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ABS'rRACT. 

The develop~ent of broadband pulsed ultrasonic Rayleigh wave 

methods in nondestr~ctive testing~has been greatly hindered by the 

lack of an cn~lytical description of the propagation and scattering 

of the wave~. 

The present study presents a review of the previous work on 

Rayleigh waves in all the fields where they are of interest, in 

geophysics, seiGmology, civil engineering, nondestructive testing 

end high frequency electronics. 

A series of mathematical models, which use finite difference 

approximations, are then presented and used to provide both 

visual and q~antative numerical descriptions of the propagation, 

interaction and scattering of Rayleigh waves with a range of single­

medium configurationn, the half, quarter and three-quarter spa'ces, 

up and down steps, ruld open slots, and the two-media configurations 

of welded quarter spaces and the filled slot. 

The techniques of finite difference modelling have not 

previously been applied to Rayleigh wave nondestructive testin~ 

problems and in addition to this new application of the basic 

technique, extensions to the range of nodal formulations are made, 

including the "presentation of a new second order approximation for 

the free surface/interface node for welded quarter spaces. 

The results obtained with the numerical models are tested by 

a series of practical experiments on aluminium and steel tast blocks. 

The model results were found to be in agreement vd th those given 

by the practical exper:f.Inents and \'/i th those of previcu3 workers 

who have used numeri~al, analytical, experimental and visualisation 

techniques, where they exist. 

Following from th6 an3.1ysis of the results of the nurotn~ical 

and experim~ntal work in this otudy, the author proposes a 

development in expcrimental methods for the characterisation of 

surface features using the advantages of new transduc('l!,s. 

Suggestions are made for extending and improving the basic 

fin:f.te difference methods ano. for the ranee of configurations whic-;h 

could be studied. 
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LIST OF SYMBOLS. 

Vc Compressional wa.ve velocity. 

Vs Shear wave velocity. 

Vr Rayleigh wave velocity. 

Q Displacement vector. 

U"U2 components of displacement vector. where~ 

U,(i,j,k) is the horizontal displacement 

U2(i,j,k) is the vertical displacement 

i is the X, index 

j is the X2 index 

k is the t (time) index 

X" X2 are spatial coordinates with increments d and h respectively. 

t is the time coordinate with increment s. 

'1: is the Cartesian stress tensor, components T'1,T12 ,T21 &: T22 • 

~j' A are lame constants 
ej density, where j defines the media in two media problems. 

G is the shear modulus. 

~ is Pois6on's ratio • 
• 
! is the instantaneous power flow vector per unit area. 

! a. matrix with components defined when used. 

'X wavelength. 

K is a wavenumber where K • 21t-/1-
f is frequency where f .W/211'". 

other parameters ~re defined where they are used. 
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1. 

1. INTRODDCTION. 

Over recent years there has been an increasing interest in 

the initial testing and in-service inspection of many engineering 

products, particularly in relation to such items as aircraft. 

oilrigs, presEure vessels and pipelines. (Thompson 1976. Lumb 1977) 
For this purpose a wide range of nondestructive testillg 

techniques has been developed. for both defect location and sizing. 

These have included the use of X-rays, electromagnetic induction 

and dye penetration, with the addition, in rocent years, of the 

increasingly important methods which use ultrasonic waves. There 

is a wide range of methods of' ultrasonic testing whl,.h use the 

different types of elastic waves and display the resulting 

information in a variety of ways. (Curtis 1975) 
In all nondestructive testing much effort is concentrated on 

the meSSUi'Elmeont ot oomponent thickness and ora.ck depth, and thio 

is particularly so in ultrasonic testi~G. Tho present study 

considers the field of crack depth determination using ultrasonic 

Rayleigh waves, and concentrates particularly on the problem3 of 

providing an understanding of the interaction and scattoring of 

. pulsed Rayleigh surface waves at \rariOU!l surface featurea. The aim 

of the study is to provide sufficient understanding of the 

interaction and scattering of r.~yl~igh wavos to Gnable the 

characterisation of surface cracks in metals. This infonnatiQn on 

defect dimen.sions, when linked with fracture me'cha.nlca. shoulcl 

enable better predictions to ba made for critical defect size. 

Surface waves. including ne.yleigh wa'NH1, occur not 011.1y. in 

metals undergoing nonde~tructive testing; they arc a class of 

waves of int~rest to a wtde ra.nee of workers from 8. group of very 

diverse fields. It is found that the interaction of surfaoe waveB, 

end in particular the interaction of Rayleigh waves with surface 

features, ie c subject of study in geophysics, ssi~~ology, civil 

enein~ering, and high 1>reqU(~ncy eltH~tr.);:'J.ic engineering, in 

&ddi tion to ·the nor..ceotructive testing interest t ... i·~h the r9.nge 
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1. 

in wavelengths going from submillimetre to many tens of kilometres 

and targets ranging from submillimetre cracks in crysta10 to 

goophysical features such as rift valleys and continental 

boundaries. 

Behind all the work in these different fields of study is a 

common mathematics, which is a subject for stUdy in its O~l right. 

This considers the equations whlch describe the propage:.tion, 

interaction and scattering of elastic waves. 

Although the motivation for the pressnt study has come from 

the field of nondestructive testing, it is shown in this thesis 

that the original mathematical interest.in Rayleigh waves came 

mainly from workers in geophysiCS and seismology and mor~ recently 

from those working on surface acoustic wave devices. 

The background to the present study is thus. provided by an 

extensive body of literature, covering experimental, analytical 

and numerical work, which crosses all the f:l.elds mentioned above •. 

This material is presented in Section 2 of the thesia. An the 

present study originated in the field of nondestructive testing it 

is against a.pplications in this field that all the literature is 

oonsidered. In nondestructive testing, Rayle:S.gh waves have been 

used to study a wide range of surface and near-surface parameters, 

with considerable interest being concentrat~d on the measurement 

of crack depth; ,this is reviewed in Section 2.5. 

The present combined mathematical and experimental study 

followed from a piece of experimental work by Morgan (197J), who 

was the author's predecessor with The Researoh Group in Ultrasonics 

of The City Ul1iversi ty. Morgan studied the inter·action of 

broadband pulses of Rayleigh waves with slote t a.pplying ul tra.sonic 

spectroecopic techniques. In seeking to gain a botter underste.nding 

of these interaotions, Morgan looked for a satisfactory theory, but 

did not find a complete one. In fact the problem of pr~viding a 

mathematical desoription ef the interaction and resulting scattered 

pulses for broadband pulBes with features of the order of' a wave­

length, such as a alot, c~~not in general be solved using 

analytical techniques. 

It was the lack of a theory which set the present study in 

motion which has resulted in the numerical model and supporting 

experimental work which ie reported 1n this thesis. 

A range of al tel'native n1.l.mElrical methods are considerod in 



.. 
~ . 

Section J and the selection of finite difference methods is made 

for use in a numerica.l mod'31 which can describe the type of v/a'/C 

problem considered by rl:organ. That is. to consider the propagation, 

interaction and resulting scattered pulses for the interaction of 

broadband pulses, short time domain signals, of ultrasonic 

Rayleigh waves with slots, an~ to give the full wave soluticn, 

inoluding mode oonversion. 
The details of the mathematical method, finite difference 

approximation, which is used exclusively in this study, are given 

in Section 4 and the supporting appendices. The power of this 
method is shown by the work of the mathematical seismology ~roup 

of the late Professor Alterman from the mid 1960 t s to the present 

day, although their work has mainly considered body wave souroes, 

(Alterman & Lowenthal 1972) and by the study in connection with 

surface acoustic wave devices by Uunasinghe (1973). It is from 

this school of finite difference modelling that the present Atud~ 

has developed. The resul tins computer programs are considered 1.n 

Section 6; the results being presented in Section 7. 
To test the results of the numerical models 'a series of 

practical bl~adband measurements have been made on specially 

produced test blocks. In these experiments, wedge transducers 

are used together with a new edge oontact transduoer th~ basic 

form of which was invented by Professor Harnik, whilst he W!:i.S 

working with the author and using the ultrasonic test equ1pm~nt 

of the Research Group in Ultrasonics of The City University. 

,(Harnik 1978) The 'Harnik t type probe waa developed by the 

author in the course of the present study and the probes used are 

oonsideredin Section 8.2. 

The present study draws methods and results from all fields 

where Rayleigh waves have been studied ~~d presents these together 

with tho results obtained in the present study, in Section 9. 
The previous studies, revlev/cd in Section 2 of this thesis, 

confirm the statements by Otta.viani (1971) that the analytical 

solution for elastic waves on a quarter space presents "almost 

insurmountable difficl.~ltieslt and by :.~orglln (1973), thnt no 

satisfactory model for the reflection (of Rayle:1,gh waves) from a 

slot exists, in that no ana,lyti.cal description of the propaga.tion 

and scattering of Rayleigh waves by such surface features as slots, 

single corners or steps has been found. 
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Following from the use of finite difference models for 

elastic wave propag~tion in geophycico,a new application of the 

method is presented in providing models of pulsed Rayleigh wave 

propagation and scattering by surface features on a nondestructive 

testing scale and this has provided a significant step toward the 
quantitative understanding of these interactions. 

In addition to the new application of the finite difference 

technique,improvements in the details of the schemes, together 

with a new second order nodal formulation for the free surface/ 

interface node, for welded quarter spaces, are presented. The use 

of the improved boundary node schemes, when used with a Ricker 

type pulse of Rayleigh waves, have made possible a reduction to 

16 for the number of nodes per wavelength used and improved the 

accuracy for the whole scheme. This compares with 32 nodes per 

wavelength used by Munasinghe (1973). Using the new fonnulations 

for boundary node~ the distance travelled by pulses is better than 

1 % when compared with the distances given by ray theory. This 

compares with travel distance accuracy of the order of 5 % using 

~he old formulations. Pulse distortion with distance travelled is 

also reduced with the new schemes. 

The use of 16 nodes per wavelength, as compared with 32 in 

other studies, has resulted in the use of a quarter of the number 

of nodes being used to model the same size space, when measured in 

wavelengths, or a corresponding increase in the size of cbject 

which can be modelled with a set core requirement and job run time. 

The finite difference method provides the displacements at 

every point on the grid in the region studied, and this enables a 

range of methods to be used to analyse the system and establish 

such parameters as reflection and transmission coefficients 

for the single medium geometries of quarter and three-quarter spaces 

steps and open slots, and the two media geometries of welded 

quarter spaces and filled slots. In all computer model runs 

nU!nerical \'isualisation type displays, which are after 

Munasinghe (197.3) and others, have been improved so as to resolve 

the waves that are in the stsyem. 

The results given by the finite difference models are found 

to be in good agr3~ment with the experimental results obtained by 

measurements on test blocks and the results of previous analytical 

numerical, experimental and photcelastic visualisation studies, 
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where these exist. 

This present study~ which started an a direct result of the 

phrase about Rayleigh waves ~y Morgan (1973) ,"that no satisfactory 

model for the reflection from a slot exists", has provided a series 

of models which follow the propagation and scattering of pulsed 

Rayleigh waves on half, quarter and three-quarter spaces, up and 

down steps, open slots, at welded quarter spaces and filled slots 

These now form the basis for understanding a range of nondestructive 

testing type problems with both numerical visualisation and 

quantative numerical results :i.n a single method. 

From the consideration of the results of thB present study, 

presented in Section 9, the author has been able to propose a 

deielopment in the methods which usa Rayleigh waves for the 

characterisation of surface features, using the advantageo of the 

new Harnik (1977) transducers. Th~ proposed method is preaented in 

Section 9.11.' 

.. 5 .. > 



2.1 

2. BAC~GROUND MATERIAl, FOR THE PRESE~rT STUDY!. 

2.1 Introduction!, 

This section presents the background against which the 

present work was performed, as given in the literature and by 

information obtained by direct contaots ~ith workers in the various 

fields "here Rayleigh waves are of interest. It includes outlines 

of the previous work with Rayleigh waves and it also presents some 

definitions which are of direct interest in the present study. 

The starting point for the collection of this material was 

provided by the literature search by Tolley (1912) and the work by 

Morgan (1913). 

In Section 2.2 an introduction to elastic waves and 

particularly to Rayleigh waves is given which considers the fields 

where they ~rG studied and gives some of their baSic properties. 

This is followed by Section 2.3 which gives the basic analytical 

equations for elastic waves in a solid and those specifically for 

a Rayleigh wave together with the related boundary conditions and 

Bome other useful equations. 

A review of the material from all fields of study, for a 

series of idealised geometries is presented in Section 2.4 in 

order of increacing complexity. and is collected according to the 

configuration upon which the Rayleigh waves are propagating and 

being seattered. This is tollowed by Section 2.5 which considera 

practical Rayleigh wave measurements with det~lled consideration 

ot the specific problem ot crack d~pth measurement being given 

in Section 2.5.1. 

The final part of thia section, SUb-section 2.6, presents 

a brief review and introdu.ct1on to ultrasonic spectroscopy • 

.. 6-



2.2 

~.2 Rayleieh waves. 

Thera are many types of elastic waves which ce~ occur in an 

elastic solid, on the free surface of a ~olid, or at an interface 

between two medie. Y!here ono or both o! which 1::: :l solid. In each 

case the Wllvea that will propagate hav~ tllCil" own distinctive 

properties and these waves, which fall into distinct classes, are 

named according to where the wave propagate~, in the body of the 

medium, at the surface or at an interface, &re all acoustic or 

mechanical vibrations. (Graft 1975) 
The waves that propagate through the bulk of the medium are 

called body waves; those which propagate uear a free surface, with 

their energy confined within a few wavelengths of the surface, 

propagating parallel with the surface, are called surface waves, 

while those waves that propagate along an interface between two 

media are called interface waves. Inclu1ed at the back ef this 

thesis is an appendix, Appendix A. which nal:lea some of the basic 

elastic waves and defines them in terms of their components of 

displacement. 

When an elastic wave is incident on a free surface. an 

interface, a void or an inolusion, in the ease of a body r.av~, er 

a surface feature such as a step, a slot or a crack in the case 

at a surface wave. energy can pass from one form of wave to 

another. This phenomenon is known as mode conversion. The aoount 

of energy that is converted to or from a particular mode 1s 

dependent on the exact form of the incident pulse and the tareet 

configuration. 

Rayleigh waves are the form ot surtace ~aves ~hi.ch have on1,. 

longitudinal components at displacement 1n the direction or 
propagation and transverse oomponents of displacement normal to the 

free surface; they are named after their first inveatigator 

Lord Rayleigh (1885). For a Rayleigh wave there is no energy 

propagation in the p1e.no of th, surface upon which the wave is 

travelling other than in the original direction of propcgation. 

Vfuen a plane wavetront of Rayleigh waves is incident en ~lane 

features. nomal to the direction of propagation, this effectively 

reduces the equations Which describe them to equations in tel'UlS at 

two spatial dimen.sions a.nd time. Th(t restriction to studies of 

systems which allow the reducUon to two spatial dimensions is 
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2.2 

normal in geophysics, and it ia shown in Section a, in the 

supporting experimental studies, thnt this restriction is valid ~nd 

useful in the present study. The basic equations of motion for two 

spatial dimenDions are given in Section 2.). 

Rayleigh waves are now under active investigation in four 

fields of study; geophysics/seismology, civil engineering, 

electronics and nondestructive testing. While the mathematical 

problems involved in describing the int~raction and scattering ot 
waves by features are the eame for the four fields, the wavelengths 

as well as the dimensions of the feature, range over many orders of 

magnitude, as is shown in Table 1. 

Subject Wave- Frequency Feature Order of 
length size magnitude 

GaophysicB 40 Ion 0.05 Hz 1000 km 106 rn 

Seismology - - 10-100 m 102 m 

Civil Eng. 10 m 100'8 Hz 1-10'8 m 10 m 

N.D.T. 1-100 mm 25 kHz 1-10's mm 10-Jm - 5 MHz 

Electronics 0.05 mm 40 MJlz - 0.01 mm 10-5m 
,_.-

RA.n,o;a of \"!"8.velenp;thA a.nd or.d~'t's of l"\al~ni tude of feature fd.Z!',. 

in Rayle1c~ w~ve studic~. 

TABLE 1. 

At the long wavelength end of tho ranee are the waves of 

int~rest to thegeophys1c1s~which are generet3d by earthquakes and 

underground nuclear explosions, where wavolcngths ara tens ot 
kilometres. This i8,of particular importance as at these wavelenbth~ 

the propagation of vory destructive "high energy pulses ia pO~6ib18 

over large distance::!, hence causing damage at laree dictancgs from 

an earthquake epicentre. (~~ine et &1 1957) Pulses from 

geophysical sourcos also g1-;'s information about l:Jource m'3chauism 

end provide a means of studying featureD comparable with the Dize 

of continents. 

On an intermediato Gcophysical/3ei~!!:I:ilogic:al flcale there ie 

interest in Raylej.gh tvaV68 by two groupa. Z'lGse are, firstly 

1nvestigator~ who perform local structurel investigations using 

explosive sources and investieate features of the order of metl~e!: 

at ranges from tenA of matras 'to kilometrea. The second group are 
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the civil engineers who, when near an earthquske bolt, are required 

to consider the interaction of Rayleieh '~vea with laree str~cture8 

such as dams. (Davis & West 1973) 

The civil engineer has also to consider vibl·atio:l-generated 

Rayleigh waves with wavelengths ot the orde~ ot teng ot metres 

which llre produced by large machines, and. "hich result in 

requirements for isolation by means of eithsr 8creening trencheB. or 

sheet piling. (Woods 1968) 

On a shorter wavelength scale is th~ region of interest to 

the nondestructive tester who considers tr.e lnter~ction of Rayleigh 

waves with features of the order of a wavelength, the wavelength 

being a tew millimetres. (A.t: 1: MHz on Alumini·um, Rayleigh waves have 

a wavelength ot about 3 mm.) 

The shortest wavelength region is th~t ot interest to the 

electronic engineer who works in the over ten meeahertz region, 

which has sub-millimetre wavelength. In th:J.o region P.aylelgh "av~s 

are used in circuit components; this field expanded greatly in the 

1960's with the growth of surface semiconductor devices. Tha 
velooities and consequently the wavelengths of surfaoe waves ars 

five orders ot magnitude s~nller than the oorresponding values for 

electrcmagnetic waves or the aame frequency and this ls shown by 

the values given in Table 2. 

Type of wave. Vel. in m/see. Wavelongth in m. 

E.M. radiation. 3.01.10 8 
3.0)1.10 

2 

Rayleigh wave on 3 -3 
aluminum. 2.9x1O 2.9,1(10 

-

The energy in the surface wave travels in vibrations close.to 

the surfaoe and with this and the olower wave volocities thare is 

the possibility for a wide r~.nge or circuit oomponents inoluding 

waveguides t t:!.l ters e.nd delay linoz for operation in the meg:\hertz 

region and higher. (White 1970) 

Of all the fields of Rayleigh wave study the moat rocontly 

expanding arC2 of interest is that of nondestruct1ve testing. with 

the application of Rayleigh waves as a tool for surface a,nd ne,~r 
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surface inspection. These applications ot Rayleigh waves are 

considered in Section 2.5. 

2.3 

In the quest to obtain more information from a" signal than 

can be obtained b:1 considering SOIUS fom of time dieplF'.y of 

displacements. signal spectral content is ncw considered and in 

nondestructive testing this technique is known as ultrasonic 
spectroscopy. This method of signal study, which was first described 

by Gericke (1965) and has been extensively developed at TeU 

(Brown 1973), uses short timo domain pulses of wide bandwidth (now" 

from 0.5 - 20 MHz or higher) aa the tra.ns:rnitted Signal and Apectrum 

analysis is p6rformed on the transmitted pulee and/or a refer~nce 

reflected 8ignal and the received scattered pulDe~, which by 

comparison. and in some cases complex Signal processing, provide 

more information about a target than is available with convention~l 

ultrasonic testing. This technique. which was firs"t applied to 

Rayleigh wave nondestructive testing studies by Morgan (197), 1s 

considered further in Section 2.~. 

The mechanisms involved in Rayleigh wave scattering by various 

types of discontinuties are of fundamental importance to all r.ho 

study Rayleigh waves in practical situations. Thus the study of 

Rayleigh wave problems concerning scattering i'row simple targets 

set in or on isotropic materials, together with such two media 

problems as that of welded quarter spaces should, when understood, 

provide a firm "basis for considering interaotions with real 

defects. Following a presentation of the basic analytical equations 

in Section 2.3 the previous work concerning scattering by id,alieed 

targets is considered in Section 2.4. 

2.:3 Basic analytical equa.tion!'! and boundar.'Y ('.onrlit~:. 

In all analytical or nUI:lerical studies of Rayleigh " .. aveD, the 

basic equations, with appropriate changes in scale and materinl 

parameters, are common to all the fields of int~r~at. This eection 

presents the basic analytical equation~ which describe motion in an 

elastic solid and those which describe a Rayleigh wave, togct~er 

with the oppropriate boundary condition3 and some useful rolation& 

connecting some of the material pal"Smetere. 

The equations are presented in two groups, firatly tho3~ 

Which cescribe WS.VQ propagation in an elastic Solid and seco!HHy 
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those which describe the Rayleigh wave. 

For all elastic wave propagation the vector equati~n of 

motion, in a perfectly elastic, homogeneous, isotropic medium ia 

obtained from I-!ooke's Law and. Newtcn's Second Law of f:'otion, 

(Sommerfeld 1950, !Wing et al 1957); 

~2_U 2 2 
a Vc grad. ( div Jr. ) - Vs eurl. curl 3[. a-;2= 

where U is the displacement vector, -
Vc is the compre~sional bulk wave velocity, 

Vs is the shear bulk wave velocity, 

t' i8 .time. 

This equation 2,).1, for a two di~ensional system, as tor 

Rayleigh wave!!, simplifies to a form that 'iaa given by 

Viktorov (1961), which are the basic oquations of motion for the 

horizontal (x) and vertical (y) components of displacement V and 

d 2V V 2 ~2y + V 2 ~2y + (V 2 _ V 2) ;)2u 
2.3.2 - -a t 2 c d x 2 8 d y2 c s dXdy 

d 2U d2 2 d 2y - V 2 ....E. + V 2 d U + (v 2_ V 2) -. - - 2.3.) 
d t

2 c· d y2 s d x 2 0 s 
dXdy 

The velocities of the shear ~~d compres6ion~l wavos can be 

" . written in terms of the Lamo constants; 

U; 

Using the equivalents given aa equation 2.3.4 the equations 

of motion can be written in an e.ltarnative form whioh is often 

used in Eelsmology, (Alterman & Karel 1968); 

1 d2v d?V . :A+ 2ft d2v A+).l ~lu - ---- + -+ -. -- -V 2 a t 2 d y2 jJ- dx2 }l a~Jy 
8 2.3.5 
1 a2

U d2~ + _)J. ;/U A+)J. ;lv - ----+- ........ -- -
V 2 a t 2 CJ x2 A+ 2)J. d y2 'A+2p..:ix'y ... ... 
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In considering wa.ve moticn in 8.t."1 elasti.c eolid it should be 

noted that the elastic strains involved in the motion may be 

computed by partial ditferentation with respect to displacements and 

that the elastic stresses can. be computed from the str~ins by 

applying Hooke'~ Law. 

To describe fully a wave motion in an ~laBtic solid, it is 

necessary to specify the boundary conditions for both free surfaces 

and material interfaces a.nd these can be ctmsidered in terms of 

displacement~ and components of the Cartesian stress tensor. 

In the present study only three independent components of 

the Ca.rtesian stress tensor en are involved. (Munaainghe 1973) 

The stress is defined by the relation; 

L = G • U 

where Q. is the shear modulus. 

The components of the ehear modulus are; 

Q= 
V 2 "\ 

8 fI/Jy' V 2 1'\ 
s o/Jx 2.3.7 

and the components of the Cartesian stress tensor are; 

V 2 aV V 2_ 2 
I) d U 

'1'11 - + ( V ~) - c- C B -
'1'11 

dX ay 
'1.-= '1'12 '1'12= T21 

V 2 dV dU 
2.3.8 - (-+-) J - s ay d X 

'1'22 

T"'2 
V 2(}U ( V 2_ 2 V 2) ~v 

.t!. - .c ;;)y + c s -a=; 
A full treatment of the stress tensor, which deecribes th, 

components of stress resolved parallel to the eo-ordinate axes, is 

given by Graft (1975). 

The boundary condi'ciono are of generalised Ne:uman.'l type, 

involving linear comLillat1ons of the first dee;ree spatial 
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derivatives of di3p1acement3 nt all bo'Un'iRriC!s, with, acroE'S 

material interfaces, the addi tj.onal cQn(l1 tJ.on of requiring the 

dieplacements to be continuoue. These concitions are sst out as 

equations 2.3.9 to 2.3.13. where T11,T12,T21 ar..d T22 a~e components 
of the CartoaiaD stresa tensor and V and U are diaplacemonts. 

In the absencs of bodily rotation. 

everywhere. 

At a free surface there is zero stress; 

For a horizontal free surface, T21 = T22 :: 0 

For a vertical free surface. T'1 = T12 = 0 

2.3.10 

At a material interface both streasea and displac6ments are 

continuous; 

For a horizontal interface, 

V and U~ • T21 and T22 are both continuoUB 

For a vertical intertace, 

V and U • T'1 and T1 2 are both contir.uoufl 2.3.1 :3 

In addition to the basic elastic equations, to eet up a wave 

propagation problem it is necessary to specify come initial 

conditions inoluding the detailed formulation ot the wave pulss. 

The analytic equations for the harmonic Rayleigh wave 'are now 

considered with the detailed formulation ot the Rayleigh wave pulso 

used in the model presented in Section 4.4 and App~ndix H. 
The theory for a Rayleigh wave on a fr~e surfaoe uf an 

ela3tio solid is well lmmm and WIlS tirst invest:f.S3.tod by lord 

Rayleigh (1885). Since that time full theories, illclu~ing both 

continuoutl e.nd trar,si€:TJ.t wave f~nalyais '. have be~n pre::H'nted by a 

nUr.lber of authors including Ewing et al (1957), Morgan (1973) and 

Graff (1975). In this study only lJ..."'l outline is giYen for the 

derivations of the basic equations for the caso of an harmonic 

Rayleigh wave. 

The bsoi:) equatiOl1.S which e.esorib~ the harmonic f~aylsi£h l.'s-ye 

ere o":ltair .. cd from the. equationa of motion ll.:ld the bounda.ry 

conditions for a free surfee!. 
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The ba.sic equations of motion for the bulk of the lI'.!ediUlll, in 

the case of an icotropic, homogoneO'.l3 cnd parfectly elastio eolid 

can be written in the form; 

2.3.14 

where I and f~re potentials ,for the cOlllpresBi~nal and shear 
waves respectively. 

The components of displacement V nni U along the x and y axes 

respectively, given iu terms of potontials, are; 

u= 
a y ~ x 

The resulting components of stress'are those which have been 

givon as the Cartesian stress tensor, equation 2.).8. 

When the condition for a. atre!lS free surface is Buol3tltuted 

into expressions for the potentials; a linl{ed. pt1ir of equations is 

obtained which ceon be 'combined into an expreseion 'uhich has a 

characteristic equation that, after transformatiou roduces to tha 

form; 
. " .. 

6 4 2 2 ~ '1 - 811 -(..0(3 - 2lJ)~ -16(1-.L/ ) = 0 

whe~e "1,= Vr/Va ; .LI= Vs/Vo. 

This equaticn, equatioll 2.).16, is a cubic in 7L2 and ls 

known as th~ P.aylcigh wave equa.tion, a3 it is from the roots that 

the ve,lue of the Re..yleiE;h ,/avo v~locity ( Vr ) is obtainad. The 

roots of the equation can be obtained by th, use of the techniques 

for th~ Eolution of a cubic ft'1t .. .rttion. 

As GG,uation 2.;.16 is a cuoio ~n rt 2 
thers a.l'e oix roots t 

tho R!.',yleigh Ttave velocity i6 givon by the root T,Ihich satisfic15 
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2..3 

the condition for the ratio of the Rayleigh wave to shear wave 

velocities; 

It is found that the roots are dependent on Poisson's 

ratio ( <1" ) end that when; 

0'"'> .263 there is 1. resl root and two complex conjugate roots. 

0'<:.2.63 there &re three real roots. 

In the case of three real roots it is found that in two cases 

the constants required in the pair of equations which giv~ 

equation 2.3.16 are complex. 
For all ~eal media Poisson's ratio is subject to the 

reetrictiorq 

o < er < 0.5 

and this condition ensures that only one root will satisfy the 

restriction on the values for the Vr/Vs ratio. 

A usoful n~proximation for the value of the Rayleigh wave 

root has been given by Bergmann (1949) which p~~videa & method 

for rapid calculation of the Rayleigh wave v~locity. 

The values obtained from equation 2.3.17, for given PoisoSon's 

ratio are plotted against Poil3son' G ratio and given as 'FiguI'e 2.1. 
Cook and Valkenburg (1954) have calculated the values of the roots 
of equation 2.3.~6 to three significant figures and when compared 

with the values given by equation 2.3.17 there is found to be a 

maximum error ot less tha.n 1 %. 
Th~ l'atio of the ehee.:r and compressional WR.ve velocities can 

be given in terml'l of PoisFon'9 ratio and this is ziven as; 

v [1-e _ --
V' 2 c 

, 

::f 
Tho values obtained for the ratio ( Vs/Vc ) given by th~ 
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equation 2 • .).18 are plotted aga.inst foiasol'l's ratio and shown as 

Figure 2.2. The value of this ratic (Vs/Vc) is found to be linked 

with stability for & finite difference sche~e and this is 

considered in Section 4.5. 
A further useful relationship is that between Foisson's 

ratio and the L&me' constants and.this is, (Cl>ttrell 1964, p114); 

2.3.19 

. " 

A full conaideration of the interrelation of tho ~lantic 

constants is given by many authors including Mow and pao (1971). 

Tho ~quntions for the dieplacements of halmonic Rayleigh 

waves are obtained upon solution of the eq~ations of motion subject 

to the free surface boundary conditions. In the caso of a p~rfectly 

elastic homogeneou!3 t isotropic mediULl for ws,\re propaga·tion, in the 

case where the elastic strains produce only e~all defonnations, the 

equations which describe th~ decay of the vertical and horizontal 
components with depth are; 

U = A. 

-21T (1 -e-
'f 

V 2 
- .L.)~. z 

V 2 
s 

sin (t"..lt ... · kx) 

cos «(Jt -t- kZ) 

~hE1 va.lues obtained 'Vd th. theSE! equations t 2.3.20, for t"fjO 

different m~dia are shown ao Figure 2.), with the depth (Z:: y/~) 

shoml normalised ega~n~t wavelength (1/). 
Rayleigh waves, in tho case ot & homogenoouG, isotropic, 

perfectly elastic half-~pace, consiat of two inhomogeneous ~aVOCt 
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one compressional (longitudinal displacements) and one shear 

(transverse ciJ..splacements) whi.ch propagate along the bov.ndary with 

identical phase velocitiee. The displaceme~t amplitude and en~rey 

decay rapidly with depth. 

In summa.ry, fer a. pulse of R3.ylaigh waves in an elafStic 

solid, the probl~m is in,the category of propagation problems which 

are basically hyperoolic in form, (Ames 1969) end they can'be made 

well posed (Couxant and Hilbert 1962) in the sense of having 

unique solutions which depend continuously on :the auxiU.ary data 

such as the initial conditions. 

Having defined Eome of the properties end equations which 

describe Rayl~igh wave propagation, attention now turns to 

consider the previous work which has been performed on Rayleigh 

wave scattering from idealised targets of increasing complexity. 

2.4 Previr.ms work on ~jT!'ple geometrleR. 

This section presents a collection of the analytical, 

experimental and numerical stUdies for continuous, pulses and 

semicontinuouB Rayleigh waves, as presented in the literature in 

all the fields where they are studiod. It considers the studies on 

idealised geometrie!!! which form the background to this present study 

and it is according to the geometry that the material is present~d. 

This present study has confi~ed that althouzh there h~vo 

been numerous theoretical and experimental Btudies, with in aome 

·cases support from numerical models and or Schliaren or 

photoclastic visualization. exact a.nalytical solutions are only 

possible for a few special cases, such as the Rayleigh ~ave on a 

half-space. (Lwing et al 1957) It has aleo shown that no adequate 

theory exists for pre~icting the resulting scattered pulses for 

wideband pulses of Rayleigh waveo incident on general surface 

breaking features, with dimvnsiona of the order of a wavelength. 

The geometries reviewed in Sections 2.4.1 to 2.4.6 are sho~n 

in Figure 2.4, e.nd they art) :f!r~!~ell-:;ed in order of increasing 

complexity. The resulta from the various studies reported in 

general in this section are considerod in more detail in Section 9. 
together with the resu.lts fZ'{)ll1 the p:!'~sent study. 
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2.4.1 Rayleip;h wave~ on a. half-ope,ch 

Rayleigh waves were first demonstrated theoretically to 

propagate at the free surface of an elastic ()olid by l/lrd Ra.yleigh 

in 1885. (Rayleigh 1885) 

The behaviour of Rayleigh waves on half-spaces is of 

considerable importance, in that, along with the layered half-space 

which is considered in Section 2.4.5, it is one of the few cases 

where an exact analytical eolution is available. These solutions 

have been considered by many authors including Ewing et al (1957) 
and Graff (1975). The half-space exact ~olution is of importance in 

that it provides an analytical form for testing ~ly model for 

pulsed Rayleigh wave propaga.tion, with the detailed equatione for 

the case of the harmonic Rayleigh wave giv~n in Section 2.3. 
In the special case of the solid which is perfectly elastic 

homogeneous and isotropic, the velocity of. propagation is 

independent of frequency and the waves travel without attenuation 

in the direction of propagation. In practice on metals at megahertz 

frequencies it is found that over distances of tens of wavelengths 

Rayleigh waves will propagate very close to nondisparsively wnen 

surface roughness is ,less than .001 of a wavele~gth. 
The problems of measurement on nonideal surfaces which have 

featuree such as roughness, suffer attenuetion of the propa,gating 

waves, and this is considered in Section 2.5 with the practical 

applications of Rayleigh waves. 

Fundamental to obtainingnn understanding ef what scattered 

pulses can be expected from tho inter&ctioll of a Rayleigh wave 

and a detect, is the understanding of those which r~sult from an 
interaction with a ~ingle ~orner. An idealised form of the 

scattering Vvhich results from a. single cornsr of a,ngle between 

80
0 and 1600 Btruck by a pulse of Rayleigh waves 1e shown as 

Figure 2.5. The pulses obte.ined are trsn:lm1ttcd and. reflected 

pulses of Rayleigh waves and two mode converted pulses, one each 

of ehear and compressional v.aven, which represent energy lOtJsf!a 

from the Rllyleigh fraVeS in the s:r.:!tem. 1~e percentage en~rgy loas 
as well as the energy in each of the Rayleigh wave pulses in 
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dependent on the exa.ct angle and shape of the corner • 

. l"or thb wedge of angle less tl~an 80~ as shown in Figure 2.6, 

the incident, reflected and transmitted pulses, together with the 

mode converted pulses, hava a very complex interaction which 

occurs not just at the eorner but at the two surfaces and in the 

bulk of the mndiUnl in the region near the corner. Thie ia because a 

Rayleigh wave has a finite penetration depth, of about one and a 
half wavel~ngths, as sho~~ in Figure 2.3,·which gives the region 

of interacticn. 
In practical experiments the sharpness of the corner 

considerably effects the pulse/cornp-r interaction: a corner which 

has a radius of curvature of more than about two wavelengths 

produce! no reflected or mode converted waves, the puloes just 

passing from on~ surface to the other without change of shape. 

There have been numerous studies of single corners and they 
00· 

have covereu all 'angles from 0 to 360 • Many of these studies 

originate :i.n the field of geophysics ae it is the single corner, in 

the acute wedge configuration as it occurs in the Earth, which is 

of considerable signifies,nee as a producer of non-coherent seismic 

noise. (Kncpoff & Gangi 1960) 
Tbe previous studies ot wedges are now considered in four 

groups; those which have measured transmission and reflaction 

coefficients experimentally; those which have sought to provide e~ 

analytical expression which fits the experimental results; those 

which visualise the interaction in a glass or plastic model and 

·those which try to model the sa~ttering using a numerical method. 
, 

~.·Experimental studies on wedges~ 

There have bC3n 3. range of experimental attempts to establish 

trenm!l1ssion a.n,t ref'l~ct1on coefficienta tor different wedge angles. 

on different materials a~d at d~fferont frequencies. The earliest 

study was performed by de Bre~ccker (1958) who used piezo-electric 

transducers on a ra."1ge of pOlystyrene wedges ~1. th angles from 00 to 
1800

, working at frequencies between 20 and 200 kilohertz. 

Similar experimcnt& have 108n perfonned by Viktoro*i (1967) working 

on Dural blocks with wedge angles botween ~2° and 170°, using 

10/Usec pulses ot 2.7 MHz Rayleign wavoa. There have been stUdies 

on a1 uminium blocks by Knopoff and Gangi (1960), for wedge angles 

from 00 to 350°, and by P11a.nt et al (1964) on wedges with D.j.1g1os 
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o 0 between 0 and 180 t working with bi"Oad.ho,nd signals from 50 to 

400 kHz. 

A further experimental study is that 'by Haydl (1974) who has 

made measurements for 900 corners on gallium arsenide at frequencies 

from 20 to 200 UH:z;. 

~. Analytical studies on wedges. 

The second group ot studies are those which seek to produce 

an analytical curve in agreement with the experimental results. 

These include studies by Y~opoff and Gangi (1960) fcr 00 to 3600 

wedges and Hudson and Knopoff (1964) who used a Green's'function 

approach and also considered wedges with angles from 00 to 3GOo. 

These studies were followed by a paper by Me.l and Knopoff (1965) 

who improved on the approximations in thfl Hudson and Kl1opoff (1964) 

paper. Viswanathan et al (1971, 1973) have recompu.ted th3 Hudson 

and Knopoff (1964) curves. Calculations have also been performed 

by Kane a.nd, Spence (1963) who obtained an approximato exprcsoion 

for the transmitted pulse using an iterative procedure for angles 

from 00 to 1000 and this has been followed by the work of YOlloyama 

and rl1shida (1976) using the same method. 
In addition to the treatments of general wedges there h~s 

o been some work on the quarter space, the single 90 corner, with 

Lapwood (1961), using an integral tra.llsfonn formulation, ha.ving 

developed first order expressions for incident and transmitted 

waves. 

When the various theories are compared with each other and 

wi th the experimental I'eaul tB, it ls found that agree.llent between 

the different studies is far from good. (Morgan 1973) 'rhe problel!ls 

in comparison are increased by tha fact that in many of the studies 

different methods and materials have been used. Also in the 

analytical work the methods used in most easel!! imrolv6 n~pr'oxim1tion. 

The reflection and transmission coefficients for 900 and 2700 

corners have now been obtained by a number of ,;orkers ann th~ 

values obtained are compared in Section 9 with the re5ulte from 
the present study. 

Thera have ~l!o been studies of bcdy wave interactions on 

wedges which result in mode converted pulses of Rayleigh waves and 

ot particular interent is the expertmental work by Ga.n.gi (1967) 

who deterIlllned compressional on/ Rayleigh wave convex'sion 

coefficients f~:: al~.lIllinium wedees with a range of wedge anele~. 
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£. Visualizatio~ studien on wedges. 

In attempts to provide insight into the wave corner 

interactions in the bulk of the medium some ~~rk has been performed 

using photoe1astic visualization which shcws the stress patterns 

in transparent media; these are consid~l'cd further in Section 2.4.7. 

(Henzi & Dally 1971, Hall 1976) 

~. Numeric&l studies on .edges. 

In s~eking to provide a more qu~ntit~tive understanding o~ the 

interaction of Rayleigh waves with corners and·the resulting 

scattered pulses come worker! have turned their attention to 

consider arproximate and numerical methods, as is illustrated by 

the work of Alsop and Goodm3n (1972) who have used a finite 

element method for semicontinuous waves on a quarter epace. Work by 

Munasinghe and Famell (1972) and Cuozzo et a1 (1977) on quarter 

and three-quarter spaces has applied the finite difference method 

to pul13es f),nd semicontinucus Rayleigh wa-ye propagation. re3lJ~cti'lely. 

The approximate mathematical and numerical methods are considered 

in detail in Seotion ]. 

There are many body w~ve studies but in general thess are 

beyond the ~cope of this present study; however further con~idcration 

is given. in Section 3, to the numerical methods which have 

application to surface·wave problems. 

2.4.3 RaylAigh wav~s at etep~. 

It is apparent that the interaction ~ith a step contieuration 

is going to be morA co~plex than that with a aingle corner. The 

addition of a second corner a.t oome distance from the :first 

introduces a 8patlal dim~nsion. in a.ddition to pulse penetra.tion 

depth into the aystcll, &l'ld thi:s !n!l.ks:!! the interacticn become 

wavelength dependent, or rather depe~dent on the ratio of th~ 

feature dimenelon or dimeneions to pulBe ~aveleneth or wavelengths. 

All wavelength dependencu it! iu addi ti.()ll to and linkad with 

material pa~ameter dependent effects. 

For a feature consisting of combinations of 90° and 2700 

corners separated by distar.ces gr'eatsr th~n t7;O wayelengtha it ie 

l'ufficloIl t to consider the pulse as in ter~c ting with c3.ch cO!'r:\or 

separatelyand in turn; tha separate e.ignale from oach corner mOo.,. 
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be identified in the time domain, as is 5ho~n in Seotion 8, and the 

problem in principle reduces to one of Sllcessive application of 

reflection and transmission coefficients, with energy losses to the 

other modes. 

However, when the corners are clooer together than two 

wavelengths, as for a shallow step, this simple approach is 

inadequate and the interaction must be considered as a whole. The 

problem has become wavelength dependent and analytically insoluble 

for ~tep heights of the order of a wavelength. 

The geometries considered by previous workers have, in general 

removed additional angular depend~nce from the step problem and 

restricted consideration to the step change in elevation with a 900 

and a 2700 corner which have a given vertical separation, on a 

single homogeneolls isotropic mediu.'U, as is shown in Fieure 2.7. 

~ ...... ...--:- ....... // /'.,.'~ -.,,- t;: 
, 
/ -­, , h 

step chan~es in elevntion on ho~ogencou~ medtn~ 

;FIGUBE 2.7. 

An exception to the restriction to single media configurations 

is made in some surfa.ce acountic wave device related stud.ies whore 

the elevated medium iE of a second type. giving a config-uration 

su~h as a layer of aluminiu.'ll over silicon. 

The previous work on steps ean be considered in three groups, 

according to the atep height (h) to pulse wavelength (t) ratio h/1" 

!.. step height to wavelength ratio ( hit') less than 0.1. 

The first group of studies, those with hi)!' less than 0.1. 

are ma.inly linked with surfaco o.colU3~ic wave device studies. In this 

rango of step heights some· an.alytical pertul'bation techniqu€s have 

e.pplication, as is shown by the work of Sabina and Willis (197'/) 
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and Mal and ~lopoff (1965) 

For ·{ery shallow steps, up to h/'l' of 0.02, Li (1974> has 

applied a transmission lin~ representation. There have a190 been a 

number of experimental studies in this range. 

J?. step height to wavelength ratio (h/'f> of the order of one. 

The second group of studies which consider studies with the 

step height to wavel~ngth ratio h/~ from about 0.2 to 2.0 include, 

at the bottom end of the range approximate analytical methods, . . 
an.d across the whole range both experimenta.l and numerical studies. 

It is in this group of h/y/ ratio values that many geophysical 

studies fall including those by Drake (1972) using finite element 

methods to study waves at continental coundaries. 

An approximate variational method, which hns application up 

·to h/'f ot about 0.5, has been applied by McCarr and Aleop (1.967) 
to studies on media with high 1'ois90n'8 ratios. 

Th'e finite difference method has been applied by Munasinghe 

(197.3) to both up and down step pulsed wave problems, mninly 

considering waves on polystyreneor alumihiunlqusrtz layered 

configurations t:.nd the details of the nll3thod used are considered in 

Seetions .3 and 4. A further ctudy of n~yleigh wavas at steps ~sins 
finite difference methods has been made by Cuozzo et al (1977), but 

they have eonsidered semicontinuous waves and not pulses. 

A sel'ies of experimental Ite>asurementa have been perfonnod by 

Frost et al (1975), on steps in aluminium blocks, using a new type 

of noncontact surface wave transducer. 

There have also been studies using visualization techniques 

and these inelude work by Dally and Lewls (1968) Y:ho considered 

steps in the range from 0 to 1.5 hit. This has been followed by 

further work which h~c boen presented by Hentzi ~~d Dally (1971). 

$l •. Step height to wavelellgth ratio ( h/'f) greater than two. 

The third group ot Dtc.t'.les are those where the wavelength 

dependence has been removed, in that deep steps are considered and 

an example of this is found in the worl, hy Mal and Knopoff' (1965) 

which uses a Graen~ Function approhi~~tion for deep steps. 

In general there is little ovorlap between the various groups 

or studies and within the g.l.'Oupa tho direot eomparison or resulto 

is difficult as the studies t~nd to either be using different 
J:lodia. or ca.loulate or measure different para:natcrs. 
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There are however four studies of the dowu step for h/~ of the 

order of unity which can be used to tect models 'and ro.sul ts in 

the present stt.ldy and these are considered in Section 9 together 

with the results of the present study. 

2.4.4 Rallei~h waves at RIots normal to a surface. 

The extension of studies from up and down ateps ,to slots is 

of considerable importanoe as the slot is an idealised open crack 

and it is cracks which are of particular interest in nondeatructiv8 

testing. 

As with the studies of steps the previous work on slots tends 

. to fall into distinct classes according to the slot depth (h) to 

w~velength (~) ratio h/Y' and it ia in order of increasing values 

of this ratio that previous work 1a 110W cOf.l.s1dered. 

~. Slot dGpthto wavelength ratio ( hI¥') leSB thon one. 

Much work has been performed relating to surface acoustio wave 

devices for a range of shallow slots of different depths and profile 

with the slot oonc1dored both as a single feature and as a multi­

slot array. Examples of these mixed experir:cntal a.nd theoretical 

stUdies are found in the work by Tuan (1915), who considered the 
bulk waves generated by Rayleigh "'Elves incident on surfa.ce Blots. 

and in those bY'Rykml0V and TL~ukh (1972) and ~lan Rnd Perekh (197~. 

A further study on shallow slots is that by Ronnekliev and 

Souquet (1975) who studied slots one twentieth of a wavelength 

deep and half a. wavelength wide. at 1.15 megahcr·tz, cut in 

aluminum blocks. 

'l.1J1ere ha~ bsen soma nUIllaricel werlc uting fiu! ta differenoe 

methods to model the interaction and sc~tterin$ of. n~~leieh waves 

by slots, as occur :l.n surfacl) acoustic wave devices. T!le t'Wo 

main groups of studies in this field are those by Y.un.flsinghe (1973) 
and Cuozzo et al (1917). The work by t!un.asinghe (1913) has 

oonsidered pulsed Rayleigh YiaVaS at wili.1l layered slots. the width (w) 

bting greater than 1.5 7~ aLd with depths (h) up to 0.8 ~, of the 

type Ehown ill Figure 2.8. 1'he study by Cuozzo ot al (1977) ha.s 

considered a s~micvntinuous ~av& source with eithQr Single or 

.arrays of wide shallow slots. 
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::;Ur.STRATE 

ru It'l.YElrf)o 'l<dd.L:.'llot. as con'E'idE';,~r! by Munasinp.;he. 

FIGUR8 2.8. 

~. Slot depth to wavelength ratio ( h/Y') of the order ~f one. 

The secol1d group of studies are those where thIJ slot depth 113 

of the order of a wavelength and it is in this r~~ge that severnl 

stUdies havs been performed on either al~inu~ or al~~inum nlloy 

test pieces. An early attempt t~ establi~h tr~~5m1e~i~n and 

reflection coefficients is that by Viktorov (1961) lIho measured 

the incident, transmitted and reflected signals from a slot which 

was made progressivoly deeper. 

In many cases of practical intorect, slot depth is 1&6a than 

two wavelengths and the measurement of depth from identifying tun~ 

domain Signals is not possible. 

It is in this range that the studies b; ~ore,~~ (1913) fallj 
he applied ul trasonic spec~roscopy to the pul !leg s~F,t-t('lrl?d t,y r.dlled. 

slots in aluminum alloy blocks. that are both normal and a.t elan·tint; 

angles to the surface. The information relating to ta!"set 

dimenoiona is still in the scattered pulses, if a broaiband incident 

pulse is used, and ls obtainable using the technique of ultraDonie 

spectroscopy, which ia considered in Section 2.6. The inter~retat1on 

of Morgan's (1973) results was greatly hindered by the le.ek of a 

theory, and it is as a direct reoult ot this problem that the 

present study was undertaken • 

.£.. Slot depth to wavelength ratio ( h/Y,) grea.ter than 1.5. 

As for a step, the sca. ttering of a Hayleigh ~'ave palee by n 

slot results in separate iaentifinble pulses in tho tim9 domain 

only when target dim~nsion:J are gras.ter than about two pulse 

wavoleneths, that is the ~evolength dop~ndence hec beon rem~ved 

and each corner acts as a sc."lttex-:tng centre. For ~ deep slot or 

e·rack with a point tip where there are three distinct scattering 

ca t it t b t 1 ... 1 ~ ,.,!. d f id t -I f' t' f n reil rous e aea.s" • .; ,. eep ·or en..\, l.ca l.on o. 

signals in the time do:nain and .this h~ the case in the cr~.ok 

depth m~asure~ent 6tudi~s refortcd in Section 2.5. 



In a further attempt to gain a better understanding of the 

interaotion of Rayleigh waves with deep slots and the resulting 

scattered pulses, photo~lastic visualization studies have been 

performed by Reinhardt and Dally (1970) and Hall (1976) and these 

show the complex pattern of pulses that re~ults. 

There is all too little published work on slots to provide 

the starting point to build the bridge to enable the understanding 

of scattering by real defects and hence defect characterisation. 

The previous experimental work on real situations is presented in 

Section 2.5. 
Although reflection and transmission coefficients have been 

measured for a few slots and the scattered waves studied for 

particular features only a few general trends for the reflection 

coefficients and the expected pulses hav~ been published. The slot 

configuration is one which requires considerable work to establish 

a more general understanding of the scattered pulses which will be 

generated: this is especially so if extension is to be made to 

cracks or slots which are not normal to the surface. The reGults of 

previous studies on slots are considered further in Section 9 

together with the results of the present study which are presont~d 

in Sections 7 and 8. 

2.4.5 Rayleigh w~ves on layered m~d1a. 

The geophysical importance of the layered configuration is 

obvious because of the baDic layered nature ot the Earth's 

structure. It is also of importanc~ in electronicD because the 

basic fona of surface acoustic wave devices is a layered structur~t 

built on a crystal substrata. 

Although th!se configur3tions do not come under consideration 

as surface features, in this study, they constitute the simplest 

type of multimedia problems. As the present study is intended to 

cover some two media configurations, a review of previous work on 

layered structures ie of value, particularly I'll th a view to 

extensions to filled ~lot p~oblem6. 

The layered half-space is of particular importance as it is 

one of tho configuraticns for ~'hich analytical solutions are 

available and these are giv,n by a number of authors including 
Ewing et a1 (195 rn. 
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In addition to the basic analytical studies the work on 

layered media, as with other configurations, falls into distinct 

classes according to ditnen~1ons, in this case layer thickness (h) 

to wavelength ('1') ratio hi,! • 

!!.. Layer thic1,{:lt'ss to wavelel1gth ratio (hit) lesR than 0.5. 

This gl'''Up of studies includes those relating to thin metal 

layers on crystal substrates. as occur in surface acoustic ','ave 

devices; the thickness of the layer often be~ng 1£89 than 0.5 

wavelengths. These studies arc mainly experimental and are covered 

by an extensive litorature which has been considered by V,bite (1910) 

and Famell and Adler (1912). 

It is in this group of studies that thft numerical model 

developed b~ i:unasinghe (1.91.3) falls. This model uses a finite 

difference method to model pulsed Rayleigh wave propagation 011 

layered structures cor-siating of an aluminum layer 0 • .3 ,,·avolengths 

thick on fused quartz. 

~. Layer thickness to wavelength ratio greater tha~l 1.5. 

Theso are mainly geophysical and seismological studi~a which 

have considered both surface and body wevcs on la.yered cont:i.euratio~1:i 

(Herrtra 196~, Fuchs &. Muller 1911). The !taj~rity of 6cophyo1cal 

studies are beyond the scope of the present work; they consid.er 

the analysis of travel times. with much of the work following that 

by Gutenberg (1951). The methods used in these stUdies are 

considered in Section .3. 

Two main groups of numerical methods. those which use finite 

elements and those which use finite differences. have been applied 

to some of the geoph;sical and surfaco acoustic wave device stUdies 

with layered configurations. 

The finite element method r.!ls an extensive 11 tera ture in 

seismology with much of the recent seic;nologieal work following 

from a report by Weas {1912). Th& a.pplication of finite elements 

to Ra.Yleit:h wave problems is presented in a paper by LYfJmer and 

Drake (1912). although the method ~.s not applied to pulsed wave 
problems. 

The finite difference studies hsvc a longer history but the 

geophys:f.cal configul'a tions 'd th thick layers have tended in tha 

main to consider body Bourc~s and follow the methods of Al tenr,an 

and Kara.l (1968). 11uch of t~is work is reviewed in the paper hy 

Alterman and Loewenthal (1972). 
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2.4.6 

There have also been studies of waves in layered 

epheres and cylinders, both in geophysics and in connection with 

nondestructive testing problems. These have used ray theory and 

numerical methods. An example of the nondestructive testing atudiee 

is the work by Rose (197t) which considers elastic waves in pipe 

sections using a ray theory; these methods are considered further 

in Section .3. 

2.4.6 RAyleieh waves on T.elded gu~rter spac~~. 

As with several of the configurations considered in Sections 

2.4.1 to 2.4.5 the geometry of welded quarter sp~ces, which has a 

free surface with an interface normal to it which separates two 

media, is of considerable importance in geophysics as it occurs in 

a locked fault or similar configuration; and its understanding is 

necessary if extensions are to be made to any theory or mod~l so as 

to consider more complex configurations. 

This geometry, which has no characteristic dimension, has 

previously been considered by experim~ntal, analytical ~~d 

numerical methods. The majority of previous work has been ill 

geophysics, because of the interect in,and importnnce ot,the natural 

forms of the configuration. Previous studies have considered the 

scattering of both body and surfaca'y,avea. but in the present review 

and study attention ie concentrated on the surface wave work. 

A theoretical study has been performed by Viswanathan (196G), 
who proposed a solution by an approximate iterative method using 

integral tra.nsforms. 

A mor-s recent study, on welded qu~rtcr spa.ces ot perspex and 

polystyrene, has been perfor.r.ed by McCarr a''ld Alsop (1967), who 

have made exp3rirnental mA~surementB and produced theoretical 

results USillg an a.pproximate ·u!.rio.tional method which has produced 

reflection and transmission coefficients. Measurements have been 

ma.de by Munasinghe (197.3), using the sarne media as those uced by 

McGarr and Alsop (1967), in a finlte difference model,tho details 

of which are considered in Saction 4.). The results from these 

stUdies are presented and disc~ssod in Section 9, together with the 

results of the present study. 

When a Rayleigh wave interacts with an interface, as in welded 
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quarter spaces, an interface wave kno'lm as a Btoneley wave, in 

addition to mode converted shear and compressional waves,can be 

generated if the conditions for existence will permit and this 

travels down the interface away from the free surface, decaying 

exponentially away from the boundarj (Stoneley 1924). 

There are a large nUI:lber of possible combinations of 

different ~edia from which a pair of welded quarter spaces can be 

produced, or occur in nature, but measurements have only been made 

experimentally for a few cases. The finite difference method 

provides a method for Ineasaring the scattered waves for combinations 

of different media which have not, or CElnnot be considertld 

experimentally; this geometry is considered in Sections 7 and 9. 

?4.7 The limitations of eXQer1m~ntal rnqthodR Dsed to ~tudy Rayle~eh 

,:aves. ----
Following a con~idcration of the various si~ple geometries on 

which studies have been made tor Rayleigh wave propagation and 

scattering, som3 general comments can be made concerning the 
• 
limitations of experimental methods and these B.re now presented. 

As is seen from Sections 2.4.1 to 2.4.6 there have bean a 
wide range of studies ot Rayleigh waves, but experimental 

measurements fall into two groups, those which measure surfaco 

displacements, giving seiemogrnms in geophysics/seismology and 

tima domain displays in nondestructive testing, and those whlch 

visualise the waves in an interaction using a transparent model 

of the configuration to provide a sectional presentation. 

!!.. Displacemen t Itl~aBUre!Jlent9. 

The experh"\ontsl measurement of surface dicplacements in all 

the fields , .. h~re Rayleigh waves er'e of interest can only provide 

information about the wavo at the Burfl'.ce. Altho'Ugh the details of 

the methods of measurement vary considera.bly the state of the wa .... es 

below the surface is not directly Given. The d.etails of DOlLe of the 

practical problems faced by the llondestructive tester in performir.g 

surface mee.surements are cCr1sidered in Section 8. 

The problem thsu with exp~rimcuta.l displacement measuret:1ent 

is that ev~n on test blocka,whero there is the possibility of 

detection for mode co.nvertod pulses T:hich reach other surfaces , 
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the body of the med:1.um,and the waves in it,cannot be seen or 

measured. 

~. Visualization meeeurements. 

In ceaking to overcome the limitation of only being able to 

make direct measurement on waves at the surface attention has 

turned to methods of visualizing waves in the body of the medium. 

Two main techniques are ~sed to visualise ultrasonic pulses 

in transparent models of the configuration.s of interest and these 

are Schlieren and photoelastic visualisation. 

Both of these methods, although powerful techniques, require 

the production of special models, which are expensive, and a new 

nlodel is required for each confie;ura tion. In the case of Schlieren 

studies a special glass is required for the models which is both 

difficult to produce and work. There is also the permanent 

problem of tryinz to match the model material parameters, such as 

elastic constants, with those of a real material tested with 

ultrasonic waves, such as steel. 

Schlieren visualization in the published work has been 

primarily concerned with body waves, as in the work of BabolvvsKY 

et al (1973) which considers shear wave interactions with surface 

features, surface waves are E~en to propasate as low energy 

secondary pulses. Also in this work by Ba.borovsky et al (1973) 

a computer model hae been produced which, although not giving a 

rieorous treatment of the interactions, doea provide one direct 

link between experimental end model work. 

The visualization method~although they present well th~ 

·complex wave patterns which exist in a test configuration, 

do not easily give direct meDsures of the relative energies in 

the various waves. 

The requirement for achievine a better understanding of 

Rayleigh wave interactions and scatteriLg is for a method which 

will give both the numerical information about dieplacements th'i·~ 

ie given exparimentally only for surface displaceoments,and 

provides a vi3ual reprssentation of the complex patterns of wave 

fronts which are seen in the visualization studies. 

In scekinB to achieve st least Bo~e of those ai~a attention 

has turned. to conGidar mathematical lllethc1ds and those c.re 

reviewed in Section ). 
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This section considers the pr(J.ctical e.pplicationa and natural 

si tuations where Ra.yleigh Vla\~eB OCCU1.". The material is presented 

in two parts, the first is a ge11p.ral rev:i~w and the f?a~ond, which 

is given as Section 2.5.1, is a detailed cc~sideration of the 

application of Rayleigh waves to the practi~al problem ot crack 

depth measurement. 

In all the studies which were considered in Sectinn 2.4 the 

literature reviewed considered experimental, analytical or 

numerical otudies of Rayleigh wave propagation on either laboratory 

test pieces, in near perfect conficuratio~s, or mathematical studies 

on ideal materials in perfect configurations. However in practicel 

situatiorJ.s where Hayleigh waves occ~r in -nature, and are used in 

devices or in nondestructive testing, tt-El waves Ilre interacting 

with real surface features which are often complex. In many real 

situations with ~mooth surfaceo nonciDpersivo propagation 

is possible. This is not always the ease and practical surfacos 

may introduce attenuation and increase background noise levels in 

systems. 

Rayleigh waves, as considered in Sections 2.2, 2.) find 2.4. 

can be considered to be nondispersive in an iootropic. homoganeouB 

medium which has a smooth surface for propagation. As outlined in 

Section 2.2 for-the long wavelength pulses that occur ae a result 

of earthquakeo and underground nuclear explosions, the Earth, 

although not perfect, can propagate high energy pulsea of Rayleigh 

waves over large distences; thousands of kilometres. For this 

reason Rayleigh waves occur aa strong pulses on seiemograme, with 

local features such a~ hills only' perturbing a pulse or wave train 

and large features llke conti.:ncntal boundaries prod\.lcing 

scattering which increases non-coherent seismic noise. Even with 

the scattering lossee the oeismic pulses have en.Dur-h energy to 

give information about th~ir source and the material through which 

they have travelled. 

Also with reference to the seismic Rayleigh and other wave 

pulses, jn addition to local damage in a belt of seismic activity, 

the civil engineer needs to consider the possible effects on ~uch 

features a.s d8.I!!s. With la:r.c:~ structures, Euch as dams, there is the 

need to consider the local ~agnificaticn of displacemonts which 
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2.5 

can occur on some configurations. 

'O~ &1 intermediate scale are the man-made surface waves 

which ar'3 produced by the t""ibI'ation of large rotating machines. by 

rhythmic hRmmer blows or an explosion. These produce a problem of 

structural i801~tion for the civil engineer. These waves have , 
wavelengths of the order.of tens of metres and the isolation of a 

structure from, or the scattering of, the waves produced by a 

structure, is achieved by means of isolation trenches or sheet 

piling, which soatters locally produced Rayleigh waves; the results 

from experimental studies such as that by Woods (1968) are 

considered in Ecction 9. 
In tho field of surface acoustic ~ave devices there has been 

extensive pructical measurement of the parrunetera which describe 

the propagation and isolation of Rayleigh waves, <'-Vhi te 1970) and 

these include studies of isolation of components on a single 

crystal and the study of groove profile. (Tuan 1975. Tuan & Parekh 

1975) The majority of such Furface acoustio wave device rolated 

studies are not of direct usc to the understanding of the types of 

intoractions of Rayleigh waves on the configuratio~s of interest 

in the present study. 

The final group of practical studies arc those which consider 

the use of Rayloigh waves in the study ot surface and near ourface 

features in metals up to depths ot about one and a halt ~avelength~. 

Surface waves have the potential to be used to otudy Guch surface 

features as surface cracks and near-surface voids and inclusions, 

as well Ra such surface features as roughness, pitting, corrosion 

and layer thicknesiJe Work has been perforJled to apply Rayleigh and. 

other surface waves to all these prob16m~. 

The first work ~cing ultraso::tic waves which can be callsd 

pulse-echo ultrasonic nondestructivc testing, then known as 

ultrasonic reflectograpay, ap~esre to have been performed by 

Firestone in the late 1930's end r8~orted in a patent application 

of May 1940 (Fi~estone 1942). The first articla to appp,ar i8 that 

by Firestone (1945) in which he d~Eeribes the use of ahort 

( 1 microsecond) pulses of f1 ve JI1ec$shertz body "aves generatGd by 

a surface contact quartz cryz tal. In this paper ]'irestone applie3 

ths ultrasonic body wavas to the measuroment of 1'>1.1.11 thickness, 

laminaticn detection, grain size measurement and bond testing, in 

nddition to defect detection and location. 



2.5.1 

He also notes th'3 problems of dofect sizing with features that have 

dimensions of the order of a wavelength or less. 

The original suggestion for the usa of Rayleigh waves in 

nondestructive testing, by the method then known &s ultrasonio 

refleotography, appears to have beon made by Firestone and 

Frederiok (1946). Howeve~ before the technique could ba devoloped it 

required the improvement of transducers by the development of 

wedge transduc~rs and the work of Benson (1950), Frank (1952), 

Minton (1954) and Cook and Valkenberg (1954). The principles and 

development of Rayleigh wave transducers are considered in Section 8_ 

Since the work in the 1950's and particularly since about 

1960 the applications of Rayleigh waves in nOl'ldestruetive te!lting 

have been num~rvus and have included studies to detect cracks in 

plates (I'ohlmann 1963), the inspeotion of turbine blades (Vybornov 

& Ogurtsov 1962 " the infJpeotion of wires a11d the inspection of hSf.it 

exchangers (Brid.ge 1976, Private communication) and the inspeotion 

of hot foundry products (Cola 1977). 

In addition to these inspection studies there have b,en 

studies on sp6cific problems f;uch as surface roughness by 

Urazakov et al (1973) 8.nd Bridge and El-Dardiry (1976). 

Rayleigh waves have now pl~ved thomselves as a useful 

inspection tool ar.d this review now considers the epeclfio problem 

ot Rayleigh wave crack depth measurement. 

2.5.1 Raylei~h w~ve cr~ck d~pth m~asure~ent. 

The location Bud sizi!'lg of cracks, pa.rticularly those duo to 

fatigue, is of great iruportance to industry. The calculations of 

f're.oture mechanics now A~e.ble, a.t least in principle, the prediction 

of critical defect size and when this defect size is kno~ it 

ena.bles the establishment of reasonable nondestructive testing 

levels, for quality control a~d both preservioe and produot 

aooeptance inspection. Engineerh.g experienco haa 2hown the necfJsai ty 

for the establishment of both presCl'rvice tilld in-cervice inspection 

for crack detection from the extt;'nsive damage v:hich can result from 

crack growth to failure in an ite~ such 8S an airoraft, a pressure 

ves$el or a pipeline. In relation to the Rignific~nce of a dofect, 

from both prc.cticaJ. mc,3,surem.:mt and the fractul'e mechanics 

C8.1culatio!ls tit is Gr.ov,n that El surface defect. of ldven loneth 
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is as significant as a buried defect of twice its length. 

(Young 1977) 

It is therefore important not only to detect and locate a 

defect, but also to be able to est~blish accurately its dimensions 

and orientntion. In the case of a surface breaking defect there ia 

little problem in locating a crack by such methods as dye penetration; 

however even then depth/length measurement is a problem. The 

studies reported in this review are divided into two groups, firstly 

those which Beek to determine the minimum size of defect dat~ctablA 

and secondly those which seek to size e. defect which has previously 

been located either by an ultrasonic or aODle other method. 

Three types of surface breaking feature are consider'cd in 

this study ~~d these are shown in Figure 2.9. These are the 

artificial defects, shown as Figure 2.9a, which are the V groove 

and the milled or cut slot; the fatigue crack, which often has a 

form as shown.in Figure 2.9b, nearly normal to the fr~e surface 

with near constant width of the order of 0.01 mm; and the stress 

corrosion crack, which often comes in groups and is ShOMl in 

Figure 2.9c. The stress corrosion crack 1s a defect of ~hich r.o 
• 
two have the same form and hence it is difficult to cstab11eh 

charaoteristic dimensions. 

~. Minimum detoctable defects. 

This group of studies includes ID'.lch early work .·hich gave 

limits fo~ the detection of surface features. Tnat by Brinczewski 

~1951) was able to detect V grooves 50}lm deep using a pulse with 

a wavelength of 1.25 mm (2.25 MHz) on alu!ninium. 

StudioD haTe been pertonDed on the monitoring of crack growth 

and those by Vybornov (1969) and RaSIDUSf::On (1962) found that fatigue 

cracks could be detected inalmninium at 40 % of the fatigue life, 

on na.mples with good surfs.caB, but only at higher percentages of 

their life if the testpiece had a poor surface. 

For stress corrosion crB.ckil'lg Cordellos et al (1969) cmd 

Brummer et al (1969) showod that 70)~m cracks are identifiable 

when working with aluminium blocks and pulses of 4 r.mz frequcHlcy t 

this detection b';lng achieved at only 18 % of the nonnal stress 
life. 

In all practical work \\'1 th P.ayle:lgh waves the quality of the 

surfa.ce finish has been found. to have a considerable influence ()n 

propagation charactoriztics. 1'11ia is shown in the wOl'k by 
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crack tip 
enlarged. 

Three types of surface breaklng featuro; a. Artificial defects, 

b.Fa,tigue crack',- c. Str~Clt cor-rosion crack. 



2.5.1 

Raamu8sen (1962) with regard to the detect:i.on of a significant 
feature against a background of small scallcrers Although the stt;dies 

have at present considered body waves. work by Quentin (1975) has 

applied speotroscopic techniquea to detect regular targets on 

damaged surfaces. 

A further group of studies are thoseby Brinczewski (1957), 
Bykov (1960) and Bridge and EI-Dardiry (1976) which show the 

attenuatinG effect of a rouZh surface. 

Other studies have con31dered propagation on thin films, but 

those not considered in relation to layerod systems in Section 2.4.5 

or in relation to the coupling of transducers in the aection on 

experimental work, Section e, arc outslde the scope of the present 

study. 

~. Crack sizing. 

This second group of studies are those which ccncider craok 

location and sizing. As early as 1958 rQ-hm€l (1950) £'how~d th!\t 

for defect detection Rayleigh wave methods compara well with thos'3 

using X-ray or eddy currents, and the perfOl'mIUlCe of ul traaonic 

~ethods has improved, at least in the laboratory. over recent y~ar.a. 

(Lloyd- 1970.1975, Curtis 1975) 

However crack depth measure:ment hao proved to be undependable 

(Musil 1967) or at least give a lare~ acatter in the results 

(Rudgell et al 1974) and this is attributed to the ~any obvious 

variables present which include crack type, depth. orientation and 

length, in addition to transducer variation and operation pI'oble::ns. 

There is also found to be variable reflectivity from different 

cracks of the eame physical length. The coupling problems c~ be 

overcome by usin.g nonccntsct transducers, as is dont) ill the work 

of. Frost et al (1975) end Cola (1977). 
The variables which introdu.ce Ecatter into Rayleigh wave 

measurements all work against automatic inspection, but the use 

of noncontact generation and detection has made possible such 

applications aa hot billet im~pection wor}:ing between 25 anl 33 kH~, 

a wavelength of a.bout 1 0 ct-n~l"ti:n(!tre s. for surface ll..,d near-surface 

defeat detecti~n.(Cole 1977) 

Measurements made by ~!organ (1913) using Rayleigh waves on 

slots aut in aluluiniurn alley blo~ks have achi~ved an accuraC1 of 

e.l:>out 20 ~~ for defects lesn th3.ll 0. wavelength in length. In a %tore 

recent study b;)r Lidington 8.nd Silk (19'75), working at 2.5 ~i~ 
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on 16-28 mm ( about 12 to 24 wav3lengths I slots achieved about 

1 % accuracy and achieved D. simi lar lEl~el of accuracy to r.7orgo.D 

on a real crack. In a further study using a difforent !echnique, 

but still with Rayleigh waves, ~ilk (1976) working at up to 0 U.Hz 

ha.s claimed accura.cies of about 2.~.$ for crll.,:ks 20 to 30 mm ( about 

55 wavelengths or deeper at 8 MUz) deop, ~ith reduced accuracy 

as feature depth reduces, DO that for a depth of about 2 mm ( about 

5 wavelengths deep at 8 r~Hz) the nccur ..... cy is only a l:lttle better 

than that claimed for ee.rlier studies. The g~neral level of 

guaranteed accuracy being clF.dmad by Zillt (1976) is 15 %. 
The time domain sigr.ala obtained exyerimentally using 

Rayleigh waves tend to indicate that the interactions a.t surface 

features and the resulting scattered p~lse~ are more complex than 

a Simple theory of reflection and transmission, with mode converoiOl 

losses at each corner, would produce. This is e9p~ci~lly eo for 

interactions with feetures that have di~ensjona of the orde~ of e 

wavelength or less. This complexity not only aritea from the 

variables present in the experimental system but also from tha 

complex nature of the mode converSlon3 that occur. 

With the epplication of photoclastid vi:zualization JT.6thodB to 

Rayleigh waves, as in tho work by Hall (1976), it is found that a 

wedge transducer does not just produce Rayl&igh waves, but there 

are residual body waves which pass into the testpiece. Further 

consideration is given to llJ1.Y/snted body waves in testblocks in 

Section 8 where the exper:i.mental measurE'ments made in the preeent 

study are reported. 

Two reviews have been presentod for the proc~dure8 for crack 

depth dotermination using Rayleigh W9.\'es and they e.re by Cook (1972) 

and Hudgell et nl (1974). The methods doscribed fell into two 

groups, those which use single prober; and make ptllee-~cho 

measur'9rmmts a.nd those which use two probes. The basic pulses 

considered for Blot depth m~asurement are ehown in Figure 2.10. 

The detnils of the various nlethods of m~asl1remel'!t aa used in the 

preeent study are given in Section S. 

All additional w;.wo pulse used for determining crack length, 

in the case of deep cracks, is the mode ccnvert~'d shear Vlave pulce 

and this hac boen co~sidercd by Sille (1976) who has presented 

tho equ.l'itioTlS fo!' pul~t::t travel timec, particularly tOl' the tip 

converted shear wave. This is cOD8idered further in Suction 9 • 
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. Rayleigh wave crack and defect location anrl mea.surement is 

now in routine use.by a wide range of nonde:::::truc:tive testers, but 

much development work is still required to provide better 

transducers and experimenta.l equipment tl.t tho practica.l cnd of wor1.c 

and basic analysio of-the interactions and the resulting scattered 

pulses to aid in the understanding of the signals received jn 

real experiments. 

At present there is no full wave analytical theory for 

Rayleigh wave defect interactions ~~d sca.ttering and the 

limitations that this imposes Dn experimental Measurements ar8 

oonsidered in Section 8 with the experimental mcasureme~ts ruid in 

Section 9 where all the results are considered. 

2.6 Ultrasonic spe~~~ 

In ultrasonic nondestructive testing, mathods vlhich restrio~ 

consideration of the pulses to soms form of time domain djsplay 

and mea.surements,arc made solely for £lome measure of a!Ilplitud~ ani 

the position, the informationi~ the 6ir,~al whi~h is present d~~ to 

wavelength dependa.nce is not giv~n to the experimenter. 

Ultrasonic spectroscopy is the analysis of the spectral 

content of an u1trasbnic signal. This is obtained by pazoing the 

go.ted 6i01a1 into a spcctrwu analyser, which performs the opel'.':l.tion 
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electronically. This operation is equ1.valent to the applico.t1on of 

El Fourier transforo, and pr'esents the E.!!lpli tude of all frequencies 

swept by the system that are in the arl.Hly-sed s:tBnal. 

The term ul tre,Donic S'pectroscopy seems to have first been 

applied to the analysis of short time domain ultrasonic DiGnala, 

which have wide bandwidth, (which may 'be from 0.5 to 20 MHz or more) 

by Gericke (1963). Since this time the use of this method of 

analysis has increased, particularly with the increased availability 

of small widebs~d spectrum analysers and signal processing 

equipment, since about 1970. 
The early work showed the diagnostic possibilities of 

spectroscopy for the study ef such features as grain size, and 

with the introduction of ultrasonic tecimiques into medicine there 

has followed the introduction of spectroscopic techniques for such 

functions as tissue identification. The development of the 

techniques in both nondestructive testing and medicine has not 

resulted in two separate isolated groups of workern; tho fields 

have much in common as was shown et a recent meeting at The City 

University. (Seville 1977) 
• 

In geophyaics there 'has been increasing interest in both lone 

and short period seismometers and as well as increasing the 

spectral range studied, there is increasin.g use of the spectral 

information in the signals. (Fuchs & Muller 1977) The spectral 

content of the signals is an.alysed in e. variety of ways including 

cepstrum analysiS in which the spectrum of the signal under 

investigation is norma.lised to, and compared with the spoctrum of a 

reference signal and the difference between the signals taken. 

The difference signal is passed through a Fourier transform to 

bring the signal back to the time dcmain. This process has be~n 

applied to nondestructive testing conflguratlcno, open slots, by 

r.~organ (1973). 

There are two advnntages in using short time domain signals 

both of Which are of use in nondestructive testing. The first ie 

the better time resolution which ia possible and this has such 

a.pplications as thickness r.l.;;a;.;pj1€;1~ent (Lloyd 1975). The second is 

the wide spectrum which is produced for broad band investigatiOl1s. 

The production of broadban.d d.gnals ieeonsidered in Section 8. 

The scopo of applicatiolls of frequency analysis in. 

nond~struct1ve testing has been considered by Dory (1973). 
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Further general material on ul traoonic spectl'oscopy ct:!.n be found 

in the paper by Gericke (1971) and areceutil1troductory revieVl 

which has boen presented bY,Haines (1976t Longer articles, which 

include some of the applicaUons of the techniqut!, hav.! been 

prepared by Bro~n (1973, 1976, 1978 to appear). 

Spectral analysis applications have included studies of 

bonded stru.ctures (Rose &, Mayer 19'73) t lap-joints (Lloyd 1974), 

the measurement of thin layers (Rose &, r,lC:.i.yer 1974) and the 

chara.cterisation of surface defects using pulsed ul t;,:'a&onic Rayleigh 

waves, as performed by 1!orGen (1973). 

The number of applications and potential appU.cations is 

increasing all the time and the potential information given by 

spectral content will ensure its use in nondestructive testing. 

The technique is considered, as used in th3 present study, in 

Sections 5 and 8. 
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.3.1 

3. CO~IlPARISON OF MA'rUEMtJ'.!Q.AL UETHODS.!. 

3.1 Introduction. 

Numerical methods, and partioularly those for the solution 

of systems described by differential equations~ are of increasing 

importance in many branches of physics and engineering, and the 

previous published work,both on nmnerice.l methods and their 

application to elastic wave propegation,has become extensive. 

Using numerical mathoda coupled with recent advances in the 

speed and core capacity of la.rge computa'r systems it is now 

possible to provide a full quantative understanding for many 

previously analytically intractable problems. It has become 

possible to model the time development of many systems and recently 

nunl0rical methods have been sucessfully applied to hyperbolic or 

transient elastic wave problems; it is in this claes th~t the typo 

of pulsed wave.problem to be considered in the pree~nt study falls. 

The basic requirements for the numorical method to be 

applied in the present study arc presented in Section 3.2 and a 

review of previous work and available methods is given in Section .3.3. 

The seloction of finite difference methods is made for use in all 

model work in the present study and the details of the formula.tion 

are presented in Section 4, together with the supporting appendices. 

l~g. Ba§.lc reguiremeni;~_fo:r the numerical method. 

The baoic requiroments for a numerical method are that it 

should provide a. model of the propagatlon, interaction and 

scattering of pulses Qf broadb(;i.nd. Rayleigh waves by features ouch 

as steps and slots, which fo!"f.) the basis for understanding the 

interaction and scattering of puloes by ra~l surface features. There 

are a set of criteria against which th~ <'ll tel'na tive methods used 

to model wave propagation must b~ ccnEldered, and th€E.e are; 
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3.2 

1. The method must give nondispersivc propagation of a pulse 

or pulses of wide bandwidth, on the surface of and in, a 

homo~cneo\ls medium. 

2. The method must ba able to handle the necessary boundary 
o 0 conditions, such aa the stress free surface, 90 and 210 

corners and material interfaces. 

3. The method must, in addition to single pulse propagation, 

give the full wave solution, includins mode conversion, for 

the interaction with surface features with dimensions o! the 

order of a wavelength. 

4. The' method must be of such a form as to enable the required 

accuracy and stability to be achieved. (In terms of accuracy 

the variation from known analytical solutions must be minimal. 

there being for example no greater tho.n say 5 % variatioll 

from ~alytically knovnl displacements in the c~se of 

propagation on a half-space.) 

5. The method should be such that a FORTRAN computer progra.m 

can be written for uee on a die1tal computer of either 

lCL 190;E or CDC 7600 type, at reasonable core size and l~n 

time. This condition is helped by the ability to restrict 

consideration to tV/O spatial dimensions and time. Other 

workers, for example Munasinghe (1913) when. using a machine 

comparable with the CDC 1600 have employed a dynamic core of 

about 100 (32 bit) words and u6~d run times of up to 1500 sec. 

The four numerical methods found in the literature search 

are now reviewed in Section 3.3. 

).3 Cons:tderatil'lrl. ot.,PV"a11alD.p- nUTI1~1"icgl Method.§..!.. 

A detailed roview of all the previous work on wave propagation 

and scattering,with detallE of the various mathematical methods 

is a ~athc~atical otudy Given in mathematical texts, which is 

beyond th~ scope of this t~e~is. In this section the particular 

papers mentioned to illustrate the various methods are &iven to 

ser/e as illustratj.on3 of f!!,plice.tlons of th() pc.rticular technique, 

with no intention cf being a cc~plete bibliography. This is 
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especially so in the caso of methods which have application to 

surface wa\·e problems, but in the past have had only limited 

application to them. 

Prev::i.ous studies of wav·e problems can be grouped in several 

ways. and al tho'lgh the systems studied range from those considering 

earthquakes ,to those for.submillimetre waves on surface acoustic 

wave devices, the basic mathematical methods fall into four groups 

and it is according to these that the material in this section is 

presented. The5e methods are those which use ray-tracing. 

perturbation techniques. finite element approximation and fi.ni te 

difference approximation. 

The four methods have all previously been applied successfully 

to.solve particular problems. However all have their range ot 

applicable problems together with their o~n strengths and 

weaknesses. 

The four methods are now considpred with reference to the 

solution of a system described by second order hyperbolic partial 

differential equations which is well posed and has Neumann type 

boundary conditions and particular reference is made to the 

conditions set out in Section 3.2. 

3.3.1 Perturbation technigues. 

The first technique considered is in fact a wide range ot 

techniques, being those which use perturbation methods. These, as 

the name implies, perturb a system using nome form of 

approximation. Tht;se COI:le in many forms, however there are several 

common tools which include the use of the Born approximation, the 

use of sources to replt-ce scatterers and the addition of a 

perturba.tion to a known fv.nction or equ9.tion. Perturba.tion 

techniques can and have been applied to a range of wave problems 

including those which consider surface waves. (Hudson 1917) 

In general when the~e methods are epplied to problems such as 

the scattering of a pulse by 8 step, they only work when the pulse 

or wave wavelength (yJ) is much lA-reel" o:r !\HlI~h smallel.' than the 

feature dimensions, often A. ma..:dmu..'ll of a. twentieth of 'f or greater 

than 1. 5 ~. These methods can. he illuDtru ted by the work of 

Sabinaand Willis .(1917) and lludson (197D). Howe!f€'L" thelr 

application i·s restrictt)d., in the case of surface w~ves. to 
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considering such features as surface roughness (Hudson 1910, 
Hudson et 0.1 1973) or small localised irregularities. such as 

ridges. (Sabina & Willis 1~77) 

These types of method.s do have application to problems whcr~ 

the principal interest is in features with dimennions much lens 

than or large:r than a wavelength. and a.n approximate form is 

acceptable fot' such items as mode conversion. This is not the case 

in the present study, eo perturbation methl)ds cannot be uoed in it. 

The second class ot methods are the ro.y-tracing m~thod3. Th0f.:e 

have formed a part of classical geophysics, with the work on pulse 

travel times and ray paths. The use of this method on geophysics 

is shown by the work of Cutenberg and Rickter (1939). These methods 

have now been' computerised in aeV'el'al torolS, flUuh aa shooting 

techniques, which are a form of iterative ray-tracing. a.s is ~hown 

, by the work of Julian and Gubbins (1911). 
In the case of ray theory for surface waves, there is the 

requirement for interfaces to be smooth curves; much of the worl: 

using these techniques is reviewed in a paper by Kel1nett (1974). 

Ray theory has been applied to give understanding in the case of 

a range ot body wave problems, as illustrated by workers in both 

seismology (Julian &:. Gubbins 1971) and nondestructive testing 

,(I,loyd 1975). 
Although attrcctive in many ways, a.~d in the past they havo 

provided solutions to a range of problems, these methods rely on 

approximate formulatl~ns which can apply for reflection and 

refraction when surfl.wcs end interfaces npproxiIllute to smooth curVf3S 

and geometrical optics a.naloga(:s can apply. 'l'herefore ~inguln.ri tioa, 

liko sharp corners, can only be included with difficulty. ~non 

ray-tracing models have been developed, as by Baborovsky et 8.1 (1973) 

empirical treatmellto of mode conV'ersioIl and low ene!'gy Vlaves he.ve 

been necessary. 

Aa the main intcrost, in the present study, is in time 

development of systems with scattering from corners ani mode 

conversion, ray-tracing m&thods are not applicable. 
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2~J.~ Finite element ~ethods. 

The third cla.ss of methods a.re those which use finite elem~nt 

approximations in the model formulation. Tbef;e B.re a recent 

eddition to tho numerical methods for the solution of problems 

described by differential equ~tions an1 have provided solutions to 

a wide ranee of problems. (Zienkiewic~ 1971) 
Wave problems, including those with surface waves, have been 

atu1ied extensively using finite element methods. However these 

have mainly boen restricted to studi~s of elliptic or eigenvnlue 

type problems, as in the surface wa.ve atudies by Lysmer (1970), 
Waas (1972) and Drake (1972) and much of the material by this 

group is covered in the paper by Lyemer and Drake (1972). 
The finite element method has alao been applied extensively 

to a range of body wa.ve problems, with again much of the interest 

being from seismology, as in the work by S'llith (1975). 
These methods have two distinct streneths in that they can 

easily handle free surface, Neumann type, boundar,Y' conditions and 

they can be given higher grid densitiee where variablc3 are 

expected to have rapid changes of value. 

The majority of studies using finite elements cOllbldered 

either elliptio or parabolic problems, with extensions to systems 

that would be hyperbolic being achiev€d by reducing the problem 

to one that is pseudo-parabolic. This is dono, in the case of a 

study by Alsap (1972), by using a semi-infinite wavetrain in the 

. form of an harmonic driving force and not pulses of waves, and with 

the addition of a time dependent parameter at euch node. 

In addition in most finite element studies there is tho 

requirement of a rigid boundary, as is used by Lynmer and Drake 

(1972). This is not possible for a study of a semi-infinite medium 

with a sinele free surface. 

A recent extension of the application of fin:f.te clernelilt 

methods has been made in the work by Koy (1975), l:ho hE.i.S produced 

a computer pro3re.:n system to consider ... a.ve problems i.ncluding those 

of hyperbolic type similar to th~se considered by the TOaDY finite 

difference programs of Bertholf &nd Benzley (1960). 

Finite element and f!ni'te difference methods are generally 

considered to ce completely different approaches for solvipg 

systems dcscribGd by partinl differential equations. !rowcv'er 
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Friedrichs and Keller (1966) have demonstrated that if triangular 

elements aloe Bet up 80 that the nodes are on a recta.ngular grid 

the two methods yield the &ame difference formulation for 

interior pointe. This however loses flome of th~ advantae;es which 

finite element L1f~thods have over those which use finite diffdrence 

approximatlons, but it d~es introduce a considerable simplification 

in the use of a finite element scheme on a digital computer. 

A wide range cf elliptic Md parabolic problems have been 

sucessfully solved using finite element methods Zienkiewicz 1911) 
and othera (Key 1915) have shown that they have application to 

specific typefl of hyperbolic problems. There are however 

restrictions on the size of grid (about 100 by 100 nodes) which 

can be used due to the problems in inversion of a larga, albeit 

sparse matrix. In general these methods have yet to prove 

themselves for the solution of general hyperbolic partial 

differential equations. (Sykes 1976, privnta con:.n:unication) 

For these reasons finite element methods were not selected 

for use as the numerical method for the models in the present 

study. 

The fourth group of methods are those which use finite 

difference approximations in the solution of differential equati~ns. 

These methods co~stitute an extensive group of mathematical 

methods and the detailed formulation can take several forma. 

(R1chtmyer & Mortcn 1967) 'l'he br.sic method replaces the differential 

terms in the equations which describe a systelll Ul':'.dcr study with 

an inoremental o.pproxillllltion. This method of eqm:.tion solution 

was first discussed by Courant etal (1920) and since that time ha3 

provided the solution for r.1any types of diffcrontial equaUona 

particularly since the development of fast digitsl computers. 

For surface waves stu0.ics using finite difference IJethodQ ha.ve 

included work by Boore (1970) who has considered the prr.p9.sation of 

a Single compcment Love WU'l~ packet in a non-homogeneous materia.l. 

There have been Rl.\ylei;3h wave stUdies for semi-continuous waves 

on homogeneou;3 quarter sp.rlc3a by Alsop and Goodltan (1912). Both 

Lamb a.nd plate W.9.ves hav~ also been studied by this method. 

The la.rgost body of 11 terature on elastic waV3 propagatic1ll 
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using the finite difference methods is that due to the late 

Professor Alterman and her students an.d coviorkers in mathematical 

geophysics. working from the mid-19(:O's until her death ~n 1974. 

Professor Al temrul 's life and' \,'ork is to be cOillmemorated in a 

special volume edited by Bolt (1978, to &ppeur) which will include 

a bibliography of her YJork. Her group has a:;tudied a wide range of 

mainly body wave problems including wave~ on and in planes, in 

wedges, with propagating slots and also with both cylindrical and 

spherical geometries and co-ordinate systems. (Alterman & 
10 ewenthal 1972), It is from this work that the work by r.:unasinghe 

(1973, 1976) follows. The Alterman work is being continued 

directly in that by lIen and Loewenthal (1976),Ilan (1911 a (£ b) and 

Ilan (1978, to appear). 

The work by the Alterman group has been used in other 

geophysical groups including Stockl (1977) and Scherneck (1916). 

In the field of su~face acoustic wave devices there has been an 

extensive study by Munasinghe (1973) e.nd r~unasinghe and Fa.rnell 

(1913). which has oonsidered Rayleigh \'Jave propagation and this 

has been mentioned in the review in Section 2.4. This work by 

Munaeinehe (1973) has been extended to consider ~isotropic ~~d 

further layored media configurations. (Munasinghe 1976) There haD 

also been a recent study by Cuozzo et a1 (1977) who have modelled 

semicontinuous Rayleigh 'Ilaves on a rang'3 of fea.tures on homogenoous 
media. 

There is also wo~k using a series of finite difference 

computer programs ca.lled TOODY due to BarthIof hnd Benzley (1960). 

The TOODY programs have been used extensively to,etudy many types 

of systems e..nd although originally produced to model seismological 

configurntions the TOODY 11 progrrun has ~een used ~y Rose and 

Meyor (1975), in what appears to be the only published &pplication 

of the technique for ultrasonic wave pr·obIe!!ls. to test an 

enalytica1 result in a nondestructive testint; body wave field 

analysis study. 

The finite difference methods give tho full wave solution to 

wave scattering problems, including mod~ conversion, nnd they can 

be used with broadband pulces which hlne n BJlooth wave number 

spectr-llI!l. Th!) upper limit on the frequency which will propagate 

is ~et by the internodal ~pacing. III nodes per wavelen0th. 

The neces~ary boundary condltion3 can be handled and in one form. 



as used by Alterman and Loewenthal (i972),the formulation provides 

the displacements at each node, which can b~ used as data to Ulldergo 

data processing without further computation. 

Finite difference methods now cor.stitute an extensive group 

of methods and their advance has been helpod by the developments in 

large digital computers in both speed and core size. The advantages 

of these methods include, that they give th~ time development of the 

system, with the full wave solution including mode conversion; they 

have the ability to hand smooth pulses; they can be formulated 

to cover Neumann type boundary conditione and they are relatively 

ea.sy to turn into a computer proeram. Also from the view of the 

potential user they have the advantage of a Good history ot 

sucessful applications to hyperbolic problecs, £l.S is shown by the 

work of the Al termarl group. 

It is for these reasons that finite difference methoea have 

been selected and it is from the Alterman school of finite 

difference modelling that the methods uned in th3 preBeut study, 

which are described in section 4, h~ve be~n dev~loped. 
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4.1 

4.. Nti'MERI~J.t UODEL FOmWI,ATION. 

4.1 Introdu~ti0T!.!. 

Following the selection of finite difference e.ppro:ximatio!l '. 

as the ba.sis for. the method to mod~l th~ cOllfiguratiorls of 

interest in th~ prssent study, it is necessary now to consider and 

develop full finite difference formulations for the range of llodes 

which are required. The besic method can bs applied to give eevc:oal 

formulations which differ in detail end two classes of the~e are 

considered, with full sets (If equations bQing prt~t;entod. for th., 

nodes used in this utudy. 

The basic spatial coordinates and the finito difference 

computation star ar~ presented as Figuro 4.1a and b rospectively. 

The basic formulation used for the body of the mate:d.L'.l, the body 

node formulation, is considered in Section 4.2. Thin :la follr.wed 

by a consideration of the boundary condition fOl~ulat1ons iu 

Seotion 4.3 and the supporting appendices. It iD the bounda::-y 

condition formulations which set the limita to tho reeion of 

stability cnd also have the potential to reduce the accuracy tor 

.the whole SCheme. In the course of the present stUdy, two typeo 

of first order formulations and one second order for~ulation ~ara 

used for the bounda~y conditions in the computer programs end the 

details of these, together with their d~rivations are given in 
Appendices Et F and C. 

Following the presentation of the finite difference 

formulntions used,&ro the initial conditions which are given in 

Section 4.4. These ~nolude the f'onnulation of the Rayleigh wav'e 

pulse ~hich is used., 

The lRst part of this section, Cectlcn 4.5, prC8ont:s a. 
consid'~rCLtion of accuracy nn'i sce,bili ty. 
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x, Free surface 
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X1,X2 Spatial coord5.nates. 

T Tiroe coordinate. 

1,j spatial indices. 

k time index. 

d,h spatial increwent. 

s time increment. 
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Coordinate system for finite difference schemes; 

a. Basic spatial coordinates, b. Computat:lon star. 
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The basic finite difference formulation used for body nodes 

in this work has been presented by many authors including 

Al tcrmnn and Le e' ..... en th~l (1972). This basic body node formula Hon has 

been sucessfully applied to a r~ngo of wave propagation problems 

including that by thm8singhe (1973) which considers Rayleigh waves 

on half, quarter and three-quarter spaces, steps and layered wide 

slots and tha.t by Ilan llnd Locwenthal (1976)~hich has considered 

compressional wave pulses. The results from both of these st~dies 

are considered in Sections 6 and 9. 

The basic formulation for the body node is central to the 

finite difference scheme as it is this formulation which is used 

for the majority of nodes considered. It is also the body node 

formulation which sets the limits to increment step siz~ and this iD 

considered in Section 4.5. 

The form of finite difference approximation used is second 

order centred differences. An outline of the derivation ot the 

basic difference forms and the body node formul~tion, followins a 

method given by Muna.singhe (1973), is given as Appendix D. Also 

included in this appendix is en extencion of tha fonr;ulation to the 

case of a nonuniform grid, the spatial form of which has been used 

by llan (1917a, 1977b) 
The final form of the finite difference formulation using 

centred differences for the body node, with a uniform grid which 

has been used in the majority of the work reported in this thesis, 

is given ill Appendix D as equation D.S and here as; 

U(i,j ,k-1) = 2xU(i,j ,k) - U(i,j ,k-1) t s2 Fp(U) - - - -
where J[", [~:] the oomponents of the displacement veotor. 

Fp(U) is an explicit expression of constants and 

displacements the fonn of which was given by Al terman cmd 

4.2.1 

and which is given in Appendix D as equation D.9. 
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4 • .3 

;4.) Foundary ~or&it:ion for.nulations..!.. 

Tne finite difference formulations for the boundary nodes 

are of much greater importance than those for the bod.y node, as it 

is these which set the lim~ts to the accuracy and stability in any 

scheme. Th., whole subject of accuracy and stability is considered 

in Section 4.5, with in this section,the presentation of the 

various alte!'llo.tive finito difference formulations for boundary 

nodeg,together with their truncation errora. 

Two classes of boundary conditions have been considered in 

detail and one main set of formulations has been used from each 

class. The two classes of boundary node difference formulations 

are defined according to whether first or second order derivatives 

are subjected to difference approximation. 

In the first order formulations, which are produced to enable 

the application of the body node formulation to the bovndary nodo, 

s; line ot imaginary nodes or pseudo-nodes is introduced outside the 

surface or along an interface and displacements for these are 

calculated. Tae details of echemes using pseudo-nodes are given in 

Sections 4.3.1 snd 4 • .3.2 end Appendix Et which are developod from 

the boundary oond.itions given in Se.)tion 2 • .3. 

By contrast. the second order fonnula'tion for the boundary 

node is produoed by direct solution of the full set of equations of 

motion, subject to the boundary conditions, which results in a 

formulation which gives the time development of eisplacements at 

,the boundary node as it does not usepseudo-nodes or require 

subsequent applicatioll'of the body node formulation. The second 

order formulations ~re considered in Sections 4 • .3 • .3 and 4 • .3.4 

Md the supporting &pvendices, Appendices F and G. 

The approximation ill th'3 pseudo-node schemes has a trunca.tion 

error of the size of the spatial increment or increment squared, 

depending on the detail of the schome used to approximate the first 

order spatial derivatives. whereas in the second order scheme the 

truncation error is nonnally of the order of the size of the 

increment squared. In general a second order scheme should be more 

accurate and should make it pocsible to achieve the same or tetter 

stability than a first order scheme. 
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:1. 3.1 Plr:::tt qrder fCI"muJ ation~ for. free Et1rfac~ boundnry conni tln!2!.l!. 

Thes~ are finite difference formulations ~hich use pseudo­

nodes to satisfy the bound~ry conditions, p~d they are obtained by 

a procedur*, in which the fir'st order spatial derivatives in the 

boundary condltions, which are defined in Section 2.3 as specified 

components of the Cartesian stress tellsor, are converted to 

difference form and the displacements at a line of pseudo-nodes 

outside th~ free surface are obtained, this allowing the 

application of the normal body node formulation to give the time 

development at the boundary node. 

In the present study two sets of pseudo-node formulations 

wera considered. The first of these. known as a Centred Difference 

Formulation, as the name implies is based on the use of centred 

differences and was developed by Alterman and Karal (1968). This 

type of boundary node formulation has been used by a number of 

workers including Munasinghe (1973), who used it with Rayleigh 

waves, and Ilan and Loewenthal (1976)and Ilan (1978, :i.n press), 

who have tested it with compressional wave on th~ half and quarter 

spaces respectively. 

This type of formulation ia illustrated by the equation 

which is produced to enable application of the body node 

formulation at the horizontal froe surface. The formulation to 

give the displacements at the pseudo-node Ft shown in Figure 4.2, 

which is outside the free surface is given as; 

U1(i,;)-1 t k ) = Ut (i,j .. 1,k) f-{U2(it1,j,k) - U2(i-l,j,k)] 4.3.1 

U2(i,j-l,k) • U2(i,jTl,k) +[Ve2~c~ v.2]{U1(i+l,j'k) - U1(i-l,j,k1 

• 1'(1,j-1.k) 

A(itj,k) Free surface 
-/~/~.>-/-/:-/-.,-/ -/ ... ·:---/-~/~/r--;-/-7,..../ 

• 
Nodes for free surface pseudo-node formulations. 

l~IGURE 4.2 
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For the first order Centred Difference scheme the truncati.:>n 

error is of the order of the spatial increment squared. 

The second set of pseudo-node formulations, which are knovm. 

as One Sided Formulations, are due to Alterman and Rotenberg (1969), 

and these al'e obtain<'ld in a similar mannar to the method used to 

derive equation 4.).1, except that off-centred (one sided) differen~e 

forms are used and these have truncation errors of the order of the 

spatial increment. 

The one-sided formulation is illustrated by the equation for 

the displacements at the pseudo-node P shown in Figure 4.2 outside 

the horizontal free surface which is given as; 

In the present study in the majority of models which use a 

first order scheme 'for the boundary conditions, the Centred 

Difference scheme, as illustrated by equation 4.3.1 has been used. 

Following recent work by Ilnn (1978, in press) on stability of 

the quarter apace, the use of the One Sided formulation has been 

adopted in some models for the nodes adjacent to the 900 cornar~ 

This is considered further in Section 7 where the results ot the 

models are presented. In general the Centred Difference Bchr-mo 

has been found to be the first order scheme with the larger range 

of stability. The topics of both accuracy and stability ara 

considered in detail in Section 4.5. 

The full set of nodes for which first order formulations are 

given in this thesis are ohown in Figure 4.). The full finite 

difference formulations, with the new derivations by the author, 

are given as Appendix E. 
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Nodes for which first order difference formulations are given. 
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:1.3.2 First ordAr fonnula!}.ons fo!' interfa.ce bOl'ndary cl)ndlt:ionf3. 

The uee of pseudo-node formulations han been extended by 

Alterman and KS:'al (1968) to consider the interfa.ce between two 

media for use in. body wave problems. 'l'h1s type of scheme has been 

applied to Rayleigh waves on layered media by Munasinghe (1973). 
The boundary conditions for an interface between two solid 

media are that both stresses and displacements are continuouo end 

thes~ are given in Section 2.). 

The basic node arrangement used for the horizontal interface 

is eho~n in Figure 4.4. To evaluate the displacements at node C, 

the nodes A and B and At and Bt are given the same values and 

the pseudo-node C is given the parameters of the lower medi~ll. 

Nodes in i t i --j-2 
Medium 1. . 

L/ / (/ / / / / / / L / ( / L-I-
A. t c (i, j)1 B 

Pseudc-nodee' +- ~ ----
At I B' 

Nodes in 
MediUlIl 2. 

j-1 

j 

7777/ ~t7'7 ~ t " 7 /r7~7 """"""'7 /~7· 
--jt2 

1-1 i 1+1 

Nodes used for the pseudo-node fonnulation at en interface. 

FIGURE 1.4. 

The e~uation obtained from the boundary conditions which 

gives the displacements at node C, is given as; 

g(i,j,k) ~ ~(i,j+1,k) + ll1 [Q(i,jt2,k) - ~(itj-1,k)J 

+ tr{!i2[~(i-1,j-i,k) .,. U(i-1,j-2,k) - Q.(1+1,j-1,k) - Q(it1,j-2,k)] 

.,. JliJ[Q(if1,j~1,k) - ll(1-1,j+t,k)] t llJ[U(1-1,j~2,k) - g(i-1,j- .k~~ 

4.3.3 
where 

!il = [:1 :J 
- :1] !i) '" e :J (e V 2) H '" l:) g1 :: -2 FI 1 --

e4 (e Vf;2)2 

? 

g3 ;[eCVc
2 

- 2 v~2lJ 1 g - [v 2 - 2V 1 S2 <\"Vc'")1 4 - c ~ -- --- . -.....-.-.--....... 
(e Vc

2
)2 

2 'i 

(C VC )2 \r '" ,. c ~ 
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The introd'lction of a line of pseudo-nodes between the media 

in a layered problem has been extended to the free surface/interface 

node, for welded quarter sraces, shown as node P in FiguTe 4.5. 
However the further extenGion of this type of scheme beco~es 

increasingly cOI~plex and has not been considered by other workers. 

Any further txtension of,the scheme would involve complex node 

formulations and introduce additional lines of pseudo-nodes into 

the scheme. adding to the complexity of the resulting computer 

program. 

~----------------.-.----------------.----------------...------------.--~ Pseudo-nodes. 

Free surface 

Medium 1 Medium 2 

Interface 

-----------------------"--------------------____ 1 
Pseudo-node arrangement used for welded quarter spaces. 

FIGURE: 4.5. 

A finite difference scheme which considors interfaces wi.thout 

the use of pseudounodes would have considerable advanteges and 

such a scheme has been developed for some nodes by llan et a1 (1915). 
The scheme has been extended by the author and it is cor.sid~rcd in 

Section 4.).4 and Appendix G. 

The pseudo-node schemes, for free surface nodes, which a.re 

considered in Section 4.).1 have several inherent weaknesses. 

Thes(!I weaknesses are f:l:rstly, that they do not give the time 

development for the node in a single equation, but requiro the 

application of the body-node equation to the boundary nodes, 

following tho pseudo-node calculations. Secondly the pseudo-nods 

formulations are not as accurate as the body node formulation, and 

it is the bOt:.l1dary formulation which seta the limits to the 

accuracy and stability in a scheme. 

In an attempt to improve on the pseudo-node fOI~ulntion 

llan et al (19'15), mot1\r ated by the worlc of Lax and Wandoff (1960), 
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produced a second order free surface boundary condition formulation, 

known as a Composed Approximation. 

The Composed Approximation formulation ia illustrated by the 

expression for the horizontal component of displacement at a 

hOrizontal free surface, which is given as; 

2 2 

:'::~~;::::2a~(:~:):s~:: :':1~j;:~::j[)U~:~'~::~:~]U'(1,j'k) 
+ Vs2(S/h)2 hid [U2(i+1,j,k) - U2(i-1,j,k)] 

+ V. 2(s/d)2 rYe 2 ~ e ~Y/J [u, (i+l,j ,k) - u, (1-, ,j ,k) ] 

where parameters are as defined on Figure 4.1. 

A similar expression is obtained for the vertical component 

of displacement and the details of the derivationG of these 

equations are given in Appendix F. This scheme has a truncation 
• 
error of the order of the increment squared. 

It has been fou.."ld by Ilan and Loewenthal(1976) that the 

region of stability for the Composed Approximation is not as good 

as that achieved by the pseudo-node schemes, so it can only be 

used to model media with a low Poisson's ratio ( less than a'~ 0.27). 
The main weakness in the formulation is due to instability, 

resulting from a poor formulation for calculating the vertical 

component of displacement. 

In an attempt to overcome this limitation on the use of 

second ord.er formule.tions lIen and Loewenthal (1916) have 

produced an improved formulatiou for the vertical component of 

displacement on a horizontal free surface. 

In the present study, follovring the pr·ocedure used by 

lIen and Loewenthal (1916 ~, an oquation has been derived which is 

applicable to the horh~ontal free surface node. in the coordina to 

Dystem used in the present study, which is given 8S equation 4.3.5. 
The details of the derivation of this equation are given in 

Appendix F. In the present study the formulation used for the 

horizontal free surfsce was the components eiven as equations 

4.3.4 and 4.3.5. 
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,[ 22 2')] V2{i,j,k+1) : 2 1 - CS/h) Vc - (s/h) VeL U2(i,j,k) 

22) t 2{s/h) Vc U2(i,ji1 ,k) - U2(i,j,k-1 

+ Vs 2(s/h)2 [U2(i+l,j ,k) - 'U2(i-1 ,j ,k) ] 

~ !(s/h)2(Vc
2 

- Vs
2

) ~1{it1,j+1 ,k) - U1{i-1,jf1,k)] 

+ (s/h)2 [Vc2 
; )v.2J~1(1+1.j.k) - Ul(1-1.j.k~ 

The second order scheme has been ext~nded to cover the 

re.nge of nodes shown in Figure 4.6, and the details of the 

fonnulations and their derivations ar.e given in Appendix F. 

/ 
/ 

/ 
/ 
/ 
/ 

/---~­
/// 

Free surface nodes. 

/ 

. 2700 corners. 

/ 
/ 

77 
/ 
/ 
/' 

900 
co~er. 

Free surfaco nodes for which second order formulations are given 

The treatment of 900 camera in second order sche~es, for use 

with body waves, has been considered by Ilan (1978, to appear), B.nd 

thio work with the present limitations of second order schemes, a~ 

found in the pr9sent study. is considered further in SectioliFl 7 &. 9. 



4.3.4 Seco'!":.:LQl:.d ... t!:.Jormulations fo'!'" ir1..teriece boundary condHJ.on~,-

The application of a ps!)udo-node scheme to multi-media 

problems presents practical difficulties, with the need to 

introduce a lino ot pseudo-nodes, and the rangs of nodes 

considered by other workers using this method ia limited, as VIas 

shown in S€cticn 4.3.2. 

A lilliited sat of second order interface nodal fonnulations 

have been developed by lIen et al (1975) and extended by the 

author in the present study. 

~le second order interface formulations are illustrated by 

consideration of that for the horizontal interface, which is 

due to Ilnn et al (1975). The equation for the vertical component 

of displacement at the horizontal interface, in the notation 

and coordinate system used in the present study. is given as; 

Where 

W is an expressio!l" the form of which was modified from that 

used by Ilan et al (1975) following the use of the original 

form by the author and sub::Jequent discussions with Ilnn ( 1977, 
private communication), the n~w fon-a for which is presented in 
Appendix G. 

The second OI'Qer scheme WilS extc;zlded by Ilan et e.l (1975) 

to considlOtr a qua.rter space ~ct in a three quarter space a.nd 

by the author to consider th3 frue Durface/interface nod.e for 

welded quartsr spaces. 
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The new :Lol'mulatlon for the Yielded quarter spaces free 

surface/1.nt~rface node ie; illustrated by the formulation ful" the 

horizontal component of diHplacement, which is given as; 

'A'hore G
1 

and G
2 

are fU.notions, the fom of which is given in 

Appendix G. 

The range of nodes which now have second order f'ol'lnul,"}.tiona 

is ehOYffi in Figure 4.7, and the derivations are prcse:lted in 

Appendix G. 

Horizontal interface. 

Free surface/inte~face. 

Ve:dlci~ll 

inttil':C" tQ:;; t.? 

Quarter spaces set in three quartl~r 
apac<:.lS. -------------,-------" _. __ ._--_._'----... 

Interface nodes for which occcnd ord'3:t' fOl"l7nll1\ tj on3 are gi vcn. 

.. .1 

The forruulati.ons pre~el1ted in this !l~ctjon, to(~ethor v.ith 

thoso in Sections 4.).1 a.nd 4.3.), awl th~ r~'..l.pportingappe:nc1:lc0s, 

are used'in the comput~r programs d08C!~bed in Section 6, ¥hich 

pl'oduce Ul~ results L~iven in Seotj,o~ 7. 
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hLIni tiel Condi tionR. 

To produce a full model of Ra.yle:.i.gh wave propa.gation e.nd 

scattering based on the finite differ~nce form3 presented in 

Sections 4.2 and 4.3 ihera ar~ some additional basic requirements, 

including the baBic material data, the spec!t'ication of internal 

artificlal boundaries and the specification of the basic pulse at 

two initial time levels. 

The requirements for the basic material data are that 

enough data should be given to enable the calculation of a 

consistent set of parameters, euch as elastic moduli •• ln the 

present study the material data which is required is the shear 

wave velocity. 'the compressional wave velocity and the density. 

All other necessary parameters are calculated uaing relationnhips 

based on those given in Section 2.3. 
Calculations are also performed hl accordance with the 

atability and accuracy limits, as Bat out in Section 4.5, to 

give the size of increments in both tims and spatial domains. 

Irrespective of the size of computer available it is not 

possible to model a semi-infinite medium, so art1f:2.c·ial internal 

boundurics must be set at some distance from the regIon of ~pecial 

interest in the calculations. These bOlmdaries can be considered 

in one of two ways, either by producing an absorbing nodal 

formulation, as Is done in the finite element mc·del by Lysmer and 

Drake (1972), or by keeping a larger iteration space«Alterman & 
Lowenthal 1972) and specifying that the internal boundaries have 

zero displacement, a.s is done by J\luna,sillghe (1973). The second 

procedure is used. in this study, and the (;ca ttoreod waves 

reflected by these artificial boundaries were found only to ba 

significent if a small iteration space is used, the size of 

which is specified in Section 4.5, or if the model parfol,ns a 

large enough number of iterations to enable mult:1.ple reflectior.s 

to buIid up. 

Th\3 practical Hmi ts for gr'id size, accuracy and stability, 

as established in the present study are presented in Section 6.). 

The final requirement iA the specification of the initial 

displacemento at all nodes and it is this which determines the t 

type and extent of the wave which will prOplleate. 

'fl13 1n1 tial dle:turba:').oes on the grid, in the region where 
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the pulse is srecified, are calculated at two time levels, t : 0 

and t = s, where s ·is the time increment which is detennined from 
stability criteria. 

The present atudy requires that a pulse of Rayleigh waves, 

of limited ~patial extent, be specified, which has a similar form 

to that observed for pub,cs used in nondestructive testine. Por 

this study a. fom of' pulse is used that was specified by 

Rioker (194~), and this has been used in a finite difference 

model of Love ·waves by Boore (1970) and a model of Rayleigh waves 

by llnnasinghe (1973). A comparison between rea.l experimental 

Rayleigh waves, and the numerical pulse, both on half-spaces, 

is shown in Figure 4.8. The details of how the experimental 

measurement was made are given in Section 8. 

The use ot the wave number form, or spectrum, as the fc:~ 

of the input pulse was selected as it ia thio form of displa.y 

Which is con8ic!~rad by Morgan (1973) in his experiments usinc; 

ultrasonic spectroscopy. Tho use of the spectrum also provides 

the opportunity to produce B; Rayleigh wave pulse in the 

numerical model based on the spectra of real signals. 

~----------------------------------------------1)),sec. a. 
.-=~------------~.~ 

I-=:::::::.--L--l----J---~t~ 
time 

b. , 
--- - real. 

- numerical. 

, , 
" " , 

"- .... ... 

r------------,----_______ __ 
1 2 

Normn.lised wa.ve number. 

... .. 

Compllricon b~twoen r<?p..l l'-.nd. nmnerics.l Ray1eie.h wave pul~efJ en 
a.lmniniurn (0"" :70.34) h~lf-spaces; a. Tirr~e domain signals, b .. Sp\Jc t~a. 

FIGiJP.E 4.8. --------...----
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The form of Rayleigh W[I,':C pulee u:::od in the presont stt:.dy 

1'8 that giV'en in analytical form by Hicker (1945). One of the 

important features of this pulse. in addition to the similarity 

it has to lea] Rayleigh wave pulses, as shown in Fj.gur~ 4.8, is 

that it is not too extensive in either the real space or the 

wavenumber space. The mai!l features of the Ricker pulse, 

including its synthesis, are given in this section with an 

extended discussion, includinS the presentation of further 

information on the basic Raylei.gh wave equations and both tho 

analytical s.nd incremental forms of the Ricker pulse, as given by 

Munasinghe (1973), set out as Appendix H. 
The ·equation for the vertical component of displacement on 

a horizontal free surface for the pulse is given as; 

R2(X1 ,0,0): -~[~r -: }xp 
[1 -l¥l rJ 

The corresponding wav9flumber amplitude is given as; 

"There K is the wave number, 

K o 

Ko is the primary wave number corresponding to the centre 

wavelength (~). 

The primary wav'o number in terms of wavelength is given. na; 

211' = -'f;, o 

In the production of th9 basic pulse for use in the 

numerical model, tbe ini tip.l disturbanceo for each depth and time 

level are obtained by perfcnaing the series of operations shown 

in Figure 4.9. 

The procec'!uro f"or obtain.ing- the basic pulse starts frcm the 

digi tised form of the pulse arnpli tuue spectrum. (which is (;i ..... en e.s 

equation H.2.1 :I.n Appendix H.) In the present study, in the W8.ve­

number dO'1J.a:ln, a base set of 512 (i.e. 29 ) nodes has b€',en used, 

(this is the range of the J components in equation H.2.1). 1'he 

perarnatcr o! thet number of nodN~ per wa.veleneth is se t for ~J8.(~h 
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1. Calculatlon A 
of S(K) spectum. ~ 

Truncation 
at N/2. 

2. Reorder data 
for operation 
of P.F. T. 

~,LJ~: . 
1 N/2+1 N 

3. Operation of Fast Fourier Transform (F.F.T) 

4. Data as 

l 
output from 
P'.F.T. 

~ 

5. Dtsplacements 
reordered and 
truncated to fj.t A 
space where pul~e 

, 

J:: 
N 

...... 

J 

is to proP8eat·L,-",~__~ -_--y-I----...---
411
.-

1_~ .... J<------.......... N' (whero Nt ia 
1---- ---N (about three 

(pulse wave­
(lengths. 

Basic operations for the 9j~thesis of the displ~cementn for 

one component, for one row of nodes, at one time level, for 

a Ricker .. type pulse of }!ayleigh waves. 
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pulse eynthes.i.s and it is this parameter which determines the 

number of nodes In the amplitude spectrum which have significant 

a:r.pli tudcs. Tho criteria by which the nwnbcr of nodes per 

waveleneth is Bot is considered in Section 4.5 in connection 

with considerations of accuracy and stability. In the present 

study calculations have been perfol~ed mainly at 16, 32 and 35 
nodes per wavelength. The effect of different values for the 

nwober of nodes per wavelength ia considered with the results of 

the computer progrems in Section 7. 

The transfolwation of the pulse data from the wavenu~ber 

to the spatial domain is performed by the application of a 

single-sided fast Fourier tra.nsform, which folds about the node 

(N/2 +- 1) and requires the data length to be halved and the 

spectral information to be reordered. 

The fast Fourier transfonn is then applied B.nd folloVline 

this operation the pulse data, which is now displacements in tha 
spatial domain, is reordered and truncated to fit into a 

realistic computation space. 

The series of operations shown in Figure 4.9 are r-epeated 

at the depth below the surfa.ce of each row of nodc!), set by th0 

nurnu~r of nodes per wavelength in the caoe of n unifonn grid, 

for the second component of displacement. The whole procedure 

is repeated to give the displacements at the second initial time 

level, except that in the case of calculations at times other 

tha.n t 'IS O,a complex spectral component is introduced which 

requires the same basic data reordering and cOlDbines with the 

principal spectI'um in the fast Fourier tl'ansform. 

The procedure outlined above was performed for each of 

the two time levels, t 'IS 0 and t - s, usinB polystyrene ( a-~O.24) 

data and 35 nodes per wavelength, the resulting spectra are 

shown in Fieure 4.10. 

The set of components of surface displacements corresponding 

to the spectra &ho~n in Pigure 4.10, at t = 0 with part of tho 

set of horizontal displncoments at t ; s are shown in Figure 4.11. 

Also shown in Fi.gut'es 4.11 :1.'3 part of the set of components for 

the vertical sur-fa.ce displacf.lment on alulllinUDl ( cr.\liO.J4) at t • o. 

The dlsplacemonts at the pointg of maximum Sllt'filce 

displace~oent were calculated with alUlllil1um data e.nd i:r
i
.creasin7 

"" dep'i;h 6.nd 1'10 tteu with the curve given by the r..nalyUc expra:3sion 
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___ ~~=;:: __________ ~~ ________ ~~t~~ ______ --__ -,~ ___________ ~-,-__ h-~ __ -

a., 
1.0 

At t • 0 
.5 

t • s --- --

Ricker pulse spectl'll showing ncrmn.lised amplitude (A) against 
norrral:1.sed wave m;.mbcr (K t), calculated w1 th polystyrene d.ata. at 35 
nodes par w~velength; showiug.the rqal (a) and complex (b) components 
for the vertical COlilr~nent, and the real (0) end complex (d) 
components for the horizontal component. 

FIGlmE 1:.'O~. 
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Horizontal component. 

Vertical component. 

, 
i 
I 
I 
i 

• I , , , 

Amplitude. 

.5 

At T ::: 0; 

~ 'D o. 24 

4.4.1 

~ :0.34 ---- ... 

At T • 8; 

0""= 0. 24 - - -

l 

Surface dlsplacemel1ts for a Ricker type pul:::o, at 35 nodes per wave-
19neth; horizontal component of displacem~nt calculated at t = 0 and 
t = s using polystyrene (~= 0.24) data, and vertical component of 
displacement calculated at t : 0 using polystyrene (0""":0.24) and 
alumin.ul!l (0- = 0.34) data. 

. FIGURE <1..11 • .... _.---
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for the corresponding h.'lrmonic Rayleigh WaVO as 'FiGure 4.12. 

With only a limited node space avail~ble in which to model 

the propagation, interaction and scatterin3 of the Rayl~igh wave 

pulee, due to the limits in the size of computer core, the basic 

arrays used to set up the pulse must truncate that givell1 by the 

analytical form which is infinite in extent. It has been found 

that depending on how the pulse truncations, in both the wave­

number and spatial domains,are performed tbl3re are changos in 

pulse shape which affect the accuracy with which the pulse will 

propagate using a particular finite difference formulation fer 

the boundary conditions, at a particular number of nodes per 

wavelength. 

The values of the surface displacoments were measured at 

different numbers of nodes per wavelength, at different 

distances from the pulso centre, on different media and the 

results are shown in Table 3. 

Material. 
Nodes per Distance from pulso 
wavelength. centre (in wavelen3ths) -

1.0 1.25 
1---

Polystyrene 32 5.0 0.4 

Polystyrene 16 0.15 -
Aluminum 35 0.1 .. 
Aluminum 32 0.2 .. 
Aluminum 16 0.27 .. 

A 

Pulse surface displacement amplitudes, at distances 
from the centre of a Ricker pulse, as a percentace of 
max1mun displacem~nt. 

TA BU~ J •. 

The values of the displacementa, measured at the points of . 
maximum surface displacement wert) measured at a series of depths, 

for a pulse calculated with aluminium data at 35 nodes per 

wI.welol'lgth cnd the rcsultu ar~ shown in Table 4. 

The effects of' different numuors of nodes per waveleneth 

E.nd dhnension!'; for the ba.8il~ pulE'€' of Rayleigh waveS are 

considered, with the results ef the computer models, in Section 7. 
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The decay with depth of the d1splacements of a Ricker type pulse, 
at 35 nodes per wavelength (solid line) and the corresp~~ding 
harmonic Rayleigh W3.ve for the pulr.;e centre wavelength (dashed 
line), at the points of maximum surface displacement, calculated 
with al~~inQ~ ~ata. 
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---
3.5J Depth (in wavelengths) 

1.0 1.5 2.0 2.5 3.0 
Pulse 
displacement 29. 15. 7. 4.3 2.5 1.7 
l'W"llplitudes. 

Pulse displacements as a percentage of ~~ximum displacem~nt, 
measured at points below. that of maximum surfac.}e displacement, 
for a serjes of depths a.nd calculated with aluminium data at 35 
nodes per wavelength. 

TABU;: 4. 

It has been found that pulse length is the moro important 

dimension when scattering by shallow features, with dimensions up 

to the order of a quarter wavelength, is considered a~d that the 

pulse can be truncated at about two wavelengths depth. However 

with larger features a pulse depth of about threa·wavelen~ths 1~ 

required. 

For scattering of Rayleigh wave pulses by moat features 

pulso truncation levels of 1.0 % of the maximum surfaco 

displacement were chosen and found to give solutions of acceptable 

accuracy. This level of truncation inyolv6s the lJ.se of an. input 

pulse with dimensions of about three wavelengtho wide and three 

wavelengths deep, which are similar values to those used by 

Munas1nghe (1973). The full input pulse is shown, using numerical 

visualisation, as Figure 4.13. 

-~~ t- -.... -l- f- '" p'JI~ - r 
f- r~K~ i?'1"'" t-

- r'~~t;..- .- - -
1- r:..r=-~ v I-

~ r- I-f::. -
<~b._ t - t::. 1-_ I:::-

~-~ .., ..... --- - f- -
-

- - -_. 
, 

'--

'Iha R1cker type pulse, calculated at t : S t where s is time 
j nCr(~ilHmt, wi thaltuniniuln data at 32 nodel) per wavelength. 

FIGURr; /~. 13. --
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In addition to the effects of pulse spatial dimensions,a 

parameter which has been found to be of considera.ble importance, 

is the number of nodes per wavelength. It was found by 

Munasinghe (1913) that valu~s 'of about 35 nodas per wavelength 

were required for the pulse to propagate w:ith.out distortion, 

which is higher than might be expected f~om n preliminary 

treatment and in this study values betw~en 1& and 35 were used 

for this parameter. The number of nodes per wavelength and their 

effect in the computer models are considered in Sections 4.5 

and 7 respectively. 

4.5 Accuracy and Btability~ 

The consideration of accuracy and stability-is fundamental 

in the development of any finite difference scheme and it is 

these considerations which often impose limitaticns on the 

range of configurations and matorials which can be mod.elled, 

using a particular numerical scheme. 

A finite difference scheme is said to be stable if the 

difference between the analytica.l a.nd numeric~.l soluttons of 

the difference equations,reoains bounded as time development 

proceeds, with fixed time step and grid dimensions. 

For any numerical scheme there are a range of material 

and model parameters, outside which the scheme is subject to 

inaccuracy and instability, which is usually shown by 

uncontrolled growth tn the calculated variables. The Eiim of 

accuracy and stability analysis is firstly .to set the bounds 

~ithin which a scheme can be said to be stFlble and secondly, 

to provide a measure of the accuracy of a particular solution. 

In general the parameters which affect these conditions 

are the aqua tions of moti.on t the boundary condi ti ons, the 

finite difference formulations, the initial conditions and 

tho material parameters. 

The baslc equ8.tions of mot.ion and the bouno.ary cClndi tions 

together with the initial conditions are often part of the 

ba8ic fOI~ulation of the syotem under study and set 

constraints within which the system must be solved. 

For a numerical scheme the full analysis of the effects 

of all parameters which influence the oolution of a scheme 
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is fiOt possible for the Gcheme as a ~hole, but the measurement 

of the effects of various components cen be made. The 

accuracy and stability of a given scheme B.re closely linked 

and each of these is now considered with reference to a sch~ilie 

based on the finite difference formulntions developed in 

Sections 4.2 and 4.3. and the supporting appendices, and the 

initial conditions set out in Section 4.4 

4.5.1 Accuracy. 

For any numerical scheme, which remains stable within 

the definition given in Section 4.5, it is r.ecessary to 

produce results Vii th a known accuracy that is as close as 

possible to any known analytical results. This section considers 

some of the basic truncation errors t 8.nd limits, to the 

parameter nodes per wavelength which affect the accuracy of the 

finite difference schemes. 

The ultimate limit to aoouracy is set by the number of 

digits used in the computer calculationA. This 1s the level 

at which the computer truncates numbers and in the preSel'lt 

study twelve significan't figures are ueed. The resulting 

truncation errors are negligible when compared with other 

errors in the scheme. 

The finite differenoe formulation truncation errors, 

which depend on th~ detailed approximations used, are of 

considerably more importanco and make up one of the major errors 

in a scheme. The size of the truncation error, which consists of 

the sum of the disregarded terma in the series used in the 

deriva.tion of the formulation. the largest of which is of the 

order of either the size of the incroment or the increment 

squared that has a maximum value of about 0.1 % of the prevf.:>us 

term. 

A further limit is set by the accuracy with which the 

material parameters and other con~i;ants are eiven. or ce.n be 

calculated, and this is to about 0.1 % of the par~meter value, 

for material data. 

As previously menti.oned in ~oction 4.4.1, the parameter, 

the nvmber of nodes p~r wavelength, hs~ ~ considerable effect 

on tha performance of a numel'icf'.l SclH;ttO. Th~ nlJ."Ilber of llodE:'s 

" 
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4. ~. 1 

Per wavelength (~) defines the grid internodal spacing as; 

dx - ~/N - 0 4.5.1 

where N is the munber of nodes per wayel~:n[Sth. 

The internodal spacing sets the high-frequency cut off and 

the minimum wavelength that will propagate as; 

2~x = i'm 
where 1'. is the minimum wavelength. 

m 

The condition, given as equation 4.5.2, has a corresponding 

equation which gives the cut off in the wavenumber spectrum, 

which is given as; 

where K is the wavenumber cut off. 
m 

It has been found experimentally by Alford et al (1974) 
that for a second order fonnulation, as used for the body nodes in 

this study, a minimum of ten nodes per wavelength is 

required at the upper half power point. From the power curve for 

the Ricker type pulse, as used in this study, shown as Figure 4.14, 
it is found that the upper half power point is at about 1.5 K/K 

o 
(where K is wave number and Ko is the wavenumber at the pulse 

centre frequency) which gives a v~lue of about 15 nodes per 

wavelength, at thG centre frequency, for ten nodes per wavelength 

at the upper half power point. The value of 15 nodes for nodes 

per wavelength at the centra frequency, is about half the value 

found necessary by both Boo~c (1910) and Munasingho (1973) to 

give nondispersive propagation. This apparent contradicticn Vias 

inveotigated. 

In the study by t:unasinghe (19<(3) he defines a useful 

range of normalised wavem.1.mbers as from O. 5 K/K to 2. K/K t o 0 
in which measurements could be made to an accura,cy of 2~, and 

a cri tical rango, defined as from 2. K/K to:;'. K/K , in v/hich 
o 0 

the pulse will suffer severe distortion as the number of 

nodes per wav~length. defined at the centre frequency, io reduced. 

A mf~e.sure of tl~e errOl' in the dibi tiscd pulse spectrum is 

given by the relationship for.'the fractional error, -Nhich 
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Power. 

1 • 

• 5 - - - -- --- -

1 2 K/K o 

The power spectrum of the Ricker type pulse, calculated with 
aluminium data at 35 nodes per ~avelength, showing the upper 
half power point (p ) 

u 

m,urm .i.11. 
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compares the exact torm witb second ol'der derivatives and is 

given by Eunasinghe (1973) as; 

E(K)=.= (21rK \~ /, 2 

N .KJ / ' 

when K,Ax is a.ssumed to be less than ona B.l.Ld only the first 

order error is considered. 

Using the relation, given as equa.tion 4.5.4, to give values 

for a ranee of N values at several values for K/K 
0 

the results 

shown in Table 5 were obtained. 

Values for K/K • 
N 0.5 1 2 0 3 

40 0.05 0.20 0.82 1.8 

30 0.09 0.36 0.84 3.2 

20 0.20 0.82 3.3 7.4 

15 0.30 1.4 5.8 15.0 

Fractional error, ao a percentage, in a Hickar pulse spectrum. 

1ABLE 5. 

It is seen from the results shown in Tcble 5 and the 'ifork by 

Munasinghe (1973), that if the spectrum 1s to be used to mea$ure 

pulse shape with propagation,a restriction of about )0 noues per 

wavelength must be impo~ed. Howeve~ in the p~esent study it h&3 

be~n fOtUld that, when ucinC the same boundary condition 

fOl"tIIulation as JJunasinghe (1913), it is poosible to lY!ea!.Pll'C pulse 

a~p1itudes to better than 5 % down to values of 16 nodca par 

wavelength. 

In the studies by Boore (1970, 1972), where the Ricker . 

pulse was applied to Love waves t spect:'al analysis was used down. 

to values of 20 nodes per. wavelength, with the majority of the 

measurements be~ng made at 34 nodes per wavelength. 

The effccta of dispersion on phase and group velocities 

were investigated by toore (1970) and these were found to become 

important only when 10 or less nodes per wavelen~th were used. 

The errors rt'8ul ting "from tho U:30 of 0. r.mJ.ll number (less tha.n 15) 

of nodes per wavelength to define a wave were al!!5o considered ~nd 
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Boore found that to obtain a 95 % accuracy at least 7 nodes per 

wavelength are required. 

4.5.2 Stability. 

Having c·onsldered the basic accuracy .of the various 

components of the finite difference scheme and the parameter of 

the number of nodes per wavelength, attention now turns to tryins 

to provide a measure of the· conditions which will give stability 

in relation to increment size and ranges of parc;>.mcter values. 

A practical limit that must always be observed is that 

information must be able to propagate across the grid faster than 

the highest wave velocity, i.e. in this study the compressional 

wave velocity, and this sets a bound for the schema. 

The ate.bili ty of the scheme is not however guaranteed by 

the above bound. For an infinite domain, with only body nodes, by 

the application of harmonic stability analysis to the body node 

finite difference formulatioIl1Alterma.n and Loewenthal (1970) hUIf!) 

shown that the von NeumruL~ criterion yields a sta.bility condition 

which links the spatial increment for a uniform grid (h) to tha 

size of the time step (13). This condition, the von Neumann limit, 

can be written as; 

1 

t 

The ntunber of nod.ec per wavelength which gives thIJ value 

for h is set by the fr~quency content of the pulse Eubject to the 

conditions given in Section 4.5.1. 

The inoquality, equation 4.5.5, provides an accurate bound 

outside which the whcle scheme has a tendancy to go unstable. and 

if this occurs it is ter:ncd gross instability. Using tho inequality 

to sat th~ limit to the slh ratio, in this study and that by Ilnn 

and Loewenthal(1976), values of 90 % of the limit value have been 

used, it is found that it is the 'boundary condition fon;:,ulation 

which sets the limits within these limits for Which the scheme will 

give SCCUl'ate results. 

Of particular importance is th~ effect of the corner 

approximations on the stability of the ncheme, and the instability 
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that grows from a poor boundary condition fonnulation is known 

as local instability. Such instability may be reduced or removed 

by reformulation of the finite difference approximations used 

for a particular boundary node, end this hss recently been 

considered for the 900 corner by llan (1978, in press), but 

it is never possible to produce a scheme for a boundary node 

that has a lareer range of stability than given by the von Neumarul 

limit for a body node. 

The practical test for stability and accuracy of a ocheme 

of difference forms for differential equations io provided by 

Lax's equivalence theorem which states 'that given a properly 

posed initial-value problem and a finite difference approxim~tion 

to it that satisfies the consistency condition, stability is the 

necessary and sufficent condition for convereence, (P~chtmyer & 
Morton 1967) in that a reduction of grid increment should causo 

the result for a otable scheme to converee to the correct result. 

The procedure of reducing grid increments cau become 

impractical for a large scheme as the number of nodes required 

to cover a given spatial area may use a Breatly increased 

quanti ty of core and hence use much lone;er computer run timeSol. 

In seeking to measure the range of stability for a particular 

finite difference scheme. before computer runs are performed. 

Ilan and Loewentha:l (1976) have developed a system known as local 

matrix analysis. 

The bas:1.c idea of .fini te differenc.e theory is to replace a 

differential problem by a set of linear algebraic equations. There 

is an operator which performs the solution of such a set of 

equations from one time step to another which can be represented in 

a matrix form. This matrix is the propae~tion matrix which must 

include the information as to whether the ncheme is stable or not; 

however for the usual grid in a finite difference problem this 

matrix has huge dimensions and the analysis is therefore difficult 

if not practically impossible. The procedure of local matrix 

analysis considers a typical small grid to include such nodes of 

interest as the surface nodes. and this has been found to oive 
<;;) 

accurate information about ctabili ty wllich can be applie,i to the 

whole scheme. (I1a.''1 &I;o€w6nthal 1976, Ilan 1978. in press) 

Also using the propaga t~on matrix, Ilan and Locwel1thal '( 1976) 

have found that by investiGation of the matrix eigenvalu8s for 
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a range of elastic parameters, principally the ratio V /V , plots 
s c 

known as Gershgorin's circlos can be obtained. The centres of the 

circles are the diagonal elements of the eigenvalue matrix and the 

radii are the sums of the absolute valu2s of the off-diRGonal 

elements, (Richtmyer and Morton 1967, p76), and it is found that 

if the circles reduce in radius as V Iv re1~ces.this indicates 
s c 

atability, but when the radius of the ciroles increases with 

reduced V /V values, this indicates the source of potential 
s c 

instability in a scheme. 

Using Gershgorin's circles Ilan and ~ewenthal (197~) were 

able to identify the source of instability in the composed 

formulation for the free surface node, as being in the vertical 

component formulation. 

An alternative to considering explicit finite difference 

schemes that have been used in the present study, and those by 

Munasinghe (1973) and Ilan et al (1975), is to use an explicit 

scheme, the stability for which can ba Guaranteed unconditior.ally 

(Richtmeyer &. Morton 1967),·and which also allow the use of larGe 

time increments. However large time incrementa decreas~ hccuracy 

and an implicit type of formulation results in the need to (lOl\re 

a system of coupled equations which describe all grid points. The 

solution of such a system of equations involves the invers:l.on of 

a larGe,albeit sparse, matrix, which would limit the size of 

it~ration space to about 100 by 100 nodes, which is smaller than 

the potential grid size possible usinS an explicit schem~ which 

is limited only by the limits on computer program run time and 

computer core and store available. 

A summary of the linked set of para~eters for the finite 

difference schemes used in this study are set out in Table 6. 

Pulse centre wavelength. ,.},'" metre. 
o 

Material parameters, e kg/1ll3 
wave velocities and density. Vs' Vc m/scc. 
Nodes per wavelength. li, minimum of 16 

s/h, eq_n. 4.5.5 J 
Percentage limit used. 90 % _ •• 4 ____ ..,... _______________ _ 

von Hewnann 1imi t. 

Basic parameter set for fj.nite difference cchelT.Gs. 
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i. 5 • ~ The r~'l}J':e of o~ 1 i t;y. 

Various semi-empirica.l methods have bt3€:il used in previous 

studies to defi~e regions ~f stability and recently new methods 

have been under development by llan and Loewenthal (1976) and 

Ilnn (1978, in press) to make the procedure more empirical. 

However at the present time it io only possible to establish a sct 

of basic euid~ljnes based on previous studies, which can be 

improved with experience in the operation of a model for a 

particular type of wave propaeation system. 

Usine four sets of boundary concli tion formulations, e.s 

oonsidered in Section 4.3, 11an cnd Loewenthal (1976) and 

Ilan (1978, in press), have determined bounds for these forcr.ulatiom~ 

when used in the half and quarter space configurati{ms rospec·tively 

using their body wave source. ~leir results are set out in 

Table 7. 
-

Finite difference Lower limit to range of Gtability, 
approximation. value for V IV ratio. s c - -, .... 

Half-space. Quarter space 

Centred. 0.3 0.3 

One-sid.ed. 0.35 0.35 

Compos6d. 0.57 0.575 

New composed. 0.28 0.00 

The range of stability for half and quarter spaces using body 
wave~ with a range of boundary condition fOlmulations. 

However Alterman a.nd Rotenberg (1969) cnd Ottavill~i (1971) 
ha.ve obtained the largest r'ange of stability in their studies 

with first order formulations for the boundary conditions using 

off-centred (one-sided) dlff&rence schemes. This is explained by 

considering the truncation error of the approximations in the 

frequency domain where it is found th3t the error of the one-sided 
2 approximntio:t1 is of the order of f (where f is frequency). while 

in the CRnes of tho oentred 8nd composed schemes it is found to to 

of the or·Jar of f3. Thl0 expla.na.tion was proposed and tested by 

Ilan and loewenth~l (1976) using different source functions, with 
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different orders of smoothing, and as expected the apparent 

contradiction in the Alterman and Rctenberg (1969) and the 

Ottaviarni (1971 ) results, was found to be due to the 60l:rce 

function used; in that for a low frequency source the expected 

order of the Bchemes is restored. 

A graph of the V Iv ratio against roi~6on's ratio, s c 
obtained from equation 2.3.18, is given as Figure 4.14. 

• 2 

---Limits of stability for half­
space boundary formulations. 
(given in Tnble 7) 

One-sided. 

Centred. --- ----- ... -- New composed • 

1 •. 2. o 

Graph to show the ratio V Iv against Poisson's ratio, with the 
s c 

limits of stability for numerical schemes on half-spaces. 

FI G~mB 1 w..2.t.. 

Some of the media used in the present study are listed as 

Table 8, with their V Iv ratio and Poieson's ratio values. 
s c -

!Jaterial. I V Iv ratio. Poisson's ratio. s c 
_1 -

Polystyrene. 0.50 0.24 
Steel (mild). 0.54 0.29 

Aluminlum. 0.48 0.34 
8 -------

List of media, with value'3 of the V Iv ratio and l'oisson's ratio. 
B C 

TABT,F. _~!_ 
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By comparlRon between Tables 7 and 8 it is seen that the 

composed ap-prcucirnation can be expected to be unstable for ID3.ny 

common media. This i8 found to be the case with the computer 

models produced in the present study, so the new compos:d 

formulation v.as used. 

It is seen from Figure 4.15 that as the value of Poisson's 

ratio approaches 0.5 the slope of the cur-ve increases and it i(: found 

that for Po18~cn I s ratio values over about cl. 375 the results 

become increasingly inaccurate, with the introduction of a period 

of oscillation in the region behind the pulses so lengthenillg 

the pulses. This effect has also been observed in body wave studies 

by Ilan (1978, in press). Problems are a.lso found in the propae;ution 

of pulses in media with low shear velocities, which are media 

having high Poisson's ratios. 

It has also been found by Ilan and Loewenthal (1976) and 

I1an (1978, in press), when using body wave sources, that there is 

a delay in the arrival of secondary PUlSfS, when pseudo-node or 

the composed approximations are used and in both schemes the 

delay occurs to a larger degree in the vertical component, 

il1.Creasin,3 as the V Iv ratio is reduced. These findings with a c 
body wave have also been observed in the Rayleigh wave scatterillg 

considered in the present stud.y and they are considered furthlilr in 

Sections 7 and 9. 

A further cOloplication is that,althoueh llan and LO'lfenth3.1 

(1976) have found, as shown in Table 7, that with their form of 

bod~ wave source function there is a limited regivn of 

stability for each ochome, Munacinghe (1973), using a nicker type 

pulse and the centre'} dlfference form for the bou11dary 

formulation, has boet! able to achieve stability just outside the 

region defined in Table 7. 

At present it thcL'ofvre appears that there is no absolute 

teat Which can be applip.d to select boundary condition formulations 

which will give the best perform&nce, that is independent of bcth 

material parameters and the pulse to bo used in the study. 

A set of practical bounds1-hich have been established in the 

course of the present etud~are presented in Section 6, ruld the 

results obtained with the computer programs are presented in 

SElction 7. 
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5.1 

5. rl8THODS FOR ANALYSING SYSTr;;.~S. 

5.1 Introrluction. 

The primary aim of the present study ls the characterioaUon 

of surface features using Rayleigh waves and to help in achieving 

this aim the series of computer models which are considered in 

Sections 6 and 7 have been developed, using the finite difference 

schemes set out in Section 4. 

This section considers the different methods which are used 

to present information about systems in which a Rayleigh wave 

pulse propagates and interacts with some Gurface feature, prcducin~ 

a nwr.ber of scattered waves. '1'11ese are basically transmitted and 

reflected Rayleigh waves and some pulses of mode converted waves 

in the body of the medium. All features of the prvpagation, 

interaction and the resulting scattered pulses are of interest 

and the methods used to study the system are required to give 

information, which,if possiblo,can be teated by measurements on 

real test pieces. 

The four gl'uUPS: of 'methods used ill presenting infoI'!llation 

on the systems which are studied, e.re discussed in this eecti.on. 

The methods are given f1rstly,in terms of that used in the 

cccputer models and then followed by, where possible, the 

equivalent supportlng measurements which ara made in real 

experiments. The methods used are numerical visualisation, which 

is considered in Section 5.2, ve.rious forms of time domain display t 

which a.re considered in Sectioll 5.3, spectral analysis, which is 

,considered ill Section 5.4 and analysis of pOY/er and energy t which 
is considered in Section 5.5. 
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5.2 NumericRl Visualization. 

This is a term which the author has applt'ed. to a form of data 

display for the computer model results, an example of which is 

s}~ov:n as FiguTp. 5.1; which is after 1,1unasinGhe « 1973) and others. 

In these the displacemen-ts of a sampled set of nodes are plotted, 

as a displaced grid over a reference grid, the plotting being 

performed at selected times after propagation has started and. the 

data from each time level being used to produce a single frame. 

The particular value of this form of display is that as a 

full wave solution 1s given by the finite difference method. the 

resulting mass of data (up to 60,000 displacements, for one tima 

level) is displayed in a compact visual form which enables a 

rapid visual study of the interaction, including the mode 

converted pulses, to be made. 

An example of the information given by the final frrune for 

scattering of Rayleigh waves on a quarter space is oho~n in 

Figure 5.1. The pulses indicated are identified by comr1nrisoll 

with ray theory, the pulse velocities and the direction of the 

q.isplacements in the pulses,comparcn with the direction of 

propagation of the pulse. 

In the present study this form of data display has be~n 

used to follow the time development of all Rayleigh wave feature 

interactions and has provided the basis for the interpretation 

of these systems. 

This form of display also presents the information about 

the waves in the system in a form which enables direct comparisons 

with the photographs which are produced by conventional 

visualizations techniques to be made. TIlis is seen when the 

results for the quarter space, shown as Figure 5.1, are compared 

with those seen by Hall (1976) for R3ylelgh waves scattered at the 

corner (boundary) of a gl~sa block. (Hall, 1976) 

Numerical visualisation is particularly attractive When, es 

in the present study, computer graphics facilities are available 

which give the graphics cutput plotted directly on either 35 mm 

or 16 mm sprocketed film. 1'he 16!ll!n facility has the particular. 

attraction that it enables short sequences of cinematic film to 

be produoed. Two frames from a sequence for 8. Rayleigh wave, 

Ricker type,pulse on analllminium half space are shown as Figure 5.2. 
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Numerical viGualisation display for Rayleigh "','<lve scattering on a 
qua.rter space, calculated with chromium da.ta. at '32 nodes per wave­
length; n. Pulse of R3yleigh \'wves before scattering. 
b. Pulse interacting with corner. 
c. Pulses after scattering; Hr reflected Rayleieh wave. 
Rt transmitted Rayleigh wav'0, S !JheSl" wave t 
C compressional wave, PS compressional wave mode converted 

at surface. 

FIGURE r;. 1-
~ ._ ... 



5.2 

o 
RICKER PULSE O~ A HRLf ~PA[E 

'?irff 
,~ 

- f-t, 

I 

fRAME 2. 2. 

o (J,' f 
\ , .......... 

RICKER PULSE ON A HALF SPAtE 

fRAME 2. 

D 0, 

"----------.... ------=:J 
Ricker type pulce of Rayleigh waves, on ~ half-s~ace with al~inium 
data, as shown in 16mm format. 
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5.3 T'trne <'i.omain dislfL!U...~ 

This is a term v:hich describes all the various forms of 

display which show the time development of displacementa at a 

point and covors a wide range of displays wl,ich ar~ used in both 

numerical model and experimental work. 

In mathematical geophysics this form of display is known 

as seismometer analysis and the dj,splacement data is usod to 

plot synthetic seismograms. (Alterman & Locwenthal 1972) 

In the present study displacement data from the computer 

model are used to plot synthetic time domain signals. An example 

of this form of output, plotted with the real time domain signal 

for a pulse on an alu...-ninum block, is ahl)wn as Figure 5. J. The 

details of the experimental rnethoi to give the real signal are 

given in Section 8. 

Amplitude. 

.~-----,------~~~ 

Numerical 

Real 

time. yttse-:;) 

1~umerical and real Rayleigh wave pulses on alulninium, the numerical 
pulse calculated using 32 nodes per wavelength. 

An alternative way of producing a ttime domain t display is to 

use the computer model diDplacomento along a particular row or 

column or direction ~cross the grid so using data just from one 

time level. The advantae.e of this is that only displacement data 

from one time leyol is used.the data at (;ach 110de has perfonned 

the same nmI1ber of i t'3ratiO!l3, 30 that numerical errors linked 

with the number of iterations are the same for all points. 

A fUl"~hel" form of timp. dOr.1i'.:tn. plot is the particle path 

display, an. examplo of which is shown as Fie;ure 5.4, vihich shows 



the displacements at n point on the free surface of a half-space 

with the numerical pulne shown in Figure 5.3 passing. 

0.5 0.5 

t....-________ V_X_2 _______ .1 
Particle path for a point on the free surface ef an ahuninh:;n half­
space, with the Ricker type pulse, shown in Figure 5.3, passllig. 

!tGURE 5.4 •• 

Tile position of pulseD was found by the use of synthetic 

time domain displays. Displays of the type sho'nn in Pigul'e 5 • .3 

were used to study pulse shape chanses compared with the shape 

of the input Ricker pulse. 
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5.4 Spectral e~alys19. 

TIlis is the study of the spectral content of broadbend 

signals and a spectrum cEm oe obtained from both numerical and 

experimental eignals. Thie is illustr~ted by Figure 5.5 which 

gives the spp,ctra for the two time domain signals, for pulses on 

half-spaces, 5nOMl in Figure 5.3. 

Amplitude. 

, , 
" , 

2 

" " " .... 

Real - - -

Numerical 

... 
" 

3 

~------------------------------------,---------------------------------
Normalised wavenumber spectra for the renl and numerical pulses on 
aluminum half-~paces shown in Figure 5.3. 

FIGURE 5.5, 

In nondestructive testing the technique of studying spectra 

is called ultrasonic spectroscopy, which is considered in 

Section 2.6. 

For the numerical model the procedure for spectral study 

involves the selec'tion of the pulse to be examinod, followed 1:.y 

the application of a fast P'ouricr transform, in a procedure · .. ,hich 

is the reverse of that used in setting up the pulse doscribed in 

Section 4.4.1. 

It is found with a broad'banu pt:.lse that the numerical model is 

most accurate over a,ranGe of wavelengths near the pulse centre 

wavelength, this being due to the truncation which. occurs :lll 

setting up the pulse and the digitised nature of the equations used. 

It h:::.s bGen found by r.~·\masinghe (1973 ) that the useful X'z,nge In the 
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5 .. 4 

normalised wavenumber spectT'...lm, at about )0 nodes per wavelength, 

is fromO.5 to 2.0It is also found that increasing errors are 

introduced into the results with some finite differenoA schemes, 

due to pulse shape changes and a lag'in the higher frequency 

components, thIs is considered further in Section 7. 

For real ~ulses, obtained experimentally, the equivalent 

procedure to, the application of a Fourier transform is to use a 

gate to select the signal to be analysed which is then pa~sed 

into a spectrum a.nalyser which electronically gives an analogue 

wavenumber spectrum. The details of the ex~erimental method are 

considered in Section 8. 

The use of spectral analysis is of particular importance when 

changes occur in tho shape of the pulse tima domain sic;nal which 

make the determin9.tion of accurate transmission and reflection 

coefficientl'3 difficult or, if they are measured, inaccurate. 

Pulse spectral analysis for experimental signals cun pro'.rid~ l::t. 

measurement of scattering coefficients across the full cpectral 

range in one measurement. This is of particular use for detectins 

wavelength dependance in a pulse/feature interaction, which is 

considered further in Sections 8 and 9. 

5.5 Power a.nd erl,erp;Y.!.. 

The measurement or calculation from the pulse displacemcnts 

and material paramsters of the power'flow and energy is of llse 

in helping to follow the energy in a pulse featuro interaction. 

One of the problems oNith visualisation methods is ~ne l:!,mited 

information which i~ given about pulse enerGY so that this is an 

area where numerical I:ltlldieS CDn provide useful information. 

The instantaneous vector power flow per unit arc3. across a 

plene. mathematical rather than material, normal to the direction 

of flow at every point in a matej;'ial is defined by Lova (1934) 

and Auld (1969) and eiven as; 

X= -1f~-~1 
where p - [::] 1= [Tll - -

T21 

~ 1 "'12 

T22 .J 
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This has been considered further by I11nnasillghe (1973) who 

developed a difference form for cal~ulation of the instantaneous 

power flow at a particular node and this is given as; 

r 2 2 2 2 
P,(i,j,k) :: -Lr'c D11 + (Vc - 2Vs )D22 :s (D'2 

P.2(i,j,k) 4ds ~1:/(D11 t D12 ) (Vc
2 

- 2VE"')D11 t 

where, for a unifol~ spatial grid; 

Dm1 = [Um(i+1,j,k) - Um(i-1,j,k)] 

Dm2 = [Um(i,jt1 ,le) - Um(i,j-1 ,k)] 

- [Um(i,j,k+1) Um(i,j,k-n] Dmt = 
From measurement of power flow the sum over time gives 

energy, and integral forms for this hav~ been given by several 

authors including Munasinehe (1973). 

In the present study the measurement of enerey has been 

restricted to, for both experimental and numerical systems, the 

relation given as; 

2 Energy OC (Pulse amplitude) 5.) 

This relation, equation 5.3, for a given medium, is used 

in both numerical and experimental systems to provide the da;ta for 

calculatiori of scattering coefficients from the rna~imum pulse 
amplitudes. The details of the experimental measurements and tho 

related calculations are considered in Section 8. 
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6.1 

6. THE C07.:rUTlm PRO~~ 

This section presents the background computing infornation 

for the computer programs which have been produced using the 

finite difference formulations described in Section 4 and which 

implement the methods of analysis outlined in Section 5. 
The system of Fortran computer programs for the propagation 

and scattering of pulsed Rayleigh waves cas been developed to 

cover the range of geometriea shown in Figure 6.1. 

~ I 
1 

1 l 
t-- - --I 

Half-sp~.ce • 

I 
I 
I 
J-

Down step. 

D 
Block. 

-+- - ---
Quarter space. 

r 
Up step. 

I 

-I 

- - -I 

Welded quarter 
spaces. 

I t 
T - - -, 

Three-quarter space. 

T 

t- ------ -I 

Open slot. 

Filled slot. 

Gaome-tries for which finite difference computer programs have 

be~n written. 
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The types of finite difference fcrmulations used for the 

boundary nodes in the computer progrnws for each configuration 

are shown in Table 9. 

Model Tyr'-' of boundary conditions used. 
configuration. 1st Order. 2nd Order. 

Half-space. Program A Program H 

Quarter space. Program B Program I 

Three-quarter Program C Program J 
space. 

Down step. Progrrun D _ .. --

Up stsp. Program E ----
Open alot. Progre.m P ----
Block. Program G ~---

Weldtld quarter Program K ----spa.ces. 

Filled slot. ..-.... Fro gram L 

Configu:::-ationo for which corr.puter proerama have bet:!n written 

and the type of boundary condition formulation used. 

TABLE 9-. 

6.1 

The material presented in this seotion is in two parts. the 

first, Section 6.2, presents basic computing infonnation and rul 

outline of the main seotions of the computer progrruna and their 

operation. The second part, Section 6.3. considers the practical 

operation of the computer programs, including bounds to the range 

of material and scheme para~eter9t to give partIcular degrees of 

accuracy and stability. 

The computer progra.I!ls l .. u;ed in this study have been written to 

make the maximum possible use of the computing fecilities at the 

Universl ty of London Computer C€ntre (ULCC) "/hieh has G.S 1 ts ma.in 

computer a Ctc: '7600, and this has resulted in a net of machino 

dependent computer progr8.1nth 
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6.2 

The computer programs were written in Fortran and the basic 

nodal subroutine testing wns performed on The City Univor~ity (:l'CU) 

ccrnputers, two lCL 1905E' s. T'ne main programs were then developed 

to take advantaBe of the ULCC facilities and the programs were 

then placed ill a progra.,-n library a.t ULCC. Changes to the library 

programs were then performed using the TCU-ULCC Link and the 

library UPDATE system (TIaddell 1974). Program operation wao also 

performed using the link to send a small control deck of job 

control and data cards. 

Two particular ULCC facilities ara central features in the 

proerarns; the R!:llldom Access I\~ass Storage system (ULCC 1976) which 

provides the large data store required by the programs, and the 

Microfilm Plotting System (Gilbert 1976). providing plottin3 011 

either 35 or 16 mm film, which is both much faster than paper 

plotting and more convienant to store than conventional paper 

plots. 

• 

To produce a computer program for the finite differen~e 

schemes described in Section 4 requires the specification of two 

ba8ic'arrays which represent the sets of displacements for all 

the nodes in the scheme at two time levels. The basic progratus 

were constructed a.round two large arrays hold ill the Mass Storage 

system ";"hich reduces the active core storage requirements for tho 

programs. The basic file arrangement usin~ rr.aes StoraS9 is shown 

as .li'j.Gura 6.2. 

Input data t- Calculated - - - --
Time level 

t - 1" t 

I 
t· of. 1 

Cycle 1. A }To 1 Array Array B 1-- ~t Array A 

( 
REORDER 

:>' 

Cycle 2. 
I. 

Array B A.rray A r-t[ Array B +-( 
t t .,. 1 t .. 2 

~-----------------------------------------------~ 
Basic file control using Randclil ACr':(:ISs M,'l,,=s Storage System. 
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The main array manipulation is built into the arrangement of 

the maj.n operations of the comput!Jr programs ans it is found that 

the calls to mass store represent a major component in the total 

job run time. The exact way in which the data is arranged and 

called can cause up to about 30 % differences in total pro~ra~ 

run time. 

The main operations of the computer programs are shown in 

Figure 6.3. For each program the master segment reads and writes 

the basic material data and control para.meters t performs the nlain 

control functions, including data manipulation using the mass 

storage system, and calls the necessary supporting and noda.l 

calculation subroutines. The supportinc subroutines perfonn such 

operations as plotting and calculution of spectra. 

Input. Main 
Ou·~put. I Functions. 

-
Pulse, space 

a.rid material Set up input pulse 

data. -.p. and other initial 

conditions. 
Control data. V ~ 

- Time step advance 
r-- Displacement 

and array control. 
data. 

) 
: 

Time step counting 
Spectral 

and data output. 
f-~ data. 

~ - 1 
Power/Energy 

Basic nodal 

calculations. 
data. 

---' Graphics • 

... 
. - .... 

Basic arranp~ement of main operatiO!l'" in to""" c t ~ ..... "o::Jpu er programs. 
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In the detailed writing ot the computer programs there arc 

several faotors which must be considered. It is importNlt to 

design efficient subroutines for the nodal calculations, as for 

example thp, body node subroutine may be callod up to 9,000,000 

times in a single program run. It is also important to ensure the 

optimum arrcngcmentof DD loops, including the ordering of the 

array subscripts, with the innermost loop calling the first array 

subscript. In all operations it io important to U3e the r.1Qst 

efficient typea and ordering of Fortran statements, for cx~mple 

the use of IF state~ents which ere fester than two or more . 

branched computed 'GO TO' sta.tements anti the statements for 

branching to be arra.nged so as to minin:.ise the nur:1ber of tE:ste and 

subroutine calls. 

In e set of complex computer programs of the typa d?velope,l 

in this study, each of which may be required to perform )00 sets 

of nodal calcula tiOllS for up to about )0.000 nodes tit i.8 found. 

that the compiler used has a considerable influence on job run 

time. In this study the ULCC cornpiler OPT - 2 ...... hich o!'th-dEes for 

rapid execu.tion was used. A typical set of computer proer<:tm job 

parnmeters are given as Table 10. 

Program geometry. Welded quarter spaces. 

Space dimension::;. 160 by 100 nodes. 

Nodes per 16. wavelength. 

Number of cyclec>. 260 
--_. __ . 

Job requirements. 
- .-

Small core. 10,072 KWS 

Large core. 10,173 K\'tS 

Mill time. 177 sec. 

Job run tim6. 400 sec. 

Plotting output. 15 fi'ames ;. 5 mm film. 

j Lines output. 2,000. 
-- -~-. ..... _-

Job parameters and l"lJ;qui!'~ment8 for fintte differ.::nce modol of 

of Rayleigh wave prorJ£lgat1011 0:1 v/f.·Ided C!u~.rter Sp:=.ces. 
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6·.3 

This se~tion considers the practical operation of the f';:Gt of 

computer programs which men.el Rayleigh wave propagation and 

scattering, including the liQits for material parameters and grid 

increments. 

It is· seen from the' job parameters given in Table 10 that 

the compute-r programs in the present study are lnrge; they l'equire 

large quantities of core and. have long run times. It is therefore 

vi tal that the computer prcgrams are nm j.n as efficient way as 

possible. This can be achieved by the correct corlbination ota 

range of fa.ctors including those in the con~truction of the 

program, which are considered in Section 6.2, and the parn:rl'3ters 

used in the operation of the program for both the materi~l data 

and grid increments. 

There are two particular aims in tho operation of t!le 

individual computer programs which use finite differencA schemes 

and these are the minimisation of core requirements and run time, 

and the improvement of the accuracy of th~ reDults. 'rho str~ps 

necessary to achieve either of these two aims often result in 0. 

conflict; as the increasing Cif grid h.crem011ts, which l'esul ts in 

reduced core and run time. tends to reduce acc·uracy ,vhil,'! 

conver~ely the reduction of grid increments and the 111cl'ee.E:inr. of 

the number of nodes per wavel.eng·th, which results in iMproved 

accuracy, increases both run time "md core requirements. This 

results in ths need to reach a compromise between high levels of 

accuracy (better than 1 %), on small grids and less accurate 

results (about 5 %)J ~n much larger grids, when grid size iE 

measured in waveleneths. 

The parameter of the nu:nber of llodes per wavelength is 

therefore of conDiderable importance, ~D it is this which eets 

the limits to the slze of region, r.10asurcd. in wavelengths t v'hich 

can be modelled vd th a glven :lumber of nodee. 'I'hi s parU.!Ilet(~r is 

set by tha criteria given in Section 4.5. 

It is seen in the v:ork with Rickel' pulses by both 

Boore (1970) 3.nd ~';unasin5h$ (19'(3) that about 30 nodes per 

wavelength IIIt'ro used, waich r&£1ults in the rp.quirCl!l~nt for n 

model of Ro.yleir;h wave prnp8.ea.t1o:l on a quarter space of a total 

of about 25,600 nodes. to avoid unw~:mted r!::flectionc from the 
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artificial internal boundaries. 

The ability to reduce the number of nodes per wavelength to 

15, by the use of a different boundary condition formulation or 

by p~rforming r.lco.surcmcnts on'the schema in £l. different way. would 

reduce the number of nodes required to mljuel tho same size of 

apace, in wavelengths, to 6,400 nodes. ThG Tesulting savings in 

core and run time are substantlo.l. Such a reduction would also 

make possible the modelling in core of m9,ny configurations and 

greatly increase the range of geometrie3 which can be studied 

using the additional store in the mass storage system. The use 

of different nUI!lbers of noden per wave13uc.;th was invostigated 

and the results are presented in Section 7. 

A practical set of limits for para.meter values and erid 

sizes have been established in the ccurse of tho precent study 

and these are now presented. The starting point for the 

guidelines is ~rovided by the accuracY,end stability is not 

possible)it is only by the use of the computer programs that 

practical guidelines are ostablished. 

The info!1!lation presented in this scction iF,; preseuted 

with the aim of providing general Guidance and not ribid In"5. 
The values given are those found when using a. Ricker type pulse 

of Rayleigh waves as the imput pulse. In general a ays hm '(:hleh 

models body waves is more accurate and stable than C11e which 

considers mainly surface waves, as the latter are contin~Blly 

interacting with the least accurate and least stabl~ part of 

the whole scheme, the boundary nodes. 

The aim of the present study waR to produ,cs n t10df31 wi th 

at least 10% accuracy. It has been found that in experimental 

measurements of the depth of such features as a two ~avelengtll 

deep crack, an a.ccuracy of ebout 15% is achieved. (Cilk 1976) 

In the present study accuracier, for the model of D,ccuracy \';011 

within the 10 % limit have been achieved and the medel results 

and bounds used a~e eiven in Section 7. 

In this section the set of cri terh', which folloVl fornl 

bounds within Wllich the pI'esent stud~~l VirtD pcrforrncd. 

a) I"or pulse spec trura calculntioi.').s the base act of data 

point a used was 512 (i.e.29)nodes. 
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b) The minimum extent of the spatial pulse i.n propagation 

an:3. inhraction studi.~s was about three wavelengths in 

c) 

each diITiEmsion. Por system testitlg pulses us snlall as 

two wavelengths in ee~h dimension were used. (32 by 32 

nodes at 16 nodes per wavelength.) 

The mirdmtl.I!l numbor of nodes per wavelength a.t the centre 

wavelength was 16, corresponding to about 11 nodes per 

wavelangth at the upper half power point. 

d) For the tj.me step increment up to 90 % of the von Neumann 

limit was used (given as equation 4.5.5.). 

e) The minimum grid dimensions and limits to number of 

iterations were set by the first arrival of unwanted 

reflections frDm artificial boundaries in a region 

where measurements were made. This size was determj.ned 

from the da·ta velocity (i.e. one grid pOint per itera.tion). 

Typical grids were five waveleneths square for the 

quarter space, and six wavelengths deep and 18 wavelengths 

long for shallow steps and slots. In practice, smaller 

grids were used to test the model formulations. 

f) In practice for pseudo-node schemes a limitine value 

for theVa/Vc ratio was found to be 0. 35 (corresponding to 

~=0.42) below which artificial oscillations 

introduced laree errors and the pulse was spread 

spatially as prop&gat1on proceeded. 

g) It was also found that the accuracy of models using 

the pseudo-node 900 corner formulation reduced as the 

number of nodes per waveleneth wan reduced, which set 

a limit of about 20 nodes per wavelength on configur~tions 

such as the quarter space. 

The re&ults obtained with the cet of computer programs 

which support the establishment of the guidelines set out in 
this section are now given in Section 7. 
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7.1 

1. cor,rpuT..I2.!LE0~]iL RESUJ,TS. 

7.1 Introdncti('\l.l:. 

This section presents the details of the computer model 

resul ts obtained with the computer pro[!.l'ams outlined in Section 6, 

which modol the configura.tions listed in Table 9 cnd shown in 

Figure 6.1. 
The numerical model results presented in this section are 

divided into two groups according to the type of formulation 

used for tho brnmdary conditions in the computer r1'ograms. 

The results are presented in tv,o sectiens, firstlJ, in Sectioll 7.2, 

those from the computer progro.t:Js which use first order 

formulations for the boundary conditions, and secondly, in 

Section 7.3, these frem the computer programs which. use second 

order formulations for the boundary conditions. 

The computer programs use the finite difference scheme~ 

defined in Sectious 4.2 and 4.3 with the Rickel' type pulse ef 

Rayleigh waves which is described in Section 4.4. In nIl the 

programs the value of the ratio of the spatia.l to time incrcr:leuts 

was Dct at 90 % of the van N~\Ujjann limit, as defim~d in Section 4.5. 

'lIne media for which material da to. was used in the Pl'OCrHMS 

considered in tr.is n~ction are listed eR Table 11, vd th the basic 

data used • An ext~nc.6d list of material data ia presented as 

Appendix C. 

A full comparison between the two sets of nu~erical modol 

results, the experimental results, which are presented in 

Section 8 and previouA results, is given in Section 9. 
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I 

I kg/m. Vs l~isson's ra tio. C'" 
:Material 

r----r---
Densijy "1- Wave 

+-- - ---
Quartz 

Chl"omium 

Polystyrene 

Perspex 

I 0.169 
0.20 

0.24 

Steol(rnild)i 0.29 

Aluminium I 0.34 

Titani~~ ~ 
: .... 

2200 3765 

7160' 4005 

1080 1180 

1220 1370 

7850 3235 

2700 3110 

4510 3182 
-

= --
vclccities in m/sec. 

V V c r 

1 5976- 3412 

6608 3655 
I 20)0 1084 

2360 1280 

5960 2996 

6422 2906 

61)0 2958 

List of media used in models with basic material data. 

TABt,:r<.: 11. 

1',2 Programs with first order forrrm18t i02§.....f£.r houn1ar .. y condi t~.<?"'l'}~t. 

This section presents the computer model parameterA,with tho 

model results, for pulses of Rayleich waves Cll homogeneous, 

isotropic, 3ingle media configurations shown in Figure 1.1. Tne 
models use the centred differenco ps€udo-no~i) fOI'l1'lulations for the 

boundary conditions which are presented in Section 4.3.1 e,nd 
Appendix E. 

pI 777771 
, I 

t-- - __ L 
Half-space. 

(Program A) 

17/7/~ 
I ""7~7~/~:r"!'JO 

4-.-----.J 
Down step. 
(Program D) 

f////////~ 

I ~ 
~ - - -/ 
Quarter space. 
(Program B) 

l7 / / / 7 7J E' / / / / / / /1 
I ~lk I 
+- - - I-

~ --~ 

T7/rY' I 
L __ I 

Three qll.arter SPRC(' 

(ProgrEL"'n C~ 

V;' 7 ;'""'7/T' 
"'":p'-/-'" ~7-7~//' I 

ttp step.~ - -1-
(Program E) 

Open slot (Program F) J.nock. (Proer.:n G) rrurt..-...... ..... ---_. _______________________ ...... i4 

Configul'atio::ls studied using pseudo-node forJlulatiens fer the 
boundary conditions in computer p·cGrams. 
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7.2.1 

The ab:! 11 ty to prod-'lea a computer model which givE's the 

nondispersive propacation of a nayleigh wave pulse on a half-spnc3, 

as indicated by the analytical theory which is presented in 

Section 2.3, is a prerequisite to the development of a model for the 

interaction and scattering of Rayleigh waves by more complex 

featul'es. 

The basic model node arrangement for tho computer program. 

Program At which models a Rayleigh wave pulse on a half-spe.ce t is 

shown as Figure 7.2. 

_ _ ___ _ _ _ _ _ _ pseUdo_nOde.!1 
Extent of --I~~~~~~~~~~'~'~~~'~\~\~~'~'~~ Free surfnce 
input pulse I 
(minimtL."U of ) 
(2 by 2 wave-)I 
(lengths. ) 

-----

Grid 

Artific1.al 
in~el'!HI 
boundaries 

Node arrangement for first order finit~ difference model of 
Rickor type pulse of Rayleigh waves on a half-opace. 

FICURE 7.?t. 

The propagation of the Ricker type pulse of Rayleigh waves 

on a half-spe.ce was investigated for two values for each of the 

two parameters, the material data for the half-space (polystyrene 

r:r =0.24 and aluminium f1' =0.34) 8.."1d the number of nodes per wave­

length (16 and 32 nodes). The value for the pulse walfolength, in . 

metreR)was that for 1 ~E~. The media data used in the progrr~ is 

that given in Table 11. 

The maximum spatial extent of the half-spE'.ce was 12.5 wave­

lengths long and 6.25 wavelengths deep. which corresponds to grid 

dimensions of' 200 by 100 nodes, at 16 nodes p~r wa.velength. 
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·7.2.1 

~. Distance travelled by pulse. 

Tho propagation of Ricker pulses on h~lf~spaces, at 16 nodes 

per wavelength, is shown by numerical vi~ualisation for the case 

of polystyrene data e8 Flgll.re· 7.3 and that usin.g alumin~_U!ll data as 

Figure 7.4. 
For the two cases shown in Figures 7.) and 7.4 the numerical 

model for the half-space, Program A, was tested for the accuracy of . 

wave propagation velocity. The distance trC4.velled. by the pulse, as 

observed in the numerical visualisation and the free surface 

displacement data was measured and this was compared with the 

distanoe ~he pulse should travel, as given jy the wave velocity 

and the time; the number of iterations multiplied by the time 

increment. The results obtained for the tflO cases, shown in 

Figures 7.3 and 7.4 are presented as Taole 12. 

On polystyrene. I Cln alu:nil1ium. 
Distance travellod 

0. 51612:59- -;---

given by calculation. 5.70 0.457 2.28 5.0) 

--
Distance travelled 
given by finite 0.498 2.52 5.58 0.4.36 2.18 4.87 
difference echeme. 

rercentago difference, 
when distance as given 
by F.D. ia compared - 4 - 3 - 2 - 5 - 5 - 4 
with that given by 
calculation. 

Comps.rison of distance travelled by Rayleigh wave pulses on 
half-spaces, as eiven by p~eudo-node finite difference model 
with that given by calculation using the wave volocity, for 
polystyrene and aluminium. 

It is shoV1n by the values for distance tr.:lvclled givon in 

Table 12 that ther'e is a systematic lag in the pas:!. tiolJ. of the 

centre of tl:.e puls9 which is larger than the maximl.llD position 

error due to grid spacing of :to.04- which gives a percentagG 

error of 0.8 % at .5 wavelengths on polyotyrer.e. ~lO errors are 

also seen to be larger for the higher Poisson's 'r..'ltio I'J"1.teri.s.l, 
a.huninium. 
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7.2.1 

a. 

c. 

~~ 
--. 
P I I --

r-~r~f7 =- 3-

r+ _~~~t"'-I=-- +- I--, 1-
-t-r--I-::. 

I- i- - I--
I r-- -

- - I- -- - -I--

r- I-
-i-I- I- I-

- I-:- +-1--

I-l-
f- f- , 

- 1--1-

~f-+-+--++-l-t-t-++-HH-++'+-H-+'+++--H-t--t--r-H- -r-"" 1-1- - - ' .. I­
~~+~4-+-~-+~4-~I-~-r~+-~-+-~-+~+-~~~r1~-r-~- ---1---
1--l1-+-I-4--I-I--t-l--++-i-iH-+-j--t-H-+-r-I-~+-i-!-·-I--+-+-·~-+·++-·t-l-+-r~+-i 
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1-I-+-++-+--'H-+-r+-H:-+-t--t-+-H-++-t-~-+-'-+--+--+--1f- ~-+-~-+-+--Y-'--- t­
I-I-+-I-+--I-H-+++-H:-+-t--t--t-r-f.-t-l-t--t-t- -r--I-I--+-+-I.-~~-+-I--+- ... r-f­
~-+~4-+-~-+-~+-~I-+-r~+-~-+-r'+-r+-+~-+-il-~-++-+-H-+-r+4f--
1--'" -+- -- -- f-I-r-- r-~-+-I-+-l--H-+++-+-,H-+-t-t-t-- i- .-r- -- r-- ... I- ~-- I-i­
~1-+-+--+-I-l-t-i--~-I-HH-+++-H-+++-rH-t--t--r-t-i~-;-i''''+'''1-- ""'--1- --

1-1-+-+--1--+---4-1- +-1-+-1-- ~-I-I--I-+-+-l-H-+-+++-H-++-t"HI-4-1-+-+-·t-+-- i-

1-I-i-++--hH-I-++-+--l4+++-H-t++-HH-t-T-rH- 1--1-1-+-1--+-1--1-1-
I-I--I--l--W-+..-W--H·-H-t--t+++-H+f-++++t-t-H-+-t-t-t-t-H- ---

L_ .. : 1_-.L..I ___ -_.L..I~_-~...l., __ ~.~~~~~~~~ •• -~L-._.~_-l.-._.l....-l __ -_ ...... _...1 __________ t---

Ricker pulse on a polystyren9 ! space, ueing 16 nodes per W3V"-
~.\, 

l~ngthj after a. 20.b.l00. c. 220 iteraticng. r= ono wnvelen~th. 

1'1 fIIBL..1z.J. 
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7.2.1 
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Ricker pulse 01'1 a aluminium h~lf··space, using 16 nod~g per wave .. 
length, after a.. 20, b. 100, c. 220 iterations. "/01: one wavelength. 
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h. Pulse shape changes. 

The chBnee of pulse shape with distance tr~velled W~B 

investigated for the model using both pOlystyrene and altlmi:lium 

data. a.nd with· different numbers of nodes per vJavelength. Tha pulse 

as given by the model, for calculations at 1G nodes per wavele~gtht 

for the two media, after different numbers of iterations are 

shown in Fib~res 7.3 and 7.4. 

It is shown in the figures that about up to 100 iterations the 

pulse shape chanG~t measured as a percentage change in amplitude of 

the pulse compared with the corresponding point in the input pulse, 

when measured,was less than 10 %, but after this number of iterations 

distortion rapidly increased. 

When 32 nodes per wavelength were used in the model it was 

found that the number of iterations before 10 % changes in 

ampli tude occured increased to about 200, "out the distance travelled 

in wavelengths~ because of the correcponding reduction in thu time 

increment, was almost the same and the calculatio'n:3 required the 

number of nodes to be quadrupled to give the ~~e dimensior.s ef 

s'pace in wavelengths. 

The pulse displacement decay w1 th depth curve is ShOWl1 U5 

Figure 4.12. It is necessary to truncate the pulse at some d,3pth, 

as was considered in Section 4.4.1, nnd it ie, found that to give 

a pulse which will propagate without introducing additional errors 

the depth truncation must be made at three wa'felengths at lNt.:'!t. 

~. Spoctral measurements. 

The Ricker pulse used in the present study is conRtructed by 

calculations which start from the v:e.venUInber opcctra. The sp('ctra 

for Et pulse, calculated with pOlystyrene data using 35 nodes per 

wavelength, are shown 8.0 Fieure 4.10. 

In spectral Ilnalysis measurements the plllc,e spectra A.l'e 

obtained using a procedure which is thE' r~verse of that E:et out 

in Saction 4.4.1 for pulse synthesis. 

After pulse propagation has sta~ted the major problem is the \ 

syncln'onising the po si tion for the npp) ice.. tion of the pulse l'.nalysie 

subroutine with the pulse ccnt~c pociticncd on or very clos~ to a 

noda. It is found, e"ieU at 32 nod.es P<:l' wavelen~th, that ch~nges of 

the oI'der of 5 $'v OCCU1' ill the Il'I&.xiu.ur,1 &"I1plitude of the v{[J..ve 

numbsr sp~ctra us the ,pulse moves from one node to the next. 
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7.2.1 

a.. 

Amplitud.e. 

a.t t ; 0 

a.t t ; 75 

~----------·'I------------'--------~~~~--~ 
1.0 2.0 3.0 K/K 

o 

b. 

1.0 

• 
at t ~ 0 'I 

= 2s at t 

~--------------~'-----------------r-----------~ 

K/K 
() 

1.0 2.0 

Spectra of Ricker pulses on half-spaces; a.Spectra calculated with 
Polystyrene data using 35 nodes pe:- wavelength at t ~ 0 a.nd after 
1 iterations. b. Spectra calculated with polystyrene data using 16 
nodes per vm.Yclergth at t ':& 0 and after 2 iterations. 

FICUR8 7.5 • - ._ ..... 
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7.2.1 

As propagation proceeds errors Vlere found to increase, especially 

at the high frequency end of the spect.ra. 

In the present stud~measurements of the spectra were made 

using 16 and 32 nodes per wavelength and the reE'ulting bpectra 

for the vertical componen·t of dicplacoosnt e.re shown as Figure 7.5. 
For the case of spectra calculated at32 nncles per wavelength, 

shown as l"igure 7.5a, it is seen that repeatable spectra, are 

obtained. However in the case of the calculations at 16 nodes per 

wavelength, shown as Figure 7.5b,large percentage errors are fOlmd 

to have been introduced after only two iter.:::.tions. The percentago 

errors obser/ed are given as Table 13. 

Wave number, 0.5 1.0 1.5 2.0 
(normalis~d.) 

Percentage 
difference - ). - 4. - 7. -15. c.f. t :: 0 
spectra. 

Percentage change found in wavcnumber tpectrum for 
16 nodes per wavelength curve in Figure pr. 5b. 

TABLE 13,! 

The VD.! UC3 given in Table 13 are fO\.l,nd to be in general 

agreement with those for the Fractional error tel~ given in 

.Table 5. 

The results presented in this section are compared with tho39 

from a model using a second order formulation, which are presented 

in Section 7.3.1, experimental measurements and the results of 

previous studies, in Section 9.2. 
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7.2.2 

90
0 

corner at tha lntersec tion of two free Dv:r-faces. From the 

basic Ra.yleigh wave theory.as there is no charllcteristic din;onsion 

in the corner')th~r~ should be no wavelength dependa.nce in the 

scattering of the Rayleigh wave pulse by 1 t. 1'his chould enable 

wavelengtb. independent scattering coeffl~if'!rts to be cst.!lbl1shed. 

The basic node arrangement for the COI'!lputer prog~'om, 

Pr.ogram n. which models a Ricker type pulsp, of R~yleieh wavos on 

a quarter space is shown as FlEure 7.6. 

------------------------------------------~-~-----=---------~~----~ =.... .....*.,IN~ 

Free surface 

Extent of 
input pulse. 

I 
I' f 
Artificinl intern--a-l--b~~"~j~z. J 

~------.-
~:ode arrangement for first order fin! to difference mod~l' of 
Ricker type pulse of Rayleigh waves o:n Il q'.Afl.l'ter s.pace. 

The propagation of the Ricker type pulse of l1ayleigh wave .. 

011 a qus.rter space wile investieatcd usir..g the nod~ arrang~m(~nt 

~hovm in Figure 7.6 with the data for EL ranB3 of ci.lffcrea.t m,soUs 

which have l'oisson's ratios in the rango from .2 to .36. t!~li!lg 

pulses of different sizes end a centre wavelength correspondinG to 

a frequency of 1 MHz. 

!':.. llasic pulse analysis. 

The propagr1.Uon B.nd scatt(!:('1n~ of thf> Rick'3::-:- :ruls~ W!!:;o 

investigated and for e<1ch model run, at regulE.r i:rlterv3.1s (u~Uo.lly 

every 20 i tera.tions), sets of diRplaccments '!':ere rE'lc():rdei and 

n~reerical visualization type diApleys plott~d, un exa=pl~ of which 

we.s eh0V111 in Seotion 5.2 as F.ir:urc 5.1, ,is shown here as 
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Ricker pulse on a quarter space, using chromiurn data and 32 nodes 
per wavelength, after R. 20 ,b. 60, c.180 iteratior.s. 
d. ~9.in pulse id~ntification; R./; Trancmi tted Rayleieh waVi). 
R Reflected RayleiGh wa.ve. S Sllcar wave. 
er Compressional wave. PS compressional wave mode 
C

1 
Compression. converted at surfaces. 

C2 Rarcfuct.ion. 
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Figu.re 7.7. In the frames g1 yen as Figure 7.7 the time development 

of the system, including mode conversion, can be seen. 

The sca.tter~d pulses generated at the corner by the model arR 

identified by observing th& direction of displacemente in the pulses 

in relation to the respective direction of propagation for each 

pulse and by ffieasurement of the wave velooities as given by the 

finite differ~nce scheme, which can be compared with those from 

the material (10. ta. Typical '!alues for the velocities of the 

scattered p'.llccs obtained using alUlnlnium data.and 16 nodes per 

wavelength ara presented in Table 14 together with the corresponding 

values for the wave velocities given in the data presented as 

Table 11. ., 
Rayleigh wave Compressional Shea.r wave 

.1 vel. m/s~c • wave vel. in/E:cc. vel. rn/sec. 
Data frOffi 2906. 6422. 3110. J l'able 11. -
From F. D. 2773. '"!: 1 00 6141. ± 100 ?972. '± 100 I model. 

- --
Percentage 
difference - 5 - 4 - <-
between F.D 
and data. 

Wave velocities for scattered pulses on an aluminium quarter r,PD.C~ 
as given by finito difference first order scheme compared with 
material data values. 

'llAB!,J~ 14. 

A further form of analysis, which assists in following the 

time development of the system at specific nodes, and helps to 

identify pulses, is seismometer analysis, which gives particle 

displacements with time. Examples of this type of display, for ths 

tWQ nodes P and Q, shown in Figure 7.6, are eivan as Fieure 7.8. 

The main scatterAd pu.lses identified on the qU:lrtcr space are, 

firstly a compressional wave with a pulse wavelength which 

corresponds to the centre frequency of the nicker puls&. Secondly 

a shear wave pulse, which is only identifiable in the final 

frame t £hown as Figure 7. 7c~ this VI[we has a. voloei ty of only 7 % 
more than the RayleiCh wawa pulses; and thirdly a pair of PS pulses, 

so called in geophysics, which occur where the exp.-:;.nding 

comprossicnal vlave front meets the surface and mode com"crts. The 
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1.0 ~ 

7.2.2 

i ...-
1.0 ~~plitude 

p 

~----.--~~--------~ 
Amplitude 

... clock 
points. 

Particle displacements at nodes P and Q on a quarter space, with 
polystyrene data using 35 nodes por wavelength. 
a. For node Pt at corner. b. For node Q, 2 wavelengths from corner 

along each surface. 

FTGun~ l:...§:-
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7.2.2 

PS wave has a straiGht wavefr'ont which formE' a tangent to the shear 

wave. 

~. Transmission and reflection coefficients C~ quarter spaces. 

Following from the ldentificatlo~ of the basic pulses which 

resul t from the scattering of a Rayleigh \V9.ye pulse O!1 a quarter 

apa.ce, m(')asurements were made, based on the amplitude data, to 

establish trel'lsmission and reflection cOl:!fficicnts and estioate 

the loss jn en.erGY from Rayleie1J. waves t dU(~ to mode conversion. 

A series of m01el runs were perfcr.m~d for a range of 

different media, with different combinations of pulse length and 

depth at different nUt"1lbers of nodes pl:lr w~~velength. Some of the 

results obtained are presen'~ed as Table 15. 

Pulse size Nodos • 
(in nod':ls) pc:,,:, Material 

Y!iCl. th J pe Pt~, t"'J.." 
I 

50 50 16 Aluminium 

6IJ. 74 16· Aluminium 

100 90 .35 Alumirdum 

100 90 35 Polystyrene 

100 90 35 Steel(mild) 

100 90 .35 Chromium 

100 90 35 Ti taniu.''O 

Poi850n'8 
ratio 

0 • .34 

0.34 

0.34 

0.24 

0.29 

0.21 

0.36 
. -

~-Ref. 
coef. 

r.:oJe 
TranG cony 
coef. losn 

( c~ ) ,I. • 

0.51 
:t.06 

0.45 
-= .05 

0.49 
:: .0; 

0.39 

0.56' 

0.52 

0.56 

0 

0 

0 

0 

0 

0 

0 

.:>4 45 
:t.OD 

.64 35 

.:: .05 

.65 ~3 

.47 47 

.54 44 

.51 40 --
List of transmission and reflection coefficients for Ricker pulses 
on'quarter spaces, for 0. range of values for both pulse: and 
material data. with a space with dimensjons of 156 by 156 nodes. 

It is show~ by th9 results given us Table 15 that th0re arc 

several factors which influence the valueo for the scattering 

coefficlentn on a quarter apace. These factors are identified and 

considered further in relation to tht~e ~esultR, those from an 
. . 

aJ. tcrna.ti.ye num'3rical model, r!:~po:rted in Section 7.3.2, oxpcrim(.j.1 tal 

rneDr.;ur(:;n~nts an.d tho;~e of oU,er 'iorkcrc in Section 9. J • 
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'(.2.3 

The thrF.e-lll.lartor space 1.R El. sinE':le ~t'n"ner confiel.1Y'ation, 

with a single 2700 corner at the intersection of two free surfaces. 

This configuration, like the 900 co rIle l' or quarter t:;pace, has no 

characteristic dtm~r~sion so it should have wavele11gth independent 

scattering coefficients •. 

The basic model node arrangement for the computer progrmu, 

Progrrun C, ':,'hich models e. Rn.yleigh wave pulse on a three-quarte:l' 

space is as ehowll in Figure 7.9. 

Free 
surface 

Extent of 
input pulse ! 
(3 by 3 ) 
(wavelengths 

Pseudo-nodes I 
I 
I 
I 
I 

~ ______________ I-_A-_r~t_i-_f-_i-_C_ia_l __ i_n __ te_rn __ a_l __ b_o_u_n_d_a_r_i_e_3 ________ • _________ -..J 
Node arrangcmc::1t for first order finite difference rr.odl31 (.of a. 
Ricker type pulse of Rayleieh waves Oll a three-quartor space~ 

FIGURE 7.9!.. 

The propagation of a Ricker type pulse of RayleiGh waVOD en 

a three-quarter space was investieated using the node arral'!gcrnent 

shown in Figure 7.9, using both pOlystyrene (d"'o::Q.24) l'.nd 

aluminium (c:):: O. J4) da tn from Table 11 and 16 node!3 per wavelength 

with the pulse centr~ N3velength corrcspcndin~ to a fra~lency 

of 1 MHz. 

~. Ba.s:tc pulse ana.lysis. 

Tho propagation and scattering of a Ricker pulse W:?S 

im'estiga ted and for each model run a series of sets of displa.cc'tll€'ni;,~ 

were recorded at reg~la::, intervals lLnd r.ulilericnl vis'l1alisatil)l'l 

type displays were plotted I an example of v.'hich is shown £'.8 

Figure 7.10. 
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Ricker pulse 0::'1 a three-q113,rter space, l:.sine polystyren~ (<1""=0.24) 
ar.Ld 16 nodes per wavelength. a. 20, b. 6C, c. 1GO iterations. 
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The time development of the syste;n in shown and the &lain mode 

converted pulse is a neUl" circular shear wave centred a.t the corner, 

the majority of the energy in which Is in the arc 450 about the 

direction Cif p:COPagation of the IUcker pulse on the fret: &urface 

before the interaction at th'3 corner. T~Hn'a was very little energy 

mode converted into compressional waves. 

The wave velocities of the scattered Rayleigh and shear 'Nave 

pulses were measured on the model and the~ were found tc be i.n the 

same range of v/ave ,velocities as those shown in Table 14. 

b. Transmission and reflection coefficients on three-quarter spaces. 

Following the identification of the basic scattered pulses 

for Rayleigh wave scattering on thrce-qu&rter spaces, measurements 

were mada, based on pulse amplitude data, to establish transmission 

and reflection coefficients and to establish the mode convercion 

enerey loss from Rayleigh waves. 

model runs were perfor;ned using the data. tOl' two media, 

pOlystyrene (er":; O. 24), which is shown in Fieure '7.10, 8....'1d 

aluminium (~::.O.34), both using 16 nodes per wavelength. The rermltr; 

obtained for values of scattering coefficients are presented in 

Table 16. 

Material Poisson's Reflection TransJniscion I~ ruocie 
ratio. coefficient. coefficient. conversiol 

':;"' I Polystyrene 0.24 0.09 "t.03 0.24:t:.0) 

Aluminium 0.34 0.101:'.0) 0.22::.0) 94 

-
List of transmiszion and reflection coefficients for Rick&r pulse.s 
on polystyrene e.nd aluminium three-quarter spaces. 'Jsing 16 nodes 
per wavelength. 

The results for the three-quarter space are considered 

further, toecther with those an altCTIlative numericel ~odel reported 

in Section 1.3.3, experimental measurements &nd the previous .ork 

of other workero, in Section 9.4. 
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L,2 • 4 fI)lyleigh._y~1.ves at dO!::!l...!l.te[£.~ 

o 0 
The dO'Rll step, with a 90 and 1'\ 270 corner separatE'd by a 

vertical distance (h), and when the 3tep heig~t (h) is less than 

two wav~lengi;hs it forms the f:~lrnplest configuration for which the 

scattering coefficients are wavelength dependant. So it can be expected 

that the values of the transmission and reflection coefficients 

for ocattel'ing vd th pulsed Rayleigh wavei'3 will vary with the step 

height (h) to wavelensth (1~) ratio. 

The basic node arrangement for the comput~r program, l'rogram D, 

which models a Rayleigh wave pulse at a down step is shown as 

Figure 7.11. 

Pseudo.:.no£g s 

Free I '\ '\ '" \ \." 
surface , 

I 
1,-

Artificial intcrnnl boundaries. 
_I 

~----------------------------------------------------------~.- w.~ 
Node arrangement for first order finite differenco model ef a 
flicker type pulse of Rayleigh waves at a down step. 

FIGUIm 7.11..:. 

The propagation of a Ricker type pulse of R.:.lyleigh waV'~s and 

their interaction and scattering a,t a. dot,m step Vias investie;3.t.ed 

using the node arrangement shown as Fieure 7.11. The model wa.s 

used with data for three media, polyotyrcne t alu.llinitilll and qUil't'tZ. 

the parameters used being given in Table 11, with a raneo of step 

heights, using 35 nodes per wavelength and the pulse centre wave­
length corresponding to a frequency of 1 ~Hz. 

The computer runs were all performed using a grid with 

dimensions of )00 by 100 nodes. The large space, in nodes was used 

because of the experience gained with half-space and quarter space 

models and also to penoit the rrodelling of a range of different 

step heights in the main raD6c of interest, step height to wave­

length ratio values from about 0.1 to 1.0. 
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!!:.. BaRic pulsa analysis. 

The prop~gatio,., anr3 seAtto"r.il'l5 of Ricker pulses by a rE.r~ge ef 

different height steps, on different media, was investiGated an1 for 

€e.ch model nm a series of sets of diBpl£i.cements were record.ed at 

regular intervuls and numerical visualization type displays were 

plotted. Numerical visualization typo displays for a half-wavelength 

deep down ~tep, before and after scattering are shown as FiGure 7.12. 

The main scattered pulses in the system are identified in 

Figure 7.120. The compressional pulse radiates from a point near the 

90° corner and the shear wa.ve from the 210
0 corner. 'rhe- energy in 

.each mode is found to vary with step height. 

~. Tra.nsmission and reflection coefficients at down steps. 

Following the identification of the basic pulses in the patte:-n 

of scattered pulses at a down step, measurements were made t bl),sed 

on amplitude data, to establish tran::::mission and reflection 

coefficients and to establish th~ rr.ode conversion enerGY lo~s from 

Rayleigh waves. Some of the results obtained are set out in Table 17. 

- -·1 " Step Transmission Reflee: tion % EnerGY 
1,7a terial. height. coefficient. ccefficient. mode c·cinyertcd i 

----.••. I _. -.---.-
Polystyrene 0.228 0.65 :t.05 0.25 ± .05 52 

Polystyrene 0.456 0.30'1:.05 0.40 :t.05 75 

Polystyrene 0.694 0.)0'::.05 - -
Aluminium 0.228 0.63 ±.05 0.24 :t: .05 55 
Aluminium 0.456 0.45 '1:"".05 0.49 4- .05 56 
Aluminium 0.57 0.32 t.05 0.48 -:t .05 67 
Aluminium 0.69 0.29 ±.05 - -
Aluminium 0.912 0.18 :t.05 - -
Quartz 0.456 o .34 .:t'.05 0.42 :t .. 05 11 

'l.'ransmission and reflecti.on coefficientc for Ricker pulses at down 
steps, using 35 nodes per wavelength. 

The gaps in the value£; for reflection coefficients t 8ho""'Ti 

BS Table 17. are due to the presence of oscillations in the region 

near the 90° corner which make amplitude based measurements 

inaccurate. TIle values for the scattering coefficients of the d0wn 

step are con~idered further in Section 9.5. 
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7.2.5 

The up step is similar to the dowa step except that pulse 

starts on the lower surface and is scattered first at t~c 2700 

corner. This conf1.guration is 'of j.mportance as it, when combi.ned 

with the down step, enables an open slot to be constructed. 

The basic node arrangement for the computer program, 

Program Et which models a Rayleigh wave pale:e at an up step is 

shown in Figure 7.13. 

Pseudo-nodes 

Artificial internal boundaries 

I 

I 

Free 
Burface 

_I J 
~-------------------------------------------------.-.. ------------~~. 

Node arrangement for first order finite difference model of a 
Ricker type pul£c of Rayleigh waves at an up step. 

FIGURE 7~.t. 

The propagation and scattering of a Rlckertypo pulse of 

Rayleigh waves was investigated for a range of different hoirht 

steps u~ing al~inium data with the node arrangem€nt shown a£ 

Figure 7.13. The computer runs were performed ufllng n grid with 

outside dimensions of 160 by 100 nodes and 32 nodes per wave­

length, with the wavelength for the pulse centre frequ€;ncy of 1 lliHz. 

~. Basic pulse analysis. 

For each model run a ser.1es of sets of diflplacements wl3;re 

recorded at regular intervals and numerical visu'lllzation type 

displays were plotted. Nwnerical visulizatio:':1 type displays for 

pulses with half waveleneth and 1.4 ~avelensth steps are shown as 

Fieurc3 7.14 and 7.15 and Fie;ures 7.16 and 7.1'i" respectively. 

It is seen in all the figures that a strong pulse of mode 

converted shear WRves radiates a nearly co~rlcto circular src 
o . 

from the 270 corner w111('.h interacts with the t.lp~er 3urfuce but 

not the 90° cC'rner. In the case of tho deep step)£:econdary mode 
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Ricker pulse at a 1.4 wavelen~_th up step, usine e_lu:!;irliu~n data. and 
32 nodes per wavelength. SJrstr:m after, a. 240 and b. 280 iterations. 
Main pulse identification, as for Fieure 7.16. 

-128-



converted pulses are produced, as shown in l!'igurc 7.17, when th~ 

Rayleigh wa'le transmitted past the 270
0 

corner is scattered at the 

900 corner. 

In th'! case of the syRtem shown in Figure 7.17, the surface 

wave pulse refl:::cted at the 90° corner was also detected and 

measured on tbe vert:lcal free surface, before it reached the 2'{Oo 

corner, where it was scattered, with most of it:] energy being 

mode converted into a shear wave pulse. The secondary scattered 

pulses are not identified in the figure, but they nun be seen 

collectivly in the region behind the ~~in pulnes. 

It wae observed, in Figure 7.17, that the ar.iplitude of the 

diBplacem~nts in the pulse on the top surface increased as the puls~ 
o moved awa.y from the 90 corner. This Vias investig'lted experlin0;,\ta.lly 

and the practical measurements and results are reported in Section 8& 

.2..- Transmission and reflection coefficients at up steps. 

Followin~ the identification of the basic scattered WRVOR)in 

the the pattenl of scattered energy at an up star, measur~mcnts 

were made, based on amplitude data. to establish transmicoion ~nd 

reflection coefficients and to estimate the mode conversi0n lCG8 

from Rayleigh waves. Some of the results obtained with up steps elll 

a1 umlni urn are shovm as Table 18. 
_atD""__ ..... 

Material step Tranomission Reflection I % Enere;y 
height. coefficient. coefficient. modo convert - 1;4 ..... -

Aluminium 0.5 0.5 :t.05 0.11 :t.05 

Aluminium 0.75 0.4 -1-.05 0.10 ±:.05 83 

Aluminium 2.375 I o • 16:t. 05 0.11 ::t'.05 9G . 
.......nu.b~. 

Transmission and reflecti0n coefficients for Ricker pulses at 
up steps on aluminium, using 32 nodes per wavelength. 

--

trom the results presented in Table 18 it is seen that 

reflected pulse from an up step is of the same amplitude as that 

fro!n a thr'ee-qu:lrb3r space, uSinG nlulniniu1Il data, and that there arc 

increasing mode converGicn cne)'GY l03ses from Ra.yleigh \·:aves an the 

step depth is incraased. The values for the scattering coefficients 

at up ctepo and the mode ccnvel't~d. waves are considered further 

in Secticn 9.6 
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7.2.6 

It2. 6 Ra~:1eip;h Vlftves at open slot~~ 

The opE'n slot normal to the :free surface is an idealised. 

crack configuration, and it is modelled by combining the 

formulations used for the down and t'Ie up steps. The interaction 

and scattering of pulsed Rayleigh waves has been found to be wave­

length dependant for slot depths up to about 1.5 wavelengths. 

The basic node arranf,ement used in the computer program, 

Program F, which models a Rayleigh wave pulse at 8.n open slot in 

a half-space is shown as Figure 7.18. 

Extent of 
...:ngu,:. p~l~e _ bw d ___ _ Pseudo-nodes 

Fre e --':---':-~_l....., .... -~·-r-t'~-t I I ~,,-r-~~'--\"---"~-;':--\~I-
surface I I d 

L...J " 

"",,--
I 

Artificial internal boundaries. 

!::-ode arrangement for first order finite difference model of a 
Ricker type pulse of Rayleigh waves at an open slot. 

The node arrangement shown in Figure 7.18 was used to 

investigate the propagation and scattering of a Ricker type pulse 

of Rayleigh waves at a range of open slots in an aluminitun half­

space. The computer model runs were performed on a half-space with 

node dimensionc of up to 200 by 100 nodes. using 32 nodes per 

wavelength and the wavelength correspondinB to a pulse centre 

frequency of 1 MHz. 

~. Basic pulse analysis. 

The propagation and scattering of Ricker type pulses by 9. 

range of slots was investi.gated and f'or each model run a series of 

sets of displacements were recorded and numerical visualization type 

displays plotted at regular intervals, normally every twen·~y 

itera.tions. 

Selected frames from two sed cs of numerical visuulizatiol'l 

tjpe displays, for pulses at quarter and half wavelength deep (d) 
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7.2.0 

and one eigth of a wavelength wide (w) open slots, are shown as 

Figurea 1.19 and 20 and 1.~1 and 22 respectively. 

The main scattered pl~lses are, in both cases, reflected and 

transmi tted Rayleigh v!aves, 3. shear wavo, radiating from the bottom 

of the slot, a compressional wave, radiatinG from near the 90° 

corner and 8. PS wave wher,e the compressional wave mode converts at 

the free surfa~e. 

The wave velocities of the various scattered pulses were 

measured and they were found to have values in_the same range as 

those given in Table 14 (in Section 7.2.2). 

It is found for wide slots, those with a width greater 

than about balf a wavelength, that the pattern of "reflected" 

pulses is alwost identical to that for the correEpondinG depth 

of down step. 

~. Transmission and reflection coefficients at open slots. 

Following the identification of the main pulses in the 

pattern of scattered waves at the open slot, a series of model 

runs were performed with i wavelength wide slots of different . 
depths to determine tra.nsmission and reflection coefficients, basod 

on amplitude data. The results obtainAd for a range of different 

depth slots on alumtniulU are presented as Table 19. 

Material Slot Reflection Transmission % EnerGY -"I 
depth. coefficient. coefficient. mode convertE'd. 

Aluminium 0.125 0.121:.05 0.83.!:.05 )0 

Aluminium 0.25 0.20:!:.05 0.31 ~.O5 82 

Aluminium 0.5 0.42.:!:.05 0.25 :t.05 77 

Aluminium 0.875 - 0.07 ±.05 -
Aluminium 1.00 O .. 45±.05 0.06 ::.05 79 

Transmission and reflection coefficients for Ricker pulses at 
open slots in aluminium, usinc 32 nodes per wavelength. 

The resulto preElcnted in Table 19 are considered further, 

together with those fror.] cxperjmcntal measurements, reported in 

Section 8, and the re3ulta of other workers, in Section 9.7. 
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7.2.6 
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Ricker puls3 at a O. 25 waveleneth deep end 0.125 wavelm gth wide 
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System a.fter; <le 140 and b. 200 iterations. c. !.Iain pul:::e 
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a. (t =- .2?9).tsec.) 
= ... -----------1 
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b. (t :: .916.Llsec.) 
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i--_________ ...... ______ ..,.._ •• ___ ~_= ____ ~.......,_ _.~J 

Rickcr pulse at aO.5 wavelength deep andO.125 wavelength wide open 
slot, usinr, alu.minium tiutn and 32 l:odes per wavelength. 
System after; a. 20, and b. 80, iterations. 
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b. (t ::. 2. 29}lsec. ) 
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I 

, 
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Ricker pulse at a o. 5 wavelenGth deep e.nd 0_125 w~welene th wide open 
slot, using aluminium data and )2 nodes per wavelength. 
SysteiU after; a. 140, and b. 200 iterations. 
c. ~ain pulsa identif~catioll at t ~ 2.29, pulEea us for Figure 7~12. 



7.2.7 R:lyle:!e;h waves on R bJ ock •. 

This section reports on the extension of tho model to 

consider the propagation of Rayleieh waves on a block, a piece of 

material of limited spatial extent. as opposed to a semi-infinite 

medium with a step or a slot on the free surface. It provides a 

model of a real experimental configuration. 

The block. a rectangular piece of material with four free 

surfaces and four 900 corners, is modelled using a pseudo-node 

scheme to satisfy the free surface bounde.ry conditions which is 

extended from that used for the quarter space program, conoidered 

in Section 7.2.2, and presented in Appendix E. 

The basic node arrangement used in the computer program, 

Program G, to model the Ricker type pulee of Rayleigh v/aves on 

a block is shown as Figure 7.23. 

D 
Extent of 
input pulse 

· · -: "-'--i . 
Free surface - l Peeudo- e - - --
~~~~~-,~~~~--~~~~~~:r.-~~ I nodes 

I 
I 

.... - - - .J 
c 

f-- 6·;1- ~ 
B 

.......... 
Node arrangement for first order finite difference modol of a 
Rlcker type pulse of Ra.yleigh waves en a block. 

The model arranzement as shown in Figure 7.23 v,as us~d to 

follow the propagation and scattering of a Ricker type pulse of 

Re.:yleigh waves on a block using uluminium ( 0--=0.34) data, eivl'3l1 

in Table 11, at 16 nodes per wavolength. ~rhe size of grid used in 

the model was equivalent to a.real block with dimensions of 
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18 by 13 mm for a pulse with a centre frequency of 1 MHz. 

~. E~sic pulce cn~ly~ic. 

For the model, sets of displacernents were plotted at each of 

a sories of time Gtcps to [:1 va the l1tt;llsrical vicua.lisa tion type 

of display. FoT' E'" ... ch time time level for which a nume:::-ic3.1 

visualisati.on plot was produced the rlUmerical values at selected 

nodes, principally those at the free surfaces, were recorded for 

additional &nalysis. 

The time development of the pulses on and in a block is 

presented as Fip;nres 7.24, 7.25 a.lJ.d 7.26. The initinl system was 

as indicated in Figure 7.23, with the cornel'S identified by the 

letters A, Et C ru1d D and the sides idenUfied by the letter 

combinations AD etc. 

The three frames, sho\\TI as Figure 7.24, follow the system 

development after the initial interaction of the Ricker pulGe 

with the 900 corner A. The cOt:1presdon (C1 ) cnd rarof.9ction (C
2

) 

of a mode converted compressional wave (C) are seen to radinte 

acrosr; the block from corner A. The compre3sion (C
1

) is seem t':'l be 

reflected at the surface BC, introducing the pulse (C). The 

PS and ~hear modes are identifiable in Figure 7.24c. 

Tho three frames, shown as Figure 7.25, follow the systom 

development in tho time follGwing that shown as Figure 7.24, 

from model time t = 4.58 to t : 5.49GJlzec. The ccmprccsior.nl 

wa.ve (C) is seen to move along the surface generatine the reflected 

compressional ware (C C) which radiates awa.y from BC at the ~?.tIla 
r 

angle as the inciuent pulse. It is also seon that in Figure 7.25b 
that the compression (C

1
) reaches the su~face CD cBusing it to 

bulge. In the frame for t M 5.496, shown as Figure 7.25c. it is 

seen that the surface r.lode conversion of the compressional YiD-ve (C). 

the rs waves have moved past the corners Band D. Tho ccmpressiol)t;1.l 

wave (CrC) is cro~sing the bulk of the r.lediu.'ll goir:g towards the 

surface DA. The shear wave (S) is moving in the bulk of the mediurn 

and in the regiC'l'l. near corner C a cCrlplcx seri€s c·f interr.-!.cticJ!!s 

between the comp~ession3.1 wave~ (C) cnd (CrC) are occuring eivi.ng 

rise to further mode converted pulses. 

The final state of tho cyotem at t :: 5.95 J.l .. sec is shown a.s 
I 

Fieure 1.25. This is the syctem after 260 iteraticns after which 

the results become lees accurate due to the limited size of grid 
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C C reflected r compreBDion wave. 

Other waves 8.3 

defined in Fie. 7.20. 

(t = 5.038) 

reflected. 
rarefacticn ot C. 

(t :: 5.49G) 

~----------~----------~~--------------------------------------~ 
Pulse propagation on El. bloc)..: e.t times be-~"Ngeil t :: 4.5 c .. nd 5.SflSp.c. 
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used. The main pulses identified in this frrune &re the reflected 

(R ) and transmitted (R
t

) Rayleigh wave pulses, the pr:iruary 
!' 

mode converted cornpres~ional wave (C) and the reflected compression 

compressional wave (CrC), the primary mode converted shear wave (8) 

and the mode conversion of the compressional way~ (C) at the free 

surfaces, the PS waves. 
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~-------------------------' _______________ ' __________ ~_" __________ M ____ ~ 

Pulses a.s defin-edo!l Pigures '(.20 and 7.21. 

Pulse system on a. block at modsl time t ~ 5.954 psac., (after 260 
iterations), showing main pulses in systom. 
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This sec tio:'?, preDcnts the CO:T:puter model parameters, \'i1 th t~e 

resul t.s, for pulsed RayleiGh waves on th~ I'cmfje of sinele media and 

two media contiGura tlons shown in ~'ieure 7.27. 

The sillgle medium models reported in this section were produced 

with the aim of i~proving on the results obtained with the models 

reported in Section 7.2, which use pGeudo-nodo forrnulr" tions for the 

bounda.ry co!!di tions. The two medi2- configuraUons were considered. 

with the aim of providin~ an understanding of the interaction of 

Rayleigh waves with a filled slot. ~l~ two media configuration 

models use the new formulation for the free surface/interface node, 

derived by tile author, and presented in Section 4.3.4 and Appendix G • 

- _"l . ....,.-..-·_...,.~awt ..... .. ~.~ .... 

'" " 
'\ '\ ", -.;:;:: "\ 'i 

I 
I 

I I 
·1- - - - -I 

Half-spb.ce. 
(Program H) 

Welded quarter sp~ces. 
(Program K) 

k- -, 
")': '\ '0'.""" "\ '\ I"~) I 
I 

Quarter 
(Program 

_ .... _- .. 
space. Three-quarter 
I) spacE.. (h-ogrllal 

Filled slot. 
( Pro gram L) 

J) 

I 

__________________ ~J: __ III ~9oIW~ ... ~_....,... ____ _ 

Configurations studied u8in~ second order formul.:1tions fox' the 
boundary nodes in the computer proerams. 

Tha results presented in this section Ara considered further 

and compared,in Section 9, ~ith those given by the models described 

in Section 7.2, the experimental results, prccented in Section 8, 

and the results of other workers. 
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1. "0·1 R,?,YJ "'it:l'h "lP.ves on h~l f-snacea • ...2..-.----:.'''' ,~~..' -

The ab:tl1 ty to produce a COILputer model which gi-ves thl3 

nondispersive propagation rf a Rayleigh wave rulse is a prerequisite 

for the accurate modelling of more complex confiGurations. 

The basic nodal arrangement u~ed in the computer program, 

Program Hf vihich models Ricker type pul ses of Rayleigh waves on 

a half-Gpncc i~ shown as Fi~urc 1.28. 
~ ____ ~ __ ~ ____ ~ ___ , ____ .W._. ___ . __________________ . __ .---~.-.. ---.. --____ ~WM __ ~ 

I 

Extent of 
input pulse 

.. -....;.-

Grid 

Artificial interllal boundaries. 

Free £urface. 

-, 
I 

~-------------------------------------------------.---.. ----------~.~J .-
Node arrangement for second order finite difflHi3nce modp.l of 
a Ricker type pulse of Raylaigh waveD on a half-space. 

FTGURB 1.28. 

A model was produced using the node arrangement shown in 

Figure 7.28 and using the second order composed fonJulation for 

the free surface nodes. However the program was found to hav9 a 

limited range of stability, with the vertical component of 

displaCEment going unstable after only a few iterations when 

material data with a V Iv ratio value below about .5 was used. s c 
This problem has been reported previously by Ilan and Lowenthal 

(1976) and their ne\'{ ccmposed formulation, which iB presented in 

Section 4.3.4 and.whj,ch has a larger range of stability, was adopted 

for use as the horizontal free surface fornwlaticn in the cecond 

order programs in th~ present study. 

Using the new compo~ed formulation,the propagation of Ricker 

type pulses of Rayleigh waveA on half spaces was investigated using 

both polystyrene and aluminiwn data, presented in Table 11, and 

different mUllbers of nodes per wavelength Yci th the wavelength 

correspondinG to a pulse centre frequency of 1 NHz. 
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a~ Distance travelled by pulse. 

P'Jr each model run. a series of cets of displacements were 

recorded and numerical visualization type displays were plotted 

at regular intervals. UsinG the numericccl visualization displ~.\ysJ 

the rropagation of Ricker type pulses of Rayleigh waves on a 

half-Apace wa~ investigated with both polystyrene and aluminium 

data using 16 nodes per waveleneth.Selected frrunes of the output 

for the case of a pulse on an aluminium half-space are shown as 

Figure 7.29. 

Tbe d:i.stance travel16(! by the pulse, ao given by the finite 

differ~nco model using a four wavelength square pulse, was 

compared \11 th that eiven by calculatic.n '.vith the wl?"le velocity 

from the mai;'~rial data and the results using aluminium data are 

shO'ltn as Table 20. 
":'t':'~1"'..¥~1"'" _IX 'l3cMP':NA'IMlW. _ _ ... ~-.-u.~~". ......... ~~ .., . ... .. " Number of iteI~tions. 

20 100 140 200 - - r-- -
Distance travelled, 

J 
0.458 2.291 ).207 4.58) given by calculation 

Distance travelled, 0.456 2.278 3.217 4.590 
given by F.D. mod.el . :t.OS :!: .05 :!: .05 :t:.05 
-- - 1 

. -I;.b difference 
between F.D. and - 0.6 - 0.5 t 0.4 t 0.2 
ca.lculated. 
-- - . 

% error due to 
measuring pulse - - - 1.0 position to nearest 
l node. 

~--- .... ~ .... .. -
Comparison of the distance travelled by a Raylei€;h wave 011 an 
aluminitlJu half .. space as given by second order finite differel1ce 
model. with that givon by calculation from the wave velocity. 

,TABLE 20t.. 

• 

From the results presented in Table 20 it is seen that the 

errors found in the pulse diatance travelled, as given by the 

finite differecc~ scheme, ara less thBD the limits to accuracy set 

by the measurement of the pulse p081tion to the ncarect node. 

From the results in Table 20 there is thereforo n0 indication of 

any systematic error in pulse position up to 200 iterations. 

Similar at:ct1.racy waE: found in the results for a pulse ,., .. hen uGing 

polystyrene data. 
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a. 

b. 

c. 
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-
Ricker pulse on. an aluminium J cpace, using 16 nodss per w:wclength, 
System aft~r; a, 20, b. 100. an~ c. 200 iterations. 
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h. Pulse shape cha.1'lgos. 

f'ollowil1G the measurement of p1.!lse 6.~stancc tI'avelloJ,the 

change of puloe shape with distance,was invcaticated for th3 

model usine aluminium data and both .32 ~"ld 16 nodes per wavelength. 

For the mndel, wh~n uRing 32 nodes per wAvelength, for 

meaourements of pulse shape made up to 50 iterations there was no 

change of shar-e. Measurements were then made uf.li~e 16 nodes per 

w::welength G.nd th0 shapes of the v'ertical component of displacement 

at t = 0 and after 200 iterations, in which the pulse moved about 

4.5 wBvclcngthn, are shown as Figure 7.30. 

£. GpectI'ml measurements. 

Becauno of the very good, almost nondinpcrsivc:, pulse 

propagation achieved using the new composed fORlulation for the 

free surface nodes, when usinc only 16 nodeo per wavelength, this 

scheme was adopted for use in all second order models. Row~vor, 

due to the inherent errors in spectral rriea~mrClT!ents at this 111l1'nbp,r 

of nodes per wavelensth they have not been used with the second 

order models. The use of16 nodes per wavelength eives, of course, 

considerable sevings in the nu:nber of nodes required to modal 

a give-n size of feature, when measured in wD.v~lcneths. 

The model results presented in this soc tiol1 are compal"ed \.1 th 

those which use the pseudo-node scheme, which were reported in 

Section 7.2.1 t exporimental measurements and the results ef 

previous studies in Section 9.2. 
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7.3.1 

,..-_ ... ___ .... _, __ .. "' ... _" ... __ .. ""= .... ___ .. __ Uf'~p s.... pWl'" .,M~ ... " _______ ~,-__ "" 

Amplitude. 

1. 

0·5 

0.5 

Ricker pulse vertical component of displacement at the free surface 
of a. half-space, using a. second order scheme with alurni:niwll da.ta and 
16 ncdes per wavelength, at t = 0 and after 200 (dashedline) 

i tel'.'atj.ons. 
tl(m:m_ 7 s 3.0. 
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7.3 .. 2 

T:ne quarter space is a configuration 
o with a single 90 corner at the intersection of two free surfaces, 

the scattering at which should be ch~racterised by w~vclength 

independent tr .... .msmission and reflection ~oerficients. 

The basi~ nodal arrangement used in the co:nputer program, 

Program I, which models Ricker type pulses of Rayleie;h waves on 

a quarter space is shown as Figure 7.31. 

F'ree 
surface 

Extent of 
input pulse. 

I 
Artificial inbrnal boundo.ricc. I 

............ -----""""' ..... .,.,..---------------,J 
Node BrrrulBemsnt for second ordor finite difference model 
of a Ricker type pulse of Rayleich waves on a quarter Bpaee. 

FIGUHS 7. ;1:.. 

The propagatiorJ. of the Ricker type pulse of Ra.yleigh waves 

on a quarter space Wl".S investigated us:1ng both pol~'3tyr(;ne ( 6":: 0.24) 

and aluminium (0" ::'0.34) data, presented in Table 11 t and 16 nodes 

per wavelength, with the wavelenath corresponding to the pulse 

contre frequency of 1 MHz. 

a. Basic pulse analysie. 

The propae:;ation and scattering of the Ricksr type puIS e of . 
Ray1eieh waves was investigated and for each model l'Uli) a series of 

sets of displa.ce:nents were recorded and munerical visualil:latio)1 

type displays were plotted at regular intervals. An example of 

selected frames from e. numerical visualisation series are shown 

El.S Figure 7 • .32. 

The scattered pulsf3s genera.ted by tte corner can be cle&rly 

seen and are a comprecsional wave, a shear w~vo a~d reflected cnd 
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a. 

b. 

L.,. 

I- __ l-_j_W--+--l---1rt++--t-I--+--~t-/---t-H-+-+-+·-+-~.j..-4-~-­
f-. _I- .+--<I_+--+_j.~-I-+-+-+-+--II--I--I-",,·f-·"'-
_ .. i-I--I--.- -- ... ·1--t-+--t-t-+-+--i-t---+-~~J 

"" __ I--+-I_-I-+-+--+-.I-+-I-+-~- 1-_1-- f--I- - -I-' '-1-~ ........ .j.--f-4-->-I 

U_~~I--+-+-4-Ir-+-+--H-t-+-t-I---I-+-I-·- f- _l-.~~' -1--
1-1.J--I-j~+-.j..-+--1-+.+-r-+- 1-1-- - +-+-+--11--1- -

UJ-4-i--t--+-+-1-+-t-H--t--r-j-"i-i-+-+--i-I-+-+-+-'~-I- -1-+­

f-. ~I-_ ... .l-J..-I-~+-+-<-+-I-+-t-+-- .. I- 1-:""" 

~~~;:=~t-~~--~t=;~~1;=';~--+t;jj~-:-++-: -j-t:_-:l-I--t:-+-=-+-:I-+:+ _"i_./--l-r-t

T ~-'~~'~=~::--I~ -~ ~ IJ ~j 

.7.3.2 

I _ ..... ~JU __ ••• ' ... l ..... ' ___ .... w --------.-.. --._. -_ • ...,-.--... -~ 

Ricker pult.e on 

p~r ·.'I'tW131C:-lgth.; 

a quarter space USirlg polystyreme U'.'it,-'\ and 16 nOC'3S 

~ tarn ~fte" ~ qv" ~~d b. .:>ys <;'" ". ..~. lo' ~. '. 
120. ite:rations. 

FIGUP.'8 7.32. ----"" ... --"'_ .......... 

-149 ... 

J 

I 
I 
I 



c. 

- -
.f-. f- .f--~-l-f- .-

-f.-- I- I-+-r-- -. 
-t-. 

, 
_J...-

d. " 

nr 

Ricker pulse on a quarter space, u,ing polystyrene data Rnd 16 nodoo 
per ~aveleneth. Dysteu after 160 iterations. 
(d) Main PUlEd identific~tion, pulses as shown in Figure 7.7 • 
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7.3.2 

transmitted pulses of Rayleigh waves. 

It is s~en frorn Figure 7.)?0, that there is a difference in 

the dista~ce fro~ the corner for the reflected and tran~mitted 

Rayleigh wave puls~l::l. with the distance 'cravelled by the refl~c1;etl 

pulse being about 10 % less than that moved by the transmitted 

pulse. 

The pulse velocities for the scattered pulses were mens~red 

for the model u.sing aluminitll,i data at 16 nodes per wavelength ond 

these are presented in Table 21 toeether with the corresponding 

values for the wave velocities given in the data pre3~nted as 

Table 11. 
~ms --

Rayleigh wave I Compressional I Shear v;ave 
vel. m/sec. wave vel. m/sec. vel. m/sec. . , ,,",p .......... "loI0IKII __ ::a v 

Data from I 2906. I 6422. 3110. 
Table 11 

287) ,±1 00'1 I 
~l';."""""U"" i 

From P.D. 6539.±100. 3070. ± ·100, 
model. i - • .U} ..... • ..... '&51I\F..:;c,...,.;. 

Percentage I difference - 1.2 + 1.8 - 1.3 between F.D. 
and data. 1 .... .,.,... ~ . -

Wave velocities for scattered pulses on an aluminium quarter sp'lce 
as given by finite dffference second order scheme, compared with 
material data. 

TABLE 21. 

b. Transmission and reflection coefficients. 

Following tho identification of the basic pulses which 

.1 

result from the scattering of a Rayleigh wave pulse on El quarter 

space. measurements were made, based on amplitude o~ta, to establish 

transmission and reflection coefficients end estimate the energy 

loss from Rayleigh waves, due to mode conversion. 

Model runs y:ere performed with pclystYl"ene and aluminium data 

and the values for the tranr:mission and reflection coefficients 
are r.:hown l.n Tab10 2 2. 
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Pulse size Nodes '" 1;\:0':(> I 
(in nodes) per ~atcrial rci~son'G , Rcf. Tr~nso ;conv, 

I ,. 11' 
.... "'_ .. __ . _+-__ -+-_'_"V_!}_-+-_____ --i_l_'i:l_t_i_O_o_, I e()~J.. I (;0&£. I' ((,~:);r; I }i~;l; Dept-;;-1 r I I·! ·4~~t'-:-I,' 

48 48 16 Alu:ninium I 0.34 IO.4T!.05Iu~,9.t'.05 

___ 4_8 __ ~_4_8 __ .~_1_6 __ ~ __ PO_l_J_'z_t_y_r_c_n_~~_O_._2_4 ____ ~._o._.~!_t_._O_5~O_._5_7_~._._O_5_~_5~ 
List of transmission and reflection coefficients for Ricker pulses 
on quarter epr..ces, with socond ord'3r nodal formulation3, with 
space dimensions of 122 by 122 nodes. 

The results obtained with this scheme are considered further 

and compared with the results of the first order model, which ere 

presented in Section 7.2, the experimental results, which ara 

pret\ented in E;ection 8.4, and those of other \,:orlcers, in Section 9.3~ 
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The three-quarter space is a cingle cc.rn~l' configuratio!l, 

wi th a single 2700 corner!'. t the intersec tion of t-,vo free ~urface9, 

the scattering ef Rayleigh waves at whichJshould provide wave­

length indepe:;,d~llt transmission and reflection coefficients. 

The 'tasie model node arrangement for the computer pr0t;ra .. '1l, 

Program J, whi(;h models a R1'lyleigh vmve pulse on Ft three-quarter 

space is sho~n as Figure 7.)). 

Free surf~lce. 

Extent of 
:l.nput pulse. 

--r 
I 
L 

/ 
-y, 

-r 
I 
I 
I 

---1 
Artificial internal boundQrieo. 

Node arrangement for second order finite difference model of 
a Ricker type pulse of Rayleigh waves on a three-quarter space. 

The pl'opae;aticn of a Ricker type pulse of Rayleieh '.'!3.'1en on 

a thrae-quarter space was investigated usine polystyrene d~ta with 

the node fl.rrangement show!1 :tn Figure 7.33 anj 16 nodes par ,,;[we­

length, with the pu18c centre wavel~ngth corresponding to a 

frequency of 1 l .. :Uz. 

~. BRSic pulse analysis. 

'fhe propac.a tion of a Ricker type pulse was investigQted and 

for each moa.el n,m) a series of sets of c.isplucomcnts were recorded 

at regular interV'als and numerical vlsualisation type displays were 

plotted, l;~n example of which is shown u::: Figure 7.34. 

The time developm9nt of the system iR sho~n for ~ pulse using 
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1"1 G:iRp;, 7. 14. 
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7.3.) 

aluminium dE'.ta and in E'igure 7. 34c is in shown that the ma.in lliode 

converted pulse is a shear wave that radiated on a near circular 

arc from the 2700 with the majority of the energy in the arc ±45°. 

~. Transmission and reflection coefficients. 

Following the identification of the basic pulses in the system 

of mode converted waves, computer runs were performed using both 

aluminium und polyst:,'rene da·ta at 16 nodes per wavelength and 

measurements were madc, based on amplitude data to establish 

transmission anQ reflection coefficients. The values of the 

transmission and reflection coefficients Bre given ao Table 23. 

Pulse size· Nodes I;, mod-s 
(in nodes) per Material Reflection TransmiSSionlconv. 

WidthlDepth 
coefficient coefficient. Enerc;y 

10:::9. _.- - . 
64 48 16 Aluminium 0.11 :t.O) 0.23 ±.O) 94 

64 48 16 Polystyrene 0.09 !. 0) 0.?2.:!:.OJ 95 . .~ 

Tra.nsmission and reflection coefficients c'n three-quarter s!,'C'.ccs 
using second order boundary condition f'onnulation, ""i th r:01ystyrctle 
data and lllu::.!iniU!!l data, both ~t 16 nOues pt)r wl:'Yclength. 

The results obtained with this scheme are considered further 

and compared with the results of the first order model, which are 

presented in Section 7.2, the experimental results, ~hich aro 

presented j.n Section 8.4, and those of other workers, in Secticn 9.4. 
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The configuration of welded quarter spaces, two quarter spaces 

of media welded along an interface, is one of the simplest two 

media configuration3. It doss not h~ve ~ ch~r~ctcriotic dimcnsion 

and the scattering is dependant on the material parameters,such as 

the density cnJ wave velocities in the two media. 

The ba-sic node arrangement in the computer program, 'Program K, 

Which models Rayleigh wave pulses on welded quarter spaceE,is shown 

as Figure 7. 35. ~\he nodal formulation used for 'the free surface/ 

interface node (p) is a new second order formulation derived by the 

author and presented in Appendix G. 

Free 
surrace' l " 

Extent of input pulse 
(3.1 by ).7 wavelengths) 

I t~edium 1. 
---

Medium 2. 

Interface. 

Artificlfl.1J 
internal 
boundary. 

Node arra,l'lgement for second order finite difference model of 
a Ricker type pulee of Ray1eieh waves on welded quarter spaces. 

FIGURE 7. 35 t. 

The propagation and scattering of a flicker type pulse of 

Rayleieh waves on welded quarter spaces wae investigated using the 

node arrangement shown in Figure 7.35 with 16 nodes per wavelength, 

where the wavelength is that corresponding to a pulse centre 

frequency of 1 MHz in medium 1. 

The basic nodal scheme was tested by using both polystyrene 

and aluminium da.ta with 16 nodes per ~i;avelength and the sa'I1(: d.ata. 

was used for both media. The scheme, including the new free Elurface/ 

interface n00,e formulation, was found to give th~ non1isporaive 

propagation of the Ricker pulse to the same level of accuracy as 

the sec'Jnd order scheme r~ported in Section 7.).1 .fo!' propa[,ation on' 
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7.).4 

a. half-space. 

The scheme was then used with mediet Qa.~o. for the two quarter 

spaces that were different. The two media used in the preesnt study 

were the same tJs thosE'! URPO by' MC?Garr ,q.r.d Alsop (1967) end by 

Munasinghe (1973). These were pOlystyrene an~ perspox end the 

ffiaterial data u~ed is shown in Table 11. 

a. Basic pulse 8':'1.alysis. 

The propagation of a Ricker type pulse was inveatlgatcd with 

the pulse moving fron polystyrene to perspex a.nd vice versa and the 

time development of the systems was followed by the use of 

numerical visua.lisation type displays. The two combinations of 

perspex and polystyrene are shown in the visualizations sho"ln as 

Figures 7.)6 and 7.37. 
The basic system of waves are transmitted a~d reflected pulses 

of Rayleigh w~ves and sorue low energy mode converted body and 

interface waves • 

. b. Transmission and reflection coefficients. 

In the previous stUdies on this configuration by McGarr a.nd 

Alsop (1967) and j<.:unasinghe (1973) the transmi tted and reflected 

pulses are measured in terms of coefficients which are the :ratios 

of the incident and transmitted pulse amplitudes and the incident 

and the reflected pulse amplitudos respectively. The Sa.T:le procedure 

is us~d in the present study and the results for waves on the 

two combinations of polystyrene and perspex ~re given as Table 24. 
WUOT • • - .. --- -1 Pulse travelling 

Deflected 

I 
1.8:H~:1'i ttsd from 1 to 2. Incident Inci.dent I -

l.r c d iv.m 1 rr.edium 2 
-

I 
Polystyrene rer:::opex O.08"±".0) 0.90 :!:".OJ 

Perspex Polystyrene 0.07 ±.O) 1012 :t.03 

Pulse amplitude ratios for the vertical components of diEplacement 
of the reflected an:! transmitted pulses of Hayleigh waves on 
welded quarter spaces. 

Th~ results presented in Table 24 are corr:par8d with those of 
previous studies in S~ction 9.9. 
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polystyrene quarter svaces, with the pulse movinG from perspex 
to polystyr~ne. Syste!':J. after a. 20, t'nd b. 160 j-terations. 
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perspex quarter spaces, with the pulse mo~ing froo pOlystyrene to 
perspex. System after n. 20, and b. 180 iterations. 
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The ccnfigurntion of a filled slot considorcd in the pres~nt 

study was for a rectllnr;ular section of one il:>otropic homogeneous 

medium set into and at, the surface of a half-space of a second 

isotropic ho~ogeneous medium. 

The basic nodal arrangement used in the computer program, 

Frogram T .. , which models a Rayleigh wave pules at a. filled slot is 

~hown as Fieure 7.38. ~ _______________________________________ .ft' ___ M~~~W= __ ' _____ aw ____________ .== ___ = ____ ~* 

Extent of Filled slot. 
input pulse. (!\~cdiw'l 2) 

~~~,~~rn~--~,--~,--'~~'~K--

I 
I (:\!edium 1) 

Artificial internal boundaries. 

Free 
surface. 

l~ode al:'j-angemen t for second order firli te difference model CI' 
a Rickcr type pulse of Rayleigh waves at a filled slot. 

FIGURE 7.)8. 

The model for the filled slot was a direct extension of the 

welded quarter spaces model and the media s81ected for U3e in this 

model were those used for the quarter npaces and described in 
/ 

Section7.).4. as there are no previous results for this configuration. 

The node arrangement shown in Fie;ure 7.)8 was used to investie:;ate 

the propagation and 3cattering of a Ricker type pulse of Rayleigh 

waves at a slot in a block of polystyrene filled with perspex and 

vice versa, using the material data shown ill Table 11. 

The model was used with 16 nodes per wavelength where the· 

wavelength corresponded to a pulse centre frequency of 1 Ilmz 
in the meditun used for the block. 

~. Basic pulse analysis. 

The propagation Bnd scattering of a Ricker type pulse of 

Rayleigh waves was invest:tgated for eeverc.l model runa and for each 

a series of sets of' displa,cements wElre recorded b.nd numerical 
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visualisation type displays were plotted at regular intervals. 

An example of selected frames from a numeri.cs,l visualiostion 

series of a pulse at a wide deep slot are shown as Figures 7.39 end 

7.40. 

The largest pulse in the system is found to be the transmitted 

one which haG about 90 % of the input pulse energy in it. in the 

cases of combinations of perspex and pOlystyrene. There are also 

reflected pulsec at each interface and mode converted body wave 

and interface waves which have low energies. 

The energy in each puloe was fOUl').d to be dependent on the 

material parameters of the mcidia considered and both the slot width 

and depth. 

b. Transmission and reflection coefficients. 

Following the id!ntification of the main pulses in the systom 

computer :runs were performed using polys tyrene Elrld perspex da tn 

and 16 nodes p~r wavelength to give amplitude based measurements 

and establish transmission and reflection coefficients. The values 

of the transmission coefficient and the reflection coefficients 

f~r the pulses reflected at each interface for slots filled with 

polystyrene cet in parspex half-space;:; or Vi(.al versa are given as 

Table 25. 

t space slot slot size TrunG. 1st ref. 2nd ref ;r. ]~ 
-

material material width depth coef. coef. coef. lOtJs. 
(in nodes) 

polystyrene perspex 20 70 0.92 0.1 0.03 

perspex pOlystyrene 20 70 0.96 0.08 0.06 
./ 

Transmission and reflection coefficients at filled slots. 
(all coefficients are given with error bands of~.03) 

...... ----..... 
14 

7 

The results obtained with this model are considered further 

in Section 9.10. 
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8.1 

o. Exrr~nI~,;r;~;'rAJ.I vtOF{j{. ---_ .. . 

This section presents the experimental work which has been 

performed vd th broadband Rayleigh wave pulses, of lMItz centre 

frequency, to test the results of tho ntlll1erica,l models which a.re 

prcoented in Section 7. 
As stated previously, the present study w~s started as a 

direc't result of the work by t!organ (1973) at T.e.U., and the 

basic experimentul equipment used in this study, with the 

exception of the transducers, was the same, or an updated version 

of' the equipment which he used • 

.It full description of the basic analogue equipment, transducer' 

drive unit, broadband receiver and spectrum analyser is eiven by 

~:ol"'ean (1913) and Weight (1915), v.-ho built much ot the equipment. 

This equipment, together with supporting oecilloscores, plotter 

and digital equipment fOI'ms the Central Ultrascnics Test equipment 

for the Research Group in Ultrasonics of the City University, and 

it is shown in Figure 8.1. 

The main aim of the experiments was to provide time domain 

signals, spectra and reflection and tranGmission coeffiCients, as 

information for direct comparison with the results of th~ nmnerical 

model. Measurements were performed on a serIes of both aluminium and 

steel test blocks using the methods outlined in Section 5 and 

considered in detail 'in this section. 

This ~ection considers the production of Rayleigh waves in 

Section 8.2, which includes a more detailed consideration of the 

trannducars USt~d in t~.a present stpdy in Seot:i.on 8.2.1. 

Tb~ experimental m~an~r6ments made in the present study are 

presenteu in tV!O groups, firstly, a series of introductory 

measurements u~ing one probe in pulse-echo mode are reported in 

S~ction 8.3, and Becond.ly the m:'tin series of experiL'1t'lnts u~ing 

two probes ou t:t range of geometrj.c3 are reported i~ Section. 8.4. 
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The Central Ul trasonics T~f;t Equj pment of the R€t88arch Gronp j.!1 
Ultrasonics of The City University. 

PIrJURI~ 8 0 1 e ----

For each of the series of experiments presented in Section 8 .. 4, 

following the discussion of the method,used)the basic results are 

given. A comparison of the experimental results with tho3e given 

by the numerj.cal models, and reported in Section 7, is giv€:n in 

Section 9 which includes discussion of the results of previous 

Vlol'kera. 

This section pl'esents a brief revi.ew of the al terl';.ative 

methods which hllV'e been used in provious studies to gener9.te and 

receive Rayleigh waves. It includes Section 8.2.1 which gives a 

more detailed consider9.tion of the tI'E'.nsducera used in the present 

study. 

l<'ivc basi.c methods have berm U8eo in previous studies for 

R:::..yleigh wave rrodu(!tion and detoction c.n(l the different tYP03 
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8.2 

a.. 

b. 

c. 

--~ 

d. Polarisation 
a :.. '/:./2 Plan view of comb. 

/ / / / 
Plan view of element. e. 

~------~U 1r~2b [2~~ E------- ... 3 
Element ~ 

~ ~ ~ ~ "." "" ~ "" ~ , 

'---------.. -----. . .. _ .... _- ---,-- _J 
Rayleigh wave trf.:.nsdl.lcers usi.n~: - a. Contact disc, b. Corner dicc, 
c. \7edge, d. Comb, a.Electroma.enetic inQ.uctio:l. 
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8.2 

of transducers are shown in F'i[!,urc 8.2. 

'l'he first rr:ethod. of Rayle:\.ch wave cxcita.Uon is that uscd by 

Fi:r.-c::::tcne Figure: 8. 2a. •• and 

uses .a I-cut quartz plate coupled to the surfe:.ce of a solid by a 

thin of.1 film. Trro Raylet£h waves ar~ produced with equal 

ampli tudes and the tn3.::dmum energy conversion into the::::€: waves is 

achieved with the plate width (2a) to thickness (d) ratio of 7 1. 

A piczo-electric disc can be used to produce Rayleigh waveo in a 

similar manner. 

The second method of Rayleieh WJ.vo production is that used by 

ran ton (1954), which is chown as FieLlre 8. 2b •• a.nd this uses D.n 

X-cut quartz cryotal plate l'esting 011 :m elastic wedge. '.J:\70 v/eak 

Rayleigh waves are excited and the optimum conversion is (-:chif'ved 
o when the plate is set at 45 , with respect to the wedge faces. 

The third method of Rayleigh wave production U898 mode 

conversion at interfaces and is shown in Figure 8.20. Plastic 

wedges with piezoelectric plates set on the slcping surface 

were used by Minton (1954) and Cook and Valkenbel'g (1954) to 

generate longitudinal (compressional) waves, at the disc 

i'csonant frequency. in the wedge, \":111ch with the eorl'oct wedge 

angle mode con .... ert to give R3.yleigh '(:aves alon; th~ fro::: surtncc. 

The wed.ge a.ngle required to give optimum Rayleigh VlaV09 

production for a particular wedge material/test block ~atcrial 

combination is given by the equation which 1s given as; 

where Vc is the c.ompressional wave velocity in the wedge, 

Vr is the Ra.yleigh wave velocity in the test block. 

8.2.1 

The optirnU!n energy conversion to Rayleigh waves is 8.chicved, 

for a particular wedee angle and ignoring coupling problonJB, when 

the leadine edge of the disc (A) projects to the f:ront of the wedge 

at the point (B). as shovm in Figure 8.2c. »~lk waves ~re also 

produced by a wedge transducer at a level of between 20 and. 30 dB 

down on the Rayleigh waves. 

An alternative to the use of n plastic wedge is to use one 

made of a metal such as copper or brass as this reduces coupling 

problems. However to do this the wave generated by the disc on the 

wedf,e is required to be a ~he~r (tr:mGverse) wave, the velocity 

for which is used in equation 8.2.1 in place of th~ compratsional 
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wave velocity to calculate the required wedge angle. The shear 

wave has a. lower initial energy but with the coupling advantages 

this combination is sometimes preferable. (Shraiber 1959) 

Using Rayleieh waves produced by shear waves in El. copper wedge 

and photoelastic virmaliza tion,II!lll (1975) has sho';m tho co:nplex 

nature of the wav~s generated in the test block, including the 

pI-esence of t'leveral body wavo pulnes. 

The fourth method of Rayleie;h wave production is the use 

of an interdigital comhlike structure produced on the lower surface 

of a disc of X-cut quartz, ao shown in figura 8.2d. (Sokolinski 195B) 
'1'11i8 type of transducer was developed by rl:orzan (1970) and used 

in his crac~ depth measurement studies. (Uorgan 1973) Howeve~ he 

found it difficult to get high enerr;y RayleiGh wave pulses with 

a short period. The fabrication of this type of transdt.:.cer is 

quite complox as it involves either the deposition of the comb 

through a mask. or the photo-etching of a la.yer of conductor 

previously deposited O~ the quartz or piezo-el~ctric disc. 

The fifth method is the use of the recently developed 

non-contact trannducors which use eddy currents in the material 

under the transducer in which a nay10igh wave is to be generated 

to give vibrations which result in the production of elastic 

waves. A transducer of this type due to Frost et al (1975) is 

shown as Fieure 8.2e. This type of transducer has been developed 

for use as a tool to inspect hot metal blocks by Cola (1971). 

8.2.1 Raylei~h wave transducers u~ed in thi~ study, 

The experimental measurements made in the present study were 

performed to determine the 'surface displacements' in the Rayleigh 

wave pulses and not just the time domain signals given by wedge 

transducers with the supportin~ electronics and displayed on an 

oscilloscope. 

In the present study., hlo types of Rayleigh wave transQucers 

were used. Theso arc the longitudinal (compressional) wave wedge 

type and a nlW: broadbD.nd probe, which VlaG invented by Trofessor 

He.rnik while working with the author at The City University. This 

Harnik prche hns subsoql..ently bet::n developed by the author in the 

course of the fabrication and use of the pl"'cbes in the present study. 
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!. The wedge tr~nsducGrs. 

The \'V8ug8 tratlsducers used in this btildy weH: ba.sed vil a 

Panametrics specia.l short rulse probe, used on wedges made to 

match the I:lateria.l of the test block. The compressional wave 

probe generated a 1 jA.sec pulse when driven by a TL.yristor Pulse 

Generator which was found to have a. 0 to 6 r.:Hz spectrum. When 

the compressional wave probe was used with a wedge matched to 

aluminium the pu.lse-echo signal 1l1'ld spectrum obtained were as 

shown in FiGure 8,3. 

a. 

b. 

Amp. 

/unp. 

1.0 

2 psec. 
~~--------------------------------.. ~ 

2 

1 

:3 

...... 
timo. 

4 MH~. 

~--------------------------------~------------.... ----~--~ Rayleigh wave pulse on an aluminiurll quarter Epac9. meesured with a 
wedg~ type transducer in pulnc-echo mode; 
a. Time domain signal. b. Speotrum. 

FIGUm;; B. ~. 

In. the present study the sar.Je com;::>restdonal probe was usc-d 

on wedees to ma.tch it witl1 eitlllirthe a.luHl:1.nium alloy or the.steel 

of the test blocks. 'l'he wedge B.n,~lcs used are shown hl Table 26 .. 
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I r::aleri aJ • 

Ah.!m:i.niulIl alloy. 

L ::.eel (mild). 

Wedge angles required by RayleiGh wave wedge transducers. 

~. Harnik type probes. 

The Harnik probe was invented with the aim of determininG t)10 

vertical component ef the free surface displacements, because the 

time domain wave form c;iven by a wedge transducer is for a Qode 

converted wave vthich has passed throut!:h the wedge before reachi ng 

the piezoelectric crystal, where the electrical signal is produced. 

The probe is described by Harnik (1977), both for constructiorl 

and operat:f,on, and Figure 0.4, which shows the pulse construction, 

is after Figure 1 in that article. Following the production of the 

prototype tran<:>ducer by Weight. for Professor Harnik, the author 

fabricated a series of probes using 10 Mllz thickness discs. ~lO 

discs fQr use in the Harnik probe are required to be thin when 

compared with the wavelengths of the pulses which they are to 

receive if they are to give the true wave form. 

Section AA 

Tungsten loaded 
Araldite block. 

A. 

I' Tungsten I Araldi te 

rzzJ 
The construction of a Harnik type surface Vravc probe. 

ZIGURE 8.4. 
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0.2.1 

In t~c construction of the prototype Ho,rnik probes, tunc:aten 

powder wBsused to 'lo3.d t the Ar;:1ldi te 130 at:; to provide acoustic 

damping for resonant modes. In the later probes, constructed by 

the author, it was found th'lt the main f!ln~tion of th~ ,Maldi to 

block was to prpvicie mass and to prevent flexing of the plate, 

which gives rise to radial mode resonance. ,,;hen 10 I;:Hz resonant 

thicknecs discs are used to receive pulses of 1 UHz waves,the disc 

resonant thicknC'<ss modes are not excited. 

£.. Te?t ]';"!('lB,surernents with Harnik type probeS. 

1. eel'ies of experiments \'Iere performed by the nuthor to 

eva.1uate Bnd if possib16 improve on the performance of the 

ol.'iglual Harnik probe. In these experimE'nts Rayleigh waves were 

generated by a wedge transducer and the Harnik probes were uned as 

receivers. 

The Harnik probe is a line pickup c:.nd it is therefore 
noioh-actionsl and requires accurate aligYL'lJcnt nOl'Toal to the wave 

tt'ain under investieation. To reduce the dirsctional1 ty of the 

probe)the author modified the design and uDed a complete disc 
< 

in the probG which, after being set in the Araldite, was made to 

have a squnre contact area. 

UsinG a cquare contact area, point-contact probeJthe time 

domain signals with waves incident on the disc with eneles from OOto 900 

were measured and the signalS with waves at normal and parallel 

incidence are shown as Figure 8.5. A ten percen't reduction in the 

pulee peak-to-peak amplitude was measured. 

A series of measurements were made to compare the probes of 

lIarnik type constructed by the author with the prototype and wed3e 
probes. 

A wedge probe was placed on an aluminium quarter space and 

the receiving probes were placed in the position shown in Figure 8.6. 

r;~ea.sUl'Om(:llts were then made on the same puls~, the pulse refleoted 
o 

from the 90 corner, u~ine the wedge probe in pulse echo d mo e, 
ufling a llno :rece:l.ver, Handle type t probe constructed by the author 

cnd the prototype Harrdk pl'obt~. Tile three ttme domain signals are 
shown in Figure 8.6. 

It is seen from Figure 8.6 th3.t the three t ran3ducers 
produce different shape time do~ain sienRls and this was 

investi"Dt3d .. The wed,iZe and H8:rnil( tYPfl P,!"Ob('o5 can'l~ot b"" " l:> 0;;> _ _ v expeCtt"o 
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a. 

b. 

- .... .,.,:"'IIV"'.jI ........... ~ ..... 

'"', V 

5 }tsec. 

/."... 
r~-',..,f '!\. I .. _....,.J; 

! 

I 
I 

. / , , 

" ; 

• 

I 
I 
I 
I 
i 

"'--------...... _ ..... ______ ._1I'. ____ ,~ ........ "" ... 1.-, ..... ,.-----... < __ •• _._= ___ ._ ... ~ ........ ~~ . .&n. __ _ 

Time domain siGnals for square contact area Hnrnl k-type prc)hes; 
a. Pulse at nonnal incidence, b. Pulse parallel to dice 
for a broadband RDylcigh m.\.YE: pulse with ee:r. tre frequency ofl Inl?. 

_FIGURE 8" 1;. ~_4._ 
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BLOCK. 

b. 

c. 

d. 

,,\ 
\, , 
\ .. ---.---.,,..,. ... 

B.2.1 

M 

Tim~ dCi:,3:i.n SlI7:l,1~3 for P.aylcd·Sh W3.vG Pl'll.C::; on an nh1.minu:! bloc:'C r 
a. Tru',:,(i.t',cer po:::,it:lO~lS. Pules !"IJf]cc"';cd from cornor as given by; 
b. W0dE? tran~iuccr (pulsc-oc~0 mode)t c. Ha~hik-typa probe, mdde 
by author, do l'rototype lI·'~:r-nik Yl"obe. 
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a. 

b. 

. .,. 

c. 

B.2.1 

. ' 
I ' J'\j-r"'--

,. 

\ 
" 

I 

Ill'. 

I 
I 
I 

I 

Time domain signals for the s,~me Rayleigh wave pulse on an alu::niniu:n 
block in the same posItion as given by; 
a.Prototype Harnik transducer, b. Harnik-type transducer built by 
the author, c. EarnH~ type tre.nsducer, built by z.1.lthur and used 
with an e obo. resistanoe in parallel with the disc. 

£1.Q1!1}E. 8.7. 
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8.2.1 

to have the same time domain signals,as the nedge transducer 

measures a pulce that hUG b:en mode conv~rted and paz2ed through 

the wedge. However two ~arnik-type probes could be hoped to give 

similar sig~als. 

The D.C. resistance across the transducer leads of the two 

Harnik probes was measured and in the case of the prototypo probe 

a resistance of 12 ohms was measured and in th~ case of the 

author's probe, a. resistance of over 20,000 ohms was mea,cured. The 

only difference betwe~n the two probes was in the quantity of 

tunGsten powder used. The resistance across tho prototype probe 

block was then measured and found to be similar to that across 

the leads. It was therefore concluded that the block waG conductin~ 

and acting as a resistance in parallel with the disc. 

This idea was tested using an e ohm. resistance in parallol 
t with the disc in the authors probe. The reoulting time domain 

signals from the::H~ monsurcnlp.nts are shu"irTI as Fig"tlre 8.7. It is 

therefore conclu.ded that when the original probe Vias mf.~dc the 

concentration of tungsten powder used was such as to give a 

conducting backing block of low resistance, which caused the 

pulse shape in effect to be differentiated. 

~Introdllctory Rayletp;h wave experil"'€'ntfl~ 

This section describes the ser:i.E::s 01' expl;?X"lr;Hmts v/hich were performed . 
using a wedge probe in pulse-echo mOd~ prior to the main expcriment8 

which test the results of the numerical models, given in Section 7, 

and these are described in Section 8.4. 

~. Wedge transducer in pulse-echo mode on a quarter space. 

A wedge probe on fln aluminium block is shown as Fieure 8.8, 

and the basic arrcneement of the experimental system is shown in 

the diagram given as Figure 8.9. which inclu,ies the tir.:e domain 

signal with its spectrum for the configuration shown in Figure 8.8. 

The quarter space is the sifilpleBt confjeuration for which 

pulse-echo measurements can be made. HoweverJwhen only n eingle 

transducer is usedl a refer-::nce sienal can only be provided by 

that ~eflected on a configuration such BS the quarter space. Some 

of the possible problecs associated with the u~e of a reference 

reflected sigr.al l4.re !lOW considered. 
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8.3 

., •• 'Q" •• ~ "'le ~Ji t ~'l E~ G.own f3 t ~ rJ, ill A wedge t:·a.n"!l~nGCr on c.il 8.1 urnrnl~in J.v.... I' 

pulse-echo lli0Je. 

FIGURE 8.8 e ----

To investigate the effect of transducer aliGnment with a 

corner, a series of measurements were l'}Cl.cle on a quarter space with 

angles of incidence from 80° to 1000 nnd the time domain sigriale 

were plotted every 21°, and theae are shown in Figure 8.10. It i~ 
seen from the signalB in Figure 8.10 that that there in a region 

of about 2;° which giveo a. urdform response for measurements 

made at a distance of 30 mm. 

In all experimentrtl ultrasonic measurements,where the 

reflected time domain sigx\al is to receive further analysis, 

amplification or to be digitally recorde~ a time eate 10 used to 

select the section of signal of interest. However, in th~ CBEe of 

the application of spectral analysis the correct position And 

length of the gate is important as El. GatE' position or lcnt;th error 

will distort the resultiJ'lg (4pectru:n. If the gate is too narrol'( the 

end of the Gignal can be lost or if it is too vlide, baclq:;round 

noise is introduced which disto:t'ts the spectl"am. 

The effect of the Gate applied to the tlmE:l dOlf,ajn ntf.!;!l:ll is 
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illustrated by the tine domain signals and spectra for pulses on 

a quarter spaca with a. wiJ.r; and with e. lli1.1"rOW gate, as shown in 

Fie;ure 8~11. The optimum setting for the gate width and position 

can only be c~tabli8hcd by the operator ~aking a series of 

measurCl:lents. 

A furth~r variable ·parameter in practical measurements 

is that of couplant thickness. It is important that enough 

couplant is used to give g00d signal transfer but that the layer 

is kept tM.n. It is also important, in the case of single probe 

transducer mea~uremcnts, thn. t Cl. constant couplant thickrless can 

be achieved if measurements are to be ~ade on several test blocks 

and pul~e amplitudes are to be compared. 

There are therefore several problems which limit the use of 

simele probe pulse echo measurements, some of which can be overcome 

by the use 0f a guide on the test block to give transducer 

alig!~ent, making a Deries of weasurellients to set the gate width 

and position and the use of a clamp to eive a constant loading 

and couplant layer for the transducer. 

~. Two transducer methods on the quarter space. 

The problem of the la,ck of a referance signal which is 

experienced in eingle transducer measurements can be overcome by 

the use of a receiving transducer placed between the transmitter 

and the corner of target. The receiving probe then f!1t>asur~s the 

transmitted signal as it passes before interaction and the reflected. 

signal after scattering. 

The effect on the signals on a quarter space, by the 

introduction of Po. Harnik type probe Vias investigated. ~he pulse-echo 

signal of a wedge transrJucer VIas measured and. it waD then measured 

when a Harnik type tran3ducer had been put in position. The resulting 

time domain signals are sho~n as Figure 8.12. The time domain 

signals on a Ciun.rter space 9,S given by a wedge transducer and 

Harnik type probes are shown in Figure 8.6. 
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Ti~n domain signals for pulses on a quarter space, as given by a 
a wedge transd\lcer in pulse-echo mode i n. i!1 nOllaal pulse-cchn~ 
b. when an. Ha:cnik-typc transducer is pla.ced in pesi tiol1 for UGe in 
two probe wude. 
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'I'his nection describl;s the lIIain serios of experilnents that 

were parforned using two probes, EL ..... Gdge transducer as transmitter 

and R H~rnik type probe as roceiver, and to provide experimental 

resul tn to test th08~ given by the ni.1meri~e,l models and presented 

in Section '7. 

The basic method used in the experi:r,ents is descri bod in 

Section 8.4.1. The configuration upon which meat3Uremcr..ts were 

made are s':1own inFigure 8.13, and each is ,:onsidered in Sections 

A. 4. 2 to 8.4.',. The range of experimental blocks available in the 

present study included SOme of those uced by r.lcrr;an (1973). 

... .,.-
7(>77 ", /' // 

I 
1-

Half-space. 

17// 7]/ 
I / 1--

;'~::-~i"­
_____ I 

r-i 
~ I 
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L- __ . 
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Quarter space. Three-quarter opace. 

Down step on a block. 

/77~/" 

Open slot in a block. 

Goometries On which experiment&l measurementB were made 
using RAyleigh wave pulses with 1 I&Iz centre frequency. 

PIGU'2E 8.11 • .".--....--,-.... -

-102-



0.4.1 

The Rxp0riments described in Sections 8.4.2 to 8.4.7 all 

use the basic t~~ probe methods with a wedge transducer as the 

tr'ansmitter- ~Hd a ni:!.J·nlk type probe as the receiver, in either a 

reflection or a through-transmission mode. The basic transducer 

arrangements and tho exp~rimental system used are shown in 

Figure 8.14. The pulse generator, wideband gate, amplifier, 

spectru!I1 alinlyser, the oscilloscopes and plotter are all parI; of 

the Central Ultrasonics Test Equipment of the Research Group in 

Ul trasonics and they have been described by r:orc;an (1973) and 

Weight (1975) and they are shown in the photograph shown 8,S 

Figure 8.1 .. 

The thyristor pulse generator is adjusted to give short 

time domain puls2s, of length about 1)J.r.ec, using a voltac;e of 

up to about 1,000 volts, with a pulse rate of about 750 per 

second. The transmitting, wedge type, transducer and the receivine 

probe, of Harnik type, are placed on the test block in either 

the reflection mode, which i~ shown 8S Figure 6.14a, or the 

through transmission mode, which is shown as Figure 8.14'b. The 

received signa13 are thon pAssed through tllB system shown as 

~igure 8.14. In the present study the wedee trane1ucer had a pulse 

centre frequency of 1 1[Hz and the thickness of the disc in the 

IIarnik probes was for a 10 rmz resonant frequency. 

In the reflection mode the probe detects both the input and 

the reflected pulses so direct comparisons can be made. However 

in the through transmission mode only transmitted signa13 are 

detected so the system requires to be calibrated by measuring 

the input pulse and thon moving the receiving probe to the 

throue;h transmission position to measure the tranemi tt(~d pulses. 

The basic time d.omai.n signals t "vhich are proportional to 

the free surface displacemcnts, are displayed on an oscilloscope. 

The basic signal can be plotted on paper and or used to give a 

spectrum with the E!pectl'um analyser, which can also be plotted. 

The Gystem shown in Figure 8.14 can bE used in Aeveral ways 

to provide data to test the llumerical models and this can be 

based on measurements in either the spatial or frequency domains. 

The 8.\railable methods are illustrated by consid.ering their 

application to study pul~es on a quarter space. 
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(1.4.1 

a. Time domain m8asu~ements. 

l'heref18cted pulse on a ('p ... ~!'l,ri;cr spnce C!111 be n1ecsured by 

using the system in the arrangement shown as Figure 8.14a and 

us:!.ne th.e w10F='bf'!11 9.r'1plifier to Give a co~stant m:lxiltU:: peak to 

poak sigrlal flJ1' both the input pulse and the reflected signal. 

The gate :13 used t(9 select the input pLllse and the 

amplifier setting 10 adjusted to give a convenient peak to peak 

ampli tude on tte oscilloscope. The ,,?,mplifier setting, which is 

calibrated in decibels, is noted (I dD ). 
The cate i3 then moved to select the 1'0flected pulse and 

the amplifier F:ettin~ is again adjusted to give the eame pulse 

peak to peak D,r.Jpli tude as for the input pUlS3. The ar.lplificr 

setting is agair" noted (R c.3 ). The .amplifier settings are then 

used to calculate a reflection coefficient. 

1'he t:cansm1tted pulse on a qU2.rter space can be measured by 

usin~ the oystcm in the arrangemant shown as Figure 3.14b, witll 

the receiving probe on the other surface to the wedge transducer. 

In transmission measurements, the input pulse is first 

measured with the receiving probe in the ~amc po~ition as for 

the reflected signal. The ampltfier js adjusted, as f~r the 

reflection mea~urem~nts, and the amplifier sotting (I dB ) is 

noted. 

The probe is then moved to the second surface and recla~ped 

with the se.me pressure to give the same couplant thickness. Tile 

gate is then adju.sted to select the transmitted pulse and tlie 

amplifier setting is adjusted .to give the narre peak-t.o-peak 

amplitude for the pulse as the input pulse, and the amplifier 

settine (T dB ) is noted. 'I'he E'.mplifier settings are then u20d to 

calculate a transmission coefficient. 

b. Spectral measurem9~ts. 

The method used to give scatteril1g coefficients based on 

time domain signals has one very large weakness in that it is 

difficult to compare two sign~ls whe~ they have different 

shapes. If however the spectra are obt&ined comparison is made 

much easier. 

The pl:'ocerlure used to measure siC':nals. so that scatterint;" 
- • v 

coefficients ca!l be calculRted from the CP '3Ch'::;.s is similar t,) 

that used for time do~ain mea8urement~ except that the amplifi~r 
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is adjusted with reference to the spectral amplitude at one 

frequE"il'lcy in the spcctnlm fol" PoAch mAn slll".?men t. A rA,nc;e of 

measurements can tl~erefore be made at C'lifferent frequcncicG with 

the transduc6rs J n t11t: S8.ilie pooi tions. 

From the valu'3s for the amplifier settings; reflection and 

tranDmission coefficients can be calculated. 

c. The calcula tlon of trc:m8miszion and rHflection coefficients. 

TIle data required for the calcul~tion of transmission and 

reflection coefficients arc the ampl1fit':r s€·ttings t which a,re 

given 1y the methods set out as B. and b. above. 

The runplificr settinGs give a mC3sure of the pulses on a 

logarithmic decibel (dB) scale so that the scattering coefficients 

are not just simple ratios. 

The reflection coefficient is calculated from the amplifier 

settings of I d' and R d' for the input and reflected pulses 

respectively. 

R I = (-)X dB 

mhere X is the drop in signal level, measured in dE 

~lhe reflection coeffici.cnt (R ) is giverl by; c 

Rc = antilOg[-~J = antiloll [-yJ 

where Y :: X/I, 

and hence; 

Rc :: antilog ( '1 + ( 1 - Y » 8.4.3 

A similar procedure is used to calculate' the transmission 

coefficient (T ), with T replacing R in equations 8.4.1 to 8.4.3. c 

d. Backeround noise. 

In the practical mensurements on test blocks it has baen 

found that there is a lot of background noise which is recorded 

in the ti~e domain sienals. These pulses are due to resonanco and 

body waves in both the wedge transducer and the test block. 

The noise level in the time domain aignals can be reduced 

by betwS!en 5 and 10 d'n by the use of a damping matel'ial, such as 

pl~Rticine, on tllB top and f~ont surfaces of the wedge and on all 

the test hlock faces which are not u80d for rnen~~re~cnts. 
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8.4.2 

The propagation of Hayleigh ''''a\''(~fj on a cnooth surf3.ce was 

investigated and both the pulse amplitude and sh~pe were recorded. 

A wedge transducer w[;.s cln,nped to nn 3. 1 u:n in it.:m bar' with a smooth 

Elurface. The bar had a cross section of 30 by 100 mm and was 

JOO mm long, which when used with pulses of' 1 raiz Rayleigh waves 

whicb have a v:avelength of about 2.9 mm gives a good approximation 

to a semi-infinite half-space. 

A guide rail was set beside the wedge tra.nsducer and a Harnik 

type probe was moved along the rail to eiva ~caEurerecntG of the 

pulse shape and amplitude with diBta~ae. 

It was found that for. distances up to about 100 mm (about 

34 wavelengths) . the pulse shnpe remained. constant \Vi th the 

amplitude varying within ;. dB The largest errors in the sYBtem 

were those due to coupling the receiving probe end then moving it 

ana recoupling. 

°3.4.3 RctylF?ir:h W3YP!'l on (lU"'.1't~:r f;~e.ce8. --- ..._-
The quarter space 1s the Simplest configuration for which 

reflection measurements can be made and it is one of the 

configurations used to give reference signals in pulse-echo mod~. 

The pulses on a quarter spuce were investigated by a series 

of measurements which were made with a 1 MHz shor·t-pulse wedge 

transducer a~ the pulse transmitter and in the two probe 

measurements, Harnik.type probes as the receivers. The transducers 

used are considered in dotail in Section 8.2.1. 

a. Preliminary measurements. 

A wedge transducer was placed in pulse-echo mode,using the 

system as shown i.n Figure 8.9, on an aluminium block with Cl new 
o 

90 corner. The reflected pulse time domain signals were then 

measured at several paints along the ed~e and th~ signalB 

measured nt four points are shown ac Figure 8.15~. 

A series of measurements were then made on three diffErent 

aluminium block~ with corners that wcra a. charp, b. sliGhtly 

rounded and c. vrith a corner that had a radius of about 2t ~un. 

The resulting spectra ware p10t t e d end arc shov,'n as Figure [l,. 15"b. 

It is seen from the spectra. chown us Figure B.15b, that RB the 
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8.4.3 
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Time domain signal (a) a.l'ld spectra (b) for input pulse and 
reflected J:ulse on an aluminium qua.rter space. 
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redius of the corner ts illCrE'.:1;:;cd) the high frequency componentE, 

corner "re not rf;fleoted. 

b. Transmission ar.d reflection c(.Ie1'ficients on quarter tpaces. 

Followi~g the prel~mlnarr pulce-ccho mensurementB)u series 

of Rets of I'Aadings based on both cmplitude and spectral signals 

were mado to determine th~ tr8.nsmi~sion and. reflection coefficients. 

The tasie method used was th!lt set out tn Section 8.4.1 with 

the system beirig us~d in both r.::flection and transmission !11ode, an 

sh~wn in Figure 8.14. In the case of measurements in reflection 

mode the tio(} domain sienals and spectra for an aluminium block 

are shown &8 Figure 8.16. 

The l:'efh~cted pulces were measured on both aluminium and 

steel blocko and used to calculato the coefficients ~;hown in 

n'l.ole 27. 'fhe tre.nsmi tted pulse::; v.'et"e also, measured on both 

aluminiui'n and steel blocks, but in the case of t~le IT.easu!'sments 

on steel the pulses suffered considerable distortion and attenuation 

due to surfnce roughness so only the aluminiwll resultr: were used to 

calculate a transmission coefficient a.nd this is sho ..... 'U in Table 27. 

Material. 
Reflection 
coefficient. 

'l'ransmissJon 
coefficient. 

~-A-I-U-i11-i;;--l""l:---~--O-. -37-'1:-.-0-5-""-;' 60 -:~J-"'" 

steel. 0.43'!:.05 
~ ____________ ~ ____ ~ ________ ~,. __ ~.~r~r ___ • 

Transmission ~nd reflection coefficients for puls~d 
Rayleigh waves at 1 MHz on steel and aluminium. 

The larger errors were given for the tram'missicn 

coefficient bocause the probe; when used to mea.sure these eifnal~: 

haa been moved and recoupJed after the measurement of the input 

pulcc·. 

The experimental results are considered further ~nd compared 

with those of the nlmerical models t which are presented in 

Section 7, and thosc of previous workers. in Section 9.). 
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r.~e3.surementG .... ere ma.de on aluminiilt11 blockn t.o cl0termini~ 

transmission and reflection coefficients for ~ three-quarter space, 

which in Co 2700 corner at the; inte:.a."'secii<.·u of tv/v fn:e surflir.::es. 

The Bcattering of Rayleigh waves, on three-quarter spaces, 

was investigated uslnG the two transducer reflection and transmission 

methods, which are ~ho~n as Figure 8.14, and which are described 

for a quartcr.cpace in Section 8.4.3. 

The mea3ureme~ts on three quarter spaces were restricted to 

blocks with sha.rp 2700 corners HS it was found that there was no 

r~flected sienal and . there was less wode conversion to shear 

W3.ves on bloclcs Vii th e'l''';n slight roundine; at the corner. 

The transmission and reflection coeffocients Vlere calculated 

from the pulse amplitude data for time domain Signals and spectra 

for V!BVeS on aluminium block'.:; and aver-age valueD aTe given IlfJ 

Table 28. 

~-""""'----~.\_--""---~' Reflection Trensmiesion 
~oefficient coefficient ~ ______________ ~. _____ • __ na _______ ~ 

..(O.10±.OJ 0.20 :t.05 

Reflection and transmission coefficients for aluminium 
three-quarter spaces, measured with pulses with 1 t'l.Iz 
centre frequency •. 

The experimental re::;ul to, presented as Table 28, are considered 

further and compared with those for the numerical models, which 

are presented in Section 7, and those of previous workero. in 

Section 9.4. 

The down step is the simplest conficuration which has a 

characteristic dimension £l.nd mcaGUl'crnonts were made to invezti
l
'::5.te 

the reflected and transmitted pulses. 

A set of steps in alvlll:i.niu.til blocks we're mD-de with depths up 

to 18 mm. Ths depths were ~ea8ured with c travelling microscope 

and they were found to have depths alo~e the step that were 

constant to ::!:. 005 rr,m. 
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!.. PrelimirLary measurements. 

A wedge trar..sducer \'iith u. 1 M~!'" (3:nffi ,;:~vele:ngth) centre 

frequency was plr..ced on an ahl1ninium block \Vi th a. down fltep f of 

about 1.5 rUll, in pulse-echo mode, at 1:1. range of )0 mm from the top 

of the step. The reBul tir~e !'eflected t:i;~e dornain signal iu sh;;wn 8.S 

Figure 8.17 together with the reflected ~iGne.l for a quarter 

space measur~d with the same transducer e.t the same range. In 

Figure 8.17 the quarter space signal is shown with the tinlC axis 

X2 compared with thc down step signal. 

It is shoYin in Fieure 8.17 that th'3 dCJ\'m step reflected pulse 

is more complex than that for a quarter spane but the signals frem 

the 90° and the 270° corners cannot be resolved in the time 

domain. It is fOlL"l.d for steps with depths up to about 1.75 
wavelengths, even with short pulses, that the reflected pulse is 

o a mixture due to the interaction.o at the 90 corner, en tha 
o 

vertical free Eurface, and at the 270 conl~r. 

k. Transmission and reflection coefficients. 

Measurementn were made in the two probe reflection and 

throueh transmission modes, ch(.)wn in :F'igure 8.14, for a series of 

down steps to cover a ranee of. step heiGht to v.r.,\velE'ngth rA.tios U!' 

to 2. The details of the experimental methods arc presented in 

Sect:l.on 8.4.1. 

It was found that when amplitude data was used. to calculate 

reflection and. transmission coefficients therF] w(~re laree 

variations at a given step height to pulse centre w~veleneth ratio. 

However this 5catter in the results could be reQuced by using 

spectral amplitude data at a series of frequencios for each step. 

Measurements were made in the range of frequencies from~75 to 

2.0 r\~Hz for B range of steps and. the reEultiDg trd.ll:::mis~j.on ond 

refl cct:l.on coefficients are sho .. vn as FiGure 8.18. 

From the experimental poin4plotted in Figure 8.18 it 1s 

seen that for the reflection coefficient plotted against ctep 

height, in wRv~leneths, there is an indication of a peak in 

the region about O. 6 h/~ cnd a trough in the reeion near q 9 h/1-. 
The general sh~pe of the relationship iE shown by the d~shed line. 

It is also ElGen in Figure f3.1 F.:i that tl:ere is significant scatter 

in the rp,sul ts for VG-lues of 11/y.. above about 0.65. 

For the case of the resultn for the tz-anmnission coeffici.ents 

which are also shown in Figure 8.18~ it is seen that the valuen of 
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the coefficient reduce an the step heJght to wavelength ratio 

valu~ inCl'OHSe3, with a small hump in th~' ,'3"r,erAl trend t which 

is shown as a dashed line, in the region of .75 hl'f • 
The results shown as Figure 8.1 a ul',j consider'ed further 

and comparec. \<Iith the nurr.erical results nnd those of previous 

studies in Section 9.5. 

The up st~p is a vertical rise, which when combined with a 

down step forms an. open slot. Thereforp. the :study of the waves fit 

an up step should provide an ullderstnnding of those which occur at 

the up side of a wide slot. 

a. Reflection measurements. 

,The two probe method that was used for the three-qu~irter 

space, which is described in Rection 8.4.4, was used to measure 

the reflected and input pulses for a series of different heiGht 

up steps and the restllting reflection coefficients were the Dame 

as that for an aluminium three-quarter ~pace, which is given in 

Table 28. 

~. Transmission measurements. 

The transmitted pulses at up steps were 1nves~igated using 

the probe arrangement shown in Figure 8.19a, and the Eystem in 

the confjc;uration shown in Figure 8.14. 

Tho time domain signals given by the Harnil:.t;ype probe at 

a series of positions on the upper surface at several ~hallow 

up-steps. It was found that at the top of the step there waG 11 

pulse with a complex time domain shape and that the energy in 

this pulse increased at the probe was moved away from the corner. 

The path by wieh the energy was reaching the upper surface was 

investigated by placing damping m~terial on the surface of the 

test block at the corner to remove the Rayleigh wave ccrr.ponent. 

Energy was still d.etected on the upper surf~~ce and a pulse was 

found to £,ro';'{ as the probe moved away from the corner. 

To test the idea that energy wan rca~hing tha upper surface 

after moda-converting into a shear wave and psosine through the 

-bulk material Rnd then rewode-cnnvarting at the upper sur~ace; 

measurements were made on a 6rr:t1 (2 w;:.velene:ths at !t]-:z) Up-Gt,:;p. 
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C B 

~ __________________________________________ ,._. ____ • ______ ~,-_. ___ • _____ m~ij 

Experimental RayleiGh wave pullJes a.t up steps. a.. Ba!:dc trarlsducer 
arran8e~ent. Time domain signals for transmitted pulses at 6 mm 
step!) on aluminium blocl~o, for pulses with a 1 KHz centre frequency. 
b .. For R at point B, 10 mm from corner. c. for R at point e, 5 mm 
from corner. d. For R. ut top of come:>:'. 

T<"IGlln:~ flo19 • . _- .... -
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Wi th the probe arranGement E:10vm in Fi.gure 8.19a the tirr.e 

domain signRls received by th~ Harrdk .. type pr'obe in positioDf; 

B,C,and D were plotted and they are shown as Fieure 8.19 b,c, & d. 

At the point B two pulses of Rayleigh waves are detected. When 
. 0 

dc.rr;p:i.ng rne.tcrial ,".as placed ut the 90 corner the pulse n. \7&3 

removed from the rd..enal recorded at pojnt B. At the pOint C, which 

was a distance of about 5 mm from th'1 corner, the body v,~we, which 

reconverts ~o s Rayleigh wav~ was ]08t from tho reoorded time­

domain signal. At the point D a complex signal ~s recorded. 

The point where the mode-conver·ted signal waG detected, 

measured from the top of the step,w8.s detectod for puls0s on 

blocks with deep steps and the resulting distances alo~g the top 

surface, with the ~tep heiGht are shown as Table 29. 

~------------~"---·-··----------~~~--------·~~I· 
step in 

mm. 
Point where 
mode converted 
pulse dlJtected. 

'1.-,... ...... nu ........ ._Ul'·.~ 

6 5 m:n 

12 9 rmn 

18 15 mm 
I 

Distance from top of step where mode converted pulse pul:;e 
was detected on upper surface, using a pulse with 1 MUz 
centre fl'equency c.n alu~iniur.1 blocks. 

TABLE 2c). .. " ..... 

The results for pulses of Rayleigh waves at up steps I'lr-c 

considered further lll~d compared with tho~e of the ntL'11erical lilOdal:3 

and previous studies, in Section 9.6. 

The open slot is an :\.deal:1.sed crack confi.c.;u2,-a tion and so the 

resul ts from its study should proV':!.a.p. 8. base for the t'l1derote.nding 

of the sc~tterine of Rayleigh waves Ly real fostures. 

~. Preliminary measurements. 

A wedge transducer with a 1 Wi3 centre frequency wa.s uce d in 

pulse-echo mode, \"i th t:1e exp:::rir!(~nt3.J. sYiJtcm s':10\\'n in li'i[,',.H'G 8.9 t 
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to give the time domain signals for the pulses reflected at 90
0 

corners and a 1.01 mm deep a...'1d. .85 t:1ln \'Iid~ open slot. Il'hc re8ulting 

time domain sigl!al s arA shown as }'igure 8.20. Por slots with 

depths up to about 1.5 wavcle~gth8t even with short puls83, it is 

not possible to resolve the ncatterin~ centres in the time-dumain 

signals and because of the pulse-shape changos on reflectio~there 

is considerable scatter in reflection coeff~cients based on 

'impl1tude data. 

h.S1ot depth measurement. 

The depth of a slot normal to n free surface can, at least in 

principle, be deterrrJinGd by nlcCl.surements cl': the reflected llnd 

transmi tted pulses. However in prac tice Ct.'npli tude based measurementa 

are subject to large experimental errors ( up to about 20 ;'i,). 

A method. of depth measurement which is not subject to 

amplitude errors is to measure the travel ti:x.e of the mOde .. converted 

e,heal' wave frum the slot tip. (after Silk 1976) A further method 

is to detect the pulse on thc upper surface and measure the 

distance from the corner where the Eihear pulse vanishes. l'his is 

uzing the re3ults of the up step measurements, given iti Table 29 

to calibrate the depth of t~8 feature. The distElIlce fl'o:n the 

top of a slot where the shear wave mode conversion was det€'cted 

was uf3ed to measure the depth of a known 5 mJ! deep and 1 m:n wide 

slot. The results are presented ad Table 30. 

~ ________________________ ~ ______ ~ __ ~ __ .w~ __ ~ __ ~~NM~~ ___ ~~ 

Shear wave detected, I Deptn I Actual slot depth. 
distance fro~ slot. from up ~ 

~ stepresul t3. :, 

-;::-___ -_°

1 
__ " '--;:;::-l~-I 

"-___ ...-____ ........ ~.)o .. '?m.._.rt'~ .. Qi.~"'lR<~ .. ~Tltl .. ""'"..,~.::.il .... -:'l1:tftW:'e • .:A.~~".i/i 

Depth of a slot measured using mode conversion point of a 
shear wave from slot tip, with up-~tep calibl'ation. 

The results for open slots are consideri'~d further, toge liner 

with thoAe from the numerical models end previous studies, in 

Section 9.7. 
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a. 

b. 

~~----------------~t~l~ 
5 }bee. 

8.4.7 

I 
I 

Experimental pulses of Rayleigh waves rtl€asured on alumlniUlll blocks 
in pulse-echo mode with a ~ed~e transducer of 1 ~~z c~ntre 
frequency; For the reflected pulse on, n. a quarter space. 
b. from a 1.01 n::r. deep ani 0.85 mm wide op'!:n slot. 

!~JGURE 8.20. ----_.-
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9.1 

2. 1 J12.!.ro dt le ti on. 

This section reviews both the numerical model results, which 

arc presented in Section 7, and the eXperil:1l2:utal measurements, 

wh:lch are presented in Section 8, r;',gde in the prer.ent study and 

compare~ the results with those ef pr~viou8 ctudies, where they 

exist. 

The confieurati,ons considered :tn this s€:ction are shown in 

Figure 9.1, which also indicates the section in which they al'~ 

considered. 

Based on the experience gained with Fay1eieh w~veB i.n the 

present study the author proposes, in Section 9.11, a development 

of the methods for defect characterisation using Rayleigh waves 
• which makes use of the new transducer invented by Harnik (1977) 

and used by the author in the present study. 

I '- - - - --. 
Half-space. 
(Section 9.2) 

I 
I 
1- __ _ 

- _I 

Down step. 
(Section 9.5) 

Quarter space. 
(Section 9.) 

ur:- step. 
(S0::tiotl 9.6) 

~::"; '"1 
, I 

I I .-------
Three-quarter spaCE 
(Section 9.4) 

Lf; 
-~ -t 

Op€:n slot. 
(Section 9.7) 

~: -J~~,II ..,. i. ~..:--' ~ ; 
- - - - - - -- '- - - - -- J i 

Block. Velded quarter spaces. Filled slot. I 

(Sl)ctlon 9.0) • __ :~~~:M::2..m ... _~~~c~~:~O) ~ 
C0ufieurations for which Rayleigh wave propag~tion and sc~ttcrine 
ha~e been investigated in the prC3cnt study. 

F'Jr,mu~ C). 1 " 
--.----~ 
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a'" ;J. I.. 

'l'he half-space 01' free !:m:rface, Is e. confiGuration on which 

Ruyleigh wave propa[';:J. tion ir:l of prime impo:r·bnce. This is because 

it is one of the fAw cases for which Rayl~ieh wavo propagation is 

described analytically and experimentally. The succssful 

modelling of W~7CS in this confieuration is therefore a prerequeite 

for the modelling of all other configurations. 

a. 4.nalytical theory. 

The (\::...~de theory which has developed from the work of Lord 

Rayle1.eh (1 t:8~» specifies that for a hOEIogcneouE', isotropic half­

space the propagation of a Rayleigh wave pul~e is non-dieperBiv~. 

This resulto in the propagation of a pulac the shape of which dOC3 

not chang~ with distance travelled. 

An introduction to the Elnalytical tht':ory for the case of 

harmonic TI5.yleigh waves was given in Section 2.3. _11th extenf:iOm3 

to pulse theory being made in Section 4.4.1 and App~ndix H. 

b. Experimental results. 

In the present study a RerieD of experimental measuremcnte 

were made El.nd these are reported in Section 8.4. For a,lumin1wn 

blocks with smooth surfaces it was fourl,l that with 1 EHz centre­

frequency pulses of Rayleigh waves the waves wou11 travel over 

distances up to about ~O cm (about 4 wavelengths) with no 

systelnatic attenulltion or pulse-shape chonge. It v:ac found that 

in t~is region th:J.t larger changes in pulse amplitudt;: occurred due 

to coupling errors than due to attenuation. 

For pulses of ultraeound it is found that typical values for 

attenuation are of the order of 0.02 toO.OG dB per mm. In the 

present study over distances of about 10 cmla drop in signal 

ampli tude of 5 to 6 dB was measured. 

When longer wavelengths are uBed1Pulses will 'propasate over 

rough surfac~s. as is chown in the work by Cale (1977) who used 

electromagnetically induced Hr:1ylcie;h WEiVOS ut between 25 and 35 kHz 

on hot bill ets. 

£. Numerical results. 

Th~ rcsul t!3 of preV'iou~-~ J'turr:erlcal \Vori, by r,~unqsinghe (1973), 

for the proI!agation of a Rickel'-type pulze of :i!ayleigh waves on D. 

half-5pace, has shown that when using a pseudo-n0~e fonnulation 



o ? j.-

for the boundary r.ocle3 • at 35 nodes p~r viJ.velencth • that f.'or 

diDtances up to 5 wavelengths, in the fir~~ h~lf-wavelength below 

to be random and in the rClnee of wavenurobers trom 0.5 to 2. lC/K 
o 

they were found to be less them 2 }0. 

It has been fOL1nd by !.;unasinghe (197)) thCl. t the hig!ler 

frequency components in the pulse move at a velocity lower than 

the Rayleigh wave velocity and the velocity error again3t frequency 
• 

curve is shown as Figure 9.2 •. It hc.s alsot.een found, by other 

workers &nd in the present study, that when using the pseudo-node 

formulation for the boundary conditions that tr..e larger dietortions 

occur in the vertical component of displacement. 

-----.. ~---'-------.. 
Velocity error. 

% 
- 1.0 

0.5 

I 
_____ '-_-_-_-_---,_-Cl-,:,.-5--, -_-.... -_--_ ...... -_-.... -v_..,1""'ir-.~O~~""""-"""""-~~~:d 
Velocity error found in range of normalised waVf> number values by 
Munasinghe (1973), usine pseudo-node scheme. 

E.I.rmrm q. 2. 

In the pre8ent study two numerical mod':zls of nicker-type 

pulses on half-spaces were produced. The first mod~l, the results 

from which are presented in 8ection 7.2.1. used the SRme pseudo­

node formulation for boundary nodes as ~(:unasinehe (1973) and. the 

second mod.el, the results from which are pres€nted ill Gection 

7.3.1. used the new composed second order formulat:'on for 

the boundary nodes, ufter lIen and Loewenthal (1976). 

Using the pseudo-node scheme it was found that the errors 

in the present study at 32 nedes per wavelength were much the 

same as tho3e reported by ~u~a3inghe (1913) when u3ing 35 nodes 

per wavelength. For the model runs performed ul:ine; 16 nodes per 

wavelength the result;::; of sp~ctr8.1 me3.::~1Jre:l.:cnts were found to be 

very in~ccurate. It was also found that there were chane~~ in 
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pulse spatial ehape that only remained within 10 % of the value 

for the corresponding point on the input ~ulse up to about 100 

iterations. The errors of all types were found to increase when 

higher Pois!on's ratio materi~l data were uS9d. 

Using the new composed second or~e~ fonnul&tion for the 

boundary nodes and 16 nodes per w<1vcltmetl1 :a was found that the 

pulse shape Cll3.ne;eS were minimal over diste.nces Uf) to about 4.5 

wavelengths, for which measur~ments were made. Over this diatance 

it was a100 found that the pulse position, compared with that 

calculated from the wave velocity and the model time increment, 

were in agreement to better than 0.5 %, and the obvious lag 

present in pseudo-node models was absent. 

i·Conclusions. 

The nUrneri.cal model produced in the present study, uGing the 

p.ew composed formulation for the boundary nodes has be~n f'ound to 

give non-dispersive propaeation of pulsed R3yleigh waves using 

half the number of nodes per wavelength, 16 as compared with 32, 

required in previous studies. This rem.llts in the use of a quarter 

of the number of nodes for a model of the scrr.e size half-8pace, 

measured in wavelengths. Also the new second order sche~e eives the 

pulse distance travelled in much better agreement with that eiven 

by the wave velocity and the model time increment, within 0.5 %, 
and without the pulse position lag found with pseudo-node 8chemee. 

The model with the new composed formulation for the boundary 

. nodes provides a model that will give nondisper,:,.i ve propagation of 

pulses over distances qf the sa.me order as t110sa for experimental 

measurements. 

The quarter space configuration has a 90° corner at the 

intersection of two free surfaces. The propagatlon Rnd scatterin~ 

of Rayleigh waves on quarter spaces has been considered bv a 
~ 

numter of workers a.nd a summary of their resultc, with those of 

the present study, are presented as Table 31. 

The values given for the reflection and transmission 

coefficients that are presented in Table 31 are plotted against 

Poisccn's ratio and ~hown a.s I~igure 9.3. The symbrJls llf.:e·l :1.11 

Figure 9.3 to indicate the source of a result are the f!r2t lettern 
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~-------------------.. ~---------------- .•. ------,----------~--------
Source. 

a. Theoretical 

1'01. 830n • s 

ratio 

Mal & Knopoff (1966) 0.25 

I Viswl).nathon et aJ. 
( 1971) 

V1swanathan & ROY 
(1973) 

b. Experimental 

de Bremaccker(1958) 0.17 

Knopoff & Gangi (1950) 0.266 

Viktorov (1962) 

Pi1ant et a1 (1964) 

Haydl (1974) 

Cuozzo et al (1977) 

" 

" 
" 

Present study 

c. Numerical 

0.,34 

0.25 

0.2 

0.,34 

0.,34 

0.,36 

0. 29 

0.34 

Alsop & Goodman (1972) 0.25 

Munasinghe & Farn.ell 0. 245 
(1973 ) 

Cuozzo et al (1917) 0.17 

" 

" 
Present stuo.y 
(pseudo-node model) 
(full.results are) 
(given in Table 15) 
(Section 7.2.2. ) 

Present study 
(Second order model) 

0.25 

0.,34 

0.24 

0.29 

0.34 

0.24 

l'!"2:.L"l ~rnissio11 
coeffid ant. 

(I Ah 
• -r "" 

0.76 

0.34 

O.G,3:!.OG 

0.731:..02 

0.70 

0.67 

0.64 

0.60 :t.1 

0.645 

0. 64 ~ .02 

0.61-:: .0,3 

0. 72! .. 0) 

0.47:!: .03 

0 .. 64't .05 

o 59 ~ .05 

I !{eflcction ~;; ltod'? 

coefficient. conv. 

0.40 

0.56 

0.56 

0.)8 :t. 04 

0.27 !. 02 

0.65 

0.25 

0.36 

0.25 

0. 33 

0.35 

o. )0 

o.4,3'!:.05 

0.36 ±.02 

0..26-=-.02 

0. 27 :t .02 

0.42 "t.O) 

Cl. 39 :t. 05 

0.56 ~ .05 

0.49 ± .05 

Loss. 

12 

58 

46 

41 

10 

43 

47 

35 

0.43:!:.05 50 

0.47±.05 44 
---------.------------+---------~----~--~----------~----__ __2 

T'ranSlni:::n:;ion al~d reflection coefficients on qt:arter spaces. 
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Coefftcieni.. 

0.8 _ 

0.7 

0.6 _ 

0.4 _ 

0.3 

0.2 

0.1 

+ 

+ 
+dB + 

MFt 

0.2 

+ 

-;" 

+ 

t 
+ 

Cuozzo curve 
'l.'ransmission 

9.3 

Cuozzo curve 
Reflection. 

Experimentnl. 
• 1'ranCl!lissicn 
... RE;-flec t:l.on 

+ Numerical 

Experimental ond num.erical transmission and reflection coefficients 
for HQy1eieh VfFtVeS on qnartor spaces. Hesults are shown without 
w:.cert::dnty which is up to about :t 0.5 on all re:::ul ts. 
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of the no.me of the author of the source pz.pe,t·. 

n. Analytical studies. 

Although. as was shown in Section 2.4~2, there have been 

several attempts to provide n~ analytical dC3cription of the 

scattering of R.:3.yleic;h waves on quarter flr!lc.:~'3 and calculate 

scattering cosfficients,no full solution h~& teen provided. 

In a recant paper by Ottaviarni (1971) she has commented that the 

analytical solution of Rayleigh waves on a quarter space presents 

almost insurmountable difficulties. 

The weaknefJS0:3 in the analytical theory are due to the 

complications that scattering occurs net only at the corner but 

also at a section of the vertical surf&ce to a dcrth of about two 

wavelengths. A.lso at the actual corner, the boundary conditions for 

both free surface apply/which causes the problem to be over 

conditionsd. 

b. Experi,mental studies. 

The previous studies on the quarter space fa.ll into two 

groups which ar-e firstly t those which make nmpli tude measurements 

to calculate scatt~ring coefficients and, secondly, those whlah 

visualise the waveD in transparent models. 

From the results of the amplitude measure~ents, listed in 

Table 31 E:.nd shown on Figure 9.3, it is Ele~n tha.t there is 

considerable scatter. Also direct comparisons betwaen the results 

of the different studies is complicated by the diffGrcnt nethods 

and materials used. 

From the results of the present study, !1~ reported in 

Section 8, it was found that scatter can be i.n.trodl,.tced. into th~ 

results by ouch factors as transducer alignment n::l:l the sharpness 

of the corncro. 

From the visualisation studies, such as that by IIal1 (1976), 

it is seen that the basic T'fltt?T'n for the !Il0de, con'lE!rt.~d. ll~\lsGS \:-as 

compressional t:l.l1d shear waves, which raJiate from the corner, PS 

waves which. are due to the mode conver~lon of th-e cO!1!pressional 

wave at the frt'lf! surfacE' and transmitted ar,li:l reflected pul sea of 

Rayleigh waves. 

In only one study, that by de BrfJrlaecker, wns an eatima. te Qf 

the energy in each ot the f.:hear ond comprecsiom~l waVt:1S 17.ade, end 

be e;avG figu'res ef 2G ?~ ano. 23 % of t!:l:;: input pulre c:.crey ~.n the 

shear and comprssGional waveD respoctively. 



9.3 

c. Numerical studies. 

~lere have been several modele produc~d for Rayleigh W2ves 

on quarter spaces and the results of these are presented in 

Table 31. 

Two of the .previous models have ~o1l3iciered semi-continuous 

Rayleigh waves e.nd these are the fini to elcr,lent study by Alsop e .. lld 

GoodmllU (1972),whiCh provided a transmis~lon coefficient)and the 

fini te difference pseudo-node study by Cuo~zo et al (1977)J v,110 

produced the curves for reflection and tr.').nsmissj.on coefficients 

against Poisson's ratio which are shown in It'igure 9.3. 

Th~ only previous study of pulsed Rayleigh waves is that by 

Munasinghe (1973) who only calculated ccefficients with 

polystyrene (0":1 o. 24) data. 

In the present study two computer mociels were rroduced, 

one using pseudo-node formula Hons after r.:Ul'~e.sinehe (1973) and 

one with 3. cecond ordcr formulation after Ilan and 

Loewenthal (1976). 
Tho pseudo-node scheme Vias used to calCl.llato coefficients for 

a ranee of material data with Poisson's ratios from 0.2 to 0.36 

which are shown in Table 15. Tt is found that th':l main f'lctol's which 

influence the results are the basic finit~ difference fonnulation, 

the nwnber of nodes per wavelength used, the size of the pulGe, 

the distance travelled before the corner al1d th~ Poioson's ratio 

of the data used. It is also found that the errora are larger for 

higher roj.seon's ra.tios and tha.t the largor errors are found in the 

vertical component of displacement. 

The second order scheme was used with 16 nodes per wavelength, 

as opposed to the 32 nodes per wavelen3th used with the pseudo-node 

scheme, to calculate coeffi.cients with polystyrene end alt.'.rnin:it.'.m data. 

The results for the two schemes were found to have overlappine error 

bands. 'l'he second scheme achic:ved considerable SBvj 11gB in cou:puter time. 
d. Conclusions. 

The general pattern of scattered waves on quarter epaC6s in 

now well established and confinn(;d by the rosul ts er the preo0nt 

study. 

Al though there is considerable E'cc"tter in the results for 

quarter spc~ce~. both. in previous and the present ctudy, it is 

no~ posnible to provide a moQel ef tllis interaction ~nd with 

further model (l.nd experimentp..l me:lS~rementB it w:)uld a.ppeal' t~'1at 

scattering coefficients (:8.11 be c:stablhiht"d. 
··?07-



The three-({uarter space is two fr€e surface which intersect 

at a 2700 corner. There have boen sev'c::'lll studies of this 

configuration and they have used ana.lytical, experimental and. 

numerical methods. 

The results for tha tranzmission and rt)floction coefficients 

fot Rayleigh ~~ves on three quarter spaces are present&d &8 Table 32. 

&nd the results are plotted again8t roisson' s ratio in F'iC;ure 9.4. 

The point plotted in Fieure 9.4 are :1.dentificd tJy tho first letter 

of the name of the author of the source papsI' given in Table 32. 

-Source. Poisson's Tran::::nission ;1eflecticn % mode 
ratio. coefficient. coeffichmt. conv 

Knopoff & Gangi (1960) 0.266 0.28 0.1 
lQ.§':~ 

91 

II".nl & Kncpoff (1965) 0.25 0.25 

r,lunasinehe & Farnoll 0.245 0.28 0.09 91 
(1973) 

Cuozzo et al (1977 ) 0.17 0.16t.02 O.09·t 01 

" 0.25 0.15'::02 0 .. 11 :t.01 I .. 0.)4 0.13~O2 0.15 .t: 02 

Present study 0.34 0.20.:1:;05 0.10.:1: 0) 

I (Experimental) 
Present study 0.24 o. 24.t. 0) 0.09±.03 93 
(pseudo-node scheme) 

0.34 O.22:to 03 0.10 t .O) 94 

Present study 00 24 O.22r.0) O.09±.O3 

~ (second order scheme) 
0. 34 0. 2)-*. 03 0.11=.03 94 

- --<_ ..... 
TranDmiesion and reflection coefficie!lts on thrC'e·-qu~n·ter spaces. 
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rr.:Y. 

• Knopoff &: Gungi (1960) i 
x Cuozzo et al (1977) 

Coetficien t. 

0.4 

0.3 

0.2 

0.1 

0.1 0.2 

, 
0.3 

.,1,. Mal 8: Knopoff (1965) 

... Mun9.sitJghe & Par-neIl 
(1973) 

)( Preseut study. 

0.4 

Cuozzo curve 
(reflection) 

Cuoz~".o CUX"·~·~' 

(transmission) 

I -tr_ 

0.5 I'Oi5son's 
ratio. 

Reflection and transmission coefficients for Rayleigh waves on 

three-quarter spaces plotted against Poisson's ratio. 
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a. Analytical studieo. 

Several pl'evio·;,.w ~tuui&8 h~\ft:l con~ltle.r-::lri pulses en a range 
o of wedges, including the 270 corner, but there have been no 

~ . 
studies on just 27-Qw corner. There is no prevlcus study which has 

provided a satisfactory set of sc~.ttering coefficients. 

b. Experimental studies. 

~'he experiMental results of the two otudies by Kl"i"poff C' .. nd 

others e..nd the present work are in 8;ood gan~ral aereen::cnt and 

there is far le5s Bcattore in the results 011 this configuration 

than those on quarter spaces. 

c. Numerical studies. 

There have been two previous studies using numel~cal methods 

and these have both used pseudo-node finite difference ~ethods. 

That by Cuozzo et a1 (1977) considered '3emi-continuous wa.ves with 

material d:lta for II ranee of Poi!Json's r£l.tiotl, the resulting 

curves being shown in Figure 9.4, and that by r,;unaainghe (1973) 

who considered pulses on polystyrene three-quarter spaces. 

The rasults from the pros~nt study are in good agreoment 

with both the previou~ experimental and the Munasinehe (1973) 

numerical results. However the Cuozzo et al (1977) results for 

transmission coefficient are not in eood a.ereem~nt with other 

workers. The differences between the Cuozzo et a1 (1977) re~u1to 

and those of other workers may be due to tbe use of semi-continuous 

waves or the use of a nonuniform grid in the finite difference 

calculations. 

d. Conclusions. 

The results of all studies, with the except10n of that by 

Cuozzo et al (1977), are in good aereement. All w')rk indic.a tes tha.t 

there are large, about 90';b, energy losses from RoylEJiC;h waves at 

this type of corn~r which was found to reduce considerably in 

experimental I!leasurements with eYen slightly rot.-nded corners. 
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The duwn step is the simplest c.onfiguration which ca.n be 

expected to give wavelength dependent scattering. It iD a 

configuration v,hich has been conddered in all the fields v:here 

Rayleigh waves are of interest and the reults of previous studies, 

together with those of of the present study are shown a.s 

Figure 9.5. \,hich considers wavelength to step depth ratios from 

0.1 to 1.5. 

a. }~alytical studies. 

Vario~s theoretical stUdies have a~teropted to describe the 

scattering of Rayleigh waves at steps)but it is found that in 

general satisfactory results can only be given for steps with 

depth to wavelength ratios less than about 0.1 or much larger than 

1.5 which are the limits of interest in the present study. 

T"ne study by lr::a1 and Knopoff (1965) has used a GT.'i~en· e 

function mathod to calculate a transmission coefficient curve 

which is found to be in good A.greem~mt with experimental re~ml ts 

and this is shown in Figure 9.5. 

b. Experimental studies. 

The results of one previous experimental study, with steps 

in aluminium bloCl{s, a.re presented in Figure 9.5, and thesO ar~ dvo 

to 'Frost et a.l (1975). It is seen in the reBults due to Frost et a.1 

(1975) and the measurements of reflection coefficients in the 

present study that there is considerable scatter especially for 

step height ratios over about 0.6. 

There have also bsen photoelastic visu~lization studiec 

of pulses scattered at down steps, including that ty Dally and 

Lewis (1968), and it is f0und that the shape of the scattering 

coefficient curves arc in good aereement with those shown in 

Figure 9.5 and the scattered pulses of shear and compressional 
o 0 waves are generated at the 270 and 90 corners respectively 

o 
The shear wave from the 90 corner is also shown, as ie the mode 

converting compressional wave, the PS wave. 
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c. Numerical studies. 

An approximate variational method has been applied by 

McCarr and Alsop (1967) with t~le data for I'oitw(m's ratio::. 0.4, 

and this has been found to atve quite sood reBultE for step depth 

to wavelength retios up to about 0.25, but it becomes in~reasingly 

inaccurate abOVe this value. 

There have been two previous numerical studies using finite 

difference metho('lC to model Rayleigh waves at down steps. They 

have both used pseudo-node schomes for the boundary nodes and that 

by Munasinghe (1973) h3s used polystyrene data with Ricker type 

pulses and that by Cuozzo et a1 (197'7) has used quartz da.ta D.nd 

semicontinuous RaylE:igh waves. 

The scattering coeffj.cicnts for the two numerical studies 

are flhcvllt in Figure 9.5 together with three results by Cuc."zo ot al 

(1977) for the reflection and transmission coefficients at step 

depth to wavelength rationvalues of 0.6 .. 

The results for the reflection coafficients given by 

Cuozzo et al (1977), who used semi-continuous wave!) and a grid 

that had different size increments in different regions, are 

consisto.ntly low when they are compared with those frC>in prevIous 

studies and the results of the present experiments and model 

results. 

d. Conclusions. 

It is found that the results by Munasinghe (1973), with 

polystyrene data, Frost et al (1975) using aluminium blocks and 

the present study are in general agreement with the major 

feature3 shown in the experimental measurements being followed 

in the results of the model. The oscillation I V'fhich j.8 found to 

occur in the end of the reflected pulses in the model with step 

depths between about 0.6 and 1.0,19 found in the experimental 

pulses and the mode converted shEiar wave pulses sh·:"Yn in the 

numerical visualisation plots are in eood agreemflnt with the 

pulses shown in the experimental visualisation studies, cuch 

as that by Dally Rnd Lewis (1968). 
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The up ntep confiC'lra.tlon ,qal thouS!! '.vlien it is cO:1bincd with 

the down step forms a ':vide open slot, has rcc~i ved little 

attention in pI~tlous studies. 

There has been r.o pl'evious cnalytical s tuci.y of the up step 

and only one model using using finite difference methods, that 

by Cuozzo et a1 (1977), for semi comtiouous waves, was found in the 

literature. 

The study by Cuozzo et a-1 (1977) rnodeled the up step u<.>ing 

a pseudo-node boundary node for.mulation and data for quartz (~=.12). 

Also only values for the reflection coefficient are give. and these 

are shown in Figure 9.6. 
In the present study both experimental measurewents with 

pulses at up steps on aluminium blocks Il11d model results, using 

alwninium data, were made. The results uf the-se me8.8Urelnents are 

sho'm in Figure 9.6. 

It was fOll.'!d that for shalloVl up steps, the resnl ts for 

which 8.re shoy;u in Figure 9.6, the domanant fea.ture was the 

2700 corner 'l'/11leh ca.used considerable mode conver-sion eno'Z'gy loss 

from Rayleigh V:::l'~es. 

Measurements were also made on de~rer steps, with step height 

to wavelength ration greater than 2.0, and the tip, 2700 corner, 

mode converted shear wave pulse was clearly datected and shown to 

cut the COIner and remode convert into Rayleigh waves on the upper 

surface. The presence of this pulse has been nJentioned by other 

workers for cracks and it is used by Silk (1976) to measure crack 

depth. 

Conclusions. 

The present study experimental and model results have filled. 

a g:lp in previous knoweledce and shown that cont raT','l to statemeuts 

by several authors, the enerf!Y scatterod by all. up s'l.€p 01' the 

far side of a crack does not just pnss alonG tho surface but cuts 

the corner to increase the IiaYleic;h Y!9Ve enerey detected as 

the transmitted pulse. Aloo the scattering at the 2700 corner 

shows tha.t the d~tectiou of energy reflected by features en the fal' 

side of such a corner is difficult if not impossible. 
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9.7 

The opel1 slot i.5 an ide~lir:cd cr .. ::.cl~ c.cr..ficul'ation. However 

. there is very li ttle published work on th-J s~a ttering of pulses 

of Rayleigh waves at such features. 

Ther~ is in the literature, to quote r:.orean (1973) tno 

satisfactory model for the reflection (of TIayleigh waves) from a 

slot'. 

There i.s only one published set of reflection ant! transmission 

coefficients for pulses in ah1minium or dural and this is due to 

Viktorov (1967) and it is shown in Figura 9.7. 
There have been visualisation studies of pul~es at open slots 

. including those by Reinhardt and Dally (1970) and Hall (1976). 

In the present study a series of model runs were perfol~ed with 

aluminium data and a range of 0.125 waveleneth wide slots of 

different depths. The results of these modal runs are shown in 

Figure 9.7. 

The general sha~e of the reflection coefficient curve is 

similar to that for down steps and for model runs with wide slots, 

(width larger than .5) wavelengths) the pattern ef reflected 

pulSeS shovnl by nuruerlval visualisation i~ almost identical. 

The mode converted pulse used by Silk (1976) was detected 

both experimentally and seen in the numerical models. 

It was al~o found that the model results were in general 

agreement with the conclusions of the experimental civil engineering 

study by Woods (1968) in that a slot of depth-to-wavelength ratio 

of a minimum of 0.6 was required to reduce the pulse amplitude 

to 0.25 across the trench (slot). The obser'latiOll by Woods that 

there is energy focusing or magnification of the displacements in 

the region in front of the trench (slot) and on the front side wall 

of the trench (slot), were confirmed in th,~ model llumerioal 

visualisation displays. It was also found that the width of the 

trench, between wavelength to width ratios of 0.13 to 0.91, had 

little influence on the scattering by the trench (~lot). 

Conclusions. 

Morgans stateme~t, that there is no model for waves at an 

open slot t in no',." not truG and the rooJ.el resul tc given in the present 

study are in good a.grecr>!<lnt ... :1 th the previous p'..lbliBhed \'1ork. 

The model results have also:> Bhown that it is almos~ imposs1.ble to 

inspect the :far cide of a elot (cr.<).ck). in reflecticn mod.03 t 
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due to the domanant scatterinG at the 2700 cornern. 

The rectnnc:ular block, .... hich is common in b")th the laboratory 

and in structures has received little attention ns a scatterer of 

elastic waves. 

The quartel~ Hpfj,Ce, as considered in Section 9.3, ha.s been 

studied eztcnsively and in the experimental work by Rajdl (1974) 

he has considered pulses at the end of a 'bar' of GRllium 

arsenido. Also in the studies by Hall (1976) USill~ rhotoela.stic 

visualisation it in seen that complex patterms of made-converted 

pulses occur. 

In the present study, as reported in Section 8, the detection 

of experimental pulses can be made difficult due to backerol~ncl 

noise in the block which 1s considerably reduced by placin~ 

damping material on the unused surfaces of the testl.ilock. 
, 

There appears to be no previous nl~arioal model of the pulses 

an a block. In the present study the time development of tho 

modG converted pulces that occur is follo'i'!(;:cl in the numerical 

visualisation displays presented in Section 7.).7. The input pulse 

of Rayleieh waves is found to mode-convert at the first 900 COl~or 

as for a pulse on a quarter space and the reoulting mode-converted 

pulses then move through the block and are scattered or reflected 

at corners and free surfaces. 

A model has therefore been provided which ShO~3 the rapid 

increase in the body wave pulses present in any piece of material 

of limited spatial extent. 
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Raylt:igh W1:lve~ on wcldeJ. qUi.:l.l·~t:.t· ';Pi.J.CUS hav<:I been considered 

by several worker's with vB:ny:tnt; degrees of success, In the present 

study a ne .... formulation for tl'J13 fre e f:.urface/ hltp.rfaG('l node is 

pr3sented t in Appendix G. and this was tested by compa:dson of the 

results it gave with those of previous studies. 

The previous studies are those by MeGnrr and Aleop (1967), 

who used M ~l,pprox:ima te var.'ia tional method and made a sarieB of 

experimental measurements and that by ~unasinghe (1973) who used 

the same data as McGurr and Alsop a.nd pulses Hayleieh wc.ves in 

a finite difference schc~e. 

Pulses of Hayleigh waves were considered to pa.ss from 

pOlystyrene into perspex and vice versa. The model used in the 

present study considered the came media and the results are 

presented in Table )3 • The transmission a.nd reflection of th3 

puIs'es was measured in terms of the ratios of the amplitudes of the 

verti~al component a of displacements. 

Source. r?olystyrene to p(~rspcx l;e'r's;:~:' ~~ .. PO~YS;;~-:::l 
-- - ........ -.,...I·~efIectec1. Trrlr:smi ttc':l! :{aflected.. Tr::':Jc::li ttc:d ~ 

::~:::m:n~::OP (1967) -'~:::::' =-~,~ ·7.:~:':~~1 

Numerical(variational) 0.8) 1.16 I 
Munasinehe (1973) 0.131.02 0.81~.02 I 
Present study 0.08r.03 0.90.1:.0) 0.07!O) 1.12:t0)' 

(oo, __ .... _ ..... • ____ 'D ...... ,., ... UrM ......... " ... IIJ; ... ' •• _.~.It:I'II"_ ............ ~ • IHi1OL_M .. ~~ICIIII' ... ~ .. N:\U~"'~,~ 

Ratios of the amplitudes of the vertical components of displncem€-nt 
of the transmitted e.nd incident and the reflected and incident 
pulses of Rayl~igh waves on pOlystyrene and peropex welded qU3rter 
spaces. 

• 1lBTJE 33. 

The results given by the model developed in the present 

study are in good agreement with those by provious wor~cr3. Also 

the results in the present ctudy were achieved using only 16 nodes 

per wavelength, co:npsrcd with the 32 used by r'::una::dnghe (1973). 

This resulted in considerable savings in the computer core required 

end the job ~Jn time. 
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9.10 

9.10 RavlejRh waveR at filled ~lotA. _ h. I ,..._ _ ____ _ 

The configul"atton of a fi.l1ed slnt. vd.th n rectangle (If 

polystyrone set in a half space of perspCK und vice versa. has not 

been considered IJ:ccviously eithel' in an experirnental or num:;rical 

study. 

In the pres~nt study slots filled with perspex 1.25 wave­

lengths wide and 4.3 wavolengths deep in & polystyrene half-opa6e 

and vice versa were cOllsidered. 

The results for the tra.nsmission and reflection coefficients 

for the slots arc presented as Table 25 and those for welded 

quarter spaces of the same material are presented as Table 33. The 

scattering coefficients were comrarcd and the results are given 

in Table 34. The transmitted pulse in the case of the filled slot 

should have an amplitude the same as a pulse that has paD sed 

across two welded quarter space interfaces. 

- . - . . 

------,-,i{c{i-ecBon "Fi st reflection "--. 
weldej itc at fill~d slot 

Polystyrene _ parspex 0.08 i 0.10 

pel"spex - pOlystyrene 0.07 0.00 t t:=:==:=-- '-'---.-.:'::::':'=::::::'::= .. -~'-::":'::'::::::::;;::-;:':.;:.":'::;~ -:':~.-=.=="-. --~-'. 
Usine wJplitude ra·tios 'Transmittod pulse I 

t-f-or t's ; . 8.~pl.! t(l~_e_'_. _____ ~_ 
Polystyrene in perspex 
McGarr & Alsop (Exp) 0.99 

tt (Hum) 0.96 

Pl'esent study (filled 0.92 
slot) 

Perspex in polystyrene 

McGarr & Alsop (Exp) 0.99 

" (num ) 

Present study (filled 0.96 
slot) 

~ 

Transmission and x'eflection coefficients at filled slots and the 
corresponding results for pairs of welded quarter 8paces. 

The results given in T~ble 34 chow general agreement between 

thoso for filled slots and combinlltj.o.'1S of welded qua.rter spaces. 

Tha only other result in a pre7icus study that cqn be 

comp~rod with the filled slot i~ the conclusion by Woods (1968) 

that sheet-wall barriers ~ere not BS effective a9 oped trenches 
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2. 11 

the author proposes a method of surfece feature chnracterinutlon 

with sev61'al u.uVHriL9.g~s over existing m?thodsl 'r!i1ich cculd be used 

wi th ei thar timf:l dor;.lain or sp';.-ctrA.l analysis instrur::cll tation. 

The l'8.f:lic arrangmnEint of the prorosed cquip::18nt is shcv;n in 

Figure 9.9. The mattod is a deifelopmcnt of those prenented b~l' 

Hudg~11 et 8.1 (197,0 and Silk (1976) " .. hlch uses the e.dvan·tcr;3f'! of 

the new na!'rd.1~ (1911) surface wave receiver. 

The b.9.sic transducer arr'angeme:1t v/oulrl consis t of a V,'€:6GC 

typo tr,mcG.1.lc&r as the transmitter and two Ha.rnik- type pTO bes to 

act ns roceiv9rs. 

The vv~dge tran5c.ucer should be a short pulse trarJomi he!' that 

has a centre frequency about 1/10th of th~ resonLlnt frequr:l,e.y of 

discs usecl :!.n tbe Harnik-type probes. 

Ideallsed expected time-domain signals for the h'nJlBducer 

system are shown in Figures 9.9 a to d. Trace ao if.> the caltbration 

arrangernen t wi ththe three probe::: in lino on a ~;urfaeEl of th(~ typu 

to be investigat€;d but without defects. '111118 arrang.:r.10::1t wcul::l l~,() 

ue:;ed to c~;.librate any tir:1C l'n3;:t3uremcnts ti) bl) lm:de !:'.nu to fix the 

separation of the wedge and receiver 1. Receiver 2 would be 

A-rranged so that it could move along the surface jn Ilnc with tho 

wedge and the fixed receiver. 

Trace b. would be for the case of a s~.allci'l defect with only 

a single r~flected ond a single transmitted pulse detected. The 

amplitudes of those pulses would vary with defect depth. 

Trace c would be the expe:cted trace for a defect with a depth 

of about two pulse-centre wavelengths. A tip diffracted pulse would 

be detected and the two CO:nP01')0:tlts of the tran,:llr.i ttcd pulso t d\'Hl 1.0 

the Rayleigh wave that follow:) the surface and the mode conv(:r-ted 

shear wavo from the defect tip .::eparate. 

Trace d is the ~xpected trace for a deep defect with the 

three components in the reflectt".;. rdL.'11al du.~ to th.tl tip shear wavo, 

the reflection from the first 90° corner c.r..d the Rnyl (>1. eh wave 

reflected back from the cr<:!.ck tip. the tr:o componGlJ ts ill the 

trammitted pulse would separa.te in the ti?:le aom.s.ill. 

From the infora1::4.tion B.'{1111able in tho~e stgnl-lls,d(:fcct 

depth MeaGUre~ants should be possiblo. 
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10. 

1 o. CmWJ,L)STm~S. -- --_. __ ...... "'----

The finite difference method has been applied to a range of 

nGVI problems; those whi.ch occur in pulsed ultrasonic Rn.yleif,h wave 

non··destructive testing. The results of the- models have provided 

both quanti tati v~1u..'1'leric3.1 results and visual information about 

a wide range of configurations. 

The de'Telopment 'of Cl. range of new second order formulations 

for the boundary nodes, including that for the free surface/ 

interface node in welded quarter spaces, has extended the range 

of problems which can be considered and the accuracy of the results. 

The use of the second order formulations at 16 node/:: per wavelenGth. 

compared with the 32 nodes per wavelength used in previous studies, 

has resulted in considerable reductions in the model computer 

core requirements and job run times. 

For the half, quarter and three quarter spaces, steps and 

op~rtalots,additional results and understanding have been provided. 

For Rayleigh waves on welded quarter spaces thp. new formulation 

presented has reduced the nu:nber of nodes required to model a 

given size space to a quarter of the previous requirements. 

The models have been extended to consider the new configuratio~s 

of the block a~d the filled slot. 

The supporting e;..;:perimental measurementu he.ve rceul ted in 

the proposed combined method using the advantages of the new 

Harnik (1977) transducers. 

The pov;er of finite difference modelline, which gJ.ves 

quantative understanding fer analyitically intr3.ctablc problems, 

has provided results which are valid in all the fields where 

Rayleigh waves are of interest a:J.d the present stud.y provides a 

firm base for extendine the work to cC'l'widcr mora complex 

configurations. 
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11 .. 

The rrezent study ha.s only started tlw application of 

finite diffcrance methods to the modelling of pulsed ultrasonic 

wave problems, linked with nondestructive testing. The c.pplication 

of the basic methods used in the models iu this study need not bo 

restricted to applications that l);Odel nondestructive testing 

configurations; they have poseible applications to an nIcost 

infini te range of ViB,ve propagation problems covering all the 

subjects diccu8~cd in Section 2, geophysics, seis~ology, civil 

engineering, nondestl~ctive testing e~d electronics. 

\\'i thin the wide range of possible areas for Sl.1sr;estions for 

further work those given in this section are restricted to three 

groups. The first group of possiblo studio El are those which woulcl 

improve or extend the basic numerical f!chemes. The second grc·up 

of possible studies are some of the possible straight for.vard 

applications of existing models and methods to nondestnlctivo 

testing l1n}::ed problt1Pls and the third group of possible studief.:J are 

some extencions of the models to consider more cowplex 

configuI'ations, but r6mainine linlced with nondestructive testing. 

a. Basic n~nerical scheme improvements 

The basic l1umerioal method is dopender~t on the developm~nt 

and use of finite difterence formulations which descries motion at 

points (nodes) within tbe structure under study. There are two 

b3sic limitations to extonding the use of finite difference 

schemes Elld these are ~;1e lack of finite difference forr.:mlations 

for a particular type of nodo, such as the tip of a 30° ~edca and 

the lack of formulations for many nodes that are accurate find 

stable forlllaterial with.high. Poissont~ ratio. above ftbcut'rr:,; .3.-
Possible work would ba to extend the range of types of 

nodes which have finite c1ifference formulations, including 

further t'ork 011 the formulation for nOl'l-90o corners d~e to 

lIsn (1977a) and the development of new formulations for interfaceD 

th!lt arE~ n.~ither non~,a.l or p2.rallel to the bs,sic grid. 
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11. 

A furth~r possible atudy woul1 tc to dove lop second o~der 

o 0 
stabili ty, for ;,j-.lch nodeo nfl tho£~e e.t 90 and 270 corners. 

b •• Further a.pplIcations cf existing schemes. 

This g'!-ou.p of suggestions is for further application of 

existing models or the development of models that use mainly 

existing material. 

One possible set of studies in this area would b9 to perform 

furthor work using the existing models for both open and filled 

slots, with different combinations of width and d?pth and 

with different material data. 

One extension to the study could be by considering the 

interaction of body waves with surface features, usine existing 

boundary ccnditlon formulations. 

£!.. Extensions to model more complex confit',uratioIls. 

The basic nodal formulations form buildinz blocks v1hich can 

be combined in many ways, to give models of very complfl;: eystems. 

The extensions to more camp] ex s~>'3t€mF$ cnn be achievp.d in tV!O 

ways, either by the development of a particular type of model 

or the construction of a cornplelC system from the various basic 

nodal formulationa. 

One possible example for extending the study through a 

series of configura·tions would be from a nayleigh \'laVP' pulso on a 

block; to a pulse on a block with a slot in it; to a pulse on a 

Tshave either with.or \dthout slots in it. 

The direct construction of complex confie;urations could 

consider layered confiGurations, with either surface or body wuvcn, 
o possibly with new formulations for non-90 corne}'::: and interfoces. 

Within the basic method there is no requirc~ent to use 

Cartesian type coordinates nnd models have been made of 

cylindrical and spherical geophysical configurations using 

cylindrical coordil'late syste:ns. (J..1tcrl:irm Gc I~al~a.l 19;0) T'h;;; use 

of cylindrical coordinate systems could be extended to model 

some cylindrical nondest~lctive testing configuraticnc. 

d. Ex-ceri.ru8ntal meaSt.lremellts~ -. . 
In addition to the developments of the numtrical modelp. 

further experime~tal studies could ba developed. A series of 
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11. 

experiments could be p0rformocl to u:;e tl-,e vr.'OljO~-:;(:Ja cOli1tinr:d 

tru.nsducer to investi[~3.tc both op(m l'.;.nd fil1ei slots to provi::le 

data for testine; the model results. 

The Ctlt~:;cstions m~1.de in t:lis s~ctioi.'l. are by no mco.nr; an 

exhaustive lint t ·but could fonn the baBin fer- :i..m!;diate oxtensions 

of the present study. 



A. 

There are [J. wide ronge of different elastic i;aves which art) 

often known by the nrune of their discovc:rer and th8sehave particular 

combinations of components of displace~ent. Elastic waves in Bolids 

can be divided into three classes according to where they propa6ate 

and these are body waveo. surface WElve!!! E:.nd interface ,,{ayes tend -

some of the waves in these clas£es are nen, consid~red. An extended 

-treatment of ela.stic waves is given DJ' several authors including 

Graft (1975). 

EODY W.~ 

These are wn.ves which propagate throngh the bulk ot a mo<1iurd. 

Compressional waves. 

Shear waves. 

\ 

This type of wave h~a only a longitudin~l 

component of diaplacement, i~ the direction 

of propagation. 

Thoy are also known as; 

Longitudinal waves. 

P (Primary) waves. 

oCwaves, atter the e~~bol given to their 

velocity in geophysics. 

Thin type of wave has only a transver.sa 

compon.ent of disp1ace1';lent t nor-wa1 to the 

direction of propagation. 

They are all30 known 8a; 

S (Secondary) wc.veo. 

flv:'.wes, after the oymbol given to their 

velocity in eeQphysi~s. 
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A. 

mn11ACE WAVES. --- -

i,8 confined to a. region ne:lr a free surface. or surfaoes t Vii th the 

enorgy pr-JP~Gating parallel to the free sllrface and dec!:'tyine 

rapidly as the body of the medium ic. penetrated. 

Rayleigh wavos. 

Lova waves. 

Le.rob waves. 

n~!llill"ACE WAVE!}'. 

This type of wave is a two dimensional l'is,YC 

\11 th only a lonei tudinalcomponent of' 

dieplacement in the direction of prop~G~ti0n 
and a tranGveree component of dlBplt'.!:emer.t 

nornml to the free r,urt'ace. This wn,ve call 

also be considered as an interface Y,ave 

with the second medium a gas or vaouum. 

ThiG type of v;ave is a trnn~veree shoe.r wave 

trapped or cuided by a sUTfnce layer. 

These propagate in thin platos 

These are waves thr'it occur a.t the bound.:?.ry betwe€n1 two nedja,. 

which may be in different phases and their prope.gation is confinoJ 

to a region alo~~ the interface, the enerey in these waven deca~~~e 

rapidly with distance into the bulk of the madia • 
. . 

stoneley waves. 

Brekhovskikh waves. 

Rayleigh waves. 

Tb.e69 are the type of interface waves th"l.t 

occur at an interface between two different 

solids. Their existence i~ governed by 

differences in the shear wave velocities 

between the two media. T1:e range ot' ex:istcllcd 

is considered by Ewing et nl (1957, p111-3) 

Z'hi3 type of "Iave vCCU1'S at a c.olid/lio.uid 

interface CI.no is also known a.s a Gchult wnV2. 

This type of 'Haves con be consj der(;Q to ot" 
the flolid/gas or vacuum intarfQc~ ",ave or a 

surface wave. 
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B. 

'lYhere e..re three forms of data c.icpla;r in corr.mOll uue :l.n 

ultr~30nic nOndt~8truotivc testing and th!~se arc known aB A. 13 lL'ld 

C se cm I s. A outline of each type of display iD given in thle 

appendix and further details are given by cvny aathors including 

Krautkr~l~neY' and Krautkramer (1969). 

pulse 
gen. 

This is n onc di~cnsional display for a pulse ech~ system. 

It is illustrated by Figure B.1. 

t I ~J ~c 
trans- /; 

I 
A B ~-ducer time 

test 
block 

A Scan type of data displuy. 

FIGURg B.1 

This is a dioplay for a pulse ecbo eystom uoing a single 

transducer which scans across the test piece in one 

direction. It is illustrated by Figure B.2. The sizf# of 

echo I'ecorded relates to the dirncnsiom; of the ooa.t terse 

output on film 

---- --~--
J 

A B c A B c 

D Sca~ type of dat~ display. 

FIGr.:~E B.2 - ---
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test 
block 

B. 

This type of display 113 formod. by ci th'3r 1Ii·.)ving a 

transducer e.cross a cpoci:ncn or 'I'ice VC2':'. The epatin1 

vnriatiolls in tho tre.nsmissiv1ty to the ultrasonic 

beam appear as h~lf tor-cs en recording paper. The 

pooltion as shown on the rElcordin~ paper r..;lateu in 

acme way to ~he trallGducer position. It is il1uAtratcd 

by Fieurc B.3. 
output on film 

tranctlucer I. S~~.n 
~.,--

(~'! / 
'---- L 7 - - ---I 

Seen 

C Scsn tYP9 of da.ta dir;play. 

FIGi];~B B.; • .. _,._-------
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This appendix lists a ranGe of media, with somo material 

constants and wave velocities, which arc of interest j.u the 

work reported in this thesis. 

c. 

The data presented has been collected fro!"!l a ran{!;c of 

sources, but unless otherwiso indicated the values gi.ven are due 

to Bradfield (1964). 

~?"'~';tj_a, -.., ............. >M.-aI' :.a:.lo.~"" 

!I~aterial 
roi3son'z D~ns~ty 
ratto. ~ kc;/m 

r,~etA.l~ 
--'" 

(M) Aluminium 0.34 2700 6422 3110 2906 .48 

DuralllIn1.n 0.345 2700 6398 3122 2917 .488 

Copper 0.34 8930 4759 2325 2171 .48 

TitaniuUl 0.36 4510 6130 3182 2958 .51 

Chromiwn 0.21 7160 6608 4005 3655 .606 

Steel(mild) 0.29 7850 5960 3235 2996 .54 
l~n-metC\l!2. 

Glass ,crown 0.22 2500 5660 3420 3127 .6 

Quartz 0.17 2200 5970 3765 3410 .63 

(A) Pcrspex 1220 . 

I 
1 

I 
~ 

(A) Polystyrene a.245 1080 

(K) Concrete 
.. ~_.-.c.a. t............"..---..~"11 

2360 1370 1280 .58 

i9.~-=-_,_.~~~ ~~ .. J 
Data for some cO:::J!non metals and non-m:::tuls. 
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(G) Granite 
(Rockfor~ ) 

(G) Quartzttic 
sandstone 

( G) Dunite 

reClteal. - .. - .. 
(K) Bone 

(human 
tibia) 

0.243 6050 

0.1 i 3 6080 

0.262 ,8050 

4000 

.3)60 

U 4000 

~ 4570 

I 1970 
,11 

Data for some geophysical and medical media. 

where; 

(A) McGarr and Alsop (1967) 

(G) Gutenbere Ed. (1951, chapter 4) 

(K) Kaye and Laby (1962) 

(M) Munasinehe (1973) 
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'1'hi6 l:\.pp~ndi.::r. presents the bc.sic differel1':::c forms 'Uf';$d ul1d 

the ~ccond order centred differenoo formulatlcns for the bol.l'l 
v 

node. The basic coordinates und coordinate system used are as 

shown in Figure 4.1. 

The t)e.sic difference forms Ul!':ci in the f(n;·J~'J.lHtion or. the 

difference formulations are obtained from the ~['.;',rlor Del:-ic3 

expansion for ElM;,11 ~hif'ts from a cenLral point lJ(i,j,k) tmd the 

fu..."lct1on for displacements is gt ven by Chisholm cnd i~;J),'l'in (' 9C5) 

as; 

+ higher order terme. 

where d. h e.nd s are the incraments in tILe thre!: coord1na to 

directions X" X2 B.nd T. 

D.1 

D 

By application ef the equation D.' to the node r(l,j.k), in 

the gerieral CllRe eives thd sta.ndard dJ.ff~r(;;ncc fO:::'!,lB w:-d.ch, '\hon 

given in tha saMe notation £'.3 r,:unaoir:L:hc (1973) [;.;cc; 

Q) ~ ( 1 • j , le ) ~ d ~ lL ( i ~ 1 of j ,le ~ -1- (S u ) • Q ( i t j ,le ) _ d:l_ -1 e:t1. ( i -~ +. (; ( Cl 2 ) 

;):, d i _1 eCi' di ed1 _
1 

0ied D.2 
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D. 

2 d 1!,(i,j,k) 
;::;. 

d i • h j • Q ( i t 1 • j + 1 , k ) +. blt. h j" 1!. (i • j ,.1 ,k) 

I ---------------

_ d
i

_1 .h
j 

.Q'< i-1 ,j ... 1 ,11) dj:Sh.Q.( 1+1 ,j ,k) + bcl.bh.1!.( i, j ,k) 

---------+ -- . ._-
d i ·d.h j +-1 ·1i . di+1·d.hjohjt1 d i ·di -t1· h j.h j ..,.1 

di-t1obh.!l( 1-1 ,j ,k) _ eli oh j +1• U(1 ... 1 .j-1 ,k) ,..Ed.hj+1o U( i ,j-1 ,k) 

---- -. -d i od.h j o h j t-1 d i +1·d.h j .h di ·di +1·h j o'h 

or di+1ohjt1·Q{i-1,j-1,k) " " + O(r.d}+O(bh}+O(di")""O(h.~) 
J 

D.4 

di .'d.hjoh 

where d = di + d i +1 ; h = h j t' hj+1 ; 

and symbol O( ) denotes order of. 

These difference forms, given az equation~ D.2 to D.4, 

simplify when restriction!), such ae tU1ifo!'!!1 cp~t1!l1 or ti:r.u st.apz •• 

are added, and the forms of these relutions with the t!:1ifol'lU 

grid restrictions are given as; 

d lL(i,j 'k)~~[' y"Ci+1 ,j ,k) - U(i-1 ,j,k)] + O(di
2

) 

d X
1 

2d 

d2.!!.(i,j,k)~2-rl!.(i,jtk+1) - 2g(i,j,k) + 1!.Ci,j.k-1>]i- OCs
2

) D.6 

d T2 s2l 
.d2U.(i,j'k)~-2-.[Y..(i+1,j+1'k) - Q{i-1,j1'1,k) - Q.(l-t-1,j-1,k) 

'() x,vX2 4 dh 

+Q.(i-1 ,j-1 ,k) ];- O(d
2

) + O(h
2

) D.7 

11he siGns of the components fo)" the mixed derivative are aB 

shown in Figure D.1. 
• 

-.,-----
I ... 

• I • . 
Signs of cbmponents .for mixed derivative. 
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D. 

The E'tquation for a body noc.e t vii th unifo!":::l spatial and time 

incrC:Jffisnts, is given bJ' Bubstitutic.n of equ:-iti01:S ef type D.6 una 

D.7, into the basic equation of Dation in '3n olfin'tic sclid, which 

is given as c~lations 2.3.2 Bnd 2.3.3, and UFon m2nipulation gives; 

D.8 

where Fp(Q.) is ~m explici t expres~ioll, th3 exact fom of which is 

given 'ty .A:ltermcn and Loel,~enthal (1970) The full fOIm of cqu:ltion 

D.G when written in the notation used tyr.~ullasinehe (1973) is; 

C _ .... (V 2 0 ) 
-- s ., 

o V ... 
c 

B _( 0 --
V 2 

c 

V 2) ~ 

o 

Due to the rapid decay of di3plac~ments bQlow a surface in 

some studies of Rayleigh waves, inoluding that by l.!unaoinghe (1973) 

a nonuniform gird form io used v,'hich is ghren ~s equation D.10. 

The nonu..."liform grid form is also used in the studies of pOlygonal 

surfaces with co~pressional waves by llan (1977h, 1971b). 

Alternative formulations are pOGsible, u::;;:lng higher ordor 
~ < 

derivEt.tives c.ncl er usine lp,me constanto In the pJ.cl(;e of vclc~ities 

ucing the relations given in Saction 2.3 for velocities in terms ,. 
of the I,,"'l .. -ne constfmts. 
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D. 

The equation for tll1ifom Urna and r,oauuifonn sPdtial grids; 

~(i,j,kt1) a 2.£{i,j,k} - Q(i,j.k-1) 

+ s2{2..A rQ(ii:~;'.0J -. .¥~t? ,:] + ¥(:.::.:j.:k)lJ 
L d1+1·d di ·dit1 died 

.,... 2 C [¥ ( 1 , ~~\,~) - ~ i • j t Jr} - .¥ ( i t j.: 1 ,k >] 
h j +1.h h j .h j _1 hj.h . 

[

di .~~.~(j.+1 t jt 1 ,k~ + ~:.hj :£(1, jt 1 ,~: - l\1't1. hj.!I.( i-1 ,j~~ ,1: ~ 
di+1·<r·hjt1·h dl·dit1·hj+1·'h di ·"d·hjt1 ·1i 

+ 

di • di~1 .hj .hj~1 di • d.h j .hj +1 

dl·hj+1·~(i11,j-1,k) 

dit1 • tr.hj."h 

- Sd.h j +1·g(i ,j~~ ,k~ 1- di~1·h_j_ .. ~.!I'<i:' ,j-1 ':)lR 
di·di+,·hj.h di·u.hj.h JJ 

D.10 
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This appendix presents the finl te difference fOl':n'J.ln Uon~:l th~,t 

arc uscd to calculate displncements at pDeudo-nodea outcide the free 

surface of a medium and allow application of the body nodo 

fonuulation to the boundary node. 

The two pseudo-nodo schemes which are presented for nodes ~4t 

free surface::: arc both obtained fI'cm tha bOt~fjclary condi t1.ons for 

the free 5urface which are presented in Section 2.3. The first 

sohe;nc, which t<.ses Centn'ld. Diff~X'ence U.PP1'oxiu!dtions ";;'.5 ol'igiUH.lly 

presented by Alterman and Keral (1968) and is given hore in 
I 

Appendices E.1.1 and E.1.2. The Becond SCh08~. which uceD One-sided 

Difference approximations was originally presented by Altermall and 

Rotenberg (196C]) and is given here in Appendices E.1.) and E.1.4. 

Both schemes have been used by a. number of worl:ers. 

E.'.1 Centrpd Difference ~cheme for hori~~ntal free Bcrf~oe. _. - -----.. ------1'---

The node configuration for the node outsid~ thB top 

horizontal free surface t node Pt is shown in l~iC;'..lre E~ 1. c.nd thr~ 

explicit expression for the displacements ut this node (ll(i,j-1.k» 

is obtained from the free surface boundary condition, tha.t the frf:'o 

surface is stress free, which is given EtS equat:l.on 2.3.10 and here 
a~i 

E.1.1 

wher3 T12 .and '.£22 are components of the Cartesian stress tensor 

which is giv~n as equation 2.3.8. 

The dJsplacfil.tent vector io ohtainod by substitution of 

difference fO~lS in equation E.1.1. 
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where ~1 -r 0 10/r] 
Ly2/r 

- !r(i-1 ,j ,k) 1 
.J 

E.1.2 

r = d/h;for uniform 
2 Grld. :: 1. 2 

Y = 1 - 2 (V Iv ) 
El C 

The right hand side of equati')n E.l.2 is a linear conbinatiNl 

of dlnple.ccments inside or on the bou ... "ld.ary of thi3 Bolid. 

The nodal confibllraticn for the node out3ide the totto:n 

horizontal fre':.:' surfncc, tlode Q, io sho,'m in l"igure E.l t and the 

explicit expression for the displace~?nts at this node (Q(i,j+l,k» 

is obtained froM th'i! G8.!Ile t>oundary conditions as a.re 'llssd in the 

case of equation E.1.2. 

The re~ulting cc.uation is given us; 

Q.(i,j+1,k) =. y"(i,j-1 ,k) - ~1 [ y"(it1,j ,1:) .. Q.(i-1 ,j ,1:) J E.l • .3 

whore ~1 is as for equation E.l. 2. 

X1 

~ V A(i,j ,k) 
-;""J~/"'" /...,·""":7.-<i:'t-7..,....7"../..,.· ...... /O:-/~· 

• P(i,j-1,k) • 

.. "Q(1,jt1,k) 

Node arrangement for horizont~l fro~ surface. 

li.1.2 Cantrca Dtffr:1'(,7100 ~c.he~0 f(\r v<lrttcal f)"!'1" ~tlrfpc~. -------._ ..... _--- .--. --
Similar ~xpres~ion3 to tho~e for the nodes outsido hc~izontal 

free surfaco8 are obtained for tho C~DCS of vortical frse Durfacec. 

The boundary conditions for vertical freo curfacea cun be 

expressed as co~pcnents of the Cartesian 5trc~3 te~aor\equation 2.3.8, 

which can be written as; 

E.1.t.. 
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E. 

']'he nol!e configuration for the node outside 8. right hl'nd 

free surface, nOCA S, is sho't'in in Ficur0 E.2, a;-td the equation for 

the displacementH at this node (S(l+i,j,k» which 1s obtained fro~ 

equation E.1.4 can be writ~en as; 

where E., :;. [0 - ... 

r 

B..."ld other parameters are aEl for 

cquution E.l.2. 

As in the case of horizontal boundaries the same bOUllds.ry 

condition applies for the other vertical free surface and the 

explicit expression for the displllcemcnts at node T. shown in 

Pigure E.2, can be written S Q· .... , 

where ~2 is aa for equation E.1.' 

!. A(i,j,k) 

"S(1'-1,j ,k) 

T(i-t,j,k) 

B 

Node arrangement for vertic31 free surface. 

}<'IGURE E. ?~~. 

£.1.6 

• 

Using the some boundary condi ti on !.l as given in Appendix E.l.1 

but with the substitution of one-sided differenct;l forms in the 

place of centred difforences the explicit expression tor the 

displacements at node P, can be written ec; 

g(1,j-1,k) = ~(i,jtk) - E.1.1 

where 
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B. 

but with tho Bubstitution of one-sided difference forms in the 

place of centred differences the explicit expression for the 

displacements at node S, can bo written aD; 

!!,(i+1,j,k) :: l!. ( i ,j ,k ), ,t l2 [ 1!. ( i , j -1 ,k) - !L(i,j-t1 ,k) ] E.1.8 

where ~2 : [0 
~ 

:aJ ; ond a is as for equation E.1.7 

Similarly the explicit expres~ion for the diaplacements at 

node T can ba written as; 

!!. (i -1 ,j ,k) = !!. ( i t j ,k) + ~2 [ l!. ( i , j +- 1 ,If) - !1J i , j - ~ ,k) ] E.l.9 

where ~ is El3 for equation E.1.8. 

This appendix presents the difference fomulatiol1s for the 

four 90° conlcrs shown in Figure E.), usine a mothod duo to 

Altennan and Rotenberg (1969), and extended to the cas('[; of the 

two inverted nodes, shown as nodes S and ~ by the author. The 

notation used follows that given by T,iunasillC;ht.: (1973). 

N ! 11 I 
-'. __ e_ 

1 • QII 
o 1 Q 

-i-W//// 

~Lo~~////! 
I · T'I 

-e---. -
V I VI I 0 

Rode arrnn~Jwent for 90 

F'ICU11Z B.', • . ~.-----~ .... 
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s. 

For the node P, shown in Pieura E.J, which is at the 

intersection of a horizontal and e. vertical interf.;;,c0 t bo Lh aets 

of boun6.ary eondi t10ns (v;ply siID'J.ltc,neously at this T!.c'ie. 

To overcome difficultios in th~ solution of the equations at 

node P, a one-oided (off-centred) difference schome is used in the 

direction perpondicular to the froE: sUI'face a.nd a centred scheu9 is 

used in the dir'ection parallel to the surface t wh(m each c·et of 

conditions arc applied. 

The displacements st the pseudo-nodes A and C arc obt.:dned by 

tha substitution of the arproximations. given 86 equation E.2.1, in 

the boundary cond! tions for the horizontal free surfaco, .... hich we::.'o 

given as equation E.1.1, ond the substitution of the approxi.lTationo. 

given as equa.tion E. 2. 2, in the boundary condi tio21s for a v;:,rtical 

free l,urface, which were given as equ<~.tion E.1.4. 

dU :: U(i+1,j,k) - U(i-1,j,k) 

~ X1 2d 

G>U = U(i.j,k) - U(i,J-1 ,k) 

d X2 
h 

()U - U(i+1,j,k) - U(i.j,k) --et X1 d 

C>U - U(i,j+1,k) - U(i,j-1,k) --d X2 
2h 

The displacements et the psoudo-nodea are then obtain~d (l.ft~r 

con~idera.bla mEil1ipulation of the difJplacements in the body and O!) 

the surface of' the meditun. The equat1.ons for the diflple.ccmcnts at 

nodes A and C are eiven us equations E.2.] ~nd E.2.4 respeotively 

!L(i,j-1,k) = 121!l(1,j,lc) - .!l:l(i,jt1 ,k) - 12J~'!,( i -1 ,j t k ) E.2.3 

1[(1+1 ,j ,k) = ~4y"(i,j,lC) - D_U(i-1,J,k) -,- . - P-6U{i,jt1.,k) E.2.t't 

[4/3 
, 

T'I 

[~3 :J D la 2~)J whera D ::. 2/3rJ ~~2 -1 ..... .3 

~1/r 112 a 1/r 

124 = h:~J 'Irl D..r, = [:3 I:J ~ =~o 
a1rl -';) 

2l"/J 4/) ! OJ -
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r = d/h = 1 for a uniform grid. 

Using a varis.tion of' the wethod clue to Al ternan and 

Lowenthal (1970) raade by I:illnr-.:.>inS;he (1973) th", displaccments at 

the pseudo-node 13 are oots-ined. In this formulation it 1:3 ",cen that 

the Snlaller the e;rid spacing (the l.s.:rgar the nu.'1:ber of nodes per 

wavelength) th~ I,lOl'O e.ccura Le the co.lculat:i.ons et the corner will 

be. The surface tractions at the corn~r arc l'csolved parallol end 

perpendicular to a line joining the pseudo-nocics A and C und are 

set equal to zero. 

Using a. la.w for transformation of the inva.riant stress 

tenGor (Rye 19GO), the components of stress are given as; 

T -rJ.p - ~11 - T?;:» ::. 0 
2 

The exprensions for tho disple.ccmcnts centred at r' fer the 

node B are obtained by the substitution of the difference for~s, 

,r;iven as equa.tion E.2.6 in the equatiuns B.2.5. 

dlt= lL(it1,j,k)" !!.(it1,.1-1 ,k) - U(i,j,k) - U(i,j-1,k) 

a X1 2d 

a!E = !L( i + 1 ,j ,k) .. 1L ( i , j ,k) - !L ( i ... 1 , j -, ,k) - U ( i , j -1 , k ) 

ax 
2 

2h 
. 

When the necessary manipulations have been performed the 

displacements at the pseudo-node B ara given as; 

.![ ( i +-1 ,j -1 t k) = !!. (i , j ,k) + 127 [ Q( i , j -1 ,l~) - !L.< i -t 1 t j ,It ) ] E • 2. 7 

.,here in the case of a uniform grid, 

-b ] 
b

1 
2 

D7 = e1 = 1 - 2r /a 2 
; 

b
2 

b
J 

b
J - 2/8. - 1 1 

8.
1 :: 1 - 2r( 1 

( 1 

~~d in the case of a unifcr~ sp3tial grid, 

121 :: r a 

tb .:J 
a ::. (1 t- y2) 

-2--
2y 
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1 b2 =: 2r/a
1 

r = d/h 

fo 
2 2 

y ) t r 
'1..-

- y') 

., 
b = S1...:...Y'-) 

:2 2y 



By a. sill1ilnr procedure to that Ci ' .... C'rL abo'/e th~ suther h:18 

derived expressIons which give the dls91acements at the Bet of 

pseudo-nod'.!s ass')ciat€d \Vi:h the nod.~~ S, which 115 sno'1°n in 1:'1S,-l1"o }~.). 

The f'xpret!sions for the displac':~lrcnts at the Eodes D D.y>0 F a-re 

obtained by SUD3titution of the diffcl"2;:}ce forms, given as ecr.l8oticn 

E. 2. 8, :l.n th~ hnri zontal. frci~ surfaco boundary conditions, which 

are given 80 equation E.1.'. and by the substitution of the 

differenc':t formo t !:::tven 8S ;"quation E. 2. 9 in the bO~'1'Jary condi tion!l 

for a vortical free surfac~, ~hich arc given a~ equation E.1.4. 

The displacements 

d U.::. U (it 1 ,j t k) - U (i-1 ,j ,1:') 
---1 

() X
1 

e u :: 
8 x

2 

2d 

U(i,jt1,k) - U(i,j,k) 

h 

() U = U ( i + 1 ,j ,k) - U ( i ,j , }: ) 

a x1 d 

a u = U(i,jt1,k) - U(i,j-1 ,k) 

211 

at the pseUdO-l1.odcs D and 1; .fl.re givuil 

y(i,j~1,k) = Q1 ~(i,j,k) 
_ pt 

--2 U(i,j-1,k) - D' U{i-1,j,k) -3 .. -

~(i~1,j,k) =]4 £(i,j,k) - T" 0.:·5 !!.{ 1-1, j ,It) - l!6 U(i,j-1 ,k) 

where the constants in the case of a unifo~ grid ar~, 
, 

-2/)1 
, 

r~3 :J 
, 

_2
/
:] 121 = [4/3 D') ::. llJ = [ 0 

R2J 
-0;. 

a, -a 1 

• 

[-~3 :~: ] 
, 

[ :3 1~J] 
, 

:'1] Dot = P,. = D,. 
- [ C -.> -""0 

-2/3 

E.2.8 

0.:0 ; 

E. 2. HI 

:8.2$11 

and the constants a1 t a.2 , I.me. a,3 are as for eq:w.tions B.2.) ar..,i £.2.4 

A cimilar procedure to that u::::ed for node n is fol1ow~d to give 

the equa.tion for th~' displaccl!1dnts at no':o E a.."1.d the dori vatioi."l is 

again basad on sUbstitution in the stroBS relations given as 

equ,""ition 1:.:.2.5. The c;rprcs,,:ions for the (iisplacemerlts centrcd nt 

S' use the substitution of the for4113 GiVen as; 



dQ::. !,!(i+1,j,k) - Q(if1,jt1,k) - Q(:i.,j,k) - Q(i,jt1 ,1{) 

2d .... x 
Cl 1 

E.2.12 
_dV.::. g,(i,j+1,k) -l!(i~1,j~1,l:) - !!:(i,j,k) - .!l(i+1.j,k) 

~~ ~ 

I!'ollo"iiling manipulation. of the' equ'ltionn the for.:! for the 

displaccments at the pseudo-node E is obt.:rln~dt which h: given a~l; 

U(iFf,jt1,k) = Q.(i,j,k) - Q; [:[(i,j+1,!c) - £,(i'.1,j,k1 E.2.1J 

, t ~ b"'l ( 1 + 2 ) b _ (1 _ y2) 
W.lere 117 = a JI I a.::. -7-- --;,_ 

-0 -a ~ 
2 end y is as for equation E.2.4 

Those are the pair of corners shov:n as Q and ~ ill Figtu'e E. J. 

These corners a.re treated. in a sirdlar manner to the righ t lwnd 

corners considered in Appendix E.2.1, and currespondine oots of 

expresoions for the displacelnents at the associated p~eudo-node9 Bra 

obtained. TILe expressions for the dioplncomonta at tlH" node Q 

follow the ,,'ork of r.1un!lsinghe (1973) and those at the l'lCide Tare 

derived by the author. 

The expressions for the displacement!J at the pseudo ... nod~n 

M,and 0 are given respectively ss; 
, t , 

Q(i,j-1,k): 12
1
l!(i,j,k) -112Q(i,j'.tj.,l{} -12)L(i,tl,j,k) E.2.14 

t , , 

!!.{i-1,j,k).::. ~}1.(i,j,k) - P-5!.!.(H'1,j,k) - .P-6.![(i,j+l,k) 

The expression for the rG~u.1o-node rr is given aD; 

!L(i-1,j-1,k) = U(i,j,k) + llo [ll.(i,j-1,lc) - !l.<i':'1,j,1:)] 

where tbe constants in oquations ::.2.14 Ctllu. B. 2. 15 are 013 for 

equations E.2.10 ruld E.2.11. and; 

~8 = fbS 
b
G] 

br: =. (1 - 2r) b6 - 2.r b
7 - 2 .. -;) -----

Lb6 b7 . 2 

8.
2 

a 2 6.
2 

2 
for a tmifo~;l grid d/h 8..

2 - 1 t 2rO of' ~r ) + r t r :. -- -

E.2.15 

E.2.16 

- 1 

1 
~--*-'2 

1 .. Y (>,nd b .. , h6 fl.ud b7 oi.mplify to; 
) 



rb~ 
') 2 .. , ,,] b.! (1 - y" ) b' :: ( 1 - Y' ) j}~ ::! "'6 - 6 L"d :.:> -.,....---..-.., . 

LbG 
s 2 2 , . -1.'5 

. 
V(i-1,j,lc):: 11.1!:L(i,j,k) - .R;::~{itj-1,k) - ~3!:.(i-tltj,k) 

whore th.(' COIBtnnt3 nre a:'.> for €'q'.lations B.2.) r-nd E.2.4. 

The cy.pl'csaion for '~he J.I,seudo ... nod\~ V is c;iyen ll8; 

Q.(1-1 ,j-r-1 ,k) ~: !!.(i,j ,k) t ~ [£(1tj~'1 ,k) - !!..(i •• 1',j ,k)] 
, 

where 128 = 27 i.n tha ense ef El. U11iform gl'id. 

E.3 2700 
_nl __ _ 

E. 

III the case of 270
0 

corners both the hor:izo!~tD.l and vortical 

freo F.lurface bot~dary condi tiOllS apply ut the corner. For the 

nodes P and Q, 8hovm ill L'i/!,Ul"3 :C.4, t:un 3.::0 inshe ("1973) 

produced a triple pseudo-node formulation at the nocea 

• 

• 

•• 

~ 
E E 

/ v •• 
/ E' • E, 

Q' • C 11 

/,. QO.,j ,1::) 

//////7 

• .. 

11 ~/ V , . . ' 
H •• H / 

h 0 pl/ . 1/ p( i.j ,}~) / 

?/////-;~ 

H 

• 

PIGUl?E Vd:.!. 

hp-s 

E ~wld H. 

• 

• 

• 

throB nodos th~t U8B tho values ef cli~placements ht that node 

can 1r~ reflect~ct :i.n that no\~,c~. 



The displacellloni.:s at nod" E ('.nd El 8.),:"S obtained by th-g v 1 

application of the l::cul1ctary fornmlatj.oll!'1 for the Yl?rtiC'o.l and 

horizontal free surfaces as given in App,mdix E.1, a~; equations 

E.1.5 a.nd li:.l. 2 e The p~H?udo-!'.o(:e corr~sp::mdil:t; to t: .. :· corner point; 
c 

Q is treated in the samo way a.s the 90 CO:L"nGr and Q' becomeo tho 

effective corner. 

~le expression for the displace~ente at the node E , in the 
c 

case of a t:niforrn edd is Ci yen as; 

![ ( i .. 1 ,j -1 • k) :l Q~ i , j ,k) t 11 [U ( i • j -1 f 1;:) - J1.( 1 t 1 , j , le) ] E. :3. 1 

where 11 :: P..7 an used for equation E.2.7. 

~nis corner is the corresponding dual problem to the right 

han::l ca~se end. the set of equations u~1ed for the n:>delJ H Eln!l IT 
v h 

are the boundary formu,lations for the vertical and horiz.ont.'ll 

free surfaces gh-en in Appendix E.1. The p:::eudo-node correspondi.!:If; 

to the corn.er point l? is treatc(i in the BD-me way s.s tha 90° corll:'!l" . 
and P' becomes the effectiv~ corner. 

The expression for the c.isplacemcnts at the node E , in the 
c 

eDse of El. uniform grid is given an; 

!!.(i-1,j-1 t k) - £(i,j,k) t 1;?[~(i,j-1tk) - .!L(i-1,j,k)] E • .3.2 

where 12 :: 128 as used for equation 1::.2.16. 



F. 

This appendix presents cchemes for secorld ord03r toundary 

condition forn:ulatio;:}s. initia.lly duo to Ilan et al (1975), atld 

extenf..ed by llull a..'1d Loe ..... cnth::l.l .( 1976)} u!"ld in thi!:: study by the 

author to c<)ver a l6.rger range of types of nodes. 

'1\70 set:'::l of' free sUl'f/;;\ce fo':c;u'.lll:l.tions ure presented in this 

appendix. The basic fOl'lllUlation is the recond ordo:r.' composed 

approximation duo to llar. et I'll (1975) t which is found. to h::::"/o a. 

very limited reeion of stability. 

The second for:nu.le.ticn ie the ne':: c·:;:r.poscd :fcr.r:ulr ... tioil \ihj ch 

was dcvelopad for the horizontal free oUl:'fa.ce by I1an and 

Loewenthal (1976) to ext~nd the region ef stability End thi3 

scheme has been applied to vortical free surfaces by thC:l &".xl:.hor. 

The new formulation uses the formulation for tho (;o:nJionent of 

displa.cer:lent parallel to the free surface from the co.:r.pof>cd 

approximation (md a new formulation for the component of 

displa.cement no~al to the [,urface. 

1~hc basic node. c:.rranccments, \"Jh1ch do not include pseudo-nodes, 

for surface fcrmulatlonc, a.r~ cho ... :n in Figure F.1. 

~ P(i,j,k) • /! 
.-;1;...~~_o_. 

1 ////////// 

• • R(:i.,j ,k) IS> ., • • ~l 
• • ~1 

I 

FTG",·Jn:.~ "t." " ____ ..:....t __ 



In the developmont of El. boundury nodo fonnulation which does 

not use pseudo-nodes, as the derivatives with respect to X2 on the 

free ~urface X
2 
~ 0 can only be approximated by cne-cidcd differcn~c3, 

they are replaced by derivatives with reepect to X1 and time, for 

which centrt:cl difference forms can be appli od. 

On the horizontal free surface, nod~ P{i,j,k), shown in 

FiGure F.1, the b01J.ndary condition for H. etrc£s free Eu.rfnce 

applies and this is given as equation F.1.1, where the components 

~re components of tIle stress tensor as dcfinc1 in equation 2.3.8. 

F.1.1 

The components can be written in full Emd are given aSj 

dU2 -+- ~)U1 = 0 F.1.2 
-~ X

1 
JX

2 

F.1.) 

" 
These eqU!ltion3, cqU-:::ttiol1s F.1.2 und P.1.J, are d:tffer€;:a~:!.att·d 

with respect to X, 011 X2 :: 0, and give; 

d 2U
1 -

dX, dX2 

1".1.4 

d2u 
2 

F.1.5 

The bo.rdc equation:J of motiou for the oyc"Cem are (~I.:fined in 

Section 2.3 end are given hele as; 

v 2 
~ c 

~ 

"\'-U 2 
Cl· 2 V 
C> t2" -- c 

2 
d U1 + V 2 
-;.;-- 2 s 
o X 

1 

F.1.6 



.... 
t • 

From Taylor series expansions it is nsce3sary to define 

expc.nsiol1fJ for U
1 
(i,jt1 .k) and U

2
(1,j+1 ,k) c:nd these are t;iven 

as; 

U
1
(i,jt1 ,k) =. U

1
(i,j,k) + h§JU, + 

Cl X
2 

? 

~ . 2 ;rU.. ..\-
1"n -....!.. . 

() X 2 
2 

F.1.8 

F.1.9 

The equations ~.1.2 to F.1.9 define two setG of eight 

equat:1.ons and these contain eight unknowns t the last two of which 

occur in the finite difference for.118 of t.he second order tirr.l~ 

derivatives in equation3 F.1.6 and F.1.? The system of linear 

equations can be reduced to give eqt:.atlons for each of tbe two 

components and these are; 

, 

1" 1112 ~ ;fu, _ d2u~r~c 2 
- 2;r}11 

[Vo
2 dt2 dX,L v/ lJ 

+ O(hJ ) F.1.10 

In equations 1".1.10 t.:.nd P.1.11 there arc only two unknowns 

after finite difference sUbstitution Rna these are U
1
(i,j,kt1 ) 

a.nd U2(i,j,kt1).Th~ explicit forme for the clinplaccments at 3. frue 

surface are then obtained and these are given as; 
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U,(i,j,kt1) '" 2Vs2[:f U,(i,jt',<) 

~?Vs 2[:f [r:.f-;s 2 -1 -[:r~VO 2 :c~v"]ll' (1,j ,k) 

-I- Vs 
2 [~r [:J f2(itl ,j, k) - U2(1-', j ,k ~ - U, (1,j ,k-1) 

+ VS2~2 ~V02 ~o~vsJ~l(1t',j'k) - U,(i-',j,lc~ 

U2(i,j,ktl)= 2V/r:f U2(1,j+',k) - U2(1,j,k-1) 

+2V/ ~r [;r ~o 2 ' +m2 

[ - 2 ~:~J U2 (1 ,j ,k) 

+ v/ t -2 ~::J ~r [U, (it' ,j ,k) - U, (1-1 ,j ,k)] 

Vo 
2 C - 2 :::][f [U2(Hl,j ,k) - U2(1-',j ,k)] 

F. 

F.1.12 

It has been found by Ilan end Loewe11 thal (1976".) tha t th~ r"gion 

of stability for the composed formulation, gi vel'" as equa tiOTL8 P.1.12 

and F.1.1). has severe limitations and hence carillot be used with 

the data for many common materials that hav~ a Poisson'a ratio 

larger than 0.27. It is found that it is the vertical component of 

displacement that is the most sensitive part of the composed 

scheme and a refoInlulation for this component has been proposed by 

Ilan a.nd Loewenthal ·(1976). 

Following th~ procedure of Ilan andLoewenthal (1976). the 

author has derived El new composed formulation adapted for the 

coordinato system used in the prccent study. 

A Taylor series expansion for th~ verticnl compcnent Qbout 

tho point P(i,j,k) is given as; 

U,,(i ,jt1 .k) = 
c:;; 

1".1.14 
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The boundary condltion,given as equation F.1.), is rewrittGn 

in a form for SUbstitution in equation F.1.14 ana is given 8S; 

F.1.15 

The equation of motion, given as equation F.1.7, is also 

rewritten in [t form for substitution into equation 1i'.1.14 and is 

given as; 

F.1.16 

The approximation used for the mixed derivative in the equation 

of motion is given as; 

- U 1 (i-1 t j t-1 I k) 

-t: U1(i-1,j,k)] 

The equations F.1.14 to F.1.17 are a syotem of linear 

equations that reduce to the form given an; 

t 2 - 2V] i::'~" U2(i,jt1 ,k)= U2(i,j,k) - h..2 ~ ~ 

V 2 aX 
c 1 

h2[1 : .. ..,2u V 2 ",\2U [V 2 - V 2J ')2U J + d 2- <:' Cl '" _,. c· Cl., - 2 ",,- ~ " . 
2 V - d t 2 -V 2 '" y 2 - 'T' 2 - i-x ~x 

c c Cl "1 ~ c ;.; {:'- "2 

F.1.17 

1".1.18 

DiffeNl1ce forms are substituted j.n ec,uation F.1.18 nnd the 

terms rearranged to give tha exprc£sion for the vertical 

component of displacement for the surface node r(l,j,k) which is 

given as; 
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For the vertical free Burface nodes, nodes Q and R in 

Figure F.1, the formulations can be obtained in two ways, either 

by the direct solution of the system of linear equations, by the 

method used to derive rquationG P.1.12 and F.1.1), or by the 

8pplicntion of a set of trannfonnations deri yed by Ila!1 et al ("1975) t 

to equations F.1.12 Bnd F.1.13. 

1'he se t of equatj.ons for node Q J.I"E' presented as equatlons 

F.1.20 and P.1.21, and the sign chanGes necessary for their 

application to node R are indicated by a second sign in the 

appropriate places. 

2 2 -
U1(i,j,kt1):= 2Vc (s/d) U1(it1,j,k) - U1(i,j,k-1) 

[; 
2 2 2 2 _ 2~ + 2 1 - V (s/d) - (s/h) (V - 2V ) U, (i,j ,k) c c s 

P.1.20 
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.. ·.1 
,. !l' 

For the vertical fraa surface n0des the author hss derived 

new composed type formulat:i(")!l:3 using the cs.;r.e procedure as that 

eiven for equation P~'.19. in ApPRndlx F.1.2. 

For node Q, :::horm in Figure F.1, the nev; compoAed form is 

given a.s; 

U1 (i,j ,1£1'"1) == 2Vc 2(S/d)2U
1 

(it1 ,j ,le) - U
1 
(i,j ,1(-1) 

+2 [1 - Vc
2

(S/d)2 - V8
2

(8/d)2J U1 U,j,k) 

2 2 2 [ ~ 1"' (s/d) -1 (Vc - 318) tr2(i,jt1 ,k) - U2(i. j -1,k)J 

-r (S/d)2Vs 2 [U1(i,j~1tk) + U1(i,j-1 Ik)] 
HS/d)2(Vc 

2 
- Vs 2) ~2(it1 ,j-1,k) - U2(it1,jt1 ,k~ F.1.22 

E'or node R, shov'!U in Fieure F.1, the new cOln,;!o::;ed for is 

eiven as; 

U1(i,j,kt1)= 2Vc
2

(S/d)2U1 (1-1,j,k) - U
1
(i,j,k-1) 

+2 Q - Vc
2

(S/d)2 - Vs2(1:~/d)2J U
1
(i,j,k) 

(S/d)2HVc 
2 

- JVs
2

) [U 2 (i,j+l ;k) - U
2

(:i.,j-1 ,k)] 

-r (S/d) 2Vs2 [U1(i,jt1,k) + U1(i,j-i,k)] 

2 '),,~. :1 + ~'(s/d) (Vc t;. - Vs"') LU2(i-1,j-1,k) - tT2(i-1 ,jt1 ,k)J F.1.23 

The -:quation~ F.1.22 and 1<'.1.23 aH! used. with the 

correspcndinG forms for the vl3rtical components of dil::pl!lce::h~l1t 

given as equation F.1.21. 



F. 

In the 8tu-dy by Ilan et nl (1375) a 8t:cvllcl ol'dtlr" :i\)l';u:.11Ctticn 

was proposed for use at th~ corner node for a quarter space set in 

a three quarter space and in the present study it was applied to 

nodes Sand 1\ r::hown in It'ieure F. 2~ 

S(i,j ,k) ~ 
~/ 

T7'/777)~ 

• 

• • • 

• 

o 

.~ 
2. T(i, j ,k) 
J7;///~ 

. 
• • 

o Node arraneC:11Cnts for second order 270 corner fonnulo tions. 

The equations for the application of a cccond order F1chemc 

to nodes S and Tt sbo\lin in Figure F.2, are obtained directly from 

the equations of motion, eiven fl.8 fHplr-tUons F.1.6 B.nd v".1.7 by 

the use of a different fonn for the mixed derivo.tiv~. 

The form of approxim'l.tion u8C!d for the mixed deriv9.tive is 

after 11an et 0.1 (t975) and for node S given as; 

d2U 1 [ ~_...:.Z, = - 2tr.Ji+1 ,j+1 ,k) - U2(i,jt1 ,k) - U2(i+1 ,j-1 ,k) 
() X

1
dX

2 
4hd I'.. . 

+U2(i,j-1,k) - U2(i+l,j,k) - U2(i-1,j+1,k) 1 U2(1-1 ,j,k)] 

+ O(h) 

with a similar expression for the other component. 

The full equation for node 3 is given BS; 

U,(i,j,k.1) ~ 2U1(i,j,k) - U1(i,j,k-1) 

... Vc 2(s/h)2 [U1 (i+1,j,k) - 2U 1(i,j,k) +U·I(t-1,j,k)] 

... V 2 ( sill) 
2 r U 1 (i , j + 1 ,k) .. 2U 1 (i , j ,k) + U 1 ( i , j -1 ,k) 1 

s ~ ~ 

t <vc2 
- Vs

2
) s2/4dh [2U2 (i+1,j.f1,k) - U2(i,jT1,k) 

P.2.1 

- U2(it1,j-1,k) + U2(i,j-1,k) - U2{i+1,j,k) - U2(1-1 ,j+1,k) 

... U2(i-1,j,k)] F.2_~ 
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P. 

The expression for the U2(i,j,k-t1) te~ is obteined by the 

replacement of all U
1 

by U
2 

c.nd. U
2 

by U i jn equa.tio!1 F.2.2. 

The expressions for node T are obtained by the replacement 

of the mixed derivative in eqtlat.lon F.2.2 by thp, exprcG~lion g:i.ven 

as; 

1 

4dh 

.... O(h) F.2.) 

o 
Two second order formulations for the 90 corner ha.vo bct::n 

considered by llen (1978, in press) in a rocent study of body 

waves at corners. 

The problem in the solution of the boundary conditions aiId 

equations of motion is that at the corner the b01l..'1dary conditions 

for both the vertical and horizontal free Gurfnces apply which 
, 

over conditions the problem. Some form of" approximation must there 

therefore be made. 

In the present study the author, follO'.vine; discussions with 

Ilan, has adopted the use of the followinr: $Ch0m~, for the CQ!':l~:' 

node, node 0 shown in Figure 1" • .3. 

o 
!rode arranc;ement at a 90 corner. 

FIGUnE P •. .1 .. !.. 

The new ccrr:poscd fO~lUlc. t:i.ons fer th':'! horizcntf.l and vertic.J.l 

free surfaces, presented in Appendices F.1.2 and F.1.4 respectively 

are applied to nodes A and D. 
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'l.lhe components of di!',placeroent a.t nod) O(i.j ,k) are then 

calculated using the exprossions giv~n aG; 

F. 

1".3.1 

F.3.2 
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G. 

This hPPGndix presents second order finite diff8ronce forrn8 

for nodes located at the interface betwec~ two media, and thnE0 at 

the point where an intarf~co between two media meets a free 

surface. 

The initial work on extcn,iing second order formulatioIw to 

interfaces is dt:e to Ilan et '11 (1975) f;',ud th~ A.uthcr has 

reforr:mlatcd their aqua tioD:) to ll~ake them con.d tant with th9 

coordinate system used in the present study and to ex~re~3 the 
,. 

cronstnnts i!1 terms of wave veloei ties in place of l.aw0 constCl.ntfl. 

~'he author has 0.180 extended the scbEme to consider the free 

surface/interface nod~ for welded quarter spaces. The rango of two 

media configurations for which formulations are presented ar{\ 
I 

shown in F'igu:-re 4.7 ill Section 4.3.4. 

The horizontal interface formulation ia due to Ilan et al (1<)7:;) 

cmd in the pre.cent study the meLhod useu to derive the for.nuluticn 

for node P(i,j,k), Ehown in Figure G.1,hac followed their method. 

node arrcmeements for hori'?iol1tal interfaces with second or(ler 
formul f~ tions. 

PICtt.R~ (!~ 1. 
-~-- . 

r~ t,:,., 
-( ... .1 I'· 



G. 

The boundary conditions for B horizontal interface, along 

X2 = c:on~tant for node r(i,j,k), ar~ for the continuity of 

stress and displacement and these are given as; 

(v/e)J?21 
_ ~u~J == (Vs 2Cl2 ~u/ - ~2J 

G) X1 ;) X2 ~ X1 a X2 

(v 2:0) -:'IU 1 f';(V 2 _ 2·'1 2) U 1 (V 2"),, .. U 2 f(V 2 
c (, 1 ~~ -of- c s:3 ~ -= c t: c.~ + c 

()x
2 

dX
1 

;)x2, 

U 1 
1 

U 1 
2 

') u Co 

1 

U 2 
- 2 

At the interface the displacements Bre denoted as; 

U 2 
1 U

1 
c 

U
1 

1 - -
U 2 

2 U
2 

c 
U,., 

1 
=::: --c.. 

G.1.1. 

G.1.2. 

G.1.) 

0.1.4 

G.1.5 

where U
1

C and u
2

c are not differentiable on the interface with 

respoct to X2 but they are continuously differentiable w1 th x'eep,;ct 

to X
1 

and t. 

Eauations G.1.1 8.nd G.1.2 can be rewritten in the :f"o::.'n~1 given 

as; 

The equ3ticms of motion for the two media CS-l1 be written in 

the 'forms given as; 

dX 2 
1 

G.l.8 

G.1.9 

where the supersoripts and subscripts j : 1 or 2 indicated thg 
media inv'olved. 



G. 

Equations C.1.G and G.1.7 are differentiated with respect to 

X1 to gi ..... e the forms gi ve.1 a.s; 

[.)X Dx 
2 1 

dX ~X 
2 1 

G.1.10 

G.l .. 11 

Also a Get of Taylor series expansions are required end these 

are given as; 

2 2 m 
~ ()U t 
2 a x 2 

2 

} 2 2U m ..: v 2 

2 () X 2 
2 

c 3 - U1 (i,j,k) + O(h ) 0.1.12 

c ( ) 3 . _. U~ 1,j,k + O(h ) G.l.t) 
Co 

where m :::.. 1 ,2 fer the two media a.nd the second sign indicated tl.c 

form required for the forward term. 

The finite difference approximations used for the Mixed terms 

are given as; 

G.1.14 

G.1.15 

The system of equ:ltions up to equution G.1.15 prov1.des t·,yO 

seta of linear equations, tased on the equations of motion, eaoh 

of which is a set of fourteen equations which contain fourteen 

unknowns. 

By the solution of these sets ef equations cxprecEions for t 

the time development of the dlsplacemauta at node P(l,j,k) are 

given. 
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The expressions for the displaccrnent3 for a point on a 

horlzcntal interface (P(i,j,k» t".ro given cs; 

U
2
(i,j ,k+1) =. 2U

2
(i,j ,k) - U2 (i,j ,k-1) 

+ .. :-:-[8]2 f;,2 V 22U2 (i,j t 1 ,k) + e1 VS~U2(i,j-1 ,k) e1+e2 h L' C 

('t . ... 

- (e, v·2, -+- e, V ~) U" ( i t j t k ) c (.. ct.. (.. _. 

+ Hh/d) Ee2(VC~ - 2Vs~» - (e1 (Vc~ - 2v.~)]El (i+l,j ,k) - Ul(~-l ,j ,k j] I 
+re1V~~.-t-e2VS~] ~2 [U

2
(itl,j,k) _ 2U

2
(i,j,l<) • U2(i-l,j'k~ -) 

[ E, .... f2 Lhj . 

+ 8
2 

H G.1.17 
C1 - f2 

are defined in equations G.1.18 to 0.1.21 respectively. 

The terms G
1 

and H, E'..l1d th3 terms G
Z 

and H2 t:-ti.~6 obtained 

by the use of the forward and reverse a.pproximations for the 

mixed derivatives, which are given as equations G.1.'4 and G.1.15. 
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G. 

G.1.19 

H1 = 2~~2(VC~ - VS~) - h~ -VS;)(e2VS~) / VS~] 
~~(it'1 ,j+1 ,le) - U;(i-1 ,j,,·1 ,k) - U~(i1'1 ,j ,k) 

-;- (vr 2 _ V 2) (P V 2 _ e V 2) ~(V 2) ,.)2UC 

• c1 s1 L292 1 s1 /' s1 v 2 ~ O(h) 
@X-2 

1 

G.1.20 

H2 = -~_Jt~(VC~ - Vs~) -f(vc~ - VS~)(e1V<>~) /Vs~Jn 2dh~ . l: ~ U 
~~(1+1 ,j ,~) - U~(1-1 ,j ,le) - u~ (1+1 ,j-1 ,k) t u~ (1 .. 1 ,j-1 ,l(8 

+ (VC~ - VS~)(e1 Vs~ - e2VS~)/(Vs~) ';lu2 c + O(h) G.1.21 

J X 2 
1 

The equatiOl:1S which describe the displacements at node Q(i,j ,k). 

shown in Ficure G.1, arc obtained by the solution of a simil~r set 

of equations to those used for equations G.1.16 and G.1.17 or by 

the rev'ersing of the roa.tt1ria.l par&.Ir.eter:3 in the final equationc. 



G. 

Two vertical interface arrangements \'1ere considered in tho 

present study and as with the equations used for the horizantal 

interface they are baced en thOSB derived by Ilan et al (1975) 

adapted to fit the coordinate scheme used in the present study. 

The two nodes considered l?re shOWTl in Figure G. 2. 

Node arrangements for vertical interfaces with second order 
fo r-.nul a tions. 

nQT.TR~. G.2. 

The equations for the displacements at the nodcD Rand 

shown in Figure G.2, can be obtained either by the 8y~tem of 

fourteen equations which describes the configuration or by the 

application of transfoI'll'ls 'Irhich are given by Ile.n et a1 (1975). 

For node R the transforms used are; 

d --- h; "i' nit __ It j 's" G.1.22 

For node S the' name transforms tha.t are uGed for node r~t 

equation G.1.22, followed by the reversing of the material 

parameters and velocities for the two media. 
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G.2.1 

It is shown in the stuciy b:r Ilan et al (1975) that a 

second order formulation, b3scd on the equati.un of motiJn ca.n 

be applied to a quarter space set into a three quarter space by 

using a different for;n for the mixed deriv:ltivc term. 

1"."<0 cases a.re consider'ed in the present study cmd the node 

arraneen:ontfl are nho·.'m as Figure G.). 

"""~ // r ~//. 
/ /S(:,j'7 
:///y 

Node arrangements for quarter f:lpaces v!elded in three-quarter 
speces, with second order formulationG. 

The nodes used in the difference formulations are all 

assumed to ba in the three-quarter space. U:31ne this llssmnption, 

that all nodes arc in the three quarter space,tha formulations 

were applied to 2700 corners and the detail~d approximations ara 

presented in Appendix F.2, as equations ]'.2.1 to F.2 • .3. (Page 254). 
o which considers second order formulations for 270 corners. 

p.3 The f..r~..LElU'f?ceDnte!'fa~!Lr.;..9de fo~ \"e1.den SlWll'tG1'. r-r'Il'l.0.2., 
a new seg'md ord.§.L~11!-ti9'1.'!' 

This appendix presents the derivation of a new second ordcr 

formulation for the node P(i,j,k), shown in Figure C.4, at the 

intersection of a free surface and a vertical interface between 

two media. 

P(i,j,k) 

/-:-/:~/--r--, 1 ~. '''" ~ 
/ /J"-" " ~ / ~ ., .. " '" " 

/ / /" I '" -'" "" 
Node arrangement for the fr80 surface/inte1o'face node in welded 
quarter spaces. 



The equC1tionn which describe th9 tin:~ c.evelcprcent of t~w 

displaccme~ts at node P(i,J,k) are obtained by the direct 

solution of the eQ,tlation8 er motion, £1,.;.'ujoct to the free surface 

and vertical interfE1C8 boundary conditions. 

The equations of motion are givel.l. liS; 

cfu~ 2JUj . 2 ;:/uj 
(V 2 2 -;/u j 

\r 1 + V. 1 + - V ) c 2 G.3 .. 1 
cj J 2 sJ--- (~j sj . 

~t2 X1 
d X 2 dX:d Y 

2 . 1 '·2 

;;lu~ 2 j 2 ~2U;j ? 2 ,.~,2uj -- V 2DU2 + V C; 2 -t- Cv ~- - Vsj)_~ 1 0.3.2 --- --. cj -::\2 sj ~-;;2 cj 
d t 2 dX

1
·dX

2 '''X2 

where j ::. 1,2 for the ti'W rlledia. 

At the vertical interface the bou.ndary conditions rf'quiro 

the continuity of displacementa 60 at the interfcce; 

U
c 

:. U
1 

1 1 u~ =. U~_ - " U'" 
2 G.3.3 

In thecequations G.3.1 8.nd G.;.2 all the componentr:: al'e 

always differentiable with reHpect to time. 

The t,ou!l(lary condl tions for a strc;3S froe E1.lrface alone 

X2 : 0 are given as; 

~u~ 
dX 

2 

= 

+ (1 -

where j = 1,2 for the two media. 

o 

o 

The equations for the stress free ·boundary condl tion c':.n 

be differentiated with respect to X, to give; 

a.).6 

.., .., 
-(1 -2(V ~/V ~)) 

s c 

2 j ,. U 
() 1 

;) X, 2 
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c. 

The vertical boundary of the media iH on X .: const[>,nt t at the 

point P(1.,j,k). and thic has boundary conditions which are given nSi 

2 U1 
<CV )d 1 

181 -
dX 

2 

G.3.8 

1'he equatIons for the vertical interface bounclary ccnditio1l3 

cc.n be differentiated with respect to X.., to give; 
(.. 

From 'raylor series expansions it is necess'3.ry to define 

the expansions given as; 

2 
h ()U2 --

()X
2 

2 
-dh () U1 + -

dX
1
0X

2 
-

where j = 1,2 for the r,;)verse and forward d.ifference forn's. 

G.J.12 

0.3.13 

G • .3.14 

G.).15 

The equatiol1a c:i..-cn as eCiuatior~3 G.3.1 to G.3.15 form the i"vo 

sets of equations ~hich describe tha time development of the 

dieplacsments at node P(l,j,k). 

The h:.'riz.vntal cOll'ponent of dhplucement at node P(i,j,k) iu 

obtained by the addition of the equations of moticn for the two 
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media which are given by j .::: 1 and 2 jn equation C.).1. The reGulting 

resulting equation is given t,s; 

r: 12 C 12.1 I.L .1- ? ~1~ _ ~) U1 .,(. 

I V2 . v2. . d t 2 I J X 2 ' 
L E'l B~ L 2 

The terms in equation are reduced by Dubstitution of the 

equations for the boundary condi tiol1s and th·e Taylor series 

expansions to be in tel"".nS of d.erivativo::> of X
1 

a.nd a. mixed term. 

This results in the equation given as; 

[

' 1 liu
c 

V 2-t-V 2 ·2 -- --~~ 
91 s2 at 

(
1+ f3VB~) ~[U1(itj-t1.k) .. U1(i.j,k) 

C V ~ h(; 
1 s1' -h/2 <f V ) .. (P V ) a U2 

L 1 s1' "'2 s2 - _ 
Dx 

1 

(e V ) ~ U2 1 81 
dX 

1 -

The finite differenco ferm of equation G.).17 is obtained by 

the substi tutiori of the differeIlce forIDs , given in Appendix D, fOl' 

all the derivatives except the mixed term. It is found that the use 

of either the fOT\v,~!'d or the r·overse expansions given a.~ fHlu8tion 

G.).1) in equation 0.3.17 for the case wheTJ the Sft.me material data 

is used for the two j,lcdia results in smull sca.tter-oc. pulses. The 

8cattered pulses were eliminat~d by th~ uce of en expreAsion gi7en 

as G ~ (°1 + Cl" )/2 v;haro G1 a:ild G .. ? are the fcrv::trj and rovor.'.':t3 
c. 

expressions given as equation G.).13. 
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o. 

The resul ti::::;; finite difference form for th~ horizontal 

component of diFplacement is given as; 

where G ~ (G, t O2 )12 

and G1 :. ~Vc~ - 2Vs~)/(Vc~ - 2Vs~) -:- Ct; vo1 - p V )1 [) V J ~ s2 (.2 82 

X (reverse form of equation G.3.13) 

and similarly for G
2 

except tb,['.t: t~l? wave velocities e.nd dens! tieo 

used in each term are those of the other medium, and the difference 

fonn used is that for the forward diff6nmcp, which is given in 

equation G.3.13. 

A similar procedure to that used to derive equation 0.).18 

is used to derive the equation for the vertical component of 

displacement which is given as; 

0.).19 

where H :: U11 ... H2 )/2 

and H1 :. (V 2 _ 2V 2) /v 2 PC V 2 _ 2V 2) - e C If ~ 
c2 s 2 c 2 -t: c 1 s 1 2 c ~ 

, ... ~ '" 
_ "V C he· ~, ~ I 

, .,'" 1 V 1J s ... ..l C 

X (reverse form of eqU,il~i0n 0.3.15) 

and ,similarly for H2 except that the ~aVE velocities .?n1 den::d.tios 

u8ed in each term are for the ether n:3dium. a.n1 t"!c ciifferc::c.e fol"7'::, 

Used h~ that fo!' tha forward c.iffc:4'encc \ii;·.ich is given in eqw:ttion 

G.3.15. 



\ 

'I 
il. 

The puls6 of l\ayleic;h wav~")s used in the present stud.y is tha 

Ricker pulse which was first described by Ricker (1945) in a 

geophysical :;.tudy and has since been UStld by Boore (1970), in a 

numerical I.ove wave stu.dy, and by Mune.l::inche (1973), in a uu;.:crical 

study ot RayleiGh v/~,ves vn surface acoustic \"I~'!.Ve device 

configurations. 

'l'his appendix extends the description of the plllse used 

in the present study which :1.13 given in Sr-:.etion 4.4.1. The matcrjul 

prc:::ented here is in two parts, Apfendix H.1, \.hlch con:Jldera the 

analytical equations of the n:l.cl~or pulce a.n:1 Appendix H. 2, which 

presents tte cligiticed equation.s used for puh~e synthesis. 

The vertical component of displacp.ment for the Rlckor puIne, 

at a horizontal free surface, is defined as; . 

R(X,.O.O) : -(Aim [(~-r -~ exp [, - (~fJ H.1.1 

and thio hi;'!:; a corr~spoYluln0 w2.v€;numbcr amplitude opectrum t given 

as; 

( 
,'~ r> ( '"'1 K v"- K \ 

S(K) = Kj exp l' -K:I ~ 
where y~:. 2ltl'Ko; J. lS a constl:lU t. 

~is the v;avenumber, anrl Ko is the wnVd number at the 

centre fre~uency. 

The surfe.~e d.:!.splaCCmC!lts ,md the ·",'[l,'!er..umber er.Jpli tude 

spectrum for the b'1zic pulr.~.nr:; showl! ae Pir,urc H.l. 
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b. 

'Spectral amplitude 

1J 
.~ 

/ 

~~,"1rTI1u.lib&d ~Lnalytical ror·r·~':J of ih.e rttcl'_cl" 1:'.11 Sf,;; c ... Sll·t'fa(~e 
displacemej.1t wave forr..s. b .. 'Nc.ye l1";!1liC. amI,li tuc1e t;P(;C tr1~!ll. 

1<'I(!-i.~'~c; r: t 1 " ._-_ .............. _----..... 



lie 

The operation of pas sine from a ~et ef displBccmcnts to a 

wavenumber amplitude spectr\.l;n 1s ecllieved by in tegrat1on. This 

integration ha.s the form given us; 

R(x,y,O) {-".\rl ( l' ) - \ ~L ..j axp i ~o x 
d(I</K ) o lI.1.) 

where x : KX/(K/K
o

) = KoI : 21rx/~o nn~ X is a genuine length. 

lJ'he inter;ration iB performed by the li~~thod of ii"d:eglation by 

parts, using the form given uy Phil:1.p~ (1951). 

The gr:J~erul form obtained beine gi.ven as; 

R(x) = A Po2i? r; - x
2J [1 L 2 oxp H.1.4 

where A is an amplitude function. 

Ono of the most important properties of this w~~elet, as 

defined in Section 4.4.1, iA that it is not too ex~ensive in either 

the real or the wavenumber space. 

~le two dimensional Bicker pulse, which has Durface 

displacements defin8d by equation lI.1.1, can. bo synth~sir,ed by a 

method similar to that used by Baore (1970), who considered a one 

dimensional pulse. This method of pulse synthosis h~o been 

extended by Uunasinghe (1973) to two dimensions and it is fro~ tho 

work by ~unnsinghe that the m~thod presented here is dorived. 

It is known from·the analytical theory for nllyleic;h waves 0rl 

a half-space, that, in the case of a ~O~O&Bneous. i~utropiu. sc~l­

infinite hn,lf-space that the lossless P):'opB~aticn of har.nonic 

Hayleigh waves occurs. The~e analyUcally ex~tct E:~olutionc t,) tho 

half-space problem are known as Rayleigh ctGenmod~o. It hns Dlno 

been shown that the unit d:tsplac!lment eie€nr(Jodec«~l~) p!"oP~'fJ'Ltin~ 
in the positive X1 direction, w:1ich satisfy the equatioolJ of 'l:otiOll 

and the boundary contli t:i.ons for the strc68 free f.ur.f:lce of n half­

space, have the real form giveIl ry r,:una~inGhe (1973) as; 

....,K 
[- III (KX2 ) S!l:!. K(X

1 -vtl] "-.:. ,'--
B

2
(KX

2
) CO.~ I( (Xl .. vt) 

H.l.5 

",here K 18 the wav\.,tl'u;nber t 

v = W/K : Vex) 18 th~ Rd~leigh wave velocity ~ Vr 
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Vi i~.~ the radian frequency, 

ar~ real amplitude functions which Jccay with 
incn'asing depth X

2
, normalised a t th~ sUl'f.:lcC to 

Bt) = 1. 
£.. 

In tl'e vase of the' homogen~ous half-space the nt.:;n-dispH.rf~ive 

Rayleigh va:.vo v€:loc],ty is obtained from the equation Given in 

Section 2.3 as equation 2.3.16 or by the U8~ of the approximation, 

due to Eergmann (1949), which is given as ~lq'..lation 2.).17. 

The amplitude factors, in equation H.1.5~ are riven 

explici tly by Viktoro\' (1967) as; 

H.1.6 

R 2 _ 1 _ (V Iv )2 
c - r c 

R 2 _ 1 _ (V Iv )2 
B - r 8 

• , -" iJ ::. 

? 
-i2R 1(1tn -) 

C E 

In the morc gcn3ral case cf layered media. toth \",,,,'le velo.:Hy 

and emplltudo factors require numerical calculation (~un 1970). 

Extending consideraticn from the eiecr.modco wh:1.ch make up 

a Rayleigh wave to those which are in a pulse, it is clear that a 

wave packet, such as the Ricker p"lG~f con~ist1~c of cny li~enr 

combination of the appropriate ciconmodes (tt:K) will Civ!3 nc:'n­

d1.spersive propagation on a half-space. 

Thus the 'puls~ defined by the Rayleich eic;enniOd£'::l. wo:lZh tnc1 

with 

where 

the wavenumber spectrum, is f,iven as; 
, c..o 

R(X"X2 ,t) :: ~ J~(Xl'X2't) S(K)dK 

o .. ~.K ~" [~K]' '\' .. - 1 

~K 
2 

U.1.7 

The equation H.1.? can be transformed into the double ~j,ded 

Fourier inteGral which hus th.:? fonn giv8n IlS; 

R, (X

"

X2 ,t) = 01'1-) 1~,(l( X2 ) exp(iK(X, - vt)dK 

R2 (X, ,X2 ,t) ::. (1'f;''') J~2(K X2 ) exp(iK(X, - vt)dK 
-.,.0 

where 
A1(K X

2
) = S(K) 3

1
(KX

2
) .::: -A1(-KX

2
) 
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At the free surfaco the vertical component at t = O. defined 

by equation II.1.7, reduces to the form given as: 

R2 (Xl' 0 ,0) ;:; (, /2 fn J ;~) e<p( iKX, )Jl( 
_Cf . .." 

H.1.9 

It is seen from the tables of inter.;-.c'a.l transfol"r:',s (Zrdelyi 1954) 

that the Fourier transform in equation !i. ~.s is identical to 

equation H.1.1. It 1'8 also seen that tl:.e terns on the l'ight hand s 

side of equation H.'.8 are either known ex~licitly or c~n be 

computed nUlcerically e.nd this enables thE: 8ynthe>sis of the 

displaccments for a Ricker type puloe at t ; 0 and t=s using 

]!'ourier transfonns. 

H.2 PuIs€' synthesiR. 

The Ricker type pulse used in the present ~tudy ),8 produced 

by the use ofdigi tised forms of the analytic;}1 cqu:lticns y .. hiel'. arc 

given in Appendix H.1. 

Each wave number component is calculated fJt ea.ch dopth leycl 

and for the two time steps using the explicit e~fr~~~icns for the 

r€al a.nd imaginary (Jth) wavenumber devclopod by r:ll1l;-v::jn5:,~~t .''''dc!'! 

is given a.s; 

Ee Data
1 
(J) 

Im Data
1
(J) 

Re Data.
2
(J) 

Im D3ta.2(J) 

C
1
Sin(r

v
(J-1 )t) 

C1cos(rv(J-1)t) 

-D,cos(rv(J-1)t) 

-D.
t
tiin(x-

v
(j-1 )t.) 

H.2 .. 1 

where nk : K lAX = N/n the nu~bcr of wDvenumbcr po!nts pe: ~~it o . x, 
centre w~veleneth. 

Nx = 16lflX number of nodes p::-r pulse centre w8vclcl:{:th. 

6.x 
, 

- r-r IN 
... 0 1~ 

p,-nd Ax :: 2 IT/l:(GX) Epe:. tial p.nd v.,<'wenu:r.ber 
ir..crernents. 

op.pth, sCIlIC'd in units of wavelenGths 
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The constants 

R 2)/R (1 C
1 

( 1 of = s c 

D1 = (1 ... 
.... 

R <:')/(1 -S 

rv = 211Vr/Nk 0 

R 2 = 1 _ (V Iv )2 
s r s 

used in equatiol1 H.2.i ar~ defined a.s; 

!l 2) 2ft /(1 
? 

(;2 - n •• ) - :;; " s s s 
R 2) 

R 
D .. , = 2/( 1 

.rc = 211Hc/l;k 

n 2 :::. 1 _ 
c 

R 2) - ~ 

l' - 2'i'rR IN o - s k 

(V Iv )2 
r c 

H. 

The data array (Datn (J») is eV31u~ted for the full raneB of 

J values, for both the real and imaginary comronents, at each dept!l 

and for each tim(~ level. For each array ef N r~al and co;~plex 

components. which correspond to one depth and Dna time, the 

set of displacement for this depth and at this tim~ are obt~insd 

by the operation of the discrete Fouricr transfor..,. This OI'el'ation 

can be written as; 
N 

Trans(M).:; ~ Data(J) exp !21'ti(.T-1 )(r,~-, )/N Il.2.2 
~T -1 

for M = 1,2 •••• N and whtn'e the posj tlve and ncg3.ti~e siens l'ofer 

to the forward a.nd inverse transfort!is respectively. 

In the present study the operation defineJ by equntion H.2.2 

was perforned by Il version of the Coolcy-Tukey( 1965) method v:hich foJ d8 

data about «H/2) + 1) and is a standard NAG subroutine (ULCC 1976). 

The use of the NAG subroutine results in the need to reorder 

the basic data and this ie connidercj in Figure 4.9. 
The application Cif the digitised form, given as equ::.tioJi. 

B.2.1, is considered further in Section 4.4.1. 
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