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Detecting statistical outliers in
psychophysical data

1
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Abstract: This paper considers how best to identify statistical
outliers when the underlying sampling distribution is unknown. Eight
methods are described, and each is evaluated using Monte Carlo
simulations of a typical psychophysical experiment. The best method
is shown to be one based on a measure of absolute-deviation known
as Sn. In particular, this method is shown to be more accurate than
popular heuristics based on standard deviations from the mean, and
more robust than non-parametric methods based on interquartile
range.

5

PACS numbers: 43.66.Yw6

1. The problem of outliers7

A statistical outlier is an observation that diverges abnormally from the overall pattern8

of data. They are often generated by a process qualitatively distinct from the main9

body of data. For example, in psychophysics, spurious data can be caused by technical10

error, faulty transcription, or — perhaps most commonly — participants being unable11

or unwilling to perform the task in the manner intended (e.g., due to boredom,12

fatigue, poor instruction, or malingering). Whatever the cause, statistical outliers can13

profoundly affect the results of an experiment1, making similar populations appear14

distinct (Fig 1A, top panel), or distinct populations appear similar (Fig 1A, bottom15

panel). For example, it is tempting to wonder how many ‘developmental’ differences16

between children and adults are due to a small subset of non-compliant children.17
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Fig 1. Examples of (A) how the presence outliers can qualitatively affect the overall
pattern of results, and (B) common errors made by existing methods of outlier
identification heuristics. P -values pertain to the results of between-subject t-tests.
See body text for details.
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2. General approaches and outstanding questions18

One way to militate against outliers is to only ever use non-parametric statistics (i.e.,19

which have a high breakdown point2, and so tend to be robust against extreme20

values). In reality though, this approach often proves impractical, since non-parametric21

methods are less powerful, less well understood, and less widely available than22

their parametric counterparts. Alternatively, some experimenters identify and remove23

outliers ‘manually’, using some unspecified process of ‘inspection’. This approach is24

not without merit. However, when used in isolation, manual inspection is susceptible25

to bias and human error, and it precludes rigorous replication or review. Finally then,26

statistical outliers can be identified numerically. If the underlying sampling distribution27

is known, then it is trivial to set a cutoff based on the likelihood of observing a given28

data point. However, when the sampling distribution is unknown, researchers are29

often compelled to use numerical heuristics, such as “was the data point more than N30

standard deviations from the mean?”. Currently, however, a plethora of such heuristics31

exist. It is unclear which method works best, and at present unscrupulous individuals32

are free to pick-and-choose whichever yields the outcome they expect/desire. The33

goal of this work was therefore (i) to describe what methods are currently available34

for identifying statistical outliers (in datasets generated from an unknown sampling35

distribution), and (ii) to use simulations to assess how well each method performs in36

a typical psychophysical context.37

3. State-of-the-art methods for identifying statistical outliers38

Here we describe eight methods for identifying statistical outliers. Five of these39

methods are also shown graphically in Fig 2.40

SD xi=outlier if it lies more than λ standard deviations, σ, from the mean, x̄:41

|xi| > (x̄+ λσ) , (Eq 1)

where λ is typically between 2 (liberal) and 3 (conservative). This is one of the most42

commonly used heuristics, but is theoretically flawed. Both the x̄ and σ terms are easily43

distorted by extreme values, meaning that more distant outliers may ‘mask’ lesser ones.44

This can lead to false negatives (identifying outliers as genuine data; Fig 1B, top panel).45

The method also assumes symmetry (i.e., attributes equal importance to positive and46

negative deviations from the center), whereas psychometric data are often skewed.47

This can lead to false positives (identifying genuine data as outliers; Fig 1B, bottom48

panel). Furthermore, while SD does not explicitly require normality, the ±λσ bracket49

may include more or less data than expected if the data are not Gaussian distributed.50

For example, ±2σ includes 95% of data when Gaussian distributed, but as little as 75%51

otherwise (Chebyshev’s inequality).52

GMM xi=outlier if it lies more than λ standard deviations from the mean of the53

primary component of a Gaussian Mixture Model:54

|xi| > (x̄1 + λσ1) where pdf(x) = ωΦ(x;µ1, σ1) + (1−ω)Φ(x;µ2, σ2). (Eq 2)

An obvious extension to SD: The two methods are identical, except that when fitting55

the parameters to the data, the GMM model also includes a secondary component56

designed to capture any outliers (see Fig 2). The secondary component is not used to57

identify outliers per se, but prevents extreme values from distorting the parameters58

of the primary component. In practice the fit of the secondary component must be59

constrained to prevent it ‘absorbing’ non-outlying points (see Supplemental Material).60
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rSD Same as SD, but applied recursively until no additional outliers are identified:61 {
|x0i | > (x̄0 + λσ0)

|xni | > (x̄n + λσn) .
(Eq 3)

This approach aims to solve the problem of masking by progressively peeling away62

the most extreme outliers. However, like SD, it remains intolerant to non-Gaussian63

distributions. In situations where samples are sparse/skewed, this approach therefore64

risks aggressively rejecting large quantities of genuine data (see Fig 1B). Users typically65

attempt to compensate for this by using a relatively high criterion level, and/or by66

limiting the number of recursions (e.g., λ ≥ 3, nmax = 3).67

IQR xi=outlier if it lies more than λ times the interquartile range from the median:68

|xi| > (x̃+ λiqr) . (Eq 4)

This is a non-parametric analog of the SD rule: substituting median and iqr for mean69

and standard deviation. Unlike SD, the key statistics are relatively robust. Thus, the70

breakdown points for x̃ and iqr are 50% and 25% (respectively), meaning that outliers71

can constitute up to 25% of the data before the statistics start to be distorted3.72

However, like SD, the IQR method only considers absolute deviation from the center. It73

is therefore insensitive to any asymmetry in the sampling distribution (Fig 1B, bottom).74

prctile xi=outlier if it lies above the λth percentile, or below the (1− λ)th:75

xi > Pλ or xi < P1−λ. (Eq 5)

This effectively ‘trims’ the data, rejecting the most extreme points, irrespective of their76

values. Unlike IQR, this method is sensitive to asymmetry in the sampling distribution.77

But it is otherwise crude in that it ignores any information contained in the spread of78

the data points. The prctile method also begs the question in that the experimenter79

must estimate, a priori, the number of outliers that will be observed. If λ is set80

incorrectly, genuine data will be excluded, or outliers missed.81

Tukey xi=outlier if it lies more than λ times the iqr from the 25th/75th percentile:82

xi > (P75 + λiqr) or xi < (P25 − λiqr) . (Eq 6)

Popularized by John W. Tukey, this attempts to combine the best features of the IQR and83

prctile method. The information contained in the spread of data, iqr, is combined with84

the use of lower/upper quartile ‘fences’ that provide some sensitivity to asymmetry.85

MADn xi=outlier if it lies farther from the median than λ times the median absolute86

distance [MAD] of every point from the median:87 (
|xi − x̃|
MADn

)
> λ where MADn = 1.4826 med

i=1:n
|xi − med

j=1:n
xj |, (Eq 7)

where 1.4826 is simply a scaling factor, used for consistency with the standard88

deviation over a Gaussian distribution (see Ref [3]). Unlike the non-parametric89

methods described previously, this method uses MAD rather than iqr as the measure of90

spread. This makes this method more robust, as the MAD statistic has the best possible91

breakdown point (50%, versus 25% for iqr). However, as with IQR, MADn assumes92

symmetry, only considering the absolute deviation of datapoints from the center.93

Sn xi=outlier if the median distance of xi from all other points, is greater than λ94

times the median distance of every point from every other point:95 (
medj 6=i |xi − xj |

Sn

)
> λ where Sn = 1.1926 cn med

i=1:n

{
med
j 6=i
|xi − xj |

}
, (Eq 8)
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where 1.1926 is again for consistency with the standard deviation, and cn is a finite96

population correction parameter (see Ref [3]). Like MAD, the Sn term is maximally97

robust. However, this method differs from MADn in that Sn considers the typical98

distance between all data points, rather than measuring how far each point is from a99

central value. It therefore remains valid even if the sampling distribution is asymmetric.100

The historic difficulty with Sn is its long computational time [O(n2)]. However, for101

psychophysical applications this is trivial given modern computing.102

4. Comparison of techniques using simulated psychophysical observers103

To assess the eight methods described in Section 3, we applied each to random104

samples of data prelabeled as either ‘good’ or ‘bad’. However, rather than simply105

specifying arbitrary sampling distributions for each of these categories, we generated106

data by simulating a typical two-alternative forced-choice [2AFC] experiment in which107

a 2-down 1-up transformed staircase4 was applied to N simulated observers. Each108

observer consisted essentially of a randomly generated psychometric function, and109

made stochastic, trial-by-trial responses based on the current stimulus level and a110

random sample of additive internal noise (i.e., the variance of which was determined111

by the slope of their psychometric function). Trial-by-trial response data were then112

processed and analyzed as if from human participants, leading, for example, to the113

sampling-distributions of 70.7% thresholds shown in Fig 2 (bottom right).114

Of the N observers, X% were ‘non-compliant’ (on average, their psychometric115

functions had a higher mean, standard deviation, and lapse-rate), and were thus116

likely to produce outlying data points (Fig 2, red bars). The remaining observers were117

‘compliant’ (on average lower mean, standard deviation, and lapse-rate), and produced118

the distribution of ‘good’ data shown in green. Precise details of all test parameters can119

be found in the Supplemental Material, which contains the complete MATLAB code used120

to generate all of the data presented here. N took the values 〈8, 32, 128〉, representing121

small, medium, and large sample sizes, while the number of non-compliant observers122

varied from 0 to 50% of N (e.g., 〈0, 1, ..., 16〉, when when N=32). For each condition,123

2, 000 independent simulations were run, for a total of 108K simulations.124

SD GMM IQR

prctile Tukey

70.7% Threshold

N

Compliant

Non-Compliant

cutoff, κ

Fig 2. Simulation methods. Random sample of thresholds were generated, of which
X% came from ‘non-compliant’ simulated observers (here: N=32, X%=19). Each
of eight methods were then used to identify which observations were generated
by ‘non-compliant’ observers (i.e., likely statistical outliers). Only five methods are
depicted here, as the other three (rSD, MADn and Sn) have no obvious graphical
analog. The final panel shows the full sampling distributions over 20,000 trials, and
the ideal unbiased classifier, for which: Hit rate = 0.97, False Alarm = 0.05.

Results and Discussion125

The results are shown in Fig 3. We begin by considering only the case where N=32126

(Fig 3, middle column), before considering the effect of sample size.127

As expected, the SD rule proved poor. When λ=3, it was excessively conservative –128

seldom exhibiting false alarms, but missing the great majority of outliers, particularly129
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as the number of outliers increased. Lowering the criterion to λ=2 yielded more130

reasonable results. However, SD still exhibited a lower hit rate than most other131

methods, and also exhibited a high false alarm rate when there were few/no outliers.132

The modified GMM and rSD rules exhibited increased robustness and accuracy,133

respectively. However, compared to non-parametric methods, they were generally only134

more sensitive than the prctile method, which was only accurate when the predefined135

exclusion rate matched the true number of outliers exactly.136

The two iqr-based methods, IQR and Tukey, exhibited high sensitivity when the137

number of outliers was low (≤20%). However, as expected, they exhibited a marked138

deterioration in hit rates when the number of outliers increased beyond 20% (i.e., in139

accordance with the 25% breakdown point for iqr).140

The two median-absolute-deviation-based methods, MADn and Sn, were as sensitive141

as all other methods when outliers were few (≤20%), and were more robust than142

the iqr methods – continuing to exhibit high hit rates and few false alarms even when143

faced with large numbers of outliers. Compared to each other, MADn and Sn performed144

similarly. However, the Sn statistic makes no assumption of symmetry, and so ought to145

be superior in situations where the sampling distribution is heavily skewed.146

We turn now to how sample size affected performance. With large samples (N=128),147

the pattern was largely unchanged from the medium sample-size case (N=32), except148

that rSD exhibited a marked increase in false alarms, making it an unappealing option.149

With small samples (N=8), the prctile and rSD methods became uniformly inoperable,150

while most other methods were unable to identify more than a single outlier. The MADn151

and Sn methods, however, remained relatively robust, and generally performed well,152

though they did exhibit an elevated false alarm rate when there were few/no outliers.153

It may be that this could be rectified by increasing the criterion, λ, as a function of N ,154

however this was not investigated here. The GMM method also performed well overall155

in the small-sample condition. However, it did also exhibit the highest false alarm rate156

when there were no outliers, and was only more sensitive than MADn or Sn when the157

proportion of outliers was extremely high (>33%).158
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Fig 3. Simulation results. The eight classifiers described in Section 3 were used to
distinguish between random samples of ‘compliant’ and ’non-compliant’ simulated
observers (see Fig 2). Numbers in parentheses indicate the criterion level, λ, used
by each classifier.
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5. Summary and concluding remarks159

Of the eight methods considered, Sn proved the most sensitive and robust. Specific160

situations were observed in which other heuristics performed as-well-as or even better161

than Sn: for example, when the sample size was large (rSD), or when the proportion162

of outliers was very low (IQR, Tukey) or very high (GMM). However, most methods163

were less sensitive in than Sn in the majority circumstances, and failed precipitously164

in some circumstances, making them unattractive alternatives. The related method165

MADn also proved strong, and could be considered a viable alternative to Sn. However,166

as discussed in Section 3, MADn assumes a symmetric sampling distribution, and so167

would not be expected to perform as well if the sampling distribution was very heavily168

skewed (e.g., when dealing with reaction time data). The popular SD metric proved169

particularly poor in all circumstances, and should never be used. In short, Sn appears to170

provide the best means of identifying statistical outliers when the underlying sampling171

distribution is unknown. Its use may be particularly beneficial for researchers working172

with small/irregular populations such as children, animals, or clinical cohorts. MATLAB173

code for computing Sn is provided in the Supplemental Material.174

Limitations of the present study175

The present findings are predicated on finite simulations of a single experimental176

paradigm, and so cannot be guaranteed to generalize. Anecdotally, the same overall177

pattern of results remained unchanged when key parameters were varied (e.g.,178

properties of the observers and/or of the experimental paradigm). However, there179

exist an infinite number of possible circumstances, and some experimental paradigms180

— particularly those involving advanced adaptive procedures — are capable of181

producing quite complex (e.g., bimodal) sampling distributions. With this in mind,182

the code in Supplemental Material also provides support for a variety of paradigms183

(transformed/weighted staircases, Constant Stimuli, and various more advanced184

procedures, implemented via the Palamedes toolbox5). Readers are encouraged to185

simulate their own experimental configurations, to assess how each method performs.186

On the ethics of excluding statistical outliers187

Excluding outliers is often regarded as poor practice. As shown in Section 1, however,188

the exclusion of outliers can sometimes be preferable to reporting misleading results.189

Automated methods of statistical outlier identification should never be used blindly190

though, and they are not a replacement for common sense. Where feasible, datapoints191

identified as statistical outliers should only be excluded in the presence of independent192

corroboration (e.g., experimenter observation). Furthermore, best practice dictates193

that when outliers are excluded, they should continue to be shown graphically, and194

all statistical analyses should be run twice: with and without outliers included.195
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