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Abstract

We propose a consistent and computationally efficient 2-step methodology for the esti-

mation of multidimensional non-Gaussian asset models built using Lévy processes. The

proposed framework allows for dependence between assets and different tail-behaviors

and jump structures for each asset. Our procedure can be applied to portfolios with a

large number of assets as it is immune to estimation dimensionality problems. Simula-

tions show good finite sample properties and significant efficiency gains. This method is

especially relevant for risk management purposes such as, for example, the computation

of portfolio Value at Risk and intra-horizon Value at Risk, as we show in detail in an

empirical illustration.
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I. Introduction

The importance of modeling financial assets under realistic distributional assumptions away

from normality has been highlighted in particular after the subprime financial crisis. Realis-

tic modeling is especially relevant for risk management, given the extreme price movements,

event risk, and sudden and large trading losses observed in financial data. Non-normality

also directly affects the returns’ tail distribution, which is crucial in the computation of

regulatory capital requirements of financial institutions. Lévy processes offer a natural and

robust approach for incorporating different distributional assumptions by means of discon-

tinuous movements (commonly described as jumps), which can accommodate the levels of

skewness and excess kurtosis observed in financial data, in particular over short horizons

(see, e.g., Aı̈t-Sahalia (2004)).

Although Lévy processes offer agile distribution modeling for asset prices, they also

present significant estimation challenges especially in a multivariate setup; therefore, uni-

variate models are generally used for portfolio analysis. For example, drawing on the flex-

ible properties of the class of Lévy processes, Bakshi and Panayotov (2010) analyze port-

folio tail risk measures on the basis of a pure jump Lévy model for portfolio returns.

Bakshi and Panayotov (2010) setup is univariate in the sense that it models portfolio re-

turns, rather than each individual asset in the given portfolio, and it captures the main

portfolio characteristics while retaining tractability and computational efficiency. However,

their univariate setting allows for neither the analysis of the impact of dependence between

the components of the portfolio nor the measurement of each asset’s individual risk contri-

bution to the portfolio, which is particularly relevant for scenario analysis. A multivariate

model, which caters to different tail behaviors for each asset in the portfolio, is ideal not only

for risk management, but also for portfolio optimization and the analysis of multivariate

structures such as basket options on equities and collateralized debt obligations.

In light of the above, in this paper we adopt a general multivariate setting for Lévy

processes, which accounts for the impact of dependence between the components of the

portfolio, and propose a consistent and computationally efficient model estimation proce-

dure, suitable for portfolio risk measurement and management. After showing the theo-

retical validity of our method and testing its finite sample properties by simulations, we

showcase its applicability to the computation of the risk measures Value at Risk (VaR) and

intra-horizon Value at Risk (VaR-I).

Our estimation methodology is developed by combining the latest advances in the

modeling of multivariate Lévy processes with the most recent developments in the es-

timation of latent factor models. Specifically, we adopt the multivariate construction of

Ballotta and Bonfiglioli (2016) that models a portfolio of asset returns as a linear combina-

tion of independent Lévy processes representing systematic and idiosyncratic components.

Since neither the common nor the idiosyncratic components driving the margin processes

are directly observable, maximum likelihood estimation of the parameters is computation-

ally burdensome and often unfeasible. Indeed, estimation of the parameters via a single

maximization of the likelihood function presents significant issues in terms of implementa-

tion, in particular the curse of dimensionality due to the large number of parameters that
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are necessary to accommodate a multivariate model.

Thus, the first contribution of this paper is to propose a consistent and computationally

efficient 2-step estimation procedure for the multivariate model of Ballotta and Bonfiglioli

(2016), which overcomes the above mentioned dimensionality problems by means of the

principal components method of Bai and Ng (2002) and Bai (2003). Specifically, principal

component estimation is employed in step one to consistently estimate the common risk

process; then in step two, we focus on the estimation of the parameters of the idiosyn-

cratic components. In both steps, the estimation of the Lévy process parameters is based

on the maximization of univariate sample likelihood functions. Hence, our procedure not

only simplifies estimation by improving computational efficiency, but also solves the dimen-

sionality problem while providing consistent estimation of the parameters. Our simulation

study confirms the reliability and computational efficiency of our method in comparison

with the (likely unfeasible) 1-step maximum likelihood approach in which all parameters

of the multivariate Lévy process are estimated in a single step.

As a second contribution of this paper, we show how our methodology can be ap-

plied to the computation of portfolio risk measures. As in Bakshi and Panayotov (2010),

specific attention is paid to VaR-I, which captures the exposure to losses throughout the

investment horizon, contrasting with VaR, which is the industry standard for the estima-

tion of regulatory capital requirements and measures the risk of possible losses at the end

of a predetermined time horizon. As VaR-I incorporates information about the dynamic

path of possible losses, it offers an ideal tool for dealing with intra-horizon risk over a

multi-period investment horizon (see, e.g., Stulz (1996), Kritzman and Rich (2002), and

Boudoukh, Richardson, Stanton, and Whitelaw (2004)). This is of paramount importance

for monitored asset managers, leveraged investors, borrowers required to maintain a par-

ticular level of reserves as a condition of a loan agreement, or securities lenders required

to deposit collateral. Our work, however, moves beyond Bakshi and Panayotov (2010) to a

multivariate setting, which incorporates the impact of dependence between the components

of the portfolio. The computation of the relevant risk measures in the multivariate setting

is facilitated by the fact that the chosen factor construction gives immediate access to the

portfolio’s characteristic function; hence, we can use state-of-the-art numerical procedures

required for the computation of VaR-I, such as the Fourier space time-stepping (FST) al-

gorithm introduced by Jackson, Jaimungal, and Surkov (2008) for pricing path-dependent

financial option contracts. Our methods avoid the implementation of numerical methods for

partial integro-differential equations such as the ones used in Bakshi and Panayotov (2010),

which might require approximations, especially for infinite activity jumps, that may lead

to accuracy and stability problems (see Jackson et al. (2008) for further details). As an

illustration, we provide a clear estimation procedure for portfolio VaR-I assuming a mul-

tivariate model following the normal inverse Gaussian (NIG) process of Barndorff-Nielsen

(1997) and the Merton jump diffusion processes (MJD) of Merton (1976).

The third contribution of this paper is to show that the proposed framework also allows

for the explicit computation of the risk contribution from each asset in the portfolio without

the need for re-estimating the multivariate model. This is of relevance, for example, for
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active risk management of a portfolio as, by means of the proposed multivariate model,

it is possible to assess changes in the portfolio risk profile resulting from one additional

unit position of exposure to a given asset. This breakdown of the contribution to risk

represents an invaluable “drill-down” exercise that enables managers to better control their

risk profiles. We illustrate the application using the portfolio VaR-I previously mentioned.

The outline of the paper is as follows: In Section II, we review the most relevant features

of the multivariate Lévy model under consideration and we discuss the estimation of the

model, introducing the 2-step estimation procedure. In Section III, we assess the 2-step es-

timation procedure via simulations. Section IV illustrates how to compute the intra-horizon

Value at Risk for a portfolio of assets following the proposed model, with an application in

real data. Section V concludes. Detailed simulation results are presented in Appendix A,

whilst Appendix B offers a brief review of the literature related to the present paper.

II. Multivariate Lévy Processes by Linear Combination: Model

and Estimation

A. Model Specification

A Lévy process, Lt, on a filtered probability space is a continuous time process with inde-

pendent and stationary increments, whose distribution is infinitely divisible. Lévy processes

have attracted attention in the financial literature due to the fact that they accommodate

distributions with nonzero higher moments (skewness and excess kurtosis), therefore allow-

ing a more realistic representation of the stylized features of market quantities such as asset

returns. Further, they represent a class of processes with known characteristic functions in

virtue of the Lévy–Khintchine representation, so that E(exp(iuLt)) = exp(tϕ(u)), u ∈ R,
with ϕ(·) denoting the so-called characteristic exponent. This feature in particular allows

for the development of efficient numerical schemes for the approximation of potentially

unknown distribution functions and derivative prices using Fourier inversion techniques.

In this setting, let us denote by Pt the price of a financial instrument represented as

Pt = P0 exp (Lt) ;

assuming that we observe the price process on an equally-spaced time grid t = 1, 2, . . . , T ,

the log-return defined as

Xt = log

󰀕
Pt

Pt−1

󰀖
= Lt − Lt−1

is a process with infinitely divisible distribution such that, for all t, Xt is distributed as L1,

and X1, X2, . . . , XT are mutually independent. Hence, with a slight abuse of notation, we

say that Xt is an independent and identically distributed (IID) process.

A convenient construction for an N -dimensional version of the Lévy process Lt is pro-

posed in Ballotta and Bonfiglioli (2016) via a linear transformation of a vector of inde-

pendent Lévy processes with components L̃
(n)
t , n = 1, 2, . . . , N , each representing the id-

iosyncratic risk, and another independent Lévy process, L̃
(N+1)
t , modeling the common
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risk component, so that for n = 1, 2, . . . , N , L
(n)
t = L̃

(n)
t + anL̃

(N+1)
t , an ∈ R. Due to the

property of independent and stationary increments of Lévy processes, the increments also

respect the same linear transformation. In particular, let us denote by Y
(n)
t , n = 1, . . . , N ,

Zt the increments of L̃
(n)
t , n = 1, 2, . . . , N , L̃

(N+1)
t , respectively. Then the following holds.

Proposition 1 Let Z, Y (n), n = 1, . . . , N be IID processes, with characteristic functions

φZ(u; t) and φY (n)(u; t), for n = 1, . . . , N , respectively. Then, for an ∈ R, n = 1, . . . , N

Xt = (X
(1)
t , . . . , X

(N)
t )′ = (Y

(1)
t + a1Zt, . . . , Y

(N)
t + aNZt)

′ (1)

is an IID process on RN with characteristic function

φX(u; t) = φZ

󰀣
N󰁛

n=1

anun; t

󰀤
N󰁜

n=1

φY (n)(un; t), u ∈ RN .

It follows by conditioning on the systematic process, Z, that the joint probability density

function of the multivariate IID process Xt is

fX(x
(1)
t , . . . , x

(N)
t ) =

󰁝 ∞

−∞
fY (1)(x

(1)
t − a1z) · . . . · fY (N)(x

(N)
t − aNz)fZ(z)dz. (2)

We note that as the given multivariate model admits computable characteristic function, the

joint distribution is always available (up to a Fourier inversion), even when the components’

distributions, fY (1) , . . . , fY (N) , fZ , are not known analytically.

Proposition 1 implies that for each X(n), n = 1, . . . , N , the process Z captures the

systematic part of the risk originated by sudden changes affecting the whole market, while

the process Y (n) represents the idiosyncratic shocks generated by company specific issues.

Consequently, the components of Xt are dependent and may jump together. In particular,

for each t ≥ 0, the components of Xt are positively associated if the loading factors an

for n = 1, . . . , N are all either positive or negative; otherwise, the components of Xt are

negative quadrant dependent. The resulting pairwise linear correlation coefficient is

ρXn,m = corr(X
(n)
t , X

(m)
t ) =

anamvar(Z1)󰁴
var(X

(n)
1 )

󰁴
var(X

(m)
1 )

, (3)

which is well defined if all processes have finite moments of all order (specifically the

variance). We note, in fact, from expression (3) that for fixed an, am ∕= 0, ρXn,m = 0 if and

only if Z is degenerate and the components are independent, whilst
󰀏󰀏ρXn,m

󰀏󰀏 = 1 if and only

if Y (n) and Y (m) are degenerate (i.e., there is no idiosyncratic factor in the components

X(n) and X(m)). Further, sign(ρXn,m) = sign(anam); therefore, both positive and negative

correlations can be accommodated. Finally, the resulting multivariate model shows nonzero

indices of upper and lower tail dependence, which are controlled by the tail probabilities

of the systematic risk process. For fuller details, we refer to Ballotta and Bonfiglioli (2016)

and Ballotta, Deelstra, and Rayée (2017).
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Several features of the construction in Proposition 1 are worth noticing. In the first

place, this construction is relatively parsimonious in terms of the number of parameters

involved, as this number grows linearly with the number of assets.

Further, the adopted modeling approach is quite flexible, as it can be applied to

any Lévy process; indeed Proposition 1 allows for specifying any univariate Lévy pro-

cess for the idiosyncratic and systematic risks. In this respect, we note that, differently

from Ballotta and Bonfiglioli (2016), in this work we do not impose any convolution con-

dition on the components aimed at recovering a known distribution for the margin pro-

cesses, hence allowing for a more realistic portrayal of the asset log-return features and

the dependence structure in place. Since factor models generally do not originate known

marginal distributions (except in the Gaussian case), a large portion of the literature

on multivariate Lévy processes focuses on finding suitable conditions for the model pa-

rameters under which this feature holds. However, as argued by several authors such as

Eberlein, Frey, and von Hammerstein (2008), recovering known distributions for the mar-

gin processes, although intuitive, leads to a biased view of the dependence structure in

place. This is because it reduces the flexibility of the factor model and fails to recognize

the different tail-behaviors of the assets in the portfolio, which is an essential aspect in

risk management, especially when it comes to the assessment of the marginal risk con-

tribution of each individual asset in the portfolio. As observed by Ballotta et al. (2017)

in a different context, the factor construction of Ballotta and Bonfiglioli (2016) retains its

mathematical tractability and parsimonious parameter space regardless of the presence of

these conditions.

Finally, the model is particularly tractable as the full description of the multivariate

vector Xt only requires information on the univariate processes Y
(1)
t , . . . , Y

(N)
t and Zt.

However, from a practical point of view these sources of risk are not directly observable.

Thus, for the purpose of the estimation of the given multivariate Lévy model, discussed

in the following section, we distinguish between 1-step and 2-step approaches, which depend

on the estimation methods used for the common factor. The 1-step approach involves joint

estimation of the parameters of the common factor and the idiosyncratic components;

however, the maximization of the resulting likelihood function is feasible only if we consider

a limited number of assets. The 2-step approach that we propose instead involves firstly

the estimation of latent factors and loadings by principal component methods; conditioned

on this information, the likelihood function admits a simple expression as a product of

univariate densities. These facts simplify the estimation procedure to improve efficiency and

solve the dimensionality problem, while providing consistent estimation of the parameters.

We observe that this approach is facilitated by the lack of convolution conditions imposed on

the model parameters as discussed above. An alternative possibility would be to consider

the unobservable common factor as a latent factor whose dynamic is assigned so that

the estimation procedure can be reduced to a (in general) non-Gaussian Kalman filtering

problem. However, the application of these techniques is in general not straightforward and,

in any case, does not solve the dimensionality problem.

We conclude by observing that in order to simplify the description of the model but
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without loss of generality, we assume that Z includes only one factor; however, all results in

this paper can be generalized to a multifactor model as we explain in the following sections.

B. Model Estimation: A 2-Step Approach

From the joint density of the stock log-returns given by equation (2), it follows that the

likelihood function of the sample x =
󰁱
(x

(1)
t , . . . , x

(N)
t )

󰁲

t=1,...,T
is

L(x,θ) =

T󰁜

t=1

󰁝 ∞

−∞
fY (1)(x

(1)
t −a1zt;θY (1))×. . .×fY (N)(x

(N)
t −aNzt;θY (N))fZ(zt;θZ)dzt, (4)

where θ = [θY (1) , . . . ,θY (N) ,θZ ,a] is the parameter set to be estimated.

Thus, all parameters of the chosen multivariate Lévy model can be estimated via a single

maximization of the likelihood function (4). However, we note that this procedure presents

significant issues in terms of implementation, in particular, the curse of dimensionality. This

is caused by several elements: the dimension of the parameter space, due to a richer model

parametrization; the number of assets N , which increases the complexity of the integrand

function; the sample size T , which increases the number of integrals to be evaluated; and,

in case of extensions to multifactor models, the number of common factors, which increases

the dimension of the integral in equation (4). In addition, in the case of non-Gaussian

dynamics, the density functions might not be known in closed forms and therefore have

to be computed numerically. All these issues only exacerbate the numerical optimization,

leading to imprecise parameter estimates and cases of false convergence. Finally, we note

that in the case in which more systematic factors are assumed, there would be an infinite

set of possible orthogonal factors and the maximum likelihood equations would have an

infinite number of solutions returning the same value of the likelihood. This fundamental

indeterminacy, called a problem of rotation, is discussed in Anderson (1957).

A valid alternative to an estimation procedure based on equation (4), which improves

on the implementation issues mentioned above, exploits the independence of the common

factor and the idiosyncratic processes. Indeed, the factor model (1), in virtue of standard

results on the joint probability distribution of functions of random variables, gives access

to a joint density for the pair (X = Y + aZ,Z) of the form

fZ (zt)

N󰁜

n=1

fY (n)

󰀓
x
(n)
t − anzt

󰀔
.

This result, under the assumption of Z being observable (in a sense to be defined

later), allows us to conveniently write the log-likelihood function of the sample x and

z = {zt}t=1...T as

lnL (x, z;θZ ,θY ,a) =

T󰁛

t=1

ln fZ (zt;θZ) +

N󰁛

n=1

T󰁛

t=1

ln fY (n)

󰀓
x
(n)
t − anzt;θY (n)

󰀔
, (5)

the convenient feature of expression (5) being the separation of the log-likelihood of the
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systematic risk process from the log-likelihoods of the idiosyncratic components.

This leads to the following remark: if the systematic risk factor is observable, the additive

structure of the log-likelihood function highlighted by expression (5) suggests that the

optimization procedure for the model estimation can be performed in two steps, one for

the systematic risk process and one for the idiosyncratic components. More specifically, the

first step is represented by the following optimization with respect to the parameters of the

observable systematic process Z, that is,

max
θZ

lnL (z;θZ) = max
θZ

T󰁛

t=1

ln fZ (zt;θZ) . (6)

Given θZ , the second step consists of N independent maximizations, one for each in-

strument, of the likelihood of the idiosyncratic components with respect to the loading

coefficients and the parameters of the idiosyncratic processes, which can be formalized as

max
θ
Y (n) ,an

lnL
󰀓
x(n) − anz;θY (n)

󰀔
= max

θ
Y (n) ,an

T󰁛

t=1

ln fY (n)

󰀓
x
(n)
t − anzt;θY (n)

󰀔
, (7)

n = 1, . . . , N.

We notice that this estimation strategy, ‘observe, divide, and conquer’, allows us to solve

the curse of dimensionality, because each maximization procedure involves only a subsection

of the overall parameter space. In addition, generalizing the model for multiple factors has

the minimal additional cost of solving more independent maximization problems. We also

emphasize that once the common factor can be considered observable, our 2-step procedure

is still based on the maximization of the likelihood function, and, therefore, the estimator

retains all theoretical limiting properties, such as consistency, asymptotic normality, and

efficiency.

In practice, though, the common factor is not directly observable. One way to proceed

is to use observable proxy variables such as a well diversified index; however, these proxy

variables are latent variables contaminated with an error that does not vanish, causing the

estimation to lose all its theoretical limiting properties. To solve this problem, we propose

an alternative approach based on the latest theoretical advances on factor models as in

Bai and Ng (2002) and Bai (2003).

Allowing for a multifactor structure, our model (1) can be written as

X
(n)
t = a′nZt + Y

(n)
t .

Hence, in terms of standard factor model notation, X
(n)
t is the response variable, an is the

1× r vector of factor loadings specific to the cross-sectional unit n, Zt is the r× 1 vector of

common factors, and Y
(n)
t is the idiosyncratic error. In matrix notation, X = Za′ + Y ,

where the matrices X and Y are T ×N , Z is T × r, and a is N × r. Equation (1) can be

recovered from this more general setting in the case of r = 1.

Bai and Ng (2002), (2008) and Bai (2003) propose a principal components method to

consistently estimate factors, loadings, and the number of factors by solving the following
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optimization problem

min
a,Z

(NT )−1
T󰁛

t=1

N󰁛

n=1

󰀓
X

(n)
t − a′nZt

󰀔2
,

subject to the normalization a′a/N = IN , where IN is the N -dimensional identity matrix.

The resulting (optimal) estimated loadings matrix, 󰁨a, is
√
N times the eigenvectors asso-

ciated with the r largest eigenvalues of the N ×N matrix X′X. Given 󰁨a, the factors can

be estimated by 󰁨Z = X󰁨a/N .

Five main assumptions are required for consistent estimation of the factors (see Bai and Ng

(2002), (2008), and Bai (2003) for further details).

Assumption 1. E󰀂Zt󰀂8 ≤ M ≤ ∞ and (
󰁓T

t=1 ZtZ
′
t)/T

p→ ΣZ > 0, an r×r nonrandom

matrix.

Assumption 2. The loading an is either deterministic or stochastic with E󰀂an󰀂8 ≤
M ≤ ∞. In either case, (

󰁓N
n=1 ana

′
n)/N

p→ Σa > 0, an r × r nonrandom matrix as

N → ∞.

Assumption 3. Y
(n)
t is weakly correlated, both over time and cross-sectionally.

Assumption 4. {an}, {Zt}, and {Y (n)
t } are mutually independent. Dependence within

each group is allowed.

Assumption 5. E󰀂N− 1
2
󰁓N

n=1 anY
(n)
t 󰀂8 ≤ M ≤ ∞ for all t.

In particular we note the following. According to Assumption 1, the factors Zt are allowed

to be non-IID, that is, some level of autocorrelation is permitted; by definition, Xt is an

IID process, and thus Zt is also an IID process and the assumptions holds. Assumption 2

rules out nonsignificant factors, or factors with trivial contribution to the variance of the

response variables; factor loadings are assumed to be nonrandom variables, which is the case

in our model. Assumption 3 allows for limited time series and cross-sectional dependence

in the idiosyncratic components Y
(n)
t and also heteroskedasticity in both the time and

cross sectional dimensions (see Bai and Ng (2002) for formal details). This assumption

is irrelevant in our model as Y
(n)
t are also IID processes. However, it is important to

note that in general some level of cross-sectional correlation is allowed, as under standard

approximate factor models, common factors may not fully capture the total systematic

variation on the response variables. Assuming that Y
(n)
t are IID processes implies that all

systematic variations are captured by the common factors (exact factor model); however,

our factor estimation allows for some level of correlation left in the residuals, which may

be relevant when dealing with real data. Assumption 4 is a standard assumption in factor

analysis models and holds in our case by definition in Proposition 1. Assumption 5 allows

some weak correlation between idiosyncratic errors and loadings and guarantees that the

estimated factors uniformly converge to the space spanned by Zt.

Under these assumptions, Bai and Ng (2002) show that estimated factors and loadings

are consistent when N,T → ∞. By means of Monte Carlo simulations, Bai (2003) shows
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also that the estimator has good finite sample properties for values of N as small1 as 25.

Moreover, Bai and Ng (2008) show that the estimated factors 󰁨Z can be treated as

observed variables in extremum estimation as MLE under suitable assumptions2. Thus,

equations (6) and (7) can be rewritten as functions of estimated factors 󰁨Z and estimated

loadings 󰁨a, and the parameters θZ and θY (n) can be consistently estimated by MLE.

Two additional comments are worth mentioning for the factor estimation. Firstly, in

the case of multifactor models, the estimation of factors and loadings also requires estima-

tion of the number of factors. Bai and Ng (2002) propose an estimation method based on

classical model selection methods. More recently, Ahn and Horenstein (2013) proposed an

estimation method based on the ratio of the eigenvalues of the matrix X′X/NT , according

to which, for eigvk denoting the kth largest eigenvalue of the matrix X ′X/NT , the number

of factors is the value of k that maximizes the ratio criterion function

ER (k) =
eigvk
eigvk+1

.

The method is very simple and has very good small sample properties; hence, we adopt it

for our empirical application in Section IV.

Secondly, as in any factor model with latent factors and loadings, the true factors and

loadings can only be identified up to a scale. Specifically, the estimated factors 󰁨Z are

consistent estimators of ZH where Z is the true factors and H is an invertible rotation

matrix. This is known as the factor rotation problem, and it affects the interpretation of

factors and loadings. However, our model (1) does not require factors and loadings to be

separately identified, but only requires the identification of the components Za′, which are

in fact identifiable.

As mentioned above, the second step consists of N separate likelihood maximization

problems as in equation (7). Since the loadings are estimated jointly with the factors, the

objective function will only require estimation of the parameters θY (n) .

Finally, a practitioners note: a proxy factor could be used instead of the estimated

principal component factor. Although, as explained above, this method does not guarantee

estimation consistency, it could nevertheless represent a practical alternative. Indeed, the

optimization problem (7) can in this case be solved iteratively by maximizing first with

respect to the idiosyncratic parameters and then with respect to the loading parameters

until no further significant improvement in the objective functions is achieved. In partic-

ular, the loadings can be constrained to fit the covariance matrix to correctly recover the

dependence structure as described below, and then the maximization of the likelihood in

(7) is performed only with respect to the idiosyncratic parameters.

Specifically, the vector a can be initialized by fitting the non-diagonal entries of the

sample covariance matrix to their theoretical counterparts predicted by the multivariate

1In the simulations performed by Bai (2003) the average correlation between the true factor and the
estimated factor for N = 25, T = 50 over 2,000 repetitions is 0.98, improving as T increases.

2Additional technical assumptions required to prove consistency of estimated parameters are in most
part also required for MLE estimation with observed variables; for technical details refer to Bai and Ng
(2008).
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model (1). This is achieved by solving

min
a

󰀂cov(X)− σ2󰀂F , (8)

where 󰀂 · 󰀂F denotes the Frobenius norm,

cov(X) = aa′var(Z1) + diag([var(Y (1)), . . . , var(Y (N))]) (9)

is the model covariance matrix (see eq. (3) as well), and σ2 denotes the sample covariance

matrix (we set the diagonal entries equal to 0 in both). In expression (9), we can use

either the sample variance of the increments of the proxy variable for Z or the parametric

expression for the variance computed with the parameters estimated in Step 1; in the

former case, this step turns out to be independent of the specification of the Lévy processes

involved in the multivariate model construction.

III. Estimation Assessment

In this section we evaluate the performance of the 2-step estimation approach presented

in Section II.B by simulations. Our objectives are to assess the efficiency gains of the

2-step approach in comparison with the 1-step approach and also to analyze the finite

sample properties of the 2-step estimator. We focus on two particular specifications of

the multivariate model (1): the case in which all the involved processes come from the

normal inverse Gaussian (NIG) process of Barndorff-Nielsen (1997) with drift (“all-NIG”)

and the case in which all the involved processes are generated by Merton jump diffusion

processes (MJD) of Merton (1976) (“all-MJD”). These jump structures were also considered

by Ornthanalai (2014). The features of these processes are reviewed in the following of this

section. At this stage we note that all required densities are generated via Fourier numerical

inversion of the corresponding characteristic functions. The numerical inversion has been

performed adopting the COS method introduced by Fang and Oosterlee (2008) in virtue

of its high numerical accuracy.

The NIG process, introduced by Barndorff-Nielsen (1997), is a normal tempered sta-

ble process obtained by subordinating a (arithmetic) Brownian motion by an (unbiased)

independent inverse Gaussian process. Its characteristic function reads

φ(u; t) = exp

󰀕
iµt+

t

k
(1−

󰁳
1− 2iuθk + u2σ2k)

󰀖
, u ∈ R, (10)

for µ, θ ∈ R and σ, k > 0.

It follows by differentiation of the (log of the) characteristic function that the first four

cumulants of the NIG process are

c1 = (µ+ θ)t, c2 =
󰀃
σ2 + θ2k

󰀄
t,

c3 = 3θk
󰀃
σ2 + θ2k

󰀄
t, c4 = 3k

󰀃
σ4 + 6σ2θ2k + 5θ4k2

󰀄
t.

From the above, we observe that θ primarily controls the sign of the skewness of the process
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distribution, σ affects the overall variability, and k primarily controls the kurtosis of the

distribution. The drift parameter µ affects the mean of the distribution, which otherwise

would be concordant with the skewness, allowing us to model return distributions with

positive means and negative skewness as well (and vice versa). Finally, the tails of the

distribution are characterized by a power-modified exponential decay, or semi-heavy tail

(see, e.g., Cont and Tankov (2004)).

As the density function is known in (semi-)closed form (as it is expressed in terms

of the modified Bessel function of the second kind, see, e.g., Cont and Tankov (2004)),

the parameters of the NIG model can be estimated directly using maximum likelihood

(ML) estimation, initialized via the method of moments based on the first four theoretical

cumulants derived above.

A Lévy jump diffusion process has the form

µt+ σWt +

Nt󰁛

i=1

Ji, (11)

where Wt is a standard Brownian motion, Nt is a Poisson process with rate λ > 0 counting

the jumps of the overall process, and {Ji}i∈N are IID random variables describing the

jump sizes. All the random quantities involved, Wt, Nt, and Ji (for all i), are assumed to

be mutually independent. In the MJD model (Merton 1976) jump sizes are all normally

distributed (i.e., Ji ∼ N(ν, τ2), ν ∈ R, τ > 0, for all i). It follows that the characteristic

function is

φ(u; t) = exp

󰀕
iuµt− u2σ2

2
t+ λt

󰀕
eiuν−

τ2u2

2 − 1

󰀖󰀖
, u ∈ R. (12)

The first four cumulants are

c1 = (µ+ λν) t, c2 = (σ2 + λ(ν2 + τ2))t,

c3 = λν(3τ2 + ν2)t, c4 = λ(3τ4 + 6τ2ν2 + ν4)t.

We can observe that the parameters λ, ν, and τ control the non-Gaussian part of the

process; in particular, ν primarily controls the sign of skewness (the density function is

symmetric when ν = 0), whilst λ governs the jumps frequency and, therefore, the level of

excess kurtosis. Further, the MJD process has an infinite Gaussian mixture distribution with

mixing coefficients given by a Poisson distribution with parameter λ; hence, the probability

density function can be expressed as a fast converging series. Finally, the tails are heavier

than in the pure Gaussian case (see, e.g., Cont and Tankov (2004)).

We note that the estimation of the MJD model is far from trivial as the ML method

requires a careful numerical optimization, as discussed in Honoré (1998). Consequently, in

the numerical study we implement the expectation maximization (EM) algorithm in the

formulation proposed by Duncan, Randal, and Thomson (2009), which has simple closed

form solutions for the M-step.

We conclude this review by highlighting the main difference between the NIG and

the MJD processes. Although they both cater to small movements occurring with a high
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frequency (i.e., they are infinite variation processes), in the MJD process these movements

are generated by the Brownian motion and, therefore, are Gaussian (skewness and kurtosis

are generated by the ‘big’ jumps controlled by the compound Poisson process part). In the

NIG process, instead, these small movements are purely discontinuous and, therefore, their

distribution is already skewed and leptokurtic.

Using the “all-NIG” and “all-MJD” processes described above we generate data for our

simulations. The first objective of our simulation is to evaluate the computation efficiency

gains of the 2-step approach versus the 1-step approach. Our second objective is to assess

the error, bias, and efficiency of the parameter estimates obtained by adopting the proposed

2-step approach. We perform simulation experiments for different data generating processes,

sample sizes and number of assets in the portfolio. The simulations show that the 2-step

approach has very large computation efficiency gains relative to the 1-step approach. Our

most conservative test shows that after controlling for errors, parameter estimation using

the 2-step approach is more than 3,000 times faster than using the 1-step method. Moreover,

the 2-step estimation has good finite sample properties with low bias and root mean squared

errors that decrease with increased sample size. The number of assets included in the

portfolio has a minimal impact on the estimation errors and the 2-step approach provides

reliable estimates even for samples with more than 15 assets in the portfolio, case for which

the 1-step approach becomes imprecise and often non-computable. Detailed simulation

procedures and results including tables are presented in Appendix A.

IV. Application: Portfolio Risk Measures, VaR, and Intra-

Horizon VaR

In this section, we illustrate our estimation method for the computation of portfolio risk

measures like Value at Risk (VaR) and intra-horizon Value at Risk (VaR-I).

Trading portfolios of financial institutions can be adversely exposed to a multitude of

risk factors that may lead to extreme losses. Therefore, asset managers are required to

maintain a particular level of reserves as protection against these trading losses. VaR, de-

fined as the lower tail percentile for the distribution of returns, is the market risk measure

recommended by U.S. and international banking regulators to estimate the minimum capi-

tal requirements. For example, the Basel Capital Accord amended in 1996 established that

the minimum capital requirement on a given day is equal to the sum of a charge to cover

credit risk and a charge to cover general market risk, where the market-risk charge is equal

to a multiple of the average reported 2-week VaRs in the last 60 trading days. A drawback

of VaR estimates is that they do not take into consideration the magnitude of possible

losses incurred before the end of the specified trading horizon. An improved alternative

risk measure is the Var-I, as it takes into account the exposure to losses throughout the

investment’s life of the portfolio.

Estimation of tail risk measures as VaR and VaR-I crucially depends on modeling finan-

cial assets under realistic distributional assumptions. Market participants and regulators

are likely to be concerned about the effects of event risk and sudden large trading losses
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or jumps. Therefore, the use of the traditional Brownian motion framework based on nor-

mality will likely understate such market risk. Lévy processes offer a natural and robust

approach to incorporate jumps that can accommodate the levels of skewness and excess

kurtosis observed in financial data, in particular over short horizons.

Moreover, asset managers will be concerned not only about the risk measures of the

whole portfolio, but also about the risk contribution of each asset in the portfolio. For

example, an active portfolio manager will be interested in evaluating the effect on the

portfolio risk profile of a change of the portfolio weight of a given asset. This breakdown of

the contribution to risk represents an invaluable ‘drill-down’ exercise that enables managers

to better control their risk profiles. However, it requires a multivariate model on the one

hand capable of incorporating the impact of dependence between the assets in the portfolio,

and on the other hand sufficiently flexible to cater different returns’ distributions for each

asset in the portfolio, a feat that lies out of the range of a univariate setting.

Therefore, the methods developed in this paper are particularly suitable for the estima-

tion of portfolio VaR and VaR-I, as they accommodate realistic distributional assumptions,

including jumps, in a multivariate setting that allows for the evaluation of the risk contri-

bution of each individual asset in the portfolio.

In this section we first provide a step-by-step general procedure to estimate VaR and

VaR-I for portfolios following a multivariate Lévy model (1). Then we apply the proposed

estimation method to a portfolio of the 20 most capitalized stocks in the S&P 500, using

the two Lévy models’ specifications introduced in Section III (i.e., the “all-NIG” model and

the “all-MJD” model). For comparison, we also consider the case in which all assets follow

a normal distribution (‘all-Gaussian’ model). After computing the model parameters and

relevant risk measures, we assess the quality of our estimation and conclude the section

with the identification of the risk contribution of each asset in the portfolio.

The results presented in the following of this section show that the multivariate Lévy

models correctly capture the observed distribution of portfolio returns, with important

improvements over the Gaussian model. Estimation under multivariate Lévy models in

general provide most conservative risk estimates, with a VaR and VaR-I between 3.5% and

10% larger than using a Gaussian model. Finally, we identify that in our sample the assets

with larger risk contribution to the portfolio risk are stocks of financial institutions.

A. Estimation of VaR and Var-I under Multivariate Lévy Models

The intra-horizon risk Value at Risk, VaR-I, is defined on the distribution of the minimum

return. Thus, let Xt, for t ∈ [0, T ], be the real-valued random process describing possible

paths of an instrument or portfolio log-return over the interval [0, t]; without loss of general-

ity, we set X0 = 0. For practical implementation, let us assume that the process is observed

on an equally spaced time grid 0,∆, . . . ,K∆ = T . In standard financial applications ∆ is

set at 1 day and K∆ = T is 10 days. Define the process of the minimum, Mk, up to the

k-th monitoring date as Mk := mini=0,...,k Xi∆. The VaR-I at confidence level (1 − α) is

defined as the absolute value of the α-quantile of the distribution of the random variable
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Mk, that is,

P (Mk ≤ −VaR-I|X0 = x) = α. (13)

The idea is that during the investment life the path of returns can reach high negative

values, which investors may care about. In such cases, the left tail of the minimum return

distribution better represents risk than the left tail of the return distribution itself.

While under the assumption of an arithmetic Brownian motion the distribution of the

minimum return is analytically known (see Kritzman and Rich (2002) for the case with

continuous monitoring, and Fusai, Abrahams, and Sgarra (2006) for the discrete monitor-

ing one), under more general assumptions for the driving process it must be recovered

numerically (see Fusai, Germano, and Marazzina (2016) for a review and comparison of

different approaches in computing the distribution of the minimum under Lévy processes).

To this purpose, we resort to the Fourier space time-stepping (FST) algorithm introduced

by Jackson et al. (2008) for option pricing purposes. Our problem is indeed equivalent to

finding the value of a down-and-out binary option, that is an option paying 1 if the un-

derlying does not hit a certain lower barrier within a given time period, and 0 otherwise.

However, due to the nature of the application under consideration, our computations are

performed under the physical probability measure.

With a fixed arbitrary threshold y, the FST algorithm allows us to recover the value

function

v(0, x) := E[1{MK>y}|X0 = x] = P (MK > y|X0 = x)

via backward recursion so that

vK(x) := v(T, x) = 1{x>y}, (14)

vk−1(x) = FFT−1[FFT[vk(x)]eϕ∆]1{x>y}, k = 1, . . . ,K,

where ϕ is the characteristic exponent of Xt, FFT(X) computes the discrete Fourier trans-

form of the vector X using the fast Fourier transform (FFT) algorithm and FFT−1(·)
denotes the inverse discrete Fourier transform. For further details on the FST algorithm,

we refer to Jackson et al. (2008). Further, in virtue of the translation invariance property

of Lévy processes, it follows that v(0, x) = P (MK > y−x|X0 = 0). Hence, the computation

of the (1− α)-VaR-I can be summarized in the following steps.

Step 1. Choose an arbitrary threshold y.

Step 2. Compute the function v(0, x) = v0(x) by means of the FST algorithm.

Step 3. Find the value x such that v(0, x) = 1− α.

Step 4. Compute the VaR-I as VaR-I= −(y − x).

The implementation of the FST iteration (14) requires the expression of the charac-

teristic function of the process Xt of the log-return of a portfolio of assets with weights

wn. In the given multivariate setting (1), for short time horizons, this expression can be

easily derived in virtue of the approximation of the portfolio returns as linear combinations
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of the asset log-returns. Exploiting the independence of the idiosyncratic process, Y (n),

n = 1, . . . , N and the systematic process, Z, we can in fact obtain

E [exp (iuX)] = E

󰀥
exp

󰀣
iu

󰀣
N󰁛

n=1

wnY
(n) + Z

N󰁛

n=1

wnan

󰀤󰀤󰀦
(15)

=

󰀣
N󰁜

n=1

φY (n) (uwn)

󰀤
φZ

󰀣
u

N󰁛

n=1

wnan

󰀤
u ∈ R,

where we omit time subscripts to simplify the notation3. The characteristic functions in

equation (15) are then chosen according to the specified model.

B. Estimation Results

We estimate the 10-days 99% VaR and VaR-I for an equally-weighted portfolio under the

“all-NIG”, “all-MJD” and ‘all-Gaussian’ (henceforth Gaussian) models. We include in the

portfolio 20 of the most capitalized stocks4 in the S&P 500 index. Our sample includes

daily log-returns, from May 24, 2011 to May 20, 2013.

We start by estimating the parameters of the characteristic functions of Xt required for

implementation of the FST iteration as described above. We apply the 2-step procedure

presented in Section II.B. We estimate the number of factors using Ahn and Horenstein

(2013) method and find one factor, which we estimate via the principal component method.

We do not report full estimation results, due to the large number of parameters (complete

parameter estimation results are available from the authors). Instead in Table 1 we report

the estimated mean, standard deviation, Pearson’s moment coefficient of skewness, and

index of excess kurtosis of the returns distribution using both the ‘all NIG’ and “all-MJD”

estimated model parameters for a selection of assets and the equally-weighted portfolio

of all 20 assets. Our objective is to assess the assumption of non-normality of returns by

testing if skewness and excess kurtosis are significantly different from 0. For the test we use

bootstrap (Efron (1979)) to generate 5,000 re-sampled data sets from our observed one, and

we estimate the model parameters on each of the re-sampled data sets. Then, we compute

the moments of the distribution of the 20 stocks across the 5,000 data sets according to

the model; the α-confidence levels for a given moment are built using the (1 − α)/2 and

(1 + α)/2 quantiles of that moment over the 5,000 data sets. Based on these confidence

intervals, in Table 1 the *, **, and *** represent statistical significance at the 90%, 95%,

and 99% levels, respectively.

Results in Table 1 show that in general the skewness is not significantly different from 0,

indicating generally symmetric assets’ distributions; however, the excess kurtosis is always

statistically significant, indicating heavier tails than in the case of normal distributed assets’

3If returns are very volatile or the horizon is longer, it becomes essential to work with linear returns. In
this case equation (15) no longer holds. For more details, see Meucci (2005).

4Apple, Exxon Mobil Corporation, Wal-Mart Stores, Microsoft Corporation, Google, General Electric,
IBM, Chevron Corporation, Berkshire Hathaway, AT&T, Procter & Gamble, Pfizer, Johnson & Johnson,
Wells Fargo & Co., Coca-Cola, JPMorgan Chase & Co., Oracle, Merck & Co., Verizon Communications,
and Amazon.
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Table 1: Estimated Distribution Characteristics
We report the estimated daily mean (expressed in basis points), standard deviation, Pearson’s
moment coefficient of skewness, and index of excess kurtosis for the returns of a selection of assets
and the equally-weighted portfolio under the ‘all NIG’ and “all-MJD” estimated models. *, **, and
*** represent statistical significance at the 90%, 95%, and 99% levels, respectively (confidence levels
obtained by bootstrap resampling techniques with 5,000 iterations). We also report the loadings a.

Apple Google AT&T Coca-Cola Amazon Portfolio

Panel A. ‘all NIG’

Mean (bps) 0.0174 9.1666 6.9314 1.8355 7.9301 8.3977
Std. Dev. 0.01887∗∗∗ 0.01537∗∗∗ 0.01037∗∗∗ 0.00977∗∗∗ 0.02147∗∗∗ 0.01387∗∗∗

Skew. 0.0789 -0.2719 -0.4215∗∗ -0.1067 0.3198 -0.0433
Exc. Kurt. 1.9837∗∗∗ 3.1409∗∗∗ 2.5857∗∗∗ 1.7734∗∗∗ 8.3284∗∗∗ 4.8165∗∗∗

Panel B. “all-MJD”

Mean (bps) 0.0175 9.1666 6.9313 1.8355 7.9301 8.3978
Std. Dev. 0.01897∗∗∗ 0.01597∗∗∗ 0.01067∗∗∗ 0.00967∗∗∗ 0.02307∗∗∗ 0.01407∗∗∗

Skew. -0.1205 -0.5464 -0.9966∗∗ -0.0147 0.2459 -0.1640
Exc. Kurt. 3.1272∗∗∗ 5.8531∗∗∗ 5.1519∗∗∗ 0.9730∗∗∗ 10.7512∗∗∗ 7.7416∗∗∗

a 0.0087∗∗∗ 0.0092∗∗∗ 0.0072∗∗∗ 0.0067∗∗∗ 0.0097∗∗∗ 0.0092∗∗∗

returns. The features of the returns of the equally-weighted portfolio indicate that the non-

normality inherited from each asset is persistent regardless of the level of diversification

in place. These results confirm the importance of modeling asset returns under realistic

distributional assumptions away from normality. The differences in the level of skewness and

excess kurtosis between the ‘all NIG’ and “all-MJD” models reflect the different flexibility

offered by the processes in portraying the distribution tails.

Next, we evaluate if our fitted multivariate Lévy model is able to capture the dependence

observed in real data. To do so, we compare the sample covariance of the assets in the

portfolio with the covariance matrix estimated assuming model (1) for the “all-NIG” case.

Figure 1 shows the two covariances, using two color-coded matrices in which each entry is

colored according to its value, and the conversion color-code is provided in the lateral color

bar. We notice that the “all-NIG” model accurately reproduces the sample covariance

among the assets in our data set. Similar results are obtained for the “all-MJD” model

(available from the authors).

To further explore if our fitted multivariate Lévy models correctly capture the observed

distribution of portfolio returns, we perform a simulation exercise. We randomly generate

1,000 long–only portfolios and 1,000 long–short portfolios using our estimated parameters

for the “all-NIG” and “all-MJD” models. For comparison we also generate such portfolios

under a Gaussian model. We compare the simulated distributions with the observed sample

distribution (as in, e.g., Eberlein and Madan (2009) and Luciano, Marena, and Semeraro

(2016)). Long-only weights are generated by drawing an IID sample from a standard normal

distribution, taking the absolute value and rescaling by the sum. Long–short portfolio

weights are generated similarly, drawing an IID sample from a standard normal distribution
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Figure 1: Sample and Estimated Covariance Matrices
Figure 1 shows the sample and estimated covariance matrices for the ‘all NIG’ model. Estimation of
the common factor Z is performed via the principal components method. The color-values conversion
is provided in the side color bar. Constituents: Apple, Exxon Mobil Corporation, Wal-Mart Stores,
Microsoft Corporation, Google, General Electric, IBM, Chevron Corporation, Berkshire Hathaway,
AT&T, Procter & Gamble, Pfizer, Johnson & Johnson, Wells Fargo & Co., Coca-Cola, JPMorgan
Chase & Co., Oracle, Merck & Co., Verizon Communications, and Amazon.

Graph A. Sample Covariance Matrix Graph B. Estimated Covariance Matrix

and rescaling it by the sum of the squares. We perform the Kolmogorov–Smirnov test,5 with

the null hypothesis that the simulated distribution is drawn from the sample distribution.

The results, presented in Table 2, show the proportion of portfolios for which the null

hypothesis is rejected using 1%, 5%, and 10% significance levels for all different models. We

note that both Lévy-based models significantly outperform the Gaussian one; in fact for

the case of long–only portfolios the Gaussian model is rejected 100% of the time. Further,

the “all-NIG” and “all-MJD” model specifications fit the sample distribution of returns for

both long–only and long–short portfolios equally well.

Once we have confirmed that our estimated model is able to successfully replicate the

observed distribution of portfolio returns, we proceed to estimate the portfolio VaR and

VaR-I following the four steps described in Section IV.A. In Table 3 we report our estimates

of 10-day 99% VaR and intra-horizon VaR and the corresponding confidence intervals at the

95% level computed using bootstrap resampling methods. The confidence intervals of the

portfolio VaR/VaR-I are calculated using the quantiles of the VaR/VaR-I across the 5,000

instances stemming from the bootstrapped samples. We also report the ratio between the

Lévy model estimate and the Gaussian model estimate (Multiples). We observe that VaR-I

consistently exceeds the traditional VaR, and that jump risk tends to amplify intra-horizon

5We derive the probability density function by inverting the portfolio characteristic function (15) using
the COS method of Fang and Oosterlee (2008).
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Table 2: Goodness of Fit Test
We report the proportion of simulated portfolios for which the null hypothesis of the Kolmogorv–
Smirnov test is rejected at the 1%, 5%, and 10% significance levels. The null hypothesis is that
the simulated distribution is drawn from the sample distribution. Portfolios are generated under
the “all-NIG”, “all-MJD”, and Gaussian models. Constituents: Apple, Exxon Mobil Corporation,
Wal-Mart Stores, Microsoft Corporation, Google, General Electric, IBM, Chevron Corporation,
Berkshire Hathaway, AT&T, Procter & Gamble, Pfizer, Johnson & Johnson, Wells Fargo & Co.,
Coca-Cola, JPMorgan Chase & Co., Oracle, Merck & Co., Verizon Communications, and Amazon.

Long–Only Long–Short

Significance
Level “all-NIG” “all-MJD” Gaussian “all-NIG” “all-MJD” Gaussian

0.01 0.00% 0.00% 100% 0.00% 0.00% 65.10%
0.05 0.00% 0.00% 100% 0.80% 0.70% 74.20%
0.10 0.00% 0.00% 100% 2.10% 2.00% 79.00%

risk.

These results indicate that the pure-jump “all-NIG” model has the (marginally) thickest

tails for both the return and the minimum return distributions, and thus provides the most

conservative risk estimates, with a VaR 1.09 times higher than the VaR under the Gaussian

model and a VaR-I about 1.11 times higher with respect to the Gaussian one. The VaR and

the VaR-I under the jump-diffusion “all-MJD” specification are respectively 1.03 and 1.04

times higher with respect to the corresponding measures under the Gaussian model. These

results reflect the slower decay in the distribution tails of the NIG and the MJD processes

compared to the Brownian motion, as discussed in Section II.A.

As a final consideration, we observe the following. Although in a few cases Table 1

highlights fairly different estimates for skewness and excess kurtosis in the distribution of

each assets between the “all-NIG” and the “all-MJD” models, the relatively similar figures

reported in Table 3 for the risk measures of interest show the effect of the allocation in

place in the portfolio, which diversifies away the tail risk of the idiosyncratic components

but maintains the exposure to the tail risk of the systematic risk factor. This also suggests

that a change in the portfolio’s weights can potentially generate a significant change in the

overall risk measure depending on which asset becomes “predominant” so to speak. This

latter effect can only be captured by means of a multivariate model for the returns of each

portfolio’s components, as opposed to a univariate model for the overall portfolio returns.

Motivated by the previous analysis, we conclude this section with the identification of

the risk contribution of each asset to the whole portfolio risk. This is especially relevant

for active risk portfolio managers, who require identification of the effects of changes in

portfolios’ weights on the overall portfolio risk in order to modify the overall risk profile

most effectively.

The study is based on a sensitivity analysis of the VaR-I with respect to the portfolio

weights, which is performed by finite difference. For illustration purposes, we consider the

case of an equally-weighted portfolio; for each asset in the portfolio we perturb its weight

19



Table 3: VaR and VaR-I Estimates
We report the 10-day horizon 99% VaR and VaR-I of an equally-weighted portfolio under the “all-
NIG”, “all-MJD”, and Gaussian models, with confidence intervals at the 95% level. The common
factor Z is estimated via the principal component method. Confidence intervals are computed using
bootstrap resampling methods (5,000 iterations). Multiples: Lévy model estimate/Gaussian model
estimate. Constituents: Apple, Exxon Mobil Corporation, Wal-Mart Stores, Microsoft Corporation,
Google, General Electric, IBM, Chevron Corporation, Berkshire Hathaway, AT&T, Procter & Gam-
ble, Pfizer, Johnson & Johnson, Wells Fargo & Co., Coca-Cola, JPMorgan Chase & Co., Oracle,
Merck & Co., Verizon Communications, and Amazon.

VaR VaR-I

Estimate CI(lb) CI(ub) Multiples Estimate CI(lb) CI(ub) Multiples

Gaussian 0.0699 0.0572 0.0831 1.0000 0.0738 0.0614 0.0869 1.0000
“all-MJD” 0.0723 0.0579 0.0888 1.0341 0.0769 0.0630 0.0929 1.0413
“all-NIG” 0.0764 0.0599 0.0961 1.0939 0.0818 0.0652 0.1016 1.1085

Table 4: Asset’s Individual Risk Contribution to the Equally-Weighted Portfolio VaR-I
We report the component VaR-I, that can be interpreted as the percentage increase in VaR-I for a 1%
increase in the weight of the asset in the portfolio. Finite difference is calculated with perturbation
1/100.

Asset “all-NIG” “all-MJD”

Apple 4.88% 4.93%
Exxon Mobil Corporation 5.37% 5.38%
Wal-Mart Stores 2.44% 2.24%
Microsoft Corporation 4.88% 4.93%
Google 4.88% 4.93%
General Electric 6.34% 6.73%
IBM 4.39% 4.48%
Chevron Corporation 5.85% 5.83%
Berkshire Hathaway 5.85% 5.83%
AT&T 3.41% 3.59%
Procter & Gamble 2.93% 2.69%
Pfizer 4.39% 4.48%
Johnson & Johnson 2.93% 3.15%
Wells Fargo & Co. 8.29% 8.07%
Coca-Cola 3.41% 3.59%
JPMorgan Chase & Co 8.78% 8.97%
Oracle 7.32% 7.17%
Merck & Co. 4.39% 4.04%
Verizon Communications 2.93% 3.14%
Amazon 6.34% 5.83%
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by 1/100 and then recompute the VaR-I. The change in the VaR-I (marginal VaR-I) is the

discrete analogue of a derivative. If we multiply marginal VaR-I by the asset weight in the

portfolio and divide this product by the original VaR-I, we obtain a percentage measure

of the risk contribution of this asset, the so-called Component VaR-I. This measure can

be interpreted as the percentage increase in VaR-I for a 1% change in the weight of a

given asset in the portfolio. Notice, that given any pre-specified portfolio, risk measures

and risk attribution are obtained without re-estimating the underlying multivariate model

parameters.

Results on the Component VaR-I of the 20 assets in the portfolio considered in this Sec-

tion are reported in Table 4. The decomposition highlights the positions that the portfolio

is most sensitive to. Interestingly, JPMorgan Chase & Co. and Wells Fargo & Co. are the

two assets that contribute the most to the portfolio risk measured by VaR-I. A 1% increase

in the portfolio weight of JPMorgan Chase & Co. increases VaR-I by almost 9%. The asset

with the smallest Component VaR-I is Wal-Mart stores, with an increase of about 2.5%

when its weight in the portfolio is increased by 1%. There are no significant differences

between the “all-NIG” and the “all-MJD” models, which suggests that the proposed esti-

mation method is robust with respect to the model choice. Similar results can be obtained

for the case of VaR and are available from the authors.

In unreported experiments we repeat the estimation using the S&P 500 index as a

proxy of the common factor. The estimated VaR and VaR-I are close to those obtained by

estimating the common factor via principal components, displayed in Table 3. However,

the ability of the model to fit the portfolio distribution, measured by the Kolmogorov-

Smirnov test on the distributions of 1,000 randomly generated long-only portfolios and

1,000 randomly generated long–short portfolios, turns out to be substantially lower than

in the case in which the principal component method is adopted for the estimation of the

common factor. Results are available from the authors.

V. Conclusions

We propose an estimation procedure for multivariate asset models based on linear trans-

formation of Lévy processes as in Ballotta and Bonfiglioli (2016), allowing for an extension

of the use of multivariate Lévy models to risk and portfolio management applications. We

note that factor constructions are in line with recommendations from the Basel Committee

on Banking Supervision (Basel (2013)) for the development of internal models.

For the case of an N -asset portfolio, the 2-step estimation procedure proposed in this

article reduces to the estimation of the common factor Z and the loadings a via principal

components, andN univariate estimations, one per each idiosyncratic component; therefore,

it is fast to implement and its complexity does not increase with the number of components

of the multivariate model. Our simulation study reveals that this approach is almost as

accurate as a more traditional direct maximum likelihood estimation of the whole set of

parameters, as long as proper univariate estimation methods are used; however, the 2-step

procedure proves to be significantly more efficient from the computational point of view.
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The proposed approach is flexible with respect to the number of assets included in the

portfolio and does not impose any convolution condition on the factors, as it is assumed

in other multivariate constructions proposed in the literature. Although in the numerical

studies presented in this paper we conveniently assume that all factors are modelled using

the same type of process, this assumption can be relaxed as to allow any Lévy process for the

idiosyncratic part across all the names included in the portfolio in order to accommodate

different tail behaviors.

As an application, we employ the proposed estimation procedure for the calculation of

the intra-horizon Value at Risk of a portfolio of assets following the model under consid-

eration by means of the FST algorithm. The numerical study reveals the importance of

properly capturing realistic features of asset log-returns, such as skewness and excess kur-

tosis, by incorporating jumps in the risk dynamic. Results from the empirical study, in fact,

highlight the more conservative risk estimates offered by the intra-horizon VaR especially

for the case of the NIG, reflecting the different decay behavior of the distribution tails.

Due to the short horizons typical of risk management operations, in this paper we

have considered the case of a non-Gaussian multivariate model built on Lévy processes

(i.e., processes characterized by independent and stationary increments). For applications

aimed at longer horizons, stochastic volatility features are required. Lévy processes can be

conveniently equipped with such features by means of suitably constructed time-changes,

as proposed by Carr and Wu (2004), (2007), for example, and more recently extended by

Ballotta and Rayée (2017). Although multivariate extensions of the time changed Lévy pro-

cesses framework are currently investigated, in the case in which a similar factor structure

is adopted, we envisage the potential of the 2-step methodology proposed in this paper for

the estimation under the physical probability measure. Analysis of the validity of condi-

tions ensuring the consistency of the estimated factors and loadings in this context is left

to future research. Finally, we observe that the methodology proposed in this paper can

also be directly applied to other areas such as portfolio optimization problems based on

multivariate Lévy processes (as, e.g., in Loregian (2013)).
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of Financial Economics, 96 (2010), 271–290.

24
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A. Detailed Simulation Procedures and Results

In Appendix A, we provide detailed procedures and complete results of our simulation experiments

designed to evaluate the performance of the proposed methodology. We present our results in com-

parison with the 1-step estimation approach (i.e., via single maximization of the likelihood function

(4)). As the detailed simulation study of Bai (2003) shows that the factor estimation method has

strong small sample properties, without loss of generality our simulation study assumes that the

systematic risk factor is proxied by a well diversified index6.

Our data generation process is based on daily log-returns of the S&P 500 index and a selection

of its constituent stocks; further, we assume that the S&P 500 index is the true driver of the

commonality in stocks returns. The observation period ranges from Sept. 10, 2007 to May 20, 2013,

for a total of 1,434 observations per series. These data are extracted from Bloomberg and adjusted

for dividends. We first estimate the chosen multivariate model using the index log-returns as proxy

for the systematic process Z and use the estimated parameters to simulate series of the returns of

the assets under consideration. Then the 1-step and 2-step estimation procedures are applied to the

generated data to recover the distribution of each parameter.

1 Computation Efficiency

The first objective of our simulation is to evaluate the computation efficiency gains of the 2-step

approach versus the 1-step approach. We use estimation errors and estimation time to calculate an

efficiency gain index commonly used in Monte Carlo simulation analysis and defined for example

in Glasserman (2004). Given a specification of the model (1), characterized by k̄ parameters, we

compute the efficiency gain, E21, of the 2-step procedure to the 1-step maximum likelihood approach

as

E21 =
MSE1τ1

MSE2τ2
, (A-1)

where MSE denotes the average mean square error

MSE =

k̄󰁓
k=1

MSE(θ̂k)

k̄
,

of the parameters estimated by the 1-step (1) and the 2-step (2) approach. MSE(θ̂k) is the mean

square error for S simulation iterations

1

S

S󰁛

s=1

󰀓
θ̂s − θ

󰀔2

,

and τ1 (2) is the average time needed to estimate the model parameters using the 1 (2) approach.

In particular, we compute the efficiency gain index corresponding to the “all-NIG” and “all-MJD”

models with N = 5 and N = 15 components. In the case with 5 assets, for each of the two approaches

we consider the mean square errors based on 1,000 simulations; for the case with 15 assets, we rely

on 100 simulations only due to the computational cost of the 1-step procedure.

Results are reported in Table A1 for the case in which T = 500 (i.e., around 2 years of daily

observations): we observe that the 2-step approach is significantly more efficient in terms of com-

6We also performed a small simulation study to check the reliability of the factor estimation method; we
find that the average correlation between estimated factors and loadings with true factors and loadings is
larger than 0.98. Also simulation results using estimated factors and loadings are in magnitude similar to
the ones obtained assuming that the factor is observable as reported in this section.
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Table A1: Computation Efficiency Gains
We report average MSE, computation times (measured in seconds), and efficiency gains of the 2-step
approach to the 1-step maximum likelihood. T = 500 days and N is the number of assets in the
portfolio. Efficiency gains are E21 = MSE1τ1/(MSE2τ2) and k̄ is the number of model parameters.
(Processor: Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz 3.10 GHz; RAM: 4.00 GB).

2-Step 1-Step

N Model k̄ MSE Time MSE Time E21

5 “all-NIG” 29 0.0857 0.7 0.1407 3,668.5 8,139
“all-MJD” 35 0.0014 1.0 0.0028 3,756.8 7,295

15 “all-NIG” 79 0.1043 1.9 0.0973 10,723.3 5,350
“all-MJD” 95 0.0016 3.4 0.0017 11,087.5 3,496

putational time. Moreover, for N = 5 the average mean square errors attained with the 2-step

approach are lower than those given by the 1-step procedure (8.5% vs 14% for the “all-NIG” model,

0.14% vs 0.28% for the “all-MJD” model), whilst they are almost the same for N = 15 (about

10% for the all-NIG’ model, 0.16% for “all-MJD”). According to the efficiency index (A-1), in our

experiment the 2-step procedure performed 3,496 times more efficiently than the 1-step approach

in the worst case (“all-MJD”, N = 15) and 8,139 times more efficiently in the best one (“all-NIG”,

N = 5).

2 Finite Sample Properties

Our second objective is to assess the error, bias, and inefficiency of the parameter estimates ob-

tained by adopting the described estimation procedures. We assess the estimation procedure for

four different sample sizes, varying the length of the simulated series from one year up to four years

of daily observations and varying the number of components, considering up to 30 assets in the

simulated markets.

The assessment is made in terms of root mean square error, bias, and inefficiency, respectively

defined as

RMSE(θ̂) =

󰁹󰁸󰁸󰁷 1

S

S󰁛

s=1

󰀓
θ̂s − θ

󰀔2

, (A-2)

bias(θ̂) =
󰀏󰀏󰀏E[θ̂]− θ

󰀏󰀏󰀏 , (A-3)

ineff(θ̂) =

󰁹󰁸󰁸󰁷 1

S

S󰁛

s=1

󰀝󰀓
θ̂s − E[θ̂]

󰀔2
󰀞
, (A-4)

where θ̂ indicates the estimates of the true parameter set θ used in the simulation step, and E[θ̂] =
󰁓S

s=1 θ̂s/S.

We start by analyzing the finite sample properties of the 2-step estimation procedure proposed

in Section II.B.

We first estimate the chosen multivariate model using the index log-returns as a proxy for the

systematic process Z. Then, we use the estimated parameters to simulate series of the returns

of the assets under consideration, which the estimation procedure is re-applied to. This allows

us to recover the distribution of each parameter. We assess the estimation procedure in several

cases, varying the length of the simulated series from 1 year up to 4 years of daily observations,

T = [250, 500, 750, 1,000], and varying the number of components, considering up to 30 assets in the
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simulated markets (N). For each of the 16 cases taken into account we repeat the simulation and

estimation S = 10,000 times, obtaining 10,000 sets of parameters, denoted by θ̂s, s = 1, . . . , S.

Given the large number of parameters (if N = 5 the total number of parameters is 29 for the

“all-NIG” model and 35 for the “all-MJD” model; if N = 30 there are 154 parameters for the “all-

NIG” model and 185 parameters for the “all-MJD” model), we cannot display detailed results for

each asset; hence, for illustrative purposes, we show only the assessment results for the estimation of

the common factor Z, the first idiosyncratic factor Y (1), and average results relative to the loadings

an, n = 1, . . . , N . Complete results are available from the authors. We stress that the focus of our

simulation study is on investigating the effectiveness of splitting the estimation procedure of the

multivariate model in the two steps presented in Section II.B.

Firstly, we analyze the finite sample properties of the estimated systematic component in our

model.

Table A2 displays root mean square error, bias (expressed in percentage terms with respect to the

true parameter value), and inefficiency of the estimators for the “all-NIG” and “all-MJD” models,

as the length of the simulated series varies in T = [250, 500, 750, 1,000]. We observe, in general,

a low level of bias for all of the estimators, meaning that the maximum likelihood estimators are

suitable for the first step of our procedure. Analogous considerations hold in the “all-MJD” case,

with estimators obtained by EM. Hence, errors and inefficiency levels can be used as benchmarks

to evaluate Step 2.

In some more details, the bias for the “all-NIG” model is generally lower than 2% for sample

sizes larger than 500. For smaller sample sizes, we observe only some problems in the estimation of

the µ and θ parameters. As previously observed, these parameters control the mean of the process,

which is well known to be very difficult to estimate in a reliable way. Concerning the “all-MJD”

model, the bias appears to be larger, although still acceptable; the main issues are related to the

estimation of the intensity and mean of the jump severities. However, the RMSEs are reasonably

small for all parameters.

In general, consistent with the literature (see, e.g., Aı̈t-Sahalia and Jacod (2011) and references

therein), infinite activity processes, like the NIG, can be estimated in a more reliable manner than

finite activity processes, such as the MJD process.

Then, we focus on the finite sample properties of the estimated idiosyncratic component in our

model.

We implement Step 2 by solving first the minimization problem (8) with respect to the loadings

a; secondly, we use the estimated loadings as starting values to solve the N maximization problems

(7) with respect to θY (n) for all n = 1, . . . , N . The minimization procedure (8) is performed by

fixing the variance of the common factor equal to the sample variance of the simulated series of

the process Z; in this way the assessment of this step turns out to be independent of the model

specification.

The results of the estimation of the idiosyncratic process are presented in Table A3 for the

case of the first instrument. Results relative to the other assets are available from the authors. In

particular, the left-hand side of Table A3 displays root mean square error, bias, and inefficiency of

the estimators when the total number of assets is fixed (N = 30) and the length of the simulated

series varies in T = [250, 500, 750, 1,000]. On the right-hand side of the same table, we show the

assessment results for a fixed T = 500, varying the number of assets. Consistently with the results

shown above, Table A3 reveals almost similar estimation errors for N = [5, 10, 15, 30], showing that

the number of assets has only a minimal impact on the estimation errors of the idiosyncratic terms

for both the specifications we tested. Further, results in Table A3 reveal very little bias implying

that our estimation procedure performs as expected. Moreover, we observe estimation errors and

inefficiency levels in line with those obtained in Step 1; therefore, splitting the estimation procedure
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Table A2: 2-Step Procedure Assessment: Common Factor
Estimation based on S&P daily log-returns. Observation period: Sept. 10, 2007–May 20, 2013.
Source: Bloomberg. Estimation errors expressed in absolute terms. RMSE, Bias, Inefficiency: indices
computed according to equations (A-2)–(A-4). Bias expressed in percentage terms with respect to
the true parameter value.

Z T = 250 T = 500 T = 750 T = 1,000

Panel A. “all-NIG” model

µ = 0.0014
RMSE 9.85E-04 6.72E-04 5.42E-04 4.65E-04
Bias 3.10% 0.86% 1.32% 0.48%
Inefficiency 9.84E-04 6.71E-04 5.41E-04 4.65E-04

θ = −0.0014
RMSE 1.47E-03 1.02E-03 8.20E-04 7.12E-04
Bias 2.21% 1.73% 1.33% 0.35%
Inefficiency 1.47E-03 1.02E-03 8.20E-04 7.12E-04

σ = 0.0168
RMSE 1.76E-03 1.23E-03 1.01E-03 8.77E-04
Bias 1.05% 0.51% 0.38% 0.28%
Inefficiency 1.75E-03 1.22E-03 1.01E-03 8.75E-04

k = 3.32
RMSE 1.30E+00 8.97E-01 7.26E-01 6.32E-01
Bias 0.58% 0.25% 0.02% 0.17%
Inefficiency 1.30E+00 8.97E-01 7.26E-01 6.32E-01

Z T = 250 T = 500 T = 750 T = 1,000

Panel B. “all-MJD” model

µ = 0.0012
RMSE 8.24E-04 5.83E-04 4.66E-04 4.05E-04
Bias 2.34% 1.52% 2.07% 2.22%
Inefficiency 8.23E-04 5.83E-04 4.65E-04 4.04E-04

σ = 0.0075
RMSE 1.17E-03 8.90E-04 7.41E-04 7.41E-04
Bias 0.97% 1.75% 1.71% 1.96%
Inefficiency 1.17E-03 8.80E-04 7.30E-04 7.27E-04

ν = −0.0025
RMSE 3.14E-03 1.90E-03 1.51E-03 1.28E-03
Bias 5.39% 6.87% 2.64% 2.65%
Inefficiency 3.13E-03 1.89E-03 1.51E-03 1.28E-03

τ = 0.0210
RMSE 3.56E-03 2.82E-03 2.39E-03 2.36E-03
Bias 2.53% 2.80% 2.44% 2.66%
Inefficiency 3.52E-03 2.76E-03 2.33E-03 2.30E-03

λ = 0.47
RMSE 1.50E-01 1.07E-01 8.72E-02 7.88E-02
Bias 3.14% 4.13% 4.95% 4.28%
Inefficiency 1.49E-01 1.05E-01 8.40E-02 7.62E-02

into two steps, ease of implementation aside, proves to be effective.

As noted above, in this section we only discussed results relative to the first instrument; similar

conclusions hold for all assets considered.

We conclude our simulation exercise by comparing the finite sample properties of the 2-step

estimation versus the 1-step estimation procedures. Thus we repeat the simulation study for the

estimation of the “all-NIG” and “all-MJD” models’ parameters using the 1-step ML approach

discussed in Section IIB, which represents a useful term of comparison to evaluate the results

obtained from the 2-step procedure presented above. Hence, we use the same data set as above, but

we relax the assumption that the systematic risk factor Z be observable.

The maximum likelihood estimation consists of maximizing the likelihood function (4); the

quadrature of the integral in (4) is performed via the trapezoidal rule.

Due to the computational cost of the procedure highlighted above, we consider a small number

of assets (N = 5, i.e., 29 parameters to be estimated for the “all-NIG” model, 35 for the “all-

MJD” model) repeating the simulation 1,000 times; we then perform 100 simulations to evaluate

the estimation for N = 15 assets (i.e., 79 parameters for the “all-NIG” model, 95 for the “all-MJD”

model). Results relative to the common factor Z, the first idiosyncratic component Y (1) and the

first loading a1, are displayed in Table A4. Complete results are available from the authors.

Bearing in mind the different number of simulations performed, we can compare the results of

the 2-step procedure assessment with those presented in this section. In particular, for both the

“all-NIG” and “all-MJD” models, the results relative to the common factor Z can be compared to

those displayed in the second column of Table A2, corresponding to estimates based on T = 500

observations, while the results relative to the first idiosyncratic factor can be compared with those

in the fifth and seventh columns of Table A3. In particular, we note that in the case of the “all-NIG”

model the errors obtained with the 2-step procedure, using ML estimation, are in line with those

obtained with the 1-step ML approach, which in principle, computational issues aside, should be

the preferred method, exploiting at once all the information contained in the data. On the other

hand, in the case of the “all-MJD” model, we observe that the errors of the 2-step procedure are

just slightly larger than those obtained with the 1-step ML approach due to the fact that in the
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Table A3: 2-Step Procedure Assessment: First Idiosyncratic Component
Observation period: Sept. 10, 2007–May 20, 2013. Source: Bloomberg. Estimation errors expressed
in absolute terms. RMSE, Bias, Inefficiency: indices computed according to equations (A-2)-(A-4).
Bias expressed in percentage terms with respect to the true parameter value.

N = 30 T = 500

Y1 T = 250 T = 500 T = 750 T = 1,000 N = 5 N = 10 N = 15 N = 30

Panel A. “all-NIG” model

µ = 9.92E − 04
RMSE 2.17E-03 1.13E-03 9.00E-04 7.69E-04 1.13E-03 1.12E-03 1.14E-03 1.13E-03
Bias 1.10% 0.28% 2.60% 0.47% 0.58% 0.01% 1.19% 0.28%
Inefficiency 2.17E-03 1.13E-03 9.00E-04 7.69E-04 1.13E-03 1.12E-03 1.14E-03 1.13E-03

θ = 2.15E − 04
RMSE 2.45E-03 1.37E-03 1.09E-03 9.40E-04 1.39E-03 1.37E-03 1.40E-03 1.37E-03
Bias 4.06% 4.42% 16.08% 4.22% 5.44% 4.08% 8.40% 4.42%
Inefficiency 2.45E-03 1.37E-03 1.09E-03 9.40E-04 1.39E-03 1.37E-03 1.40E-03 1.37E-03

σ = 0.0173
RMSE 1.39E-03 9.71E-04 7.97E-04 6.74E-04 9.65E-04 9.60E-04 9.61E-04 9.71E-04
Bias 1.20% 0.59% 0.46% 0.37% 0.61% 0.61% 0.54% 0.59%
Inefficiency 1.37E-03 9.66E-04 7.93E-04 6.71E-04 9.60E-04 9.54E-04 9.56E-04 9.66E-04

k = 1.483
RMSE 6.19E-01 4.31E-01 3.48E-01 3.02E-01 4.29E-01 4.28E-01 4.28E-01 4.31E-01
Bias 1.37% 0.50% 1.01% 0.48% 0.95% 1.03% 0.75% 0.50%
Inefficiency 6.19E-01 4.31E-01 3.47E-01 3.02E-01 4.29E-01 4.27E-01 4.28E-01 4.31E-01

Panel B. “all-MJD” model

µ = 0.00133
RMSE 1.10E-03 7.61E-04 6.12E-04 5.33E-04 7.55E-04 7.63E-04 7.57E-04 7.61E-04
Bias 0.70% 0.28% 0.57% 0.01% 0.12% 0.96% 0.18% 0.28%
Inefficiency 1.10E-03 7.61E-04 6.12E-04 5.33E-04 7.55E-04 7.63E-04 7.57E-04 7.61E-04

σ = 0.01113
RMSE 1.36E-03 1.01E-03 8.76E-04 8.24E-04 1.03E-03 1.02E-03 1.01E-03 1.01E-03
Bias 0.70% 0.62% 0.44% 0.04% 0.41% 0.50% 0.68% 0.62%
Inefficiency 1.36E-03 1.01E-03 8.74E-04 8.24E-04 1.02E-03 1.02E-03 1.01E-03 1.01E-03

ν = −0.0004
RMSE 7.78E-03 3.26E-03 2.43E-03 2.03E-03 3.25E-03 3.18E-03 3.09E-03 3.26E-03
Bias 40.44% 8.25% 0.96% 1.40% 10.60% 11.05% 2.75% 8.25%
Inefficiency 7.78E-03 3.26E-03 2.43E-03 2.03E-03 3.25E-03 3.18E-03 3.09E-03 3.26E-03

τ = 0.02429
RMSE 6.20E-03 4.40E-03 3.81E-03 3.62E-03 4.46E-03 4.40E-03 4.38E-03 4.40E-03
Bias 0.82% 0.93% 0.93% 1.35% 1.14% 1.27% 0.91% 0.93%
Inefficiency 6.20E-03 4.39E-03 3.81E-03 3.60E-03 4.45E-03 4.39E-03 4.38E-03 4.39E-03

λ = 0.29214
RMSE 1.61E-01 1.21E-01 1.03E-01 9.06E-02 1.21E-01 1.20E-01 1.21E-01 1.21E-01
Bias 5.53% 5.33% 4.02% 1.86% 5.28% 4.77% 5.55% 5.33%
Inefficiency 1.60E-01 1.20E-01 1.02E-01 9.04E-02 1.20E-01 1.19E-01 1.19E-01 1.20E-01
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Table A4: 1-Step Approach Assessment
Observation period: Sept. 10, 2007–May 20, 2013. Source: Bloomberg. Estimation errors expressed
in absolute terms. RMSE, Bias, Inefficiency : indices computed according to equations (A-2)-(A-4).
Bias expressed in percentage terms with respect to the true parameter value.

N = 5 N = 15 N = 5 N = 15 N = 5 N = 15
(1,000 sim) (100 sim) (1,000 sim) (100 sim) (1,000 sim) (100 sim)

Panel A. “all-NIG” model

Z Y1 First Loading
µ = 0.0014 µ = 9.92E − 04 a1 = 0.8898

RMSE 7.07E-04 5.67E-04 1.19E-03 1.11E-03 4.72E-02 3.85E-02
Bias 4.16% 2.98% 2.53% 15.88% 0.03% 0.18%
Inefficiency 7.04E-04 5.65E-04 1.19E-03 1.10E-03 4.72E-02 3.85E-02

θ = −0.0014 θ = 2.15E − 04
RMSE 1.11E-03 8.64E-04 1.47E-03 1.52E-03
Bias 6.89% 4.02% 7.49% 66.61%
Inefficiency 1.10E-03 8.62E-04 1.47E-03 1.52E-03

σ = 0.0168 σ = 0.0173
RMSE 1.24E-03 1.25E-03 9.95E-04 1.12E-03
Bias 0.21% 0.43% 0.60% 1.14%
Inefficiency 1.24E-03 1.25E-03 9.90E-04 1.10E-03

k = 3.32 k = 1.483
RMSE 1.15E+00 8.35E-01 4.87E-01 4.59E-01
Bias 2.68% 3.89% 0.82% 3.07%
Inefficiency 1.14E+00 8.25E-01 4.87E-01 4.57E-01

Panel B. “all-MJD” model

Z Y1 First Loading
µ = 0.0012 µ = 0.00133 a1 = 0.8898

RMSE 6.24E-04 6.23E-04 7.85E-04 7.68E-04 5.44E-02 3.98E-02
Bias 8.04% 8.85% 3.41% 4.60% 1.21% 0.51%
Inefficiency 6.16E-04 6.13E-04 7.84E-04 7.65E-04 5.33E-02 3.95E-02

σ = 0.0075 σ = 0.01113
RMSE 1.14E-03 6.80E-04 1.12E-03 9.61E-04
Bias 4.49% 3.16% 0.92% 0.48%
Inefficiency 1.09E-03 6.38E-04 1.11E-03 9.59E-04

ν = −0.0025 ν = −0.0004
RMSE 1.69E-03 1.85E-03 3.03E-03 3.19E-03
Bias 3.27% 10.91% 23.86% 17.89%
Inefficiency 1.69E-03 1.83E-03 3.03E-03 3.19E-03

τ = 0.0210 τ = 0.02429
RMSE 2.72E-03 3.26E-03 4.60E-03 4.27E-03
Bias 3.73% 7.95% 1.28% 3.59%
Inefficiency 2.60E-03 2.80E-03 4.59E-03 4.18E-03

λ = 0.47 λ = 0.29214
RMSE 2.33E-01 1.49E-01 1.36E-01 1.15E-01
Bias 34.63% 18.80% 7.35% 4.12%
Inefficiency 1.66E-01 1.20E-01 1.35E-01 1.14E-01
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2-step procedure the univariate estimations are performed via the less efficient EM algorithm.

This is visually confirmed in Figures A1 and A2, which report the maximum log-likelihood for

each simulation (top panel), sorting the simulations by increasing values of the maximum likelihood

for better clarity, and the histograms (bottom panel) of the two log-likelihood distributions generated

by the two estimation methods. From Figure A1, we note that in the “all-NIG” case the estimates

obtained by means of the 1-step and 2-step procedures lead to very close maximum log-likelihoods.

Conversely, Figure A2 shows that for the “all-MJD” case the log-likelihoods resulting from the 2-

step routine, where the univariate estimations are performed by the EM algorithm, are less close to

the ones from the 1-step procedure (i.e., the actual maximum one).

Once more, it is important to notice that the comparison between the 1 and 2-step approaches

can only be done for a small number of assets (N ≤ 15) since the 1-step approach becomes imprecise

and non-computable for larger N .

B. Brief Reference to the Literature

In this appendix we present a brief reference to the literature closely related to this paper. Evidence

of pure Lévy jump risk representing a large share of uncertainty in stock returns has been put forward

for example by Lee and Hannig (2010) and Ornthanalai (2014), among others. In particular, both

Lee and Hannig (2010) and Ornthanalai (2014) highlight the role of infinite activity jumps, that

is, jumps of small size occurring with high frequency, which in principle could be mis-identified as

diffusions. These findings stress the need for hedging and risk management strategies equipped to

face not just (rare) crash risk alone but also, and most importantly, risks associated with small and

intermediate sized jumps. This issue is particularly relevant when risk management is targeted for

short horizons such as the ones applied in the current regulatory risk management framework

(10 days - see for example Basel (2010)). Indeed, over such short time horizons the effects of

stochastic volatility are in general negligible (mainly due to the diffusive nature of the processes used

for the modeling of volatility trends); thus, the jump component of the (log-)returns is relatively

more important, as discussed in Aı̈t-Sahalia (2004), for example. This explains our focus on risk

management applications. Factor constructions such as the one proposed by Ballotta and Bonfiglioli

(2016) have attracted attention mainly due to their simplicity and analytical tractability, which

makes them particularly intuitive. Contributions in this direction started with Vaš́ıček (1987) for

the case of Brownian motions; alternative constructions for multivariate Lévy processes based on

linear transformations have also been put forward by Luciano and Semeraro (2010) and extended

in Luciano et al. (2016). However, the focus in these latter contributions is on Lévy processes with

explicit representations in terms of subordinated Brownian motions, which are not always available.

For a complete literature review, we refer to Ballotta and Bonfiglioli (2016), Luciano et al. (2016)

and references therein.
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Figure A1: Maximum Likelihood Comparison: 1-Step versus 2-Step Approach (“all-
NIG” model)
Graph A of Figure A.1 illustrates the maximum log-likelihood for each simulation (simulations sorted
by increasing values of the maximum likelihood for better clarity). The bottom graphs display the
histograms of the two log-likelihood distributions obtained by the 1-step (Graph B) and the 2-step
(Graph C) estimation approaches. Plots are obtained by simulation of 1,000 samples, each made of
500 observations for the “all-NIG” model with 5 components.

Graph A. Log-likelihood comparison (“all-NIG” model)

Graph B. Maximum log-likelihood Graph C. Log-likelihood – 2-step estimation
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Figure A2: Maximum Likelihood comparison: 1-Step versus 2-Step Approach (“all-
MJD” model).
Graph A of Figure A.2 illustrates the maximum log-likelihood for each simulation (simulations
sorted by increasing values of the maximum likelihood for better clarity). The bottom graph display
the histograms of the two log-likelihood distributions obtained by the 1-step (Graph B) and the
2-step (Graph C) estimation approaches. Plots are obtained by simulation of 1,000 samples, each
made of 500 observations for the “all-MJD” model model with 5 components.

Graph A. Log-likelihood comparison (“all-MJD” model)

Graph B. Maximum log-likelihood Graph C. Log-likelihood – 2-step estimation
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