 6 𝑎𝑣𝑔(𝐼𝐴) against γ and 𝑎𝑣𝑔(𝐼𝐴) − 𝑠𝑡𝑑(𝐼𝐴) against γ 
 

 
FIG. 7 𝑀𝑎𝑥{𝐻𝑠/𝜀} against γ  

 
To further illustrate that, values of 𝐼𝐴

− corresponding to 
some representative cases are shown in FIG. 6, in which it 
is found that 𝐼𝐴

−  increases as the bandwidth becomes 
larger when 𝐻𝑠/𝜀  is fixed. While it reduces when 𝐻𝑠/𝜀 
increases for fixed bandwidth parameter γ. Based on that, 
the maximum value of 𝐻𝑠/𝜀  is introduced as 𝑀𝑎𝑥{𝐻𝑠/𝜀} 
for each γ , less than which the rogue wave can be 
modelled by using the PB. The value of 𝑀𝑎𝑥{𝐻𝑠/𝜀} can be 
roughly estimated from FIG. 6 by extracting the 
intersection points between each curve and the line 𝐼𝐴 =
2. By doing so, the values of 𝑀𝑎𝑥{𝐻𝑠/𝜀} can be obtained in 

gauge 



 

 

terms of γ as shown in FIG. 7, where it is seen that the 
magnitude of 𝑀𝑎𝑥{𝐻𝑠/𝜀}  increases as the spectrum 
becomes wider ( γ  decreases). Connecting these points 
gives a curve that divides the area into two zones. It 
implies that a case with value 𝐻𝑠/𝜀 ≤ 𝑀𝑎𝑥{𝐻𝑠/𝜀} 
indicates that the PB can persist as [𝐼𝐴

−, 𝐼𝐴
+] ≥ 2, so that 

the PB can be employed to model rogue waves in such 
cases. Otherwise, if 𝐻𝑠/𝜀 > 𝑀𝑎𝑥{𝐻𝑠/𝜀}, then one cannot 
justify whether PB can persist as the range [𝐼𝐴

−, 𝐼𝐴
+]  is 

partially or wholly less than 2. Therefore, the PB cannot 
be employed to model the rogue wave in such cases.  

In conclusion, the persistence of the Peregrine breather 
is affected by the spectral bandwidth and the ratio of the 
steepness of the random background waves over that of 
the Peregrine breather (𝐻𝑠/𝜀). To quantify the persistence 
of the Peregrine breather and associate that with rogue 
waves, the Abnormality Index ( 𝐼𝐴 ) for identifying the 
occurrence of rogue waves is employed. Then numerical 
simulations are performed and the statistics of 𝐼𝐴  are 
obtained, i.e., the average ( 𝑎𝑣𝑔(𝐼𝐴) ) and standard 
deviation (𝑠𝑡𝑑(𝐼𝐴)). By examining the lower limit of 𝐼𝐴, i.e.  
𝐼𝐴
−  in Eq. (16a), the relationship between the maximum 

ratio 𝑀𝑎𝑥{𝐻𝑠/𝜀} and bandwidth parameter γ is obtained, 
as shown in FIG. 7, in which it is found that 𝑀𝑎𝑥{𝐻𝑠/𝜀} 
becomes larger when bandwidth increases. Based on that, 
one can conclude that, the Peregrine breather can be used 
for modelling rogue waves in random seas if 𝐻𝑠/𝜀 ≤
𝑀𝑎𝑥{𝐻𝑠/𝜀}; Otherwise one cannot justify whether rogue 
waves occur so that the Peregrine breather cannot be 
employed. This study provides a useful reference for 
designing experiments on modeling the rogue waves or 
rogue wave-structure interactions, by using the Peregrine 
breather. 

However, this study has fixed focusing time and location 
and total simulation time, while it has specified a fixed 
wave steepness of the Peregrine breather and assumes 
the peak frequency of the random waves is the same with 
that of the Peregrine breather. Besides, only JONSWAP 
spectrum is considered in this paper, thus conclusions 
may change if these conditions are different, and further 
investigations are needed to explore such effects 
aforementioned. In addition, the conclusion only applies 
to two dimensional cases, whereas spreading seas in three 
dimensional situations will be studied in the future.    
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