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Roles of inventory and reserve capacity in mitigating

supply chain disruption risk

Abstract

This research focuses on managing disruption risk in supply chains using in-

ventory and reserve capacity under stochastic demand. While inventory can

be considered as a speculative risk mitigation lever, reserve capacity can be

used in a reactive fashion when a disruption occurs. We determine optimal in-

ventory levels and reserve capacity production rates for a firm that is exposed

to supply chain disruption risk. We fully characterize four main risk mitiga-

tion strategies: inventory strategy, reserve capacity strategy, mixed strategy

and passive acceptance. We illustrate how the optimal risk mitigation strategy

depends on product characteristics (functional versus innovative) and supply

chain characteristics (agile versus efficient). This work is inspired from a risk

management problem of a leading pharmaceutical company.

Keywords: Supply chain resilience, Supply chain management, Disruption

management, Inventory management, Stochastic models

1. Introduction

Boosted by recent high impact disasters, like the nuclear catastrophe in

Japan, the topic of supply chain resilience has emerged as an important busi-

ness issue. Practitioners are increasingly being challenged to build resilient

Preprint submitted to IJPR May 22, 2018



supply chains (WEF, 2013; Snyder et al., 2012). The impact of supply chain

disruptions on the financial performance of a company can be severe. Hen-

dricks and Singhal (2005) use an empirical approach to quantify the effect of

supply chain disruptions on long-run stock price performance. Analyzing a

time period starting one year before the disruption and lasting until two years

after the disruption, they find that the average abnormal stock return after

announcing a supply chain disruption is nearly -40%.

To mitigate the negative consequences of supply chain disruptions, compa-

nies often adopt the practice of building up supply chain resilience using risk

mitigation inventory (RMI) and reserve capacity (Tomlin, 2006). RMI is extra

inventory that is designed to be used to meet customer demand in the event of

a supply chain disruption (Simchi-Levi et al., 2014; Lücker et al., 2016). It is

different from the operational safety stock which is held to cope with demand

uncertainty. Reserve capacity refers to reserving free capacities that can be

used for production in the event of a supply chain disruption (Chopra and

Sodhi, 2004; Lücker and Seifert, 2016).

Take for example a pharmaceutical company that produces life saving can-

cer drugs such as Roche’s Avastin. The production of the biological compound

of the drug is exposed to substantial risks such as a biological contamination

at a production site or a fire, resulting in a shut down of the production site

for several months. After such an incident, the production site can only be

re-used after regulatory approval, which can be time consuming. Roche gen-

erated with this drug 6.8bn CHF revenue in 2016. Besides the regulatory

requirement of reliably delivering drugs to the patient, there is a high profit
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margin, providing the firm incentives to build up RMI and/or reserve capacity.

In this paper we focus on understanding the optimal use of RMI and reserve

capacity to deal with disruption risk at a single location under stochastic

demand. An important objective in this research is to understand and describe

factors that lead to increasing RMI or reserve capacity levels. To simplify our

models, we ignore safety stock and focus entirely on RMI, reserve capacity and

supply chain disruption risk. Holding RMI causes inventory holding costs. The

reserve capacity is associated with fixed costs for reserving the capacity as well

as emergency production costs that are incurred when the capacity is deployed.

There is a cost for stocking out.

We derive theoretical insights related to the optimal use of RMI and re-

serve capacity under supply chain disruption risks. Our analytical results

demonstrate that the optimal reserve capacity increases with the coefficient of

variation of demand, whereas the optimal RMI either decreases or increases,

depending on the inventory holding costs. We also show that under certain

conditions the RMI level is constant in the penalty cost.

The remainder of this paper is structured as follows. In Section 2 we

review the relevant literature, focusing mainly on reserve capacity strategies,

inventory policies and statistical risk measures. In Section 3 we present our

mathematical model, followed by managerial insights (Section 4). Finally, we

provide concluding remarks and envision future research topics in Section 6.
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2. Literature Review

Our paper is related to the studies that focus on the role of reserve ca-

pacity and/or inventory management in mitigating the disruption risk. We

also refer the reader to Chopra and Sodhi (2004); Snyder et al. (2012) for

extensive reviews of alternative risk mitigation strategies against supply chain

disruptions.

Research on the use of RMI (also known as speculative capacity) and re-

serve capacity (also known as reactive capacity) mainly focuses on dealing with

demand uncertainty under different settings such as multi-product newsvendor

(Reimann, 2011), unexpected demand surges (Huang et al., 2016), and heavy-

tailed demand (Biçer, 2015). These papers are based on the work by Cattani

et al. (2008), who provide a general solution procedure for models with spec-

ulative and reserve capacity in the fashion industry. Biçer and Seifert (2017)

develop an analytical model that allows optimization of inventory and capacity

levels over time when demand forecasts are updated according to an additive

or a multiplicative process. The common assumption in these papers is that

there is no supply disruption. We extend the models studied by these re-

searchers by simultaneously considering the demand risk and the disruption

risk.

The literature on the supply chain disruption risks focuses on the supply

risks, generally ignoring the impact of demand uncertainty on the risk mitiga-

tion strategies. Tomlin (2006) investigates dual sourcing and reserve capacity

scenarios in the presence of supply chain disruption risk. His model is based on

a reliable but more expensive supplier and an unreliable yet cheaper supplier.
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He characterizes high-level risk mitigation strategies, but does not jointly opti-

mize RMI and reserve capacity decisions under stochastic demand. Lücker and

Seifert (2016) study a model in which a pharmaceutical firm determines opti-

mal RMI levels under supply chain disruption risk and deterministic demand.

Further related papers focus on the role of dual sourcing in mitigating the dis-

ruption risk under deterministic demand (Parlar and Perry, 1996; Gürler and

Parlar, 1997). We contribute to this literature stream by jointly optimizing

RMI and reserve capacity levels under stochastic demand and deriving novel

structural insights.

The impact on the supply chain networks of supply disruptions is widely

studied by different scholars (Schmitt et al., 2015; Liberatore et al., 2012;

Berger et al., 2004; Ruiz-Torres and Mahmoodi, 2007; Li et al., 2010; Yu

et al., 2009; Sarkar and Kumar, 2015; Niknejad and Petrovic, 2016). Schmitt

et al. (2015) analyze the role of inventory to safeguard against supply chain

disruptions in a multi-location supply chain. The propagation of disruption

in a network is analyzed by Liberatore et al. (2012). Berger et al. (2004) and

Ruiz-Torres and Mahmoodi (2007) present a decision tree approach that helps

to determine the optimal number of suppliers under disruption risk. In Li

et al. (2010) the authors align the sourcing strategy with the pricing strategy

of a firm that is exposed to supply chain disruption risk. Closely related is the

work of Yu et al. (2009) who analyzes dual sourcing decisions for non-stationary

and price-sensitive demand under disruption risk. Behavioral factors in multi-

echelon supply chains that are prone to supply chain disruptions are studied

by Sarkar and Kumar (2015). They find that supply chain disruptions may
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cause higher order variability compared to the base case without disruptions.

Niknejad and Petrovic (2016) propose a risk evaluation method for global

production networks that is based on a dynamic fuzzy model. However, this

research stream lacks the optimality structures for the joint use of RMI and

reserve capacity.

In summary, our paper contributes to the literature by providing structural

insights into optimal RMI and reserve capacity decisions under stochastic de-

mand and the disruption risk. We illustrate how the optimal risk mitigation

strategy depends on product characteristics (functional versus innovative) and

supply chain characteristics (agile versus efficient).

3. Mathematical Model

In this section we present a stylized mathematical model that is based on

a single product and a single location subject to supply chain disruptions.

In the event of a supply chain disruption the firm can instantaneously use

the available RMI and the reserve capacity to meet customer demand. The

reserve capacity is characterized by its production rate that determines how

many goods can be produced in a given time. The research problem is to find

the optimal combination of RMI and reserve capacity production rate under

stochastic demand.

Since RMI levels are decided before a disruption has occurred, there is a

risk of keeping either too much RMI (overage cost) or too little (underage

cost). The overage costs are the RMI holding costs h, which are incurred as

long as no disruption takes place. In the event of a supply chain disruption,
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only excess inventory is charged with the holding cost h during the disruption

time τ . The reserve capacity production rate a is decided before a disruption

has occurred. The actual production volumes given a specific reserve capac-

ity, however, are only decided after a disruption has occurred, and hence this

mitigation strategy provides more flexibility. In particular, there is no risk

of overproduction and hence no overage cost due to using the reserve capac-

ity. The reserve capacity is associated with an upfront fixed component for

reserving the capacity, denoted by ĉA, and a variable production cost of cA,

which is incurred based on actual production volumes. The underage costs for

unmet demand during the disruption time τ are the penalty costs p (e.g., unit

selling price minus unit production cost plus goodwill). The firm minimizes its

expected costs by deciding for RMI levels I and reserve capacity production

rate a.

As a simplification we assume that only one disruption of the length τ

occurs at a given point in time with probability ωτ . This assumption is rea-

sonable for applications in the pharmaceutical industries where the determinis-

tic disruption time represents a worst-case scenario which the pharmaceutical

company considers for risk mitigation (e.g. mitigating longer disruptions are

out of scope of the company). Demand during the disruption time τ is charac-

terized as a non-negative, continuous random variable X with the distribution

Fτ ( · ) and the probability density fτ ( · ).
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Our optimization problem can be written as follows:

min
I≥0,a≥0

L(I, a)

= ωτ

(
p

∫ ∞
I+aτ

(
x− I − aτ

)
fτ (x)dx

+h

∫ I

0

(I − x)fτ (x)dx+ cA

∫ I+aτ

I

(x− I)fτ (x)dx

+cAaτ
(

1− Fτ
(
I + aτ

)))
+
(
1− ωτ

)
hI + ĉAa. (1)

In the objective function, the first term (starting with ωτ ) represents the

penalty, inventory holding and reserve capacity production costs in case a

disruption occurs. Penalty costs are only incurred for demand larger than

I + aτ . Holding costs are incurred if the demand is smaller than I. Costs

for emergency production are incured if demand is larger than I. The second

term ((1− ωτ )hI) gives the inventory holding costs in cases where no disrup-

tion occurs. The reservation costs for the reserve capacity ĉA are incurred for

all time, independent of the occurrence of disruptions. A complete list of all

parameters is given in Table 1. Proposition 1 characterizes the optimal risk

mitigation strategy.
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Decision variables
I ≥ 0 RMI level
a ≥ 0 Reserve capacity production rate

Parameters
τ > 0 Disruption time

ωτ ∈ (0, 1) Probability of disruption of length τ
p > 0 Penalty cost
h > 0 Inventory holding cost, h < p
cA > 0 Reserve capacity variable unit cost, cA < p
ĉA > 0 Reserve capacity fixed cost

Table 1: Decision variables and parameters of the model

Proposition 1. The optimal RMI I∗ and reserve capacity production rate a∗

are as follows:

I: Inventory strategy: If ĉA ≥ ∆1 and p > ĥ
ωτ

, then

I∗ = F−1τ

(
ωτp−ĥ
(p+h)ωτ

)
and a∗ = 0.

II: Mixed strategy: If ∆1 > ĉA > ∆2, then

I∗ = F−1τ

(
1− hτ−ĉA

(h+cA)ωτ τ

)
and a∗ =

F−1
τ

(
1− ĉA

(p−cA)ωτ τ

)
−I∗

τ
.

III: Process flexibility strategy: If ĉA ≤ ∆2 and (p− cA)ωττ > ĉA, then

a∗ = 1
τ
F−1τ

(
1− ĉA

(p−cA)ωτ τ

)
and I∗ = 0,

IV: Passive acceptance: If p ≤ ĥ
ωτ

and {ĉA ≥ ∆1 or ĉA ≤ ∆2}, then

I∗ = 0 and a∗ = 0,

where ĥ , (1− ωτ )h, ∆1 , τ h
p+h

(p− cA) and ∆2 , τ(ĥ− ωτcA).
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All proofs are provided in the appendix. If the reserve capacity fixed cost

ĉA exceeds the threshold ∆1, the inventory strategy (I) is preferable (for suffi-

ciently large penalty costs) because the reserve capacity is too expensive. The

threshold depends on various model parameters, including RMI holding cost

and reserve capacity variable unit cost. If the reserve capacity fixed cost ĉA is

below the threshold ∆2 (and the fixed cost for the reserve capacity is not too

high), reserve capacity strategy (III) is preferred, since RMI is becoming too

expensive compared to sourcing from the reserve capacity. In between these

two cases, the mixed strategy (II) is optimal. Otherwise, a passive acceptance

of supply chain disruption risk is optimal (IV).

The threshold ∆1 can be interpreted as the effective penalty costs (e.g.,

penalty costs reduced by the actual reserve capacity production costs) that

are gauged from the relative holding costs to total penalty and holding costs.

The threshold ∆2 can be interpreted as the expected effective inventory hold-

ing costs (e.g., the expected inventory holding costs reduced by the expected

reserve capacity production costs). The dependence of ∆1 and ∆2 on h, ĉA and

cA as key parameters is presented in Figures 1 and 2 (with τ = 10, ωτ = 0.05

and p = 40). Sections I, II, and III indicate the areas where inventory strategy,

mixed strategy or reserve capacity strategy, respectively, are optimal. Clearly,

for holding costs h and reserve capacity fixed costs ĉA that are too high (upper

right-hand corner of the graphs), a passive acceptance of the risk is optimal

(I∗ = 0 and a∗ = 0).

According to Proposition 1, for the inventory strategy, optimal RMI levels

depend on the holding cost h, penalty cost p and probability of a disruption
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Figure 1: Phase space for the thresholds ∆1,
∆2 and cA = 15
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Figure 2: Phase space for the thresholds ∆1,
∆2 and cA = 20

ωτ . For the mixed strategy, the optimal RMI level depends on the expected

additional cost of production through the reserve capacity (ωτcA − ĥ) as well

as the reserve capacity reservation cost ĉA. The lower this expected additional

cost and the cheaper the reservation cost for the reserve capacity, the lower the

optimal RMI I∗ and vice versa. The firm’s optimal reserve capacity production

rate a∗ depends on the lost profit (e.g., the difference between penalty cost and

production cost (p − cA)) as well as the reserve capacity reservation cost ĉA.

The smaller the lost profit and the cheaper the reservation cost for the reserve

capacity, the larger the optimal reserve capacity production rate a∗.

Regarding a sensitivity analysis, the following lemma holds:

Lemma 1. Let the mixed strategy be optimal. Then: 1) I∗ is constant in p and

a∗ increases with p, 2) a∗ decreases with τ for sufficiently large τ if ĥ−ωcA ≤ 0

and p > ĉA+cAωτ τ
ωτ τ

, 3) ∃ωτ,ε > ω′τ = τh−ĉA
τh+cA

such that a∗ decreases with ωτ on the

interval (ω′τ , ωτ,ε) if ĉA < τh.

Regarding the sensitivity in the coefficient of variation of demand CV , we
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find:

Lemma 2. Let the mixed strategy be optimal and let demand follow a nor-

mal distribution Fτ ( · ). Then: 1) I∗ decreases (increases) with CV if h >

cAωτ τ+2ĉA
τ(2−ωτ ) (h < cAωτ τ+2ĉA

τ(2−ωτ ) ), 2) a∗ increases with the coefficient of variation of

demand CV .

In other words, it is best to deal with increasing demand volatility by

building up more reserve capacity and by holding more RMI as long as inven-

tory holding costs are not too high. If inventory holding costs are high, it is

best to deal with increasing demand volatility by holding less RMI. Further

managerial insights based on these findings are discussed in the subsequent

section.

4. Managerial Insights

A manager is typically concerned with two main questions: First, which

risk mitigation strategy is optimal for which products? Second, what are

optimal RMI and/or reserve capacity levels?

To address the first question, we refer to the typology in Figure 3, where

we identify high (low) inventory holding costs with functional (innovative)

products and high (low) fixed cost for the reserve capacity with an efficient

(agile) supply chain. In the automotive industry, for example, profit margins

are generally low, so the inventory holding costs are relatively high compared to

the total revenue generated. The industry is also capital intensive, resulting

in high fixed costs for the reserved capacity. Therefore, automotive supply

chains are generally efficient. For an automotive company such as Renault,
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the passive acceptance of supply chain disruption risks is optimal, given the

high inventory holding costs and efficient supply chains. In contrast, for the

innovative pharmaceutical segment of the drug manufacturer Pfizer, the 2015

annual report lists an average cost of sales of 11.2% of revenues (http://

www.pfizer.com/investors). Clearly, for such innovative products, either

an inventory strategy, or a mixed strategy is optimal, depending on the agility

of the supply chain.

Another way to analyze Figure 3 is to identifying the y-axis with demand

uncertainty. An agile [efficient] supply chain corresponds in this scenario to

high [low] demand uncertainty. Our risk mitigation classification matrix can

then be seen as an extension of the classical push-pull process to supply chain

disruption risk where- depending on the product’s characteristic we have to

decide for the right risk mitigation strategy, besides the push-pull boundary

(Simchi-Levi et al., 2004).

To address the second question, we provide structural insights on optimal

RMI and reserve capacity levels. From Lemma 1 and 2 we find the following

main insights:

• The optimal RMI level is constant in the penalty cost.

• The optimal production rate of the reserve capacity may decrease with

the disruption probability.

• While the optimal production rate of the reserve capacity always in-

creases with the coefficient of variation for normally distributed demand,

the optimal RMI level may decrease or increase with the coefficient of

13
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Figure 3: Four risk mitigation strategies

variation.

In the following we discuss each insight in detail.

The optimal RMI level is constant in the penalty cost.

This insight is interesting as one might expect that the RMI level increases

with the penalty cost. However, keeping in mind that we apply a mixed

strategy, we observe that only the production rate of the reserve capacity

increases with the penalty cost, and the RMI level remains constant. Once a

certain threshold for the penalty cost is passed, building up reserve capacity

becomes more cost-efficient than building up RMI. We illustrate this insight in

Figure 4, where we show the impact of the penalty cost on RMI I∗ and reserve

capacity production rate a∗. The solid curve represents RMI I∗ (levels are

given on the left y-axis) and the dashed curve represents the reserve capacity

production rate a∗ (values are given on the right y-axis). We have divided the
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graph in two sections. Section I shows the inventory strategy with ĉA ≥ ∆1.

Section II shows the mixed strategy with ∆1 > ĉA > ∆2. The inventory

strategy (I) is optimal in the approximate range 19 < p < 25, where I∗

increases with p. For p > 25 we pass the breaking point and I∗ remains

constant while a∗ increases with p (mixed strategy II). This plot and the

following ones are based on the following parameters: p = 40, cA = 20, ĉA =

2, τ = 10, ωτ = 0.05 and a normally distributed demand with µ = 1 and

σ = 0.3. In this context, it is important to discuss when the transition from

the inventory strategy to the mixed strategy occurs. From Proposition 1 we

read that the longer the disruption, the more likely the disruption, or the

cheaper the reserve capacity the more likely it is to transit from strategy I to

II.
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Figure 5: Probability of disruption ωτ

The optimal production rate of the reserve capacity may decrease

with the disruption probability.

This insight states that RMI and reserve capacity do not necessarily both

increase with the disruption probability. Low probability risks are efficiently
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mitigated with reserve capacity only (under some mild assumptions). As the

disruption probability increases, RMI becomes an efficient mitigation lever

and the increase in RMI may cause a decrease in reserve capacity. Figure 5

shows how I∗ and a∗ depend on the disruption probability ωτ . Clearly, for

low disruption probabilities (ωτ < 0.04), reserve capacity is the preferred risk

mitigation strategy (section III). The expected overage costs of RMI are too

high compared to the reserve capacity costs. For ωτ > 0.04, the mixed strategy

is preferred and we observe that a∗ decreases with ωτ while I∗ increases with

ωτ . This result may be interpreted such that it is not cost effective to keep

inventory and be exposed to high excess inventory charges when disruptions

are rare. Instead, reserving capacity is more cost effective than building up

RMI if disruptions are less likely.

Let us shortly discuss this insight in the context of the pharmaceutical

company. For the pharmaceutical supply chain upstream sites that may in-

volve complex biological manufacturing processes are more likely to be dis-

rupted than downstream sites that rather focus on simple packaging proce-

dures. Thus, the higher disruption probability at the upstream sites may

induce the firm to hold less RMI and more reserve capacity upstream, whereas

the downstream sites with the lower disruption probability are better-off with

holding RMI only.
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While the optimal production rate of the reserve capacity always

increases with the coefficient of variation for normally distributed

demand, the optimal RMI level may decrease or increase with the

coefficient of variation.

This insight reveals a key difference between RMI and reserve capacity. As

RMI is decided prior to the occurrence of a disruption, there is the risk of

incurring overrage costs (inventory holding costs) or underage coasts (penalty

costs). Clearly, if inventory holding costs are high [low], it is optimal to hold

less [more] RMI as demand uncertainty increases (compare discussion of the

newsvendor problem). RMI is an on-going decision that can be adapted to the

demand uncertainty of the product (for example due to life-cycle changes). In

contrast reserve capacity is a design decision that is likewise decided prior to

the occurrence of a disruption. However, the production rate that is used in

the event of a disruption can be adapted after the occurrence of the disruption.

Thus, there is no additional overrage cost in the event of a disruption. Thus,

the reserve capacity increases as demand uncertainty increases.

In Figure 6 we show how I∗ and a∗ depend on the disruption time τ . As

expected, RMI increases with the disruption time τ . In contrast, the reserve

capacity shows a non-trivial result. For 4 < τ ≤ 15, a∗ and I∗ increase with

τ . Both risk mitigation levers are complements. For τ > 15, a∗ decreases with

τ whereas I∗ increases with τ . The decrease of a∗ can be explained by the

additional production costs through the reserve capacity.
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5. Conclusion and Outlook

We have examined optimal RMI and reserve capacity decisions under sup-

ply chain disruption risk and stochastic demand. We quantify four main risk

mitigation strategies: inventory, mixed and reserve capacity strategy, and de-

rive structural insights. We illustrate how the optimal risk mitigation strategy

depends on product characteristics (innovative vs functional) and supply chain

characteristics (agile versus efficient).

A main limitations of our modeling framework is the assumption of a zero

lead time. Clearly, this assumptions allow us to focus the analysis entirely on

the role of disruptions risk when determining optimal RMI and reserve capacity

quantities. However, by doing so, we neglect potential synergies between safety

inventory, which is neglected due to zero lead time, and RMI.

As an avenue for future research we suggest to expand this framework

to include multi-echelon supply chains with product transformation at each

echelon. Given that various factors push RMI and reserve capacity up- and

downstream, it would be interesting to study the optimal location and quantity
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of RMI and reserve capacity in such systems.
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Appendix A. Proof of Proposition 1

Proof. The firm minimizes the expected loss L(I, a) by determining the opti-

mal RMI I and reserve capacity production rate a, which are non-negative:

min
I≥0,a≥0

L(I, a)

= ωτ

(
p

∫ ∞
I+aτ

(
x− I − aτ

)
fτ (x)dx

+h

∫ I

0

(I − x)fτ (x)dx+ cA

∫ I+aτ

I

(x− I)fτ (x)dx

+cAaτ
(

1− Fτ
(
I + aτ

)))
+
(
1− ωτ

)
hI + ĉAa. (A.1)

We introduce the Lagrangian multipliers λI and λA to satisfy the constraints

I ≥ 0 and a ≥ 0. The Karush-Kuhn-Tucker condition leads to four cases:

• I = 0, a ≥ 0 with λI ≥ 0, λa = 0 (Process flexibility strategy)

• I ≥ 0, a ≥ 0 with λI = 0, λa = 0 (Mixed strategy)

• I ≥ 0, a = 0 with λI = 0, λa ≥ 0 (Inventory strategy)

• I = 0, a = 0 with λI ≥ 0, λa ≥ 0 (Passive acceptance of risk)

For the mixed strategy we find:

0 =
∂L(I, a)

∂I
= ĥ−λI +ωτ

(
−p+Fτ

(
I+aτ

)
(p− cA) +Fτ (I)(h+ cA)

)
(A.2)
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where ĥ =
(
1− ωτ

)
h, and

0 =
∂L(I, a, τ)

∂a
(A.3)

= ĉA − λA + ωτ

(
cAτ − pτ + Fτ

(
I + aτ

)
(p− cA)τ

)
.

Both solutions are unique. We have:

Fτ (I + aτ) =
ωτ (p− cA)τ − ĉA
ωτ (p− cA)τ

(A.4)

and

Fτ (I) =
ωτ [p− Fτ (I + aτ)(p− cA)]− ĥ

ωτ (h+ cA)
, (A.5)

which leads to

Fτ (I) =
(ωτcA − ĥ)τ + ĉA
ωττ(h+ cA)

. (A.6)

For the inventory strategy we note that a = 0 for ĉA ≥ ∆1. We find from Eq.

(A.2):

Fτ (I) =
ωτp− ĥ

(p+ h)ωτ
. (A.7)

For reserve capacity we note that I = 0 for ĉA ≤ ∆2. We find from Eq. (A.4):

Fτ (aτ) =
ωτ (p− cA)τ − ĉA
ωτ (p− cA)τ

. (A.8)

Second-order condition: We calculate the matrix elements of the corresponding

Hessian matrix: ∂2L
∂I∂a

= ωττ(p− cA)fτ (I + aτ), ∂2L
∂I2

= ωτ (p− cA)fτ (I + aτ) +

(h + cA)fτ (I), and ∂2L
∂a2

= ωττ
2(p − cA)fτ (I + aτ). The determinant of the
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Hessian is given by:

|H| = ω2(τ)

∣∣∣∣∣∣∣
(p− cA)fτ (I + aτ) + (h+ cA)fτ (I) τ(p− cA)fτ (I + aτ)

τ(p− cA)fτ (I + aτ) τ 2(p− cA)fτ (I + aτ)

∣∣∣∣∣∣∣
= ω2(τ)τ 2(p− cA)fτ (I + aτ)

∣∣∣∣∣∣∣
(p− cA)fτ (I + aτ) + (h+ cA)fτ (I) 1

(p− cA)fτ (I + aτ) 1

∣∣∣∣∣∣∣
= ω2(τ)τ 2(p− cA)(h+ cA)fτ (I + aτ)fτ (I)

≥ 0. (A.9)

Appendix B. Proof of Lemma 1

Proof. It is sufficient to look at the following sensitivities: Sensitivity of I∗

with h:

d

dh

(
1− hτ − ĉA

(h+ cA)ωττ

)
= − cAωττ

2 + ĉA(
(h+ cA)ωττ

)2 < 0.

Sensitivity of I∗ with ωτ :

d

dωτ

(
1− hτ − ĉA

(h+ cA)ωττ

)
=

hτ − ĉA
(h+ cA)τω2

τ

.

This term is greater than zero because ĉA < ∆1 = τ
(
h p
p+h
− hcA

p+h

)
≤ τh for

the mixed strategy. Sensitivity of I∗ with cA:

d

dcA

(
1− hτ − ĉA

(h+ cA)ωττ

)
=

hτ − ĉA
(h+ cA)ωττ

ωττ =
hτ − ĉA
(h+ cA)

> 0. (B.1)
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Sensitivity of a∗ with cA:

d

dcA

(
1− ĉA

(p− cA)ωττ

)
= − ĉA(

(p− cA)ωττ
)2ωττ = − ĉA(

(p− cA)
)2
ωττ

< 0.(B.2)

Sensitivity of a∗ with p:

d

dp

(
1− ĉA

(p− cA)ωττ

)
=

ĉA(
(p− cA)ωττ

)2ωττ =
ĉA

(p− cA)2ωττ
> 0. (B.3)

Regarding the sensitivity of a∗ with ωτ , we assume that ĉA < τh. For

ωτ = ω′τ = τh−ĉA
τh+cA

we have a∗0 > 0 and I∗ = 0 (risk mitigation strategy III). For

ωτ > ω′τ we have a∗0 > 0 and I∗ > 0, and dI∗

dωτ
> 0 (risk mitigation strategy II).

Therefore, ∀ε > 0 ∃ωτ = ωτ,ε > ω′τ : I∗(ωτ = ωτ,ε) = ε. Then:

d(I∗ + a∗τ)

dωτ
|ωτ=ωτ,ε =

ĉA
fτ (I∗ + a∗τ)(p− cA)ω2

ττ
|ωτ=ωτ,ε =

ĉA
fτ (ε+ a∗τ)(p− cA)ω2

τ,ετ
= K.

(B.4)

and

dI∗

dωτ
|ωτ=ωτ,ε =

hτ − ĉA
fτ (I∗)(h+ cA)τω2

τ

|ωτ=ωτ,ε =
hτ − ĉA

fτ (ε)(h+ cA)τω2
τ,ε

= K ′

Since fτ (x) is a smooth and positive functions for x > 0 with fτ (0) = 0, we

can choose a ωτ,ε > ω′τ such that K < K ′ and therefore d(I∗+a∗τ)
dωτ

|ωτ=ωτ,ε <
dI∗

dωτ
|ωτ=ωτ,ε . Therefore da∗

dωτ
< 0 on the interval (ω′τ , ω

′
τ + ωτ,ε).
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Appendix C. Proof of Lemma 2

Proof. If the demand distribution is given by a normal distribution N (µ, σ),

we have:

I∗ = F−1(β) = µ+ σ
√

2 erf−1(2β − 1) (C.1)

with β = (ωτ cA−ĥ)τ+ĉA
(h+cA)ωτ τ

. Using the Maclaurin series for the inverse error function

erf−1, we have:

I∗ = F−1(β) = µ+ σ
√

2
∞∑
k=0

ck
2k + 1

(√π
2

(2β − 1)
)2k+1

(C.2)

where c0 = 1 and ck =
∑k−1

m=0
cmck−1−m

(m+1)(2m+1)
. Since ck ≥ 0 ∀k ∈ {1, ..,∞} we

have that I∗ increases with CV , if β > 1
2

and I∗ decreases with CV , if β < 1
2
.

Otherwise, I∗ remains constant.

If the demand distribution is given by a normal distribution N (µ, σ), we

have:

a∗ =
1

τ

(
F−1(α)− F−1(β)

)
= σ

√
2

τ
(erf−1(2α− 1)− erf−1(2β − 1)) (C.3)

with α = (p−cA)ωτ τ−ĉA
(p−cA)ωτ τ

. Using the Maclaurin series for the inverse error function

erf−1, we have:

a∗ = σ

√
2

τ

∞∑
k=0

ck
2k + 1

(√π
2

)2k+1(
(2α− 1)2k+1 − (2β − 1)2k+1

)
(C.4)

Since a∗ > 0 we have α > β. Therefore, a∗ is increasing with CV .
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