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ARSTRACT.

The development of broadband pulsed ultrasonic Rayleigh wave
nethods in nondestructive testing’has been greatly hindered by the
lack of an cnalytical description of the propagation and scattering
of the waves., '

The present study presents a review of the previous work on
Rayleigh waves in all the fields where they are of interest, in
geophysics, seismology, civil engineering, nondestructive testing
end high frequency electronics.

A series of mathematical models, which use finite difference
approximations, are then presented and used to provide both
visual and quantative numerical descriptions of the propagation,
interaction and scattering of Rayleigh waves with a range of single=
medium configurations, the half, quarter and three-quarter spaces,
up and down stéps, end open slots, and the two-media configurations
of welded quarter spaces and the filled slot.,

The techniques of finite difference modelling have not
previously been applied to Rayléigh wave nondestructive testing
problems and in additicen to this new application of the basic
technique,extensions to the range of nodal formulations are made,
including the presentation of a new second order approximation for
the free surface/interface node for welded quarter spaces.

The results obtained with the numerical models are tested by
8 series of practical experiments on aluminium and steel test blocks.
The model results were found to be in agreement with those given
by the practical experiments and with those of previcus workers
who have used numerical, analytical, experimental and visualisation
techniques, where they exist,

Following'from the analysis of the results of the nuwerical
.and experimental work in this study, the author proposes a
development in experimental methods for the charecterisation of
surface features using the édvantageg of new transducers,

Suggestions are made for extending and'improving the basilc
finite difference methods ana for the range of configurations which
could be studied.
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1IST OF SYMBOLS.

Vc Compressional wave velocity.

VB Shear wave velocity.

Vr Rayleigh wave velocity.

U Displacement vector.

U1,U2 components of displacement vector, where,

Ui(i,j,k) is the horizontal displacement
Ué(i,j,k) is the vertical displacement

i is the X1 index

h! is the X, index

2
k is the t (time) index
X1, x2 are spatial coordinates with increments d and h respectively.
t is the time coordinate with increment s.

-’z- is the Cartesian stress tensor, components ’.1“”,1‘12,T21 & T22.
xj’/‘{j are lame constants :
density, where J defines the media in two media problcms.

is the shear modulus.

is Poisson's ratio, .

is the instantaneous power flow vector per unit arec,

a matrix with components defined when used.

wavelength,

is a wavenumber where K = 27*/§L

is frequency where f «UJ/21T,

xR IMIMq @5

other parameters ere defined where they are used,

=xix- .
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1., INTRODUCTION,

Over recent years there has been an incréasing interest in
the initial testing and in-service inspection of many engineering
products, particularly in relation to such items as aircraft,
oilrigs, pressure vessels and pipelines, (Thompson 1976, Lumb 1977)

For this purpose a wide range of nondestructive testiug
techniques has teen developed, for both defect location and sizing.
Thegse have included the use of X-rays, electromagnetic induction
and dye penetration, with the addition; in recent yesrs, of the
inecreasingly important methods which uge ultrasonic waves. There
ig a wide ranée of methods of ultrasonic testing which use the
different types of elastic waves and display the resulting
information in a varicty of ways. (Curtis 1975)

: In all nondestructive testing much effort is concentrated on
the measurement of component thickness and crack depth, arnd this
is particularly so in ultrasonic tesfing. Tho present study
congiders the field of crack depth determinaticn using ultrasonie
Rayleigh waves, and concentrates particularly on the problems of
providing en understanding of the interaction and scattering of
_pulsad Rayleigh surface waves at various surface features, The aim
of the study is to provide sufficient understanding of the
interaction and scattering ¢f Rayleigh waves to enable the
characterisation of surface cracks in metals. This information on
defect dimensions, when linked with fracture mechanicas, should
enable better predictions to bs made for critical defect size,

Surface waves, including Reyleigh waves, occur not only'in
metals undergoing nondestructive testing; they arc a class of
waves of interest to a wide range of workers from a group of very
diverse iields. It iz found that the interaction of surface waves,
end in particuler the interaction of Rayleigh waves with surfece
features, is & subject of study in geophysies, seismology, civil
engineering, and high frequency electronic engineering, in

&ddition %o ths nondestructive tesiing interest, with the range
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in wavelengths going from submillimetre to many tens of kilometres
and targets ranging from subwillimetre cracks in crystals to
goophysical features such as rift valleys and continental
boundaries.

Behind all the work 1n these different fields of study is a
common mathematics, which is a subject for study in its own right,.
This considers the equaticns which describe the propagetion,
interaction and scattering of elastic waves,

Although the motivation for the present study has come from
the field of nondestructive testing, it is shown in this thesis
that the original mathematical interest in Rayleigh waves came
mainly from workers in geophysics and seismology and more recently ‘

"from those working on surface acoustic wave devices,

The background to the przsent study is thus provided by an
extensive bddy of llterature, covering experimental, analytical
and numerical work, which crosses all the fields mentioned above..
This material is presented in Section 2 of the thesis. As the
present study originated in the field of nondestructive testing it
is againat applications in this field that all the literature is
considered. In nondestructive testing, Rayleigh waves have been
used to study a wide range of surface and near-surface parameters,
with considerable interest belng concentrated on the measurement
of crack depth; this is reviewed in Section 2.5.

The present combined mathematical &nd expefimental study
followed from a piece of experimental work by Mcrgan (1973), who
'was the author's predecessor with The Research CGroup in Ultrasonics
of The City University. Morgan studied the interaction of
broadband pulses of Rayleigh waves with slots, applying ultrasonic
spectroscopic techniques. In seeking to gain a botter understending
of these interactions, Morgan looked for a satisfactory theory, but
did not find e complete one. In fact the problem of providing a
mathematical description ¢f the interaction and resulting scatteread
pulses for broadband pulses with features of the order of & wave-
length, such us a slot, cannot in general be solved using
analytical techniques. _ _

It was the lack of a theory which set the present study in
motion which hzs resulted in the numerical model and supporting

experimental work which is reported in this thesis.

A range of alternative numerical methods are considercd in
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Section 3 and the selection of finife difference methods is made
for use in a numerical mod2l which can describe the type of wave
problem considered by lMorgan. That is, to consider the propagation,
interaction and resulting scattered pulses for the interaction of
broadband pulses, short time domain signals, of ultrasonic
Rayleigh waves with slots, and to give the full wave soluticn,
including mode conversion.

The details of the mathematical method, finite difference
approximation, which is used exclusively in this study, are given

in Section 4 and the supporting appendices. The power of this
method is shown by the work of the mathematical seismology group

of the late Professor Alterman from the mid 1960's to the present
day, although their work has mailnly considered body wave sources,
(Alterman & Lowenthal 1972) and by the study in connection with
surface acoustic wave devices by Munasinghe (1973). It is from
thig school of finite difference modelling that the present study
has developed. The resulting computer programs are consicered in
Section 6; the results being presented in Section 7.

To test the results of the numerical models a series of
practical broadband measurements have been made on specially
produced test blocks., In these experiments, wedge transducers
are used together with a new edge contact transducer the basie
form of which was invented by Professor Harnik, wkilst he was
working with the author and using the ultrasonic test equipment
of the Research Group in Ultrasonics of The City University.
.(Harnik 1978) The 'Harnik' type probe waa develcped by the
author in the course of the present study and the probes used are
considered in Section 8.2, .

The present study draws methods and results from all fields
where Rayleigh waves have been studied and presents these together
with the results obtained in the present study, in Sectien 2.

The previous studies, reviewed in Section 2 of this thesis,
confirm the statements by Otteviani (1971) that the analytical
solution for elastic waves cn a quarter space presents "almost
insurmountable difficulties" and by Xorgan (1972), that no
satisfactory model for the reflection (of Rayleigh waves) from a
slot exists, in that no analytical descripticn of the propagation
and scattering of Rayleigh waves by such surface features as slots,
single corners or steps haz been found.
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Following from the use of finite difference models for
elastic wave propagation in geophysics,a new application of the
method is presented in providing models of pulsed Rayleigh wave
propagation end scattering by surface features on a nondestructive
testing scale and this has provided a significant step toward the
quantitative understanding of these interactions,

In addition to the new application of tﬁe finite difference
technique,improvements in the details of the schemes, together
with a new second order nodal formulation for the free surface/
interface node, for welded quarter spaces  are presented. The use
of the improved boundary node schemes, when used with a Ricker
type pulse of Rayleigh waves, have made possible a reduction to
16 for the number of nodes per wavelength used and improved the
accuracy for the whole scheme. This compares with 32 nodes per
wavelength used by Munasinghe (1973). Using the new formulations
for boundary ﬁodes,the distance travelled by pulses is better thsan
1 % when compared with the distances given by ray theory. This
compares with travel distance accuracy of the order of 5 % using
the 01d formulations, Pulse distortion with distance travelled is
also reduced with the new schemes,

The use of 16 nodes per wavelength, as compared with 32 in
other studies, has resulted in the use of a quarter of the number
of nodes being used to model the same size space, when measured in

wavelengths, or a corresponding increase in the size of cbject

.which can be modelled with a set core requirement and job run time.

The finite difference method provides the displacements at
every point on the grid in the region studied, and this enables a
range of methods to be used to analyse the system and establish
such parameters as reflection and transmission coefficients
for the single medium geometries of quarter and three-quarter spaces
steps and open slots, and the two media geometries of welded
quarter spaces and filled slots. In all computer model runs
nurerical visualiSation type displays, which are after
Munasinghe (1973) and others, have been improved so as to resolve
the waves that are in the stsyem.

The'results given by the finite difference models are found
to be in good agrecment with the experimental results obtained by
measurements on test blocks and the results of previous analytical

numerical, experimentzl and rphotcelastic visvalication studies,
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where these exist.

This present study, which started as a direct result of the
phrase ebout Rayleigh waves by Morgan (1973) ,"that no satisfactory
model for the reflection from a slot exists", has provided a series
of models which follow the propagation and scattering of pulsed
Rayleigh waves on half, quarter and three-quarter spaces, up and
down steps, open slots, at welded quarter spaées and filled slots
These now form the basis for understanding a range of nondestructive
testing type problems with both numerical visualisation and
quantative numerical results in a single method,

From the consideration of the resulits of the present study,
presented in Section 9, the author has been able to propose a
development in the methods which usz Rayleigh waves for the
characterisation of surface features, using the advantages of the
new Harnik (1977) transducers, The proposed method is presented in
Section G. 11,



2.1

2, PACKGROUND MATERTAT, FOR THE PRESENT STUDY,

2.1 Introduvction.

This section presents the background against which the
present work was performed, as given in the literature and by
information obtained by direct contacts with workers in the various
fields where Rayleigh waves are of interest. It includes outlines
of the previous work with Rayleigh waves and it also presents some
definitions which are of direct interest in the present study.

The starting point for the collection of this material was
provided by the literature search by Tolley (1972) and the work by
Morgan (1973).

In Section 2.2 an introduction to elastic waves and

rarticularly to Rayleigh waves is given which considers the fields
where they z2rc studied and gives some of their basic properties.
This is followed by Section 2.3 which gives the basic analytical
equations for elastic waves in a solid and those specifically for
e Rayleigh wave together with the related bourndary conditions and
some other useful equations.
_ A review of the material from all fields of study, for a
series of idealised geometries is presented in Section 2.4 in
order of increacing complexity, and 1s collected according to the
configuration upon wﬁich the Rayleigh waves are propagating and
being scattered. This is followed by Section 2.5 which considers
practical Rayleigh wave measurcments with detailed consideration
of the specific problem of crack depth measurecment being given
in Section 2.5.1. ) .

The final part of this section, sub-section 2.6, presents

a-brief review and introdustion to ultrasonic spectroscopy.

b= .



2.2

2.2 Rayleigsh waves,

There are many types of elastic waves vhich cen occur in an
elastic solid, on the free surface of a sclid, or at an interface
between two medie where one or both of which is a solid., In cach
case the wavea that will propagate have their own distinctive
properties and these waves, which fall inic déistinct classes, are
named according to where the wave propagates, in the body of the
medium, at the surface or at an interface, are all accustic or
mechanical vibrations. (Graff 1975)

The waves that propagate through the bulk of the medium are
called body waves; those which propagate near a free surface, with
thelr energy confined within a few wavelengths of the surface,
propagating parallel with the surface, are called surface waves,
while those waves that propagate along an interface between two
media are called interface waves. Included at the back of this
thesis is an appendix, Appendix A, which names some of the basic
elastic waves and defines them in terms of their components of
displacement.

When an elastic wave is incident on a free surface, an
interface, a void or an inclusien, in the case of a body wavs, or
a surface feature such as a step, &8 glot or a crack in the case
of a surface wave, energy can pass from one form of wave to
enother, This phenomenon is known as mode conversion. The amount
of energy that is converted to or from a particular mode is
dependent on the'exaét form of the incident pulse and the tarpget
'configuration.

Rayleigh waves are the form of surface waves vhich have only
longitudinal compoﬁents of displacement in the direction of
propagation and transverse components of displacement normal to the
free surface; they are named after their first lnveatigator
Lord Rayleigh (1885). For a Rayleigh wave there is no energy
propagation in the rlene of the surface upon which the wave is
travelling other than in the original directien of propagation.
When & plane wavefront of Rayleigh waves 1s incident cn rlane
features, normal to the direction of propagation, this effectively
reduces the equations which describe them to equations in terms of
two spatial dimensions and time, The restriction to studies of
systems which allow the reduction to two spatial dimensions is

P
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normal in geophysics, and it is shown in Section 8, in the

- supporting experimental studies, that this restriction is valid =nd
useful in the present study. The basic equations of motion for two
spatial dimensions are given in Section 2.3.

Rayleigh waves are now under active investigation in four
fields of study; geophysics/geismology, civil engineering,
electronics and nondestructive testingz. While the mathematical
problems involved in describing the interaction and ecattering of
waves by features are the same for the four fields, the wavelengths
as well as the dimensiqns of the feature, range over many orders of

magnitude, as 1s shown in Table 1.

Subject 12231.1 Frequoncy | Foi ot ﬁiiiitﬁﬁa
Geophysics | 40 Im 0.05 Hz 1000 ¥m 10% n
Selsmology - - 10-100 m 102 m
Civil Eng. 10nm 100's Hz 1~10'e n 10 n
N.D.T. 1-100 mn | 2P 1-10's mwn | 10™n

> | Blectronics | 0.05 ma | 40 MHz = | 0.01 mm 10™on

Rancge of wavelenstha and orders of masnitude of feature size

in Rayleiph wave studies.
TABLE 1,

At the long wavelength end of the range are the waves of
interest to the geophysicist,which are generated by earthquakes and
underground nuclear explosions, where wavolecngths ars tens of
kilometres. This ias of particular importance &s at thece wavelengths
the propagation of very destructive high energy rpulses ia possible
over large diastances, hence causing damege at large distances fron
an earthquake epicentre. (Lwing et &l 1857) Pulses from
geophysical sources also give information about source mechanism
end provide a means of studying features comparable with the gize
of continents.

On an intermediate geophysical/seienclogical scale there is
interest in Rayleigh waves by two groups., Taecee are, firstly
investigators who perform local structursl investigations using
explosive sources and investipale features of the order of metres

at ranges from tens of matras to kilemetres. The second group are

B
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the civil engineers who, vwhen near an earthquake belt, are required
to consider the interaction of Rayleigh w.uves with large structures
such as dams, (Davis & West 1973)

The civil engineer has also to consider vibration-generated
Rayleigh waves with wavelengths of the ordex of tens of metres
which are produced by large machines, end which result in
requirements for isolation by means of either screening trenchea or
gheet pilling. (Woods 1968)

On a shorter wavelength scale is the region of interest to
the nondestructive tester who considers the interaction of Rayleigh
waves with features of the order of & wavelength, the wavelength
being a few millimetres. (At 1 MHz on aluminiun, Rayleigh waves have
a wavelength of about 3 mm,) ’

The shortest wavelength region is that of interest to the
electronic engineer who works in the over ten megﬁhertz region,
which has subfmillimetre wavelength, In thia region Fayleigh waves
are used in circuit components; this field expanded greatly in the
1960's with the growth of surface semiconductor devices. The
velocities and consequently the wavelengths of surfacs waves are
five orders of magnitude smaller than the corresponding values fox
electrocmagnetic waves of the same frequency and this is shown by
the values given in Table 2,

Type of wave. Vel, in m/sec. Wavelength in m,

E.M. rediation. 3,0x10° 3.0510°

Rayleigh wave on

3 -3
aluminum, 2.9x10 2.3x10

Ravleiprh and electromspgnetic wave veloclities and wovelensthe at 1 Mz

TABIE 2,

The energy in th; surface wave travels in vitrations close .to
the surface end with this and the slower wave velocities there is
the possibility for a wide range of circuilt components including
waveguides, filters and delay lines for cperation in the megaliertsz
region and higher. (¥hite 1970)

Of all the fields of Rayleigh wave study the most receantly
expanding arce of interest is that of nondestructive testing, with
the application of Rayleigh waves es a tool for surface snd nesr
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surface inspection. These applications of Rayleigh waves are
considered in Section 2.5.

In the queat to obtain more information from a- signal than
can be obtained by considering some form of time displey of
displacements, signal spectral ccntent is ncw considered and in
nondestructive testing this technique is known as ultrasonic
spectroscopy. This method of signal study, which was first described
by Gericke (1965) and has been extensively developed at ICU
(Brown 1973), uses sghort time domain pulses of wide bandwidth (now .
from 0.5 = 20 MHz or higher) as the transmitted signal and spectrum
analysis is performed on the transmitted pulee and/or a reference
reflected signal and the received scattered pulses, which by
comparison, and in some cases complex signal prcecessing, provide
more information about a target than is avallable with conventional
ultrasonic testing. This technique, which was first applied to
Rayleigh wave nondestructive testing situdies by Forgan (1973), is
considered further in Section 2.6,

The mechanisms involved in Rayleigh wave scattering by various
types of discontinuties are of fundamental importance to all who
study Rayleigh waves in practical situations. Thus the study of
Rayleigh wave problems concerning scattering frowm simple targets
set in or on isotropic materials, together with such two medis
problems as that of welded quarter spaces should, when understood,
provide a firm basis for considering interactions with rsal
defects. Following a presentation of the basic analytical equaticns
in Section 2.3 the previous work concerning ecattering by idealised
targets is éonsidered in Section 2.4.

2.3 Basic analytical equations and boundarv conditiona,

In all analytical or numerical studies &f Rayleigh waves, the
basic equations, with appropriate changes in scale and material
parameters, are common to all the fields of intercst. Tais &ectién
presents the basic.analytical equations which describe motion in en
elastic solid and those which describe a Rayleigh wave, together
with the sppropriate boundary conditions and soms useful relations
connecting some of the materisl parameters, |

The squations are presented in two groups, firstly thoa@.
which describe wave propagation in an elastic solid and secondly
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those which describe the Rayleigh wave,

For all elastic wave propagation the vector equaticn of
motion, in & perfectly elastic, homogeneous, isotropic medium is
obtained from Hooke's Law and Newten's Second law of Kotion,
(Sommerfeld 1950, Ewing et &l 1957);

N2
Y v? grad .(alv U ) - v.®curl . curl g 2.3.1

FI
where U 1s the displacement vector,
| Vc is the compressional bulk wave velocity,
VB is the shear bulk wave velocity,
t 1is time,

This equation 2:3.1, for a two dimensicnal éystem, s for

Rayleigh waves, simplifies to a form that wes given by
Viktorov (1967), which are the basic cquatiors of motion for the

horizontal (x) and vertical (y) components of displacement V and U;

3% 232 292 2. d%y

=1 = v +v + (v 2 23U

3 2 © 32 8 9y° Ho = %) axy
2y 29% 23211 v 2 ey

o t° - - 9 y2 ’s x d 2 ) d xdy 23.3

The velocities of the shear and compressional waves can bas
‘written in terms of the Lamg constants;

2 A o2
Using the equivalents given as equation 2.3.4 the eouations
of motion can be written in an altarnative form which is often

used in seismology, (Alterman & Karel 1368);

1 3% o k+ n 3V MM B
'.'32 Jt é)‘y j2s Qx Mo I=xdy
1 3% a v M oo a4 m 3%
=3I 2 +

V. at )L-!—?}L dy° Atz dxdy

N
i

2e345
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In considering wave moticn in aan elastic eo0lid it should be
noted that the elastic strains involved in the motion may be
computed by partial differentation with respect to displacements and
that the elastic stresses can be computed from the strains by
applying Hooke's law.

To describe fully a wave motion in an elastic solid, 1t is
necessary to specify the boundary conditicns for beth free surfaces
and material interfaces and these can be considered in terms of
displacements and components of the Cartesian stress tensor.

In the present study only three inderendent components of
the Cartesian gstress tensor () are involved. (Munasinghe 1973) )

Tha stress is defined by the relation;

T:: G L] U 2.306
where G 1is the shear modulus,
The combonents of the ehear modulus are;
B 23 2 2y 3. ]
v, /ox (Vc -2V, °Ry
2 . 2
¢ = Vs day Vs 9/9x 20347
2_ 2y dy: 2
(v,°=2 v.%) 9x v,© 2y
and the components of the Cartesian stress tensor are;
23V 2__ .2y JU
. T11‘::c-é—-+(vc ng)_é__
. x y
11
T = v aU
=|T Tip = T (‘9 2.3.8
— 12 12="21 —— s e e
¥ ay+ 3%
T22
L, . .
- 23“ oV
T = 4 (Vo—2vh 97

2y ox

A full treatment of the stress tensor, which describes ths
components of stress resolved parallel to the cc-ordinate axes, is
given by Greff (1975).

The boundary conditions are of generalised Feumann type,
involving linear combinaticns of the first deagree spatial

-12-



derivatives of dizplacements at all boundaries, with, acroes
material interfaces, the additional condition of requiring the
dieplacements to be continuous. Thgse conditions are sat out es
equgtions 2.3.9 to 2.3.13, where Ti1.T22,T21 ard T,, &are components
of the Cartesian stress tensor eand V and U ars displacemants,

In the absencs of bodily rotation,

T, = T4 everywhere, 2439

At a free surface there is zero stressj;
For a horizontal free surface, T, = Too = O 2.3.10
For a vertical free surface, TH - T12= 0 2.3.11

At a material interface both stresses and diesplacements are

continuous;
For a horizontal interface,

L4 and U? » T21 and T22 are both continuous 2:3.12

For a vertical interface,

v and U , Ty, and 12 8re both continuous 2.3413
. In addition to the basic elastic equations, to set up a wave
propagation problem it is neceessary to speclify some initial
conditions including the detailed formulation of the wave pulss,
The analytic equations for the harmonic Rayleigh wave are now
considered with the detailed formulation of the Rayleigh wave pulse
uged in the model presented in Section 4.4 and Appendix H.

The theory for a Rayleigh wave on a frse surface of an
elastic solid is well knowvn and was first investigated by lord
Rayleigh (1885), Since that time full theories, incluiling both
continuous end transient wave analysis, have been presented by a
number of authors including Ewing et al (1957), Morgan (13973) and
Graff (1975). In this study only an cutline is given for the
derivations of the bhasic equations for the case of sn harmonic
Reyleigh wave.

The basic equatlions which Cescribs the harmonic Rayleigh wave
ere odtained from the equations of moticn and the boundary
conditions for a free surface,
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The basic equations of motion for the bulk of the medium, in
the cacse of an icotropic, homogeneous &nd parfectly slastic solid
can be written in the form;

% L 3% _ 1 %Y

ax2 aya V2 91.2

327° 327" 1. QY

a Yy v 2 a t2

2.3.14

whero ﬁ( and 7‘are potentials for the compressional and ghear
waves respectively.

The components of displacement V'and U along the x and y axes
respectively, given in terms of potcntials are;

va;f

31 ay
203.15

U= a/_ Y

dy dx

.-

_ The resulting components of stress“afe those which have been
given as the Cartesian stress tensor, equation 2.3.8.

Vhen the condition for a stress fres surface is substituted
into expressions for the potentials; a linked pair of equations is
pbtained which can be combined into en expression which has a

charecteristic equation that, after transformation roduces to tha
form;

'rf- 87)-003 = 247 P16~ L/%) = o 2.3.16
whero ’l’z:: vr/vs 3 JJ=Vs/Ve.

This equaticn, equation 2.3.16, is a cubiec in 712 and is
known as ths Rayleigh wave eaquation, az it is frcm the roots that
the veglue of the Reyleigh wave velocity ( Vr } i3 obtainsd., The
roots of the equation can be obtained by the use of the techniques
for ths soclution of & cubic equation.

s

As squation 2.3.16 i3 & cubie in 722 thers are pix roots,
the Royleligh wave velocify 1s given by the root which esatisfies

e
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the condition for the ratio of the Rayleigh wave to shear wave

1> V%s> 0

It is found that the roots are dependent on Polisson's
ratio ( ¢~ ) end that when;

velocities;

o‘)>.263 there is 1 real root end two complex conjugzate roots,
o< .263 there are three real roots.

In the case of thres real roots it 1s found that in two cases
the constants required in the pair of equations which give
equation 2.2.16 are complex.

For all real media Poisson's ratio is subject to the

reagtriction;
0 < o <0.5

and this condition ensures that only one root will satisfy the
regtriction on the values for the Vr/vs ratio.

A useful approximation for the value of the Rayleigh wave
root has been given by Bergmann (1949) which provides a method
for rapid calculation of the Rayleigh wave valocity.

v 0087 1.12 o
L= + 2.3.17
Va 1 4 o

The values obtained from equation 2.3.17, for given Poiesson's
ratio are rlotted ;gainst Poisson's ratio and given ag Flgure 2.1.
Cook and Valkenburg (1954) have calculated the valuss of the roots
~of equation 2.3.16 to three significant figures and when compsred
with the values given by equation 2.3.,17 there is found to bte a
maximum error of less than 1 %.

The ratio of the shear and compressional wava velocities can
be given in terms of Foizeon's ratio and this is given as;

v, {1-20-/‘;-
= 2.3.18
Vc ' 2 - 2¢ t

The values obtained for the ratio ( Vs/Vc ) given by tha

.
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2.3

equation 2.3.18 are plotted against Folason's ratio and shown as
" Figure 2.2. The value of this ratic (VB/VC) is found to be linked
with stability for a finite difference scheme and this is
considered in Section 4.5.

A further ussful relaticnship is that between Yoisson's
ratio and the Lemé copstants and .this is, (Cottrell 1964, p114);

A 2.3.59
2(A+M)

o=

»

— e

\A.full‘considaration of the interrelation of the elastic
constants 1s given by many authors including Mow and Fao (1971),

The equations for the displacements of harmonic Rayleigh
waves are obtained upon solution of the equations of motion subject
to the free surface boundary conditions. In the cése of a perfectly
elastic homogeneous, isotropic medium for wave propagation, in the
case where the elastic strains produce only small deformations, the
equations which describe ths decay of the vertical and horizcntal
components with depth are;

2 2
v 2.3 v 2.3 2
2(1=-"2/V (1= "r/V . v -
U= A ¢ < ) / 8 ) 6-217 (1 - —E-)% Z
r 2 3# \') 2
2 = Y/ 2 s
Vs 2
- o2 (1 - =yt o et (C3 4 kx)
b v.2
¢
2
| 2
2 (1 ._Vr / vcz)i -21r Vr 3
v= -A 5 ey (t-73)" 2
p- vr /v_z vs
B 2
- (1=t 2L (1 - IHT 2 cos @+ k)
A ¥ v, :

2.3.20

The values obtained with these equations, 2.3,20, for iwo
different media are shown as Figure 2.3, with the depth (2= y/)
shown normaliced egainst wavelength (V).

Rayieigh waves; in the cage of & homogenoous, isotropic,
rerfectly elsstic half-space, congist of two inhomogeneous waver,
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one compressionsl (longitudinal displacements) and one shear
(transverse displacements) which propagate along the boundary with
identical phase velocities, The diesplacement amplitude and enargy
decay rapidly with depth.

In summary, for a pulse of Raylelgh waves in an elastic
g0lid, the problem is in.tho category of propagation problems which
are basically hyperbvolic in form, (Ames 1969) end they can be made
well posed (Courant and Hilbert 1962) in the sense of having
unique solutions which depend continuously on the sauxiliary data
such as ths initial conditions.

Having defined some of the properties and equations which
describe Raylezigh wave propagation, attention now turns to
consider the previous work which has been performed on Rayleigh
wave scattering from idealised targets of increasing complexity,

2.4 Previous work on simnle geometries,

This section presents a collection of the analytical,
experimental and numerical studies for continuous, pulses and
gsemicontinuous Rayleigh waves, a&s presented in the literature in
81l the fields where they are studied. It considers the studies on
idealised geometries which form the background to this present study
and it is according to the geometry that the material is presented.

This precent study has confirmed that althouzh there have
been numerous thecretical and experimental studies, with in some
"cases support from numerical models and or Schlieren or
photoelastic visualization, exact enalytical solutions are only
poszible fdr a fcw speciel cascs, such as the Rayleigh wave on a
half-space., (Ewing et al 1357) It has also shown that no adequate
theory exists for predicting the xesulting scattered pulses for .
wideband pulses of Rayleigh waves incident on general surface
bresking features, with dimensiona of the order of a wavelength,

The geometries reviewed in Sections 2.4.1 to 2.4.6 are shown
in Tlgure 2.4, and they are prssented in order of increasing
complexity. The results from the various studies reported in
genecral in this section are considered in more detail in Section 9,
together with the results from the present study.
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2+4.1 Ravleirh waves on a halffSFace.

Rayleigh waves were filrst demonsirated theoreticslly to
propagate at the free surface of an elastic solid by Inrd Rayleigh
in 1885. (Rayleigh 1885)

The behaviour of Rayleigh waves on half-spaces is of
cﬁnsiderable importance, in that, along with the layered half-space
which is considered in Section 2.4.5, it 1s one of the few cases
where an exact analytical solution is available, These solutions
have been considered by many authors including Ewing et al (1957)
and Graff (1975). The half-zpace exact solution is of importance in
that it provides an analytical form for testing any model for
pulsed Rayleigh wave propagation, with the detailed equations for
the case of the harmonic Rayleigh wave given in Section 2.3.

In the special case of the so0lid which is péffectly elastic
homogenedﬁs and isotropic, the velocity of propagation is
independent of frequency and the waves travel without attenuation
in the direction of propagation. In practice on metals at megahertz
frequencies it is found that over distances of tens of wavelengths
Rayleigh waves will propagate very close to nondispersively when
surface roughness is less than .001 of a wavelergth,

The problems of measurement on nonideal surfaces which have
features such as roughness, suffer attenuation of the propagating
waves, and this is considered in Section 2.5 with the practical
applications of Raylelgh waves,

2.4,2 Rayleigh waves at single corners.

Pundamental to obtainirg an understanding cf what scattered
pulses can be expected from the interaction of a Rayleigh wave
and a defect, is the understanding of thoss which result from an
interaction with a sirngle corner. An idealised fornm of the
scattering which results from a single cornsr of angle hetween
80° and 160° struck by a pulme of Rayleigh waves is sghown as
Figure 2.5. The pulses obtained are transmiticd and reflected
pulses of Rayleigh waves and two mode converted pulses, one each
of shear and compressional waves, which represent energy lossaes

from the Reyleigh waves in the syatem. The percentage energy loss
&s well as the enerzy in each of the Rayleigh wave pulses is
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C Compressional wave.

S Shear wave,

R, Reflected Rayleigh wave.

R, Transmitted Rayleigh wave.,

PS Node converted
ccmpressional wave.
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The pulses resulting frem a zeneral Ravleirh wave intevaction

at a corner between 80° end 1600.

FIGURE 2.5
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2.4.2
dependent on the exact anglé and shape of the corner,

. Por the wedge of angle less than 809 as shown in Figure 2.6,
the incident, reflected and transritted pulses, together with the
mode converted pulses, havs a very complex interaction which
occurs not just at the corner but at the two surfaces and in the
bulk of the medium in the region near the corner. This is because a
Rayleigh wave has a fini%e penetration depth, of about one and a
half wavelengths, as shown in Figurg 2.3, which gives the region
of interacticn.

In praectical experiments the sharpness of the corner
considerably affects the pulse/corner interaction: a corner which
has a radius of curvature of more than about two wavelengths
pfoduces no reflected or mode.converted waves, the pulses just
passing from one surface to the other without change of shape.

Thers have been numerous studies of single corners and they
have covered all 'angles from 0° to 360°. Many of these studies
originate in the field of geophysics as it is the single corner, in
the acute wedge configuration as it occurs in the Earth, which is
of considersble significance as a producer of nen-coherent seismic
noise. (Knopoff & Gangi 1960)

The previous studies of wedges are now considered in four
groups; those which have measured transmlssion and reflection
coefficients experimentally; those which have sought to provide en
analytical expression which fits the erperimental results; those
which visualise the interaction in a glass or plastic model and
-those which try to model the scattering using & numerical method,

a. Experimental studies on wedges.

There have tean a range of experimental attempts to establish
trencmission and reflsction coefficients for different wedge angles,
on different materiale srd at differont frequencies., The earliest
study was perfermed by de Bremecker (1958) who used piezo-electric

transducers on a range of polystyrene wedges with angles from Oo to
1800, working at frequencies btetween 20 and 200 kilohertz.

Similar experiments have been performed by Viktorov (1967) working
on Dural blocks with wedge angles between +2° and 170°, using
10/USec pulses of 2.7 NHz Rayleigh wavos.‘There have been studies
on aluminium blocks by Knopoff and Gangi (1960), for wedge angles
from ¢° to 360°, and by Pilunt et al (1964) on wedges with angles

.
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2.4.2

between 0° and 1800, working with broadvend signals from 50 to
400 kHz.

A further experimental study is that by Haydl (1974) who has
made measurements for 90° corners on galllum arsenide at frequenciles
from 20 to 200 XHz.

b. Analytical studies on wedges.

The second group of studies-are those which seek to produce
an analytical curve in agreement with the experimental results,
These include studies by Knopoff and Gangil (1960) for 0° to 360°
wedges and Hudson and Knopoff (1964) who used a Green's’function
approach and also considered wedges with angles from 0° to 360°,
These studiecs were followed by a paper by Mel and Knopoff (19565)
who improved on the approximaticns in the Hudson and Knopoff (1964)
paper. Viswanathan et al (1971, 1973) have recomputed ths Hudson
and Knopoff (1964) curves. Calculations have also been performed
by Kane and Spence (1963) who obtained an approximate expression
for the transmitted pulse using an iterative procedure for angles
from 0% to 180° and this has been followed by the work of Younecyoma
and Nishida (1976) using the same method. '

In addition to the treatments of general wedges there has
been some work on the quarter space, the gingle 900 corner, with
Lapwood (1961), using an integral traunsform formulation, having
developed first order expressions for incident snd transmitted
waves,

When the various theories are compared with each other snd
with the experimental results, it is found that egreement between
the different studies is far from good. (Morgan 1973) The problems
in comparison are increased by the fact that in many of the studies
different methods and materials have been umed. Also in the
analytical work the methods used in most cases involve approximation.

The reflection and transmission coefficients for 90° and 270°
corners have now been obtained by a number of workers and the
values obtained are compared in Section 9 with the results from
the present atudy.

Thefe have rlsgo been studies of bcdy wave interactions on
wedges which result in mode converted pulses of Rayleigh waves and
of particular interest is the experimental work by Cengl (1967)
who determined compressional (P)/ Rayleigh wave conversion

coefficlents fg;jalgminiwnwedges with a range of wedge angles,
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c. Visualization studies on wedges.

In attempts to provide insight into the wave corner
interactions in the bulk of the medlum some work has been performed
using photoelastic visualization whieh shcws the stress patterns
in transparent media; these are considercd further in Section 2.4.7.
(Henzi & Dally 1971, Hall 1976)

d. Numericel studies on wedges.

In seeking to provide a more quantitative understanding of the
interaction of Rayleigh waves with corrnsrs and the resulting
scattered pulses some workers huave turned their attention to
consider approximate and numerical methods, as i3 illustrated by
the work of Alsop and Goodman (1972) who have used a finite
element method for semicontinuous waves on a quarter space. Vork by
Munasinghe snd Farnell (1972) and Cuozzo et al (1977) on quartar
and three-quarter spaces has applied the finite difference method
to pulsges end semicontinucus Rayleigh wave propagation respectively.
The approximate mathematical and numerical methods are considered
in detall in Section 3. -

There are ﬁany body wave studies but in general thesé are-m-
beyond the acope of this present study; however furthsr conzideration
is given, in Section 3, to the numerical methods which have
application to surface wave probleus,

2.4,3 Raylairh wavas at stens,

It is apparent that the Interaction with a step confipguration
is going to be more complex then that with a single corner. The
addition of a second corner at some distance from the first
introduces a spatial dimension, in addition to pulse penetration
depth into the systoem,and this mekes the interacticn become
wavelength dependent, or rather dependent on the ratio of the
feature dimension or dimensions to pulse wavelength or wavelengths,
All wavelength dependence ia in addition to and linkzd with
material parameter dependent effects.

For a feature consisting of coxbirations of S0° zna 270°
corners serarated by distances greater than two wavelengths it is
sufficlent to consider the pulse &s interscting with each cormer

separatelyand in turn; the separate signals from each COTnEr ma
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2.4.3

be identified in the time domain, as is shown in Section 8, and the
problen in principle reducss to one of sucessive application of
reflection and transmigsion coefficlents, with energy losses to the
other modes.,

However, when the corners are closer together than two
wavelengtha, as for a shallow step, this simple approach is
inadequate and the interaction must be considered as a whole, The
problem has become wavelength dependent and analytically inscluble
for step heights of the order of a wavelength.

The geometries considered by previous workers have, in general
removed additional anguler dependence from the step problem and
restricted consideration to the step change in elevation with a 90°
and & 270o corner which have a given vertical separation, on a

single homogeneous isotropic medium, as is shown in Figure 2,7.
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Step chanres in elevation on hormorencous medin,

FIGURE 2.7,

An exception to tke restriction to sirgle media configurations
is made in some surface acoustic wave device related studies where
the elevated medium is of a second type, giving a configurétion
such as a layer of aluminiumover silicon.

The previous work on steps csn be considered in three groups,
according to the step height (h) to pulse wavelength (}U) ratio hﬁp.

a. Step height to wavelength ratio ( h/#z) less than 0.1.

The first group of studies, those with h/y& less than 0.1,
are mainly linked with surfacc acoustic wave device studies, In this
ranga of step heights some enslytical perturbation techniques have
epplication, as is shgwn by the work of Sabina and willis (1977)
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and Mal and Kuopoff (1965)
"For very shallow steps, up to h/y; of 0.02, Li (1974) has
applied a transmission lin2 representation. There have also been a

number of experimental studies in this range.

b. Step height to wavelength ratio ( h/yb) of the order of one,

The second group of studiea which consider studies with the
step height to wavelength ratio hAW from about 0.2 to 2.0 include,
at the bottom end of the range approximate analytical methods,
and across the whole range both expérimental and numerical studies.

It is in this group of h/yv ratio values that many geophysical
studies fall including those by Drake (1972) using finite element
methods to study waves at continental toundaries.

_ An approximate vériational method, which has application up
‘to h/)b of about 0.5, has been applied by lMcGarr snd Alsop (1967)
to studiss on medla with high Poigson's ratios.

The finite difference method has been applied by Munasinghe
(1973) to both up and down step pulsed wave problems, mainly
considering waves on polystyreneor aluminium/quartz layered
configurations end the details of the method used are considered in
Sections 3 and 4. A further study of RNayleigh wavss at steps using
finite difference mothods hes been made by Cuozzo et al (1977), but
they have consldered semicontinuous waves and not pulses,

A series of experimental measurements have been performed by
Frost et al (1975), on steps inaluminium blocks, using a new type
~of noncontact surface wave transducer. o o

There have also been studies using visualization techniques
and these include work by Dally and Lewis (1968) who considerecd
steps in the range from 0 tc 1.5 h/Y" This has been followed by
further work which has been presented by Hentzi and Dally (1971).

c.Step height to wavelength ratio ( h/y/) greater than two.

The third group of ctudies are those where the wavelength
dependence has been removed, in that deep steps are considered end
an example of this is found in the work by Mal and Knopoff (1965)
which’uses a Green% Function approximation for deep steps.

In general there is little ovorlap betwsen the various groups
of studies and within the groups the direct compariscn of ressults

iec difficult as the étudieé tend to either be using different
. modiaor calculete ormeasure different purameters.

-2~



2.4.4

There are however four studies of the down step for h/Yb of the
order of unity which can be used tc tect models and results in
the present study and these are considered in Section ¢ togethar
with the results of the pregsent study.

2.4.4 Rayleich waves at slots normal to s surface,

The extension of studies from up and down steps to slots is
of considerable importance as the slot 1s an idealised open crack
and it is cracks which are of particulaxr interest in noandestructive
testing.

As with the studies of steps tha previous work on slote tends
" to fall into distinct classes according to the slot depth (h) to
wavelength (yb) ratio h/)p and it is in order of increasing values
of this ratio that previous work is now considered.

a. Slot depth to wavelength ratio ( h/yb) less than one,

Much work has been performed relating to surface acoustic wove
devices for a range of shallow slots of different depths and profile
with the slot concidered toth as a single featurs and as a pulti-
slot arrsy., Examples of these mixed experimental and thecrastical
studies are found in the work by Tuen (1575), who considered the
bulk waves generated by Rayleigh waves incident on surface slots,
and‘in those by Rykunov end Tkhukh (1972) end Tuan and Perekh (137%.

A further study on shallow slots 1is that by Ronnekliev and
‘Souquet (1975) #ho studied slots one twentieth of e wavelength
deep and half a wavelength wide, at 1.15 megahertz, cut in
aluminum blocks,

There has tgen some numexrical werk ucing finite difference
methods ‘o model the interaction and scattering of Rsyleipgh waves
by slots, as occur in surface acoustic wave devices. The two
main groups of studies in this field are those by Nunasinghe (1973)
and Cuozzo et al (1977). The work by Munasinghe (1373) has .
considered pulsed Rayleigh vaves at wide layered slots, the width (w)
being greater than 1.5 3# and with depths (h) up to 0.8 %, of the
type ehown in Figure 2.8. The study by Cuozzo et &l (1977) has
considered & semicontinuous vave source with either single or
-arrays of wida shallow slots,
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The lavered wide slot, as considered by Munasinghe,

b. Slot depth to wavelength ratio ( h/y') of the order of one,

The second group of studies are those where the slot depth is
of the order of a wavelength and 1t is in this ronge thet several
studies have been performed on either aluminum or aluminum alloy
test pleces. An early attempt to establich transmiesion and
reflection coefficients is that by Viktorov (1967) who measured
the incident, transmitted and reflected signals from a slet which
was made_proéressively deesper,

In many cases of practical intorect, slot depth is less than
two wavelengths and the measurement of depth from ideatifying tiue
domain signals is not possible. '

It is in this range that the studies by Norgan (1973) fall;
he applied ultrasonic spectroscopy to the puises zaattored by milled
slots in aluminum alloy blocks, that are bcth rormal and at slanting
angles to the surface. The information relating to target
dimensions is still in the scattered pulses, 1f a broadband incident
pulse is used, and is obtainable using the technique of ultrasonie
spectroscopy, which is considered in Section 2.6. The interpretation
of Morgan's (1973) results was greatly hindered by the leck of a
theory, and it is as a direct result of this provlem that the
present study was undertaken,

C. Slot depth to wavelength ratio ( h/yV) greater than 1.5.

~ As for a step, the scattering of a Rayleigh wave pulse by a
s8lot results in separute icdentifiable pulses in the time dcmain
only when target dimensiony are greater than about two pulse
wavalengths, that is the wavelength dependence hes beon removed
and each corner acté as 8 scattering centre, For a deep slot or
crack with a point tip where there are three distinct scattering
centres it must be at lesst 1.5 ’7“ deep for identification of
signals in tha time domain end .this is the case in the crack

dcpth measurement studics reperted in Section 2,.5.



2.445

In a further attempt to gain a better understanding of the
interaction of Rayleigh waves with deep slots and the resulting
scattered pulses, photoslastic visualization studies have been
performed by Reinhardt and Dally (1970) and Hall (1976) and these
show the complex pattern of pulses that results,

There is all too little published work on slots to provide
the starting point to build the bridge to enable the understanding
of scattering by real defects and hence defect characterisation,
The previous experimental work on real situations is presented in
Section 2.5,

Although reflection and transmission coefficients have been
measured for a few slots and the scattered waves studied for
particular features only a few general trends for the reflection
coefficients and the expected pulses have been published. The slot
configuration is one which requires considerable work to establish
a more general understanding of the scattered pulses which will be
generated: this 1s especially so if extension is to be made to
cracks or slots which are not normal to the surface. The results of
previous studies on slots are considered further in Section 9
together with the results of the present study which are presonted
in Sections 7 and 8.

2.4.,5 Rayleigh waves on layered media,

The geophysical importance of the layered configuration is
obvious because of the bagic layered nature of the Earth's
structure. It is also of importance in electronics because the
basic form of surface accustic wave devices is a leyered structurs,
.built on a crystal substrate.

Although these configurations do not come under consiceration
as surface features, in this study, they constitute the simplest
type of multimedia problems. 4s the precent study is intended to
cover some two media configurations, a review of previous work on
layered structures is of value, particularly with a view to
extengions to filled clot probdlems.

The layered half-space is of particular importance as it ie
one of the configuraticns for which analyticel solutions are
available ard these ars given by a number of authors includirg
Ewing et al (1957).



In addition to the basic analytical studies the work on
layered media, as with other configurations, falls into distinct
classes according to dimensions, in thie case layer thickness (h)
to wavelength (y,) ratio h,},.

a. layer thickness to wavelength ratio (h/ya) less than 0.5.

This group of studiles includes those relating to thin metal
layers on crystal substrates, as occur in surface acoustic wave
devices; the thickness of the layer often be;ng less than 0,5
wavelengths. These studies arc mainly experimental and are covered
by an extensive literature which has been considered by white (1970)
and Farnell and Adler (1972).

it is in this group of studies that the numerical model
developed by Munasinghe (1973) falls. Thls model uses a finito
difference method to model pulsed Rayleigh wave propsgation on
layered structures cornsisting of an aluminum layer 0.3 wavelengths

thick on fused quartz.

b. layer thickness to wavelength ratlo greater than 1.5.

These are mainly geophysical and seismological studies which
have considered both surface and btody wevee on layered configuraticns
(Berrtra 1564, Fuchs & kuller 1977). The majority of geophysical
studies are beyond the scope of the present work; they consider
the analysis of travel times, with much of the work following that
by Gutenberg (1951). The methods used in these studies are
consldered in Section 3.

Two main groups of numerical methods, those which use finite
elements and those which use finite differences, have bazen applied
to some of the geophysical and surface acoustic wave device studies
with layered configurations. .

The finite element method has an extensive literature in
selsmology with much of the recent seicmological work following
from a report by VWeas {1372). The application of finite elements
to Rayleigh wave problems is prescuted in a paper by Lysmer snd
Drake (1972), although the methiod is not applied to pulsed wave
problems.

The finite difference studies have a longer history but the
geophysical configurations with thick layers have tended in the
main to consider body sources and follow the methods of Alterwan
and Karal (1968). lLuch of this work is reviewed in the paper by |
Alterman and lcewenthal (1972).
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There have also been studies of waves in layered
epheres and cylinders, both in geophysics and in connection with
nendestructive testing problems. These have used ray theory and
numerical methods. An example of the nondestructive testing studiee
is the work by Rose (1971) which considers elastic waves in pipe
sections using a ray theory; these methods are considered further
in Section 3.

2.4,6 Rayleish waves on welded quarter spaces,

As with several of the configurations conesidered in Sections
2.4.1 to 2.4.5 the geometry of welded quarter spaces, which has a
free surface with an interfece normal to it which separates two
media, is of considerable importance in geophysics as it occurs in
a locked fault or similar configuration; and its understanding is
necessary if extensions are to be mads to any theory or model so as
to consider more complex configurations.

This geometry, which has no characteristic dimension, has
previously been considered by experimental, analytical and
nunmerical methods. The majority of previcus work has been in
geophysics, because of the interest in,and importance of, the natursl
forme of the configuration., Previous studies have considered the
scattering of both body and surface waves, but in the present review
end study attention is concentrated on the surface wave work.

A theoretical study has been performed by Viswanathan (1966),

‘'who prorosed a solution by an approximate iterative method using

integral tronsforms.,

A more recent study, on welded quarter spaces of perspex and
rolystyrene, has been perforred by MeCarr and Alsop (19267), who
have made exparimental measurements and produced theoretica)
results using an approximate variational method which has produced
reflection and trensmission ccefficients. Keasurements have baen

- made by Munasinghe (1973),using the same media as those used by

McGarr and Alsop (1967), in a finite difference model,the details
of which are considerecd in Section 4.3. The results from these
studies are presented and discussed in Section 9, together with the
results of the present study.

When & Rayleigh wave interacte with an interface, as in welded

«32= .



2.4.7

quarter spaces, an interface wave known as a Ctoneley wave, in

addition to mode converted shear snd compressional waves, csn be
generated if the conditlons for existence will permit and this

travels down the interface away from the free surface, decaying
exponentially away from the boundary (Stoneley 1924). ‘

There are a large number of possible combinations of
different media from which a pair of welded quarter spaces can be
produced, or occur in nature, but measurements have only been made
experimentally for a few caszes. The finite difference method
provides a method for measuring the scattered waves for combinations
of different media which have not, or cannot be considered

experimentally; this geometry is considered in Sections 7 and 9.

2,4.7 The 1imitations of experimental methods used to _study Kayleiph

waves,
Lol SRS N

Following a consideration of the various simple peometries on
which studies have been made for Rayleigh wave propagation and
gcattering, some general comments can be made concerning the
iimitations of experimental methods and these are now presented,

As is seen from Sections 2.4.1 to 2.4.6 there have besn a
wide range of studies of Rayleigh waves, but experimental
measurements fall into two groups, those which measure surface
displacements, giving seismograms in geophysics/aeismology and
time domain displays in nondestructive testing, and those which
visvalise the waves in an interaction using a transparent model
of the configuration to provide a sgectional presentation.

&. Displacement measurements,

The experimontal measurement of surface dicplacements in all
the fields where Rayleigh waves esre of interest can only provide
Information about the wave at the surfece., Although the details of
the methods of measurement vary considerably the state of the waves
below the surface is not directly given. The details of come of the
practical problems faced by the nondestructive tester 3in performirg
gurface measurements are ccnsidered in Section 8.

The problem then with experimental displecement neasurenent
1s that even on test blocks,vhere there i1s the pussibility of
detection for mode converted pulses which reach other surfaces’
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the body of the medium

neasured,

’and the waves in it)c&nnot be seen or

b. Visualization messuremsnts.

In cesking to overcoms the limitation of only being able to
make direct measurement on waves at the surface attention has
turned to methods of visualizing waves in the body of the medium.

Two main techniques are used to visualise ultrasonic pulses
in transparent models of the configurations of interest and these
are Schlieren and photoelastic visualisation.

Botﬁ of these methods, although powerful techniques, requires
the production of special models, which are expensive, and s new
niodel is required for each configuration. In the case of Schlieren
studies a special glass is required for the models which is both
difficult to produce and work. There is also the permanent
problem of trying to match the model material parameters, such as
elastic constaﬁts, with those of a real material tested with
ultrasonic waves, such as steel, '

Schlieren visualization in the published work has been
primarily concerned with body waves, as in the work of Eabofovsky
et al (1973) which considers shear wave interactions with surface
features, surface waves are seen to propagate as low energy

secondary pulses. Also in this work by Baborovsky et al (1973)
. & computer model haeg been procduced which, although not giving a
rigorous treatment of the interactions, does provide one direct
link betwsen experimental snd model work. ‘

The visualization methods, althouvgh they present well the
-complex wave patterns which exist in a test configuraticn,
do not easily give direct mecsures of the relative ensrgics in
the various waves,

The recquirement for achlieving a better understanding of
Rayleigh wave interactions and scattering is for a method which
will give both the numerical information about dieplacements that
ic given expsrimentally only for surface displacements,and
provides & visual reprzsentation of the complex patterns of wave
fronts which are seen in %he visgvalization studies,

In seeking to achieve &t lezst some of these aims attention
hes turned to consider mathematical wethcods and these are

reviewed in Sesction 3.
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2,5 Practical spnlications of Revleigh weve studies,

This section considers the practical applications and natural
situations where Rayleigh waves occur. The material is presented
in two parts, the first is a peneral review and the recond, which
is given as Section 2.5.1, ie a detailed conesideration of the
application of Rayleigh waves to the practical problem of crack
depth measurement,

In all the studies which were considered in Section 2.4 the
literature reviewed considered experimental, analytical or
numerical sctudies of Rayleigh wave propagation on either laboratory
test pleces, in near perfect configuratiors, or mathematical studies
on ideal matsrials in perfect configurations. However in practicel
'situations where Rayleigh waves occur in nature, and are used in
devices or in nondestructive testing, the waves are interascting
with real surface features which are often complex. In many re=l
situations with smooth surfaces nondispersive propagation
is possible,This is not always the case and practical surfaces
may introduce attenuation and increase background noise levels in
systems,

Rayleigh waves, &s consldered in Sections 2.2, 2,3 end 2.4,
can be considered to be nondispersive in an igsotropic, homogeneous
medium which has a smooth surface for propagation. As outlined in
Section 2.2 for.the long wavelength pulses that occur as a result
of earthqudkes end underground nuclear explosions, the Earth,
although not perfect, can propagate high energy pulses aof Rayleigh
waves over large distances; thousands of kilometres. For this
reason Rayleigh waves occur as strong pulses on seismograms, with
local featurss such &% hills only perturbing a pulse or wavetrain
and large features like continental boundaries produvecing
scattering which incrcases non-coherent seiswic nolse. Even with
the écattering losses the geiswic pulses have enough energy to
give information about their source and the material through whiéh
they have travelled.

Also with reference to the seismic Rayleigh and other wave
pulses, in addition to local demage in & belt of seismic actlvity,
the civil engineer needs to consider the poszible effects on such
features as dams, With large structures, such as dams, therc is the
need to consider the local magnificaticn of displacements which
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can occur on some configurations,

‘On an intermediate scale are the man-made surface waves
which are produced by the vibration of large rotating machines, by
rhythmic hammer blows or an explosion. These produce a problem of
structural isolation for the civil engineer. ?hese waves have
wavelengths of the order.of tens of metres and the isolation of a
structure from, or the scattering of, the waves produced by a
structure, is achieved by means of isolation trenches or shaset
piling, which scatters locally produced Raylelgh waves; the results
from experimental studies such as that by Woods (1968) are
considered in Scction 9.

In the fiecld of surface acoustic wave devices there hes been
extensive practical meazsurement of the parameters which describe
the propagation and isolation of Rayleigh waves, (White 1970) and
these include studies of isolation of components on a single
crystal and the study of groove profile. (Tuan 1975, Tuan & Parekh
1975) The majority of such surface acoustic wave device rclated
studies are not of direct use to the understanding of the types of
interactions of Rayleigh waves on the configuratioas of interest
in the present study. )

The final group of practical studies are those which consider
the use of Rayleigh waves in the study of surface and near surface
features in metals up to depths of abtout one and a half wavelengthas.
Surface waves have the poteatial to be used to study such surface
features as surface cracks and near-surface voids and inclusions,
as well as such surface features as roughness, pitting, corrosion
and layer thickness. VWork has been performed to apply Rayleigh end
other surface waves to all these problems.

The first work uvcing ultrasonic waves which can be called
pulse~echo ultrascnic nondestructive testing, then known as
ultrasonic reflectograrny, apprears to have been performsd by
Firestone in the late 1930's and reported in a patent application
of NMay 1940 (Fi;estone 1942). The first articls to appear is that
by Firestone (1945) in which he describes the use of short
( 1 microsecond) pulses of five megahertz body waves generated by
8 surface contact quartz cryztal., In this paper Firestone applies
the ultrasonic body waves to the measuroment of wall thickness,
lamination detection, grain size nmeasuvrement and bond testing, in
- dddition to defect detection end location.
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He also notes the problems of dofect sizing with features that have
~ dimensions of the order of a wavelength or less.

The original suzgestion for the use of Rayleigh waves in
nondestructive testing, by the method then known &s ultrasonic
reflectogrephy, appears to have besn made by Firestone and
Frederick (1945). However before the technique could bs developed it
required the improvement of transducers by the development of
wedge.transducere and the work of Benson (1950), Frank (1952),
Minton (1954) and Cook and Valkenberg (1954). The principles and
development of Rayleigh wave transducersare considered in Section 8.’

Since the work in the 1950's and particularly since about
1960 the applications of Rayleigh waves in nondestructive testing
have been numsrcus and have included studies to detect cfacks in
plates (Pohlmann 1963), the inspection of turbine blades (Vybornov
& Ogurtsov 1962),the inspection of wires and the inspection of heat
exchangers (Bridge 1976, Private communication) and the inspection
of hot foundry preducts (Cole 1977).

In addition to these inspection studies there have bsen
studies on specific problems such as surface roughness by
Urazekov et al (1973) and Bridge and El-Dardiry (1976).

Rayleigh waves have now proved themselves as a useful
ingpection tool and this review now considers the specific prodlem

of Rayleigh wave crack depth measurement.

2.5.1 Ravleirh wave crack denth measurement,

The location and sizing of crackes, particularly those due to
fatigue, is of great importance to industry. The calculations of
Tracture mechanics now erable, at least in principle, the prediction
of critical defect size and when this defect egize 1s known it
enables the establishment of ressonable nondestructive testing
levels, for quality contrel and hoth preservice and product
acceptance inspection. Engineerirg experience has shown the necesaity
for the establishment of toth preservice end in-cervice inspection
for crack detection from the extensive damage which can result from
crack growth to failure in an item such as an alrcraft, a pressure
vessel or & pipeline. In relation to the significence of a defect,
fromboth practical measurement and the fracture mechaniea

calculations, it is shown that a surface defect, of given length
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is as significant as a buried defact of twice 1tz length.
(Young 1977)

It is therefore important not only to detect and locate a
defect, but also to be able to establish accurately its dimensions
and orientation. In the case of a surface breaking defect there is
little problem in locating a crack by such methods as dye penetration;
however even then depth/length measurement is a problem. The
studies reported in this review are dlvided ihto two groups, firstly
those which seek to determine the minimum size of defect detectatle
and secondly those which seek to size & defect which has previously
been located either by an ultrasonic or some other method.

Three types of surface breaking feature are considered in
this study and these are shown in Figure 2.9. These are the
artificial defects, shown as Figure 2.%9a, which are the V groove
and the milled or cut slot; the fatigue crack, which often has a
form as shown .in Pigure 2.9b, nearly ncrmal to the free surfacs
with near constant width of the order of 0.01 mm; and the stress
corrosion crack, which often comss in groups and is shown in
'Figure 2.9¢, The stress éorrosion crack 18 a defect of vhich ro
two have the same form and hence it i1s difficult to establich
characteristic dimensioﬁs.

g. ¥inimum detoctable defects.

This group of studies includes much early work which gave
limits for the detection of surface features. That by Brinczewski
(1957) was able to detect V grooves 50 Um deep using a pulse with
‘a wavelength of 1,25 mm (2.25 MHz) on aluninium, '

Studies have been performed on the monitoring of crack growth
and those by Vybornov (1963) and Rasmusson (1962) found that fatigue
cracks could be detected inaluminium at 40 & of the fatigue life,
on samples with good surfsces, but only at higher percentages of
their life if the tesiplece had a poor surface. .

For stress corrosion cracking Cordellos et al (1969) and
Prummer et a1l (1969) showed that 70)Am cracks are identifiable
when working withaluminiwn blocks and pulses of 4 Iz frequency,
this detection being achieved at only 18 4 of the norual stress
life,

In all practical work with Rayleigh waves the quality of tha
surface finish has been found to have a considerable influence on

propagation characteristics. This is shown in the work by

.
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a,
b,
crack tip
enlargced.
Ce

Three types of surface brzaking feature; a. Artificial defects,

be. Fatigue crack,- c¢. Stress corrosion crack,

FIGURE 2,9,
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Rasmussen (1962) with regard to the detection of a significant
feature against a background of small scallerers Although the studies
have at present considered body waves, work by Quentin (1975) has
applied spectroscopic techniques to detect regular targets on
damaged surfaces.

A further group of studies are thoseby Brinczewski (1957),
Bykov (1960) and Bridge and El-Dardiry (1976) which show the
attenuating effect of a rough surface.

Other studies have conzidered propagetion on thin films, btut
those not considered in relation to layered systems in Section 2.4.5
or in relation to the coupling of transducers in the section on
" experimental work, Section £, are outside the scope of the present

study.

». Crack sizing.

This second group of studies are those which concider crack
location and sizing. As early as 1958 Eohme (1958) showed that
for defect detection Rayleigh wave methods compara well with those
using X-ray or eddy currents, and the performance of ultrasonic
methods has improved; at least in the laboratory, over recent ycars,
(Lloyd 1970,1975, Curtis 1975)

However crack depth measurement has proved to be undependable
(Musil 1967) or at least give a large scatier in the results
(Hudgell et al 1974) and this is attributed to the many obvious
variables present which include crack type, depth, orientation and
length, in addition to transducer variation snd operation probdlenms.
‘There is also found to be variable reflectivity from different
cracks of the came physical length. The coupling problems can be
“ovorcome by using noncentact transducers, a&s is done in the work
of Frost et al (1975) end Cole (1377). '

The variables which introduce scatter into Rayleigh wave
measurements all work against autcmatic inspection, but the use
of noncontact generation and detection has made possible such
applications as hot tillet inspection working between 25 any 33 kHz,
a wavelength of about 10 centizetres, for surface &nd near-surface
defect detection (Cole 1977)

Measurements made by Morgen (1973) using Rayleigh waves on
slots cut in aluminiumalley blocks have achizved an accuracy of
about 20 % for defects less than a wavelength in length, In a more
recent study by Lidington and 2ilk (1975), working et 2.5 Miz
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2.5.1
on 16-28 mm ( about 12 to 24 wavelengths ) slots achieved about
1 % accurecy and achieved a similar level of accuracy to Morgan
on a real crack. In & further study using a different ‘echnique,
but still with Rayleigh waves, Silk (1976) working at up to 8 LHz
has claimed accuracies of about 2.5% for crasks 20 to 30 mm ( about
55 wavelengths or deeper at 8 Iiz) desp, with reduced accuracy
as feature depth reduces, so that for a depth of about 2 mm ( about
5 wavelengths dcep at 8 KHz) the accuracy is only a 1ittle better
than that claimed for earlier studies. The general level of
guaranteed accuracy being claimed by Silk (1976) is 15 %.

The time domaln signals obtained exverimentally using
Rayleigh waves tend to indicate that the intsractions at surface
 features and . the resulting scattered pulses are more complex than

a simple theory of reflection and transmiesion, with mode conversim
losses at each corner, would produce. This 1z especially so for
interactions with feetures that have dimensions ¢f the order of o
wavelength or less. Thils complexity not only arlses from the
variables present in the experimental system tut also from the
complex nature of the mode conversions that cccur,

With the application of photoclastic visualization methods to
Rayleigh waves, as in the work by Hall (1978), it is found that a
wedge transducer does not Just produce Rayleigh waves, but there
are residual body waves which pass into the testpiece. Furthsr
consideration is given to unwanted tody waves in testblocks in
Section 8 where the experimental measurements made in the present
‘study are reported.

Two reviews have been presentod for the procadures for crack
~depth determination using Faeyleigh waves and they zre by Cook (1972)
and Hudzsll et al (1974). The methods described fell into two
groups, those which use single probes and make pulse-echo
meagursments end those which use two prcbes. The baslc pulses
considered for slot depth me2asurement are shown in Figure 2,10,

The details of the various methods of measurement as used in the
Present study are given in Section 6.

in additional wave pulse used for determining crack length,
in the cagse of dzep cracks, is the mode cenverted shear wave rulce
and this hac been comsidercd by Silk {1976} who nas presented
the equations for pulse travel times, particularly for the tip

converted shear wave. Thnis is congldered further in Saction 9.
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PIGURE #.10,

‘Rayleigﬂ wave crack and defect location and measurcment is
‘now in routine use by a wide range of nondestructive testers, but
much development work 3Is still required to provide bhetter
transducers and experimental equipment &t tho practical end of work
and basic analysis of.the interactions and the resulting scattered
pulses to aid in the understanding of the signals received in
real experiments.

At presenf there is no full wave analytical theory for
Rayleigh wave defect interactions and scattering and the
linmitations that this imposes on experimental measurements ara
considered in Section 8 with the experimental measurements and in

Section 9 where all the results are considsred.

2.6 Ultrasonic spectrozcopy.

In ultrasonic nondestructive testing, methods which restrict

consideration of the pulses to soms form o; time domain display
and measurements,are made solely for some measure of amplituds ana
the position, the information. in the signal which is present dus 4o
wavelength dependance is not given to the experimenter.

Ultrasonic spectroscopy i¢ the analysis of the spectral
content of an ultrasonic signal. This is obtained by pacsing the

gated signal into a spectrum anslyser, which performs the operation
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electronically. This operation is eguivalent to the application of
a Fourlier transform, and presents the amplitude of all freauencies
swept by the system that are in the analysed signal,

The term ultrasonic spectroscopy seems to have first heen
applied to the analysls of shoxrt time domain ultrasonic signals,
which have wide bandwidth, (which mey bve from 0.5 to 20 Mz or morse)
by Gericke (1963), Since this time the use of this method of
analysis has increased, particularly with the increased availability
of small wideband spectrum snalysers and signal processing
equipment, since about 1970.

The early work showed the diagnostic'poseibilities of
spectroscopy for the study cf such features as grain size, end
with the introduction of ultrasonic technlques into medicine there
has followed the introduction of spectroscopic techniques for such
functions as tissue identification. The develdpment of the
techniques in both nondestructive testing and medicine has not
resulted in two separate isolated groups of workers; tho fields
have much in common as wag shown at a recent meeting at The City
University. (Seville 1977)
| ‘In geophysics there ‘haa been increasing interest in both long

and short period seismometers and as well as increasing the
spectral range studled, there is increasing use of the spectral
information in the signals. (Fuchs & Muller 1977) The spectral
content of the signals is analysed in & variety of ways including
cepstrum analysis in which the spectrum of the signsl under
investigation is normalised to, and compared with the spectrum.of a
reference signal and the difference between the signals taken,
The difference signal i3 passed through a Fourier transform to
bring the signal back to the time domain. This process has been
applied to nondestructive testing configuraticns, open slots, by
Forgan (1973),

There are two advanteges in uslng short time domain signals
both of which are of use in nondestructive tes ting. The first ig
the better time resolution which is possible and this has such
applications ss thickness measvrement (Lloyd 1975). The second is
the wide spectrum which is produced for broadband investigations.,
The production of broadband signale is considered in Section &,

The scope of applications of frequency analysis in.
nondnstructive testinb has heen considered by Dory (1973).
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Further gensral material on ultrasonic spectroscopy can be found
in the paper by Gericke (1971) and a receut.intrcductory review
which has been presented by Haines (1976), Longer articles, which
include some of the applications of the technique, have been
prepared by Brown (1973, 1976, 1978 to appear).

Spectral analysis applications have included studies of
bonded structuresz (Rose & Mayer 1973), lap-joints (Lleyd 1974),
the measurement of thin layers (Rose & Muyer 1974) and the
characterisation of surface defects using pulsed’ultrasbnic Rayleigh
waves, as performed by Morgzan (1973).

The number of applications and potential applications is
increasing all the time and the potential information given by
- spectral content will ensure its use in nondestructive testing.
The technique is considered, as used in the present study, in
Sections 5 and 8. ' '
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3. COVPARISON OF MATHEMATICAL METHODS,

3.1 Introduction.

Numerical methods, and particularly those for the solution
of systems described by differential equations, are of increasing
importance in meny branches of physics and engineering, and the
previous published work,both on numerical methods and their
application to elastic wave‘propagation,has become extensive.

Using numerical methods coupled with recent advances in the
speed and core capacity of large computdr eystéhs it is now
rossible to provide a full quantative understanding for many
previously analytically intractable problems. It has become
possible to model the time development of many systeus and recently
numerical methods have been sucessfully applied to hyperbolic or
transient elastic wave problems; it is in this claes that the type
of pulsed wave .problem to be considered in the precent study fealls.

- -..The basic'requirements for the rumerical method to be
applied in the present study are presented in Section 3,2 and a
review of previous work and available methods is given in Section 3,3,
The selection of finite difference methods is made for use in all
model work in the present study and the detzils of the formulation
are presented in Section 4, together with the supporting appendices,

322 Basic requiremenis_for the numerical method.

The bacic requirements for a numerical method are that it
should provide a model of the propagation, interaction and
scattering of pulses of broadband Rayleigh waves by features such
as steps and slots, which form the basis for understanding the
interaction and scattering of pulses by real surface features. There
fre a set of criteria against which the zltemative methods used

to model wave propagation must be ccusidered, and thece are;
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1. The method must give nondispersive propagation of a pulse
or pulses of wide bandwidth, on the surface of end in, a

homogeneous medium,

2. The method mmust ba able to handle the necessary boundary
conditions, such as the stress free surface, 90° and 270°

corners and materlial interfaces.

3. The method must, in addition to single pulse propagation,
give the full wave solutica, izcluding mode conversion, for
the interaction with surface featurez with dimensions of the

order of a wavelength.

4, The method must be of such a form as to enable the required
accuracy and stability to be achieved. (In terms of accuracy
the variation from known analytical solutions must be minimal,
there being for example no greater than say 5 % variation
from aralytically known dicplacements in the case of

propagation on a half-space.)

5 The method should be such that a FORTRAN computer program
* coan be written for use on a digital computer of either
ICL 1905E or CDC 7600 type, at reasonable core size and run
time. This condition is helped by the ability to restrict
. consideration to two spatial dimensions and time. Other
workers, for example Munasinghe (1973) when using a machine
comparable with the CDC 7600 have employed a dynamic corc of

about 100 (32 bit) words and used run times of up to 1500 sec,

The four numerical methods found in the literature search

are now reviewsed in Section 3.3.

3.3 Consideration of evailable numerical methods,

A detailed review of 211 the previous work on wave propagation
and scattering,with details of the various mathematical methods
1s a mathematical atudy given in mathematical texts, which is
beyond the scope of this trkesis, In this ssction the particular
papers mentioned to illustrate the various methods are given to
serve es illustrations of applicetions of the particular technique,

with no intention cf being a cecnplete biblicgraphy. This is
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especially so in the case of methods which have application to
surface wave problems,but in the past have had only limited
application to then.

Previous studiles of wave problems can be grouped in several
ways, and although the systems studied range from those considering
earthquakes ,to those for. submillimetre waves on surface acoustic
wave devices, the basic mathematical methods fall into four groups
and it is according to these that the material in this section is
presented., These methods are those which use ray-tracing,
perturbation techniques, finite element approximation and finite
difference aporoximation.

The four methods have all previously been applied successfully
to solve particular problems. However all have their range of
applicable problems together with their own strengths and
weaknesses,

The four methods are now considered with reference to the
solution of a system described by second order hyperbolic pariial
differential equations which is well posed and has Neumann type
boundary conditions and particular reference is made to the
conditions set out in Section 3.2.

3.3.1 Perturbation téchﬁiﬁﬁéé.

The first technique considered is in fact a wide rango of
techniques, being those which use perturbation methods. These, as
"the nane implies, perturb a system using some form of
approximation. These come in many forms, however thers are several
common tools which include the use of the Born approximation, the
use of sources to repluce scatterers and the addition of a
perturbation te a known function or equation. FPerturbation
techniques can and have been applied to a range of wave problems
including those which consider surface waves., (Hudson 1977)

In general when these methods are applied to problems such as
the scattering of a pulsz by & step, they only work when the pulse
or wave wavelength,(y/) is wuch larger or much smaller than the
feature dimensions, often = maximum of a twentieth of y'or greater
than 1.5 yf. These methods can be illustrated by the work of
Sabina and Willis .(1977) and ludson (1970). However their

application is restricted, in the case of surface waves, to
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considering such features as surface roughness (Hudson 1970,
Hudson et al 1973) or small localised irregularities, such as
ridges. (Sabina & Willis 1977)

These types of methods do have applicaticen to problems vhers
the principal interasst is in features with dimensions much less
than or larger than a wavelength, and an approximate form is
acceptable foé such items as mode conversion. This is not the case

in the present study, so perturbation methods cannot be usced in it.

i

3.3.2 Ray~tracinry methods,

The second class of methods are the ray-tracing msthods, Thase
have formed a part of classical geophysics, with the work on pulse
travel times and ray patha., The use of this method on geophysics
is shown by the work of Gutenberg end Rickter (1939). These methods
have now been computerised in several forms, guch as shooting
techniques, which are a form of iterative ray-tracing, as is thown
. by the work of Julian and Gubbins (1977).

In the case of ray theory for surface waves,there is the
requirement for interfaces {to be smooth curves; ruch cf the worl:
using these techniques is reviewed in a paper by Kennett (1974).

Ray theory has been applied to give understanding in the case of
a range of body wave problems, as illustrated by workers in beth
seismology (Julian & Cubbins 1977) and nondestructive testing
(Iloya 1975).

Although attractive in maeny ways, aad in the past they have
provided solutions to a range of prodlems, thess methods rely on
approximate formulations which can apply for reflection and
refraction when surfuces and interfaces approximate to smooth curves
and geomeirical optics snalogues can apply. Therefore gingularitice,
like sharp cormers, can only be included with difficulty. Vhen
ray-tracing models have been developed, as by Baborovsky et al (1973)
empiricel treatments of mode conversion and low energy vaves have
been necessary.,

Az the main interest, in the present study, is in time
develepment of systems with scattering from corners &nd mode

conversion, ray-tracing methods are not applicabdble,
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3.3,3 Pinite element methods.

The third class of methods are those which use finite element
approximations in the model formulation., These are a recent
eddition to the numerical methods for the solution of problems
described bty differential equations and have provided solutions to
a wide range of problems. (Zienkiewicz 1971)

Wave problems, including those with surface waves, have been
studied extensively using finite element methods. lowever these
have mainly been restricted to studies of elliptic or eigenvalue
type problems, as in the surface wave studies by Lysmer (1970),
Waas (1972) and Drake (1972) and much of the material by this
group is covered in the paper by Lysmer and Drake (1972).

The finite element method has also been applied extensively
to & range of body wave problems, with again much of the interest
being from seismology, as in the work by Smith (1975).

These methods have two distinct strengths in that they can
eaglily handle free surface, Neumann type, boundary conditions and
they can be given higher grid densities where variables are
- expected to have rapid changes of value,

The majority of studies using finite elements consldered
elther elliptic or parabolic problems, with exteneions to systens
that would be hyperbolic being achieved by reducing the problem

to one that is pseudo-paratolic, This is done, in the case of a
study by Alsop (1972), by using a semi-infinite wavetrain in the
.form of an harmonic driving force and not pulses of waves, and with
the addition of a time dependent parameter at esch node.

In addition in most finite elerent studies there is the
requirement of a rigid boundary, as is used by Lysmer and Drake
(1972). This is not possible for a study of a semi-infinite medium
with a single free surface.

A recent extension of the applicetion of finite clement
methods has been made in the work by Key (1975),who hus produced'
& computer progrem system to consider wave problems incluvding thoss
of hyperbolic type similar to those considered by the TOODY finite
difference programs of Bertholf end Benzley (1968),

Finite element and finite difference methods are generally
considered fo te completely different approaches for solving
systems described by partial differential equations, However
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Friedrichs and Keller (1966) have demcnstrated that if triangular
elements are set up ¢ that the nodes are on & rectangular grid

the two methods yield the same difference formulation for

interior pcints, This however loses some of the advantasee which
finite element methods have over those which use finite difference
approximations, tut it dees introduce a consideratle simplification
in the use of a finite element scheme on a digital computer.

' A wide range c¢f elliptic and parabolic problems heve been
sucessfully solved using finite element methods Zienklewicz 1971)
and othera (Key 1975) have shown that they have application to
specific types of hyperbolic problems. There are however
restrictions on the size of grid (about 100 by 100 nodes) which
can be used due to the problems in inversion of a large, albeit
sparse matrix. In general these methods have yet to prove
themselves for the solution of general hyperbolic partial
differentisl equations., (Sykes 1976, private communication)

For these reasons‘finite element methods were not selected
for use as the numerical method for the models in the present
study.

3.3.4 Pinite difference methods.

The fourth group of methods are those which use finite
difference approximaticns in the solution of differential equations.
These methods constitute an extensive group of mathematical
‘methods ané the detailed formulation can take several forms,
(Richtmyer & Morten 1967) The basic method replasces the differential
terms in the equations which describe a system urder study with
an incremental approximation. This method of equztion scluticn
was first discussed by Courant at al (1928) and since that time hasz
provided the solution for meny types of differential equations
rarticularly since the development of fest digital computers,

For surface waves studles using finite difference methods have
included work by Boore (i970) who has considered the propagation of
& single component Love wave packet in 2 non-homogencous material,
There have been Rayleizh wave studies for semicontinucus waves
on homogeneous quarter spaces by Alsop and Goodran (1972). Both
Lambt and plate waves have ulso been studied by this method.

The largest body of literature on elastic wave propezation
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using the finite difference methods is that due to the late
Professor Alterman and her students and coworkers in mathematical
geophysics, working from the mid-1960's unti) her death ;n 1974,
Professor Altermen's life and work is to be coumemorated in a
special volume edited by Bolt (1978, to appear) which will include
& bibliography of her work, Her group has studied a wide range of
mainly body wave problems including waves on end in planes, in
wedges, with propagating slots eand also with both cylindrical and
spherical geometries and co-ordinate systems. (Alterman &
Loewenthal 1972),It is from this work that the work by Nunasinghe
(1973, 197€) follows. The Alterman work is being continued
directly in that by Ilen and loewenthal (1976),Ilan (1977 & b) and
Ilan (1978, to appear).

The work by the Alterman group has been used in other
geophysical groups including Stockl (1877) and Scherneck (1976),
In the field of surface acoustic wave devices there has been an
extensive study by Munasinghe (1973) end lunasinghe and Faernell
(1973), which has considered Rayleigh wave propagation and this
has been menticned in the review in Section 2.4. This work by
Munasinghe (1973) has been extended to conslder enisotropic end
further layered media configurations, (liunasinghe 1976) There has
also been a recent study by Cuozzo et al (1977) who have modelled
semicontinuous Rayleigh waves on a range of features on homogenocus
media,

4 There is also work using a series of finite difference
computer programs called TOODY due to PBerthlof and Benzley (1968),
The TOODY programs have been used extensively to etudy many types
of systems and although originally produced to model seismelogical
configurations the TOODY 11 program has been used by Rose and
Meyer (1975), in what appears to be the only published application
of the technique for ultrasonic wave problems, to test an
enalytical result in a nondestructive testing body wave field
analysis study. ‘

The finite difference methods give tho full wave solution to
wave scattering problems, including mode conversien, and they can
be used with broadband pulees which have a smooth wave number
spectrum. The upper limit on the frequency which will propagate
is set by the internodal mpacing, in nodes per wavelenzth,

The necessary boundary conditions can be herdled and irn cne forn,
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as used by Alterman and Loewenthal (1972),the formulation provides
the displacementis at each node, which can be used as data to undergo
data processing without further computation,

Finite difference methods now constitute an extensive group
of methods and their advance has been helpcd by the developments in
large digital computers in both speed and core size. The advantages
of these methods include,that they give the time deveclopment of the
system, with the full wave solution including mode conversion; they
have the ability to hand smooth pulses; they can be formulated
to cover Neumann type boundary conditions and they are relatively
easy to turn into a computer program, Also from the view of the

potential user they have the advantage of a good history of
'sucessful applications to hyperbolic problems, oz is shown by the
work of the Alterman group.

It is for these reasons that finite differcnce methods have
been selected and it is from the Alterman school of finite
difference modelling that the methods used in ths present study,
which are described in Section 4, have been developed,
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4. NUMERICAL lNODEL FORNMULATION.

4.1 Introduction.

Pollowing the selection of finite difference approximationl‘
as the bagis for the method to model the configurations of
interest in the present study, it 1s necessary now to consider and
develop full finite difference formuletions for the renge of nodes
which are required, The basic method can be applied to give several
formulations which differ in detsil end two classes of these are
considered, with full sets of cgquations being presented for ths
nodes used in this study.

The basic spatial coordinates and the finite difference
computation star are presented as Figurc 4.1a and b respectively,
The basic formulation used for the body of the materioal, tke body
node formulation, is consldered in Section 4.2. This 3g follewed
by a consideration of the boundary condition formulations in
Section 4.3 and the supporting appendices. It is the boundaxy
condition formulations which set the limits to the region of
stability end also have the potehtial tao reduce the accuracy for
the whole scheme., In the course of the present atudy, two types
of first order formulations and one second order forirulation warae
used for the boundary conditions in the computer programs end the
details of these, together with their derivations are given in
Appendices E, F and C.

Following the presentation of the finite difference
formulations used, arc the initlal conditions which are given in
Section 4,4, These include the formuletion of the Rayleigh wave
pulse which is used. .. )

The last part of this section, Cection 4.5, presents a
consideration of accuracy end stebility.
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4,2 Body node formulation.

The basic finite difference formulaticn used for body nodes
in this work has been presenfed by many authors including
Alterman and Icewenthal (1972), This basic body node formulation has
been sucessfully applied to a renge of wave propagation problens
including that by lMunasinghe (1973) which considers Rayleigh waves
on half, quarter and three-quarter spaces, steps and layered wide
slots and that by Ilan and locwenthal (1976)which has considered
compressional wave pulses., The results from both of these studies
are considered in Sections 6 and 9.

The basic formulation for the body node is central to ths
finite difference scheme as it is this formulation which is used
for the majority of nodes considered. It is also the body node
formulation which sets the limits to increment step size and this is
considered in Section 4,5.

The form of finite difference approximation used is second
order centred differences, An outline of the derivation of the
basic difference forms and the body node formulation, following a
method given by Munasinghe (1973), is given as Appendix D. Also
included in this appendix 1s an extencion of ths formulation to the
case of a nonuniform grid, the spatial form of which has been used
by Ilan (1977a, 1977b) ,

The final form of the finite difference formulation using
cenired differences for the body node, with & uniform grid which
has been used in the majority of the work reported in this thesis,
is given in Appendix D as equation D.8 and here as; ’

2

H(ivj9k"1)= 2>‘E(1939k) - y_(ioj'k'1) + 8 FP(R) 4,241

where U |U the components of the displacement véétor.

1

U,

Fp(U) is an explicit expresszion of constants and
displacements the form of which was given by Alterwan end
: and which is given in Appendix D as equation D.9.
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4,3 Poundary condition fermulations,

. Tne finite difference formulations for the boundary nodes
are of much greater importance than those for the body node, as it
is these which set the limits to the accuracy and stability in any
scheme. The whole subject of accuracy and stability is considered
in Section 4.5, with in this section’the presentation of the
various alternative finite difference formulations for boundary
nodes, together with their truncation errors.

Two clagses of boundary conditions have been congidered in
detail and one main set of formulations has been used from each
class., The two classes of boundary node difference formulations
are defined according to whether first or second order derivatives
are subjected to difference approximation. o

In the first order formulations, whlch are produced to enable
the application of the body node formulation to the boundary node,
& line of imeginary nodes or pseudo-nodes is introduced outéide the
surface or slong an interface and displacements for these ere
calculated. The details of schemes using pseudo-nodes are given in
Sections 4.3.1 and 4.3.2 end Appendix E, which are developsd from
the boundary conditions giveu im Sectlon 2.3.

By contrast, the second order formulatlion for the boﬁndary
node is preduced by direct solution of the full set of equations of
motion, subject to the boundary conditions, which results in a
formulation which gives the time development of cdisplacements at
the boundary node as itdoes not usepseudo-nodes or require ‘
subsequent application of the body node formulation. The second
order formulations are considered in Sections 4.3.3 and 4.3.4
end the supportinz appendices, Appendices F and G.

The approximation in the pseudo-node schemes has a truncation
error of the size of the spatlial incrcment or increment squared,
depending on the detail of the scheme used to approximate the first
ordsr spatial derivatives, whereas in the second order scheme the
truncation error is normally of the oxrder of the size of the
increment squared. In gensral a second oxrder scheme should be more
accurate and should make it possible to achieve the same or ketter
stability than a first order scheme,
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4,3.1 Pirst order formulations for free csurface boundary cornditicns,

' Thess are finlte difference formulations which use pseudo-
nodes to satisfy the boundary conditions, and they are obtained by
& procedure in which the first order spatial derivatives in the
boundary conditions, which are defined in Section 2.3 as gpecified
components of the Cartesian stress tensor, are converted to
difference form and the displacements at a line of pseudo-nodes
outside the free surface are obtained, this allowing the
application of the normal vody node formulation to give the time
development at the boundary node.

In the present study two sets of pseudo-node formulations
wers considered, The first of these, known as a Centred Difference
Formulation, as the name implies is based on the use of centred
differences and was developed bty Alterman and Karal (1968), This
tyre of boundary node formulation has been used by & number of
workers including Munasinghe (1973), who used it with Rayleigh
waves, and Ilan and Loewenthal (1976)and Ilan (1978, in press),
who have tested it with compressional wave on the half and quarter
spaces respectively.

This type of formulation is illustrated by the equation
which is produced to enable application of the body node
formulation at the horizonital frse surface. The formulation to
give the displacements at the pseudo-node P, shown in Figure 4.2,
which is outside the free surface is given as;

Up(1,3-1,k) = U, (4,3¢1,k) +_{U2(i*1'3'k) - Uz(i"':"k)} 40341
Up(4,3-1,%) = Up(d,de1,k) |V -2 v 2 {U1“""3"‘) - U1(i“'3"‘)}

2
vc

. P(i,j-i,k)

1 A(L,3,K) ree surface

Nodes for free surface pseudo-node formulations.

PIGURE 4.2



4.3.1

For the first order Centred Difference scheme the truncation
error is of the order of the spatial increment squared.

The second set of pseudo-node formulations, which are known
as One Sided Formulations, are due to Alterman and Rotenberg (1969),
and these are odbtained in a similar mannar to the method used to
derive equation 4.3;1, except that off-centred (one sided) difference
forms are used and these have truncation errors of the order of the
spatial increment.

The one-gsided formulation is illustrated by the equation for
the displacements at the pseudo-node P shown 1In Figure 4,2 outside
the horizontal free surface which is given as;

- [
u (io -1 ok) =U (19 ck) + % U (i+1’jok) -U (1'103’1()}
100 e 17 2 4.3.2

- JR-)
U,(1,3,k) 4-|‘\rc -2V -I{U1(i+1.,3.k) - U,(i-i.;i.k)}
2
lz v J

In the present study in the majority of models which use a

02(1’3-1 ’k)

Jirst order scheme /for the boundary conditions, the Centred
Difference scheme, as illustrated by equation 4.3.1 has been used,
Following recent work by Ilan (1978, in press) on stability of
the quarter space, the use of the One Sided formulation has been
adopted in some models for the nodes adjacent to the 50° cornsr,
This 1s considered further in Section 7 where the results of the
models are prescnted. In general the Centred Difference scheme
“has been found to be the first order scheme with the larger range
of stability. The topics of both accuracy and stability are
considered in detail in Section 4,5.

The full set of nodes for which first order formulations are
glven in this thesis are shown in Figure 4.3, The full finite
difference formulations, with the new derivations by the author,
are given as Appendix E.
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4.3.2

4,3,2 First order formulations for interface bovndary conditions,

‘The uee of pseudo-node formulations has been extended by
Alterman and Karal (1968) to consider the interfuce between two
media for use in body wave problems. Thls type of scheme has been
applied to Rayleigh waves on layered media by lunasinghe (1973),

The boundary conditions for an interface tetweer two solid
media are that both stresses and displacemehts are continuous and
these are given in Section 2.3.

The basic node arrangement used for the horizontal interface
is chown in Figure 4.4. To evaluate the displacements at node C,
the nodes A and B and A;.and B* are given the same values and

the pseudo-node C is given the parameters of the lower mediwa,

Nodes in - J-2
Medium 1,
LLLLLLNLLLY L L QL L L Lt g
A B
c(1,3)
Pseudc-nodes J
At B!
Xodes in AL S|

’ 7
Vedium 2. 777 77 VT TAT TSI 7

I+2

1-1 1 141

Nodes used for the pseudo-node formulation at en interface,

FIGURE 4.4,

The eguaticn obtained frbm the boundary conditions which

gives the d;splacements at nodé C, is given as;
U(1,3,%) = D03, 3¢1,K) + H, [p_(i,j+2,k) - g(i,j-1,k)]
+ %r{ﬂz[}g(i-hj-i,k) # U(i-1,3-2,k) = U(i+1,3-1,k) - p_(in,;-g,k):]
+ 3g3Eg(1+1,5+1,k) - H(i-1,3+1,ki} + K3E§(i-1,j42.k) - U(i-1,j= ,kil}

4.3.3
where )
Hy=}g O . Hy = jo &4 ] 53 =fo 1 o ££1y32)1
0 &g, ’ !.33 o | g © (€ V62)2
6= (V) gy o0’ -2 v, gy afvl-2v?
(), (€%, I
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4.3.2

The intrsduction of a line of pseudo~nodes between the media
in a layered problem has been extended to the free surface/interface
node, for welded quarter spaces, shown as node P in Figure 4.5.
However the further extension of this type of scheme becomes
inereasingly complex and has not been considercd by other workers.
Any further extension of the scheme would involve complex node
formulations end introduce additional lines of pseudo-nodes into
the scheme, adding to the complexity of the resulting computer

program,

Pseudo=-nodes.

_____ il i
l
!
|
[
|
!

Free surfece

fedium 1 Medium 2

Interface

Pgseudo-node arrangement used for welded quarter spaces.

RIGURE 4.5,

A finite difference scheme which considers interfaces without
the use of pseudo«nodes would have considerabla advanisges zand
such a scheme has been developed for some nodes by Ilan et al (1975),
The scheme has been extended by the author and it is cornsidzred in
Section 4.3.4 and Appendix G.

4.3.3 Second order formulations for free surface houndery conditions.

The pseudo-node schemes, for free surface nodes, which are
considered in Section 4.3.1 have several inherent weaknesses.
These weaknesses are firstly,that they do not give'the time
development for the node in a single equation, but require the
application of the body~node equation to the boundary nodes,
following theo pseudo-node calculations. Secondly the pseudo-nocde
formulations are not as accurate as the body node formulation, and
1t is the boundary formulation which sets the limits to the
accuracy and stability in a scheme.

- In en attempt to imprové on the pseudo-node formulation
Ilan et al (1975), motivated by the work of lax and Wendoff (1960),
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4.3.3

produced a second order free surface boundary condition formulation,
known as a Composed Approximation,

The Composed Approximation formulation is illustrated by the
eéxpression for the horizontal component of displacement at a

horizontel free surface, which is given as;

U (1,5,k41) = 2V82(s/h)2U1(i,;j+1,k) - U, (1,3,5-1)

2 2
23 Vc - 2V

t 2v_2(s/m)? | (n/s)e) - 1 = (n/a) 8_1 Uy (143,k)
s 2 >

Vv
5 Vc

+ 7, 2(s/m)2 n/a [0,0141,3,00 = 0,(1-1,3,00]

2 2
2 3Vc - sz

2
+ Vg (s/d) 5

[U1(i+1hj’k) - U1(i-1!j’k)] 40304

Ve

where parameters are as defined on Figure 4.1,

A similaer expression is obtained for the vertical component
of displacement and the details of the derivatlons of these
equations are given in Appendix F. This scheme has a truncation
érror of the order of the increment squared.

It has been found by‘Ilan and Loewenthal(1976) that the
region of stability for the Composed Approximation is not as good
as that achieved by the pseudo-node schemes, so it can only be
used to model media with a low Poisson's ratio ( less than ¢’ = 0,27),
The main weakness in the formulation is due to instability,
resulting froh & poor formulation for calculating the vertical
Ccomponent of displacement.

In an attempt to overcome this limitation on the use of
second order formuletions Ilan and Loewenthal (1976) have
produced an improved formulation for the vertical component of
édisplacement on a horizontal free surface,

In the present study, following the procedure used by
Ilan and Ioewenthal (1376), an equation has been derived which is
applicable to the horizontal free surface nede, in the coordinate
System used in the present study, which 1s given as equation 4.3.5.
The details of the derivation of this equation are glven in
Appendix F. In the present study the formulation used for the
hqrizontal free surfsce was the cemponents given as equations
4.3.4 and 4.3.5. '



4.3.3

Uz(i,j,kn) -_-'2 [1 - (s/h)zvc2 - (s/h)evs'?] Uz(i,;j,k)
+ 2(s/0)%V_2U, (1,341 ,k) = U (4,3 ,k-1)
N Vsz(s/h)z [U2(1+1,j,k) - 1r2(1-1,j,k)]
£ 31emPr 2 - v B [u e, g0 00 - U a-1,0,0]

2 2
21 V" -
+ (s/h) [ c Vs JEI1(1+1.J.1<) - U1(i-1,dgk)] 4.3.5
2
The second order scheme has been extended to cover the
range of nodes shown in Figure 4.6, and the details of the
formulations and their derivations are given in Appendix F.

j TTT 77T 777 y
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/
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V4 Free surface ncdes, A
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/ 7/
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z / 7
;77 % 7 :f
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,2700 corners, 90° corner,

Freec surface nodes for which seccnd order formulations are given

FIGURD 4.6,

The treatment of 90Y corners in second order scheres, for use
with body waves, has been considered by Ilan (1978, to appear), snd
this work with the present limitations of second order gchenss, as

found in the present study, is considered further in Sections 7 & 9.
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4,3.4

scond order fermulationa for interface boundary conditions,

4.3.4 S
Tne application of a psoudo-node scheme to multi-media

problems presents practical difficulties, with the need to
introduce & line of pscudo-nodes, and the ranges of nodes

considered by other workers using this method is limited, as wag

shown in Sectlon 4.3.2.
A linlted set of second order interface nodal formulations

have been developed by Ilan et al (1975) and extended by the

suthor in the present study.
The sscond order interface formulations are illusirated by

consideration of that for the horizontal interface, which is
due to Ilan et al (1975). The equation for the vertical component

of displacement at the horizontal interface, in the notation

and coordinate system used in the present study, is given as;
Up(1,J,k41) = 20,(1,3,k) = Uy(d,d,k=1)

U, (4,341,k) = € V2 Uy (1,5-1,%)

2 2
N 37-:~E§'{§1 fEVZz 2
4
01

-~

H617%y + &2 | Y [0'2(1-"3"‘) - 2U,(4,3,k) - U2(1-1,;j,k)]

€, + €, a
L 4.3.6
whers  z = y,(141,§,k) - U,(1=1,3,k) i P = density.

W is an expression, ths form of which was modified from that

used by Ilan et al (1975) following the use of the original
form by the author and subsequent discussions with Ilan ( %977,

rrivate communication), the new form for wiich is presented in

Appendix G,
The gecond order scheme was extended by Ilan et ol (1975)

to consider a quarter space set in a three quarter space and
by the author to comsider tha fiee surface/interface node for

Welded quarter spaces.
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The new Tormulation for the welded quarter spaces free
surface/intsrface node is illustrated by the formulation for the

horizontal component of displacement, which is given ag;

U1(ia39k+1) < 2U1(isduk) - U1(i.3,k“1)

2 W op v
Hor—5 | # 2225 v (4,341,0) = U (4,3,%) ~

— = 2 | n

V21 V22 f; Va1 :

sts + 30, (241,3,0) = Uy(2-1,3,10)]

A
(6, +6,) ~
3 43,7

where GT and G

Appendix G.

, are functions, the form of which is given in

The range of nodes which now have second order foimulatione
is shown in Figure 4.7, and the derivations are precseated in
Appendix G.
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Interface nodes for which second ordsr fovmulations are given,

The foraulations precsented in this section, together with
those in Szsctions 4.3.1 and 443,3, and the supporting appendicos,
are uscd In the computer programs described in Seation 6, vhich

produce the resulis given in Section 7.
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4,4 Tnitiel Conditions.

To produce a full model of Rayleigh wave'propagation an
scattering based on the finite difference forma presented in
Sections 4.2 and 4.3 there are some additional bVasic requirements,
including the basic material data, the specification of internal
artificial boundaries and the specification of the basic pulse at
two initial time levels.

The requirements for the basic materlal data are that
enough data should be given to enable the calculation of a
consistent set of parameters, such as elastic moduli..In the
present gtudy the material data which 1s required is the shear
wave velocity, the compressional wave velocity and the density.
All other necessary parameters ars calculated using relationships
based on those given in Section 2.3.

Calculations are also performed lu accordance with the
stability and accuracy limits, as set out in Section 4.5, to
give the size of increments in both time and spetial domains,

Irrespective of the size of computer available it is not
possible to model a semi-infinite medium, s=o artifiéial internal
boundaries must be set at some distance from the reglon of specisl
interest in the calculations., These boundaries can be considered

in one of two ways, either by producing an absorbing nodal
formulation, as is done in the finlte element mcdel by Lysmer and
Drake (1972), or by keeping a larger iteration space((Alterman &
Lowenthal 1972) and specifying that the internal boundaries have
zero displacement, as is done by Kunasinghe (1973). The second
procedurs is used in this study, and the scaticred waves
reflected by these artificial boundaries were found only to be
eignificent if a small itzration space is used, the size of
which 1g specified in Secticn 4,5, or if the model performs a
large enough numter of iterations to enabie multiple reflections
to bulid up. '

The practical limits for grid size, accuracy and étability,
as established in fhe present study are presented in Section 6,3,

' The final requirement is the specification of the initial
displaéements at all nodes and it is thls which determines the t
type and extent of the wave which will propagate,

The initial dieturbences on the grid, in the region whére
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the pulse is5 srecified, are calculated at two tiue levels, t = O

and t = s, where s 'is the time increment which i3 determineq from

stability criteria.
The present study requires that a pulse of Rayleigh waves,

of limited spatisl extent, te specified, which haz g similar form
to that'observed for pulses used in nondestructive testing. For
this study a forx of pulse is used that was specified by

Ricker (1945), snd this has been used in a finite difference
model of love waves by Boore (1970) and a model of Rayleigh waveg
by Munasinghe (1973). A comparison between real experimenta]
Rayleigh waves, and the numerical pulse, both on half-zpaces,

is shown in Figure 4.8, The details of how the experimental
measurement was made are given in Section 8,

The use of the wave number form, or spectrum, as the foinm
of the input pulse was selected as it is this form of display
which is considersd by Norgan (1973) in his experiments using
ultrasonic spectroscopy. The use of the spectrum also provides
the opportunity to'produce & Rayleigh wave pulse in the

numerical mcdel based on the spectra of real signails,

1 Maec.

Yo

S
™\
Y 2o
/\ //\
7 \)

=T=" real,

numerical.

Formalised wave numbdber,

Compariscn between resl and numericsl Rayleiph wave pulces c¢n
aluninium (0" =0.34) half-spaces; a, Tire domain signals, b. Spectra,

FICUPE 4.8,
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A,4,1 The innut vulse,

The form of Rayleigh wave pulse ucod In the present study
is that given in =nalytical form by Ricker (1945). One of the
important features of this pulse, in addition to the similarity
it has to 1eal Rayleigh wave pulses, as shown in Figure 4.8, is
that 1t i3 not too extensive in either the real space or the
wavenunber spece, The main features of the Ricker pulce,
including its synthesis, are given in this section with en
extended discussion, including the presentatioﬁ of further
information on the basle Rayleigh wave equations and beth the
analytical snd incremental forms of the Ricker pulse, as given by
Munasinghe {(1973), set out as Appendix H,

) The -equation for the vertical component of displacement on

a horizontal free surface for the pulse is given as;

M2 1) rx.\?
RZ(X1,O,O) = -‘Iﬁrmﬁl) - w |exp |1 - (.__J) A,4.1
2

\%

The corresponding wavenumber amplitude is given as;

2 27 4.4.2'
S(K) = (i) exp |1 - (i(_)
ho I\o N .

wvhere K is the wave number,

o [

K0 is the primary wave number corresponding to the centre

wavelength (%),
The primary wave number in terms of wavelength is given ns3;

k, = 2IF 1,43

(o]

In the production of the basic pulse for use in the
numerical model, the initlal disturbances for each depth and time
level are obtained by performing the series of operations shewn
in Figure 4.9. _

The procedure for obtaining the basic pulss starts frem the
digltised form of the pulse amplitude epectrum, (which is given es
equation He2.1 in Appendix H.) In the present study, in the wave-
number domain, a base set of 512 (d.e. 29) nodes has been used,
(this 1s the range of the J components in cquation He2.1)s The

reramater of the number of nodeg per wavelength iz set for sach
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3, Operation of Fast Fourier Transform (F.F.T)
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Basic operations for the synthesis of the displacements for
one component, for oné Iow of nodes, at one time level, for
L

a Ricker-type pulse of Rayleigh waves.

PIGURE 4.9

~69-



4e4.1

bulse eynthesis and it is this parameter which determines the
number of nodes in the amplitude spectrum which have significant
amplitudes, The criteria by which trhe number of ncdes per
wavelerngth is set is considered in Section 4.5 in connection
with considerations of accuracy and stabllity. In the present
study calculations have been performed mainly at 16, 32 and 35
nodes per wavelength., The effect of different yalues for the
nhuimber of nodes per waveléngth is considered with the results of

the computer progrems in Section 7.
The transformation of the pulse data from the wavenumber

to the spatial domain is performed by the application of »
single-sided fast Fourier transform, which folds about the n
(N/2 + 1) and requires the data length to be halved and the

ode

spectral information to be reordered.,
The fast TFourier transform is then applied end following

this operation the pulse data, which is now displacements in the

spatial domain; is reordered and truncated to fit into a
realistic computation space.

The series of operations shown in Figure 4.9 are repeated
dt the depth below the surface of each row of nodes, set by tlhe
number of nodes per wavelength in the case of a unifornm grig,
for the second component of displacement. The whole procedure
is repeated to give the displacements at the second initial tine
level, except that in the case of calculations at times other
than ¢t = 0,a complex spectral component is introduced which
requires the same basic data reordering and combines with the
principal spectrum in the fast Fourier transform,

The procedure outlined above was performed for each of
= 0 and t = 8, using polystyrene ( 0"=0,24)

the two time levels, t =
data and 35 nodes per wavelength, the resulting spectra are

shown in Figure 4,10,
The set of components of surface displacements corresponding

to the spectra shown in Pigure 4,10, at t = with part of the
set of horizontal displacements at t = s are ghown in Figure 4,11,
Also shown in Figure 4.11 15 part of the set of components for
the vertical surface displacement on aluminug ( 0"=0:34) at ¢ = g,
The displacements at the points of maximum surface
displacement were calculated with aluminum data ang irereasing

dcpuh end plotted with the cuive given by the &nalytic expression

~-T0-



4.4.1
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Ricker pulse spectra chowing ncrmalised amplitude {A) against
normalised wave number (K'), calculated with polystyrene data at 35
rnodes per wavelength; showing.the real (a) and complex (b) compenenty
for the vertieal conponent, and the real (¢) and complex (d)
components for the herizontal component,

FICURE 4,10,
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Horizontal component. b Amplitude.
]
5

Vertical component.

Surface displacements for a Ricker type pulse, at 35 nodes per wave-
length; horizontal component of displacement calculated at t = O and
t = s using polystyrene (6°=0.24) data, and vertical component of
displacement calculated at t = o using polystyrene (c"=0,24) and
aluminum (¢"=0.34) data.

- FIGURE 4,11,
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for the corresponding harmonic Rayleigh wuve as Figure 4.12,

With only a limited node space available in which to model
the propagation, interaction and scattering of the Rayleigh wave
pulse, due to the limits in the slze of computer core, the basic
arrays used to set up the pulse must truncate that given by the
analytical form which is infinite in extent. It has been found
that depending on how the pulse truncations, in both the wave~
number and spatial domains,are performed there are changes in
pulse shape which affect the accuracy with which the pulse will
propagate using a particular finite differcnce formulation fer
the boundary conditions, at a particular number of nodes per
wavelength.

The values of the surface displacoments were measured at
different numbers of nodes per wavelength, at different
distances from the pulse centre, on different media and the

results are shown in Table 3.

mtertal, |MoleTper | Mmecs frum miee e
1.0 1425
Polystyrense 32 540 0.4
Polystyrene 16 0.15 -
Aluninum 35 Oo1 , -
Aluminum | 32 0.2 -
Aluninum 16 0.27 -

Pulse surface displacement amplitudes, at distances
from the centre of a Ricker pulse, as & percentage of
maximun displacement.

TABIE 3,

The values of the displacements, measured at the points of -
maximum surface displacement wers measured at a eseries of depths,
for a pulse calculated with aluminiumdata a% 35 nodes per
wavelength and the results ars shown in Table 4,

The effects of different numbers of nodes per wavelength
and dimensions for the basic pulse of Rayleigh waves are

censidered, with the resulis c¢f the computer models, in Section 7.
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Amplitude.
5

epth = depth
wavelg:gth

The decay with depth of the displacements of a Ricker type pulse,
at 35 nodes per wavelength (s0lid line)} and the correspcnding:

harmonic Rayleigh wave for the pulse centre wavelength (dashed
line), at the points of maximum surfece displacement, calculated

with aluminum data,

FIGURE 4.12
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4.4.1

Depth (in wavelengths)
1.0 1.5 2.0 2e5 3.0 3.5

Pulse
displacement 29. 15. Te 4.3 2.5 1.7
emplitudes. ‘

Pulse displacements as a percentage of maximum displacement,
nmeasured at points below.thet of maximum surface displacecment,
for a series of depths and calculated with aluminium data at 35
nodes per wavelength.

TABLE 4,

It has been found that pulse length is the more important
dimension when scattering by shallow features, with dimensions up
to the order of a quarter wavelenpgth, is considered and that the
pulse can be truncated at about two wavelengths depth. However
with larger features a pulse depth of about three wavelengths is
required,

For scattering of Réyleigh wave pulses by moat features
pulse truncation levels of 1,0 % of the maximum surface
displacement were chosen and found to give solutions of acceptable
accuracy. This level of truncation involves the use of an input
rulse with dimenéions of about three wavelengths wide and three
wavelengths deep, which are similar values to those used by
Munasinghe (1973). The full input pulse is shown, using numerical
visualisation, as Figure 4,13,

1\[
-

3
Illl
[

-
Bl 1 B
CELNSEETEET
CITEEETT
TR w
AnRSs
M1

The Ricker type pulse, calculated et t z s, vhere s is time
Increment, withaluminium data at 32 nodes per wavelength,

PICURE 4.13,
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4.5

In addition to the effects of pulse spatisl dimensions,a
paremeter which has been found to be of considerable importance,
is the number of nodes per wavelength. It was found by
Munasinghe (1973) that values of about 35 nodes per wavelength
were required for the pulse to propagate without distortion,
which is higher than might be expected from a preliminary
treatment and in this study values between 16 and 35 were used
for this parameter. The number of nodes per wavelength and their
effect in the computer models are considevred in Sectiong 4.5

and 7 respectively,

4,5 Accuracy and stability,

The consideration of accuracy and stability is fundamental
in the development of eny finite difference acheme and it is
these considsrations which often impose limitations on the
range of configurations and materials which can be modelled,
using a particular numerical scheme,

A finite difference scheme is said to be stable if the
difference between the analytical and numerical solutions of
the difference equations,remains bounded as time developrment
proceeds, with fixed time step and grid dimensions.

For any numerical scheme there are a range of material
and model parameters, outside which the scheme is subject to
inaccuracy end instability, which is usually shown by
tncontrolled growth in the_calculaﬁed variables. The aim of
accuracy and stability analysis is firstly to get the bounds
within which a zcheme can be said to be stable and secondly,
to provide a measure of the accuracy of a particular sclution.

In generdl the parameters which affect thess conditions
are fhe equations of motion, the boundary conditions, the
finite difference formulations, the initial conditions and
the msterial parameters. “

The basic equations of moiion and the boundary conditions
together with the initial conditions are often part of the
basic formulation of the gystem under study and set
constraints within which the system must be solved.

For a numerical scheme the full analysis of the effects

of 211 parameters which influence the solution of a scheme

6w



4.5

is not possible for the scheme as a vhole, but the measurcment
of the effects of various components can bte made. The

accuracy and stability of a given scheme ere closely linked
and cach of these is now considered with reference to a scheme
based on the finite difference formulations developed in
Sections 4.2 and 4,3, and the supporting appendices, and the
initial conditions set out in Section 4.4 '

4.5.1 Accuracy,

For any numerical schene, which remains stable within
the definition given in Section 4.5, it is recessary to
produce results with &a known 3ccuracy that 18 &s close sas
possible to any known analytical results. This section considers
some of the basic truncatlion errors, and limits,to the
parameter nodes per wavelength which affect the accuracy of the
finite difference schemes.

The ultimate limit to accuracy is set by the number of
digits used in the computer calculations., Thie is the level
at which the compﬁter truncates numbers and in the present
study twelve significant figures are used. The resulting
truncation errors are negligible when cempared with other
errors in the scheme,

The finite difference formulation truncation errors,
which depend on the dctailed approximations used, are of
considerably more importance and make up one of the major errors
in a scheme., The size of the truncation error, which conzists of
the sum of the disregarded terms in the series used in the
derivation of the formulation, the largest ¢f which is of the
order of either the size of the incrcment or the increment
squared that has a maximum value of about0el & of the previous
term.

A further 1limit is set by the accuracy with which tha
material parameters and other consiants are given, or cen be
calculated, and this is to about C.1 % of the parameter values
for material data.

As previouely mentioned in Secction 4,4.1, the parameter,
the number of nodes per wavelength, huzs o considerable effect
on the performance of a numerical scheme, The number of nodes
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Per wavelength (75) defines the grid internodal spacing as;
Ax = Fn ' 4.5.1

where N 1is the number of nodes per wavelength.
The internodal spacing sets the high-frequency cut off and
the minimum wavelength that will propagate as;

2x = P RN

where 7‘% is the minimum wavelength.

The condition, given as equation 4.5.2, has a corresponding
equation which gives the cut off in the wavenumber spectrum,
which 1s given as;

K = 2Tf/74m 4.5.3

where Km is the wavenumber cut off.

It has been found experimentally by Alford et al (1974)
that for a secnnd order formulation, as used for the body nodes in
this study, a minimum of ten nodes per wavelength is
required at the upper half power point. From the power curve for
the Ricker type pulse, as used in this study, shown as Figure 4,14,
it is found that the upper half power point is at egbout 1.5 K/Ko
(where K is wave number and Ko is the wavenumber at the pulse
centre frequency) which gives a value of about 15 nodes per
wavelength, at the centre frequency, for ten nodes per wavelength
at the upper half power point. The value of 15 nodes for nodes
per wavelength at the centre frequency, is sbout half the value
found necessary by both Boore (1970) and Munasinghe (1973) to
give nondispersive propagation. This apparent contradicticn was
investigated.

In the study by Lunasinghe (1973) he defines a usgeful
range of normalised wavenunbers as fromQ.5 K/Ko to 2. K/Ko,
in which measurements could bte made to an accuracy of 2%, and
& critical range, defined as from 2. K/K0 to 3. K/KO, in which
the pulse will suffer severe distortion as the number ot
nodes per wavelength, defined at the centre frequency, is reduced,

' A maesure ot the error in the digitised pulse spectrum is
glven by the relationship for the fractional error, which

.

~78



Power.

A

1.-

0o = e e ] e e

1 P 2 K/K

The power gpectrum of the Ricker tyre pulse, calculated with

aluninium data at 35 nodes per wavelength, showing the upper
half power point (Pu)

FIGURE 4.14.




compares the exact torm with second order derivatives end is

given by Kunasinghe (1973) as;

2 | |
E(K) == (2’H’K\. 12 4e5.4

N _K(!

when KAx is assumed to be less than onz aud only the first

order error is considered,

Using the relation, given as equation 4.5.4, to give values
for a range of N values at several values for K/Ko the results
shown in Table 5 were obtained,

Values for K/Ko.
N 0.5 1 2 3

40 0.05 | 0.20 | O0.82 1.8
30 0.09 | 0.36 | 0.84 3.2
20 0.20 | 0.82 | 3.3 T.4

15 0.30 | 1.4 5,8 15.0

Fractional error, ac a percentage, in a Ricker pulse spectrum,
TABLE 5.,

It is seen from the results shcwn in Teble 5 and the work by
Munasinghe (1973), that if the spectrum is to be used {o measure
Pulse shape with propagation,a restriction of about 30 ncdes per
wavelength must be imposed, Howeve:3in the presant study it has
been found that, when using the same boundary cendition

formulation as Munasinghe (1973), it is possible to measure pulse
amplitudes to better than 5 % down to values of 16 nodes per
wavelength, .

In the studiss by Boore (1970, 1972), where the Ricker -
pulse was applied to Love waves, spectral analysis was used down .
to values of 20 nodes per wavelenzth, with the majority of the
reasurements being made at 34 nodes per wavelength.

The effects of dispersicn on phase and group velocities
were investigated by Boore (1970) and these were found to become

important only when 10 or less nodes per wavelength were used.

The errors resulting from the use of a small number (less than 15)

of nodes per wavelength to defire 2 wave were zlso considercd znd

«B0=-



4,5.2

Boore found that to obtain a 95 % accuracy at least 7 nodes per

wavelength are required.

4,5.,2 Stability,

Having considered the basic accuracy .of the various
components of the finite difference scheme and the parameter of
the number of nodes per wavelength, attention now turns to trying
to provide a measure of the conditions which will give stability
in relation to increment size and ranges of parameter values,

A practicel 1limit that must always be observed is that
information must be able to propagate across the grid faster than
the highest wave velocity, i.e. in this study the compressional
wave velocity, and this sets a bound for the scheme,

The stabllity of the scheme is not however guaranteed by
the above bound. For an infinite domain, with only body nodes, by
the application of harmonic stability analysis to the body node
finite difference formulation,Alterman and Loewenthel (1970) have
shown that the von Neumann criterion yields a stability condition
which links the spatial increment for & uniform grid (h) to tha
size of the time step (s), This condition, the von Neumann limit,

can be written as;

s < 1 .
i > 71 4.5.5
h \va A

The number of nodes per wavelength which gives tho value
for h is set by the frequency content of the pulse subject to the
conditions given in Section 4,.5.1, '

The inequality, eguation 4.5.5, provides an accurate bound
outeide which the whole scheme has a tendancy to go unstiable, and
if this occurs it is termed gross instability., Using the inequality
to st the 1imit to the s/h ratio, in this study and that by Ilan
and Loewenthal (1976), values of 90 % of the 1limit velue have been
used, it is found that it is the boundary condition forwulation
which sets the limits within these limits for which the scheme will
give accurate results.

Of particular importance is the effect of the corner

approximations on the stability of the scheme, and the instability



that grows from a poor boundary condition formulation is known

as local instability. Such instability may be reduced or removed
by reformulation of the finite difference approximations used

for a particular boundary rode, end this has recently beeon
censidered for the 90° corner by Ilan (1978, in press), but

it is never possible to produce a scheme for a boundary node

that has a larger range of stability than given by the von Neumann
limit for a body node.

The practical test for stabllity and accuracy of a scheme
of difference forms for differential equations 1s provided by
Lax's equivalence theorem which states that given a properly
posed initial-value problem and a finite difference approximation
to it that satisfies the consistency conditicn, stability is the
necessary and sufficent condition for convergence, (Richtmyer &
Morton 1967) in that a reduction of grid increment should cause
the result for a stable scheme to converge to the correct result.

The procedure of reducing grid increments can become '
impractical for a large scheme as the number of nodes reﬁuired
to cover a given spatial area may use a greatly increased
quantity of core and hence use much longer computer run times,

In seeking to measure the range of stability for a particulsr
finite difference scheme, before computer runs are performed,

Ilan and Loewenthal (1976) have developed a system known as local
matrix analysis.

The basic idea of finite differgnc& theory is to replace a
differential problem by a set of linear algebraic equations. There
is an operator vhich performs the solution of such a set of
equations from one time step to another which can be represented in
a matrix form, This matrix is the propagation matrix which must
include the information as to whether the scheme is stable or not;
however for the usual grid in a finite difference problem this
matrix has huge dimensions and the analysis is therefore difficult
if not practically impossible. The procedure of local matrix
analysis considers a typical small grid to include such nodes of
interest as the surface nodes, and this has been found to give
accurate information about stability which can be applied to the
whole scheme. (Ilan &Ioewenthal 1976, Ilan 1978, in press)

Aleo using the propagation matrix Ilan and Locwenthal {1976)
have founi that by investigation of the wmatrix eigenvalues for‘
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a range of elastlc parameters, principally the ratio VS/VC, plots
known as Gershgorin's circles can be obtained. The centres of the
circles are the diagonal elements of the eigenvalue matrix and the
radli are the sumrs of the absolute valuzs of the off-diagonal
elements, (Richtmyer and Morton 1967, p76), &nd it is fournd that
if the circles reduce in radius as VS/Vc reduces, this indicates
atability, but when the radius of the circles increases with
reduced VS/Vc values, this indicates the source of potential
instability in a scheme,

Using Gershgorin's circles Ilan and Loewenthal (1976) were
able to identify the source of instability in the composed
formulation for the free surface node, as belng in the vertical
component formulation,

An alternative to considering explicit finite difference
schemes that have been used in the present atudy, and those by
Munasinghe (1973) and Ilan et al (1975), is to use an explicit
scheme, the stability for which can be guaranteed unconditiorally
(Richtmeyer & Morton 1967),-and which alco allow the uze of large
time increments. However large time increments decrease accuracy
end an implicit type of formulation results in the need to solve
a system of coupled equations which describe &1l grid pointz. The
solution of such a system of equations involves the inversicn of
a large,albeit sparse, matrix, which would limit the size of
iteration space to about 100 by 100 nodes, which is smaller than
the potential grid size possible using an explicit schem2» which
is limited only by the limits on computer program run time and
computer core and store available.

A summary of the linked set of parameters for the finite
difference schemes used in this study are set out in Table 6.

Pulse centre wavelength. ‘?ﬁvmetre.

- 3
Material parameters, € kz/u
wave velocities and density. Vs' Vc n/sec.
Nodes per wavelength. iy, ninimum of 16
von Neumann liumit. s/h, eqn. 4.5.5
Percentage limit used. a0 %

Basic paramefer set for finite difference schemes.

TABIS A,
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4.5,3 The range of stability,

Various.sem*-empirical methods have been used in previcus
studies to define regions of stability and recently new methods
have been under development by Ilan and Loewenthal (1976) and
Ilan (1978, in press) to make the procedure more empirical,
However at the present time it is only possible to establish a set
of basic guidelines based on previous studies, which can be
improved with experience in the operation of a model for a
particular type of wave propagation system. .

Using four sets of boundary condition formulatlons, s
considered in Section 4.3, Ilan and Loewenthal (1976) and
Ilan (1978, in press), have determined bounds for these formulations

when used in the half and quarter space configurations respectively

uging their body wave source, Their results are set out in
Table T,
Finite difference | ILower limit to range of stadbility,
approximation. value for VS/Vc ratio.
Half-space, Quarter space
Centred. 0.3 0.3
One-sided. 0.35 0.35
Composed, 0.57 0.575
New composed. 0.28 0.00

The range of stability for half and quarter spaces using tody
waves with a range of boundary condition formulations,

TARLE 7.

However Alterman and Rotenborg (1969) end Ottaviarni (1971)
have obtained the larges%t range of stability in their s%udies
with first order fotmulations for the boundary conditions using
off-centred (ons-sided) difference schemes. This 18 explained by
considering the truncation error of the approximations in the
frequency domain where it is found that the errcr of ths ong~gided
approximation is of the order of f2 (where f is frequency), while
in the cases of the centred end composed schemes it is found to be
of the orier of f3. This explanation was proposed and tested by

Ilen and loewenthal (1976) using different source functions, with
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different orders of smoothing, and as expected the apparent
contradiction in the Alterman and Rotenterg (1969) and the
Ottaviarni (1971) results,was found to be due to the source
function used; in that for a low frequency source the expected
order of the schemes is restored.

A graph of the VS/Vc ratio against Poisson's ratio,
obtained from equation 2.3.18, is given as PFigure 4.14.,

——=TLimits of stability for hzlf-
A space boundary formulations.

Vs (given in Table 7)

v
c
67 _\_ — Composed.

~

o4 One-sided.
..... ~--:_:~ :___________Centred.
T T T LT LT o LT D LT T~ New composed,

2

¥

o.

1.. 2, 3. 4. 5

Graph to show the ratio VS/VE against Tolsson's ratio, with the

linits of stability for numerical schemes on half-spaces,

FIGURT 4.15.

Some of the media used in the present study are listed as

Table 8, with their VS/Vc ratio and Poisson's ratio values,

Material. VS/Vc ratio. Poisson's ratio.
Polystyrene. 0.5C 0.24
Steel (mild). 0.54 0.29
Aluminium, 0.48 0.34

List of media, with values of the VF/VC ratio and Poicson's ratio.

TABIE 8,
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By comparlison between Tables 7 and 8 it is seen that the
composed approximation can be expected {o be unstable for many
common media; This is found to be the case with the computer
models produced in the present study, so the new composed
formulation was used.

It 1s seen from Figure 4.15 that as the value of Poisson's
ratio approaches (.5 the siope of the curve increases and it is found
that for Poisson's ratio values over about Q375 the resulis
become increasingly inaccurate, with the introduction of a period
of osclllation in the region behind the pulses so lengthening
the pulses. This effect has also been observed in body wave studies
by Ilan (1978, in press). Problems are also found in the propagation
of pulses in media with low shear velocities, which are media
having high Poisson's ratios.

It has also been found by Ilan and Loewenthal (1976) and
Ilan (1978, in press), when using body wave sources, that there is
a delay in the arrival of secondary pulses, when pseudo~node or
the composed approximations are used and in both schemes the
delay occurs to a larger degree in the vertical component,
inereasing as the V'S/Vc ratlo 1s reduced. These findings with
body wave have also been observed in the Rayleigh wave scattering
considered in the present study and they are considered further in
Sections 7 and 9.

A further complication is that,although Ilan and Lowenthal
(1976) have found, &s shown in Table 7, that with their form of
body weve source function there is a limited regiocn of
stability for ezch scheme, Munacinghe (1973), using a Ricker type
pulse and the centred difference form for the boundary
formulation, has been able to achleve stability just outside the
region defined in Table 7,

At present it thcrefore appears that there is no absolute
test which can be applied to eelect boundary condition formulations
which will give the best performence, that is independent of beth
material parameters and the ymlse to bc used in the study,.

A set of practical bounds, which have been established in the
course of the present study, ars presented in Section 6, and the
resulis obtained with the computer programs ere presented in
Section 7.
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5. METIODS FOR ANALYSING SYSTEMS.

Se¢1 Introduction.

Therpriﬁary aim bf the present study 1s the characterisation
of surface features using Rayleigh waves and to help in achieving
this aim the series of computer models which are considered in
Sections 6 and 7 have been developed, using the finite differcnce
schemes set out in Section 4, .

This section considers tHe différent méthods which are used
to present information about systems in which a Rayleigh wave
pulse propagates and interacts with some surface feature, prcducing
a number of scattered waves, These are bagically trancnitted arnd
reflected Rayleigh waves and some pulses of mode converted waves
in the body of the medium, All features of the propagation,
interaction and the resulting scattered pulses are of interest
and the methods used to study the system are required to give
information, which,if possible,can be tested by measurements on
real test pleces.

The four gruups:of methods used in presenting information
on the systems which are studied, are discussed in this section.
The methods are given firstly,in terms of that used in the
ccmputer models and then followed by, where possible, the
equivalent supporting measurements which are made in real
experiments. The methods used are numerical visualisation, which
is considered in Section 5.2, various forms of time domain display,
which are considered in Section 5¢3, speciral analysis, which is
-considered in Section 5.4 and analysis of pover and energy, which
is considered in Section 5.5.
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5.2

5.2 Numerical Visualization,

Thig is a term which the author has applied to a form of data
display for the computer model results, an example of which is
shown as Figure 5.1; which is after lunasinghe((1973) and others.
In these the displacements of a sampled setl of nodes are plotted,
as a displaced grid over a reference grid, the plotting being
performed at selected times after propagation has started and the
data from each time level being used to produce a single frame,

The particular value of this form of display is that as e
full wave solution is given by the finite difference method, the
resulting mass of data (up to 60,000 displacements, for one time
level) is displayed in a compact visual form which enables a
rapid visual study of the interaction, including the mode
converted pulses, to be made.

An example of the information given by the final frame for
scattering of Rayleigh waves on a quarter space is shown in
Figure 5.1. The pulses indicated are identified by coamparison
with ray theory, the pulse velocities and the direction of the
displacements in the pulses,compared with the dilrection of
propagation of the pulse.

In the present study this form of data display has been
used to follow the time development of all Rayleigh wave feature
interactions and has provided the basis for the interpretstion
of these systems.

This form of display also precents the information about
the waves in the gystem in a form which enables direct comparisons
with the photographs which are produced by conventional
visualizations techniques to be made. This 1s seen when the
resulte for the querter space, shown as Figure 5.1, are compared
with those seen by Hall (1976) for Rayleigh waves scattercd at the
corner (boundary) of a glass block. (Hall, 1976)

Rumerical visualisation is particularly sattractive when, es
in the present study, computer graphics facilities are available
vhich give the graphics cutput plotted dircctly on either 35 mm
or 16 mm sprocketed film. The 16mm facility has the particular
attraction that it enables short seguences of cinematic film to
be preduced., Two frames from a sequence for a Rayleigh wave,

Ricker type,pulse on analuminium half spece sre chown as Figure 5.2,



5e2

a. b.
AV
B B i Bl e B TRy
. :'[:“‘”\.}'f_‘{%
- an-f;,\l-__]_;./
-1L ““"}*"r':_ SRS St
[,rj‘y",
N
- ] N L i*‘ﬁ“?ﬂ
) A P
z | AEER
1 | | REn
{_ - i -
- - 1
:._. ] i
_ ! _ ! b
AR
|
Ce ' . .
.—-"—'\ — ‘
e an |
O O O Oy 1
IR |
AN
- S T R |
RN EEEER N i
t AR |
- T |
_ 1 lt ‘.’: :‘“i i
[ M - |
N ’_ i i '
| R ,
N M
bl |
i
an o

Numerical visvalisation display for Rayleigh vave scatterling on a
quarter space, celculated with chromium data at 32 nodes per wave-
length; a, Pulse of Rayleigh waves before scatbtering.

b. Tulse interacting with corner.

e Pulses after scattering; R, reflected Rayleigh wave.
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RICKER PULSE ON A HALF SPACE

\E/
(11 HT
-

FRAME 2. 2.

RICKER PULSE ON R HALF SPACE

B\

FRAME 2. 2.

—

Ricker type pulse of Rayleigh waves, on a half-space with aluminiunm
data, as shown in 16mm format.

.
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5.3 Time domain displavs,

5.3

This is a term which describes all the various forms of

display which show the time development of displacements at a

roint and covers a

wide range of displays which are used in both

numerical nmodel and experimental work.

In mathematical geophysics this form of display is known

as selsmometer analysis and the displacement data 1s used to

plot zynthetic seismograms. (Alterman & Loewenthal 1972)

In the present study displacement datza from the computer

model are used to plot synthetic time domain signals. An example

of this form of output, plotted with the real time domain signal

for a pulse on an aluminum bloex, is shown &s Figure 5.3. The

details of the experimental method to give the real signal are

given in Section 8.

A Amplitude,

Ly

2.5

Numerical
Real

Thrvees
time. (Msec)

Rumerical and real Rayleigh wave pulses cn&luminium, the numerical
pulse calculated using 32 nodes per wavelength.

Firure 5,3

An alternative way of producing a 'time domain! display is to

use the computer model displacoments aleng a particular row or

¢olumn or directicn across the grid so using data just from one

time level. The advantage of this is that cnly displacement data

from cne time level is used,the data at each node has performed

the same number of iterations, so that pumerical errors linked ‘

with the number of iterations are the same for all points.

A furiher form of time domain plot is the particle path

display, an example of which is shown as Fipure 5.4, which shows
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the displacements at a point on the free surface of a halfe-space

with the numerical pulse shown in Figure 5,3 passing,

1.0 ]

Particle path for a point on the free surface ¢f an aluminiwm half-
space, with the Ricker type pulse, shown in Figure 5.3, passing.

FIGURE 5.4,

The position of pulses was found by the use of synthetic
tiwe domain displeys. Displays of the type shown in Pigure 5.3
were used to study pulse shape changes compared with the shape
of the input Ricker pulse,
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5.4 Spectral a-alysis.,

Tnis is the study of the spectral content of broadbend
signals and a spectrum can be obtained from both numerical and
experimental signals. Thie is 1llustrated by Figure 5.5 which
glves the snectra for the two time domain signals, for pulses on

half-spaces, shown in Figure 5.3.

A Amplitude. .
- . Real =  — = - — —
by X Numerical
/ \
’ \
/ \
' N\
! \
| \ <
!
/ \\
) N o
Y ~
'l \\\
\ 2
T Y ) o=
1 2 3 K/K,

Normalised wavenumber spectra for the real and numerical pulses on
aluminum half-spaces shown in Figure 5.3.

PIGURE 5,5,

In nondestructive testing the technique of studying epectra
is called ultrasonic spectroscépy, which is considered in
Secticn 2.6;

For the numerical model the procedure for spectral study
involves the selection of the pulse to be examined, followed Ly
the application of a fast Fourier transform, in a procedure which
is the reverse of that used in setting up the pulse described in
Section 4.4.1.

It is found with a broackand pulse that the numerical model is
‘most accurate over a range of wavelengths near the pulse centre
wavelength, this beinz due to the truncation which occurs in
setting up the pulse and the digitieed nature of the equations used,
It has been found by Munasinghe (1973) that the useful range in the
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normalised wavenumﬁer spectrunn, at about 30 nodes per wavelength,
is frdmO.S to 2.01It is also found that increasing errors are
introduced into the results with some finite difference schemes,
dvue to pulse shape changes and & leg‘in the higher frequency
components, thls 1s considered further in Section 7.

For real pulses, obtained experimentally, the equivelent
procedure to the application of a qurier transform is to use a
gate to select the signal to be analysed which 1s then pacsed
into a spectrun @nalycer which electronically gives sn analogue
wavenumber spectrum; The details of the experimental method are
considered in Section 8,

The use of spectral analysis is of particular importance when
changes occur in the ghape of the pulse time domein signal which
make the determination of accurate transmission and reflection
coefficients difficult or, if they are measured, inaccurate,
Pulse spectral asnalysis for experimental signals can provide a
measurement of scattering coefficients across the full cpectral
range in one measurement. This is of particular use for detecting
wavelength dependance in a pulse/feature interaction, which is

considered further in Sections 8 and 9.

5.5 Power and energy.

The measurement or calculation from the pulse displacemoents
end material parameters of the power flow. and energy is of use
.in helping to follow the enexgy in a pulse feature interaction,
One of the problems with visualisation methods is ine 1limited
information which ie given about pulse energy so that this is an
area where numerical studies can provide useful information,

The instantaneous vector power flow per unit area acrcss a
plene, mathematical rather than material, normal to the directien
of flow at every point in & material is defined by Love (1934)
and Auld (1969) and given as;

2=-2{20 2o
a1t
where Pz P1 T = T11 T12 aud 7T etc, are
components of the stress
P2 T21 Té%; tensor, equaticn 2,3,8
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This has bteen considered further by Munasinghe (1973) who
developed a difference form for calcvulation of the instantareous
power flow at a particular node and this is given as;

r 2 2 2 2
P, (1,3,k) = - @ 7.0y + (V" =2V 7D,V (Dypy + Dyl Dy

2 2 .2 2
Polydk)  4ds [V T(Dyq # Dyp) (V" = 2V 7Dy Vo Doyl Doy

_
where, for a uniform spatial grid; 2.2

Dyp = [U,(4#1,3,0) = U (1-1,3,00)]
sz = [Um(ioj"'1 .k) - Um(ioj‘1 'k)]
Dy = [Um(i,j,k+1) - Um(i.j,k-1)]

From measurement of power flow the sum over time gives
energy, and integral forms for this have teen given by several
authors including Munasinghe (1973).

In the present study the measurement of energy has been
restricted to, for btoth experimental and numerical systems, the
relation given as; A

Energy ©<C (Pulse amplitude)2 ' 5.3

This relation, equation 5.3, for a given medium, is used
in both numerical and experimental systems fo provide the data for
~calculation of séattering coefficients from the maximum pulse
amplitudes. The details of the experimental measurements and the

related calculations are considered in Section 8.
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6., THE CCMPUTER _PROCRANS.

This section presents the background computing information

for the computer programs which have been produced using the
finite difference formulations described in Section 4 and which
'implement the methods of analysis outlined in Section 5.

The system of Fortran computer programs for the propagation

and scattering of pulsed Rayleigh waves has been developed to

cover the range of geometries shown in Figure 6.1,

T

' |
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Half-spsace,

Quarter space,
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I

| |
T = -
Three~-quarter space.

——a

Down step.

Block,

.
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— — -

Ogen slot.

- — o e -

Welded quarter
spaces.

T
I
1

- — —}

Filled glot.

Geometries for which finite difference computer programs have

been written.

FIGURE 6.1,




The types of finite difference fcrmulations used for the
boundary nodes in the computer programs for each configuration

are ghown in Table 9.

Fodel ' Tyre of boundary condltions used,
conflguration. 1st Order, 2nd Order.
Half-space. Irogram A 'Program H
Quarter space. Program B Program I
Three-quarter Program C Program J
Bpace,

Down step. Progrem D -——

Up step. Program E ——
Open slot. Program F ————
Block. Program G ———-
Welded quarter —— Program K
spaces,

Filled slot. - Frogram L

Configurations for which computer programs have been written

and the type of boundary condition formulation used.

The material presented in this section is in two parts, the
first, Section 6.2, presents basic computing information and an
outline of the main sections of the computer programs and thair
opération. The second part, Section 6.3, considers the practical
operation of the computer programs, including bounds to the runge
of material and scheme parameters, to give particular degrees of
accuracy and stability.

6+2 Basic computer gystem and comvuter progrem irformation,

The computer programs uced in this study have been written to
maxe the maximum possible use of the computing fecilities at the
University of London Computer Centre (ULCC) which has ss its main
. computer a CLJ 7600,vand this has resultsd in a set of machine

dependent computer programs,

~97- :



6.2

The computer progrems were written in Fortran and the basic
rodal subrcutine testing was performed on The City University (CU)
ccmputers, two ICL 1905Z's, The main programs were then developed
to take advantage of the ULCC facilities and the programs were
then placed in & program library at ULCC. Changes to the library
programs were then performed using the TCU-ULCC Iink and the
library UPDATE system (Waddell 1974). Progrem operation wac also
performed using the link to send a small control deck of Job
control end dsta cardsg. .

Two particular ULCC facilities ere central features in the
programs; the Random Access Nass Storage System (ULCC 1978) which
provides the large data store required by the programs, and the
Microfilm Plotting System (Gilbert 1976), providing plotting on
either 35 or 16 mm film, which 1s both much faster than paper
plotting end more convienent to store than conventional pazper
plots,

To produce a computer program for the finite difference
schemes described in Section 4 requires the specification of two
“basic*arrays which represent the sets of displacements for all
the nodes in the scheme at two time levels. The basic programs
wera constructed around two large arrays held in the Mass Storage
system which reduces the active cora storage requirements for the

programs. The basic file arrangement using Mass Storage is shown
ag Figure 6,2,

Input data Calculated
Time level _—
t -1 t t +1
Cycle 1, Array A |- Array 3 |--"me| Array A
EORDE -
‘ o~ REORDER ~
Cyecle 2, Array B3 }f~| Array A |--l4~ Array B
t t ¢ 1 t 42

- Basie file control using Randow ACcess Mass Storage System.

FIGURY 6,2,
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The main array manipulation is built into the arrangement of
the main operations of the computer programs ans 1% is found that
the calls to mass store represent a major component in the total
Job run time, The exact way in which the data is arranged and
called can cause up to about 30 % differences in total preogrem
run time, -

The main operations of the computer programs are shewn in
Figure 6.3, For each program the master segment reads and writes
the basic material data and centrol parameters, performs the main
control functions, including data manipulation using the mass
storage system, and calls the necessary supporting and nodal
calculation subroutines. The suprorting subroutines perform such

operations as plotting and calculation of spectra.

Main

* Out .
Tnput Functions. utput
Pulse, space
and material . Set up input pulse
data, gee and other initial
- conditions.
Control data. ﬁ _

- Time step advance

' Displacement

and array control.

% dats.

Spectral
S iam data,

Time step counting
ﬂ and data output,.

v

Power/Enerp
Basic nodal / ey
data,
calculations,
% Graphics,.

Basgic arrangenant of main operations in thne conputer programs.

4

FICURE 6.3,
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In the detalled writing of the computer programs there are
several factors which must be considered. It is important to
design efficient subroutincs for the nodal calculaticns, as for
example the body node subroutine may be called up to 9,000,000
times in a single program run. It is also important to ensure the
optimum arrangement- of DD loops, including the ordering of the
array subscripts, with the innermost loop calling the first array
subzcript. In 21l operations it is important to use the nmost
efficient types and ordering of Fortran statements, for example
the use of IF statements which zre faster than two or more
branched computed 'GO T0' statements and the staiements for
branching to be arranged so as to minimise the number of tesis and
subroutine cslls,

In 2 set of complex computer programs of the type developed
in this study, each of which may be required to perform 300 sets
cf nodal calculations for up to about 30,000 nodes, it is found
that the compiler used has a considerable influence oa job run
time. In this study the ULCC compiler OPT - 2, which optimices for
rapld execution was used., A typical set of computer program job
parameters are given =zs Table 10,

Progrem geometry. ¥elded guarter spaces,
Space dimensions. 160 by 100 nodes,
Nodes per 16

wavelength. *

Number of cycles, 260

Job requirements.

Small core. 10,072 KwS

Large core. 10,173 KVS

Mill time. 177 sec.

Job run time, - 400 sec,

Plotting cuiput. 15 ffames 35 mm £ilm.
Ilnes cutput. 2,000,

Job parameters snd requirenente for finlte difference mednl of
ef Reylsigh wave propagation oa welded quarter gEpsces,
TLETS 10,

~10C-
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6.3 Computer prosrem oneration,

Thiis section conslders the practical operation of the zst of
computer programs which model Rayleigh wave propagation and
scattering, including the limits for material parameters and grid
increments,

It is seen from the job parameters given in Table 10 that
the computer programs in the present study are large; they require
large quantitiea of core and have long run times. It is therefore
vital that the computer prcgrams are run in as efficient vay as
possible. This can be achieved by the correct combination of &
range of factors including those in the construction of the
program, which are considefed in Section 6.2, and the paramaters
used in the operation of the program for both the material data
and grid increments.

There are two particular aims in the operation of the
individual coﬁputer programs which use finlte difference schemes
and these are the minimisation of core regquirements and run time’
and the improverment of the accuracy of the results, Tha steps
necessary 1o achleve either of these iwo aims often result in a
cenflict; as the inercasing of grid iuncrements, which results in
reduced core and run time, tends to reduce accuracy while
conversely the reduction of grid increments and the inecreseing of
the number of nodes per wavelength, which results in improved
accuracy, increases both run time snd core requirements., Thia
Tesults in the need to reach & compromise between high levels of
accuracy (better than 1 %), on small grids and less accurate
results (about 5 %), on much larger grids, when grid size is
measured in wavelengibs,

The parameter of the nuzher of nodes per wavelength is
therefore of conscideradle importance, 25 it is this which gets
the limits to the size of region, measured in wavelengths, vhich
can be modelled with a givep number of nodse. This parameter is
set by the criteria given in Section 4.5.

It is seen in the work with Ricker pulses by both
Boors (1970) and Munasinghs (1973) that about 30 nodes per
Wavelength were used, waich results in the requircment for a
model of Reyleich wave propagation on a quarter space of a total
of about 25,600 nodes, to avoid unwanted reflections from the
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artificial internal boundaries,

The ability to reduce the number of nodes per wavelengtih to
15. by the use of a different boundary condition formulation or
by performing measurements on the scheme in a different way, would
reduce the number of nodes required to model the same size of
space, in wavelengths, to 6,400 nodes. The resulting savings in
core eand run time are substantial. Such a reduction would also
make possible the modelling in core of meny configurations and
greatly increase the range of geometriea which can be studied
using the additional store in the mass storage system, The use
of different numbers of nodes per wavelength was investigated
" #nd the results are presented in Section 7.

A practical set of limits for parameter values and grid
sizes have been established in the ccurse of the preecent study
and these are now presented. The starting point for the
guldelines 1s provided by the accuracy,and stability is not
possible,it is only by the use of the computer programs that
praectical guidelines are establicshed,

The information presented in this scction 1s presented
with the aim of providing geﬁeral guidance and not rigid laws.
The values given are those found when using a Ricker type pulse
of Rayleigh waves as the imput pulse. In general a system vhich
models body waves is more accurate and stable than cne which
considers mainly surface waves, as the latter are continually
;nteracting with the least accurate and lemst stable part of
the whole scheme, the boundary nodes.

The aim of the present study was to produce a model with
at least 10/, accuracy. It has been found that in experimental
measurements of the depth of such features as a two vavelength
deep‘crack, &n.accuracy of eatout 15% is achieved. (Silk 1976)
In the present study accuracies for the model of sccuracy well
within the 10 % 1limit have becn achieved and the mcdel rasulta
and bounds used are given in Section 7.

In this section the set of eriteriws which follow form

bounds within which the present study was performed.

a) For pulse spectrum calculations the hase set of data

points used wag 512 (i.e.29)nodes.
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b) The minimum extent of the spatial pulse in propagation
and intcrsction studies was about three wavelengths in
sach dimension. For csystem testing pulses &s emnall as
two wavelengths in eech dimension were used. (32 by 32

ncdes at 15 nodes per wavelcength.)

¢) The mihimum number of nodes per wavelength at the centre.
vavelergth was 16, corresponding to about 11 nodes per

wavelength at the upper half power point,

d) For the time step increment up to 90 % of the von Heumann

limit was used (given as equation 4.5.5.).

e) The minimum grid dimensions and limits to number of
iterations were set by the first arrival of unwanted
reflections from artificial boundaries in a regicn
where measurements were made, This size was determined
from the data velocity (i.e. one grid point per iteration),
Typical érids were five wavelengths zquare for the
quarter space, and six waveléngths deep and 18 wavelengths
long for shallow steps and slots. In practice,smaller
grids were used to test the model formulations,

f) In practice forApseudo-node schemnes a limiting value
for theVs/Ve ratio was found to be &35 (corresponding to
0" = 0.42) below which artificial oscillations
introduced large errors and the pulse was spread

spatially as propsgation proceeded.

g) It was also found that the accuracy of models using
the pseudo-nods 900 corner formulation redvced as the
number of nodes per wavelength was reduced, which sget
a 1imit of about 20 nodes per wavelength on configurations

such as the quarter space,

_ The results obiained with the cet of computer programs
which support the establishment of the guldelinez set out in

this section are now given in Section 7.

«]103~



Te1

7. CONMTUTLR LCDEL RESULTS.

7.1 Introduction,

This section bresents the detalls of the computer model
results obtained with the computer programns outlined in Section 6,
- which model the configurations listed in Table S ernd shown in
Figure 6,1, |

The numerical model results presented in this section are
divided into two groups according to the type of formulation
used for tho boundary conditions in the computer Programs,

The results are prescnted in two secticns, firstly, in Secticn 7.2,
those from the computer programs which use first order
formulations for the boundary conditions, end secondly, in

Section 7.3, these frem the computer programs which use second
order formulations for the boundary conditicns,.

The computer programs use the finlte differeuvce schemes
defined in Sections 4.2 and 4.3 with the Ricker type pulse c¢f
Rayleigh waves which is described in Section 4.4. In all the
rrograms the value of the ratio of the spatial to {ime increuents
was get at 90 % of the von Neumanmn limit, as defined In Section 4.5,

The hedia for which material data was used in the programs
considered in this section are listed as Table 11, with the basic
data used ., An extended list of material data is presented as
Appendix C.

A full comparison between the two gets of numerical model
results, the experimental results, which are presented in

Section 8 and previous results, is given in Section 9.
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Vaterial Piziig?'i' Dig?;,y wsye velccizies in m/;ec.
5 e r

Quartz 0.169 2200 3765 5976 3412
Chromium 0,20 7160 40C5 6608 3655
Polystyrene 0;24 1080 1180 20230 1084
Perspex - 1220 1370 2360 1280
Steel(mild)§ 0.29 7850 3235 5960 2996
Aluminium 0.34 2700 3110 | 6422 2906
Titanium 0.36 4510 3182 6130 2958

Iist of media used in models with basic material data,

TABLE 11,

T:2 Progrems with first order formulations for boundary conditions,

This section presents the computer mod=zl parameterz,with the
model results,.for pulses of Rayleigh waves cn homogenecus,
isotropic, single media configurations shown in Figure 7.1. The
models use the centred difference pseudo~nodc formulations for the

boundary conditions which are presented in Sectlion 4.3.1 and
Appendix E.
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Z:2.1 Rayleigh waves on half-svaces,

The ébility to prodace a computer model which gives the
nondispersive propagation of a Rayleigh wave pulse on a half-spacsz,
as indicated by the analytical theory which is presented in
Section 2.3, is a prerequisite tothe development of a model for the
interaction and scattering of Rayleigh waves by more complex
features.

The basic model node arrangement for the computer program,
Program A, which models a Rayleigh wave pulse on a half-spece, is
showvn as Figure T.2.

Pseudo-nodes

e G- GE ST S e @A G G D GBS R AR SR R b SN m ew

S N W e \\T\Prce surfoce

l Artificisl
internal :
.. boundaries

Extent of

input pulse
(minimum of )
(2 by 2 wave-)

(lengths. ) arid

Node arrangement for first order finite difference model of
Ricker type pulse of Rayleigh waves on a half=-cpace,

FICURE T.2.

The propagation of the Ricker type pulse of Rayleigh waves
on a half-space was investigated for two values for each of the
two parameters, the material data for the half-space (polystyrene
o =0.24 and aluminium o =0.34) and the number of nodes per vave-
length (16 and 32 nodes). The value for the pulse wavelength, in .
metres, was that for 1 MHz. The media data uzed in the program is
that given in Table 11.

The maximum spatial extent of the half-space was 12.5 wave-
lengths long and 6.25 wavelengths deep, which corresponds to grid
dimensions of 200 by 100 nodes, at 16 nodes per wavelength,
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&. Distance travelled by pulse.

Tho propagation of Ricker pulses on halféapaces, at 16 nodes
per wavelength, is shown by numerical visualisation for the casa
of polystyrene data as Figure 7.3 and that using aluminium data as
Figure 7.4. |

For the two cases shown in Figures 7.3 and 7.4 the numerical
model for the half-space, Program A, was tested for the accuracy of
wave propagetion velocity. The distance travelled by the rpulse, as
observed in the numerical visualisation and the free surface
dicsplacement data was measured and this was compared with the
distance Yhe pulse should travel, as glven by the wave velocity
and the time} the number of iterations multiplied by the time
'increment. The results obtalned for the two cases, shown in

Figures 7.3 and 7.4 are presented as Table 12,

On polystyrene, Cn aluminium,

Distance travelled .
O 2 0—' O. 0" .(J
given by calculation. 516 1 2,59 15.70 457 | 2.2815.¢C

Distance travelled
given by finite 0.498 | 2.52 5,58 |0.436 | 2,18 | 4.87
difference scheme,

Tercentage difference,
when distance as given
by F.D. is ccmpared -4 -3 }=2 -5 -5 | =4
with that given by
calculation,

Comparison of distance travelled by Rayleigh wave pulses on
half-spaces, as given by pseudo~node finite difference model
with that given by calculatlon using the wave velocity, for
polystyrene and aluminium,.

TABIE 12,

It is shown by the values for distance travelled given in
Table 12 that there 1s a systematlic lag in the position of the
centre of thke pulse which 1s larger than the maximum positicn
error due to grid spacing of T0,04 which gives a rercentege
error of 0.8 % at .5 wavelengths on pelystyrene. The errors are
&lso seen to be 1afger for the higher Polsson's ratio material,
aluminium,
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b. Pulse shape changes.

The chsnge of pulse ghape with dietance travelled was
investigated for the model using both polystyrene and aluminium
data and with different numbers of nodes per wavelength. Thz pulse
as given by the model, for calculations at 16 nodes per wavelength,
for the two media, after different numbers of iterations are
shown in Figures 7.3 and T.4. |

It 45 shown in the figures that about up to 100 iteratione the
pulse shape change, measured as a percentagze change in smplitude of
the pulse compared with the corresponding point in the input pulse,
when measured,was less than 10 £, hut after this number of iterationg
distortion rapidly increased.

When 32 nodes per wavelength were used in the model it was
found that the number of iterations before 10 % changes in
amplitude occured increased to aboui 200, but the distance travelled
in wavelengths, because of the corresponding reduction in the time
increment, was almost the same eand the calculations required the
number of nodes to be quadrupled to give the same dimensicns of
space in wavelengths,

The pulse displacemcnt decay with depth curve 1s shown asln
Figure 4,12, It 1s necessary to truncate the pﬁlse at some dzpth,
as was considered in Section 4.4.1, and it is found that to give
a pulse which will propagate without introducing additional errors
the depth truncation must be made at three wavelengths at least,

c. Spectral measurements,

The Ricker pulse used in the present study is constructed by
calculations which start from the wavcnumbe: spectra. The spectra
for a pulse, calculated with polystyrene data using 35 nodes per
wavelength, are shown as Figure 4,10,

In spectral analysis measurements the pulsce spectra are
obtained using a procedure which is the reverse of that set out
in Section 4.4,1 for pulse synthesis.

After pulse propagation has started the major problem is ihe
synchvonising the position for the applicatlon of the pulss enalysis
subrountine with the pulse centre pociticned on or very close te &
nodez., It is found, even at 32 nodes per wavelength, that changes of
the ordexr of 5 & oceur in the maximun amplitude of the wave

nurmber spectra as the.pulse moves from one ncde to the next.
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As propegation proceeds errors ﬁere found to increase, especially
at the high ffeﬁuéﬁ;& end of the spectra,.

In the present study,measurements 0f the spectira were made
using 16 and 32 nodes per wavelength and the resulting spectra
for the vertical component of diesplacement are shown as Figure 75,
For the case of spectra calculated at32 nodes per wavelength,
shown as Figure 7.5a, it is seen that repeatable spectra are ‘
obtained, However in the case of ;he calculations at 16 nodes per
wavelength, shown as Figure 7.5b,large percentage errors are found
to have been introduced after only two iterations. The percentage

errors observed are given as Table 13,

lave number’ 0,5 1.0 1.5 2.0
(normalised)

Percentage
difference - 3, -4, -7,
c.fe £t =0 3
spectra,

"15.

Percentage change found in wavenumber epectrum for
16 nodes per wavelength curve in Figure 7.5b.

TABLE 13,

The values given in Table 13 are found to be in general
agreement with those for the Fractional error term given in
_Table 5., '

The results presented in this section are compared with thosze
from a model using s second order formulation, which are presented
in Section 7.3.1, experimental measurements and the results of
previous studies, in Section 9.2.
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J:2.2 Ravleieh waves on ocusrter enaces,

L Jo

e ic g single cerncr eonfiguration, with a
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90° corner at the Intersection of two free sux rfaces. From the

basic Rayleigh wave theory, as there i3 no characteristie dimension

in the corner, there should be no waveleagth dependance in the

scattering of the Rayleigh wave pulse by ii. This should enable

wavelength independant scattering coeffisierts to be established,
The basic node arrangement for the computer program,

Program B, which models a Ricker type pulse of Rayleigh wavos on

a quarter space is shown as Figure 7.6,

Extent of
input prulse,
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\
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N
- - —

Artificial intermal bounlaries,

—

FNode arrangement for first order finitc diffcrence model of
Ricker type pulse of Rayleigh waves on a quarter space,

FIQURE 7.6,

The propagation of the Ricker type pulse of Rayleigh waves

on a quarter space was investigated usirg the node arrangzment
ghown in Figure 7.6 with the data for a ranga of alffcrent madia
which have Poisson's ratics in the range from .2 to <36, vaing |

pPulses of different sizes and & centre wavelength correspending to
a frequency of 1 liHz, ‘
&. Dasic pulse analysis.

The propagation and scattering of the Rickewr pylga wano
investigated and for each model run,at regular intervals (usually
every 20 iterations), seis of dimplacements were recordey and

leys plotied, on ezample of which

nrerical visualizatlen type dinmpleyse

wag ghown in Section 5.2 as Figure 5.1, 43 shown here as
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Fignre 7.7. In the frames given as Figure 7.7 the time development
of the system, including mode conversion, can be seen.

The scattered pulses generated at the corner by the model are
jdentified by observing the direction of displacements in the pulses
in relation to the respective direction of propagation for each
pulse and by measurement of the wave velocities as given by the
finite difference scheme; which can be compared with thosa from
the materisl data. Typical values for the velocities of the
scattered pulccs obtained using aluminium data and 16 nodes per
wavelength are presented in Table 14 together with the corresponding
values for the wave velocities given in the data presented as
Table 11,

Rayleigh wave Compressional Shear wavae
vel. m/seac. wave vel. m/sec. vel. m/sec,
Data from r . 110.°
Table 11, 2906. 6422 3
From FeDe 2973, +100 6141. <+ 100 2972, = 100
model.
Percentage
difference -5 -4 -4
between F.D}
and data,

Wave velocitles for scattered pulses on an aluninium quarter speoce
as given by finite difference first order scheme compared with
material data values,

TARLE 14,

A further form of analysis, which assists in following the
time development of the system at specific nodes, and helps tc
identify pulses, is scismometer analysis, which gives particle
displacements with time. Examples of this type of display, for ths
two nodes P and Q, shownm in PFigure 7.6, are given as Figure 7.8,

The main scattered pulses identified on the cuarier spaca are,
firstly a compressional wave with a pulse wavelength which
corrasponds to the centre ffequency of the Ricker pulse. Secendly
& shear wave pulse, which is only identifiable in the final
frame, gshown as Pigure 7.7c¢$ this wave hus & velocity of only 7 %
more than the Rayleigh wave pulses; and thirdly & pair of PS pulses,
50 called in geophyéics, which occur where the expanding

compressicnal wave front weets the surface and mode converts. The
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PS wave has a stralght wavefront which forms a {fangent to the shear

wave,

b. Transmission and reflection coefficients cn quarter spaces.
Follewing from the identification of the basic pulses which
result from the scattering of a Rayleigh wezve pulse on a quarter
space, measurements were made, based on the amplitude data, to
establish trensmission and reflection coefficients and estimate
the loss in energy from Raylelpl. waves, due to mode conversion,
A series of model runs were performed Tor a range of
different media, with different combinations of pulse length and
depth at different numbers of nodes per wavelength., Some of the

results obtained are presented as Table 15,

Pulse size {[Nodes . Mode
(in nodes) pe; Material Poissonts | Ref, Tranc}conv,
(o' . > er e
Jiath | Deptn * ratio coef. coet, lgsu
5C 50 16 Alumninium 0.34 0.51 0.54 45
3.06 “'008
64 74 16. Aluminium 0.34 0.45 0451 €4
: 005 :QO:;
100 90 35 Aluminium 0.34 0.49 0.64 35
Z.05 x.05
100 30 35 Polystyrene| 0,24 0.39 0.65 43
100 30 35 Steel(mild) 0.29 0.56" C.47 47
100 90 35 Chromiun 0.21 0.52 0,54 44
100 20 35 Titanium 0.36 0.56 0.51 40

List of transmission and reflection coefficients for Ricker pulses
on’ quarter spaces, for a range of values for both pulse and
material data, with a space with dimensions of 156 by 156 nodes,

TABLE 1

It is shown by thes results given 2s Table 15 that there are
several factors which influence the values for the scattering
coefficients on a quarter space. These factors are identified and
considered further in rslation to these results, thoze from an
alternative numerical model, repcried in Section 7,3.2, experimental

meagurements and those of other workers in Section 9, 3.
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T.2.3 Ravleipgh wuves on three-~guarter spaces.

The three-quarter gpace is a single corner configuration,
with a single 270° corner at the intersection of two free surfaces.
This confliguration, like the 900 cornexr or quarter space, has no
characteristic dimension so it should have wavelength independent
scattering coefficients. ’

The basic model node arrangement for the computer progran,
Program C, which models & Rayleigh wave pulse on a three-quarter

space 1s ag shown in Figure 7.9.

. : | ‘\
Pseudo-nodes |
0 AN
| AN
N
N
Free — N\
surface o AN \W SN\
Extent of ///
input pulse
(3 vy 3 )
(wavelengths) é{/

Artificial internal boundaries

Node arrangement for first order finite difference model cf a
Ricker type pulse of Rayleigh waves on & three-gquarter space.

FIGURE 7.9,

The propagation of a Ricker type pulse of Rayleigh waves ¢n
a three-quarter space was investipgated using the node arrangement
cghown in Figure 7.9, using both polystyrene (6°=0,24) and
aluminium (6~ =(,34) data from Table 11 and 16 nodes per wavelength
with the pulse centre wavelenzth correspending to a frequency
of 1 MHz,

&. Dasic pulse aralysis,

The propagation and scattering of a Ricker pulse was
investigated and for each model run a series of sets of displacements
were racorded at reguler intervals and numerical visuvalisation
type displays were plotted, an exanmple of which is shown aos
Figure 7,10,
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The time development of the system is shown and the maln mode
converted pulsc 1s a near circular shear wave centred et the corner,
the majority of the energy in which is in the arc 45° atout the
direction of propagation of the Ricker pulse on the free surface
before the interaction at the corner, There was very little energy
node converted into comprassional waves,

The wave veloclties of the scattered Rayleigh and shear wave
pulses were measured on the model and they were found tc be in the

same range of wave velocities as those ghown in Table 14,

b. Transmission and reflection coefficients on three-quarter spaées.
Fellowing fhe identification of the basic scattered pulses
‘for Rayleigh wave scattering on three-quarter spaces, measurements
were made, based on pulsec amplitude dats, to establish transmission
and reflection coefficients and to establish the wode conversion
energy loss from Rayleigh waves.
Model runs were performed using the data for two media,
polystyrene (0"=0,24), which is sghown in Figure 7,10, and
aluminium (¢” =0.34), both using 16 nodes per wavelength. The results
obtained for valueg of scattering coefficlents are presented in
Table 16,

1 ] . m . af. 5
Yaterial Poisson's Reflggtion Tranasmission | % mode
ratio. coefficlent.|coefflicient. | conversion
1oss,.
Polystyrene| 0.24 0,09 ¥£,03 0,24 .03 93
Aluminium 0,34 0,10 *.03 0,22 =.03 94

List of transmiszion and reflection coefficlents for Ricker pulses
on polystyrene end aluminium three-quarter spaces, using 16 nodes
per wavelength,

TABLE 16,
The results for the three-quarter space are consideresd
further, together with those an alternative numericel nodel reported

in Section 7.3.3, experimental measurements and the pravious work

of other workers, in Section 9.4.
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7.2,4 Navleizh waves at down steps.

The down step, with a 90° and a 270O corﬁer separated by a
vertical distance (h), and when the step height (h) is less than
two wavelengths it forms the éimplest configuration for which the
scattering coefficients are wavelength dependant, So 1t can be expected
that the values of the transmission and reflection coefficients
for scattering with pulsed Rayleigh waves will vary with the steb
height (h) to wavelength (%) ratio.

The basic node arrangement for the computer program, Program D,
which models a Rayleigh wave pulse at a dovwn step is shown as

Pigure T.11,

Extent of
Pgeudo-nodes __ _input pulse

Free | N N N N NN \?/ XN
surface ////
[ /

Artificial internal boundaries.

h

NN NN NN \‘\‘\\1

/3////

Node arrangement for first order finite differcnce model ¢f a
Ricker type pulse of Rayleigh waves at a down step,

FIGURE 7.11,

The propagation of a Ricker type pulse of Rayleigh waves and
their interaction and scattering at a down step was investigated
using the node arrangement shown as Figure T.1%1. The model was
used with data for three media, polystyrcne, aluminium and quartz,
the parameters used being given in Table 11, with a range of step
heights, using 35 nodes per wavelength end the pulse centre wave-
length corresponding to a frequency of 1 NHz,

The computexr runs were all performed using a grid with
dimensions of 300 ty 100 nodes., The large space, in nodes was used
because of the experienge gained with half-space and quarter space
models and also to permit the wodelling of a range of different
step heights in the main rapge of interest, step height to wave-
length ratio values frem about 0.1 to 1.0,
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&. Dasie pulse analysis.

The propagation and scattering of Ricker pulse¢ by & range cf
different height steps, on different media, was investigated and for
each model run a series of sets of displacements were recorded at
regular intervals and numerical visualizaticon type displays were
plotted. Kumerical visualization'type displays for a half-wavelength
deep down step, before and after scattering are shown as Figure T.12.
The main scattered pulses in the system are identified in
Figure 7.12c. The compressional pulse radiates from a point near the
90° corner and the shear wave from the 270° corner. The energy in

.each mode is found to vary with step helght.

b, Transmiscion and reflection coefficients at down steps.

Following the identification of the basic pulses in the pattern
of scattered pulses at a down step, mcasurements were mads, based
on asmplitude data, to establish transmission and reflection
coefficlients and to establish the mode conversion energy loss from

Rayleigh waves. Some of the results obtained are set out in Table 17,

raterial. Step Tranemission | Reflection % Energy
height. | coefficient, ccefficient, mode converted

Polystyrene|0.228 0.65 *.05 0425 *.05 52
Polystyrene|0.456 0.30 *.05 0.40 £.05 75
Polystyrena{0.694 0.30*.05 - -
Aluminium |0.228 0.63 1,05 0.24 T.05 55
Auminium [0.456 0.45 2305 0.49 +.05 56
Aluminium [0.57 0.32 +.05 0448 X .05 67
Aluminivm  [0.69 0.29 .05 - -
Aluminium |0,912 0.18 *,05 - -
Quartz 0.456 Q.34 .05 0.42 X .05 71

Irensmission and reflection coefficlents for Ricker pulses st down
steps, using 35 nodes per wavelength.

TARLE 17,

The gaps in the values for rcflecticn coefficients, shown
88 Table 17, are due to the presence of oscillations in the region
near the 90o corner which make amplitude based weasurzments
inaccurate. The values for the scatlering coefficients of tha down

step are considered further in Section 9.5.
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T.2.5 Ravleich wavea at up cteps,

The up step is similar to the dowa step except that pulse
starts on the lower surface and is scattered first at the 270°
corner. This configuration is of importance &s it, when combined
with the down step, enables an open slot to be constructed.

The basic node arrangement for the computer program,
Program E, which models a Rayleligh wave pulse at an up step 1s

shown in Figure 7.13.

Pseudo-nodes

Extent of | : SN NN NN NN su;'§zge
input pulse i N

Artificial internal boundariles

Kode arrangement for first order finite difference model of a
Ricker type pulse of Rayleigh waves at an up step.

FIGURE 7.13.

The propagation and scattering of a Ricker type pulse of
Raylelgh waves was iﬁvestigated for a range of different height
Asteps using aluminium data with the node arrangement shown as
Figure 7.13, The computer runs were performed using a grid with
outside dimensions of 160 by 100 nodes and 32 rnodes per wave-
length, with the wavelength for the pulse centre frequency of 1 Klz.

&« Basic pulse analysis.,

' For each model run a series of sets of displacements were
recorded at regular intervals and numerical visualization type
displays were plotted., Numerical visulizatioa type displays for
pulses with half wevelength and 1.4 wavelength steps are shown as
Pigures 7.14 and 7.15 and Figures 7.16.and ToAT respectively.

It is seen in all the figures that a strong pulse of mode
converted ghear waves radiates a nearly c¢onrlete circular are
from the 270° corner which interacts with the upper surface but

o
not the 90" cerner. In the case of the deep step, secondary mode
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converted pulses are produced, as shown in Figure 7.17, when the
Rayleigh wave transmitted past the 270° corner is scattered at the
90° corner. '

In th2 case of the system shown in Figure 7.17, the surface
wave pulse reflceted at the 90° corner was also detected and
measured on the vertical free surface, before it reached the 270°
corner, where it was scattered, with most of its erergy being
mode converted into a shear wave pulse. The secondary scattered
pulses are not identified in the figure, but they can be zeen
collectivly in the region behind the main pulses. »

It was observed, in Pigure 7.17, that the amplitude of the
displacements in the pulse on the top surface increased as the pulse
moved awzy from the 900 corner. This was investigated experimentally

gand the practical measurements and results are reported in Section 8.

b. Transmission and reflection coefficients at vp steyps,

Followiné the identificatlon of the basic scattered waves, in
the the pattern of scattered energy at an up step, measursments
were made, based on amplitude data, to establish transmicsion =nd
reflection coefficlents and to estimate the mode conversion losa
from Rayleigh waves.Some of the results obtained with up steps on

aluninium are shown as Table 18,

Hatertal | e | sent, | nostriatont. | noin sovvertod.
Aluminium | 0.5 0.5 .05 0.11 +.05 T4
Aluminium | 0.75 0.4=,05 | 0,10 £.05 83
Aluminium | 2,375 | 0.16%.05 0.11 *.05 96

Transmission and reflecticn coefficients for Ricker pulses at
up steps on aluminium, using 32 nodes per wavelength,

TABLE 18.

From the results presented in Table 18 it is seen that
reflected pulse from anm up step is of the same amplitude as that
from a three-quarter spece, using aluminium data, and that there are
increzasing mode conversion cnergy losses from Rayleigh waves as the
step depth is Increaced. The values for the scattering coefficlents
at up steps end the mode ccnverted waves are considered further
in Secticn 2.6
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T.2.6 Rayleich waves at open slots.

The open slot normal to the free surface 1es an idealiseqd
crack configuration, and it is modelled by combining the
formulations used fof the down end the up steps. The interaction
and scattering of pulsed Rayleigh waves has been found to be wave-
length dependant for slot depths up to about 1.5 wavelengths.

The basic node arrangement used in the cémputer program,
Program P, which models a Rayleigh wave pulse at sn open slot in

a half-space is shown as Figure 7,18,

Extent of
input pulse LJL, Pseudo-nodes

L e . W S G ewn e o e aus e mas vem e

Free AN SN\ 'l NIV N ONTONNN
surface N uJ N
I / N

Artificial internal boundaries.

Kode arrengement for first order finite difference model of &
Ricker type pulse of Rayleigh waves at an open slot.

FIGURE T.18.

The node arrangement shown in Figure 7.18 was used to
investigate the propagation and scattering of a Ricker type pulse
of Rayleigh waves at a range of open slots in an aluminium half-
space. The computer model runs were performed on a half-space with
node dimensions of up to 200 by 100 nodes, using 32 nodeé per
wavelength and the wavelength corresponding to a pulse centre
frequency of 1 MNHz,

a, DBasic pulse analysis,

The propagation and sgattering of Ricker type pulses by =
range of slots was investigated and for each model run a serics of
sets of displacements were recorded and numerical visualization type
displays plotted &t regular intervals, ndrmally every twenty
iterations,

Selected frames from two serics of numerical visualization

type displays, for pulses at quarter and half wavelength deep (a)
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and one eigth of a waveléngth wide (w) open slots, are shown as
Figures 7.19 and 20 and 7.21 end 22 respectively.

The main scattered pulses are, in both cases, reflected and
transmitted Rayleigh waves, a shear wave, radiating from the bottom
of the slo%¥, & compressional wave, radiating from near the 900
corner and a FS wave where the compressional wave mcde converts at
the free surface,

The wave velocities of the various scattered pulses were
measured and they were found to have values in.the same range as
those given in Table 14 (in Section 7.2.2).

It is found for wide slots, those with a width greater
than about half a wavelength, that the pattern cf "reflected®
pulses is almost identical to that for the corresponding depth

of down step,.

b. Transmission and reflection coefficients at open slots,
Following the identification of the main pulses in the

pattern of scattered waves at the open slot, a series of model

runs were performed with 3 wavelength wide slots of different

depths {o determine transmission and reflection coefficients, based

on emplitude data. The results obtained for a renge of different

depth slots on aluminium are presented as Table 19,

raterial Slot Reflection Transmission | % Energy
depth, coaefficient, | coefficlent., | mode converied.
Aluninium | 0,125 0.12 %£,05 0.83 *.05 30
Aluminium | 0,25 0.20*.05 0,37 3,05 82
Aluminium | 0.5 0.42*.05 | 0.25 .05 77
| Alunirdum | 0.875 - 0.07 .05 -
Aluminium | 1,00 0.45 %,05 0,06 £.05 75

Tranesmission and reflection coefficients for Ricker pulses at
open slots in aluwninium, using 32 nodes per wavelength,

TABLE 19,

The results presented in Table 19 are considered further,
together with those from cxperimental measurements, reperted in

Section 8, and the results of other workers, in Séction 9.7
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b. (t = 0916M3900)
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T7.2.7 Ravieiph waves on a black,

This scction reports on the extension of the model to
consider the propagation of EBayleigh waves on a block, a plece of
material of limited spatial extent, as opposed to a semi-infinite
medium with a step or a slot on the free surface. It provides a
model of a real experimental configuration,

The block, a rectangular plece of material with four free
surfaces and four 90° corners, is modelled using a pseudo-node
scheme to satisfy the free surface boundary conditlons which is
extended from that used for the quarter space program, considered
in Section T.2.2, and presented in Appendix E.

The basic node arrangement used in the computer program,
Program G, to model the Ricker type pulse of Rayleigh waves on

a block is shown as Figure 7.23.

Extent of
D input pulse A
f_Free surface Peeudo=~
| N NN N N NN\ nodes
|
N
|
N\
!
N
459 | \
N
|
N
|
| §>\\~ NONONOONONON NN
Qs v soome wn  ewwe  eam e ansa  wea
C B
. 6.3V -

Node arrangement for first order finite difference model of =
Ricker type pulse of Rayleigh waves cn a block,

FIGURE T.23.

The model arrangement as shown in Figure T7.23 vwas used to
follow the propagation and scattering of a Ricker type pulse of
Reyleigh waves on a block using aluminium ( o"=0,34) data, given
in Table 11, at 16 nodes per waveclength, The size of grid used in

the wodel was equivalent to a.resl Llock with dimensions of
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18 by 13 mm for a pulse with a centre frequency of 1 iz,
2. Basic pulse nnalysis.

For the model,sets of displacenents were plotted at each of
a series of time oteps to give the numerical visualisation type
of displaye. For each time time level for wvhich a numerical
visualisation plot was produced the numerical values at selected
nodes, principally those at the free surfaces, were recorded for
additional ensalysis,

" The time development of the pulses on and in a block is
presented as Figures T.24, T.25 and 7.26., The inltial system was
as indicated in Figure 7.23, with the corners identified by the
lotters A, B, C and D and the sldes ldentified by the letter
combinatione ADB etc,

The three frames, shown as Figure 7.24, follow the systen
development after the initial interaction of the Ricker pulse
with the 90° corner A. The compregsegion (C1) end rarefaction (02)
of a mode converted compressional wave (C) are seen to radiata
across the tleck from corner A. The compression (01) is seen to be
reflected at the surface BC, introducing the pulse (03). The
PS and shear modes are identifiable in PFigure 7.24c.

The three frames, shown as Figure 7,25, follow the systen
development in the time following that shown as Figure 7.24,
from model time t = 4.58 to t = 5.496/%sec. The compressional
wave (C) is seen to move along the surface generating the rceflected
compressional wave (ch) vhich radietes away from BC at the same
angle as the incident pulse. It is also seen that in Figure 7.25b
that the compression (C1) reaches the surface CD causing it to
bulge. In the frame for t « 5.496, shown as Figure 7.25¢, it is
seen that the surface mode conversion of the compressicnal wave (),
the PS waves have moved past the corners B and D, The compressional
wave (CrC) 3s crossing the bulk of the medium going towards the
surface DA, The shear wave (S) is moving in the bulk of the medium
&end in the regien near corner C a ceonmplex series of internctions
between the compressionsl waves (C) cnd (crc) are occuring giving
rise to further mode converted pulces,

The final state of thoe system at t = 5.95/Asec is shown as
Figure 7.25. This is the syctem after 260 iteraticns efter which
the results become less accurate due to the limited size of erig

-137= -
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used, The main pulses identified in this frame are the reflected
(Rr) and transmitted (Rt) Rayleigh wave pulses, the primary

mode converted compressional wave (C) end the reflected compression
compressional wave (Crc)’ the primary mode converted shear wave (3)
and the mode conversion of the compressiocnal wave (C) at the free
surfaces, the PS waves.,
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T3 Programs with second orvder formulations for the houndory

conditionn,

This section presents the computer model parameters, with the
results, for pulsed Rayleigh waves on the range of single media and
two media configuratlons shown in Figure T.27.

The single medium models reporited in this section were produced
with the aim of improving on the results obtained with the models
reported in Section 7.2, which use pseudo-node formulations for the
boundary cerditions. The two media configurations were considered
with the aim of providing an understanding of the interaction of
Rayleigh waves with a filled slot. The two media configuration
models use the new formulation for the free surface/interface node,

derived by tne author, and presented in Section 4.3.4 and Appendix G.

| S
BB RRRN RSN \\\ |
AY

: | ! N S

| l . | \] ] |
| N\ l

.!-———. —— —— —— -.' I___. — — _!_... — - - —— b

Balf-gpace. Quarter space. Three~quarter

(Program H) ‘ (Program I) space. (Pregram J)
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| g l
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— s o ..// -l G e e e e -l

Velded quarter spucegs. Filled slot.

(Program X) (Program L)

Configurations studied usingz second order formulations for the
boundary nodes in the computer programs, ‘

RICHSE 7,27,

Tha results presented in this section are considered further
and compared,in Section 9, with those given by the models described
in Scction 7.2, the experimental results, presented in Section 8,

and the results of other workers.
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Te3:1 Raylelesh weves on half-anaces,

The ability to produce a computer modsl which gives the
nondispersive propagation cf a Rayleigh wave pulse.ié a prerequisite
for the accurate modelling of more complex configurations.

The basic nodal arrangement used in the computer program,
Program H, which models Ricker type pulses of Rayleigh waves on

a half-space is shown as Pigure 7.28.

Extent of
input pulse Free surfacs,

NN SN NN N N N N N NN
27/
//i::' Grid I

Artificial internal boundaries.

Node arrangement for second ofder finite difference model of
a Ricker type pulse of Raylelgh waves on a half-gpace.

FIGURE 7.28,

A model was produced using the node arrangement shown in
Figure 7.28 and using the sécond order composed formulation for
the free surface nodes, However the program was found to havs s
limited range of stability, with the vertical component of
displacement going unstable after only a few iterations when
material data with a ‘.’S/Vc ratio value below about ,5 was used,

This problem has been reported previously by Ilan and lLowenthal
(1976) and their necw ccmposed formulation, which i1s presented in
Section 4,3.4 and which has a larger range of stebility, was adopted
for use as the horizontal free surface formulaticn in the second
order programs in the present study.

Using the new composed formulation,the propagation of Ricker
type pulses of Réyleigh waves on hslf spaces was irvestigated using
both polystyrene and aluminium data, presented in Table 11, and
different nwebers of nodes per wavelenglh with the wavelength

corresponding to & pulee centre frequency of 1 NHz,
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a. Distance travelled by pulse.

For each model run,a series of sets of di placements were
recorded and numerical visuvalization type displaye were plotted
at repgular intervals. Uaing the numerical viesualization displays,
the rropagation of Ricker type pulses of Rayleigh waves on e
half-space was lanvestigated with both polystyrene and aluminium
data using 16 nodes per wavelength,Selected frames of the output
for the case of a pulse on en aluminium half-space are shown as
Figure 7.29. '

The distance travelled by the pulse, as given by the finite
difference mcdel using a four wavelengtn square pulse, was
compared with that given by calculaticn with the wave velocity
from the material data and the results using aluminium data are
shown as Table 2C.

XTI EILT AL b kR W N

Number of itercLlonv
20 100 140 200

Disteance travelled,

5 5 2 4.5
given by calculation 0.458 | 2.291 3.207 14,583

Distance travelled, 0.456 .278 3.217 [ 4.550
given by P.D. mocdel *.05] *.o5 r.o50 X.05
% difference

between F.D, and - 0.6 - 005 ¢ 0.4 + 0.2
calculated,

% error due to
measuring pulse
position to noarest
+ noge.

Comparison of the distance travelled by a Rayleigh wave on an
aluminivm half-space as given by second order finite difference
model, with that given by calculation from the wave velocity.

TARLE 20,

From the results presented in Table 20 it is seen that the
errors found in the pulse distance travelled, as given by the
finite difference scheme, are less then the limits to gccuracy set
by the measurement of the pulse pcsition to the nearect node.

From the results in Table 20 there is therefore ns indication of
&ny systematic error in pulse position up to 260 iterations.
Simllar accvracy was found in the results for a pulse when ucing

Polystyrene data.

-144-



Te3e

.. CITEICE - -
T Pa
TR
R A
mat=u
F~r=1
X
i
b. : [ - L_
— f,__\'::-
A?RCJVF‘_"
-
==
= r“‘ 3
':
!
k|
A
el o ¢
] 4
Q}
i
F
3
Coe “X ‘ é
PRV “
= f’\f:_lfﬂ
==
=
]
;
:

Ricker pulse on an alvminium ¥ space, using 16 nodes per wavelength,
System after; a, 20, b, 100, and ¢« 200 iterations,

FIGURD 7,29,

145~



b« Pulse shape changes.,
rollowing the measurement of rulse dastunce travellcd,the

change of pulse shape with distance,was investigated for tha

)
medel using aluminium data and both 32 and 16’nodas per wavelength.
For the mndel, when wusing 32 nodes per wavelength, for
meagurements of pulse shape made up to 50 iterations there was no
change of shape. Neasurements were then made using 16 nodes per ‘
wavelength and the shapesof the vertical component of displacement

at t = 0 and after 200 iterations, in which the pulse moved about

4.5 wavelengths, are shown as Figure 7.30.

¢« Opectral measurements,.

Becaugse of the very good, almost necndispersive, pulse
‘propagation achieved using the new corposcd formmulation for the
free surface nodes, when using only 16 nodes par wavelength, this
scheme was adopted for use in all second order models. Howevar,
due to the inherent errors in spectral meacurements at this number
of nodes per wavelength they have not teen used with the second
order models, The use 0f16 nodes per wavelength givea, of course,
considerable savings in the number of nodcs required to modsl
a givEn size of feature, when measured in wavelengths.

The model results presented in this scotion are compared with
those which use the pseudo-node scheme, which were reported in
Section T.2.1, exporimental measurements and the results cf

previcus studies in Section 9.2.
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Amplitude.
107
0:5 -
~
0.5 .

tical component of displacement at the free surface
ucing a second crder schems with aluminiun data and
at ¢t = 0 and after 200 (dashedline)

Ricker pulse ver
of a half-space,
16 pedes per wavelength,
iterations.

PLOURE T30,
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7.3.2 Ravleirh waves on _cuarter sraces,.

The quarter space 1is a éonfiguration
with a single 90° corner at the intersection of two free surfaces,
the scattering at which should be characterised by wavelength
independent transmission and reflection coefficients.

The basie nodal arfﬁngement used in the computer program,
Program I, which models Ricker type pulses of Raylelgh waves on

a quarter space is shown as Figure 7.31.

Extent of
input pulse,

Free AN —
gsurface NN N N N \\;>V/\

i

i
:
J

S L L L LS

Artificial internsl boundarics.

Node arrangement for second order finite difference model
of a Ricker type pulse of Rayleigh waves on a quarter srace,.

PIGURE Ta21.

The propagation of the Ricker type pulse of Rayleigh waves
on a quarter space was investigated using both polystyrene ( ¢ £0,24)
and aluminium (¢" 0,34) data, presented in Table 11, and 16 nodes
per wavelength, with the wavelength corresponding to the pulse
centre frequency of 1 NHz, |
a., Basic pulse analysies.

The propagation and scattering of the Ricker type pulze of
Rayléigh waves wasg investigated end for each model reny a series of
sets of dlsplacements were recorded and numerical visualisation
type displays were plotted at regular intervals. in exampls of
selected fremes from z numerical visualisation series are shown
&s Figure 7.32,

The scattered pulses generated by the cornsr can be clearly

seen and are a compressional wave, a shear wave ard refizeted and
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transmitted pulses of Rayleigh waves.
It is seen from Figure 7.32%c, that there 1s a difference in

the distance from the corner for the reflected and transmitted
Rayleigh wave pulses, with the distance travelled by the reflected
pulse being about 10 % less than that moved by the transmitted
pulse, o

The pulse velocities for the scattered pulses were measured
for the model vsing aluminiwa data at 16 nodes per wavelength and
these are precented in Table 21 together with the corresponding
values for the wave velocities given in the data presented as
Table 11,

Rayleigh wave Compressional Shear wave
vel, m/sec, wave vel. m/sec. vel, m/sec,.
Data from 2306, 6422, 3110,
Table 11
From F.D. 2873.%100, 6539.%2100, | 3070.% 100, !
model, : i
Percentage i
differencs - 1.8 -1.3
between F.D. 1.2 + _
and data, ﬂ

Wave velocities for scattered pulses on an aluninium quarter epace
as given by finite dffference second order scheme, compared wiih
material data. ;

TABLE 21,

b, Transmission and reflection céefficients.l

Following the identification of the basic pulses which
result from the scattering of a Rayleigh wave pulse on a quarter
gpace, measurements were made, based on amplitude data, to establish
transmission and reflection coefficients end estimate the energy
loss from Rayleigh waves, due to mode conversion,

lodel runs were performed with pelystyrens and aluminium data
end the values for the transmission and reflection coefficients
are chown in Table 2 2.
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Fulse size | Bedes ocde
(in nodes) | per Laterial Poisson's Ref. Trans. |conv
i o e ers oo} :Xj ratice coel. ogel, loess
%idth {Depth ()
48 48 16 Alwainium 0.34 0.47%.05 Q528,05 | 44
48 48 16 Polystyrens| 0,24 0.43%.05 {0.575.05 | 50

List of transmission and reflection coefficicents for Ricker pulses

on quarter spaces, with second ordsr nedal formulationas, with
space dimensions of 122 by 122 nodes.

TARLE 22,

The results obtained with this scheme are considered further
and compared with the resulis of the first order model, which are
presented in Section 7.2, the experimental results, which are

preaented in Section 8.4, and those of other workers, in Secction 9.3,
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Te3.3 Hinyleirh waveg on three—cuarter apices.

The threc-quarter space is a single cornsr configuration,
with a single 270° corner nt the intersection of two free curfaces,
the scattering ¢f Rayleigh waves at which,should provicde wave-
length independsnt transmission and reflection coefficients,

The tasic model node arrangement for the computer program,
Program J, which models a Rayleigh wave pulse cn a three~-quarter

space 1is shown as Figure 7.33.

. A A A3 Rk S ~ e

Tree surface.

Extent of
input pulse,

N

Artificial internal boundaries.

%
4%
%
/
/
/
o ¥

I

Rode arrangement for second order finite difference model of
& Ricker type pulse of Rayleigh waves on & thres-quarter space,

FIGURE 7,33,

The propagaticn of a Ricker type pulse of Rayleigh waves on
a three-quarter space was investigated using polystyrene data with
the node arrangement showvm in Figure 7.33 and 16 nodes par wavee
length, with the pulse centre wavelength corresponding to a

frequency of 1 Nz,

8. Basic pulse aenalysis.

The propazation of a Ricker type pulse was investipgated and
for each model run,a series of sets of displacements were recorded
at regular intervals and numerical visuvalisation type displays were
plotted, en example of which is shown as Figure 7.34.

The time development of the system 1s shown for s pulse using
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aluminium deta and in Figure 7.34c is is shown that the main node
converted pulse is a shear wave that radiated on a rnear circular

arc from the 270o with the majority of the energy in the &rC'ﬁ45°.

b, Transmission and reflection coefficients.

Follewing the identification of the basic pulses in the system
of mode converted waves, éomputer runs were performed using both
aluminium and polystyrene data at 16 nodes per wavelength and

measurements were made, baced on smplitude data to estadlish
transmission and reflection coefficients., The values of the

transmission and reflection coefficients asre given as Table 23,

Pulse size | Kodes % mods
(in nodes) i per Material Reflection |Transmissionjconv.
Width'Dopth coefficienticoefficient, iFnergy

‘ locs,
64 48 16 Aluminium | 0.11%,03 | 0.23 X.03 94
64 | 48 16 | Polystyrere| 0,09 %,03 | 0.22%.03 | 95

Transmission and reflection coefficients on three-quarter sreces
using second order boundary condition formulation, with polystyrecne
data and 2luminium data, btoth at 16 nodes per wevelength.

TABLE 23.

The results obtained with this scheme are considered further
and compared with the results of the first order model, which are
presented in Section 7.2, the experimental results, which are

presented in Sectien 8.4, and those of other workers, in Secticn S.4.
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T.3.,4 Rayleigh wavee on welded guarter spaces.

The configuration of weldad quarter spaces, two quarter spaces
of media welded along an interface, is one of the simplest two
media configurations. It does not have & characteristic dimensicn
end the scattering is dependant on the material parameters,such as
the density and wave velocities 1in the two media.

The basic node arrangement in the computer program, Frogrem K,
which models Rayleigh wave pulses on welded quarter spaceg, is shown
as Figure 7.35. The nodal formulation uced for 'the free surface/
interfece node (P) is a new second order formulation derived by the

author and presented in Appendix G.

Extent of input pulse
(3.1 by 3.7 wavelengths)

N NN N N N N N\

Free <
surface,

NN N\

i Artificial
/// internal
/] . boundary.

¥edium 1, Medium 2.

Interface,

Node arrangement for second order finite difference model of
a Ricker type pulse of Rayleigh waves on welded quarter spaces,

PIGURE 7. 35.

The propagation and scattering of a Ricker type pulse of
Rayleigh waves on welded quarter spaces was investigated using the
node arrangement shown in Figure 7.35 with 16 nodes per wavelength,
where the wavelength is that corresponding to a pulse centre
frequency of 1 Miz in medium 1,

. The basic nodal scheme was tested by using both polystyrene
and aluminium data with 16 nodes per wavelength and the same data
was used for both media., The scheme, ircluding the new free surface/
interface node formulation, was found to give the nondisperzive
Propagation of the Ricker pulse to the same level of accuracy as

~the second order scheme repcrted in Section 7.3.1 for propagation on-
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a half-srace,

The scheme waz then used with media date for the two gquarter
épaces that were different,The two media used in the precent study
were the same as those used by NecGarr ard Alsop (1967) ard by
Munasinghe (1972). These were polystyrene anc perspex and the

material data used is shown in Table 11.

a. Basic pulse nnalysis.

The propagatlion of a Ricker type pulse was inveatigated with
the pulse moving fron polystyrene to perspex snd vice versa and the
time development of the systems was followed by the use of
numerical visualisation type displays. The two combinations of
perspex and polystyrene are shown in the visualizations shown sas
Figures 7.36 and 7.37.

The basic system of waves are transmitted and reflected pulses
of Rayleigh waves andisome low energy mcde converted body and

interface waves,

be. Transmission and reflection coefficients.

In the previous studies on this confipguration by KcGarr end
Alsop (1967) and Vunasinghe (1973) the transmitted and reflected
pulses are measured in terms of coefficients which are the ratios
of the incident and transmitted pulse amplitudes and the incident
and the reflected pulse amplitudes respectively. The same procedure
is usged in the present study and the results for ﬁaves on the

two combinations of polystyrene and perspex sre given as Table 24,

)
' ﬁii;e1t::vglling Reflected Travaemitted
" 2 Incident Incident
Medium 1 Vedium 2
Polystyrane] Perspex 0.08%,03 0.90 3503
Perspex Polystyrene}0.07 32,03 1.12 £, 03

Pulse amplitude ratios for the vertical components of displacement

of the reflected and transmitted pulses of Rayleigh waves on
welded quarter spaces, i

IARLE P4,

The results presented in Table 24 are compared with these of
previous studies in Section 9.9,
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7¢3.,5 Ravieizh waves at filled slots.

The cenfiguration of a f£illed slot considercd in the prescnt
study was for a rectangular section of one isotropic homogeneous
medium set into and at, the surtace of a half-space of a second
isotropic homogeneous medium. ‘

The basic nodal arrangement used in the qomputer program,
Frogram L, which models a Rayleigh wave pulse at a filled slot is

shown ag Pigure T.38.

Extent of Filled slot.
i nps a Yediw
input pulse. (¥edium 2) Free

\\//'/\ N N INTE N N N N NN surfoce.

/7

(Medium 1)

Artificial internal boundaries.

Yode arrangement for second order finite differcnce model ¢f
a Ricker type pulse of Rayleigh waves at a filled slot.

FIGURE 7.38,

The model fof the filled slot was a dircct extension of the
welded quarter spaces model and the media selected for uze in this
model were those used for the quarter spaces and described in
Section7.3.4, as there are no previous/results for this configuration,
The node arrarngement shown in Figure 7.38 was used to investigate
the propagation and scattering of a Rlcker type pulse of Rayleigh
vaves at a slot in & block of polystyrene filled with perspex and
vice versa, using the material data shown in Table 11,

The model was used with 16 nodes per wavelength where the
vavelength corresponded to a pulse centre frequency of 1 Wiz
in the medium used for the block,

&« Baslc pulse snalysis,
The propagation and scattering of a Ricker typs pulse of
Rayleigh waves was investigated for geveral model runs and for each

& geries of scts of displacements were recorded and numerical
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visualisation type displéys were plotted at regular intervals,

An example of selected frames from a nurmerical visualisation

geries of a pulse at a wide deecp slot are shewn as Pigures 7.39 end
T+40.

The largest pulse ia the system is found to be the transmitted
one which has abeut 90 % of the input pulse energy in it, in the
cases of combinations of perspex and polystyrene. There are also
reflected pulses at each Interface and mode converted body wave
and interface waves which have low energies,

The energy in each pulse was found to be dependent on the
material parameters cof the medla considered and btoth the slot width
and depth.

b, Transmission and reflection coefficients.

Following the identification of the main pulses in the system
computer runs were performed using polystyrene and perspex data
end 16 nodes per wavelength to give amplitude based measurements
and establish transmission and reflection coefficlients. The values
of the transmission coefficient and the teflection coefficicnts
fur the pulses reflected at each interface for slots filled with
polystyrenc set in parspex half-spaces or vice versa are glven as
Table 25. |

+ space slot slot size |[Trans.j Vst ref., | 2nd ref! % I

material materisl width depthjcoef, coef, coef. lous,
(in nodes)

polystyrenejperspex 20 70 0.82 0.1 0.C8 14

perspex polystyrene| 20 70 }0.96 0.03 0.06 7

Transmission and reflection coefficients at filled slots.
(all coefficients are given with error bands of £.03)

TARIE 25,

The results obtained with this model are considered further

in Section 9.10.
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8, BXTERIMENTAL VORK,

8.1 Introduction.

This section presents the experimental work which has been
performed with broadband Rayleigh wave pulsés, of 1N¥Hz centre
frequency, to test the results of the nunerical models vhich are
presented In Section 7.

As stated previously, the present study was started as a
direct result of the work by lergzan (1973) at T.C.U., arnd the
baslc experimental equipment used in this study, with the
exception of the transducers, was the same, or an updated version
of the equipment which he used.

X full description of the basic analogue equipment, transducer:
drive unit, broadband receiver and spectrum analyser is given by
‘Morgan (1973) and Weight (1975), who built much of the equipment,
This equipment, together with-supporting oscilloscopes, plotter
end digital equipment forms the Central Ultrascnics Test equipment
for the Research Group in Ultrasonics of the City University, end
it is shown in Figurc 8.1.

The main aim of the experiments wss to provide time domein
signals, spectra and reflection and transmission coefficients, as
information for direct comparison with the results of the nunerical
model, Measurements were performed on a series of both sluminium anc
steel test blécks using the methods outlined in Section 5 and
concidered in deteil in this esection.

This cection considers the production of Rayleigh waves in
Section 8.2, which includes a more detailed comsideration of the
transducers used 1in the present gstudy in Section 8,2.1.

The evperimentel measurements made in the present study are
presented in two groups, firstly, a series of introductory
measurements using one preve in pulse-echo mode are roportad in
Section 8.3, and secondly the main series of experiments using

two probes on & range of geométries are reported in Section 8.4,
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The Central Ultrasoniecs Test Equiprent of the Research Grouy
Ultrasonics of The City University.

For each of the series of experiuents presented in Section 8.4,

following the discussion of the method,used)the basic results are
given. A comparison of the experimental results with thocse given
by the numerical models, and reported in Sectien 7, is given in
Section 9 which includes discussion of the results of previous

workers,

8,2 Ravleigh wave tronaducers,

This section presents a brief review of the alternative
mothods which have been used in provious studies to generate and
‘receive Rayleigh waves. It includes Section 8.2.1 which gives a
more detailed consideration of the transducers used in the present
gtudy. ' .

Tive basic me hods have been used in previous studies for

Reyleigh wave production and detection and the different types
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of transducers ars shown in Flpure 8.2.

The Tirst method of Rayleigh wave excitation is that used by
Pirestone end Frederick (1948) which io shewm as Pigurc 8,2a., and
uses a Y-cut quartz plate coupled to the surfece of a so0lid by a
thin eil f£ilm. Two Rayleigh waves are produced with equal
amplitudes and the maximum energy conversion into these waves is
achieved with the plate width (2a) to thickness (&) ratio of 7 3 1.
A plezo-electric disc can be used to produce Rayleigh waves in a
similar manner. .

The second method of Rayleigh wave production is that used by
Finton (1954), which is shown as Figure 8.,2b., snd this uses an
X-cut quartz crystal plate resting on an elastic wedge, Two weak
Rayleigh waves are excited and the optimum conversion iz achieved
when the plate is set at 450, with respect to the wedge feces.

The third method of Rayleigh wave production uses mcde
conversion at interfaces and is shewn in Figure 8.2¢. Plastice
wedpes with piezoelectric plates set on the sloping surface
wera used by Ninton (1954) and Cook and Valkenberg (1954) to
generate longitudinal (compressional) waves, at the disc
rescnant frequency, in the wedge, which with the correct wedge
angle mode convert to give Rayleigh waves aleong the free surface,

The wedge angle required to give optimum Rayleigh wave
production for a particular wedge material/test block material
combination is given by the equation which is given as;

sin® = V /V, . 8.2.1

where Vc is the compressional wave velocity in the wedge,
Vr is the Rayleigh wave velocity in the Vest block,

The optimum energy conversion to Rayleigh waves is achieved,
for a particular wedge angle and ignoring coupling problems, when
the leading edge of the disc (A) prejects to the front of the wedge
at the point (B), as shown in Figure €,2¢. Bulk waves sre also
produced by a wedge transducer at a level of between 20 and 30 4B
down on the Rayleigh waves, '

An alternative to the use of a plastic wedze is to use one
ﬁade of a metal such as copper or brass as this reduces coupling

roblems, However to do this the wave generated by the disc on the
wedge is required to be a shear (transverse) wave, the velocity
for which is used in cquation 8,2.1 in place of the compressioﬁ&l
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wave‘velocity to calculate the required wedge angle. The shear
wave has a lower initial energy but with the coupling advantages
this combination is sometimes preferable. (Shraiber 1959)

Using Rayleigh waves produced by shear waves in a copper wedge
ond photcelastlc visualization,Hall (1978) has shown ths complex
nature of the waves generated in the test block, including the
presence of several body wave pulses.

The fourth method of Rayleigh wave production is the use
of en interdigital comblike structure produced on the lower surface
of a digc of X-cut quartz, as shown in Pigure 8.24. (Sokolinski 1958)
This type of transducer was developed by Korgan (1970) and used
in his erack depth measurement studies. (Morgan 1973) Howeveg,he
found it difficult to get high energy Rayleigh wave pulses with
a short period. The fabrication of this type of transducer is
quite complex as it involves either the deposition of the comd
through a mask or the photo-etching of a layer of conductor
previously deposited en the quartz or plezo-electric dissz.

The fifth method is the use of the recently developed
non=-contact transducers which use eddy currents in the material
&nder the transducer in which a Rayleigh wave is to be generateq
to give vibrations which result in the production of elastic
waves. A transducer of this type due to Frost et al (1975) is
shown as Figure 8.2e, This type of transducer has been developed
for use as a tool to inspect hot metal blocks by Cole (1977).

8.2.1 Rayleich wave tranzducers used in this study,

The experimental measurements made in the present study were
performed to dztermine the 'surface displacements' in the Rayleigh
wave pulses and not just the time domain signals glven by wedpge
transducers with the supporting electronics and displayed on &n
oscilloscope,

In the present study,two types of Rayleigh wave transcucers
were used. These arec the longitudinal (compressioral) wave wedge
type and a new troadbsnd probe, which was invented by Frofessor
Harnik while working with the author at The City University, This
Haraik procbe has subsoquently been dsveloped by the auther in the
course of the fabrication arnd use of the probes in the rresent study.

~168=-



Be2s

8. The wedge transducers,

The wedge transducsrs used in this study werve bLased on a
Penametrics special short rulse probe, used on wedges made to
match the materiasl of the test block. The compressional wave
probe generated a 1 Atsec pulse when driven by a Thyristor Pulse
Generator which was found to have a 0 to 6 FHz spectrum, When
the compressional wave probe was used with a wedge matched to
aluminium the pulse-echo signal and spectrum obtained were as

shown in Figzure 8,3,

a
¢ 2 Usec.
Anp. A e} a -
time,
b
Amp. A
1.0 |
-
1 I 1 e
1 2 3 4 NEz,

Rayleigh wave ypulse on en aluminium quarter epace, measured with a
wedgr type transducer in pulse-echo mode;
8, Time donagin signal. b, Spectrum.

PIGURE 8,3,

In the present study the same compressional prote was uscd

on wedges to match it with eitherthe aluwiniuvm alloy or the steel
¢f the test blocks. The wedge angles used are ghown in Table 26 .
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Malerial. YWedge angle.
)
Aluminium alloy. £8
o
| Steel (mild). 64

Wedge angles recquired by Rayleipgh wave wedge transducers.

b. Harnik type probes.

The Harnik probe was invented with the aim of determining the
vertical component ¢f the free surface displacements, because the
time domain wave form given by a wedge transducer is for a mode
converted wave which has passed through the wedge before reaching
the piezoelectric crystal, where the electrical signal is produced,

The probe ig described by Harnik (1977), both for construction
and operation, and Figure 8.4, which shows the pulse construction,
is after Pigure 1 1in that article. Following the production of the
prototype transducer by Weight, for FProfessor Harnik, the author
fabricated a series of probes uvsing 10 MHz thickness discs. The
discs for use in the Harnik probe are required to be thin when
compared with the wavelengths of the pulses which they are to

receive if they are to give the true wave form,

Tungsten loaded
Araldite block.

AN

\\

\

WAN

" Tungsten loaded

Section AA Araldite block.

Aluminiuvm runner

The construction of a Karnik type surfece wave prove,

FIGURE B.4.
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In the conmstruction of the prototype Harnik probes, tungsten
powder was used to 'load' the araldite so as to provide acoustic
damping for resonant modes, In the later probes, constructed by
the aunther, it was found that the main function of the fdalgite
block was to provide mass and to prevent flexing of the plate,
which gives rise to radial mode resonance. Vhen 10 LHz resonant

thicknecs discs are used to receive pulses of 1 NHz waves,the disc

resonsnt thickness modes are not excited.
¢. Test measurements with Harnik type probtes,

A series of experiments were performed by the author to
evaluate gnd if possible improve on the performance of the
original Harnik probe. In these experiments Rayleizh waves were
generated by a wedge transducer and the Harnik probes were used ag

recelvers.
The Harnik probe is a line pickup and it is therefore

unidirectional and requires accurate alignment normal to the wave

train under investigation. To reduce the directionality of the
probe,the suthor modified the design and used a conplete disc

ih the probe which, after being set in the Araldite, was made to

have a square contact area,
point-contact probe, the time
on the disc with engles from C°to 9¢°

waves at normal and parallel

Using a square contact area,
domain signals with waves incident
were measured and the signals with
incidence are shown as Figure 8.5. 4 ten percent reduction in the

pulse peak-to-peak amplitude was measured,
A serles of measurements were made to compare the probes of

Harnik type constructed by the author with the prototype and wedgze
probes.

A wedge probe was placed on an aluminium quarter space ang
the receiving probes were placed in the position shown in Figure 8.6,
Heasurements were then made on the same pulsg, the puls sote.
from the 90° corner, using the wedge probe in pulsepeih: izzzﬁkted
using a line receiver, Harnik type, probs censtructed by the ;uthor
and the prototype Harnik probe. The three time domain signals are
shown in Figure 8.6.

It is seen from Figure 8.6 that the three transducers
prpduce different shape time domain 8ignals and this vas

investigated., The wedge and Harnik type probdeg cannot be egﬁpptpd
‘ 2 xpected
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to have the same time domain signals’as the wedge transducer
measures a pulce that has boen mede converted and pazced through
the wedge. However two Harnlk-type probes could be hoped to give
similar signals.

The D.C. resistance across the transducer leads of the two
Harnik probes was measured and in the case of the prototype probe
a resistance of 12 ohms was measured and in the case of the
author’s probe;a resistance of over 20,000 ohms was meacured. The
only difference between the two probes was in the gquantity of
tungsten powder used. The resistance across the prototype probve
block was then measured and fourd to be similar to that eccross
the leads. It was therefore concluded that the block was conducting
and ecting as a resistance in parallel with the disc.

This idea was tested using an & ohm, resistance in parallel
with the disc in the author’ probe, The resulting time domain
signals from these measuremnents are shown as Figure 8.7. It is
therefore concluded that when the original probe was made the
concentration of tungsten powder uscd was such as to give a
conducting backing block of low resistancey which caused the
pulse shape in effect to be differentiated,

8.3 Introductory Ravleigh wave experiments,

This section describes the sevies of experiments which were pertformed
using a wedge probe in pulse-echo mode) prior to the main experiments
which test the results of the numerical wmodels, gliven in Section 7,
and these are described in Section 8.4,

a. Wedge transducer in pulse-echo mode on a quarter space.,

A wedge probe on an aluminium block is shown as Figure 8.8,
and the basic arrangement of the experimental system is shown in
the diagram given as Figure 8.9, which includes the time domain
signal with its spectrum for the configuration shown in Figure 8.8.

The quarter space is the simplest configuration for which
pulsge-echo measurements can be made, However,when only a szingle
transducer 1is used,a refer<nce signal can only be provided by
that Qeflected on a configuraticn such 2s the quarter space, Some
of the possible problems associated with the uece of a reference

reflected sigrnal are now considered,
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A wedge tronsducer on ta siuriniun biock witia & cown step, in
pulse=-echo mode.

FIGURE 8.8

To investigate the effect cf fransducer alipgrment with a

corner, a séries of measurcments were made on a quarier space with
angles of incidence from 80° to 100° and the time domain signale
were plotted every 250, and these are shown in Fipure 8,10, It is
seen from the signals in Figure 8.10 that that there is a region
of about 2%0 which gives a uniform respounse for measurements
made at a distance of 30 mm,

In all experimental nltrasonic measurements, wvhere the
reflécted time domain signal is fo receive further analysis,
amplification or to be digitally recorded,a time gate is5 uscd to
select the section of signal of interest. However, in the case of
the application of spectral analysis the correct position aud
length of the gate 1s important as a gste positien or length ecrror
will distort the resulting spectrum. If the gate is too narrow the
end of the signel can be lost or if it is too wide, background
noise is introduced which distovts the spectrum,

The effect of the gate applied to the time dowain siegnal is
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illustrated by the time domein signals and spectra for pulses on
a guarter space with a wide and with & narrow gate, as shown in
Pigure 8.11., The optimuwm setting for the gate width and position
can ocnly be establishcd by the operator making a scries of
measurcments,

A further variable ‘parameter in practical measurements
is that of couplant thickness. It is important that enough
couplant is used to give good signal trancfer but that the layer
is kept thin. It is also important, in the case of single probe
transducer measurements, that a constant couplant thickness can
be achileved if measurements are to be made on several test blocks
and pulse amplitudes are to be compared.

There are therefore several problemns which limit the use of
simgle probe pulse echo measurements,some of which can be overcome
by the use of a guides on the test block to give transducer
alignment, making a series of weasurements to set the gate width
and position and the use of a clamp to give a constant loading

and couplant layer for the transducer.
be Two transducer methods on the guarter space,

The problem of the lack of a referance signal which is
experienced in eingle transducer measurcments can be overcome by
the use of a receiving transducer placed between the transmitter
and the corner of target. The receiving probe then measures the
transmitted signal as it passes before interaction and the reflected
signal after scattering. '

The effect on the signals on a quarter space, by the
introduction of & Harnik type probe was investigated., 7The pulsc-eché
signal of a wedge transducer was measured and it was then measured
when a Harnik type transducer had been put in position., The resulting
time domain signals are shown &s Pigure 8,12. The time domain
signals on a quarter space 2s given by & wedge transducer and

Harnik type probes are shown in Figure 8,6,
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8.4 Uxnerimental measnrements with Ravleisn waves,

Thig section describez the main serics of experiments that
were performed using two probes, a wedge transducer as transmitter
and a Harnik type probe as receiver, and to provide experimental
results to test those given by the numericel models and'presented
in Section 7. '

The basic method used in the experiments is described in
Section 8.4.1, The configuration upon which measurements were
made are shown inlPigure 8.13, and each is considered in Sections
8.4.2 to 8.4.'7. The range of experimental blocks available in the

present study included some of those uced by Nergan (1973).

/(///////,//////f
I _I
Half-gpace,
I/////7 {
/
| /
Quarter space. fhree-quarter space,
(77 77 77 7777?77
L, . /] ,/ 7/
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Geometries on which expevimentsl measurementis were rade
using Rayleigh wave pulses with 1 iz centre freguency.

FIGURE 6.13
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8.4.1 Bagic two probe experimental method,

The experiments decceribed in Sections 2.4,2 to 8.4.7 all
use the basic two probe methods with a wedge transducer as the
transmitter and a Harnik type probe as the receiver, in either a
reflection or a through-transmission mode, The basic transducer
arrangements and the expérimental system used are shown in
Figure 8.14. The pulse generator, wideband gate, amplifier,
gspectrum analyser, the oscilloscopes and plotter are all part of
the Central Ultrasonics Test Fquipment of the Research Group in
Ultrasonics and they have been described by Norgan (1973) and
Weight (1975) and they are shown in the photograrh shown as
Figure 8.1.

The thyristor pulse generator is adjusted to give chort
time domain pulses; of length about 1 Msec, using a voltage of
up to about 1,000 volts, with a pulse rate of about 750 per
second. The tfansmitting, wedge type, transducer and the receiving
probe, of Harnik type, are placed on the test block in elther
the reflection mode, which is shown as Figure 8.14a, or the
through transmission mode, which is shown as Figure 8,14b. The
received signals are thon passed through the system shown as
ﬁigure 8.14. In the present study the wedge traneducer had a pulse
centre frequency of 1 NHz and the thickness of the disc in the
Harnik probes was for a 10 lHz resonant frequency.

In the reflection mode the probe detects both the input and
the reflected pulses so direct comparisons can be made, However
in the through transmissicn mode only transmitted signala are
detected so the system requires to be calibrated by mecsuring
the input pulse and {nen moving the receiving probe to the
through transmission position to measure the transemitted pulses,

The basic time domain signals, which are proportional to
the free surface displacements, are displayed on an oscilloscope,
The basic signal can be pquted on paper and or used to give a
spectrum with the spectrum analyser, which can also be plotted.

The system shown in Figure 8.14 can be used in several ways
to provide data to test the numerical models and this can be
based on measurements in either the spatial or frequency domains,
The available methods are illustrated by conzidering their

application to study pulses on a quarter space,
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a. Time domain msasurements.

The reflected pulse on a quarier space can be meosured by
using the cystem in the srrangement shown as Figure C.14a and
vsing the widebend amplifisr to give a constant maxiwum peak to
peak sigral fur both the input pulse and the reflected signal,

The gate 1s used to select the input pulse and the
amplifier setting is adjusted to give a convenient peak to peek
amolitude on the oscilloscape., The amplifier setting, which is
calibrated in decibels, is noted (I dB ).

The gate is then moved to sclect the reflected pulse and
the amplifier sctting is again adjusted to give the same sulse
peak to peak emplitude as for the input pulsz, The amplifier
setting is again noted (R &3 ). The amplifier settings are then
used to calculate a reflection coefficient.

The trancmitted pulse on a querter space can be measured by
vsing the system in the arrangement shown as Figure 3.714b0, with
the receiving probe on the other surface to the wedge transducer.

In transmission measurements, the input pulse is first
nmeasured with the receiving probe in the same positicn ag for
the reflected signal. The amplifier 1s adjusted, as for the
reflection measurements, and the amplifier setting (I aB ) is
noted.

The probe is then moved to the second surface and reclamped
with the same pressure to give the same couplant thickness. The
gate 1s then adjusted to select the transmitied pulse and the
amplifier setting 1s adjusted to give the same peak-to-pzsak
amplitude for the pulse as the input pulse, and the amplifier
getting (T 6B ) is noted. The amplifier settings are then uced to

calculate a transmission coefficient,

b. Spectral measurensnts
The method used to give scattering coefficicnts based on
time domain signals has one very large weakness in that it is
difficult to compare two signals when they have different
shapes, If however the sprectra are obtained conparison is malde
nuch easier,
The procedure used to measure oipnalysso that scattering
ctr ’,18 similar to

that used for time dowain measurements except that the amplifier

coefficients can be calculated from $the sp:

(W)
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is adjusted with reference to the spectral amplitude at one
frequency in the spectrm for each measurament. A range of
measurements can therefore be made at different frequencies with
the transduceys in the seme pogitions.

From the values for the amplifier settingsireflection and

transmission coefficients can be calculatzed.

c. The calculation of transmission and reflection coefficients.

The cata regquired for the calculetion of transmigsion and
reflection ccefficients are the anplifier settings, which are
given Ly the methods set out as a. and b, above.

The emplifier settings give a measure of the pulses on a
logarithmic decibel (dB) scale so that the scattering coefficients
are not just simple ratios. ' .

The reflection coefficlent is calculated from the zmplifier
gettings of I 4 end R for the input and reflected pulses

respectively.
R =~ I = (-)XaB 8441
swhere X is the drop in signal level, measured in 4B

The reflecticn coefficient (Rc) is given by

R, = antilog[—_)f_].—. antilogs [-y] 8.4.2
I
where Y = X/I,
.and hence; .
R, = antilog (T4+(1=-Y)) 8.4.3

A similar procedure is used to calculate the transmission

coefficient (Tb), with T replscing R in equations 8.4.1 to 8.4.3.

d. Background noise.

In the practical measurements on test blocks it has been
found that there is a lot of background noise which is recorded
in the tiwe domain signals. These pulses are due to rescnsnce and
body waves in both the wedge transducer and the test block.

The noisge level in the time domain signals can be reduced
by between 5 and 10 dB by the use of a damping materiel, such as
plesticine, on the top and front surfaces of the wedge and on all

the test block faces which are net usced for measurements.
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2,4,2 Ravleirh waves on half-onacesn,

The propagation of Rayleigh waves on & smeoth surface wes
investigated and both the pulse amplitude snd chape were recorded.
A wedge transducer was clamped to an aluminium bar with a smooth
surface. The bar had a cross section of 30 by 100 mm and was
300 mm long, which when used with pulses of 1 IHz Rayleigh waves
which have a wavelength of about 2.9 mm glves a good approximation
to & semi-infinite half-space.

A guide rail was set beside the wedge transducer and a Harnik '
type probe was moved along the rail to give meazurements of the
pulse shape snd amplitude with distance.

It was found that for distances up to about 100 mm (about
34 wavelengthe) * the pulse shape remained constant with the
emplitude varying within % 4B The largest errors in the system
were those due to coupling the receiving probe &snd then moving it

and recoupling.

‘8,4,3 Rayleirh waves on quarter spaceg,

The quarter space is the simplest configuration for which
reflection measurements can be made and it is one of the
configurations used to give reference signals in pulse-echo mode,

The pulses on a quarter space were investigated by a series
of measurements which were made with a 1 MHz short-pulse wedge

“transducer as the pulse transmitter and in the two probe
measurements, Harniketype probes as the receivers. The transducers
used are considered in detail in Section 8.2.1.

a, Preliminary measurements.

A wedge transducer was placed in pulse-echo mode ,using the
system as shown in Figure 8.9, on an eluminium block with a new
90o corner. The reflected pulse time dcmain signals were then
measured at several points along the edge and the signeala
measured at four polnts are shown as Figure £.15a.

A series of measurements were then made on three different
aluminium blocks with corners that wera a. charp, b. slightly
rounded and ¢, with a corner that had a radius of abaut 2% run.
The resulting spectra were plotted and are shown as Pigure £.15%,

It 1s seen from the spectra, chown as Pigure 8.15b, that as the
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radius of the corner is increased, the high frequency cowpenents,
with wavelcongths greater than about twices the radius of the

corner are not reflected.

b. Transmission and reflection coefficlents on quarter spaces.
Following the preliminary pulce~-ccio measurements,a series
of sets of readings based on both smplitude and spectral signals
were made 0 determine the transmission and reflectlon coefficients,
The Lasic method used was that set out in Ssction €.4.1 with
the system Lelng ussd in both reflection and transmission mode, as
shown in Figure 8.14. In the case c¢f measurements in reflection
mode the time domain sipgnals and gpectra for an aluminium block
are shown & Pilgure 8.16.
The reflected pulses were measured on both aluminium and
steel blocks and used 1o calculate the coefficients shown in
Table 27. The trensmitied pulses were also measured on both
aluninium and ateel blocks, but in the case of the rmeasursments
on steel the pulses suffered considerable distortion and attenuation
due to surface roughness so only the aluminium results were used tao

calculate & transmission coefficient and this is shown in Takle 27.

yaterial Reflection Transmission
= ¢ coefficient, ] coefficient.

Auninium 0.37%.,05 0.60 X,1

Steel. O.43t.05 -

Transmission and reflection coefficients fer pulsad
Rayleigh waves at 1 1Hz on steel and aluminium,

TABLE 27,

) The larger errcrs were given for the transmission
coefficient because the probe,when used to measure these signals,
has been moved and recoupled after the measurement of the input
pulse. 4

The experimental results are considered further and compared
with those of the numerical models, which are presented in

Section 7, and those of previous werkers, in Section 2.3.
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B.,4.4 Pavleigh waves on three=-nuarter cpscesn,
[ ] - i

Measurements were made on aluminium bloecks to determins
transmission and reflection coefficients for 2 three-quarter space,
which is =& 2700 corner abl the intersection of two {ree surfaces,.

The scattering of Rayleigh waves, on three-guarter spaces,
was investigated using the two transducer reflection and transmission
methods, which are shown as Figure 8,14, and vhich are described
for a quarter gpace in Section 8.4.3.

The measurements on three quarter spaces were restricted to
blocks with sharp 270°% corners as it was found that there was no
reflected signal and  there was less mode converslon to shear
waves on blocks with even slight rounding at the corner,

The transmission and reflection coeffoclents were calculated
from the pulse amplitude data for time domain signals and spectra
for wavez on aluminium blocks and averapge values are given as
Table 28,

Reflection Trensmigsion
coefficient t coefficient

,< 0.10£.03 }0.20%.05

Reflection and transmission coefficients for aluminium -
three-quarter spaces, measured with pulses with 1 IHz
centre freguency. '

TABLE 28,

.

The experimehtal results, precsented as Table 28, are considered
further and compared with those for the numerical models, which

are presented in Section 7, and those of previous workers, in
Section 904.

8.4.5 Ravleigh waves at down stens,

The down step is the simplest configuration which has a
characteristic dimension and weasurements were made to investigate
the reflocted and transmitted pulses,

A set of steps in aluvminiuva blocks were msade with depths up
to 18 mm. The depths were measured with & travelling microscope
and they were found to have depths along ths stsp that were

constant to X ,005 mm.
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a, Preliminary measurements.

A wedge transducer with & 1 Miz (3mm wavelength) centre
frequency was placed on an alwninium block with a down step, of
about 1.5 mm, in pulse-echo mode, at n range of 30 mm from the top
of the step. The resulting reflected time domain signal is shown s
Figure 8,17 together with the refleceted signal for a gquarter
space measured with the same transducer at the same fange. In
Figure 8.17 the quarter gpace signal is shown with the time axis
X2 conmpared with the dowm step sipgnal,

It is shown in Figure E.17 that the down step reflected pulse
is more complex than that for a quarter spoce but the signals frem
the 90° and the 270° cornmers cannot be resolved in the time
domain, It is found for steps with depths up to about 1,75
wavelengths, even with short pulses, that the reflected pulse is
a mixture due to the interactions at the 900 corner, cn tho

vertical free curface, and at the 270° corner,

b, Transmission and reflection coefficients.

Measurements were made in the twio probe reflection and
through transmission modes, chown in Pigure £,14, for a series of
down steps to cover a range of step height to wavelength rating upn
to 2, The details of the experimental methods are presented in
Section 8.4.1.

It was found that when amplitude data was used to calculate
reflection and transmissicn coefficients there were large
variations at a given step height to pulse centre wavelength ratio.
However this scatter in the results could be reduced by using
gpectral amplitude data at a series of frequencies for each step,
Feasurements were made in the range of frequeuncies from Q7% to
2.0 NHz for & range of steps and the resculting trenscmission sand
reflection coefficients are shown as Firure 8,18,

 Prom the experimental points plotted in Pipgure 8,18 it ig
seen that for the reflection coefficient plotted against step
height, in wavelengths, there is an indication of a peak in
the region aboutO.G'h/q& end a trough in the reglon necar Q9 h/ 9
The general shzpe of the relationship ie shown by the deshed 1linc.
It is also.seen in Figure £.18 that there is significant scatter
in the results for values cof hﬁ%'above about Q. 65,

For the case of the results for the transmission coefficients

which are also shown in Figure 8.18, it is seen that the values of
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b,

Time domain signals for the same Rayleigh wave pulse, reflected from;

a. a half wavelength down step (1.5 mm deep)
b, a 90° corner. (For trace b. the time axis is expanded X2)

FIGURE 8,17.
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the coefficient reduce as the step height to wavelength ratio
value increases, with a small hump in the gereral trend, which
is shown as a dashed line, in the region of .75 h/?d.

The results shown as Figure 8.18 ave considered further
and compared with the numerical results and those of previous

studies in Section 9.5.

£.4,6 Rayleirh waves at up sters.

The up step is a vertical rise, which when combined with a
down step forms an open slot, Therefore the study of the waves at
an up step should provide an understanding of those which occur at
the up side of a wide slot.

&. Reflection measurements.

.The two probe method that was used foxr the three~guarter
space, which is described in Section 8.4.4, was used to measure
the reflecied and input pulses for a series of different height
up steps and the resulting reflection coefficients were the sume
as that for an aluminium three-quarter space, which is given in
Table 28.

b. Transmission measurements.,

The transmitted pulses at up steps were inves@igated usiﬁg
the probe arrangement shown in Figure 8.1%a, and the system in
the configuration shown in Figure 8.14.

The time domain signals given by the Harniketype probe et
a series of positions on the upper surface at several shallow
up-steps. It was found that at the top of the step there wac a
pulse with a2 complex time domsin shape and that the energy in
this pulse increased &t the probe was moved a@ay from the corner.
The path by wich the energy was reaching the upper surface was
investigated by placing damping material on the surface of the
test block at the corner to remove the Rayleigh wave ccmponent.,
Energy was still detected on the upper surfzce and a pulse was
found to grow as the probe moved away from the corner.

To test the idea that energy was recaching the upper surface
after mode-converting into a shear wave and passing throuzh the
-bulX material and then rewode-convertinz at the upper surface

:
measurcments were made on a bum (2 wazvelengths at 1¥z) up~ctzap.
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With the probe arrangement shown in Figure 8.19a the time
domain signals received by the Harniketype probs dn positions
B,C,and D were plotted and they are shown as Pipgure 8.19 b,c, & 4.
At the point B two pulses of Rayleign waves are detected, When
demping material was placed at the 900 corner the pulse R was
removed from the signal r?corded at point B, At the point C, which
was a distance of about 5 mm from the corner, the body vwave,vhich
reccnverts %o a Rayleigh wave was lost from the recorded timce
domain signal. At the point D a complex signal is recorded.

The point whers the mode-converted sipgnal was detected,
measurcd from the top of the step,was detected for pulsas on
blocks with deep steps and the resulting distances along the top

surface, with the step height are shown as Table 29.

Step in Point where
mm. mode converted
pulse dotected,

6 5 mm
12 9 mm
18 15 mm

Distance from top of step where mode converted pulse pulse
was detected on upper surface, using a pulse with 1 Miz
centre frequency on aluminium blocks,

TABLE 29,

The results for pulses of Rayleigh waves at up steps are
considered further cind compared with those of the numerical models

and previous studies, in Section 9.6.

8.4.7 Ravleirh waves at open slots.

The open slot is an ldealised crack configuration and o the
resvlts from its study should provide a base for the mderstending

of the scattering of Rayleigh waves by real feaiures.

&« Preliminary measurements,

A wedge transducer with a 1 liliz centre fregquenecy was uced in

L=

pPulse~-echo mode, with the expsrimental system shown in PMgure 8,92,
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to give the time domain signals for the pulses reflected at 900
corners and a 1,01 mm deep and .85 mm wide c¢pen slot. The resulting
time domain signals are shown as Fipure 8.20, For slots with

depths up to about'1.5 wvavelengtha, even with short pulses, it is
not possible to resolve the scattering centrze in the time-dormain
signals end because of the pulse-shape changes on reflection,there
is considerable scatter in reflection coefficients based on

amplitude data,
b.Slot depth measurement.

The depth of a slet normal to a free surface can, at least in
principle, bte determined by measurements ¢f the reflected and
transmitted pulses. However in practice amplitude based measuremento
are subject to large experimental errors ( up to about 20 %),

A method of depth measurement which is not subject to
amplitude errors is to measure the travel timxe of the mode.converted
shear wave from the slot tip. (after Silk 1976) A further method
is to detect the pulse on the upper surface and measure the
distance from the corner where the shear pulse vanishes. This is
using the results of the up step measurements, ziven in Table 29
to calibrate the depth of the featurs., The distamce from the
top of a slot where the shear wave mode conversion was detected
was used to measure the depth of a kncewn 5 mm deep and 1 nmn wide

slot. The results are presented as Table 30.

-

% fge

3
Actual slot depth. Shear wave detected, | Deptn
distance from slot. from up

stepresults,

g Geaialo i kg ot PORRNTEY aud s WIONIR iy -xk‘
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Depth of a slot measured using mode conversion point of a
shear wave from slect tip, with upe-step calibration.

TABLE 20,
The results for open slois are consideresd further, toge.ner

with those from the numerical models and previous studies, in

Section S.7.
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Experimental pulsces of Rayleigh waves measured on alurinium blocks
in pulse-echo mode with a wedpge transducer of 1 NHz centre
frequency; For the reflected pulse on, a. a quarier space.

b. from a 1,01 mn deep and 485 mm wide open slot.

PICURE 8,20,
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9, COMPARISON AND ANALYSIS OF RuSULTS.

9.1 Introduction.

This sectlon reviews both the numerical model results, which
are presented in Section 7, and the experimental measurements,
which are presented in Section 8, made in the present study and
compares the results with those of previcus ctudies, where they
exlet, .

The configurations considered in this section are shown in
Pigure 9.1, which also indicates the section in which they are
considered.

Based on the experichce gained with Fayleigh waves in the
present study the author proposes, in Section 9.11, a development
of the methods for defect characterisation using Rayleigh waves
Which makes use of the new transducer invented by Harnik (1977)

and used by the author in the present study.
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Half-space, Quarter space. Three~-quarter space
(Section 9.2) (Section 9.3) (Section 9.4)
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Down steyp. Un step. Open slot.
(Section 9.5) (Section 9.6) (Section 9.7)
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Block. Vielded quarter spaces. Fillled slot.
(Section 9.8) (Section 9.9) (Section 9,10}

Configurations for which Rayleigh wave propagation and scattering
have been investigated in the present study,

FPIGURE 9.1,
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0,2 Rayleleh wavea on half-snacen,

ihe half-space or free surface, ls & configuration on which
Rayleigh wave propegation is of prime lmportsnce., This is because
it is one of the few cases for which Rayleipgh wave propagation is
described analytically and experimentally. The sucessful
modelling of waves in this configuration is therefore a prerequsite

for the modelling of all other configurations.

&. Analytical theory,.

The basiec theory which has developed from the work of Lord
Rayleigh (1¢25) specifies that for a homogeneous isotropic half=-
gpace the propagation of a Rayleigh wave pulre 18 non-dispersive,
This results in the propagation of a pulse the sghape of vhich dees
not change with distance travelled.

An introduction to the analytical theory for the ceze of
harmenic Revleigh waves was given in Section 2.3, with extenesions

to pulse theofy being made in Section 4.4.1 and Appzndix H.

b. Experimental results.

In the precent study a scrieb of experimental measurements
were made and these are reported in Section 8.4, For eluminiunm
blocks with smooth surfaces it was found that with 1 NHz centre -
frequency pulses of Rayleigh waves the waves would travel over
distances uvp tc about 10 em (about 4 wavelengths) with no
systematic attenustion or pulse-shape change. It was found that
in this region that larger changes in pulse zmplitude occurred due
to coupling errors than due to attenuation.

For pulses of ultrasound it is found that typical values for
attenuation are of the order of 0,02 t00,05 35 per mm. In the
present study over distances of about 10 cm,a drop in signal
amplitude cof 5 to 6 dp was measured,

VWhen lonper wavelengtha are used‘pulses will‘propagate over
rough surfaces, as is chown in the work by Cole (1577) who used
electromagnetically induced Rayleigh waves at between 25 ang 35 kHz
on hot billets,

C. Numerical results.
The results of previous numerical work by Funmasinghe (1973),
for the propagation of a Ricker-type pulse of Rayleigh waves on o

heif~-gpzce, has chown that when using a pseudo-nvde formulation
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foxr the boundary nodes, at 35 nodes per wovelength, that for
distances up to 5 wavelengths, in the firit half-wavelength below
the surface, amplituds errors in the wavenumber spectrum appsar
to'be rendom end in the range of waverumbers from 0.5 to 2, K/KO
they were found to be less than 2 %.

It hes been found by lunasinghe (1973) that the higher
frequency components in the pulse move at & velccity lower than
the Rayleigh wave velocity and the velocity error against frequency
curve is shown as Figure 9.2. It hes also bteen found, by other
workers end in the present study, that whéen using the pseudo-node
formulation for the boundary conditions that the larger distortions

occur in the vertical component of displacement,

Velocity error,

%

— 1.0_

005"

' [

0.5 1.0 1.5 2.0 1{/‘}{0

RTITT I

Velocity error found in range of normalised wave number values by
Munasinghe (1973), using pseudo-node schemne,

FIGURE 9.2,

In the present study two numerical models of Ricker«type
pulseeg on half-spaces were produced, The first model, the results
from which are presented in Section 7.2.1, used the same pscudow
node formulation for boundary nodes as Nunasinghe (1973) and the
gecond model, fhe results from which are presented in Section
Te3e1, used the new composed second order formulation for
the boundary nodes, after Ilan &nd ILoewenthal (1976).

Using the pseudo-node scheme it was found that the errors
in the present study at 32 ncdes per wavelenzth were much the
same as thosce reported by Munasinghe (1973) when using 35 nodes
per wavelength. For the model runs performed ucing 16 nodes per
wevelength the results of spsctral measurenents were found to te

very inaccurate, It was also found that there were changes in
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pulse spatial shape that only remained within 10 % of the value
for the corresponding point on the input rulse up to about 100

iterations. The errors of all types were found to increase when
higher Poisson's ratio material data were us2d,

Using the new compoced second order formulation for the
boundary nodes and 16 nodes per wavelengtih it was found that the
pulse shape changes were minimal over distances up to about 4.5
wavelengths, for which measurements were made, Over this distance
it was also found that the pulse position, compared with that
calculated from the wave velocity and the model time increment,
were in agreement to better than 0.5 %, and thz cbvious lagz

present in pscudo-node models was absent.

d.Conclusions,

The numerical model produced in the present study, uvsing the
new composed formulation for the boundary nodes has been found to
glve non—dispérsive propagation of pulsed Rayleigh waves using
half the number of nodes per wavelength, 16 as compared with 32,
regquired in previous studies. This results in the use of a guarter
of the number of nodes for a model of the same size half-space,
measured in wavelengths, Also the new second order scheme glves the
pulse distance travelled in much better agrecment with that given
by the wave velocity and the model time increment, within 0.5 %,
and without the pulse position lag found with pseudo-node schemec.

The model with the new composed formulation for the boundary
.nodes provides a model that will give nondispercive propagation of
pulses over distances of the ssme order as thosz for experimental

measurements,

9.3 Rayleigh waves on quarter spaces,

The quarter space configuration has a g0° corner at the
intersection of two free surfaces. The propagation and scatte*iné
of Rayleigh waves on quarter spaces has been considered by a
numter of workers and & summary of their results, with thoge of
the present study, are presented as Table 31.

The values given for the reflection end iranemiscsion
coefficients that are presented in Table 31 are pletted against
Poissen's ratio and shown as Pigure 9,3. The symbuls used in

Figure 9,3 to indicate the source of a result are the firzt letters
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Source.  Yoisszon's|Pransmission | heflection 2 wrode
ratio coefficient, | coefficient,|conv.
a, Theoretical 1088,
¥al & Knopoff (1966} 10.25 0,46 0.40 63
Viswenathon et al 0.76 0,56 12
(1971)
Viswanathan & Roy 0.34 0.56 58
(1973)
b. Experimental
de Bremaccker(1958) 0.17 0.63X.06 0.33 .04 46
Knopoff & Gangi (1960)}|0.286 0.73%.0C2 0.27%.,02 41
Viktorov (1962) 0.34 0.7C 0.65 10
Pilant et al (1964) 0.25 0. 67 0.25
Haydl (1974) 0,64 0.36
Cuozzo et al (1977) 0.2 - 0.25
" 0. 34 - 0. 33
" 0. 34 - 0. 35
. " 0. 36 - 0. 30
Present study 029 - c43%.05
N la3s 060t.1 | Q37X.05
c. Numerical B T '
Alsop & Goodman (1972)| 0.25 0 .645 -
Munasinghe & Farnell | 0.245 0.64 £,02 0.36 £,02 45
(1973)
Cuozzo et al (1977) 0. 17 667%.03 .26 £,02
" .25 c72%.,03 Q27TE.02
" 034 Q72% .03 042,03
Present study o 24 065% .05 G 39 %.05 43
(pseudo-node model)
(full .results are ) 0.29 0.47%.05 0.56 .05 47
(given in Table 15)
(Section 7.2.2. ) 0.34 - 0.64F ,05 0.49% .05 35
Present study 0.24 057T%.05 Q43 %.05 50
(Second order model)
0. 34 G59%.05 Q471 .05 44

Transmicsion

CnATITR 37,

L ORI
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Cecefficlient.
)
0.8 .J Cuozx0 cunve
Trensmission
0.7 _]
Cuozzo curve
Reflection.
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002 -
Experimental,
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% Reflection
0e1 o + Numerical
| T f i T s
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Experimental and numerical transmission and reflection coefficients
for Royleigh waves on quarter spaces. Results are shown without

. o~
uncerizinty which is up to about I 0.5 on all results,

FIGURE 9,3
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of the name of the author oif the source puper.

a. Analytical studies.,

Although, as was shown in Sesction 2.4.2, there have been
several attempts to provide an analytical dcscripticn of the
scattering of Rayleipgh waves on quarter spaces end calculate
scattering coefficienta,no full solution Las been provided.

In & recent parper by Otfaviarni (1971) she has commented that the
analytical solution of Reyleigh waves on a quarter space presents
almost insurmountable difficulties.

The weaknesses in the analytical theory are due to the
complications that scattering occurs nct only at the corner but
also at a section of the vertical surfsce to a depth of atout two
wavelengths. Also at the actual corner,thc boundary conditions for
both free surface apply,which causes the problem to be over

conditicnza.

b. Experimentai studles.

The previous studies on the quarter space f2ll into two
groups'which are firstly, those which make amplitude measuremernts
to calculate scattering coefficients eand, secondly, thosze which
visualise the wavcs in transparent models,

From the results of the amplitude measurements, listed in
Table 31 &nd shown on Figure 9.3, it is seen that there is
considerable scatter. Also direct comparisons between the results
of the different stucdies is complicated by the different methods
and materials used.

From the results of the present study, 28 reported in
Section B8, i{ was found that scatter can be introduceid into the
results by cuch factors as transducer alignment and the sharpness
of the corners,

From the visualisation studies, such as that by Iall (1976),
it is seen that the basic pattemrn for the uode converted puleos was
compressional and shear waves, which radiate frem the cornar, IS
weves which are due to the mode conversion of the comnpressional
wave at the free surface and transmitted and reflected pulses of
Rayleigh waves.

In only one study, that by de Bremaecker,was an egtimat@ of
the energy in each of the shear and compressional waves rade, and
Le gave figures ¢f 26 % and 23 % of tho input pulee encrdy in ihe
ghear and compressional waven respectively, ‘
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9.3

ce. Numerical studiles,

There have been several modele produced for Rayleigh waves
on §uarter spaces and the results of these are presented in
Table 31.

Two of the .previous models have considered semi-continuous
Rayleigh waves and these are the finitc elcment study by Alsop end
Goodman (1972))which provided a transmission coeffidient,and the
finite difference pseudo-node study by Cuozzo et al (1977)}wh9
produced the curves for reflection and tranesmission coefficients
againgt FPolsson's ratio which are shown in Pigure 9.3,

The only previous study of pulsed Rayleigh waves is that by
Munasiﬁghe (1973) who only calculated ccefficients with
polystyrene (6%20,24) data,

In the present study two computer models were produced,
one using pseudo-node formulations after Nurasinghe (1973) end
one with a second order formulation afier Ilan and
Loewenthal (1976).

The pseudo~node scheme was used to calculate cecefficients for
a range of material dats with Poisson's ratios from 0,2 to (.35
which are shovn in Table 15, It is found that thz main factors which
influence the results are the basic finite difference formulation,
the number of nodes per wavelengih used, the size of the pulze,
the distance travelled before the corner and the Polgcson's ratio
of the data used. It is also found that the errors are larger for
higher Toisson's ratios and that the largcr errors are found in the
vertical component of displacement.

The second order scheme was used with 16 nodes per wavelength;
as oprosed 1o the 32 nodes per wavelength used with the pseudo-node
scheme, to calculate coefficients with polystyrene and aluminiuvm data.
The results for the two schemes were found to have overlapping error
bands. The second scheme achicved considerable savings in cowputer time.

+ Conclusicns, ' '

The general pattern of scattered waves on quarter spaces in
now well established and confirmed by the results cf the present
study. _

Although there 1s couslderable scatter in the results for
quarfer spaces, both in previcus and the precent study, it is
0¥ possible to provide a wodel ¢f this interaction end with
further model and experimental measurements it would appear that

scattering coefflicients caa be &stablisﬁed.
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9.4 Ravyledgh waves on three-aquarter apace..

The three-quarter space ig two free surface which intersect

at a 270o corner. There have been severzl studies of this

configuration and they have used analytical, exprerimental and

numerical methods.

The results for the transmission and reflection coefficients

for Rayleigh waves on three quarter spaces are presented as Table 32

and the results are plotted against Pelsson's ratio in Fipgure 9.4.

The point plotted in Fipgure 9.4 are identified by the first letter

of the name of the author of the source papsr given in Table 32,

Source, Poisson's|{Trancmlssion|Reflection |¥% mode
ratio. ceefficient.|coefficient.|conv
losg,
Knopoff & Gangl (1960) | 0.266 0,28 0.1 91
Kal & Knopoff (1965) 0.25 0.25
Munasinghe & Farnell 0.245 0.28 0,09 91
_ (1973)
Cuozzo et al (1977) 017 0.16% 02 0.,09-501
" 0.25 0.15%02 O.11% o
d 0.34 0.,13%02 0,15 %02
Present study 0.34 0,20 %05 0, 10%03
(Experimental) ‘ '
Present study 0.24 0.24X,03 0.09%,03 93
(pseudo-node scheme)
0. 34 0, 22503 0. 10%,03 94
Present study o 24 022403 0.09% 03 95
(second order scheme)
o34 %23%,03 0.112,03 94

Trancmiesion and reflection coefficients on three~-quarter gpaces,

TABIE 32,
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9.4

a. Analytical studies.

Several previcus studies have considesrsd pulses cn a range
of wedges, including the 270°'corner, but there have leen no
ctudles on just 270° corner. There is no previcus study which has

provided a satisfactory set of scattering ceoefficlents,

b. Experimental studies.

The experimental results of the two studies by ¥Kuopoff and
others and the present work are in good general agreement and
there is far less scattere in the results on this configuration

than those on quarter spaces,

c. Numerical studies. ,

There have heen two previous studles using numerical methods
and these have both used pseudo-node finite diffcrence methods.,
That by Cuozzo et al (1977) considered semi-continuous waves with
material data for a renge of Poisson's ratios, the resulting
curves being shown in Figure 9.4, end that by lunasinghe (1973)
who considered pulses on polystyrenc three-quarter spaces,

The results from the present study are in good agrescment
with both the previous experimental) and the Kunasinghe (1972)
numerical results. However the Cuozzo et al (1977) results for
{ransmission coefficient are not in good agrcement with other
workers, The differences between the Cuozzo et al (1977) recsults
and those of other workers may be due to the use of semi-continuous
waves or the use of & nonuniform grid in the finite difference
calculations. |

d. Conclusions.

The results of all studies, with the exception of that vy
Cuozzo et al (1977), are in good agreement, All work indicates that
there are large, about 90%, energy losses from Rayleich waves at
this type of corner which was found to recduce considerably in

experimental measurements with even slightly rounded corners,
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9.5

9,5 Ravleirh waves at down steps.

The down step is the simplest configuration which can bdbe
expected to glve wavelength dependent scatiering. It is a
configuration which has been considered in all the fields vhere
Rayleigh waves are of interest and the reults of previous studies,
together with those of of the present study are shown as
Figure 9.5. which considers wavelength to step depth ratios fronm
0.1 to 1.5,

a. Analytical studies,

Various theoretical studies have attempted to describe the
scattering of Rayleigh waves at Steps,but it 18 found that in
general satisfactory results can only be given for steps with
depth to wavelength ratios less than about 0.1 or mubh larger than
1.5 which are the limits of interest in the present study.

The study by Mal and Knopoff (1965) has used a CGrgaen's
function method to calculate a transmission coefficient cur&e
which is found to be in good agreemsnt with experimental rezults
and this is shown in Figure 9.5.

b. Experimental studies.

The results of one previous experimental study, with steps
in saluminium blocks,are presented in Figure 9.5, and these ars due
to Prost et al (1975). It is seen in the results due to Frost et al
(1975) end the measurements of reflection coefficients in the
present study that there is considerable scatter especially for
step height ratios over about 0,6,

23

There have also been photeelastic visualization studies
of pulses scattered at down steps, including that by Dally and
lewis (1968), and it is fcund that the shape of the scattering
coofficient curves arc in good zgreement with those shown in
Figure 9.5 and the scatiered pulses of shear and compressional
wvaves are generated at the 2700 and 900 corners respectively
The shear wave from the 900 corner is also shown, as is the mode

converting compréésional wave, the PS wave,
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Ce. Numerical studies.

4n approximate variational method has been applied by
McGarr and Alsop (1967) with the data for Folssoen's ratio = 0,4,
and this has been found to give quite zood results for step depth
to wavelength ratios up to about 0.25, but it becomes increasingly
inaccurate above this value,

There have been two previous numerical studies using finite
difference methods to model Reyleigh waves at down steps, They
have both uced pseuvdo-node schemes for the boundary nodes and that
by Murasinghe (1973) has used polystyrene data with Ricker type
pulses and that by Cuozzo et al (1977) has used quartz data cnd

semicontinﬁous Rayleigh waves.

The scattering coefficients for the two numerical studies
ére shewn in Pigure 9.5 together with three results by Cucuzo et al
(1977) for the reflection and transmission coefficients at step
depth to wavelength rationvalues of 0.6.

The results for the reflection cosfficients given by
Cuozzo et al (1977), who used semi-continuous waves and a grid
that had different size increments in different regions, are
consistantly low when they are comparcd with those from previous
studies and the results of the present experiments and model

results.

d. Conclusions.

It is found that the results by HMunasinghe (1973), with
polystyrene data, Frost et al (1975) using aluwinium blocks and
the present study are in general agreement with the major
features shown in the experimental measurements being followed
in the results of the model. The oscillation,which is found to
occur in the end of the reflected pulses in the model with step
depths between about 0.6 and 1.,0,1is found in the experimental
pulses and the mode converted shear wave pulses shown in the
numerical visualilsation plots are in good agreement with the
pulses shown in the experimental visualisation studies, such
as that by Dally and lewis (1368).
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9.6

9,6 Rayleirh woves at up steps,

The up step confipguration,galthough when‘it iz combined with
the down step forms & wide open slot, has reccived little
attention in previous studies;v

There has been no previous znelytical siudy of the up step
and only one model using using finite difference metheds, that
by Cuozzo et al (1977), for semi comtiouous waves, was found in the
literature.

The study by Cuozzo et al (1577) modeled the up step using
a pseudo-node boundary node formulation and data for quaftz (or=a12),
Also only values for the reflection coefficient are give, and these
‘are shown in Figure 9.6.

In the present study both experimental measuremenfs with
pulses at up steps on aluminium blocks and medel results, using
aluminjium data, were made, The results uf these measurements are
shown in Figure 9.6.

It was found that for shallow uvp steps, tha results for
which sre shown in Figure 9.6, the demanznt feature was the
270° cormer whlch caused considerable mode conversion enargy loss
from Rayleigh waves.

Measurements were alsco made on deaper steps, with step height
to wavelength ration greater than 2.0, and the tip, 270° corner,
mode converted shear wave pulse was clearly dstected and shown to
cut the corner and remode convert into Rayleigh waves on the upper
surface. The presence of this pulse has been mentioned by other
workers for cracks and it is used by Silk (1976) to measure crack
depth. |
Conclusions,

The present study experimental und model results have filled
a gap in previous knoweledge and shown that contrary to statements
by several authors,the energy scattered by an up step or the
far side of a crack does not Jjust pass along %the surface but cut§
the corner to increase the Rayleigh wave energy detected as
the {transmitted puise. Also the scattering at the 270G corner
shews that the detection of energy reflected by features on the far
side of such a correr is difficult if not impossible.
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9.7

9.7 Ravleirh wavea at onen slote,

The open sleot is an idealised craclh configuration. Howsver
-there is very little published work on the scattering of pulses
of Rayleigh waves at such feafures.

There is in the literature, to quote lorgan (1973) 'no
satisfactory model for the reflection (of Rayleigh waves) from a

~ slot?, |

There is only one published set of reflection and transmission
coefficients for pulses in aluminium or dural and this 1s due to
Viktorov (1967) ard it is shown in Figure 9.7.

There have been visuallsation studies of pulces at open slote

.including those by Reinhardt and Dally (1970) and Hall (1976).
In the present study a series of model runs were performed with
aluminium data and a range of 0,125 wavelength wide slots of
different depths. The results of these modal runs are shown in
Pigure 9.7. ‘

The general shape of the reflection coefficient curve is
gimilar to that for down steps and for model runs with wide slots,
(width larger than .5) wavelengths) the pattern of reflected
pulses shown by numerival visuvalisation is almost identical,

The mode converted pulse used by Silk (1976) was detected
both experimentally and seen in the numerical medels.

It was also found that the model results were in general
agrecment with the conclusions of the experimental civil engineering
study by Woods (1968) in that a slot cf depth-to-wavelength rastio
of a minimum of 0.6 was required to reduce the pulse emplitude
to 0.25 across the trench (slot). The observation by Woods that
there is c¢nergy focusing or magrification of the displacements in
the region in front of the trench (slot) and on the front side wall
of the trench (slot), were confirmed in the model numerical
visualisation displays. It was also found that the widtih of the
trench, between wavelength to width ratios of 0,13 t0 0.91, had
little influence on the scattering by the trench (slot),

Conclusions,
Morgans statement, that there is ne model for waves at an
oren slot, in now not trus and the model results given in ths present
study are in good egreemant with the previous published work.
The model results have also shown that it is almost impossidle to.

inspect the far gide of & glet (crack). in rcflecticn mode,
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9.7

. 0
due to the domanant scattering at the 270 corners.

9.8 RPavieirsh waves on hloeks,

The rectanzular block, which is common in tnth the latoratory
and in structures has received little attention as a scatterer of
slastic waves,

The quarter spoce, as considered in Section §.3, has been
studied extensively 2nd in the experimental work by Eaydl (1974)
he has ccnsidered pulses at the end of a 'bar' of gallium
arsenide. Also in the studies by Hell (1976) using photoelastic
visualisation it is seen that complex patterms of mode-converted
pulses occur,

In the present study, as reported in Sectlon 8, the detection
of experimental pulses can be made difficult due to background
noise in tne bleck which is considersdbly reduced by placing
damping material on the unuscd surfaces of the testblock,.

There appears to be ns previous numarical model of the pulses
¢in & block. In the present study the time development of the
mode converted pulces that occur is followed in the numerical
visualisation displays presenied in Section T.3.7. The input pulse
of Rayleigh waves is found to molde-convert &t the first 90o carner
as for a pulse on a quarter space .and the resuliing mode-converted
rulses then move through the block and ere scatterad or reflected
at corners and frce surfaces.

A mogdel has therefore been provided which shows the rapid
increase in the hody wave pulses present in any picce of material

of 1limited spatial extent.
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9.9 Rayleirh waves on velded guarter spaces,

D
D

Rayleigh waves on welded gquarler spaces have been considered

by several workers with varying

study a new formulation for the

free

degrees of success, In the present

surface/ interface node is

prasented, in Appendix G, and this was tested by comparison of the

results it gave with those of previous studies,

The precvious studles are those by McGarr and Alsop (1967),

who uzed ©n

approximate variational method and made a series of

experimental measurements and that by Munasinghe (1973) who used

the game data as McGarr and Alsop end pulses Rayleigh waves in

a finite difference scheme.

Pulses of Rayleigh waves were considered to pass from

polystyrene into perspex and vice versa. The model used in the

present study considered the game media &nd the results are

presented in Table 33 , The transmission and refiection of the

pulses was measured in terms of the ratios of the amplitudes of tne

vertical compenents of displacements.

Source.

KcGarr & Alsop (1967)

Experimental
Numerical(variational)
Munasinghe (1973)

Present study

EPolystyrene to perspex

Persyex to polystyrene

Reflected, Transwltfﬁl *‘1e"ted¢
- 00851‘005 -
- 0.83 -
0.131-02 00811.002 -
0.08%,03 0.90%03 0.07303

T}ﬂamﬁ "ltt,

1.17%,04
1.16

1.12%03

RPN AT

Ratios of the amplitudes of the vertical components of displacement
of the transmitted end incident and the reflected and incigdent
pulses of Rayleigh waves on polystyrene and perspex welded gquarter

spaces.

$ TeRIE 33,

The results given by the model developred in the present

study are in good agreement with those by provious

the results in the present study v

e
ub&g

workera,

Also

achieved ueing only 16 node

per wavelength, compared with the 32 used by Munasinghe (1973).

This resulted in considerable

end the job run time.

savingz in the computer core required




9.10

9,10 Ravleigh woves at £11led slots.

The configuration of a filled slot, with a rectangle of
polystyrene set in a half spzace of perspex and vice versa, has not
been considered previously either in an experimental or numcrical
study.

In the presznt study slots filled wiih perspex 1.25 wave=
lengths wide end 4.3 wavelengths deep in & polystyrene half=-space
and vice versa were conaiderad,

The results for the transmission and reflection coefficients
for the slots are presented as Table 25 and those for welded
quarter spaces of thc same material are presented as Table 33, The
- scattering coefficients were compared and the results are given
in Table 34, The transmitted pulse 1n the case of the filled slot
should have an amplitude the same as a pulse that has passed

across two welded quarter space interfaces,

Reriection | ist reiiection
welded 1's at £illed slot
Folystyrene - perspex 0,08 i 0.10
perspex - polystyrene C.07 0.08
Using anplitude ratios 'Transﬁzttod pulss
for 1's ; amplitude
Polystyrene in perspex
McGarr & Alscp (Exp) 0,92
" (Num) 0. 96
Present study (filled 0.92
slot)
Perspex in polystyrene
McGarr & Alsop (Exp) 0.99
" _ (nunm) 0.%6
Present study (filled 0.96
slot)

Transmission and reflection coefficients at filled slots and the
corresponding results for pairs of welded quarter spaces.

TARTE 24,

PR S s i T ettt

Thevresults given in Tuble 24 show general agrecment between

those for fillcd slots and combinations of welded quarter spaces,

The only other result in a previcus study that can te
compared with the filled slot ia the conclusion by Woods (1958)
that sheet-wall barriers were not as effective as open trenches

in scattering Rayleigh woves. 220
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9,11 Provesed combhined method for snrfnse fenture chorsptorianticon,

Follewine frem the recults considered in Soctions 9,2 to 9.7
Pol ing frem ti 2

s

the azuthor proposes & method of surfece feature characterisatio
with several advenlages over exisiing methods, which cculd be ucsed
with either time éomain cr spectral amalysis instrurentation.

The besic arrangement of the prorossd equirment is shovn in
Figure 9.9. The method is a development of those presented by
Hudgell et al (1974) and Silk (1976) which uses the advantapas of
the new RNarnik {1977) surface wave receiver.

The baslc trensducer arrangement would consist of a wedpe
type transducer as the transmitter and two Harniketype probes to
act as receivers.

The wedge transducer should be a short pulese transmitier that
has a centre frequency about 1/10th of the resomant frequency of
discs used in the Harnik-type probes.

Idealised expected time-domain signals for the transducer
system are shown in Figures 9.9 a to d. Trace a. is the calibration
errangenment with the three probes in line con a surface of the typo
to beAinvestigated tut without defects, This arrangement would bo
used to culibrate any time medsurements to be mede and to fix the
separation of the wedge and receiver 1. Receiver 2 would be
arranged so that it could move along the surface in linec with the
wedge and the fixed receiver.

Trace b, would be for the casec of a shallow defect with only
a single rsflected &nd a single transmitted pulse detected. The
amplitudes of these pulses would vary with defect depth.

Trace ¢ would be the expected trace for a decfeet with = depth
of about two pulse-centre wavelengths. A tip diffracted pulse wonld
be detected and the two components of the transmitted pulse, due 4o
the Rayleigh wave that follows the surface and the mode converted
shear wave from the defect tip separate,

Trace 4 is the expected trace for & deep defect with ihe
three comporents in the reflected signal dus to the tip shear wave,
the reflection from the first 90° corner ernd the Rayleigh wave
reflected back fiom the cruck tip. tka %wo componclits in the
trancmitted pulse would geparate in the time domain.

From the information available in these slgnale.defect

depth measurements should be rossivle.
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Receiver 1. Receiver 2.

&

be

i

T
—————————t SO
Shear wave
Rayleigh wave
Trace from receiver 1. Trace from receiver 2,

T

; /]Um %Z\]Mw A A

v Ry B e N —

Chiu

Proposed combined method for surface feature characterisation, with
idealised output from receivers for the cases of a. on & smooth
be. with a shallew crack. c. with & crack about two wave-
. lengths deep., d. with a deep crack,

surface,

FICURR 0.¢

222~



10,

10._CONCIUSTONS,

The finite difference method has been applied to a range of
new problems; those which occur in pulsed ultrasonic Rayleigh wave
non-destructive testing. The results of the models have proviéed
both quantitativaumerical results and visual information abhout
a wide range of configurations.

The development of a range of new second order formulations
for the boundary nodes, including that for the free surface/
interface node in welded quarter spaces, has extended ths range
¢f problemsz which can be considered and the accuracy of the results.
The use of the second order formulations at 16 nodes per wavelength
compared with the 32 nodes per wavelength used in previous studies,
has resulted in considerable reductions in the model cemputer
core requirements and Job run times,.

For the half, quarter and three quarter spaces, steps and
opén slots additional results and understanding have been provided.
For Rayleigh waves on welded quarter spaces the new formulation
presented hag reduced the number of nodes required to model a
given size space to a quarter of the previous requirements,

'The models have been extended to consider the new configurations
of the block and the filled slot.

The supporting experimental measurements have reculted in
the proposed combined method using the advantapges of the new
Harnik (1977) transducers.

The power of finite difference modellingjwhich gives
quantative understanding fer analyitically intractable problems,
has provided results which are valid in all the fizlde where
Rayleigh waves are of interest and the presecnt study provides a
firm baese for extending the work to consider mora complex

configurations.



11, SUGGESTIONS FOR FURTHER WORK,

he present study has only started the application of
finite differsnce methods to the modelling ¢f pulsed ultrasonic
wave problems, linked with nondestructive testing. The epplication
of the basic methods uged in the models in this study need not bve
restricted to applications that model nondestructive testing
configurations; they have possible applications to an almost
infinite renge of wsve propagation problems covering all the
subjects discugsed in Section 2, geophysics, seisrolegy, civil
engineering, nondestiuctive testing &nd electronics.

Within the wide range of possible areas for suggestions for
further work those given in this scction are restricted to three
groups., The first group of possible studles are those which would
improve or extend the basic numerical schemes. The seccnd group
of possible studies are some of the posmsible straight forward
applications of exieting models and methods to nondestructive
testing linked problems and the third group of possible studies ere
some extensions of the models to consider more complex

configurations, but remaining linked with nondestructive testing,

2. Basic numerical scheme improvements
The basic numerical method is dependent on the development
and use of finite difference formulations which descrite motion 2t
points (nodes) within the structure under study. There ars two
basic limitations to extending the use of finite difference
schemes end these are the lack of finite difference formulatioas
for a particular type of node, such as the tip of a 30° vedge and
the lack of formulations for many nodes that are sccurate and
steble for material with high Poisson's ratio, above abcut”c'; 3
Poasible work would bs %tov extend the range of types of '
nodes which have finite cifference formulations, including
further work on the formulation for non-90° corners due to
Ilen (1977a) and the development of new formulations for interfaces

that are neither normal or parallel to the besic grid.
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A furth~r possible study would te to develap second order
\Aﬂvrp‘ ~ £

:
A \ e vl o
schemes which ere mere accurate wnd have a larger region oF

stability, for such nodes as those at 50° and 270° corners.

b, Further applications cf existing schemes,

This group of suggestions is for further epplication of
existing mods 15 or the development of models that use mainly
exiating materieal.

One possible set of studies in this area would bs to rerform
further work using the existing models for bhoth epen and filled
slots, with different cembinations of width and depth and
with different material data,

One extension to the study could be by considering the
interaction of body waves with surface features, using existing

boundary ccendition formulations.

c. Extensions to model more complex configurations.

The basic nodal formulations form building blocks which can
be combined in many ways, to give models of very complex systems.
The extensions to more complex systems can be achieved in $wo
ways, either by the development of a particular type of model
or the construction of a complex asystem from the varicus basice
nodal formulationa,

One possible example for extending the study through a
series of configurations would be from a Rayleigh wave pulss on a
block; to a pulse en a block with a slot in it; to a pulse on a
“T shape either with or without slots in it.

The direct constructicn of complex configurations could
consider layered configurations, with either surfoce or body waves,
possibly with new formulations for non~90° cornera and interfsces.

Within the basic method there is no requirement to uge
Cartesian type coordinates and models have been made of
cylindrical and spherical geophysical configurations using
cylindrical coordinate systems. (Alterman & Laral 1970) The use
of cylindrical coordinate systems could be extended to mogdel
some c¢ylindrical nbndestructive testing configurations.

d. Experimental measurements.

In addition to the developments o5f the numerical rwodele
- further experimental ctudies could be developed. A series of



11.

experiments could be performed o use the proposed combined
transducer to investirate both open and £illed slots to provide
data for testing the model resulte.

The sugzestions made in this section are by no means an
exhaustive list, -but could form the basis for imediate extensions
of the present study.

1
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Aonendiv A,

A. Some bacic tvpea of elsstic waves,

There are a wide range of different elastic waves wnhich are
often known bty the name of thelr discoverer and thesehave perticular
conbinatlions of components of displecement. Elastic waves in solids
can be divided int6 three classes according to where they propagate
and these ars body waves, surface wavez and interface waves, and
soma of the waves in these classes are now considered. An extended
treatment of elastic waves is given by several suthors including
Graff (1975).

BODY WAVES,
These are waves which propagate throuwgh the bulk of a mediwa.

Compressional waves. This type of wave Lhas only & longltudinal
component of displacement, in the dlrecction
of propagation.

They are also known as;
Longitudinal waves.
P (Primary) waves, ‘
K waves, after the symbol given to their
velocity in geophysics.

Shear waves, This type of wave has only a transzverse
component of displacement, norwal to the
direcction of propsgetion,

They are also known &3
Transverse vwoves.

S (Secondary) woves,

/Ewaves, after the symhol given to their

velocity in goeophysics.
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SURTACE WAVES,

These arc typss of elastic waves where the ensrgy propegation
is confined to a region near a free surface. or surfeces, with the
encrgy propagating parallel to the free surface and decaying
rapidly as the boldy of the medium 1z penetrated.

Rayleigh waves, Thie type of wave is a two dimensional wave
wlth only a longitudinal component of
displacement in the direction of prorapation

‘éhd a'tranéverse component of displeocement
normal to the free surfece. This wave can
also be considered as an interface wave

with the second medium & ges or vacuum.

Iove waves, This type of wave is a transverce gheer wave

trapped or gulded by & surface layer,

Lamb waves. These propagate in thin plates

INTERFACE WAVES,

These are waves that occur at tho boundary between two media,
which may be in different phases and thelr propegation iz confined
to o reglon along the interface, the energy in these waves decaying
rapidly with distance into the bulk of the media.

Stoneley waves. These are the type of interface waves that
occur at an interface bstween two different
golids. Their existénce 1ls govermed by
differences in the shear wave velocities
between the two media. Ths range of existence

is considered by Ewing et al (1957, p111-3)

Brekhovskikh waves, Thia type of wave occurs at a colid/liquid

interface andé is alzo knovn as & Schult wave.

Rayleigh waves. This type of waves cen be considered %o te
the s011d/ges or vacuum interface wave or a

surface wave,
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Apnendiv M.

L, Nondentruntive testine data disnley,

There sre three forms of data dicplay in common use in
ultrazonic nondestructive testing and these are known as A, B and
C scen'ss A outline of each type of displey is given in thig
appendix and further details are given by many authors including

Krautkrameyr snd Krautkramer (1969).

A Scen, This iz a one dimcnsionai ¢isplay for a pulse echo system,
It is illustrated by Figure D.1.

pulse
gen.
, E? ;o | | A B C
trans-L A B C .h_JL..@,
ducer time

A Scan type of data display.
FIGURE B.1

-

B Scan, This is a display for a pulse echo sysiem using a single

transducer which scans across the test piece in one
direction. It is 1llustrated by Figure B.2. The size of
echo recorded relates to the dimensions of the seatters.

.

trensducer Jﬂ Scan output on film
I
test -
block o
-y s S D e .
A B c A B C

B Scan type of datu display.

FIGURE B.p
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€ Scan,

test
block

B.

This typz of display is formed by eithsr moving a
tranaducer ecross a speclmen or vice vesn, The epatial
variations in the trensmissivity to the ultrasonic
beam eppear as half tonecs on recording paper. The
poasition as shown on tha recording paper reliates in
acme way to the trancduecer position. It is 1illustrated

by Figure E. 3.
cutput on film

trensducer ’ S~an
M

: / )
—-—-‘:- [P pp— -... 7/ [:54«:‘
! \%0 gfw‘"
' A
- T el - - . e~
m 04 soen | = = = e
“ 5 ol o) Ty,
-~ w,-(l) —Kx-f - f {* - 'v

C Scen type of data dicplay,

FIGIRE Bade



C. Vaterinl data,

This appendix lizsts a range of medie, with some material

constants and wave veloclties, which are of interest in the

work reported in this thesis.

The data presented has been collected

sources, tut unless otherwise indicated the

to DBradfield (1964).

fron a ranpge of

values given are due

J."-w..lk bD. amahhe :
. Toisson's| Density vave velocities m/sec,
Faterial ratio. o kg/m§ Vc ' Vr Vs/vc.
Ietala =
(1) Aluninium 0.34 2700 6422 3110 2906 | .48
Duralumin 0.345 2700 6398 3122 2317 1 .488
Copper 0.34 8930 4759 2325 2171 | .48
Titaniwg 0,36 4510 6130 3182 2958 | .51
Chromium { 0.21 7160 | 6608 4005 3655 } 606
Steel(mild)} 0.29 7850 5960 3235 2996 | .54
Non-matals
Glass,crown}) 0,22 2500 5660 3420} 31271.6
Quartz 0.17 2200 5970 3765 34101 .63
§
(A) Perspex 1220 2360 1370 2 1200 § .58
(4) Polystyrene) 0.245 1080 2C30 1180 1034 § .58
4250
(K) Concrete -5250

Data for some common

metals and non-metals,

TARLE 35,




i i

. § Poisson'sgDensity} Yave velocities m/sec.
aterial ' Wi 2 kg/mﬁ v v v VS/VC
_ S s I -
Geophysical
(X) Granite 5400
(¢) Granite
(Rockfort)] 0,243 6050 3360 «55
(G) Quartzitic
sandstore | 0,118 6030 4000 .65
(G) Dunite 0,262 8050 § 4570 .56
Iedical,
(K) Bone
(human 4000 1970 <49
tibia)
Data for some geophysical and medical media,
TARTE 36.
where;

(A) McGarr and Alsop (1967)

(G) Gutenberz Ed. (1951, chapter 4)

(K) Kaye and Laby (1962)

(1) Munasinghe

(1973)
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Appepdiy D,

D. Tinite diffeoronce anproximations rod body rode formulations,

This eppendix presents the basic difference forms used und
the sccond order centred difference formulaticns for the body
node, The basic coordinates and ccordirate system used are es
showvn in Pgure 4.f.

The baslc difference forms uwed in the foruulatlon of the
difference formulations are obtained from the Taylor geries
expansion for emsll zhifts from a central point »{(i,J),X) zrd the

function for displacements is given by Chisholm and Moxris (1905)

as;
U(X 4d,X,40,T4s) = U(X, %5, T) 4 l_d._;;_g _hau - sall 1-
| 9%, 3x2 °or |X; X, T
2 2 ~2 2 e
' 1 &fFu  n%fu  s%n e fu | med®y sy ]
| It St SET st Soet s
1 2 I ! e = UL AT
<+ higher order terme. 0.1

wvhere d, h 2nd 8 are the increments in the thres coordinsate
directions X1, X2 and T.

By application ct the equation D.1 %o the node P(1,j,k), in
the generel case gives the standard difference forms which, when

given in tha same notetion ez Munesinghe (1973) sre;

a E(i’j ’k)Q: di'y,(i"‘l QJ ,1:)4_(5(1)-,[_:(1'3 vk-)_di_«' 'Q(i"‘l .,j ,1{)4’(3((‘12)

v 3 ‘ s 7
9_..1 4, _4-d dgedy _, ¢ ed D.2

———g .

o
3

UL, 3,0) 2 g(i,j,k~1)_g<i,3.k>+p_<i.3.k-1)}. 0Es) 0(s?)

2
T2 -  m :
By 4.8 S0 By £, .8 | D.3
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D.

IRUCIRIANY

F)x@x?_ a, .d b:“ a, .4

2
d E(i.d.kf)\ di.hj._l_[(iﬂ,;j+1,k)+6d.h
~

i+ 1.113 h

a eh

4y _qehgoU(i-1, 341 ,h)+d

.oh.p_(1+1 '3 ,k)+8d.8h.y_(i.j )

j i

di'd'hj+1

1.Sh._g(i-1 ,i.k) ¢

_ i.h

j+1.y"(i+1 93'1 ,k-) fd.hj“". 'Z‘:‘i(i’j-1 lk)

di'd‘hj'“3+1 di*1.d.hj.h di'di

13h

' . Al 2 P
d;, q+h +1'9(i'1’3"”‘) +O(Sd)-‘~0(&,h)+0(di )ri-O\hj ) D.4

o+ 3

di.d.hj.h

where d = di + d,

-»e
ol
o

g b= hy by, S ¥ Fyyn

€d =z 4 - di $8h = h, s s ==& -8

Byer = By
and symbol O( ) denotes order of.
These difference forms, given as equations D.2 to D.4,
simplify when restrictions, such ag wniform epatial or time steps,

are added, and the forms of these relations with the uvniform
grid restrictions are given as;

2 U(1,3,k), [vcm.a.k) - g,(i~1.3.k)]+0(d12)" s

by X, 2d

92;_1(1,3,1:),\ 1 u(i,d,k+1) - 2 U(1,3,k) + U(L,j,k=1) +-0(s ) D.6
X

DzU(i 3 k) 1 [p.(iﬂ,jﬂ k) - _ll(i-1,j-t~1,k) - .I__T,(i+1,;§-1 i)
3X1Dk 4¢h
p N 2 2
+p_\i"'1'3"1ak) + O(d )""' O(h ) D.7
The eigns of‘the components for the mixed derivative are an
ghown in Pigure D.1. > ! .
t
e e e e e .
- l '.'

Signg of components for nized derivative,

FIGURE D1



D.

The equation for a body node, with uniform spatial and time
increments, is given by substituticn of equatliorns cf type D.6 a&nd
D.7, into the basic equation of notion in an elastiec sclid, which

is given as equations 2.3.2 and 2.3.3, and upon menipulation gives;
2
U(d,3,k-1) ~ 2.0(1,3,k) - U(1,3,k=-1) - e (Fp(U)) D.8

where Fp(U) is en explicit expression, the exact form of which is
given ty fltermen and Loevwenthal (1970) The full form of ccuation
D.8 vhen written in the notation used by Munasinpghe (1973) is;

Ui, i,ke1) = 2 U(4,3,5) - uld,d,k=1)

2
+ -Ai(g) {H(i{-‘l,j,k) - Z.H(i,;j,k) + y_(i-hd.k)}

\2
+1p (f;) {y_(in,jﬂ.k) - U(L#1,3-1,K) = U(1=1,3-1,k)
¥ H(i‘1’j'19k)

2 .
+ 9(‘3\) {Il.(i.jﬂ.k) - 2.U0(1,3,k) + _Q(i,:}d,}c)} .9
] 2 2 2
where U:[Uj ! f‘."-’/ Ve 0 i B=[ o Vo =Y
u ‘\ 2 2 2
o VE \‘C - VB fa)
7 2
C - (V o
o v,

. Due to the rapid decay of displacements below a surface in
some studies of Rsyleigh waves, including that by MNunasinghe (1973)
a nonvniforn gird form is used which 1= gilven as equation D,10.

The nonuniform grid form is also used in the studies of polygonal

surfaces with compressional waves by Ilan (1977a, 13977b).
Alternative formulations are pessible, using higher order

derivatives znd cr using Lamé constanf{s in the place of velccities

ueing the relations glven in Section 2.3 for velocities in terms
of the Iamé conztants.
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D.

The equation for uniform time and roauniform spatial grids;

g_(isjok+1) = Z-H(ioj’k) = 9,“-.3.1{-1)

+ 92{2,A [y(Lei,3,%) - U(L,3,%) + U(i~1,3.%)]
- W 6,.d |
+ 2 clulL,j+1,k) - Ud,3,%) = U(4,3-1,%)]
] hjﬂ.'fx hyohy hj.ii |
43[4 on, 0041, 341,0) + Eh DL, 341, - dm.hj.g(i-{,;n',x)
di“.a’.hjﬂ.i dgedy qohy g A di.E.hJ+1.‘ﬁ

-+ d; Sh.U(ie1,3,k) +6d.Sh.U(1,5,k) - &y g0 BaU(1-1,3,%)

a o“c . . . ol a
141°%° Ry Rygr Gpedygqebyelyy dedihgeny
= &yehy  B(Ee1,3m1,K) = By LW U(L,3-1,K) + di“.hjﬂ.g(i-t,j-*],k)"[
dyyqedehy R 88y qehyR 4Tk B |

D.10
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Anpendix ¥,

E. First ordem finite differerce formulations for freec eurfece rodes,

Thlis appendix presents the finite difference formulations that
are used.to calculate displacements at pssudo~nodes outslde the freo
surface of a medium and allow application of the body node

formulation to the boundary mnode.

E.1 Prea =surfoce node formulaticns.

_ The two pseudo~node schemes which are presented for nodes at
free surfaces are both obtained frcm the boundary conditicns for
the free surface which are presented in Section 2.3. The first
scheme, which uses Centred Diffexence approxiwations was oripinaily
presented by Alterman and Karal (1968) and 15 glven here in
Appendices E.1.1 and E.1:2. The second schens, which uces Cne-sided
Difference approximations was originally presenied by Alterman and
Rotenberg (1969) and is given here in Appendices E.1.3 and E.1.4.

‘Both zchemes have been used by a number of workers.

Felel Centred NDifferonce scheme for horizontal free evrface,

The node configuration for the node outside the top
horizontal free surface, node P, is shown in Pigure L.1, &nd the
explicit expression for the displacements at this node (P(i,j=1,k))
is obtained frcm the free surface boundary condition, that the free
surface 1s stress free, which is given as equation 2.3.10 and here
ac;

Tin= T

127 1op = 0 . E.1.1

where T12,&nd T22 are compcnents of the Carteslan stress tensor
which is given as equation 2.3.8.
- The displscement vector is obtained by substitution of

Aifference forms in equation E.1.1.
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uli,j-1 gk) = U(1,j+1,k) + E1 [};l(ii;T,j,k) ~ U(i-1 »jvk)l o

where §1 .[ o 1/r U= U1 r = d/h;for uniform
5 3 : o erid. =1, 5
v Ip ] =1 -2 {(V /Y
vz o | Uy yo =1 -2 (v V)

The right hand side of equation LE.1.2 1s a linear conbination
of dlgplecements inside or on the boewndary of the solid.

The nodal configuraticn for the node outside the btottom
horizontal fra:z surface, node Q, is shovn in Figure E,1, and the
explicit expression for the displscexents at this node (Q(4i,3i+1,k))
iz obtained from the seme boundary cenditions as are uszd in the
case of equaticn E.1.2.

" The resulting equation is given as;

i

CRR PSS C R RO A RICTIR OIS [CRI RN R R

where §1 is as for equation E.1.2.
X,
[t o FB(1,3-1,k) .
X
? AL, %)
et LALLL 2L L2
ey B(i,3,K)
* *Q(1,341,k)

Xode arrangenment for horizontal free surface.

FIGURE E,1.

Fele2 Contred Niffevence seheme for vartiecal froe surfecs

*

Similar expreszzions to those for the nodes outside horizontal
frse surfaces are obtained for the cases of vertical frese surfaces,

The boundary conditions for vertical free surfacces can be

expressed as compeonents of the Cartesien streos tenscr‘equation 2.3.8,

which can be writtzn as;

11 = T12 = 0 B.?.(-’.-



E.

The node configuration for the node outside & right hend
free surface, node S, is shown in Figure E.2, and the equation for
the displacements at this node (S(i+i1,j,%)) which 1s obtainecd from

equation E.1.4 can be written as;

U(1+1,5,%) = U(1-1,3,k) + E, [1!_(1.3-1.k) - U(1,341,Xk) } E«1.5

where I, =}O ry2 and other parameters are as for
. ; : “ .
r 0 . QQUution Eoele2e
A3 in the case of horizontal beundaries the same boundsry
condition appiics for the other vertical free surface and the
explicit expression for the displacenments at node T, shown in

Figure E.2, can be written as;

U(ie1,3,%) = U(i-1,§,k) + E, [p_(i.’:iﬂ.k) - U(L,3+1,k) ] E.1.6

where E, 1s as for equation E.1.5

2
AN
: \
A a1,3,k) (1-1,3,k) |
* /, S . i\ ®
// S(i/-1,j,k) B (iojpk) AN
/] N
4 N
/] AN

Node arrangement for verticzl free surface.

FIGURE 1.2,

Ee1:.3 Orc-gidad Nifference coheme for horizontal free surface,

Using the same boundary conditions as given in Appendix E.1.1
but with the substitution of one-sided difference forms in ithe
rlace of centred differences the explicit expression for the

displacements at node P, can be written csg;

‘ H(ivj"1 tk) < l{'_(i,j,k) - 51 [H(i‘f""j!k) - p_(i"h.)'-l:) ] Se1.7
where &1 =} 0 3 a = ch - 2V?2
; ...._................2 et
ta 0 2V

’
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E.1.4 One-aided Diffevence gchame fopr verticsl free suvrfaces,

Uszing the game boundory ceonditicns o5 given in 4dppeudix B.1.2
but with the substitution of cne-sided difference forms in the
place of centred differences the explicit expression for the

displecements at node S, can be written ag;

U(LH1,3,K) = U(L,3,00 4 A, [3(1.3-1 ) - y,(i.a-n,m] E.1.8
where 52 - b a and a is as for cquatlicn E.1.7
H
¥ 0

Similarly the explicit expression for the displacements at

node T can bs written as;

Ui-1,3,k) = U(d,3,k) + A, [L’_(i.ﬂﬂ,k) - ,I_F,(i.:)-1,k)] E.1.9

where A, i8 as for equaticn E.1.8.

E.QASOO corner node formulation,

13

This appendix presents the difference formulations for the
four 90° corners shown in Figure E.3, using a method dus to
Alterman and Rotenberg (1969), and extended to the cases of the
two inverted nodes, shown as nodes S and T by the author. The

notaticn used follows that given by NMunasinghe (1973).

N | 1l alt B! i-1
—8 e — - X ° 31
1 . Qt \‘. Pl
0|  Q rl “vle
N 22 LTI T
| // 7
/ /
F/ //
; /
vl vy L lf‘
. T‘ °o S'!
— s @ — ) rmvient @ e
\'f l W ) !D lE

o
Rode arrangeawent for 907 cormers,

FICURD B.1.
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F.2,1 Rirnt h2nd 90° comners,

For the node P, shown in Figure L.3, which is at the
intersection of a horizontal and & vertical interface, bolh sets
of boundary conditions arply simulicnecusly at this neode,

Ty overcome difficulties in the solution of the equations at
node P, a ore-sided (cff-centred) differsnce scheme is used in the
direction perpendicular to the free surface and a centred scheme is
used in the direction parallel tc the surface, whoen cach set of
conditions are applied.

The dieplacements &t the pseudo-nodes A and C are obtained by
the substitution of the approximations, given as equation E.2.1, in
the boundary conditions for the horizental free surface, which were
glven as equation E.1.1, ond the substitution of the approximations,
given as equation E.2.2, in the boundary conditions for a vertical

freze surface, which were given as equation E.1.4.

o
[ ]
i

U(ir1,3,k) = U(i-1,3,k)
8x1 24
Ee261
° QU = U(ivjok> - U(ivd"’1 ’k)
8X2 ‘ h
U = U(i‘d’jok) - U(i’jok)
3x1 d
B.2.2
U =  U(i,3+41,kK) - U(L,3-1,k)
a:x2 ch

The displacements et the pseudo-nvdea are then obtainzd after
considerable manipulation of the displacements in the body ornd on
the surface of the medium. The equations for the displacements at

nodes A end C are given as equations E.2.3 &nd E.2.4 respectively

U(i,j=1,%) = B1H(itjvk) - Begﬂi'j+1'k) = E3H(i“1039k) Ee243
U(1#1,§,K) = DU(L,3,k) = DUCE-1,5,k) = ROCL, §+1,k) Ee2.4
vhers 2 = -4/3 2‘/31‘-1 AT [1/3 0 1 }23 = 0 2/3“
| |2¢/7 8y R 21/7 O |
D, = KD é1r'1 Dy = [T, CT D =z[0 a,r]
?r/} 4/24 T 1/2 L?r/} o] |
-241=- .
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By =_2y 3 8, = 4 ay = 4 sy =0 - 2(vs/vc) )

(4-3%9 {4y (4-y%
r = d/h = 1 for a uniform grid.

Using & variation of the wethod due to Alterman snd
Ilowenthal (1970) wmade by lunasinghe (1973) the dlsplacements at
the pseudo-node B are obtained. In this formulation it i3 seen that
the smaller the grid spacing (the larger the number of nodes per
wavelength) the nore accurate the calculations et the corner will
be., The surface tractions at the corner are resolved parallelland
perpendicular to a lina joining the pseudo-nodes A and C and are
set equal te zerxn,

Using a law for trensformaticn of the invariant stress

tensor (Nye 1960), the components of stress are given as;

m - . m - - -
2 2

The expressions for the displacoments centred at P' fer the
node B are obtained by the substitution of the difference forms,

fiven 29 equation E.2.6 in the equatlions E.2.5,

I—)&'_: _I_I,(i'€”1pj’k) + E(i‘a’1::j'1 ok) - E,(ivj’k) - p,(ivj"" vk)
o) X, 24

U = Uli+t,J,k) + U(d,3,k) - U(L+41,J-1,k) - U(L,§-1,k)
o X2 ch

When the necessary masnipulations have been performed the

displacements at the pseudo-node B are given as;
H(i""'j"‘] ak) = p_(i,jok) + .1.).7 [E(i’3”1 ’k) - E.(i*"j'k)] Ee2a7

where in the case of a uniforn grid,

2
- - - - D . -
Dyzfby -b, . b, =1~ 2r /a1 i by o= 2r/a1
’
b2 b3 b3 = 2/8.1 -1 ; ¥ = &/h
e, =1~ 2r(1 + zf) + r2
et
(1 - 5%)
and in the case of a unifera epatial grid,
- 2 f
Q7 =l a b a = (1 fzy ) b= (1 - yz)
. . 2
-b -3 ’ 2y ' ey
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Ty a siwiler procedure to that given above the suthcr has
derived expresciong which glve ihe dicplacements at the set of
pseudo-nodes asgociated with the node 5, which 1s shovn in Filgure E.j.

The expressions for the displecerments at the nodea D ard P are
obtained by substitution of the diffcerence forms, given as eguaticn
E.2.8, in the horizontal.free surface boundary conditions, which
are glven as cquation E.1.1, and by the substitution of the
difference formz, given &s ecquation E.2.9 in the boundary conditions

for a vertical free surface, which are given as equation E.1.4.

SU = Uli#l,i,k) - U{1-1,],1)

-ax1 ed
E.2.8
OU bed U(ivj'ﬂvk) - U(ivj’k)
sz h
QU - U(i+1ij'k) - U(iij$k)
ax1 é
£.2,9

aU - U(ioj+1 ’k) - U(iv3”1 ’k)
ax2 2h

AN

The displacements at the pseudo-nodes D and I are given as;

U(4,341,%) = D} U(1,3,%) = D U(1,3-1,%) = Dy W{1-1,5,k)  E.2.10

U(1#1,3,k) = B} B(3,3,%) —'gé U(1-1,3,%) = B2 B(i,3-1,%)  E.2.11

where the constants in the case of a uniferm grid are,

p, =43 23] pp=fi3 o] n =0 -2

8y a5 ] 0 33 » = 0

' - - ' -~ - 1\v - -

_1_')_4 = 8, -3, _12,9 = 8,3 0 Ly = 0 a,
~-2/3 4/3 0 /3 _-2/3 0

and the coustants 8y 8oy and 8, are as for equations E.2.3 and E.2.4

A similar procodure to that used for node B is followad to give
the equation for the displacements at node E and the derivation is
again based on substitution in the stress relaticns given as -
equation .2.5, The expressions for the displacements centred at

S' ugse the substitution of the foims glven as;



"~
ire

ag - H_(i""‘ojok) - H(i+1|j*1!k) - }_‘,(i.J,k) - g(ivj'” ’k)
ax1 24

AU = U(i,3+1,k) = U(d41,i21,k) = U(L,5,%k) - U(d+1,],k)

A X, , 2h

Following manipulation of the equations the form for the
displacements at the pseudo-node E is obtained, which is given as;
]

H_(i‘” 93‘” Ik) = _U_(i,ii.k) - ,127 [ H(i’.‘]*" ok) - y,(i‘*“rjsk)t} Ee2412
of

' 4 2
vhere D, zja b} a= (1 +y) b= (1= y?)
; —— St

end y~ is as for equation E.Z2.4

E,2.2 Teft hand a0° cornara,

These are the pair of corners shown as Q and T in Figure E,2.

These corners are treated in a sirilar manner to the right hand
corners considered in Appendix E.2.1, and corresponding sots of
Qexpressions for the displacewents at the associated preudo-nodes are
obtained. The expressions for the diaplacemeﬁts at the node Q

follow the work of lMunznsinghe (1973) and those at the node 7

T arve
derived by the author,

The expressions for the displacements at the pseudec-nodesn
M and O are given respectively as;

* t '
U(i,3-1,k) = DUGE,3,%) = DL, §47,%) - DUirt,,k) Ee2414
' ' [
?.(i"'l’.‘j.k) - P,4_1_J_(iyﬂ’k) - P,B_U_(i-""‘,j’k) bl _1_-),6,1;':(1,3'#1,1:) E,2.15

The expression for the pseuvdo~-node N is gilven asg

U(i-1,3-1,k) = U(i,J,k) + Dy [Q_H.J-hk) - }L(i41.;§.1:)] Ee2416
vhere the constants in equations L.2.14 and L.2.15 are as for

equations E.2.10 and E.2.11. &nd;

iPG b7 | |

g, = 14 2r(1~3_£_l + r" , for a mnifora grid r = d/h = 1

23:{‘135 be bg= (1 -2r) bgn 2y by = 2

[

1 -y end bS' h6 and b? simplify to;

~244=



”y ”
- ) ' . -y S -y
S N R T
I‘.. ‘,2 ' 2 2
LUG LS

; - Eovd . g T 17 - -
Por the cose of the wode T, shown in Figure 8,3 the ecxpressicas

for the psewvlo-nodez U ard VW are glven respeciilvely esg
k 2 J ]

U(4=1,3,K) = DU(5,3,k) = DU(3,3-1,k) = DyU(i41,5,k) E.2,17
p_(i j+1 k) ‘H(i'j,k) - DSU 1?1)j k) - "Gli(iﬁj.'1 Qk) E.Z.?ﬂ

where the cousztantis are as for equations Ed2.3 end Eo2.4,
The expresggion for the pseudo-nude V is given os;

UlE-1,34,6) 3= U(L,5,k) + ] [U’i J¥1,k) - U(i-~1 3 :)] E.2.19

'
where Dg = 2, in tho case of a uniform grid.

5 .
Ee3 2707 corners.

In the case of 270 cornezrs both the horirzontsl and vertical
free surface boundary conditions epply ot the corner, For the
nodes P eand Q, chown in Fipure E.4, Munasinghe (1573) hes

produced a triple pseudo=-node formulation at the nodes E and Y.

B B H H 7
. / V‘b__‘ u ..Y{ //’ .
< QIE.’C" T N !
/ Q(«oj’k) P(ild k) 7/ o
® e e e, T .
//’////,/ /;//// //
o . [ 3 [ [ ®

< 0
Node arrsrngement for 2707 corncra.

PIGURE T, 4.
Ee2. 1 _Rirht hana 270° cornow,
The triple node, as developed by Munosinghs {1573), at rode

L 1z &eveloped so that the necessary boonéary conditiorns for the
three nodes that use the valuves of Givplacements &t that node

can La reflected in that node,

ry

£-

N
H



B.

The displacemonts at node E, end Eh ars obtained by ths
application of the beundary formulations for the vertical and
horizontal free surfaces ag given in Appendix E.1, as equations
Ee1.5 and E.1.2. The neeudo-node cerrespeonding to tho coerner peinsg
Q is treated in the same way as the 90C commer and Q' becomes the
effective corner.

The expression for the displacersnts at the node Ec’ in the

case of a uvniform grid is given as;

U1, 301,00 = 0043060 + Iy | 8100 = et 0] wau

where L, = Dy as used for equation E.2.7.

Fle3.2, 12ft hand 270o corner,

This ccrner ig the corresronding dual problem to the right
hand case snd .the set of equations used for the nodes Hv end Hh
&re the boundary formulations for the vertical and horizontal
free surfaces given in Appendix E.1. The psceudo=-node corresponding
}o the corner point P is treaticd in the soma way azs the 9c® cornsw
and P' becomes the effective coimsr.

The expression for the displacemcnts at the node Ec’ in the

case of & uniform grid is given as;
Ui=1,3-1,k) - U(4,3,k) + L, [.t:.(i.a-um - 11.(1-1.3,}:)] Ee3.2

where LZ = 28 as used for equation E.2.16.

-5 G
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F, Secord order Tinfte differavce forrmlations for fyea surfece nodes,

This appendix presents schemes for second order boundary
condition formulations, initially dus to Ilan et al (1975), and
extendzd by Ilan and Loewenthal (1976), end in this study by the
suthor to cover a lerger range of types of nodes,

F,1 Pree surface nnde formvintions,

™70 sets of free surface formulations are presented in this
appendlx. The basic formulation is the gecond ordexr composed
approximation due to Ilan et al (1975), which is found to huve a
very limited rsgion of stability.

The second formuleticn ig the new coxposecd ferzulation which
was developed for the horizontsal free gurface by Iien and
Loewenthal (1976) to extend the region cf stability end this
scheme has been appliied to vertical free surfaceé by the author,
The new formulation uses the foruulation for the component of
displacement parellel to the free surface from the coxposed
epproximaticn ¢nd a new formulation for the component of
displacement normal to the surface, ,

1@ tasic rnode errangewents, which do not include pseudo-nodes,
for surface fcrmulationc, are chown in Figure F.1.

L. raa0 )
L/ 7ﬁ7}////////,//f/ :
7
Q(i,j,k) ¢ o . . /G‘ R(3,J3,k)
g B
y
. .

Node arrangements fer second order surface forywulaticons,
FAIGURD w ¢
SN Sl
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F.1.1 Corpoced anproximation for horizontal free surface,

In the development of a boundary node formulation which does
not use pseudo-nodes, as the derivatives with respect to X2 on the
free curface X2 = 0 can cnly bte approximated by cne-cided differcrnces,
they are replaced by derivatives with respect to X1 and tiwe, for
which centred difference forms can be applicd.

On the horizontal free surface, node P(i,j,k), shown in
Figure F.1, the boundary condition for a stress free curface
applies and this is given as eguaticn F.1.1, where the components

are components of the stress tensor as defirecd in eguation 2,3,8.

T21 = T22 =0 Felei

The compeonents can be written in full and are given as;

aUz "*‘ 3U1 - 0 Fo102
QY X,
23U, 4 (1-2 (v ENgu, = o Fail3
%, JX,

N

These equations, cquations F.1.2 and .1.3, are differentialed

with respect to X1 on X2 = 0, and give;

aaU - - 92U
S 2 P14
pe 2 : > * ¢y

2x18x2 ::9){1

2 2,, 2 2
%, = - (1 -2 (2?2 Yy,

e a—n—— — s s F“I.S
- 7
QX@kg P X,

The basic equationns of motion for the system are defined in

Section 2.3 2nd are given here agg

2 2 2 ) 2 :
90 v297 v2 9V P .v?) 2T .1.6
¢ T 0 Ax?  2x? " oxax
v N 2 19%2
) Uz. _ ch U, _{‘ch “C:)” v, _J‘_(‘,cz - Vaz) T, P17
5 T2 ° TR 8 N
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From Taylor series expansions it is necessary to define

expensions for U1(i,j+1.k) and Ug(i,j+1,k) and these are given

as;
. o

U, (4,341,0) = U (4,5,%) + nd% 4 4n® 2% & o) Tu1.E

0 X 0x,°
2 <

2

Up(4,341,6) =2 Uy(4,3,0) 4+ 1 8% o 30 3 72 4 o(n?) F.1.9
1, ax22

The equations F.1.2 to F.1.9 define two sets of eight
equations and these contain eight unknowns, the last two of which
occur in the finite difference fowrns of the second order time
derivatives in equations F.1.6 and F.1.7. The system of linear
equations can be reduced to give equations for each of the two

components and these are;

2 e 2 7
Uy (4,341,6) = U (4,5,k) - 0302 4+ ° | 5”1 2 v, 3y, -y

’ X, v2 a2 arl v?
. | 's c

o+ o(h3> Fo1.10

Up(L,341,6) = Up(d,5,%) = h(1 = 2(v 2/v %)) ah
J {

2 2
2 o
i |1 3% i 2r 2w ) 8 Lho?y para

2

VC a t2 a X1 <
In equations P.1,10 &nd P.1,11 there are only two uriknowng

after finite difference sutstituticn snd these are U1(i,j,kf1)

and U,(1,j,k41).The explicit forms for the displacements at a free

surface are then obtaincd and lhese are glven ag;



2

U1(itjok+1 = QVSE[E—] U1(i yJt1 91{)

Lh
2 -2 2 2 2
1 -2
Ol [E R YRR | A R
“1h I v d . :
~ s V d
(&
N T4 T . '
h a i
L . d
- J :
+ Vﬂaf- Vo - 2Vsl[ﬂ1(i+1,j.k) - U,(i—hj,lc)] F.1.12
»-d-J V 2
h- c

2
Up(d,8,k41) = zvcz[.:_] Uy(4,341,k) = Uy(1,3,k-1)

2
ol 2 2 2 1 -2V
S A N L R | o | RASSERD
h LS v d v
c c
o

, 2 P s 2 . '
GG LI | i N ACTTF RO IR A CR T D
v 2l e
C wd
- vc2 1 =2 \,'827 [5]2 [U2(1+1,j,k) - 02(1-1,3,1:):[ Foelel3
2|{In :
v.©

Fel1.2 Kew comnosed apnroyximztion for horizontal frese gsurfece,

It has been found by Ilan endLoewenthal (1576) that the rcgion
of stability for the composed formulation, given as equations F.1,12
‘and F.1,13, has severe limltations and hence carmot be used with
the data for many common materials that have a Poisson's ratio
larger tharn 0,27. It is found that it is the vertical component of
displacement that is the most sensitive part of the composed
scheme and a reformulation for this component has been proposed by
Tlan and Icewenthal (1976).

Following ihe procedure of Ilan andLoewenthal (1976), the
author has derived a new composed formulation adapted for the
coordinate system used in the present study.

A Taylor series expansion for the vertical compecnent about

the point P(1,j,k) is given as;

2
rd . Q' 'T
Uz&i,jﬂ.k):: U‘z(i.é,k) +h o2 +~§~}12 J “2 4. o(nB) F.1.14
: 2
A%, d x;
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The boundary condition, given as equation F.1.3, is rewritten

in a form for substitution in cecquation Fe1.14 and is given as;

2
DUz ,.IV - eV, ]“‘U1 Fels15

-~ .«...._‘..,..,.,. ——

D1, &x
2

The equation of nmotion, given as ecguation F.1.7, is alsoc
reveitten in a form for substitution into equation F.1.14 and is

given asy

2 2 2, v 2.y A 3y
3”2:19 Vo 2% |V, e | oYy P11

2 2 3 2 27 A
%" v, D ° Vc % V.o |9x,0%,

The approximation used for the mixed derivative in the equation

of motion is given asg

v, [r (141,341 ,) = U (147,3,k) = U, (4-1,341,k)
2dan

Ix,x, | + U1(i-1,j,k)] Fu1.17

The equations F.1.14 to F.1.17 2re a system of linear
equations that reduce to the form given as;

2 z
. . V. - 2v fau
Bp(d¥1,) = Uplhagu) = mfle P 2%
v, X,
2 2 2 2 2] .2
+ 2 __1__ 3” ~ Ve 9T V. -V 9, r.1.18
2 V 2 2 2 2 Ay A
I¢° v 9y v.? 19xox,

Difference forms sre substituted in ecuution F.1.18 and the
terms rearranged to give ths exprecsion for the vertical
component of displacement for the surface node I(i,3j,k) which is

given as;

2

. > 2
Uy(d,5,ke1) = 2 [ - s%/n° v - s?/h vsz:] Uy(i,3,K) = U, (4,3,k%-1)

2, 2

-l 2 52/h J U (1,;+1 k)~r—V /a” LP (i41,j,k) U (i 1,3, hi]
2,2

+ 8/m% (v 7 - 3v Py [U0et, 5,00 = Uy (ee1,4,1)]

+ 3 o mP 2 v ) [0 e e - U1(i~1,a+1,k§} Pel19
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Fel.3 Composed anproximation for vertical {rese surfaces,

FPoxr the vertical free surface nodes, nodes Q and R in
Plgure F.1, the formulations can be obtained in two ways, either
by the direct solution of the system of linear equations, by the
method used to derive rquations F.1.12 and F,1.13, or by the
spplication of a sct of transformatlons derived by Ilan et al (1975),
to equations F,1.12 and F.1.13. '

The =zet of equations for node Q are presented as equations
F.1,20 and F.1.21, and the sign changes necessary for their
application to node R are indicated by a second sipn in the
eppropriate places,

U, (4,3,k41) = 2V, 2(s/0)%0, (141,3,0) = U (4,3,k-1)
-+ 2 [:1 - v 2(s/a)? - (e/m)P(v ? - 2v32)_] U, (4,3,%)
 (a/a)%(a/m) (7 = 20.7) [1,(8,581.0) - 0,8,5-1,%)]

= G/ - 20 ®) [u, (4,501,000, (4,3-1,1) ] F1.20

© -

Uy (4,3,k41) = 2v82(s/d)2112"(i+1,j,k) - Uy(4,3,k-1)
+2V32(s/h)2 [(h/s)21/V82 -1- (3v02 - 2v52)/v02] U, (4,3,k)
¥vs2(s/d)2d/h [111(1.,5” k) = U (1,31 ,k)]

£ v 2 ® - gvs2)/v02 (s/0)? [U,(4,5¢1,k) + U2(1,3-1,kS]

Fols21



Felod Wew composed avproxircotion for vortical fron curfaces,

For the vertical frze surface nedes the suthor has derivegd
new ccmposed type formulations using the camze procedure as that
given for equation P,1.19, in Appendix F.1.2.

For node Q, shown in Pigure Fe1, the new comrposed form is

given =agy
Up(Lad )z 2V 2 (s/) %0, (161,355 = U, (4,3,k-1)
2 2 2, 488
+2 11 -V "(s/2)" -V (s/2)° | U (4,3,K)
2 2 2\ I ‘
OO NAREA Y RACH RO ER ACH SR]
2,2 .
+ (/O [U,08,341,1) + 0,(1,3-1,10 ]
— 3(e/02 2 - v ) u,cint,341,5) - U2<1+1.3+1.k>] P.1.22
For node R, shown in Figure F.1, the new comnosed for is
given as;
2
ULk )= 20 B s/a)7U, (11,3 ,0) - U, (4,5,k-1)
+2 [1 - v 2/ - v 2/ vy (a0
2y, 2 2 .
R IAREAY FACRITHOEEATHERS)
2.2
+ (/007 [0, (34100 + Uy (2,3-5,0]

2,2 2 L
T 2/ - V) U -1,001,k) = v, (3-1, 51 .k)] F.1.23

The equations Fe1.22 2nd F.1.23 are used with the
correspending forms for the vertical components of displacenent
given as equation F.1.21.
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0
F,2 Second ordey formulation for 270 scormers,

In the study by Ilan et al (1575) a second order forwulaticn
was proposed for use at th~ corner node for a quarter space set in
a three guarter space and in the present stuly it was applied to

nodes S and 1" chown in Figure F.2.

7/
7 * ¢

e

7/

14 ] ;i 4
S\i,j,K)m; A T\i!jak)
TITTTTY . ¢ A e

[] . [ ° *® "

. 0
Node arrangements for second order 270 corner formulations.

FICURY »,2,

..

The equations for the application of a second order schanme
to nodes S and T, shown in Figure F.,2, are obtained directly from
the equations of motion, given as equations F,1.6 and F.1.7 by
the use of a different form for the mixed derivative,

The form of approximation used for the mixed derivative is

after Ilan et al (1975) and for node S given acj

;)20 1
2 foind 2U.‘(i'?1,,j+1 ,k) - Ue(itj""‘ ok) - U2(1+1 03’1 ok)
O X,9%, 4hd “

+Uy(d,3=1,k) = Up(Le1,3,k) = U (i=1,541,k) 2 U2(1-1,j,k)]

- 0(h) P21

with a similar expression for the other component,

The full equation for node 5 is given as;
Up(L,3,041) = 20 (3, 3,5) = U, (4,3,k=1)
v v 2(s/m)? [Uy(an,5,00 - 20,1, 5,100 + 0 0-1,5,00 ]
+ vsz(s/h)2 [b1(1,3+1,k) - 2U1(i,j,k) + U1(i.j~1.k)]
+ (V.2 - v 7) s%/4en [:2U2(1+1,j+1,k) - Up(d,341,)
= Uy (141,§-1,%) « U (d,4-1,%) = U,(i+1,3,k) - U2(1-1,341,k)

+ U2(1-1,j,k)J | -

q
PN ISP
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The expression for the Uz(i,j,k+1) tern is obteined by the
1 by U2 ond UZ by Ui in equation F.2.2.
The expressions for node T are obtained by the replacement

replacement of all U

of the mixed derivative in equation P.2.2 by the expresaion given

as;

920 1 .
;__,___,2 e 2U,)(i*1,j+1 Jk) - Uz(in'}‘” yk) - U‘g(i‘”nj*‘] k)
dx1ax2 4dh .

- Up(i=1,8,k) = Uy(i=1,3,k) = Up(i-1,5-1,%) 4 U2(i,,j-1,1c)]

4+ 0(h) F.2,3

)
Fe3 Second order formulation for 90" cornexn,

Two second order formulations for the 90o corner have been
considered by Ilan (1978, in press) in a recent study of bvody
waves at corners.

The problem in the solution of the boundary conditions aad
equations of motion is that at the corner the boundary conditions
for both the vertical and horizontal free surfaces apply which
over conditicns the prcblem. Some forn of approximation must there
therefore be made.

In the present study the author, following discussions with
Ilan, has adoptéd the use of the following scheme, for the ccrner
node, node O shown in Figure F.3.

JUIETF Y
VA AV
/

/|

' o
Node arrangement at a S0  corner.

PFIGURE 1,3,

The new ccmposed formulations for the horizental and vertical
free surfaces, presented in Appendices Fol1.2 and PFel.4 respectively
are applied to nocdes A and D.
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The components of displacement at nods 0(i,j,k) ars then

calculated using the expressions given asg

U1(i!j’k+1) - U“(i"1,j‘k+1) Te3a1

Uy (1,3,k41) == T, (4, 341,k+1) Fo3.2
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G._Secend crder finits diffeorance Formaticons Fox dnterface nodes,

Thiz appendlx presents second order finite differcnce forms
for nodes located at the interface between two media, and those at
the point where an interfzce betwsen twe media meets a free
surface.

The initial work on extending second order formulations to
interfaces is due to Ilan et al (19275) and the author hes
reformulated their eguations to make them consi tant with the
coordinate system used in the present study and to expresz the
constants in terms of wave velocities in place of Iané constents.
The author has slso extended the scheme to ¢onsider the free
surface/interface node for welded quarter spaces. The range of iwo
media configurations for which formulations are precented are

shown in Figure 4.7 in Sectlicen 4.3.4.

Gs1.1 Secord order forrlations for horizental intorfeces,

The horizontal interface formulaticn is cdue to Ilan et &l (1973)
and in the present study the method used to derive the formulaticn

for node P(i,j,k), chown in Figure G.1,has followed their method,

Hode arrangements for horizental interfaces with second order
formulations.

DICURE @¢,1,
el A LY

o

-
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G.

The boundary conditions for & horizontal interface, along

X2 = constant for node I(i,j,%x), are for the continulty of
stress and displacement and these are given e&s;

v e ov,t - an = @ %, [ov,2 | gv,2
8 16V —31 “"\8626'2 -a1 G.1o1o
Jdx, ox, ‘ i_c_-)x1 ox,
2 1 a2 2 1 20\t 2
(ch)12-t-}2 o eV~ = 2v " )40, ::_( c(_)(_ L2 +€(v -2V %) 5y
Ix, Ix ox, dx
2 1 2
Gels2,
1 o 2
U1 - J1 Ge1.3
1 2
U2 — U2 Gc1o4
At the interface the displacements are denoted as;
c 1 2
Yyyo= 4 =1 L
l:o1o:7
c 1 2
U2 = UZ = U2
where U1° and U, are not differentiable on the interface with
respect to X2 but they are ccentinuously differentiable with xespuct
to X1 and t.
Equations G.1.1 and G.1.2 con be rewritten in the forma given
as;
2 1 g 2.y L 2.\ ¢
(Vs 6)1‘3‘]1 (V 6)2 3U1 o - [('rs L)1 <Vs (.)%9U2 6u1.6
X, c'Jx | dx

(VOZP)IEEE§1 . (V f)z - ii?(vcz = 2Vs“))‘l - ([(ch - 2V82)353U1c

w
axz 124

-d
> dXT
. G.107
The equations of mection fer the two media can be written in

the forms given as;

2.0 3 2 2, ,3 2 2 . ¢C

o Y " (Vc Vs) gl 1 v, ° A | 279 Go1.8

N o 2 5 A Y 2 2

X ’ ;

dx, \ v Jc:X1uX2 Ve i \Vs/J Dx1

2 2 > 2 3 2 o 2. 2 ¢

J b? 1 (Vc Vs 3 U1 - J__ 5’”? (V~ ) o U2 G.1.9
2 2 Jye me — o 2a.2 \TT2 T A

bS] X, v j)x19x2 Vg ot Vo, @ x,

where the superscripts and subseripts § = 1 or 2 ind1cal°l the
media involved.




G

Equations G.1.6 and G.1.7 are differentiated with respect to

X1 to give the forms given as;

v 2o, Bu,' - v, 5, :_EVSQFH - (Vszf)g-] 3% cito
5;;5;{1 IXo%, 3;;7

v g, - @, '23?”22="E€(Vc2” 27, %)= (v, 2"52))22-_}92UC
IX2%, 3x£x A x?

1 1
' Gela11
Also a set of Taylor serics expansions are rejuired and these
are given &as;

m 2 2. .m
+ h,’?&; _‘3.9_?1 = U,"(1,551,6) - U1°(i,3.k) + 0(h%) G.1.12
P>} ) :
X, 2 x2
+ h ot nP B v, - 0SEL0,E) + o(nY) a3
B -
I X, 2 3x,

vhere m = 1,2 for the two media and the second sign indicated the

form required for the forward term.
The finite difference approximations used for the mixed terms

are given asg;

R 2.n

e R P T mey_y it
Ve 0T U1 (1“'113"1,}{) - U1 (i-1 ’j-"ik)
ax‘laXZ - ¢ c

- U1 (i+1,3,k) + U1 (i~1,j,k) +-O((dh) ) G114

2dh 32U2’“

- + +
= | U, (141, 3-1,k) = U,"(1-1,3-1,k)
ax,8x%

2 - U, 0(141,3,k) ¢ 112°(1-1,3,k5'+o((dh)2) 61415

The zystem of equations up to equation G.1.1% provides two
gets of linear equations, based on the equations of motion, each
cef which is a set of fourteen equaticns which contain fourteen
unknowns., ’ |

By the solution of these sets ¢f equations expressions for ¢

the time development of the displacements at node P(i,Jj,k) are
gliven.



The expressions for the displaccements for a point cn a

horizontal interface (P(i,J,k)) are given &sj

U1‘(itjka1)= 2U1 (i:j’k) - U1 (Qi:j:k‘1)

rs] L U (1,541 k) ==V o, (3,51 ’k)
(1-:42 [ ?2 82 E; R

- (B, (4, $ )
<+ %(h/d)l.ez a2 fV JL?(i 143 k) - U (i ~1,3 :k))]

2 2
+ 61"01 -f-f?vcg [f_] [ (1+1,3,k) = 20, (1,3,%) + U, (i-1,3, k)]
€1 € h
v 2
t_E5___ ¢ Ge1.16
€1 4-€ .

Uz(ivj’k'ﬂ ) - 2U2(i,j’k) - U2(i’j !k°1)

2
+ 2
m[ﬂ E,v 20,(1,341,5) + £V, 50,(4,3-1,%)

2 2

Lannl ]

+1(n/4) [(é’ v.2-2v ) - (g, - ‘?st)-z][%(iﬂ,j,k) ATEITRS) 1

~4
r ‘*‘szaz H [U (141,3,%) = 2U,(1,3,K) + U,(1-1,1, 1:)1
' 61 "'Cg
2
+-3-5—-— H G417
€1 - €2
where G = (G1 + 02)/2 end H = (H1 + Hz)/2 and G1,G2,H1 and U2

are defined in equations G.1.18 to C.1.21 respectively.

The terms Gl and H1 end the ternms Gz and H, are cbiained
by the use of the forward and reverse approximations for the

mixed derivatives, which are given as equations G.1.14 and G.1.15.

~2060-



1 vy 2
— 5:;[%;(’ g}v - Vq1)(L2V02)/”//’VE '}
l: (i+1,3+1,k) = U (1-1,341,%) = U5(341,5,k) 4 US(1- 1,3,1()_}

: 2 2 P 2 e 2 . o L, C
\id - ¥ { r - r -
g e DGl e D Gt - DU o
v P 5’X <

e 1 Ge1.18

» 2
sz'a':ﬁ;f(v s1)~+[(Vc -V, )(E,Vﬂ)/ ]J
Elg(iﬂ.:l.k) - Ug(i-hj,k) - U2(i+1,3—1.x) t ts2(1-1.j-—1.1:):}
N A AR R XA R} P
ch 1
Gel1s19

2 2 2 2, .2
By = Z-h[‘? Wep = Vs2) - Evcﬂ - Va1 (EVe) - VS'I]J

[Uf(in,jn ) = 03(2-1,541,%) = US(ae1,3,k) + 0(4-1,3,%)]

4
2 2 2 Py 2 r24,C
“+ (V.5 = VINE V5 - f,Vsq)/(Vsﬁ ¢ U5 4 o(n) Ge1.20
ax12

2 2 2 2
2@11[6(V ) "EV 2 = Vg2 (EVy7) /vs2]]
U(i+1jk)-U(i‘ljL)nU(iHj1k)+U(i131,m)]

+ Tz = Vo) 6y - EZVSZ)/(VSZ) 3V 4 otm) Go 1421

2
3X1

The equetions which describe thue displacements at node Q(4i,3,k),
shown in Pigure G.1, are obtained by the solution of a similnr set
of equations to those used for equations G.1.16 and G.1.17 ox by

the reversing of the material prarexeters in the final equetiicns.,

~261=-
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Gs1e2 Second order forrulatione for vertical interfaces,

Ny

Two vertical interface arrangements were concidered in the
present study and as with the equatlons used for the horizantal
interface they are based on those derived by Ilam et al (1975)
adapted to fit the coordlnate scheme used in the present study.

The two rnocdes congidered are shown in Figure G.2.

!, %2 N
Q(i,a k)
7t ‘
Node arrangements for vertical interfaces with second order
formulations.

FIGURE 6.2,

The equaticns for the displacements 2t the nodes R and
shown in Figure G.2, can be obtained either by the system of
fourteen equations which describes the configuration or by the
;pplication of transforms which are given by Ilen et al (197%),

For node R the transforms used are;

— 2 d—-‘-h; "i’S" —-—c-";j's" Go1o
For node S the same transforms that are used for node R,

equation G.1.22, followed by the reversing of the material

parameters and velocities for the two medis,

-
[ 4

2



6.2.1 Quorter svaces welded in three=-guarisr spaces,

It is shown in the study by Ilan et al (1975) that a
second order formulation, bascd on the equation of motion can
be applied to a quarter space set into a three quarter space by
using a different form for the mixed derivative term.

Two cases are considered in the present study end the node

arrangements are shown as Figure G,.3.

- \/ </( R
. /% .//o_/‘/

A

Node arrangements for quarter spaces velded in threec-quarter
speces, with second order formulations.

The nodes used in the difference formulaticns are all
assumed to be in the three~quarter space. Using this assumption}
that all ncdes are in the three guarter space,the formulutions
were applied to 270° corners and the detailed approximations are
presented in Appendix F.2, as equations F.2.%1 to F,2,3. (Page 254),

which considers second order formulations for 270° COYTIEYSe

Ge3 _The free surface/interface node for welded quarter syacea,
a _new gsecond order formulation,

This appendix presenté the derivation of & new second crder
formulation for the rode P(i,j,k), shown in PFigure C.4, at the
intersection‘of a free surface and a vertical interface between
two media,

P(1i,J,k)
BRSNS NN
, ////1\\\\\ \\\‘\\\
////i\ NN\

Node arrangement for the free surface/interface node in welded
quarter spaces,

FICURE C.4,.
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The equations which describe ths time develepeent of the
displacorents at nede P(1,J,k) are cobtained by the direct
solution of the eovaticns c¢f motion, subjesct to the free surface
and vertical interface boundary conditicns,

The equaticns of motion are given &a;

2C Zv1d 2.3 3
3% = v 209 4 v2dM 4w vH I s
5 - c= > sa— > ¢l
Ot c)x1 X," axDx
2 ¢ 2.3 2.3 o n2ps
2% = Vcisz‘_.U&. +- ng 2% 4. v,y - Vsi)_u % Ge3.2
O ¢° ' é.)xz‘: c)x12 c-)x1'243x2

wvhere J = 1,2 for the two media.

At the vertical interfacec the boundary conditions requlr
the continuity cf displacements so at the interfoce;
e 1 2 . c 4 2 o
U1 - U1 = U1 . ’ U2 - U p R U2 Ge3e3
In theceguations G.3.% and G.3.2 &11 the components arve
always differentiable with respect to time.
The boundary conditions for a stress free gurface along

X2 = 0 are glven as;

.3 J
o - 1 < o Ge3.4
.3x1 - sz
aU? + (1 - 2(v, /v ))9“ = 0 .35

E)x <)¥

where § = 1,2 for the iwo media,.

The equations for the stress free btoundary condition cun

be differentiated with respect to X1 to give;
| 2 3 25
U1 - ~3% 3.6
T
Qx@xz Jx1
2.3 " » A ,
2T = -1 -2(v /v, 25 6.3.7
Iy’ n e)x,z

~2 64



Ge

Tha vertical bLoundary of the media is on X = constant, at the

point P(1,3,k), and this has boundary cenditicns which are given as;

2 c
UL ey 2480 2y 2';'\35

(C‘V ) \Lz\rsz)g,i (p‘]vf‘1) (szs")({:--g G.3.8
X2 9}{2 “dx1

‘ 2 ~ o) bl
2% e 22% L ke w D - on B - e E - 2v, 2
:9;{2 3x2 Jc)X1

The equatlens for the vertical interfaca boundary conditions
can be differentiated with regpect to Xq to glve;

, 2 ‘ 20
(€1Vs’1').f?.£12 R AMNER i —‘-"-"[:(51 Vor) = (&Y lm 6.3.10
x,9X

@ 1, é)x2 9%,
2 2 # { ‘
(f,v 2 )aU? - (Y DS e K i -2v ) - (g 2 - av ~>;a‘
Ce ') 2 L (¢} ~ 0 d ‘:’
dx X, £3X,
G.3. 1.
From Taylor series expansions it is necessary to define
the expansions given asi
2 2.2
2
w20 e BT v, - 000 63012
E)x2 Jx,
- U
¢h @ “2 - . =
+ = EUg(iﬂ,J.k) t 03(1*103"'1 9k) + Ug(iojok) - Ug(i,df‘ ,kﬂ
dx,dx .
2 .
Ge32.13
2 2,2
U 2 2
nd’2 i ”22 o U,(E,3-1,0) = U,°(1,1,%) Ge3.14
" .
ax, J X,

2 Y - .
—a--—: o [—»Ug(iﬂ,j.k) + U%‘(i+1.j1‘1 k) 4 U:(i,j,k) - U:(i'j‘#" ,1-7)]

) G03;1S
where J = 1,2 for the reverse and forward difference forms,

The equations given as equations Ge3.1 to Ge3.15 form the {wo
sets of equations which deecribe the time development of the
displacements at node F{i,j,%).

The horizontal component of dleplacement at node P(1,J,X) is

obtained by the additicn of the equaticns of moticn for the two
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media which are given by j = 1 and 2 in equation {.3.1. The resulting

resulting equation is given as;

4

-~ 2.¢ 2 .1 2..2 A

AP FUP I P B -2

__Vsr ngjo t if‘{E ) X,

m 2 2.1 2 2.2 =2 2] 2,1 2 2.1

Vo1 9% V.o 00 ey - Vm-!u" Ys Voo = Vool 00
MRV N e T ’E 2 2 T |Ge3.76
Va1 “% 0 VY 9% L_ Ve _}‘1*""‘2 Yo A X:ii

The terms in equation are rcduced by substitution of the
equations for the boundary condlitions and ths Taylor series
expansions to be in terms of derivatives of X1 and & rixed term,

This results in the equation given as;

14 €2v5§ i{:J,!(i,j'ﬂ k) = U1(i,j,k)

—t—

..+.

2
£ov <fln ~
1 1 _ . ; ~U. > u e B
/2 [(GV, ) = (E,¥,,09 2 _ (BV,) 82 il
ax,' g X1 *-&;UE ‘ [
‘ 2 Ix 5} |
AR 117
21 21 2 -2 2
o Uy Vel _ler T Vail | Vet = 2V,
2o 2 ? 2
o x, Ver] L Ver L Ve
2.2 [, 2 2 - 21 2
oY% Voo - Vsz] Vea il  Veo 1 ;
172 L s2 823 l.c2 . saJ

The finite difference ferm of equation G.3.17 is obtained by
the substitution of the difference forms, given in Appendix D, for
all the derivatives except the mixed term. It is fcund that the use
of either the forward or the reverse expansions giveu as equation
Ge3413 in equation G.3.17 for the case when the same material dats
1s used for the two media resulis in smoll scattered pulses. The
scattered pulses were eliminated by the uce eof en axpression given
as G s (¢, ¢ G,)/2 where Gy and G, are the forward and reverse
BXFressicns given as equation ¢.3.13.

-Dfhw
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The resultius finite difference form for the horizontal

component of displacement is given as;
U1(i,j,k+1) = 2U1(i,j,k) - U1(i..‘l,k-1)

2
- £;Vs2 Z .
F§~;§ ;E. U1(1,3+1,k) - U1(i,j,k)
"WV h

“1%s1 h
4o U (1*1,3 k) ~ U (i=1,3, k)}
24

+[j?] 3 -2y JE(iﬂ.j,k) - 20, (1,3,5) + U1(1-1.3.1i3:j-G Ge3.18

\'4

where G

= (G, ¢+ Gz)/2

2 2 2 20 . ¢ oy v
and G, E"'m - 2V )V = 2V ) GV stz)/(-.e’m]

3 Le

)((revérse forn of equation G.3.13)
and similarly for G, ex rcept that the wave velocities end densities
used in each term are those of the other medium, and the difference
form used is that for the forward difference which is given in

equation G.3.13.

A similar procedure to that used to derive equation ¢.3.18
is used to derive the egquation for the vertical component of
displacement which is given as;

Uz(i’jvk'”) - EU_Z(iojak) - Ua(injok"‘)

p)
S
+ {U (1,3-1,k) = U,(1,5,%)
/ 2-}-/ i.h.f
Vo2 h ch = V°g t% c?
-.Q]....:__-g.-:_1 [*(ujk)-u(Hw)]L
28f| v f;v :
2 _ oy 2 © °
V ¢ - .
1 1 51 - 4 .
+ ;‘2 "c""‘}_é"—-"“ U2(111139k) - 2U2(io.3’k) + Ua(i']iiokn* H
cl

Ge3.19
where H = (H

?

7t HZ)/2

and H (ch - 2V 2)/V

1 s2 c

g -‘j(vc1 - ‘Vs1) - é>(' > = s” ég u1}
)((reverse form of equalticn C.3.15)

and similarly for H, except that the wave velocitles 2nd denzities

used in cach term are for the other medium and the aifferczce farm

usged iz that for the forward diffcwence which is {*vcu in eguatlion

Ge3.15,
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Lppendix H

H, The Ricker Tulge,

The pulse of LKayleigh weves used in the present study is the
Ricker pulse which was first describhed by Ricker (1945) in a
geophysical study and has since been used by Boore (1970), in a
numerical love wave study, and by Munesinghe (1973), in a numerical
study of Rayleigh weves on surface acousiic wave device
configurations, .

This appendix extends the description of the pulse used
in the present study which is given in Section 4.4.,1. The material
presented here 1s in two parts, Appendix H.1, which considers the
analytical squations of the Ricker pulce and Appendix H.2, which

presents the digitised equations used for pulse synthesis,

H.1 Analyticai equations for the Ricker pulse,

The vertical component of displacement for the Ricker pulse,
at a horizental free surface, is defined as;

2 - 2
R(X1’0.0) = -(A.Im ——1;_‘73{-) - L exp [1 - (]TX) Hoeled

~7.
2 { o

end this hss a correspoading wavenumber amplitude spectrum, glven

as;

0

o $2 r Y
s(x) =X} expl 1 - X\ Hola2
K % |
o L3
where ¥ = 2i?7xo $ 4 is m» constant,
[

2315 the wavenuanber, anid KO is the wave number at the
centre frequency.
The surface dieplacements and the waverwnber emplitude
h

gpectrum for the bazic pulce ars shown as Pigurc Hale
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The operation of passing from a set of displacements to a
wavenumber amplitude spectrum is acihleved by integration. This

integration has the form given asj
4l .

vl v X

R(x,5,0) = & | [EVexp| 1 - {5) Joxp i(..;)x ate/K) L3
\x § K X
s © -3 (o)

where x = KX/(K/K ) = K X = 2 X/4, ant X is a genuine length.

The integration is performed by the mrthod of integration by
parts, using the form given Ly Phailips (1551).

The genmeral form obtained being given as;

- 2 2
R(x) = AE&-[ - —;5-] exp [1 ’f‘_j Heted

where A is an amplitude function.
| One of the most important properties of this wavelet, es
defined in Section 4.4.1, ia that 1t is nct too extensive in either
the real or the wavenumber space.

The two dimensional Ricker pulse, which has surface
displacements defined by equation H,1.1, can be synthesised by a
method similar to that used by Boore (1570), who considered a one
dimensional pulse. This method of pulse synthesis hase becn
extended by Munasinghe (1973) to two dimensions and it is from the
work by Munasinéhe that the method presented here is derived.

It is knoﬁn from: the analytical theory for Raylelgh waves on
e half-space, that, in the case of a homogeneous, lsotropic, scale
infinite half-space that the lossless propegaticn of harnonic
Rayleigh waves occurs. Thecse analytically exact eolutionc to the
half-space problem are known as Rayleigh eigenmodes. It hes alno
been showa that the unit displacement eigenmodes((ié) propurating
in the positive X1 direction, which satisfy the equations of motion
and the boundary conditions for the stress free surfuace of a half~
space, have the real form given by Munasingne (1973) as;

2@

A "31(KX,) in K(X

5 - vt)

1
BQ(KLZ) coz K(X1 - vt)

where K is the wavenurber,

v = WK = V(X) is the Rayleigh wave velocity = V.
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W ie the radian frequency,

B1 and B, ars real amplitude functions which do
increasing depth 12, norrcalised at th
B,-,: 11
[

ay wit
su fs to

-
(=t
12

In the case of the homogencous half-space the ncn-dispursive
Rayleigh weve velocity is obtained from the equation given in
Section 2.3 as equation 2.3.16 or by the uss of the approximation,
dve to Eergmann (1949), which is glven as equation 2.3.17,

The amplitude factors, in equation H.1.5, are given
explicitly by Viktorov (1967) as;

B(KX,) z 1B, ]= 1 K ~(DRK {%xp(~|x|ncx2)
K} (1Z-R A (4T .
i_BZ JK|(iZ-R)) -R_ |1 (iu)lxt {exp(-‘thSXZ)

II.“.G

2

. b N2 2
vhere Rc =1 = (vr/vc) Ra

2 - 2

=1 - (Vr/VB) 3 4 o= -i?f{c/(‘]-ﬂish)

In the more general case ¢f laycred media btoth wave velocitly
and emplitude factors require numerical calculation (Sun 1970),

Extending consideraticn from the elgenmodes which make up
a Rayleigh wave to those which are ir a pulse, it is clear that a
wave packet, such as the Ricker pulse, concigtirg of any lirear
combination of the approvriate ecigenmedes (fCK) will give none
dispersive propagation on a half-space.

Thus the pulse defined by the Rayleigh eigenmodes, woighted
with the wavenumber spectrum, is given as;
1

;F ﬁf(x1,x2,t) S(K)ax Hela?

vhere 2&? P frh

;tK

The equation H.1.7 can be transformed into the double cided

Fourier integral which hus the form given as;

4

o
R1(X1,X2,t) (3 1) N{i:1gx X2) exp(iK(X1 - vt)dK

HeleB
Ro(Xy 4%y, t)

oo
(%77).}P A (K X)) exp(iK(X; - vt)dK
-

wvhere . . _
A1(h Xz) = S(X) BT(sz) = -A1(—Kx2)

Ay(K X,)

S(X) BZ(KXZ) Az(~xx2)
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At the free surface the veriical compenent at t = 0, defined
by equation Hel.7, reduces to thv form glven as;

*C.a

It is seen from the tables of integral transforms (Erdelyi 1954)
that the Fourier transform in equation H.1.¢ is identical teo
equation H.1.1. It Is also =seen that the terms on the right hand s
side of equation H.1.é are either known exnlicitly or can he
computed nuwerically end this enables the asynthesis of the
displacements for a Ricker type pulse at t = 0 and t zs using

Fourier transforms.

H,2 Pulse svnthesis,

The Ricker type pulse used in the present ztudy is produced
by the use of ‘digitised forms of the &nalytical equations which are
given in Appendix H.1.

Each wave number component is calculated at cach depth level
and for the two time steps using the explicit erxpressicns for the
real and imaginary (Jth) wavenumber developed by Wunasinche, which

ie given as;
r—~ -
Re Data1(J)
Im Data1(J)

= EJ-U?/Nfgnkz] exp |1 - (3-1)4°

nk

v

Re Dataa(J)

| Im Data2(J2_

[ C sin(r (J-1)t)  =C.sin(r (J-1)¢)7]
C1cos(rv(J-1)t) -Czcos(rv(J~1)t) exp(-rcXé(J-1}

-D1cos(rv(J-1)t) Dycos(r (F=1)%) [ exp(-r X3(J-1)

«D_sin(rv(j-1)t) D

. sin(rv(J-?)t)J

2

g

where n

" Ko/aK = H/Hx the numnhber of wavenumber points per unit

* centre wavelength,

]

N
X

/
?K/AX nunver of nedes per pulse centre wavelength,
4 , t
LX = Qg/NV and AX = 27/5(4X) epatinl end wavenumber
- ircrements.

1 = X?/fg depth, scaled in uuits of wavelenztns (CLO)-
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The constanits vsed in equation H.2.1 are defined asj

2 2 , " 2
C1 = (1 + RS )/RC(1 - RS ) C2 - 21\3/’(‘4 - “S )
~ . 2
D, = (1 # R/ - R7) D, = 2/(1 = R_%)
- ‘T o= 1 + = 2 "
r, = 21Tvr/Nx o r, = 2'ﬂ‘Rc/.K Tz 2|TR8/ K
2 ) 2 . 2 . 2
RS =1 = {V /V) R, =1 (v /v.)

The dats array (Data (J)) is evalusted for the full range of
J values, for both the real end imaginary compbnents, at cach depth
and for each time level. TFor each array c¢f N real and complex
components, wnich correspond to one depth and ona time, the
set of displacement for this depth and at this time are obtained
by the operation of the discrete Fourler transforu. This operation
can be written as;

Trans(M) = Egl Data(J) exp 2T i(J=-1)(L=-1)/n H.2.2
J=1 -
for M = 1,2.0eN and where the positlve and negative signs rofer
to the forward snd inverse transforis respectively.

In the present study the operation defined by equation H,2.2
was perforred by a version of the Cooley=Tukey(1965) methed which folds
data about ((Ii/2) + 1) and 1s a standard NAG subroutine {(ULCC 1975).

The use of the NAG subroutine results in the need to rsorder
the basic data and this ic considercd in Figure 4.9.

The application of the digitised form, given as equation

H.2.1, is considered further in Section 4.4.1.
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