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1 INTRODUCTION 

The three-dimensional imaging system in this re-
search combines the computer vision technique 
“structure from motion” and “multi-view stereo” 
(SfM-MVS) delivered by the open source software 
Micmac (Galland et al. 2016) with 2D PIV (Stanier et 
al. 2015) to measure displacements in three dimen-
sions (3D).  

 

Figure 1. Structure from Motion (SfM) principle (Le et 
al. 2016). 

 

SfM is a technique from computer vision and photo-
grammetry field that analyses input images to pro-
duce a high quality 3D point cloud (Ullman 1979). It 
has wide range of applications on both large and small 
scales. For large scale, Smith et al. (2015) reported 
SfM-MVS were used in 3D topographic surveys, 
monitoring glacier movements, observing and track-
ing lava movements and landslide displacements. For 
small scale such as experiments in laboratory, Gal-
land et al. (2016) and Le et al. (2016) used SfM-MVS 
to measure three-dimensional displacements.  

Simply put, SfM-MVS processes a minimum of 
two images to reproduce the 3D point cloud of the 
observed scene. The SfM-MVS algorithm is de-
scribed in detail by Robertson & Cipolla (2009) and 
Le et al. (2016). The fundamental principles are illus-
trated in Figure 1 and described briefly below. 

1.1 Structure from Motion 

Firstly, the identical features known as keypoints in 
each image are detected and assigned with a unique 
identifier. An identical feature is a set of pixels that 
are invariant to changes in scale and orientation and 
can be detected in other images. The feature detection 
used in this research is the Scale Invariant Feature 
Transform (SIFT) algorithm (Lowe 2004). 

The locations of the features in multiple images 
determined in the first step are used in a process 
named bundle adjustment to estimate the parameters 
of the scene including individual positions of the 
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cameras, orientation of the cameras, intrinsic camera 
parameters and relative locations of the features in 
object space. Images taken from different positions 
add more data to the bundle adjustment process which 
improve the precision of the parameters estimated 
(Triggs et al. 1999) which is confirmed later in this 
paper. 

1.2 Multi-View Stereo Image Matching 

The 3D point cloud obtained from SfM has a coarse 
density as only identical features were included. Ad-
ditional matching algorithm named Multi-View Ste-
reo (MVS) is normally carried out after SfM which 
can increase the density of the 3D point cloud by at 
least two orders of magnitude (Furukawa & Ponce 
2010, James & Robson 2012, Smith et al. 2015). Dur-
ing MVS analysis, most of noise data points (outliers) 
will be removed. 

1.3 Georeference 

After the MVS step, the obtained 3D point cloud is in 
image space (i.e. unit: pixel) and needs to be trans-
formed to object space (e.g. unit: mm) by the Georef-
erencing process. Basically, georeferencing process 
uses the provided positions of the Ground Control 
Points, in image and physical space, to transform the 
3D point cloud to physical space. The minimum num-
ber of Ground Control Points is three but more points 
provide better precision in the transformation process. 

2 REVIEW ON SFM-MVS TECHNIQUE AND 
MICMAC SOFTWARE 

There are several software that feature SfM-MVS 
technique such as commercial software Agisoft Pho-
toscan and free software Bundler (Snavely et al. 
2006), VisualSfM and Micmac. Smith et al. (2015) 
reported that MicMac, with sophisticated self-calibra-
tion camera models, outperformed Agisoft Photoscan 
and VisualSfM. 

Galland et al. (2016) used Micmac to analyse four 
images taken by 24 Mega-Pixel cameras and the 
achieved measurement precision was 50µm. Simi-
larly, Le et al. (2016) reported a precision of 50µm 
was achieved by using Micmac to analyse three im-
ages, taken by three 2Mega-pixel cameras.  

Despite the technique SfM&MVS and the soft-
ware Micmac were known to be able to produce high 
quality 3D point clouds, there was no guidance on the 
effects of the camera resolution and the number of im-
ages to the measurement performance. This paper 
aims to provide a clearer insight into these two fac-
tors. 

3 EXPERIMENT AND RESULTS 

Two cameras used in the following experiments are 
Canon EOS 700D DSLR Camera (18Mega-pixel sen-
sor, 18-55mm lens) and Iphone 6s (12Mega-pixel 
sensor, 4mm focal length lens). 

3.1 Experiment setup to determine precision of 
vertical measurement 

Figure 2 illustrates the set up that includes a reference 
plate with 59 Ground Control Points (GCPs) and 
three blocks with known heights obtained from mi-
crometer. A paper sheet with speckle texture was 
fixed to the observed flat objects to aid the SfM-MVS 
process. This is because SfM-MVS requires textures 
to detect identical features as plain surfaces can not 
be distinguished.  
 

 

Figure 2. Experiment set up to determine precision of vertical 
measurement. 

 
Five photos were sequentially taken by each camera 
for image processing purpose. For each camera, there 
were three different analyses using three, four and 
five photos to investigate the effect of number of im-
ages, in addition to the effect of the camera resolu-
tions, to the performance of the measurements. 

The precision of the measurement is determined 
by comparing the heights of the blocks in the 3D point 
clouds with the known heights as described by the 
value mean absolute error (MAE) (Equation 1); 
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where  

௜ܪ 
ଷ஽ is the height of block i in the 3D point cloud, 

௜ܪ 
ெ is the height of block i measured by a mi-

crometer, 

 n  is the number of the objects, for the experi-
ment for vertical measurements n=3 blocks. 
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Tables 1 and 2 shows the performance of the meas-
urement, in terms of number of data points and preci-
sion, using photos from the two different cameras. 
Over a ROI of 420x200mm, the number of data points 
obtained from the DSLR camera with a 18 Mega-
pixel sensor was approximately 1.5 times more than 
that for the phone camera with a 12 Mega-pixel sen-
sor (Table 1). This is thought to be analogous with the 
ratio of the number of pixels in the sensors of the two 
cameras. Interestingly, the number of the images does 
not have considerable impact to the number of data 
points. 

The best precision was approximately 30m 
achieved in analyses utilised five photos for both 
cameras (Table 2). For analysis that utilised only 
three or four photos, the precision was decreased to 
approximately 50-60m for both cameras. All the ex-
periments, apart from the abnormally high MAE in 
iPhone 6s with four photos, shows that more images 
yielded higher measurement precision. This is be-
cause more images are beneficial for the camera cali-
bration process to determine more precise camera pa-
rameters. 

The effect of camera resolution seems to be not 
significant to the measurement precision as IPhone 6s 
(12Mega-pixel) and DSLR Canon (18Mega-pixel) 
yielded similar precisions which are in line with the 
results reported by Galland et al. (2016) and Le et al. 
(2016).  
It can be seen that camera resolution is not the only 
factor that governs the quality of images and hence 
the quality of 3D point clouds. Even though high res-
olution images enable more identical keypoints to be 
detected and corresponded in SfM&MVS process, the 
quality of lens is also important. If a low quality lens 
is used with a high resolution camera, then the ob-
tained image may decrease the quality of the 3D point 
clouds (Furukawa & Hernández 2015). The lens also 
controls the depth of field and the sharpness of the 
image across the whole field of view 

Other factors that also needs to be taken into ac-
count when considering the quality of the camera pa-
rameters and SfM-MVS process are the type of the 
camera sensor that affects the noise in the obtained 
image.   

CCD sensors are known to be able to capture high 
quality images with low noise but they are more ex-
pensive than traditional CMOS sensors which are sus-
ceptible to noise. However, recent developments in 
imaging technology allow new CMOS sensors to cap-
ture images with comparable quality to those obtained 
by CCD sensors but at a more affordable price.  

The EMVA (European Machine Vision Associa-
tion) data of the sensors are normally available and is 
useful for comparison on the characteristics of the 
sensors. In addition to sensor types, pixel size and 
sensor size are also important factors. Larger sensor 
size and pixel size allow larger amount of light into 
the sensor hence better quality images. 

Table 1. Number of data points 

 Number of photos 

Camera 3 4 5 
DSLR Canon 
(18Mega-pixel) 

2,645,196 2,117,084 2,114,078 

IPhone 6s 
(12Mega-pixel) 

1,345,463 1,351,630 1,348,967 

 

Table 2. Mean absolute error in vertical direction (Unit: µm) 

 Number of photos 

Camera 3 4 5 
DSLR Canon 
(18Mega-pixel) 

57 55 30 

IPhone 6s  
(12Mega-pixel) 

44 61 32 

3.2 Experiment setup to determine precision of 
horizontal measurement 

Figure 3 presents the experiment set up that com-
prises Ground Control Point and a ROI which can be 
displaced in a precise manner using a sliding bed con-
trolled by two micrometers.  

Four experiments have been conducted using the 
controlled movement of a sliding bed to estimate the 
measurement precision in the horizontal directions.  
In each experiment, the sliding bed was moved by 1 
mm in either X or Y directions. At each displacement, 
one image (test image) was captured for later analy-
sis. 

 

Figure 3. Experiment set up to quantify horizontal displace-
ment measurement precision (after Le et al. 2016). 

The test images were undistorted and unwarped 
before being analysed by conventional 2D PIV (Sta-
nier et al. 2016). The detailed procedure is described 
by Le et al. (2016) and illustrated in Figure 4.  

Apart from the test images, a separated set of cali-
bration images containing a series of ring patterns 
were taken by each camera. These calibration images 
were used for camera calibration process to determine 
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the camera parameters. A minimum of three calibra-
tion images are normally required. In this study, five 
images were used for calibration purpose (Figure 5). 
The ring patterns were used as their centres can be 
determined precisely in comparison with square and 
circular patterns. The centre of each ring is deter-
mined based on outer circle and is refined based on 
inner circle of the ring. This procedure is similar to 
the camera calibration procedure using the check-
board pattern described by Zhang (2000).  

 

Figure 4. PIV analysis procedure to determine horizontal dis-
placements (after Le at al. 2016) 

 
The determined camera parameters were then used in 
an in-house Matlab code to remove the distortion in 
the test images. 

The upwarp step performing on the undistorted 
test images requires the positions of the Ground Con-
trol Points in physical space and image space in order 
to determine the position and orientation of the cam-
era, to correct the images. Finally, the PIV analysis is 
performed on the rectified images to determine hori-
zontal displacements.  

 

 

  

  

(a) (b) 

Figure 5. Typical calibration images of the ring pattern of a) 
Canon camera and b) iPhone camera 

The error is calculated by comparing the displace-
ments determined from the PIV analysis and the 
movements caused by the micrometers. Table 3 pre-
sents the MAE in horizontal displacement measure-
ments in from the four experiments.  As can be seen 
from these experiments, higher camera resolution of-
fers slight improvement on the measurement preci-
sion (lower MAE).  

Table 3. Mean absolute error in the horizontal direction (Unit: 
µm) 

Experiment DSLR Canon 
(18Mega-pixel) 

 IPhone 6s 
(12Mega-pixel) 

1 22  30 
2 12  47 
3 5  13 
4 14  23 

 

The error in this method accumulates from camera 
calibration, undistortion, unwarp and PIV analysis. 
Therefore, minimising the error in each step will re-
duce the error hence improve the measurement preci-
sion.  
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4 CONCLUSIONS 

The paper presented simple setups that determined 
the measurement precision of a 3D imaging system, 
featuring SfM&MVS and 2D PIV analysis. The IPh-
one and DSLR cameras were chosen in this study be-
cause similar cameras are relatively widely available 
that allows researchers to quickly carry out simple ex-
periments to ensure the technique is suitable to the in-
tended experiments before purchasing expensive in-
dustrial cameras and lenses. 

The results show that larger number of images 
yields higher measurement precision in vertical direc-
tion in SfM-MVS analysis. The camera resolution is 
an important factor that governs the number of data 
points in the obtained 3D point cloud and hence to the 
measurement resolution. The number of data points 
appears to be linear with the number of pixel in the 
camera sensor. The sensor resolution has a more sig-
nificant impact to the precision of the proposed meas-
urement system in both horizontal direction than that 
for vertical directions. Other factors that need to be 
considered to improve the precision of the measure-
ments are the quality of the camera lens and type of 
sensor and the depth of field. 
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