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Analysis of Flight Variability: a Systematic Approach

Natalia Andrienko, Gennady Andrienko, Jose Manuel Cordero Garcia, and David Scarlatti

Fig. 1. A: Planned flight trajectories are represented in an artificial space with polar coordinates: movement direction (angle) vs.
distance from the cruise phase start (radius). B: A density map summarizes the whole trajectories. C: The density map summarizes
the segments that were substituted by shorter paths in the real flights. The inset on the bottom right shows a filtering window around a
density hot spot. D: The trajectories crossing the hot spot in the artificial space are shown on a geographic map with 5% opacity.

Abstract—In movement data analysis, there exists a problem of comparing multiple trajectories of moving objects to common or
distinct reference trajectories. We introduce a general conceptual framework for comparative analysis of trajectories and an analytical
procedure, which consists of (1) finding corresponding points in pairs of trajectories, (2) computation of pairwise difference measures,
and (3) interactive visual analysis of the distributions of the differences with respect to space, time, set of moving objects, trajectory
structures, and spatio-temporal context. We propose a combination of visualisation, interaction, and data transformation techniques
supporting the analysis and demonstrate the use of our approach for solving a challenging problem from the aviation domain.

1 INTRODUCTION

Comparison of trajectories is a common task in movement analysis.
Thus, there may be a need to compare actual trajectories of moving
entities to expected ones (such as typical, predicted, or planned), or
trajectories of movement under different conditions. Comparison tasks
may involve multiple and even very many trajectories, and it may be
necessary to compare each trajectory to a certain reference trajectory.
There may be a common reference trajectory for a set of trajectories
(e.g., a central trajectory of a cluster of similar trajectories [8, 14]), or
each trajectory may have its individual reference. For example, flights
in aviation are generally conducted according to previously created
plans. For each flight, there is a planned trajectory and an actual
trajectory, which may deviate from the plan. The comparison task
involves detecting, measuring, and analysing the deviations of actual
flights from the respective plans.

Trajectories can differ in various aspects: route geometry, times
of trip start and end, times of reaching corresponding intermediate
positions, and characteristics of the movement along the route, such
as speed and acceleration. For 3D movement, relevant characteristics
include the altitudes or depths of the positions along the route.

While a need may arise in detailed examination of specific differ-
ences between two trajectories (e.g., in a case of an incident or an
abnormality), in applications dealing with large amounts of movement
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data comparison tasks mainly aim at revealing and understanding over-
all patterns of trajectory variation with respect to space, time, variety
of moving objects, and different aspects of the movement context, such
as weather and occurring events.

The research contribution of our paper consists of two major com-
ponents. First, we present a conceptual framework for comparative
analysis of trajectories. Its essential component is a method to quan-
tify differences between trajectories at a high level of detail. Second,
we propose a generic analytical procedure for comparative analyses
involving a large number of trajectories. The procedure consist of

1. pairwise point matching between trajectories,
2. creation of difference data by computing various difference mea-

sures for the matched pairs of points,
3. when appropriate, division of trajectories into structural parts

based on essential distinctions, e.g., in the character, purpose, or
context of the movement, and

4. analysis of the distribution of the difference data with respect to
space, time, set of moving objects, trajectory structure, movement
characteristics, and movement context.

The procedure is supported by the following techniques:
• creation of artificial spaces according to analysis foci and visuali-

sation of the distributions of difference data in these spaces,
• dynamic, filter-sensitive spatial and spatio-temporal aggregation

of difference data in geographic and artificial spaces,
• techniques supporting comparison of aggregates that summarise

different subsets of data.
We demonstrate the effectiveness of the analytical procedure and tech-
nique combination by applying them to challenging problems requiring
comparative analysis of real-world massive movement data from the
aviation domain and, as a supplement, ground transportation [16].

The remainder of the paper has the following structure. Based on an
overview of related work (section 2), we present the conceptual founda-
tions for comparative analyses of trajectories (section 3), introduce the
analysis procedure and supporting techniques (section 4), apply them
for aviation data analysis (section 5), and discuss the overall approach
(section 6).



2 RELEVANT WORK

There exist many visualization [24] and visual analytics [7] methods
targeting at transportation data and problems. However, these data
and problems are so complex, varied, and multifaceted that the exist-
ing methods are not sufficient to meet the needs of the transportation
domain. Here we discuss three major components of the existing ap-
proaches: visualization, interactive filtering, and data transformations.
We then review the existing approaches to point-wise matching of
trajectories. Next, we describe specifics of the aviation domain and
position our research against the state of the art.

2.1 Visualization of trajectories
Trajectories are traditionally visualized as lines on a map and in a
space-time cube [34]. Trajectories of movement in 3D space require
representation of the altitudes or depths, e.g., by varying the appearance
of line segments or by using 3D space displays [23,53]. Visual displays
showing multiple trajectories often suffer from severe overplotting and
visual clutter. To handle this problem, movement data can be repre-
sented in an aggregated way using discrete [4,13] or continuous [38,54]
aggregation. Other approaches include edge bundling [25, 33] and
schematic representation [31], which improve display readability but
introduce distortions and undesired artefacts. Aggregated or schematic
representations of trajectories hide a lot of details. More detailed explo-
ration is possible for a small number of selected trajectories. Interactive
selection that temporarily hides a part of data is often called filtering.

2.2 Interactive filtering of movement data
Movement data involve different aspects [6], including spatial positions
and path geometries, positions in time, and various attributes charac-
terising the movement, such as the speed and direction, the moving
objects, such as their weight or load, and the movement context, such
as weather parameters or density of surrounding traffic. Many such
attributes can be derived from the spatial positions of the trajectory
points alone or in combination with data describing the spatial, tem-
poral, or spatio-temporal context of these positions [11]. Subsets of
movement data can be selected based on any of these aspects using
interactive tools designed for spatial, temporal, and attribute-based
filtering [6]. A prominent example of interactive filtering by direct
manipulation is FromDaDy [32], where the user selects trajectories by
drawing shapes in displays presenting various 2D projections of flight
trajectories. Filtering operations can be applied sequentially to results
of previous operations. Temporal filtering can be based on linear [1] or
cyclic [27,28] models of time or on selection of time intervals satisfying
interactively specified query conditions [15].

2.3 Transformation of time and space
An important tool for movement data analysis is data transforma-
tions [6], which may affect the spatial and temporal references. Trans-
formations of time references include replacement of absolute times
by relative positions within temporal cycles (annual, weekly, or daily)
or with respect to the start and/or end times of trajectories [5]. Tempo-
ral references can also be replaced by chronological ordering, as in a
trajectory wall display [49] and in a matrix of tram rides along a given
route with rows corresponding to trips and columns to consecutive
stops [42, 55]. Transformations of spatial references include replacing
absolute spatial positions by relative positions within a group of jointly
moving objects [14] and by positions in an abstract semantic space
consisting of location categories rather than specific locations [17, 37].

Furthermore, artificial spaces can not only be obtained by trans-
forming the spatial positions of trajectory points to another coordinate
system but also constructed based on any attributes associated with tra-
jectory points. This idea has not yet been applied to spatial trajectories,
but it was used for representing changes of dynamic attributes of objects
that do not necessarily move or are not spatial by nature. For example,
the development of Swiss cantons was represented by trajectories in
a space formed by two attributes [39]. A similar representation was
used for stock market data [47]. An artificial space for representing
changes and long-term evolution can also be constructed from multiple
attributes using dimensionality reduction techniques [18, 51].

Artificial spaces can be treated similarly to usual (physical) spaces,
which means that data transformed to artificial spaces can be visualised
on maps using cartographic visualisation techniques [36]. One can also
apply methods for spatial aggregation, e.g., build density maps [37].

2.4 Matching of trajectories
Our approach to comparing trajectories bases on establishing pairwise
matches between the points of the trajectories to be compared in a way
compliant with the following requirements: (1) points must be matched
based solely on their spatial proximity without involving temporal
and speed constraints; (2) it must not be assumed that each point of
a trajectory necessarily has a match in the other trajectory; (3) each
point may receive at most one match. Point matching is involved in
algorithms assessing the degree of similarity of two trajectories for the
purposes of search and clustering [20, 40, 43, 50], the best known being
Fréchet distance [3] and Dynamic Time Warping [44]. Most of these
algorithms do not comply with the requirements 2 and 3, and those
based on sequence alignment [52] comply with (2) but not with (3).
Sankararaman et al. [46] provide an illustration of results of several
algorithms demonstrating violations of our requirements. The map
matching algorithms [41] aiming to match trajectories to predefined
lines, such as streets, do not fulfil requirements 1 and 2.

2.5 Visual analytics for air traffic domain
Visual analytics approaches have been proposed for various specific
problems in air traffic analysis, such as detection of holding patterns
and problematic movement events [45], assessment of conflict prob-
abilities regarding the traffic density [2], extraction and analysis of
wind parameters [29], and detection of violations of rules imposed for
decreasing noise in populated areas [22]. Sophisticated domain-specific
analyses can be done by applying clustering to interactively selected
relevant parts of trajectories [8]. Still, there are many analysis problems
that have not yet been addressed in the visual analytics research. Due
to the complexity and various specifics of the aviation domain, it is
important to do research in collaboration with domain experts [8, 30].

2.6 Positioning of our work
While much research has been done on analysis of movement data, the
problem of comparative analysis of trajectories has not been addressed
yet. We systematically considered this problem and developed a gen-
eral conceptual framework, where we defined the possible aspects in
which trajectories can differ and figured out the objectives of analysing
these differences for a large set of trajectories rather than for individual
trajectories. Such comparative analyses aim at discovering and under-
standing patterns that exist among the differences with regard to their
spatial, temporal, and spatio-temporal distributions, the distribution
within the trajectories, and relationships to movement characteristics
and spatio-temporal context.

Based on this conceptualisation of the problem, we developed a
generic analytical procedure for comparative analysis of trajectories.
Both the conceptualisation and the procedure are novel research contri-
butions. They are complemented with a proposed suite of tools that can
support the realisation of the approach. This includes a novel algorithm
for matching trajectories with the aim to measure their differences.
The other tools (data transformations, visualisations, and interaction
techniques) were created by adapting and developing ideas from the
previous research, namely, artificial spaces and dynamic aggregation.

3 PROBLEM CONCEPTUALISATION

3.1 Levels of analysis tasks
According to Bertin [19], tasks (questions) in data analysis can be
differentiated according to the reading levels: elementary (referring to
individual data items), intermediate (referring to groups of data items),
and overall (referring to a whole data set). A unifying term synoptic was
introduced [12] to refer to the intermediate and overall levels, both of
which involve abstraction. Synoptic tasks deal with multiple data items,
which are considered together, and require abstraction for deriving
some general statements concerning all these items.



The distinction between elementary and synoptic levels is relevant,
in particular, to comparison tasks [12]. In application to trajectories,
elementary comparison tasks consist of detection and examination of
similarities and differences between individual trajectories at a high
level of detail, i.e, with attending to their points and segments. A
smallest comparison task is pairwise comparison, i.e., comparison of
two trajectories. An elementary comparison task involving more than
two trajectories can be decomposed into several subtasks of pairwise
comparison. From two trajectories, one can be treated as a reference to
which the other trajectory is compared. For example, a planned trajec-
tory can be a reference to an actual trajectory, or an actual trajectory
can be a reference to a trajectory generated by a predictive model.

Synoptic comparison tasks involve joint consideration of similarities
and differences of multiple trajectories from their references; the latter
may be either common or distinct. In analysing large collections of
trajectories, synoptic tasks are of primary importance while elementary
tasks need to be performed occasionally, in particular, for examination
of trajectories with large differences from their references.

3.2 Difference measures
Synoptic comparison tasks can be performed using computationally
derived difference measures, which include distance in space, difference
in time, and differences in movement characteristics, such as speed,
direction, and, in case of 3D trajectories, vertical position (altitude or
depth). Differences between the followed routes can be represented by
the spatial distances between corresponding points of two trajectories
and by the differences in the path lengths of corresponding parts of
the trajectories. Temporal differences are measured as differences
between the absolute and/or relative times of corresponding points. The
relative times may be defined with respect to the trip starts and/or ends.
Differences in relative times are indicative of differences in movement
speed, which can also be computed explicitly.

Derived difference measures can be organised in data records at-
tached to components (i.e., points and segments) of trajectories. For
uniformity, it can be assumed that difference data are attached to points,
with data referring to segments being attached to the starting points
of the segments. Each record consists of values of one or more dif-
ference measures. Since each point of a trajectory has its specific
position in space (coordinates) and time (time stamp), difference data
records become associated with these spatial and temporal positions,
i.e., difference data are spatio-temporal by their nature.

Apart from local difference measures referring to points and seg-
ments, one can derive general difference measures referring to the
whole trajectories. These measures include differences in the trip ori-
gins and destinations, start and end times, trip durations, path lengths,
path curvatures, average speeds, and other general features of the trips.

3.3 Context data
Since movement is much affected by the context [6, 10], it may be
necessary to analyse the relationships between the computed differences
and the context. Movement context consists of various spatial, temporal,
and spatio-temporal objects, events, phenomena, and processes. Global
context, which is common for all moving entities at a given time, can
be distinguished from local context, which differs among locations or
combinations of locations and times and, hence, is specific to each
point in a trajectory. Aspects of local context that are relevant to the
analysis goals can be represented by attributes attached to points of
trajectories [11]. Thus, for a trajectory point, attributes can represent

• presence or absence, number, or density of spatial objects or
events in the spatial, temporal, or spatio-temporal neighbourhood
of the point;

• attribute values or statistical summaries of attribute values associ-
ated with the spatial positions and/or times in the neighbourhood
of the point.

Such local context attributes can be derived by joining trajectory data
with data describing the relevant context based on the spatial and/or
temporal references specified in the context data. Aspects of global
context can be represented by time-dependent attributes characterizing
properties of time moments (e.g., day or night, week day or weekend),

presence of events (such as a strike or a public holiday), and/or the
overall traffic situation on the territory under study (e.g., low or intense
traffic). Unlike local context attributes, global context attributes are not
associated with specific trajectories or positions in trajectories.

3.4 Structural parts of trajectories
Trajectories may consist of heterogeneous parts differing in essen-
tial features. Thus, travelling people may use different transportation
modes, wheeled vehicles use different road categories, movements of
ball game players with the ball differ from running without the ball, and
flight trajectories include take-off, ascent, cruise, descent, and landing.
For valid analysis, it may be appropriate to distinguish structural parts
of trajectories, or movement phases, based on essential differences in
movement character, purpose, context, or other aspects pertinent to the
analysis goals. Analysts may strive to study how differences relate to
trajectory structures, or may separately consider differences for distinct
structural parts, or may focus only on certain parts of trajectories.

3.5 Foci in synoptic comparison tasks
Synoptic comparison tasks aim at discovering and studying general
patterns of differences with respect to the space, time, set of moving
entities, global and local contexts, as well as with respect to the internal
make-up of the trajectories, including the geometry of the followed
path, life time from the start to the end, movement characteristics along
the path, and, possibly, essentially different structural phases of the
movement. Hence, there are varieties of synoptic comparison tasks
focussing on one or several of the following aspects:

• spatial distribution of differences;
• temporal distribution of differences;
• statistical distribution of differences over a set of moving entities;
• internal distribution of differences within the trajectories in rela-

tion to their spatial and temporal features and structure;
• relationships of differences to movement characteristics;
• relationships of differences to local and global contexts.
As stated in section 3.1, synoptic tasks include overall and inter-

mediate tasks. Overall comparison tasks are applied to the entire set
of trajectories, and intermediate tasks are applied to subsets. Subsets
may be selected based on space (e.g., trips within or crossing specific
areas or trips with specific origins and/or destinations), time (e.g., trips
within a chosen time period, or trips that occurred at certain times in a
time cycle), categories or characteristics of moving objects (e.g., types
of vehicles or flight operators), and/or properties of the trips, such as
path length, duration, curvature, average or maximal speed, etc.

3.6 Comparison tasks in flight data analysis
In aviation, flights are generally conducted according to plans, which
are created in advance and agreed between flight operators and flight
managers. In reality, actual flights may deviate from the plans for a
variety of reasons, such as weather or traffic conditions. Deviations
from plans occur frequently and are not considered problematic. Still,
better compliance to flight plans is desired, and specialists are interested
in analysing deviations for revealing general patterns and interdepen-
dencies that may suggest directions to improving flight planning.

As mentioned in section 3.4, flight trajectories, either planned or
actual, consist of several structural phases. In analysing flights and their
differences from the plans, it is important to distinguish these phases
and, possibly, select only what is relevant to specific analysis goals.

4 APPROACH

The proposed analytical procedure is schematically shown in Fig. 2.
Comparative analysis of trajectories is based on computing difference
measures (section 3.2), which are attached to the trajectories (general
measures) and their points (local measures). The measures characterize
pairwise differences between each trajectory and some reference trajec-
tory. While obtaining general difference measures is straightforward,
deriving local difference measures requires finding for each trajectory
point the corresponding point in the reference trajectory, which is not
trivial. An algorithm for point matching is proposed in section 4.1.1.



Input 
data

Match 
points

Derive 
difference 

data

Identify 
structural 

parts

Create 
spaces

Aggregate Filter Compare 
aggregates

juxtaposition
superposition

explicit 
encoding of 
differences

targets

references

Fig. 2. Proposed workflow for comparative analysis of trajectories.

Fig. 3. Examples of point-wise matching of two trajectories (top and
centre) and trajectories of a cluster to its central trajectory (bottom).

Examining differences between two trajectories (elementary com-
parison) is not too difficult. It can be supported by visualizing the
trajectories on a map and/or in a space-time cube [34], whereas the
temporal variation of their dynamic attributes can be shown in a time
graph [35]. Previously derived difference measures can be explicitly
encoded using suitable visual variables [26].

In our research, we are mostly concerned with synoptic compari-
son tasks (section 3.1), which focus on the distributions of difference
data over space, time, set of moving objects, in relation to trajectory
structure, and in relation to local and global contexts (section 3.5).
We propose a combination of supporting techniques, which includes
creation of artificial spaces according to analysis foci (section 4.2),
dynamic, filter-sensitive aggregation of difference data (section 4.3),
and operations enabling comparison of aggregates. These techniques
are generic, i.e., applicable to trajectories of various kinds of moving
objects. We tested their effectiveness by applying to data from the
aviation domain. Analysis of flight trajectories requires distinguishing
between flight phases. To perform our analysis properly, we developed
a method for dividing a flight trajectory into phases (section 4.1.2). In
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Fig. 4. Schematic representation of the basic idea of the point matching
algorithm: p1 and q1 are previously matched points, (p2,q2) is the current
candidate pair, the double lines represent matches.

general, division of trajectories into structural parts is done by defin-
ing and applying domain-specific rules based on values of relevant
attributes (e.g. for travel mode detection [21]).

4.1 Algorithmic foundations
4.1.1 Matching points of two trajectories

The goal is to match points along the paths from the origin to the
destination based on their spatial proximity, as shown in Fig.3, so that
the requirements 1-3 (section 2.4) are fulfilled. The basic idea of the
Algorithm 1 is schematically represented in Fig.4, where pi and q j are
two last matched points from trajectories P and Q, respectively, and
d00 is the distance between them. For the following points pi+1 and
q j+1, the distances to the points {q j,q j+1,q j+2} and {pi, pi+1, pi+2},
respectively, are measured and compared. Depending on which of the
five distances is the smallest and whether it is also smaller than d00 or
the distance d22 between pi+2 and q j+2, either pi+1 is matched with
one of {q j,q j+1,q j+2} or q j+1 is matched with one of {pi, pi+1, pi+2}.
When pi+1 is to be matched with q j, or q j+1 with pi, either pi or q j
loses its previous match and can be matched instead to the point q j−1
or pi−1, respectively, if the latter is free (Fig.4, bottom left).

Algorithm 1 Matching points of two trajectories
1: procedure MATCHPOINTSOFTRAJECTORIESPANDQ (P,Q)
2: M←< (1,1)> . set of matching pairs of P and Q
3: (i, j)← (1,1) . running indices over P and Q
4: while i+1≤ P.length∨ j+1≤ Q.length do
5: for k = 0,1,2 do
6: for n = 0,1,2 do
7: if i+ k ≤ P.length∧ j+n≤ Q.length then
8: dkn← distance(pi+k,q j+n)
9: else

10: dkn← ∞

11: if d01 < d00∧d01 ≤ min(d10,d11,d12,d21) then
12: M.removeLast()
13: M.append(i, j+1)
14: else
15: if d10 < d00∧d10 ≤ min(d01,d11,d12,d21) then
16: M.removeLast()
17: M.append(i+1, j)
18: else
19: if d12 < d22∧d12 ≤ min(d01,d10,d11,d21) then
20: M.append(i+1, j+2)
21: else
22: if d21 < d22∧d21≤min(d01,d10,d11,d12) then
23: M.append(i+2, j+1)
24: else
25: M.append(i+1, j+1)
26: (i, j)←M.last()
27: return M . set of matching pairs of P and Q

This is a single-pass algorithm in which three distances are calculated
for each trajectory point; hence, the computational complexity is O(n+
m), where n and m are the numbers of points in the two trajectories.

Figure 3 shows examples of results of Algorithm 1. The upper
two images demonstrate matching of two trajectories coloured in red
and blue. The points that got matches are represented by dots of the
same colours as the trajectories, and the points without matches are
represented by pink and cyan dots. Yellow lines connect the matched
points. These lines are only visible where the routes diverge. As can
be seen, the algorithm handles quite well unequal numbers of available
points and unequal point spacing in two trajectories. The lower image
demonstrates matching of a cluster of similar flight trajectories (thin
blue lines) to the cluster’s central trajectory (thick red line), which was
constructed with ignoring the initial and final parts of the flights [8].
Please note that, although Algorithm 1 begins with matching the initial
points of two trajectories (line 3), this match can later be cancelled
(line 16) if a better match is found. The better match, in turn, can be
replaced in the next step by a yet better one. Hence, an initial part of



one of the trajectories can finally have no match, as it happened to the
initial parts of the flights in Fig.3. This is a valid result, as well as the
absence of matches for the final parts of the flights, since the reference
trajectory lacks both the initial and final parts.

4.1.2 Identification of flight phases
In analysing flight trajectories, it is important to distinguish three phases
of each flight: ascent, cruise, and descent. The task is not trivial,
because both ascent and descent can be (and most often are) step-wise,
and the altitude (flight level) can also change during the cruise phase.
It is not easy to determine whether a flat segment of a trajectory (i.e.,
where the altitude is constant) is already the cruise or still a step in
the ascent phase, and whether a decrease of the altitude means the
beginning of the descent or just a change of the cruise level. Flight
phases can be quite easily distinguished visually from a representation
of the vertical profile of a flight over time. However, it is much harder
to define formal rules that could be automatically applied.

The main idea of our approach is first to select roughly a time
interval when the flight is very likely to be in its cruise phase (we
explain in the next paragraph how this is done). From this interval,
we find the minimal altitude among the flat segments or peak points,
which we treat as the minimal cruise altitude. We include peak points
into consideration because the ascent in a very short flight may be
immediately followed by the descent, i.e., the cruise phase may consist
of a single peak point. We then scan the entire trajectory and find the
first and the last flat segments where the altitude is not lower than the
minimal cruise altitude. These segments are treated as the beginning
and end of the cruise phase. The trajectory parts before and after
them are categorised as ascent and descent, respectively. In Fig.5, this
approach has been applied to a set of flights between two cities.

A tricky part of the approach is the initial selection of a time interval
that is likely to contain the cruise phase but no flat segments of the
ascent and descent. By interactive visual exploration of numerous
flights with diverse durations, we found out that the selection needs
to be done differently for long and short flights. For long flights,
it usually takes up to 45 minutes to reach the cruise altitude after
the take-off whereas the descent may last for up to 75 minutes. For
short flights, the approximate durations of the ascent and descent are
better to be estimated proportionally to the overall flight duration. We
found that about 30% of the overall duration may be spent for the
ascent and about 40% for the descent. Hence, the interval [tstart +
45 minutes, tend − 75 minutes] can be used for finding the minimal
cruise altitude when the flight is long (3 hours or more), and the interval
[tstart +d ·0.3, tend −d ·0.4], where d is the total flight duration, can
be used when the flight is short (less than 3 hours). The use of these
intervals has been approved by the aviation experts. Please note that
the initially selected time interval generally differs from the finally
identified cruise phase. In particular, the former may neither fully
contain the latter nor be contained in it.

4.2 Artificial spaces
Figure 5, bottom, shows an example of a constructed artificial space.
The general idea is to choose two numeric attributes associated with
trajectory points and treat their value ranges as spatial dimensions,
which can be arranged as Cartesian or polar coordinate systems. The
latter is suitable when one of the attributes has a cyclic value range.
Examples are spatial direction (Fig. 1), time of the day (Fig. 6), and
relative time within a week. Points of trajectories are represented
by points in the constructed space according to their attribute values,
and these new points are connected in the chronological order. The
result is a trajectory in the artificial space. The artificial space with
the trajectories can be represented in a map display analogously to
geographical space. There is no background map, but it is possible
to create a map layer with labelled grid lines or axes. A benefit of
constructing maps of artificial spaces rather than implementing other
types of display to represent dynamic attributes is that all map-based
visualisation and interaction techniques can be uniformly applied to
any map, either with geographic or artificial space. Thus, in Fig. 5
(bottom), a qualitative attribute of trajectory segments (flight phase)

Fig. 5. Division of flights into phases: ascent (red), cruise (blue), and
descent (yellow). Top: A 3D view with the horizontal plane representing
the geographic space and vertical dimension representing the flight level.
Bottom: An artificial space with the horizontal and vertical dimensions
representing the relative time from the start to the end and the flight level,
respectively. The cruise phase is represented by dashed lines for better
visibility of the other two phases.

is represented on a map by colour coding, and Fig. 1 demonstrates
the possibilities to build a density map and to set a “spatial” filtering
window in an artificial space in the same way as it is done in a usual
map. This uniformity is very convenient for analysis.

To obtain a meaningful representation of trajectories in an artificial
space, it is reasonable to base one of its dimensions on an attribute that
is monotonous along the trajectory, i.e., the value either increases or
decreases. Examples include time (absolute or relative with respect to
flight start and/or end) and relative position along the path. It can also
make sense to take a non-monotonous attribute that changes gradually
rather than abruptly, e.g., movement direction (Fig. 1) or spatial dis-
tance to the trip start or end. The attribute for the second dimension
may be chosen more arbitrarily. It can characterise the movement, as
the speed or flight level, or moving objects, as the weight, or local
context, as the traffic intensity around the points (Fig. 6). It can also
be one of the difference measures (section 3.2) derived on the basis of
point matching results (section 4.1.1).

A set of trajectories can be mapped onto an artificial space two or
more times using comparable attributes, i.e., having similar meanings,
common units of measurement, and similar value ranges. Thus, the
example in Fig. 6 involves two transformations of the same set of
trajectories to an artificial space ‘time of the day - local traffic intensity’.
One transformation is based on values of an attribute reflecting the
expected traffic intensities and the other transformation is based on the
actual traffic intensities. The traffic intensity is measured as the number
of flights per hour in a grid cell of the size 10x10 km.

All existing maps based on geographic or artificial spaces are inter-
linked through interactive operations, such as mouse hovering, brushing,
and filtering, which are performed in the same ways in any map and
affect uniformly all other maps. As an example, Fig. 1 demonstrates
how filtering in a map of an artificial space affects a geographic map.

4.3 Dynamic aggregation and filtering

Aggregation is a common approach when it is necessary to deal with
large amounts of data. Dynamic aggregation means that data aggre-
gates are automatically re-computed in response to data filtering to
include only the data satisfying the current filters. This, in turn, triggers
automatic updating of all displays showing aggregated information.

Since our analytical framework involves intensive use of maps based
on real or artificial spaces, we are primarily interested in using spatial



Fig. 6. Left: Density distribution of the cruise parts of flight trajectories
in polar coordinates consisting of the time of the day (angle) and ex-
pected local traffic intensity (radius). Right: Difference of the densities
corresponding to the actual and to the expected traffic intensities.

aggregation methods in all such spaces. There are two types of spatial
aggregation: continuous and discrete. Continuous aggregation [48]
represents data as a surface in which the value of some attribute (partic-
ularly, a statistical summary, such as a density) gradually changes from
position to position. A surface is visualised by encoding the values
by colours. Continuous aggregation is demonstrated in Figs. 1 and 6,
where sets of trajectories are represented by density surfaces built in
artificial spaces. Examples based on the geographic space can be seen
in Figs. 7 and 8.

Discrete spatial aggregation is based on dividing the space into regu-
lar or irregular compartments, which are usually larger than in a raster.
For the compartments, various data summaries are derived, typically
without involvement of spatial smoothing. Sufficiently large compart-
ment sizes allow visual representation of the attached summaries not
only by colour coding but also by symbols, diagrams, or glyphs, which
can be applied to several summary attributes, e.g., the mean and the
standard deviation. Discrete aggregation of movement data can produce
not only place-based aggregates summarising visits of places (i.e., spa-
tial compartments) by moving objects but also link-based aggregates
summarising movements between the places [6, 13]. The latter are
visualised on flow maps [36] using flow symbols (e.g., as in Fig. 8)
with the widths proportional to aggregate values, such as move counts.

Although it is possible technically to generate link-based aggregates
in an artificial space, this may not be a valid idea. Links in real space
are associated with meaningful spatial directions, while directions in an
artificial space may be meaningless; hence, a flow map in an artificial
space can hardly be interpretable and useful for analysis.

Both continuous and discrete aggregates can be dynamic, i.e., sen-
sitive to data filtering. However, this responsiveness is not always
desirable. Thus, it may be necessary to compare aggregates obtained
from a subset of data to overall aggregates or to aggregates of another
data subset. Hence, there should be a mechanism to suspend dynamic
re-aggregation for some of the derived datasets (map layers) while the
others preserve their dynamic behaviour. This enables three modes of
comparison [26]: by juxtaposition, as in Fig. 8, superposition, as in Fig.
13, or explicit encoding of differences or ratios, as in Fig. 6. The latter
example, in particular, demonstrates that actual flights tend to deviate
from their planned routes to spaces with low traffic intensity. The raster
of density differences shows high increase of the computed trajectory
density for values of traffic intensity that are close to zero and decrease
of the density for higher traffic intensities.

Different types of interactive filtering applicable to spatio-temporal
data have been described elsewhere [6,15]. Among them, the filter type
called ‘time mask’ [15] is suitable for supporting analysis with regard
to the global context (section 3.3). The filter selects data from time
intervals satisfying specified query conditions. The latter can be based
on attributes characterising the global context.

5 CASE STUDY

The approach was validated in a case study performed by a team of
data analysts and aviation domain experts collaborating remotely with
the use of synchronous and asynchronous communication techniques.

Fig. 7. Left: The lines drawn with 2% opacity represent actual trajec-
tories in blue and planned trajectories in red. Right: The density map
summarizes the actual flight segments that deviated from the plans by
2.5 km or more.

The experts stated the overall analysis problem and set various specific
questions throughout the study. The analysts generated visualizations
containing answers to the experts’ questions and provided explanations.
The experts interpreted the patterns observed, and the team made in-
ferences and drew conclusions. The analysis was done on a dataset
describing 32,736 flights over the territory of Spain in the period from
April 7 till April 14, 2016 (8 days). For each flight, its planned and
actual trajectories are available. The map in Fig. 7, left, represents the
planned and actual trajectories by red and blue lines, respectively. It
is easy to note that the routes of the actual flights often deviate from
the planned routes. The analysts applied Algorithm 1 to match points
of the actual and planned trajectories and computed various difference
measures, including the differences in the lengths of the path segments
between matched points that spatially coincide with 1 km tolerance.

In the following, all illustrations representing subsets of data in real
and artificial spaces (section 4.2) were obtained by means of interactive
filtering and dynamic aggregation (section 4.3). In particular, segments
of trajectories were filtered based on the aforementioned difference
measure ‘difference of path lengths between coinciding points’. Apart
from the techniques presented in section 4, the study involved other
visual analytics techniques, in particular, time series clustering [9].

5.1 Problem statement
The domain experts wish to investigate the deviations of actual trajecto-
ries from the planned routes such that the lengths of the corresponding
path segments significantly differed. Fig. 7, right, shows the densities
of the actual flight segments that were at least 2.5 km longer or shorter
than planned. The highest densities occurred around the major airports,
but the domain experts are not interested in these deviations. They know
that path changes in airport vicinities are typically caused by changes
of the take-off and landing directions, which, in turn, correspond to
changes of the wind. What is really interesting to the experts is the
path length changes during the cruise phase of the flights. Therefore,
the analysts divided both the flight plans and actual flights into phases
(section 4.1.2) and selected only the cruise phase by means of filter-
ing. There were 29,343 flights whose cruise phase took place at least
partly over the territory of Spain. Path reductions by 2.5 km or more
occurred in 10,695 of them (36.4%), and path increases by at least
2.5 km occurred in 3,139 flights (10.7%). Hence, path reductions, i.e.,
straighter path segments than it was planned, occurred quite frequently.
Occurrences of path reductions and extensions in a trajectory are not
mutually exclusive; there were 725 flights (2.5%) involving both.

For the domain experts, more interesting are the cases when aircraft
fly more directly than it was planned. They explain that, when negoti-
ating their plans with the flight management services, airlines usually
ask for straighter paths but in most cases do not get such a permission
and have to plan longer paths. However, during the actual flights, pi-
lots are often allowed and even commanded by flight controllers to fly
more directly. On the one hand, this increases the flight efficiency; on
the other hand, it also entails serious drawbacks. When longer paths
are planned, more fuel has to be taken on board, which increases the
aircraft weight. Flying with extra fuel is not just useless but expensive
and environmentally negative. Besides, unplanned path shortening can
decrease the flight duration making the aircraft come too early to its
destination airport, where it may have to wait in the air for a permission



Fig. 8. Left: The cruise parts of the flight plans have been aggregated in a
density map (top) and in a flow map (bottom). Right: The density and flow
maps represent the planned path segments such that the corresponding
actual paths were shorter by 2.5 km or more.

to land. Therefore, the main improvement desired by airlines is the
flight plan compliance with straighter path segments put in the plans.

To find out if there is potential for this improvement, the aviation
experts wish to uncover patterns (regularities or dependencies) in the
path reductions, which would show where and/or when and/or under
what conditions shorter paths could be allowed at the planning stage.

5.2 Seeking spatial patterns
The density and flow maps in Fig. 8, left, summarize all segments of the
flight plans belonging to the cruise phase. In the flow map, the widths
of the flow symbols are proportional to the flight counts. The maps on
the right represent only the parts of the plans that were shortened in the
real flights by at least 2.5 km. The overall spatial patterns differ quite
much. It is seen that path reductions occurred mostly on certain routes,
moreover, in particular parts of these routes. Furthermore, it appears
that there may be directional patterns of path reductions.

To investigate this, the analysts transform the planned trajectories
to an artificial space with a polar coordinate system in which the angle
represents the movement direction and the radius corresponds to the
spatial distance from the beginning of the cruise phase or from the
boundary of the studied territory if the cruise phase began outside of
it. In Fig. 1, the trajectories are represented by lines drawn with 1%
opacity (A) and by a density map (B). Both maps clearly show the
prevalence of the north-eastern and south-western movement directions.
After selecting only those segments that were substituted by shorter
paths in the real flights, the density map changes its appearance as
shown in Fig. 1C. There is a hot spot of very high density at the angle
225 and distance 0-15 km. The density range mapped onto the colour
shades in Fig. 1C has been interactively reduced to make high densities
beyond the hot spot more prominent. As a result, the density map
has a hole in the position of the hot spot, but now it is easy to see
that the densities of the path-reduced segments are generally higher in
the directions north - north-east - east-north-east than in the opposite
directions, except for the hot spot and two wings originating from it.

To see what trajectories correspond to the hot spot, the analysts
create a filtering window enclosing it (shown in an inset in the lower
right corner of Fig. 1C). The filter selects all trajectories that cross
the window in the artificial space. A geographic map display shows
the selected trajectories in the geographic space (Fig. 1D). They are
drawn with 5% opacity; hence, brighter lines correspond to multiple
overlapping trajectories. The map shows that many trajectories come
from the south-west of France, but there are also bunches of trajectories
whose cruise phase started elsewhere, e.g., south from Madrid.

The spatial pattern exploration has revealed the existence of par-
ticular traffic lines and directions where more path length reductions

Fig. 9. The links of the generalized traffic network (Fig. 8) have been
clustered by the similarity of the time series of path reductions. The 2D
histograms below the map (rows: days, columns: hourly intervals with
step 30 minutes) represent the average per hour counts of all flights (left)
and reduced segments (right) going through the links of the clusters 3-7.

occurred than elsewhere. The next task is to find out when and/or under
what conditions this happened.

5.3 Seeking spatio-temporal patterns
To investigate the temporal aspect of the path reductions, the analysts
use the discrete aggregation of the planned trajectories into flows in
a generalized traffic network, as shown in Fig. 8. For the links of
this network, they compute time series of flow magnitudes, i.e., flight
counts per time unit. Specifically, they take time intervals of 1 hour
length with 30 minutes shift, i.e., the intervals overlap by 30 minutes
for temporal smoothing and diminishing boundary effects. The time
series are computed for all flight segments and separately for those
which were reduced in the actual flights. Partition-based clustering
(k-means) is applied to the latter time series. The analysts perform the
interactive clustering procedure [9] in which a projection display of the
cluster centres is used to choose a suitable value for the parameter k.

The clustering results are demonstrated in Fig. 9. Colours have
been assigned to the clusters based on the positions of their centres
in the projection space [9]. The links in the flow map are painted in
these colours, and the same colours are used in the 2D time histogram
displays below the map. Each histogram represents in an aggregated
way the time series for the links belonging to one cluster. The rows
correspond to the days and the columns to the hourly intervals within a
day. The sizes of the painted rectangles in the cells represent statistical
aggregates, such as the means, as in Fig. 9, of the respective values
from the time series. The histograms on the left correspond to the
whole trajectories, and those on the right correspond to the reduced
segments. The histograms are shown for five out of the seven clusters
produced. The remaining two clusters contain time series with very
low values, which have no practical interest for the domain experts.

The histogram displays allow the team to make the following ob-
servations. The path reductions on the links of cluster 5 (dark purple)



Fig. 10. The space-time cube shows time series of path reductions
computed for a fine regular division of the territory. The hourly counts 3
or higher are represented by proportional circle sizes.

occurred quite regularly; the time series of the reduced paths look sim-
ilar to the complete time series. It appears that some proportion of
the flights using these links can be safely allowed to plan more direct
paths. Cluster 6 (light blue) has the highest regularity of reductions
among the remaining clusters, which may also entail some potential
for optimizing flight planning, although the flight counts here are much
lower than in cluster 5. Cluster 4 (orange) could be of high interest from
the perspective of planning optimization, as it involves many flights,
but its temporal pattern of path reductions has low regularity. The same
applies to the other clusters. There were some days and/or hours when
more path reductions occurred than in the other days and/or hours. The
experts suppose that some air traffic controllers may be more inclined
than others to straighten paths in the flights under their control.

The experts want to verify their observations using a less aggregated
representation than in Fig. 9. The analysts compute time series of
path reductions for cells of a regular grid with square cells of the size
10x10 km and visualize the result in a space-time cube, as in Fig.
10, where the temporal dimension is oriented upwards. In this view,
the values 3 or higher are represented by proportional sizes of circle
symbols. Concentrations of circles signify spatio-temporal clusters
of path reductions. The experts rotate the cube and observe where
reductions were practised regularly and where they occurred more
occasionally. The space-time cube offers them a more refined view of
the spatio-temporal patterns of path reductions. They conclude that the
patterns can mostly be considered individual-independent with a high
level of confidence, making optimisation in strategic planning feasible.

The 2D time histograms also allow the experts to check if the path
reduction patterns could be related to the traffic intensity, as it can hap-
pen that some flights are requested to deviate from their planned routes
for decreasing the traffic intensity in the parts of the air space where it
is expected to be high. The experts could not find such a relationship
in their earlier studies with other datasets and other methods, but they
wanted to check this result using visual analytics techniques. This can
be done by comparing the histograms on the left and on the right of Fig.
9. The histograms on the left show the traffic intensities represented by
the flight counts per time unit. The existence of a relationship would
manifest through high path reduction counts in the times of high traffic
and very low values in the remaining times, which is not the case. For
clusters 5 and 6, the reduction counts look proportional to the flight
counts; for the other clusters, the patterns of path reductions are less
regular and thus dissimilar to those of flight counts.

5.4 Seeking relationships to temporal deviations

The domain experts want to see how the deviations from the planned
routes are related to flight delays computed as the differences between
the time till the actual flight end and the time till the planned flight
end. Positive differences mean delays of the actual flights and negative
differences mean the opposite. It could be hypothesized that air traffic
controllers may tend to allow straighter paths to retarding flights to help
them reduce the delays. For revealing the relationships and checking
this hypothesis, the analysts build an artificial space where the X-axis

Fig. 11. A-C: An artificial space with the X-axis representing time and
Y-axis representing the delays of the actual flights compared to the
plans. A: density of all segments of the actual trajectories; B: density
of their shortened segments; C: the average differences of the lengths
of the actual and planned segments. D: Analogous to C, but the Y-axis
represents the differences in the time till the flight end in the actual and
planned trajectories.

Fig. 12. Flow maps obtained by aggregation of the flight plan seg-
ments such that the corresponding actual segments take longer (left)
and shorter (right) time by at least 5 minutes.

represents time and the Y-axis represents the delays. After converting
the actual trajectories to this coordinate system, the analysts create
a density map (Fig. 11A). Generally, the densities are symmetric
with respect to the line Y=0, which means that delays and advances
are mostly balanced. The density map in Fig. 11B summarises the
length-reduced parts of the actual trajectories. The density distribution
pattern also looks quite symmetric with respect to Y=0, but there are no
regions of very high densities around this line, as in the overall density
distribution. This means that the flights involving path reductions are
less frequently on time but more often deviate from the planned times.
The symmetry of the density distribution signifies that retarding flights
do not use shorter paths more often than others.

To verify this observation, the analysts produce a raster with average
differences of the path lengths in the actual and planned trajectories.
In Fig. 11C, the differences are represented using a diverging colour
scale with shades of blue for negative differences (shorter segments
in actual flights) and shades of brown for positive differences (longer
segments in actual flights). The visible prevalence of negative values
above the line Y=0 may mean that paths in retarding flights tend to be
straightened to a higher degree than in other flights.

In a similar manner, the team investigates the existence of a rela-
tionship between the path straightening and the tendency to longer or
shorter flight durations than planned. They consider the differences be-
tween the times till the respective flight ends in the actual and planned
trajectories. Positive differences for actual flight segments mean that



Fig. 13. Comparison of path reductions for different airlines. Purple:
aggregate flows from the complete trajectories (cruise phase) of each air-
line. Yellow: aggregates from the path-reduced parts of the trajectories.

they take longer time than planned, and vice versa. The analysts build
an artificial space similar to that in Fig. 11A-C, but its vertical di-
mension represents the differences in the times till the flight end in
the actual and planned trajectories. The distribution of the average
differences between the actual and planned path lengths in this space is
shown in Fig. 11D. It is seen that positive values prevail above the line
Y=0 and negative values below this line, i.e., path extensions are more
associated with the flights taking longer time and path reductions with
the flights taking less time than planned. A natural explanation is that
path extensions increase and path reductions decrease flight durations.

The team also looks at the spatial patterns of the increased and
decreased segment durations (Fig. 12) and makes an interesting ob-
servation: increases and decreases of the durations with respect to
the plans are related to the flying directions. The durations tend to
increase in the directions toward the west, south-west, and south and to
decrease in the opposite directions. In fact, the prevailing directions of
the segment duration decrease correspond quite well to the prevailing
directions of flight path shortening that were seen in Fig. 1, bottom left;
however, the spatial patterns differ (cf. Figs. 12, right and 8, bottom
right). This means that the decreases of the durations cannot be fully
attributed to the path shortenings but there should be a different reason,
such as an impact of the jet stream.

5.5 Comparing path reductions between airlines

The domain experts would also like to investigate whether different
airlines are equally treated by air traffic controllers with regard to path
straightening, or some of them have higher chances to get straighter
paths than the others. The proportions of the number of path-reduced
segments to the number of all segments differ significantly among
the airlines; thus, for 8 major airlines, the proportions range from
10.6% to 33.5%. However, these differences are not indicative of
unequal treatment, because different airlines have different routes, and
it was observed earlier that path reductions occur on some links of the
traffic network more often than on others. Conclusions concerning
equal or unequal treatment can only be made based on comparing
relative frequencies of path reductions for different airlines on the
same links. Such comparisons can be done using flow maps, as in Fig.
13, where the maps represent aggregated data from the flight plans of
four airlines. The dark purple flow symbols represent the aggregates
obtained from the whole trajectories (cruise phase), and the yellow
flow symbols drawn on top represent the aggregates from the shortened
segments. The maximal absolute values of the flow magnitudes, which
are represented by the maximal widths of the flow symbols, differ
among the maps. This supports comparison of the relative frequencies.

Generally, the flow maps in Fig. 13 show that on the same links

different airlines have approximately equal frequencies of straighter
paths relative to the total frequencies of flying through these links.
The large differences in the proportions of path reductions are due to
differences in the routes served by the airlines. Hence, there are no
significant evidences of possible unequal treatment of different airlines
by the air traffic controllers.

5.6 Overall conclusion from the study
The study allowed the domain experts to gain valuable insights into
the functioning of the air traffic management (ATM) system. Their
questions regarding flight plan compliance were answered. They saw
possibilities for optimising planning on certain important routes and
links of the traffic network, found that route changes do not depend on
personal preferences of traffic controllers, and observed that different
airlines receive equal treatment. They confirmed their previous finding
concerning the independence of the path reductions of the traffic inten-
sity and learned that path reductions are also not used massively as an
instrument to decrease flight delays. These findings basically show that
path shortening does not happen due to special reasons, but its purpose
may be convenience of traffic controlling and better distribution of the
staff workload. Hence, shorter paths can be put in flight plans more
often than now.

6 DISCUSSION AND CONCLUSION

What concerns the case study, the domain experts were very much
satisfied by their collaboration with the analysts, who showed them
the power of visual analytics techniques. The experts believe that
the capability of visual analytics to reveal spatio-temporal patterns
has a great potential for reducing inefficiencies in the ATM system by
learning the actual behaviour of the system and being able to understand
it better. Results as shown in this paper are thus of great interest not
just scientifically but also from the operational perspective. The experts
emphasise the importance of the problem addressed in the case study
and the need for better flight planning and plan compliance, especially
for reducing negative impacts on the environment. The study yielded
relevant findings, which, of course, require further testing on other
datasets. Nevertheless, the experts acknowledged that it showed

• the capability of visual analytics to detect patterns that can be
applied for global benefit of the system,

• the ability to provide a better insight into the ATM system and
thus support better decision making in strategic/pre-tactical phase,

• the usability of the results achieved, providing direct benefit in
the operational environment.

Although our research on comparative analysis of trajectories was
motivated by practical needs existing in the aviation domain, we strove
to obtain results that could have a broader area of applicability. Based
on our previous experiences in analysing diverse kinds of movement
data from different domains, we considered comparative analysis as a
general problem and developed a generic conceptual framework, which
centres around the concept of pairwise difference measures. Accord-
ingly, we developed a method to derive these measures through pairwise
point matching between trajectories. The framework defines synoptic
comparison tasks as seeking patterns in distributions of the differences
with respect to space, time, trajectory structure, movement characteris-
tics, and spatio-temporal context. Accordingly, we composed a suite
of visual analytics techniques that can support exploration of these
distributions and discovery of existing patterns. The description of our
case study provides an example that facilitates understanding of the
general procedure and shows how to use the proposed techniques.

We also tested our approach using other data examples. Thus, a
supplement to this paper [16] demonstrates an application to analysing
vehicle traffic along a motorway. Except for dividing flight trajectories
into phases, all other techniques and the whole analytical procedure are
domain-independent and can be used for comparative analysis problems
in any domain where differences between trajectories following similar
routes need to be quantified and analysed.

This work was supported by Fraunhofer Cluster of Excellence ‘Cog-
nitive Internet Technologies’ and by EU in projects datAcron (grant
687591), VaVeL (grant 688380), and Track&Know (grant 780754).
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