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Department of Mathematics and Statistics

The University of North Carolina at Greensboro

Greensboro, NC 27412, USA

Abstract. We consider a finite population of individuals that can move through

a structured environment using our previously developed flexible evolutionary
framework. In the current paper the behaviour of the individuals follows a

Markov movement model where decisions about whether they should stay or
leave depends upon the group of individuals they are with at present. The

interaction between individuals is modelled using a public goods game. We

demonstrate that cooperation can evolve when there is a cost associated with
movement. Combining the movement cost with a larger population size has

a positive effect on the evolution of cooperation. Moreover, increasing the

exploration time, which is the amount of time an individual is allowed to ex-
plore its environment, also has a positive effect. Unusually, we find that the

evolutionary dynamics used does not have a significant effect on these results.

1. Introduction. Evolutionary game theory has proved to be an effective method1

of modelling the evolution of populations. The original models focused on well-2

mixed infinite populations [36, 35], with games such as the Hawk-Dove game [34] and3

the sex ratio game [26] being used. With further development, these models can be4

considered within well-mixed finite populations [39, Chapters 6-9] ([37, 38] provided5

important results for finite populations without game theoretical methods).6

The seminal work of [31] (see also [5, 10, 53, 32], and [3, 49] for reviews) in which7

evolutionary graph theory was developed, allowed the modelling of structured finite8

populations within a given framework. It also provided important results in the9

fixed fitness case [31, 33, 45]. However, this approach is limited by the fact that it10

is suited to modelling pairwise interactions, whereas in real populations, there are11

interactions between multiple individuals [50, 19], and there are many examples of12

multiplayer games used in the literature [44, 8, 14, 24]. In [41] it was shown that13

evolutionary graph theory can be used in conjunction with a different ‘interaction’14

graph to model more complex behaviours but there is no obvious link between the15

two graphs, that is, one graph has not been derived from the other nor is there some16
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2 K. PATTNI, M. BROOM AND J. RYCHTÁŘ

clear connection, for instance both being derived from some common population-17

derived factors.18

We should also mention that structured populations have been considered in19

an evolutionary context in different ways, see for example [51]. This includes is-20

land models, where populations evolve in isolated communities with a low rate of21

migration between them, as in [18]. Community-structured populations were con-22

sidered in [54], where interactions occur at multiple levels, with members of the23

same community interacting more commonly than those in different communities.24

A more general framework that can be used is that of [11] where it is possible25

to consider multiplayer interactions in groups of any size, depending upon various26

factors like the population’s history, whilst keeping the beneficial aspects of evolu-27

tionary graph theory. More recently this framework has been used to model different28

kinds of multiplayer behaviour [13, 9, 12]. In this paper, we extend this work to29

consider a population of mobile individuals, focusing on a specific multiplayer game,30

a public goods game [6, 7, 25, 55].31

When using the evolutionary graph theory approach [30, 52, 29, 46, 58], individ-32

uals group with their neighbours within a fixed population structure. One potential33

problem with this is that individuals could spend more time with some of their34

neighbours, less with others and some time alone. The framework of [11] solves this35

problem as shown in [13, 9] using a simple model where individuals are confined36

to their neighbourhood but are still allowed to form groups of different sizes. The37

framework, though, is capable of handling much more complex movement behaviour38

[1, 2, 21] where individuals make a choice of where to move given the information39

they have at hand. In this paper we apply the framework for the first time to one40

such model where the movement of individuals follows the Markov property.41

The paper is structured as follows: in Section 2 the model framework is described42

in general, with examples of each concept being given to motivate how it can be43

applied, in Section 3 the framework is applied to create a Markov movement model,44

in Section 4 we describe the results of the Markov movement model, and Section 545

is a general discussion.46

2. The framework of [11]. This section presents the framework of [11] for mod-47

elling the evolution of a population in a which the movement of individuals follows a48

discrete-time stochastic process. In particular we update the terminology from the49

original paper somewhat, and the methodology described here will be applicable to50

a wide variety of scenarios, although we focus on a Markov movement model (and51

indeed a specific one only) in the current paper. The framework can be broken52

down into three components that each describe a certain aspect of the population:53

structure, fitness, and evolutionary dynamics.54

2.1. The population: structure and distribution. The population structure55

describes the restrictions upon how members of the population can interact with56

each other, including through the different places each individual can and cannot57

visit. This paper focuses on a Markov movement model, and in the type of examples58

that we consider all places are visitable by all individuals. The structure here will59

reduce to simply considering the distribution of the population individuals at any60

given time, and so we shall find it convenient to talk about distribution in place61

of structure. In a population of N individuals who can move around M places,62

the population distribution at time t is given in [11] by an N ×M binary matrix63
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Table of Notation
Notation Definition Description

N ∈ Z+ Population size.
M ∈ Z+ Number of places.
In Individual n.
Pm Place m.
mn,t ∈ {1, . . . ,M} Place where In is at time t.
mt = [mn,t]

N
n=1 Population distribution at time t.

m<t = (mt−1, . . . ,m0) Population distribution history.
pt(m|m<t) ∈ [0, 1] Probability population has distribution m at time t given

history m<t.
πt ∈ [0, 1] Population distribution probability function (PDPF).

P (m<t) ∈ [0, 1] Probability that population has history m<t.
πn,t ∈ [0, 1] Individual distribution probability function (IDPF).
fn,t ≥ 0 Fitness contribution of In at time t.
Fn,t > 0 Fitness of In at time t.
Gn ⊂ {1, 2 . . . , N} Direct group: group that In is in.
wi,j,t ≥ 0 Replacement weight that Ii replaces Ij at time t.
Wt = [wi,j,t]i,j=1,...,N Weighted adjacency matrix of evolutionary graph.
ui,j,t ≥ 0 Replacement weight contribution that Ii assigns to Ij at

time t.
A,B Two types of individuals in population.
S ⊂ {1, 2, . . . , N} Population state, n ∈ S if In has type A.
N = {1, 2, . . . , N} State consisting of all type A individuals.
PSS′ ∈ [0, 1] Probability of transitioning from S to S ′.
ρAS ∈ [0, 1] Fixation probability of type A when initial state is S.
rij ∈ [0, 1] Probability that Ii replaces Ij .
hn ∈ [0, 1] Probability that In stays.
αn ∈ [0, 1] Staying propensity : probability that individual In stays

when alone.
C (D) Cooperator and defector interactive strategy.
βC (βD) ∈ R Benefit of being with cooperator (defector).

S ∈ (0, 1) Sensitivity shown to group members.
v > 0 Reward as a multiple of background fitness.
c ∈ [0, 1) Cost as a multiple of background fitness.
Rn ≥ 0 Payoff to In.
λ ∈ [0,min(Rn)) Movement cost.
T ∈ Z+ Exploration time.

Cα (Dα) Cooperator (defector) with staying propensity α.
γ (δ) ∈ [0, 1] Nash equilibrium staying propensity of cooperator (defec-

tor).
Table 1. Notation used in the paper.

denoted Xt = (X
(t)
n,m) and defined64

X(t)
n,m =

{
1 if In is in Pm at time t,

0 otherwise.
(1)65

66
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To consider the Markov movement models that are the subject of the current paper,67

it is convenient to use an alternative matrix representation of the population dis-68

tribution. Here the population distribution at time t will be denoted by the matrix69

Mt = [Mn,t]n=1,...,N , where Mn,t = m if individual In is in place Pm at time t.70

The framework assumes that the movement of individuals is probabilistic such71

that there is dependence upon time and the current and past movements of in-72

dividuals in the population. In particular, the transition probability function de-73

noted pt(m|m<t) gives the probability that the movement of individuals at time74

t results in a population distribution m given the population distribution history75

m<t = (mt−1, . . . ,m1,m0). The transition probability function is defined as follows76

pt(m|m<t) = P(Mt = m|Mt−1 = mt−1, . . . ,M0 = m0) (2)77
78

whose exact form will depend upon the model being used but will always satisfy79

1 =
∑
m

pt(m|m<t) ∀ t,m<t. (3)80

81

The population distribution probability function (PDPF) πt(m) gives the prob-82

ability that the population distribution is m after t time steps regardless of the83

population distribution history. It can be expressed using the transition probabili-84

ties as85

πt(m) =P(Mt = m) =
∑
m<t

pt(m|m<t)P (m<t) (4)86

87

where P (m<t) denotes the historical PDPF that gives the probability that the88

population distribution history is m<t and is written as89

P (m<t) =P(M0 = m0,M1 = m1, . . . ,Mt−1 = mt−1)90

=pt−1(mt−1|m<t−1) · · · p1(m1|m0)π0(m0) (5)91
92

where the probability of the initial population distribution, π0(m0), is assumed to93

be known.94

2.1.1. An individual movement model. In this model it is assumed that individuals95

move independently of each other. The PDPF can then be defined as follows96

πt(m) =
∏
n

πn,t(mn) (6)97

98

where πn,t(mn) denotes the individual distribution probability function (IDPF) that99

gives the probability of individual In being present in place Pmn at time t indepen-100

dently of the history of the process. The expression for πn,t(mn) will depend upon101

whether the movement of In is dependent upon the whole population distribution102

history or just its own individual history.103

Dependence on the population distribution history. When the movement of individ-104

ual In depends upon the distribution history of the whole population, the individual105

transition probability function pn,t(mn|m<t) gives the probability that In moves to106

place mn at time t given the population history m<t and is given as follows107

pt(mn|m<t) = P(Mn,t = mn|Mt−1 = mt−1, . . . ,M0 = m0). (7)108
109

The individual transition probability function is then defined as follows110

πn,t(mn) =
∑
m<t

pn,t(mn|m<t)P (m<t). (8)111

112
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Dependence on the individual distribution history. When the movement of individ-113

ual In depends only upon its own distribution history mn,<t = (mn,t−1, . . . ,mn,0),114

independent from the history of the other individuals, then the individual transition115

probability function is given as follows116

pt(mn|mn,<t) = P(Mn,t = mn|Mn,t−1 = mn,t−1, . . . ,Mn,0 = mn,0). (9)117
118

The IDPF is then given by119

πn,t(mn) =
∑
mn,<t

pn,t(mn|mn,<t)Pn(mn,<t) (10)120

121

where Pn(mn,<t) denotes the individual history distribution as follows122

Pn(mn,<t) = pn,t−1(mn,t−1|mn,<t−1) · · · pn,1(mn,1|mn,0)π0(mn,0). (11)123
124

2.1.2. The fully independent movement model. In this model individuals move in-125

dependently of each other, history and time. In this case, the individual transition126

function is denoted pn(m) and we have that127

πn,t(mn) = pn(mn)

1︷ ︸︸ ︷∑
mn,<t

Pn(mn,<t) = pn(mn) (12)128

129

and therefore the PDPF can simply be written130

πt(m) = p(m). (13)131
132

2.2. Fitness. In the framework the contribution to an individual’s fitness depends133

upon the time t, the current population distribution m and historical population134

distributions m<t. The fitness contribution of In is denoted135

fn,t(m|m<t) (14)136
137

where the exact form will depend upon the assumptions about the factors that138

contribute to an individual’s fitness. The mean fitness contribution at time t is139

then as follows140

f̄n,t =
∑
m

∑
m<t

fn,t(m|m<t)pt(m|m<t)P (m<t). (15)141

142

We assume that the fitness of an individual at time t is given by averaging the143

mean fitness contribution across all time periods up to and including t. The fitness144

function is then defined as follows145

Fn,t =
1

t

t∑
k=1

f̄n,k. (16)146

147

Note that there are other definitions of the fitness function that one can use instead148

of the one given here, for example, one could use a weighted average of the mean149

fitness contribution instead.150

When there is fully independent movement, the mean fitness change simplifies151

to152

f̄n,t =
∑
m

∑
m<t

fn,t(m|m<t)p(m)P (m<t). (17)153

154

In [9] it is assumed that the fitness contribution of individual In only depends upon155

those individuals that it can directly interact with. The direct group (or simply the156
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Dynamics

BDB bi =
Fi∑
n Fn

, dij =
wij∑
n win

BDD bi =
1

N
, dij =

wijF
−1
j∑

n winF
−1
n

DBD dj =
F−1
j∑
n F
−1
n

, bij =
wij∑
n wnj

DBB dj =
1

N
, bij =

wijFi∑
n wnjFn

LB rij =
wijFi∑
n,k wnkFn

LD rij =
wijF

−1
j∑

n,k wnkF
−1
k

Table 2. Dynamics defined using the replacement weights and
fitnesses as in [45]. In each case, B (D) is appended to the name of
the dynamics if selection happens in the birth (death) event. For
BDB and BDD dynamics rij = bidij , for DBD and DBB dynamics
rij = djbij .

group) of individual In, denoted Gn(m), is the set of individuals that are present157

with it in the same place for population distribution m and is defined as follows158

Gn(m) = {i : mi = mn}. (18)159
160

We then denote the fitness contribution as fn(Gn(m)). In this case, the mean fitness161

change is constant over time and therefore the fitness is equal to the mean fitness162

contribution, that is163

Fn = f̄n =
∑
m

fn(Gn(m))p(m). (19)164

165

2.3. Evolutionary Dynamics. In the framework it is assumed that there is one166

birth and death per replacement event. A replacement event at time t is governed167

by an evolutionary graph defined using an N ×N weighted adjacency matrix Wt =168

[wi,j,t]i,j=1,...,N where the replacement weight wi,j,t gives the weight of the edge169

from node i to node j in the evolutionary graph that represent individuals Ii and170

Ij respectively.171

The contribution to a replacement weight depends upon the time t, the current172

population distribution m and the historical population distributions m<t. The173

replacement weight contribution that individual Ii assigns individual Ij is denoted174

by175

ui,j,t(m|m<t). (20)176
177

The exact form will depend upon the assumptions made about the replacement178

weight contributions. The mean replacement weight contribution is given as follows179

ūi,j,t =
∑
m

∑
m<t

ui,j,t(m|m<t)pt(m|m<t)P (m<t). (21)180

181

In this paper, we choose the replacement weight at time t as the mean replacement182

weight contribution at time t as in [21] that is183

wi,j,t = ūi,j,t (22)184
185

but, as for the fitness function, there are other definitions that one can use.186

The probability that the offspring of individual Ii replaces individual Ij , denoted187

rij , is defined using the replacement weights and fitnesses as in [45]. The different188

definitions of the replacement probabilities are summarised in Table 2.189
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For the fully independent movement model, the mean replacement weight con-190

tribution is defined as follows191

ūi,j,t =
∑
m

∑
m<t

ui,j,t(m,m<t)p(m)P (m<t). (23)192

193

In [9], the replacement weight contribution is independent of time and history, and194

depends only upon direct groups. This implies that the mean replacement weight195

is invariant over time and is as follows196

wi,j = ūi,j =
∑
m

ui,j(Gn(m))p(m). (24)197

198

2.4. The evolutionary Markov chain. The evolution of the population can now199

be described in terms of a Markov chain. We will assume that there are only two200

types of individuals in the population, which we label A and B. Furthermore, each201

type is made up of made up of two different characteristics, and we will say more202

about this in the following sections. A state of the population gives its composition203

in terms of type A and B individuals. We use S to denote a state of the population204

such that n ∈ S if In is of type A. There are a total of 2N different states where205

N (∅) is the state consisting of all type A (B) individuals. The state transition206

probabilities are described using the dynamics as follows207

PSS′ =



∑
i∈S rij S ′ = S ∪ {j},∑
i/∈S rij S ′ = S \ {j},∑
i,j∈S
i,j /∈S

rij S ′ = S,

0 otherwise.

(25)208

209

Given that the state of the population is given by S, type A (B) is said to fixate210

from that state when all type B (A) individuals have been replaced and we reach211

state N (∅). Once a certain type has fixated no more changes can take place and the212

population remains in this state. The probability of type A individuals given by S213

fixating in a population where the type B individuals are given by N \S is denoted214

ρAS (and we denote the equivalent fixation probability for type B individuals by ρBS ).215

This probability is found by solving the following equation216

ρAS =
∑
S′
PSS′ρ

A
S′ (26)217

218

with boundary conditions219

ρA∅ =0 and ρAN = 1. (27)220
221

For type B individuals we can use the fact that ρBS = 1− ρAS .222

We shall consider a population where a population is all of a single type, but223

where a single population member is selected uniformly at random to be replaced224

by one of the opposite type. We are thus interested in calculating the fixation225

probability where state S consists of only one individual (all but one individual).226

There are N initial states from which the fixation probability can be calculated,227

and we take an arithmetic mean of these fixation probabilities, which we denote228

as ρA (ρB). Alternatively, one could weight the fixation probability of a mutant229

using the likelihood of that mutant appearing [4]. Sometimes this is an important230

distinction, but in the examples considered in the current paper the differences are231

small, and so we have stuck with the traditional, simpler, version.232
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3. The Markov movement model. In the previous models [9] considered in233

this framework, the movement of individuals is limited to their neighbourhood and234

exogenously controlled by the home fidelity parameter that measures how likely235

the individual is to remain in their home. A natural extension to this is to allow236

individual distributions to vary with time. A logical first step is to consider a Markov237

model, which is based on the assumption that history dependence is Markov, that is,238

the current population distribution is only dependent upon the previous population239

distribution. The concept of a Markov movement model within the framework was240

introduced in [11], but was only discussed in general terms. In this paper we fully241

develop it and apply it to example populations for the first time. The definitions242

we have given before would then change as follows; for the PDPF we have243

πt(m) =
∑
m<t

pt(m|mt−1)P (m<t), (28)244

245

for the mean change in fitness we have246

f̄n,t =
∑
m

∑
m<t

fn,t(m|m<t)pt(m|mt−1)P (m<t) (29)247

248

and for the mean replacement weight change we have249

ūi,j,t =
∑
m

∑
m<t

ui,j,t(m|m<t)pt(m|mt−1)P (m<t). (30)250

251

3.1. Movement with dependence only upon individual history. In this252

model it is assumed that an individual would move independently of the other in-253

dividuals in the population but its current position is dependent upon its previous254

position. The IDPF is then given as follows255

πn,t(m) =
∑
mn,<t

pn,t(m|mn,t−1)P (mn,<t). (31)256

257

This expression can be rewritten using the M × M probability matrix pn,t =258

[pn,t(mn|mn,t−1)] for mn,mn,t−1 = 1, . . . ,M as follows259

πn,t = πn,0

t∏
k=1

pn,k (32)260

261

where πn,t = [πn,t(m)]m=1,...,M . Furthermore, if we assume that there is time262

homogeneity, that is pn,t = pn for all t, then this simplifies to263

πn,t = πn,0p
t
n. (33)264

265

In this case, assuming that pn is irreducible and aperiodic for all n, then as t→∞266

the IDPF πn,∞ is stationary for all n. Essentially, our model is then equivalent to267

the fully independent movement model. We do not consider this case further here,268

but rather refer the reader to [9] for a detailed discussion of this kind of model.269

3.2. Individual movement with dependence on population history. In this270

model individuals move to a new position independently of each other but dependent271

upon the current distribution of the whole population. The IDPF is then as follows272

πn,t(m) =
∑
m<t

pn,t(m|mt−1)P (m<t). (34)273

274
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In this paper we construct a model of this type that is made up of the following275

four components: population structure, movement strategy, game and evolutionary276

dynamics.277

3.2.1. The population structure. The population is assumed to be of size N where278

each individuals has a home that they can return to. The structure is described by279

a graph such that each node represents a place. We consider the complete graph280

structure where all places are connected to each other. We assume that every place281

is home to precisely one individual.282

3.2.2. Individual movement. We assume that the individual transition probabilities283

are time homogeneous but dependent upon the previous group and previous position284

of the individuals, that is285

pn,t(m|mn,t−1,Gn(mt−1)) =

{
hn(Gn(mt−1)) m = mn,t−1
1−hn(Gn(mt−1))

N−1 m 6= mn,t−1

(35)286

287

where hn(Gn(mt−1)) denotes the staying probability of individual In and N − 1 is288

the number of neighbouring places that an individual can move to in a complete289

graph.290

The staying probability hn(Gn(mt−1)) will depend upon the staying propensity291

αn of individual In and the attractiveness of remaining in group Gn(mt−1). The292

staying propensity αn measures the likelihood that individual In will stay where293

it is, in particular, hn(Gn(mt−1)) = αn when In is alone (Gn(mt−1) = {n}). The294

staying propensity is assumed to be one of the characteristics that makes up the type295

of an individual. However, when present in a group (|Gn(mt−1)| > 1), individual296

In would take into account the benefit of remaining in that group. The benefit297

βi of group member Ii to others depends upon its interactive strategy, the second298

characteristic that makes up the type of an individual. We will assume that there299

are two interactive strategies, cooperate (C) and defect (D). The benefit function,300

βi is then defined as follows301

βi =

{
βC if Ii cooperator,

βD if Ii defector
(36)302

303

where βC and βD are the benefits of being with a cooperator and defector, respec-304

tively. The benefit of group Gn(mt−1) to individual In is then defined as follows305

βGn(mt−1)\{n} =
∑

i∈Gn(mt−1)\{n}

βi. (37)306

307

Finally, combining the effects of the staying propensity and the group benefit, in308

the rest of the paper the staying probability is expressed as the following sigmoid309

function310

hn(Gn(mt−1)) =
αn

αn + (1− αn)SβGn(mt−1)\{n}
(38)311

312

where 0 < S < 1 is the sensitivity shown to group members. So, for example, S → 0313

implies that In shows great sensitivity and would move away immediately if remain-314

ing in group Gn(mt−1) is unattractive, which is the case when βGn(mt−1)\{n} < 0.315

An alternative way of representing the S → 0 limit involves the staying probability316
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being defined using the following step function317

hn(Gn(mt−1)) =


0 |Gn(mt−1)| > 1 and βGn(mt−1)\{n} < 0,

αn |Gn(mt−1)| = 1,

1 |Gn(mt−1)| > 1 and βGn(mt−1)\{n} ≥ 0.

(39)318

319

For example, if we set αn = 0 ∀n, βC = 0 and βD < 0 then the attractiveness320

of a group is completely determined by the presence or absence of defectors. An321

individual would therefore leave with probability 1 if a defector is present in the322

group. This was referred to as the ‘walk away’ strategy in [1].323

In our model we select an exploration time T , which is the number of steps an324

individual takes moving around the region before returning to its home place. Thus325

the larger T , the more time cooperators have to find other cooperators, but also326

the more time there is for them to be found by defectors.327

3.2.3. Fitness. We assume that the change in fitness of an individual depends upon328

direct group interactions and whether a movement has been made.329

For these group interactions we will consider a public goods game in which the330

payoffs are determined by the interactive strategies, cooperate and defect, that we331

introduced earlier. Each individual receives a base reward of 1 regardless of their332

strategy. A cooperator always pays a cost 0 ≤ c < 1 so that every individual that333

it can directly interact with (excluding itself) receives an equal share of a reward334

v > 0. The cost cannot exceed 1 in order to prevent the fitness contribution from335

going negative (this is done for convenience of calculation; it is important that total336

fitness is not negative, and we could deal with large costs if necessary by truncating337

the resulting total fitness at 0). A defector does not pay a cost but receives a share338

of the reward from cooperators present in the group. Note that the base reward has339

been normalised to 1 and the reward v and cost c are multiples of the base reward.340

The direct group interaction payoff functions are then defined as follows341

Rn,t(Gn(mt)) =


1 + |Gn(mt)|C−1

|Gn(mt)|−1 v − c In cooperator and |Gn(mt)| > 1,

1− c In cooperator and |Gn(mt)| = 1,

1 + |Gn(mt)|C
|Gn(mt)|−1v In defector and |Gn(mt)| > 1,

1 In defector and |Gn(mt)| = 1

(40)342

343

where |G|C is the number of cooperators in group G. Note the cooperators still pay344

a cost when they are alone.345

An individual will pay a cost of λ for every movement that it makes. The346

movement cost is chosen so that it does not exceed the direct group interaction347

payoff an individual receives (for the same reasons as for the cooperative cost c,348

and large movement costs could be similarly accommodated if necessary), that is349

0 ≤ λ < min(Rn,t(Gn(mt))). The fitness contribution is then given by350

fn,t(m,Gn(mt)|mt−1) =

{
Rn,t(Gn(mt))− λ mt 6= mt−1,

Rn,t(Gn(mt)) mt = mt−1.
(41)351

352

It is clear that these fitness contributions vary with time, as the first move from353

the home place follows the distribution for a lone individual, and then movement354

depends upon the groups formed. For instance in a population entirely composed of355

cooperators, individuals would almost cease to move when they had found another356

cooperator, so the level of movement would decrease (and the fitness contributions357

would increase) with time, until the exploration time T is reached.358
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3.2.4. Evolutionary dynamics. We assume that the replacement weight contribu-359

tion will only depend upon the direct group. As in [9], the replacement weight360

contribution will depend upon the amount of time spent with each individual. In361

particular, it is assumed that an individual spends an equal amount of time with362

each individual in the group excluding itself. However, if the individual is alone,363

then it effectively allocates all the time to itself. The replacement weight contribu-364

tion function is then defined as follows365

ui,j,t(Gi(mt)) =


1/|Gi(mt) \ {i}| i 6= j and j ∈ Gi(mt),

0 i 6= j and j /∈ Gi(mt),

1 i = j and |Gi(mt)| = 1,

0 i = j and |Gi(mt)| > 1.

(42)366

367

We note that combining equations (24) and (42), we have that wi,j = wj,i and368

wi,i = 1 −
∑
j 6=i wi,j , which implies that our selected weights have the isothermal369

property (see [31]).370

3.2.5. Simulating the evolutionary Markov chain. The approach used in this paper371

to calculate the fixation probability is a semi-analytic one where the fitnesses of372

individuals are found by simulation, and these results are then used to evolve the373

population using the evolutionary Markov chain, which results in a more accurate374

solution than simulating the whole process (the movement process is too complex375

to allow for a fully analytic solution).376

Individuals start on their home place and then undergo an exploration phase of377

T time steps as described in Section 3.2.2. To calculate the fitness, the individuals378

move T times such that their fitness contribution is calculated for each of these379

movements; the total of these T fitness contributions gives their fitness for one380

simulation. The position of the individuals is then reset, that is, they return to381

their home place before the next simulation is run. Their average fitness for 10,000382

simulations is used in the evolutionary Markov chain.383

To calculate the replacement weights, individuals start on their home place and384

move only one time to determine their replacement weight. This represents indi-385

viduals returning to their home place to reproduce, with individuals being replaced386

according to the corresponding local connections. This counts as one simulation387

and, before the next simulation is run, we reset the position of the individuals so388

they all start in their home place. The replacement weights are calculated exactly389

because they comprise of only one movement. This involves calculating the prob-390

ability that an individual is alone, which gives the self-replacement weight. The391

other replacement weights are simply 1 minus the self-replacement weight divided392

by N − 1 because the probability of replacing the other individuals is the same for393

a complete graph.394

The fitnesses and the replacement weights are all that is required to construct395

the transition probabilities of the evolutionary Markov chain. The transition prob-396

abilities are substituted into the formula of [28] to give the fixation probability of i397

type A mutants in a population of N − i type B residents as follows398

ρAi =
1 +

∑i−1
j=1

∏j
k=1

P−k
P+
k

1 +
∑N−1
j=1

∏j
k=1

P−k
P+
k

(43)399

400
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where P−k (P+
k ) is the backward (forward) transition probability for a state with401

k type A individuals. Note that the weights wij and the fitnesses from Section402

3.2.3 depend upon the composition of the population, so at successive steps of the403

evolutionary Markov chain the transition probabilities will in general be different.404

We also note that this formula can easily be modified to find the fixation proba-405

bility of type B individuals. What exactly makes a type A or B individual would406

depend upon its interactive strategy and staying propensity. For example, we could407

have that A = C0.1 and B = D0.5, which means that type A is a cooperator with408

a staying propensity of 0.1 and type B is a defector with staying propensity 0.5,409

or we could have A = C0.1 and B = C0.2 so both types have the same behavioural410

strategy but different staying propensities. However, the important thing to note is411

that, at any one time, there are only two unique types A and B in the population.412

The advantage of such an approach is that we can relatively quickly calculate the413

fixation probability starting from any state. The saving comes from the fact that414

we do not simulate the entire process, which would take much longer because the415

number of steps to reach fixation could be high. However, this approach necessarily416

requires that we have a population in which individuals can differ only in terms417

of their type. To ensure that this is the case, we consider a complete structure418

with N places such that each individual has their own home place.We note that the419

advantage of efficient algorithmic processes over simulations was demonstrated in420

[48], but also that it was shown in [27] that for frequency-dependent selection this421

approach will not work for arbitrary spatial populations.422

4. Results. In this section the effect of the model parameters on the fixation prob-423

ability are investigated. In particular, we investigate how the model parameters af-424

fect assortment, which is the mechanism that allows cooperation to evolve as shown425

in [22]. There is positive assortment between cooperators if they are more likely426

to interact with other cooperators than defectors. In our model, this occurs due427

to an increase (decrease) in the time it takes for defectors (cooperators) to find co-428

operators. According to [20] the time to find cooperators should depend upon the429

density of the population and an individual’s movement speed. In their model, N430

individuals pair up with one another to form a coalition such that the probability of431

a pair forming is exponentially distributed with rate µ, which is a function of N and432

the population density. The time to find cooperators in their model is essentially433

determined by the rate µ. We have one-to-one correspondence between individuals434

and places and therefore the density remains constant; on the other hand, since we435

consider a complete graph, the movement speed is high as individuals can directly436

get from one place to another. Therefore, the time it takes to find cooperators is437

mostly determined by the staying propensity of the individuals, however, this rela-438

tionship is not so straightforward as it is not globally controlled and the individuals439

may have different staying propensities (which are subject to the evolutionary pro-440

cess). This means that some individuals may find cooperators faster than others.441

The parameters used in the simulations are summarised in Table 3.442

Apart from an individual’s interactive strategy and staying propensity, all other443

parameters are considered to be fixed. Each individual inherits these two charac-444

teristics from its parent, and different interactive strategies or staying propensities445

are introduced into the population through mutations. Staying propensities can446

take any value 0.01m for m = 1, . . . , 99; this means that no individual moves all the447

time or never, and so makes some adjustment to their behaviour depending upon448
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Parameter Set 1 2 3 4 5 6
N 10 10 10 20 10 10
T 10 5 25 10 10 10
λ Variable Variable Variable Variable 0.20 0.20
c 0.04 0.04 0.04 0.04 0.04 0.09
v 0.40 0.40 0.40 0.4 Variable Variable

Table 3. Parameters used for the simulations. The other param-
eters are fixed such that we have a complete structure with each
individual having its own home, βC = 1, βD = −1, S = 0.03 and
the dynamics used are BDB.

the group they are in. In particular we have max(α) = 0.99; some movement is a449

necessary requirement otherwise the replacement weights would be zero and there450

would be no evolution within the population. In a real world setting, a minimum451

movement requirement can be explained by, for example, foraging behaviour where452

an individual searches its environment to find food and therefore needs to move in453

order to survive.454

The mutations of these characteristics are sufficiently infrequent that the popu-455

lation is assumed to consist of a maximum of two types; resident and mutant, whose456

competition will result in fixation of one of the types before a new mutant appears.457

We consider two different scenarios to account for the different mutation rates of458

each characteristic.459

4.1. Scenario A: Interactive strategy mutations are rare. As previously460

stated, it is assumed that fixation happens much faster than new mutations arise.461

A mutation can result in a change of the interactive strategy and/ or the staying462

propensity. In this scenario, the mutation rate of an individual’s interactive strat-463

egy is much slower than the rate of mutations that involve their staying propensity.464

Since it is much more likely that the staying propensity mutates than the inter-465

active strategy does, once one of the interactive strategies (cooperate or defect) is466

removed from the population, it will be a long time before a new mutant involving467

this strategy appears. During this time, there will be a sequence of contests among468

individuals with the same interactive strategy but different staying propensities and469

the population will eventually evolve to the point where all individuals have the470

same interactive strategy and are using a (strict) Nash equilibrium staying propen-471

sity (a strict Nash equilibrium propensity is one where the fixation probability is472

maximised and changing the staying propensity is disadvantageous). Eventually, a473

mutant with a different interactive strategy and staying propensity will appear, and474

the quantity of interest at this point is the fixation probability of this mutant type.475

We assume that the staying propensity of the mutant can be different from the476

Nash equilibrium staying propensity of the resident population it is invading. The477

resident population will therefore be stable if it can resist invasion from a mutant478

using any staying propensity. Rather than considering any arbitrary mutant, the479

focus will be on the mutant most likely to invade, i.e. one maximising its fixation480

probability.481
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Cooperator residents are of the type CγR where their Nash equilibrium staying482

propensity γR is the staying propensity where a = b in the set483 {
(a, b) : ρCa,Cb1 = max

(
ρCc,Cb1 : c ∈ (0, 1)

)
and b ∈ (0, 1)

}
.484

485

In this set we identify all the points (a, b) where a is the best response staying486

propensity of 1 individual of type Ca when playing against N −1 individual of type487

Cb, who are using some arbitrary staying propensity b. Therefore, at the point488

where a = b, Ca is a best response to itself, i.e. a Nash equilibrium.489

A defector mutant is of the type DδM where the staying propensity δM satisfies490

ρ
DδM ,CγR
1 = max

(
ρ
Dc,CγR
1 : c ∈ (0, 1)

)
.491

492

Defector residents are of the type D0.99 (i.e. in the equivalent terminology to the493

above δR = 0.99) where their Nash equilibrium staying propensity is max(α) = 0.99494

whenever the movement cost is greater than 0 because the only way for them to495

maximize their fixation probability is by moving as little as possible.496

A cooperator mutant is of the type CγM where the staying propensity γM satisfies497

ρ
CγM ,D0.99

1 = max
(
ρCc,D0.99

1 : c ∈ (0, 1)
)
.498

499

The Nash equilibrium staying propensity of the resident cooperators γR is cal-500

culated as follows. We consider N − 1 residents of the type Cb and calculate the501

fixation probability of 1 individual of the type Ca for all values of a in the range502

[max(0.01, b − 0.09),min(b + 0.09, 0.99)], and the a that gives the highest fixation503

probability is picked. Note that using a wider range of values for a gives the same504

result so this range is used for efficiency. The N − 1 residents then use the staying505

propensity a that was picked and this process is repeated several times. After around506

20 repetitions, the staying propensity that gives the maximum fixation probability507

remains the same, that is, we can see that is a (strict) Nash equilibrium because508

it is a best response to itself and any other strategy will be disadvantageous. We509

therefore set γR to the value of a we get after 20 repetitions.510

We hypothesize that there is only one solution to the Nash equilibrium staying511

propensity. As seen in Figure 1, the best response staying propensity of one type512

Ca against N − 1 type Cb is relatively flat (the jagged line of the figure being513

an approximation to a smooth “real” value, caused by the stochasticity of the514

simulations). Intuitively the real solution should be smooth; a small change in the515

movement cost would have a small change on the payoff to a focal individual. It is516

possible that at some point this would lead to a sudden jump of the best response517

strategy as the payoffs from two different values pass. We would expect to see either518

a single smooth continuous function for the best response, or a piecewise continuous519

collection of distinct parts, and it is the former that we have here. This flatness520

means that the best response staying propensity is predominantly determined by521

the movement cost λ regardless of what the other players are doing. Therefore,522

there is only one intersection point with the line a = b as shown in Figure 1, which523

gives the Nash equilibrium staying propensity γR of resident cooperators. A non-524

unique solution would occur if there were multiple crossings (or indeed no crossings,525

which would need a discontinuity in Figure 1, as described above). We should note526

that we have no proof of the uniqueness of the Nash equilibrium staying propensity,527

although in all cases considered, the solution to the process described in the previous528

paragraph is independent of the starting position.529
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Figure 1. This plot shows the best response staying propen-
sities for 1 type Ci individual playing against N − 1 type Cj
individuals. Parameter set 1 is used with λ = 0.2 and i, j ∈
{0.01, 0.02, . . . , 0.99}. The intersection point of the plots gives the
unique strategy which is a best response to itself, i.e. the unique
cooperator resident Nash equilibrium staying propensity γR, which
is somewhere between 0.3 and 0.4. This value is similar to the
one obtained using the iterative method (see Figure 2). The val-
ues from the current figure are approximate only because of the
jagged nature of the lines; these occur because of the very large
number of simulations that would be necessary to obtain a smooth
version (the figure uses 10000 simulations for each combination).
The figure is used to illustrate the uniqueness of the solution only.

4.1.1. The effect of the movement cost. In Figure 2 the effect of the movement530

cost is shown. In particular, it increases the time it takes to find cooperators by531

increasing the staying propensity, that is, γR, γM , δM are positively correlated with532

movement cost; the (partial) exception is resident defectors, which we know have a533

staying propensity of max(α) = 0.99 regardless of the movement cost.534

For very low movement cost, both mutant types have a significantly lower staying535

propensity than the resident population that they are invading. They can therefore536

invade the resident population because they take less time to find cooperators.537

For higher, but still low, movement costs, whilst mutant cooperators can still538

invade, mutant defectors cannot. Here the resident cooperators are better at pre-539

venting invasion even when δM < γR for some values of the movement cost. This540

is because the movement cost impacts the invading mutant defector more adversely541

than the resident cooperators, who on average leave and regroup less often than a542

defector who will be repeatedly deserted by its cooperator groupmates.543
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For intermediate movement costs, neither mutant type can invade. At this point,544

since δM > γR, a mutant defector is slower at finding cooperators than the resident545

cooperators and therefore cannot take advantage of them. For a mutant cooperator,546

γM becomes much larger thereby diminishing their advantage over the resident547

defectors, in particular, not only are they paying a higher movement cost but it548

takes longer to find the other cooperators, which in turn reduces the amount of549

time that they can spend with them.550

For high movement costs, defecting mutants can invade, but cooperator mutants551

cannot. At this point all types have a large staying propensity and therefore do552

not interact much with one another. However, a mutant defector is helped by the553

fact that the resident cooperators always pay a cooperating cost that they now find554

difficult to recoup because they are moving very little and also paying a very large555

movement cost whenever they do so.556
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Figure 2. These plots show the effect of movement cost on the
evolution of cooperation using parameter set 1. The left (centre)
plot shows the staying propensities δR = 0.99 (γR) for resident
defectors (cooperators) and γM (δM ) for a mutant cooperator (de-
fector) used to invade the resident population. In the right plot, we
have the fixation probability of a mutant cooperator CγM (defector
DδM ) against N − 1 resident defectors D0.99 (cooperators CγR).

4.1.2. The effect of the exploration time. The exploration time T plays an important557

role in the evolution of cooperation. Changing the exploration time has a minimal558

effect on the time it takes to find cooperators because it will not alter the speed of559

movement of the individuals. This is because we are using a complete graph and560

individuals can directly get from one place to any other. However, increasing the561

exploration time has a positive effect on the coalition time, that is, the amount562

of time that cooperators spend cooperating with one another. [20] showed that563

increasing the coalition time helps with the evolution of cooperation. In our model,564

one explanation for this is that the fitness of the individuals, which is the average565

reward over the exploration time, will naturally have a higher value the larger the566

coalition time.567

In Figure 3 reducing the exploration time T from 10 to 5 steps decreases the568

coalition time which adversely affects the cooperators. One of the key differences569

is that the resident cooperators now find it much more difficult to prevent invasion570
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from a mutant defector. The shape of the plot for a mutant cooperator is largely571

the same but with a consistently lower fixation probability. In Figure 4 increasing572

the exploration time T from 10 to 25 steps benefits the cooperators. Not only does573

it help the resident cooperators prevent invasion from a mutant defector but it also574

increases the success of an invading mutant cooperator. This again has to do with575

the increased coalition time that allows the cooperators to increase their fitness.576
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Figure 3. Plots created using parameter set 2. The exploration
time T has been decreased from 10 to 5.
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Figure 4. Plots created using parameter set 3. The exploration
time T has been increased from 10 to 25.

4.1.3. The effect of population size. Fixation probability is reduced in general when577

the size of the population increases, as we see when comparing Figures 2 and 5,578

with population sizes of 10 and 20 respectively. The key value to compare fixation579

probabilities against is the neutral fixation probability of 1/N , the horizontal line580

in each of these figures, however. We see that the fixation probability is slightly581

higher for cooperators when compared to this line for the larger population of Figure582

5 (although it is also more sensitive to the movement cost) than for the smaller583

population. The key difference is that a mutant defector has fixation probability584

consistently under the neutral line in Figure 5 and so cannot invade even for very585
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Figure 5. Plots created using parameter set 4. The population
size has been increased from 10 to 20.

low movement cost in the larger population. Thus larger populations help a little586

in establishing cooperation, but help a lot in making it stable against defection.587

Increasing the population size has a positive impact on the evolution of cooper-588

ation because it increases the time it takes to find cooperators. Note that we are589

assuming that there is a one-to-one correspondence between individuals and places590

and therefore increasing the number of individuals also increases the number of591

places. Even though the density remains the same, there would be more places for592

the individuals to search in order to find cooperators thereby increasing the overall593

time it takes to find cooperators. In particular, an individual that is currently not594

in a cooperating group will have to search N − 1 places to find one, therefore, the595

probability of a defector finding a cooperating group decreases as N gets larger.596

This means that cooperators would resist invasion by defectors better, as we have597

noted above.598

4.1.4. The effect of reward and cost. The reward to cost ratio v/c is important599

because, even if other external factors favour cooperation, cooperation will not600

evolve if the reward to cost ratio is too low. This is seen in Figure 6 where the601

cost is set to 0.04 with the reward written as a multiple of the cost. When v/c602

is low, a mutant cooperator cannot invade but a mutant defector can. This is603

simply because the value of v/c is too low to promote cooperation. Increasing v/c604

makes cooperation more viable and, in particular, it allows a mutant cooperator to605

reduce the time it takes to find cooperators by reducing its staying propensity. It606

becomes more difficult for a mutant defector to invade because, on average, resident607

cooperators move less than the mutant defector as they are more in number and the608

larger v/c helps them quickly recoup any movement cost they incur whilst evading609

the mutant defector. This is the case even when δ < γR, that is, a mutant defector610

takes less time to find cooperators. For comparison with a different value of v/c, in611

Figure 7 the cost is set to 0.09. However, there is no fundamental change in what612

happens and we have a very similar figure to that for c = 0.04.613

4.2. Scenario B: Interactive strategy mutation is not rare. In this scenario,614

the mutation rate of an individual’s interactive strategy is not much slower than that615

of their staying propensity. Since the staying propensity would take a number of616

mutations to reach the right level for any scenario, any successful strategy will have617
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Figure 6. Plots have been created using parameter set 5. The
plots here are against the reward to cost ratio v/c such that c =
0.04.
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Figure 7. Plots have been created using parameter set 6. The
plots here are against the reward to cost ratio v/c such that c =
0.09.

to repeatedly face individuals of both types. The (strict) Nash equilibrium staying618

propensity will then be determined in a mixed population, i.e. there are individuals619

of both types. For simplicity we choose only one mixed state to determine the Nash620

equilibrium staying propensity which is the one where there are N/2 individuals of621

each type. The Nash equilibrium staying propensity for each type is therefore the622

one in which the fixation probability from the mixed state of each type is maximised.623

Resident and mutant defectors are of the same type Dδ. Similarly, resident624

and mutant cooperators are of the same type Cγ . The Nash equilibrium staying625

propensities δ and γ are determined by the intersection of the following two sets626 {
(a, b) : ρCa,DbN/2 = max

(
ρCc,DbN/2 : c ∈ (0, 1)

)
and b ∈ (0, 1)

}
,627 {

(a, b) : ρDb,CaN/2 = max
(
ρDc,CaN/2 : c ∈ (0, 1)

)
and a ∈ (0, 1)

}
.628

629

In the first set we are finding the Nash equilibrium staying propensity a of N/2 type630

Ca playing against N/2 type Db, where b is some arbitrary staying propensity. In631

the second set we are finding the Nash equilibrium staying propensity b of N/2 type632
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Db playing against N/2 type Ca, where a is some arbitrary staying propensity. The633

point at which these two sets intersect is (γ, δ), that is, both types will be using634

their Nash equilibrium staying propensities.635

To calculate γ and δ we use a similar iterative procedure from scenario A. To636

initialise the iterative procedure we arbitrarily choose some staying propensities a0637

and b0, and the iterative step is as follows. We calculate the fixation probability638

of N/2 type Ca individuals against N/2 type Db0 for all values of a in the range639

[max(0.01, a0− 0.09),min(a0 + 0.09, 0.99)]. The staying propensity a that gives the640

maximum fixation probability is picked, which is labelled a1. We then calculate the641

fixation probability of N/2 type Db individuals against N/2 type Ca1 for all values642

of b in the range [max(0.01, b0− 0.09),min(b0 + 0.09, 0.99)]. The staying propensity643

b that gives the maximum fixation probability is picked, which is labelled b1. Note644

that using a wider ranges for a and b gives the same result so these ranges were645

used for efficiency. After around 20 repetitions of the iterative step, the staying646

propensities a and b that give the maximum fixation probability remain the same,647

which means that we are at a (strict) Nash equilibrium because any other values648

would be disadvantageous. We therefore set γ = a20 and δ = b20.649

We hypothesize that γ and δ are unique. For cooperators, their Nash equilibrium650

staying propensity is relatively stable because it is predominantly determined by the651

movement cost regardless of what the defectors are doing. As seen in Figure 8, the652

plot for this is a roughly vertical line. For defectors, their Nash equilibrium staying653

propensity is negatively correlated with the staying propensity of the cooperators654

given that the movement cost is not too large, otherwise it would be max(α). In655

Figure 8, the plot for this slopes downwards as the staying propensity of the coop-656

erators increases. There is therefore only one intersection point of the two curves657

that gives γ and δ.658

4.2.1. The effect of movement cost. As in scenario A, the movement cost increases659

the staying propensity of the individuals and, therefore, increases the time it takes660

to find cooperators. As seen in Figure 9, what happens in this case is quite different661

to the situation in scenario A. Here, the mutant cooperator does not benefit from662

the fact that the resident defectors have a very high staying propensity as in scenario663

A. In this case, δ changes with the movement cost in a similar way that γ changes.664

Therefore, the key difference here is that a mutant cooperator cannot invade for665

very low movement cost because the resident defectors have a very low staying666

propensity, which means that they take much less time to find cooperators.667

4.2.2. The effect of exploration time. As in scenario A, the cooperators do worse668

when the exploration time is lower; this is shown in Figure 10 where T is decreased669

from 10 to 5, and in Figure 11 where T is increased from 10 to 25. The explanation670

is as in scenario A where the coalition time is lower when the exploration time is671

lower and the coalition time increases, since, as we already know, increasing the672

coalition time helps the cooperators do better.673

4.2.3. The effect of population size. Similarly to scenario A, increasing the popu-674

lation size helps cooperators as shown in Figure 12, where N is increased from 10675

to 20. As before, increasing the population size increases the time it takes to find676

cooperators because there is a one-to-one correspondence between individuals and677

places. Increasing the population size therefore increases the number of places that678

need to be searched to find cooperators. Furthermore, as in scenario A, a mutant679

defector can no longer invade resident cooperators for very small movement cost.680
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Figure 8. This plot shows the best response cooperator staying
propensity (solid line, value shown on the x-axis) versus the range
of defector staying propensities on the y-axis, and the best response
defector staying propensity (dashed line, value shown on the y-axis)
versus the range of cooperator staying propensities (on the x-axis)
for N/2 cooperators and N/2 defectors. Parameter set 1 is used
with λ = 0.2 and the staying propensities are chosen from the
set {0.01, 0.02, . . . , 0.99}. The best response staying propensities
cross at one point only, which is thus the unique Nash equilibrium,
where γ ≈ 0.7 and δ ≈ 0.5. These values are similar to those
obtained using the iterative method described earlier (see Figure
9). As before, the values from the current figure are approximate
only because of the jagged nature of the lines; the figure is used to
illustrate the uniqueness of the solution only.

4.2.4. The effect of reward and cost. For a mutant defector, the effect of the reward681

to cost ratio v/c is the same as in scenario A. However, a mutant cooperator does682

not do better with increasing v/c. In this scenario, the fixation probability of a683

mutant cooperator peaks, then starts dropping, as v/c is increased. This is because684

the resident defectors have a very low staying propensity, and are therefore faster at685

finding cooperators, making it difficult for a mutant cooperator to invade because it686

cannot avoid the defectors. This is shown in Figure 13 where c = 0.04. Increasing687

the cost c though, makes it even more difficult for the cooperators regardless of v/c.688

In Figure 14, a mutant cooperator cannot invade for any v/c. This is because a689

larger c reduces the cooperators’ background fitness by a larger amount, increasing690

the handicap that the cooperators already have.691

4.3. The effect of other parameters. The effects of other parameters are not692

shown using plots but will be explained in this section.693
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Figure 9. These plots show the effect of movement cost λ on the
evolution of cooperation and are created using parameter set 1.
The plot on the left shows the Nash equilibrium staying propensity
γ for cooperators and δ for defectors in a mixed population where
there are N/2 individuals of each type. The plot in the centre
shows the fixation probability of each type from the mixed state
with N/2 individuals of each type. The plot on the right shows the
fixation probability of a mutant cooperator Cγ (defector Dδ) in a
population of N − 1 resident defectors Dδ (cooperators Cγ).
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Figure 10. Plots created using parameter set 2. Plots are as in
Figure 9 with exploration time T decreased from 10 to 5.

Making the individuals more sensitive to their group members by decreasing the694

sensitivity parameter S improves the chances of cooperation evolving. In equation695

(38), we can see that decreasing S will increase the size of the denominator if696

the group benefit is negative, thereby increasing the probability that an individual697

moves away from its current position if it is undesirable to stay. Therefore, as S → 0698

the more sensitive individuals become, which helps the evolution of cooperation699

because it reduces the exploitation of cooperators (cooperators are now more likely700

to move away if the group they are in becomes undesirable).701

Another way in which the group member sensitivity can be changed is by choosing702

βA > 0 and βB < 0 such that βB/βA → −∞. As seen in equation (38), this will703
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Figure 11. Plots created using parameter set 3. Plots are as in
Figure 9 with exploration time T increased from 10 to 25.
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Figure 12. Plots created using parameter set 4. Plots are as in
Figure 9 with population size N increased from 10 to 20.
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Figure 13. Plots created using parameter set 5. Plots are as in
Figure 9 but λ is fixed and reward to cost ratio v/c varied such
that c = 0.04.
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Figure 14. Plots created using parameter set 5. Plots are as in
Figure 9 but λ is fixed and reward to cost ratio v/c varied such
that c = 0.09.

cause the group benefit to become negative very quickly in the presence of a defector,704

even if there are significantly more cooperators present. Once again, this reduces705

the exploitation of cooperators by defectors, hence, improving the chances that706

cooperation evolves.707

In all of the plots shown, we have only used BDB dynamics because the effect of a708

change to other dynamics is quite small. The reason for this is that the evolutionary709

graph is always complete, that is, whilst the replacement weights change, all indi-710

viduals can still replace one other. For example, in the case of DBB dynamics, to711

make a significant difference a defector randomly chosen for death should be more712

likely to be replaced with the offspring of a cooperator. However, this is not the713

case here and, in particular, the only way the evolutionary graph can be changed714

is by changing the staying propensity such that increasing the staying propensity715

increases the probability that an individual replaces itself. Therefore, the dynamics716

overall have a small effect. We note that this would not be the case for some other717

underlying structure that was not complete.718

4.4. The limiting fixed fitness case. Our general framework is complex, and719

hence so far there have been few analytical results associated with it. In particular720

payoffs for the games considered, the public goods game as in the current paper and721

the multiplayer Hawk Dove game as in [9], are frequency dependent, and so general722

analytical solutions are hard to find. This is especially true for history-dependent723

models such as the Markov model that we consider in this paper.724

An alternative, simpler, case is that of fixed fitness, i,e. where payoffs depend725

only upon an individual’s type, and not its interactions. This case is considered726

in many of the classical evolutionary graph theory papers, and in particular yields727

some analytical solutions (see for example [31, 10, 53]). We note that this applies728

for the public goods game considered here in the limiting case of either very small729

v or the probability of being alone being close to 1 (i.e. |Gn(m)| = 1 almost730

always), in which case we approximately have fitnesses of 1 and 1− c for defectors731

and cooperators, respectively. Here, the interactions only affect the replacement732

probabilities as described in Section 2.3. Below we shall give some new analytical733

results for our framework for this fixed fitness case.734
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The classical fixed fitness models involve a resident population of fitness 1 and735

an invading mutant of fitness r. The Moran fixation probability is given as736

ρAS =


1− (1/r)|S|

1− (1/r)N
r 6= 1,

|S|/N r = 1,

(44)

where ρAS denotes the fixation probability of a set of mutants S in a completely737

unstructured population (because the population is unstructured, only the number738

of mutants matters). A complete analysis of the conditions under which fixation on739

an evolutionary graph satisfies the Moran probability was carried out in [45] and740

was summarised as Table 2 of that paper.741

For the weights used in this paper (and commonly elsewhere) the weight matrix742

W satisfies the isothermal property, as we have noted in Section 3.2.4. The con-743

ditions for the Moran fixation probability to hold were shown in [45] to include all744

isothermal cases for each of the four dynamics BDB, DBD, LB and LD. Thus for745

the fixed fitness case and these selected weights, in our framework every popula-746

tion is equivalent to the well-mixed population for these dynamics. Substituting747

the payoffs we gave above for cooperators and defectors into equation 44, we then748

have the following respective fixation probabilities for i cooperators (defectors) in749

a population with N − i defectors (cooperators)750

ρCi =
1− (1/(1− c))i

1− (1/(1− c))N
, (45)751

ρDi =
1− (1− c)i

1− (1− c)N
. (46)752

753

In our results we have used the BDB dynamics, so that in the limiting case of754

v → 0 we will obtain the fixation probabilities given above. It is easy to see that755

that is indeed the case by substituting i = 1 and N = 10 into equations 45 and 46756

and comparing with the fixation probabilities near the axis in the third subfigure757

of Figures 6 and 13 (c = 0.04) and Figures 7 and 14 (c = 0.09).758

This leaves the dynamics BDD and DBB. Only a very special subclass of weight759

matrices, some isothermal and some not, could yield the Moran probability for these760

two dynamics (different for each dynamics). Thus in general these dynamics will761

not yield the Moran probability in the fixed fitness case, although for the structure762

used in this paper this is actually a reasonable approximation.763

Thus it is clear that, for the weights described in Section 3.2.4, our framework764

affects evolution primarily through how it affects the fitnesses through the interac-765

tion of individuals, and when this effect is removed (as above) significant structural766

effects disappear. We note firstly that we can have different weights that do not767

satisfiy the isothermal condition, and so for which these results do not apply; for768

example if self-replacement is replaced by a resampling from the distribution of769

groups when an individual is alone.770

Secondly, we note that some of the more extreme effects that occur in the fixed fit-771

ness case from evolutionary graph theory come about precisely because the weights772

involved are very uneven, for example relating to the star graph, where there is a773

single central vertex with many neighbours but these vertices only have the central774

vertex as a neighbour. The payoffs are typically calculated using either the average775

or the total of a set of games, one played against each neighbour. Yet if we con-776

sider weights in the way that we think of in the current paper, namely time spent777
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together, there is a problem with this. The central individual can only spend a778

small amount of time with each of its many neighbours. What then do these other779

individuals do the rest of the time? In the average payoff case they are effectively780

able to acquire the same payoff as for the interaction with their single neighbour781

(irrespective of what that is), in the total payoff case they gain zero for the rest of782

the time. In our framework individuals can gain certain payoffs when alone, and783

this would perhaps be logical for classical evolutionary graph theory too.784

5. Discussion. In this paper we have developed the framework of [11], for consid-785

ering the evolution of structured populations involving multiplayer interactions, and786

in particular created a mode of a mobile population in which the movement of the787

individuals is Markov, where the place an individual moves to next depends upon788

their current position. In previous models [9], individuals moved independently of789

their current position so the model in this paper gives a different perspective on the790

movement of individuals. In particular, we looked at the movement of individuals791

in relation to the evolution of cooperation. In what follows, we discuss some of the792

results of this Markov movement model.793

In the Markov movement model we considered in detail the version where the794

movement of individuals depends upon population history. Here, individuals make a795

decision of whether they should stay or leave their current position depending upon796

the other individuals present with them in the same place. This movement strategy797

is akin to the “walk away” strategy of [1, 2]. However, we note that this is only one798

interpretation we can use for the Markov movement model. The framework provides799

the tools to construct different kinds of Markov movement behaviour. For example,800

in [21], individuals would study all surrounding areas before making a decision about801

where to move to next. In terms of the framework, individuals would consider a802

larger subset of the current population distribution rather than just the distribution803

of individuals that are currently present with each other. Both simple and complex804

Markov movement behaviour provide useful insight into the movement behaviour805

of individuals but we have opted to start with a simpler behaviour to make it easier806

to show how the framework can be applied.807

For cooperation to evolve, it was shown in [22] that there should be assortment, in808

particular there should be a mechanism that allows the cooperators to increase their809

preference for interacting with other cooperators. Here, this mechanism is provided810

by the Markov movement of the individuals. Our results are in line with [2] who also811

modelled the Markov movement of individuals where individuals would stay where812

they are if the payoff they received was above some minimum threshold. However,813

the structure we have used is substantially different. We have used a complete814

graph with one-to-one correspondence between individuals and places instead of a815

two-dimensional array. This means that there is a high potential movement speed816

as individuals can go directly from one place to another, which is mitigated in our817

model with the introduction of a movement cost. A higher staying propensity slows818

down an individual because they are more likely to stay where they are. In terms of819

choosing the staying propensity an individual should use, we calculated the staying820

propensity which maximises their fixation probability. We considered two different821

scenarios where the staying propensity of an individual mutates very quickly or822

slowly. The key difference between the two scenarios was that a mutant cooperator823

can invade a resident population of defectors for very low movement cost if their824
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staying propensity mutates very slowly. We also investigated the effect of changing825

the other model parameters.826

The BDB dynamics used here allows cooperation to evolve even though typically827

selection does not favour cooperators with these dynamics [40]. Other dynamics828

that favour cooperators showed little improvement over the results we got for BDB829

dynamics. This shows that Markov movement is quite effective in allowing coopera-830

tion to evolve. Its effectiveness is further backed up by the fact that the structure of831

the evolutionary graph is complete, which is known to be detrimental for coopera-832

tors [40]. In particular, in a complete evolutionary graph all individuals can replace833

each other and, therefore, the individuals with the highest fitness are more likely to834

be favoured by selection. This shows that conditional movement makes the choice835

of dynamics being used less important.836

We note that our work effectively involves a coevolution of population strategy837

and structure, and that there has been significant research on this over the past ten838

years or so, as in for example [42, 43]. In such models the growth and structure839

of the graph can be strongly influenced by the game played, as well as previous840

interactions of individuals. In this case connections between pairs of individuals841

change, and are formed or broken depending upon the types of the individuals,842

in a population that evolves with link dynamics happening on a faster timescale843

that the evolutionary dynamics. A similar but more general set-centred approach844

is considered in [56]. In [23] it is reputation rather than previous interactions that845

causes structural changes; in [15] the key factor is prosperity. For an excellent846

review of this type of work prior to 2010 see [47] (see also [3] for a more recent but847

more general review). As noted by [3], a common feature of a lot of this work is848

that cooperative behaviour occurs more readily when cooperators are able to both849

group themselves together and exclude defectors to a significant extent, and this is a850

feature of our work too. In our case a key difference is the presence of variable-sized851

multiplayer interactions, the distribution of which is closely linked to population852

structure.853

Furthermore through our framework, we can see a clear connection between mod-854

els with mobile individuals as in the current paper, and those on a fixed structure.855

We see an interesting alternative (but which has a similar effect) in [16] and [17],856

where individuals are on a lattice and move when their current interactions are857

unsatisfactory. In [57] mobility (also on a lattice) is linked to reputation (where858

individuals with a higher reputation level than their locality tend to move). These859

works demonstrate that an intermediate level of mobility can help cooperation to860

evolve, which we have also seen in our different type of structure.861

In this paper we have made several advances on our previous work. We have862

largely completed the development of the framework of [11] and have shown how it863

incorporates different aspects of evolutionary game theory thereby making it very864

flexible in terms of what can be modelled. We have then applied this to a Markov865

movement model, the simplest type of history-dependent model within our frame-866

work. In turn we have used this to explore the evolution of cooperative behaviour,867

making predictions upon when cooperation can occur, with high exploration time868

and low movement cost both helping cooperation; interestingly, the evolutionary869

dynamics used is not so important for our chosen model. The example model used870

in this paper made use of quite a simplistic territorial structure that allowed the871

results to be calculated semi-analytically, that is, only a part of the results were872

calculated using a simulation. In future, we would like to model a more complex873
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territorial structure to determine the effect this has on the evolution of coopera-874

tion. As we have seen, the space within which individuals move in has an effect on875

the speed of movement. Indeed, being able to directly move from one location to876

another means that individuals have a very high movement speed. However, hav-877

ing to pass through a number of places before reaching the desired location would878

reduce this movement speed. This again opens up new opportunities for study, for879

example, the effect of common hubs that all individuals regularly pass through on880

the evolution of cooperation.881
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