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Abbreviations 

BM   Body mass 

BMD  Bone mineral density  

CA    Area of compact bone in a cross section 

CFD   Computation fluid dynamics 

E        Youngs modulus 

HA  Hydroxyapatite  

HU Hounsfield unit 

I   Second moment of area 

J  Polar moment of area 

Manuscript Click here to download Manuscript renamed_9c9b3.doc 

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:ankeschmitz@uni-bonn.de
http://www.editorialmanager.com/jcpa/download.aspx?id=29052&guid=98d65e8a-3dbe-45f5-ba63-c53d5c34ae6e&scheme=1
http://www.editorialmanager.com/jcpa/download.aspx?id=29052&guid=98d65e8a-3dbe-45f5-ba63-c53d5c34ae6e&scheme=1
http://www.editorialmanager.com/jcpa/viewRCResults.aspx?pdf=1&docID=2809&rev=0&fileID=29052&msid={2683DA81-9E81-4373-91B5-7DCEE50237F3}


M   Specific bending stiffness 

SD   standard deviation 

 

Abstract 

During a high-speed dive peregrine falcons (Falco peregrinus) can reach a flight velocity of up to 

320 kmh-1. In consequence the bones of the wings and the shoulder girdle of peregrine falcons 

most likely experience large mechanical forces. We investigated the bones of the arm skeleton 

and the shoulder girdle of peregrine falcons. For comparison, we also investigated the 

comparable bones in European kestrels (Falco tinnunculus), sparrow hawks (Accipiter nisus) and 

pigeons (Columba livia domestica). The normalized bone mass of the entire arm skeleton and the 

shoulder girdle (coracoid, scapula, furcula) was significantly higher in F. peregrinus than in the 

other three species investigated. The midshaft cross-section of the humerus of F.peregrinus had 

the highest specific bending stiffness per body mass and the highest second moment of area. The 

mineral densities of the humerus, radius, ulna, and sternum were highest in F.peregrinus, 

indicating again a larger overall stability of these bones. Furthermore, the bones of the arm and 

shoulder were strongest in peregrine falcons. Computational fluid dynamics simulations suggest, 

that the forces that pull on the wings of a peregrine can reach up to three times the falcon’s body 

mass at a stoop velocity of 80 ms-1.  

 

 

Introduction 

The peregrine falcon (Falco peregrinus) is the world’s fastest bird. While attacking its bird prey 

in midair (Mebs and Schmidt 2005) a diving peregrine can reach velocities of up to 320 kmh-1 

(Tucker and Parrott 1970; Orton 1975; Tucker 1990; Savage 1992; Clark 1995; Peter and 

Kestenholz 1998; Franklin 1999, 2011). To learn more about the flight of peregrines, wing 

contours and flight trajectories of diving peregrines were investigated by Ponitz et al. (2014a, b). 

These investigations suggest that during a dive, but also while pulling out of a dive, the arm 

skeleton and the wings and tail feathers of F.peregrinus are exposed to large mechanical forces 

(Ponitz et al. 2014a). To uncover possible adaptations that allow peregrines to cope with these 

forces, Schmitz et al. (2015) studied the morphology and material properties of the wing and tail 

feathers of F. peregrinus (primary 10, alula one, central tail feather). For comparison Schmitz et 

al. (2015) also investigated the corresponding feathers in sparrow hawks (Accipiter nisus), 

European kestrels (Falco tinnunculus) and pigeons (Columba livia domestica). The latter three 
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species were chosen because they differ markedly in flight style but do not reach the high flight 

velocities of a diving peregrine. According to Schmitz et al. (2015) the tail feathers of F. 

peregrinus are more stable than the corresponding feathers of the other three bird species.  

During a dive, peregrines alter the shape of their wings; while accelerating, they move them 

closer and closer to their body (Franklin 1999). At top velocities they build a wrap dive vacuum 

pack, i.e. the wings are completely folded against the elongated body (Seitz 1999). Peregrines are 

not only extremely fast flyers but also maintain a remarkable maneuverability at high flight 

speeds. For instance, during courtship they often turn sharply from a fast vertical dive into a steep 

climb (H.Bleckmann, pers. observation).  

Out of the four bird species investigated in the present study, C. livia domestica is the most 

sustained flyer (Heinzel et al. 1992) In this species bones show no striking morphological 

adaptations (Pennycuick 1968a; Dial 1992; Bachmann et al. 2007; Berg and Biewener 2010). 

Since the forces acting on the wings of a peregrine falcon during a dive can hardly be measured 

directly, we used finite element analysis to calculate these forces. Our calculations indicate that 

up to 350 g may pull on the wings of a peregrine diving with a velocity of 80ms-1 (288 kmh-1). 

Due to the expected high forces experienced by the wings of a diving peregrine (or while pulling-

out of a dive), the wing and shoulder bones should be significantly stronger in peregrines than in 

other bird species (Norberg 1981, 1985; Selker and Carter 1989). We tested this hypothesis by 

investigating the bones of the arm skeleton and the shoulder girdle of F. peregrinus. For 

comparison we also studied the comparable bones in F. tinnunculus, A. nisus and C. livia 

domestica.   

 

Material and Methods 

Animals 

Four bird species were investigated: F. peregrinus (Tunstall 1771), F. tinnunculus (Linneus 

1758), A. nisus (Linneus 1758) and captive bred C. livia domestica (Gmelin 1789). In all species, 

four males and four females were investigated. Mean body masses were 546 g  58 (male F. 

peregrinus) and 849 g  34 (female F. peregrinus), respectively. The corresponding values for F. 

tinnunculus and A.nisus were 167 g  12 and 218 g   11 (males) and 165 g  2 and 224 g  16 

(females).  Mean body mass of C.livia domestica was 479 g  16, values for males and females 

were not significantly different. 
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Animals were provided by Walter Bednarek (two F. tinnunculus; CitesNr. DE-COE121306201, 

two A. nisus; DE-COE121206202 and one F. peregrinus; DE-COE080818171); another F. 

peregrinus was supplied by Daniel Müller (DE-HF98050800001). Carcasses of six F. peregrinus, 

six F. tinnunculus, six A. nisus and eight C. livia domestica  were provided by the Clinic for 

Birds, Reptiles, Amphibians and Fish at the Justus-Liebig-University of Giessen, Giessen, 

Germany in cooperation with the Society to Support Avian Medicine in Giessen (Verein zur 

Förderung der Vogelmedizin in Gießen e.V.). All animals included in our study were submitted 

by private persons immediately after being found or by veterinarians and rehabilitation centers in 

the first 48 hours upon admission. Birds which had been kept in captivity for more than two days 

were excluded from the study. All individuals were clinically examined including radiographic 

examination in latero-lateral and ventro-dorsal view. Dead animal were inspected during routine 

necropsy. Therefore, only injured animals with a presumptive acute cause of injury were included 

in the study without findings of an underlying subacute or chronic course of disease. Examination 

(preparation of the carcasses, detailed investigation of muscles and bones) of these birds was 

authorized by the Regierungspräsidium Giessen, Dezernat 53.2. No bird was killed for our study. 

Therefore, no permits for animal experiments were needed. All animals were stored at -18°C and 

thawed 16-24 hours before dissection. Animals were kept in a freezer for less than six months 

before investigation. All animals of a given species and sex had a comparable body mass (BM); 

their muscles did not show any signs of autolysis. From each animal BM and body length were 

obtained. Feathers and skin were removed unilaterally. Four individuals per species were fixed in 

4% formaldehyde in phosphate buffer for two weeks. After fixation, animals were stored in a 

solution that contained 0.5% formaldehyde. Four individuals from each species were prepared 

immediately after thawing. Freezing of specimens prior to investigation may increase the strength 

of the bones slightly but does not change any other bone properties (Turner and Burr 1993). All 

bone mineral density (BMD) measurements (see below) were performed on individuals prior to 

fixation.  

 

Bones 

Bone integrity was verified radiographically before further analysis using a high-frequency 

digital diagnostic x-ray unit (Gierth HF 400A, GIERTH X-Ray international GmbH, Riesa, 

Germany). Only one side of the body from each animal was used for analysing the arm skeleton 

and the thorax. All muscles were removed and the bones were cleaned manually. Finally, bones 

were air-dried and the length of the arm skeleton was measured from the shoulder joint (reference 

point middle of epiphysis) to the tip of the Digitus major. Finally, data were related to BM. The 
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masses of the arm and shoulder skeleton (masses per BM) were determined after rewetting the 

bone pieces in a physiological saline solution (0.9% NaCl = 9 g NaCl/L) for 24 h, since wet 

bones are more similar to the bones of a living animal than dry bones (Zysset et al. 1999). The 

shoulder skeleton consisted of the coracoid, the scapula and the halved furcula. Measurements 

were conducted on eight specimens of each species. 

 

The midshaft cross-sections of the humeri (Fig. 1) were chosen as focal point of our analyses 

because the humerus has to cope with the highest bending stresses (Biewener and Taylor 1986a, 

b). For our investigations the humeri of four specimens per species were immersed in a 

physiological saline solution for 24 hours. From the midpoint of the humeri, 2-3 mm thick slices 

were cut off with a coping saw. Bone pieces were air-dried, embedded in epoxy resin (Toolcraft, 

epoxy resin L and hardener L), and polished with a diamond point. The trimmed bone areas were 

used for the determination of the second moment of area (I) and the Young’s modulus (E). I was 

determined by point counting of the trimmed bone areas (Purslow and Vincent 1978; Schmitz et 

al. 2015). Drying and rewetting had no effect on I as the bone pieces were embedded in Epon. 

For the determination of I, the bones were bend in dorso-ventral (Idv), lateral (Ilat) and diagonal 

(Idiag) direction (Fig. 1e). Finally, I was normalized to the BM of the respective animal. This 

allowed estimating the resistance of a bone to bending loads (Boresi and Schmidt 2002; Simons 

et al. 2011; Brassey et al. 2013).  

 

For the determination of the Youngs modulus, samples were rewetted as the dry status of bones is 

far from the physiological condition of the bones of a living animal (Zysset et al. 1999). 

Rewetting was done 2 hours prior to measurements. With a nanoindenter (Hysitron Triboscope, 

D3100), 72 indents were performed per trimmed bone area using a Berkovich diamond tip with a 

load of 5000 µN. This load caused a contact depth of about 400 nm. The specific bending 

stiffness M is:  

 

M = (E * I) * d-1          (1) 

 

with E = Young’s modulus (Nm-2), I = second moment of area (m4) and d = sample width (m). 

Hardness and E were calculated with the Hysitron software from the unloading portions of the 

load-displacement curves following a procedure given by Oliver and Pharr (1992). M was finally 

normalized to the BM of the respective bird. 
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The polar moment of area J was calculated according to: 

 

J  = Ilat  + Idv        (2)                                                                                                              

 

with Ilat and Idv being orthogonal to each other (Boresi and Schmidt 2002; Simons et al. 2011), J - 

normalized to BM - is a measure for the resistance of a bone to torsion (Brassey et al. 2013).  

 

The cortical area (CA) of compact bone in a given cross section (Fig. 1), determined by point 

counting, was used to estimate the resistance of a bone to compressional loading (Boresi and 

Schmidt 2002; Simons et al. 2011; Brassey et al. 2013). The thickness of the cortex can be 

described by the dimensionless parameter K, which is the inner diameter divided by the outer 

diameter of a bone cross section (Selker and Carter 1989; Simons et al. 2011). Measurements 

were obtained from four specimens (2 males and 2 females) of each species. Finally CA was 

normalized to BM.  

 

According to Currey (2002), the maximum stress that BM can exert on the bones of a given bird 

species is proportional to BM1/3. Moreover, the force at which a bone will break (F) is 

proportional to BM2/3.  

 

Bone mineral density    

Bone mineral density (BMD) measurements were performed on freshly thawed birds and after 

computer tomographic scanning. Bones and muscles were separated and bones were prepared as 

described above. Computed tomographic scans were obtained with a 3rd generation 16-slice 

helical scanner (PHILIPS Brilliance, Fig. 2) using a standard protocol: 0.7mm slice thickness, 

140kV, 200mA. Three specimens per species were investigated. System calibration was done 

with a customized liquid dipotassium hydrogenphosphate phantom consisting of five cylindrical 

tubes with permanent reference densities (distilled water as well as hydrogen-phosphate diluted 

in distilled water: 1:100, 1:200, 1:400, 1:800), acting as bone mineral and water equivalent. The 

phantom was placed on the animal during the scan (Kalender et al. 1995; Cann 1988) and a 

calibration curve was prepared for each scan. BMD was measured within stacks of manually 

drawn regions of interest and within standardized regions of the long bones covering a predefined 

percentage of the entire bone length. For the long bones (humerus, radius, ulna, coracoid and 

clavicula) a mid-diaphyseal stack covering 10% of the entire bone length and a proximal and 

distal metaphyseal stack sparing the former physis covering 5% of the entire bone length, 
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respectively, were obtained. For the scapula, 10% of the entire bone length was obtained in the 

region of the neck and at its widest cranio-caudal dimension. Mean, range and standard deviation 

(SD) of the Hounsfield units (HU) within the regions of interest were used for analysis. BMD 

was determined according to phantom based quantitative computer tomography using a 

conventional multislice computer tomograph scanner and a customized K2HPO4 phantom. 

Quantitative computer tomography is an established method to assess BMD and relative risk of 

osteoporotic fracture in people and does not implement added filtration. To address the 

systematic error potentially introduced by the polychromatic nature of the x-ray beam and beam 

hardening effects, strict standardization of the study set up was observed (Ruegsegger et al. 1976; 

Cann 1985; Cann et al. 1985). Moreover, the influence of beam hardening on BMD is assumed to 

be small and negligible in diaphyseal areas of the bone, as these areas are composed of a thin 

cortex and an "empty" pneumatized medullary cavity only. BMD measurements comprised 

cortical bone, blood, fatty tissue, and pneumatized regions of the medullary cavity. BMD values 

are expressed as equivalent densities in milligrams of K2HPO4 per millilitre of bone tissue (HA, 

mg cm-3) using a calibration phantom and a linear regression model.  

 

Computation Fluid Dynamics  

We calculated the forces acting on the wings of a diving peregrine using computational fluid 

dynamics (CFD), from which the pressure distribution and shear stresses along the body and 

wing contours can be derived. The present study builds on previous detailed field studies of life 

bird and wind-tunnel experiments of realistic models of peregrine falcons (Ponitz et al. 2014a, b), 

which is the base for the 3D geometry of the wing and body shape used herein, i.e. the cupped 

wing configuration (see Ponitz et al. 2014a). The present method follows a procedure desribed in 

Ponitz et al. (2014a). The three-dimensional CAD model of the falcon was transferred into a 

computational unstructured grid using a grid generation tool ICEM CFD 14.5 (ANSYS, Inc., 

Canonsburg, PA, USA). The computational domain includes the inflow region, the falcon region, 

and the downstream wake region of the flow. Special attention was paid to the meshing of the 

falcon. Refinements toward near-wall regions were taken into consideration. The grid consists in 

total of 6.5 million unstructured tetrahedron cells and 1.5 million prism cells on the falcon 

surface. A mesh independency check for the results of lift and drag coefficients was done for up 

to 10 million cells. Simulation stability was investigated in respect to different grid parameters 

and following settings leads to stable results: The height of the first prisms layer on the falcon 

surface was set to 0.1 mm with a growth factor of 1.1 for the following layer perpendicular to the 

wall and a total number of 10 layers. For these simulation parameters the numerical flow 
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simulations delivered stable values which furthermore matched the experimental results of lift 

and drag forces obtained from the wind-tunnel tests (see Ponitz et al. 2014a, b). The numerical 

flow simulation was performed using the open source CFD software OpenFOAM (OpenCFD 

Ltd., Bracknell, UK). The code numerically solves the conservation equations of mass and 

momentum by means of a finite volume approach (https://www.openfoam.com/documentation/ 

tutorial-guide/): 

 

    
1 1

0 ,
ij

i j i

i i i j

p
u u u

x x x x



 

  
   

   
  (3) 

 

 

with p = pressure, u = velocity vector, x = Cartesian coordinate system, and ij = stress tensor in 

Einstein notation. The calculation of the resulting forces F on the body segments were done by 

integrating the pressure over the outer surface exposed to wind.  

 

  F p n dA     (4) 

 

This excluded the part of the surface where the segment is separated from the body.  

 

In our simulations air was treated as a single-phase, incompressible (0.07 Ma), isothermal (20˚C) 

Newtonian fluid with constant density (1.189 kgm-3) and viscosity (18.232 10-6 Pas). Three 

different stoop velocities were simulated, beginning with 22.5 ms-1, as observed in our 

experiments on a dam wall (Ponitz et al. 2014a). We then increased the stoop speed in the 

simulations to 40 ms-1 and to a maximum of 80 ms-1, a speed that diving peregrines most likely 

can reach (Franklin 1999, 2011; Orton 1975; Tucker and Parrott 1970). The Reynolds number 

Re, based on the body length of a peregrine (400 mm), is for all three cases > 5105. Therefore, 

turbulent flow was taken into account by a Reynolds averaged approach (Spalart-Almaras 

turbulence model). The no slip boundary condition was applied to the body surface. For 

calculating the forces acting on the wings, we segmented the body in 4 parts: the two wings, the 

tail and the center body. Integration of the pressure and shear-stress along the surface segments 

then provide the caudal, dorsal, and distal forces on the wing. In aerodynamic notation these 

forces on the wing correspond to the drag, the lift force and the side-force of an aerofoil.  
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The wing configuration chosen was the “cupped wing configuration”, one which a peregrine 

adapts late in a stoop as it starts to pull-out (Ponitz et al. 2014a, b). The formulation “cupped 

wings” was introduced by Tucker and Parrott (1970) to describe the shape of the downward tilted 

tips of the wing which is a typical falcon shape during a dive. In the cupped wing formation, air 

can enter the space between the wing and the body which affects the lateral forces on the wings. 

The transition to pull-out is when we expect the largest forces acting on the body and the wing as 

this is the moment of change from a straight flight path into a curved one. This requires an 

increase in lift forces to overcome the centrifugal forces at such high speeds.  

 

Statistics 

Mean values and standard deviations (SD) were calculated. Differences between species were 

compared using SPSS (IBM, version 22). Distribution of the data was tested with a one-sample 

Kolmogorov-Smirnov test. One-way analysis of variance (ANOVA) with Bonferroni test as post-

hoc evaluation was used to compare mean values of different species if values were normally 

distributed. If data did not follow a Student’s t-distribution, a Mann-Whitney-U test was applied. 

If not otherwise stated significance level was P<0.05. In most figures significant differences are 

only shown for F. peregrinus.  

 

Results 

 

Bones 

Normalized to body mass (BM), F. peregrinus and C. livia domestica had the shortest arm 

skeleton (Fig. 3a). In F. peregrinus the mass of the arm and shoulder skeleton, also normalized to 

BM, was higher than in the other three species (Fig. 3 b, c). C. livia domestica had the largest 

pectoral muscles (not shown), but a relatively light weight arm and shoulder skeleton. The 

Young’s modulus E of the humeri (Table 1) was highest in F. peregrinus, followed by F. 

tinnunculus, A. nisus and C. livia domestica. The maximum and minimum of I was greatest in F. 

peregrinus (Table 1). If normalized to BM, I was greatest in F. peregrinus for all bending 

directions applied (Fig. 4a). The calculated M value, if normalized to body mass, was also higher 

in F. peregrinus than in the other three bird species (Fig. 4b). In the normalized data sex 

differences were not found.  

 

The maximum stress that the body mass can exert on the bones of a bird is proportional to body 

mass1/3. The force F is proportional to body mass2/3 (Currey 2002). Using these relations, the 
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maximum stress to which the bones will be exposed is 1.2 times larger in F. peregrinus than in C. 

livia domestica (males 1.04, females 1.2) and 1.6 times larger in F. peregrinus than in F. 

tinnunculus and A. nisus (1.48 and 1.57). Moreover, the force at which the humeri of F. 

peregrinus will break is 1.3 times larger in F. peregrinus than in C. livia domestica (males 1.08, 

females 1.44) and 2.3 times larger in F. peregrinus than in A. nisus and F. tinnunculus. (2.18 and 

2.45).  

 

The calculated J value and CA were greatest in F. peregrinus (Figs. 5, 6a). If normalized to body 

mass, differences between raptor species vanished, but the difference to C. livia domestica 

remained (Fig. 6e). All species possessed thin-walled humeri (as indicated by the K-values in 

Fig. 7). Humeri of F. peregrinus had the lowest K-value, i.e. the humeri of  peregrines had the 

thickest walls. However, only the difference to C. livia domestica was significant. 

 

BMD, expressed as the amount of hydroxyapatite (Cann 1988; Damilakis et al. 2007), was 

highest in F. peregrinus (humerus, radius, ulna, and sternum) (Fig. 8b). The scapula and furcula 

of C. livia domestica revealed the highest values, followed by the values of F. peregrinus. The 

coracoid had a similar HA-value in all species (Fig. 8b). The calculated HA-values showed the 

same relationships as the values on the Hounsfield scale (HU). HU was used to calculate the 

statistics, as shown in Fig. 8a. 

 

Forces acting on the wings 

Our morphological data show that the humerus, ulna, radius and sternum of peregrine falcons are 

extraordinarily strong (Figs.  4, 5, 6, and 8). This supports our working hypothesis that the wings 

of a diving peregrine are exposed to extraordinary large forces. To estimate these forces we 

performed CFD simulations. Figure 9 shows the side and front view of the “cupped wings” 

configuration of a diving peregrine. This configuration was used for our calculations (Fig. 10). 

The initial assumed stoop speed was 22.5ms-1, the angle of incidence was 5°. Aerodynamic 

conditions were derived from high-resolution tracking and imaging of life birds (Ponitz et al. 

2014a). In Fig. 10, the segment of the wing that was used for the integration of the forces is 

coloured in blue. Forces are given in a body-related coordinate system. Figure 10 shows that the 

distal force acting on the wings pull the cupped part of the wings away from the body. This force 

is of the same order of magnitude as the dorsal force, which corresponds to the lift force acting 

on the wing.    
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Calculations for three diving speeds show that the forces acting on the wings of a diving 

peregrine scale proportional to the square of diving velocity (Fig. 11). For an adult peregrine 

falcon (assumed mass 500 g) and a diving velocity of 80 m/s (288 km/h) the flight muscles of the 

falcon must develop a force of -11.5 Newton in dorsal direction and -9 Newton in distal direction 

(the negative sign hints that the muscle forces are pointing towards the body axis to counter-act 

the aerodynamic forces). Thus, compared to the weight of a peregrine falcon the forces that the 

wings may experience are in total about 3-times higher. 

 

Discussion 

Our results are consistent with the data reported for other bird species. The second moment of 

area I in Larus californicus (California gull) of the humerus varies between 1 and 40 mm4 (BM 

of the animals was 40 to 700 g) (Carrier and Leon 1990). This agrees well with our values for C. 

livia domestica (body mass about 450 g, I=23-38 mm4). To our knowledge the Young’ modulus 

of the humerus has been measured by nanoindentation for two species of penguins; the values 

obtained are 19.5-22.1 GPa (Currey 1988). In volant birds, the thickness of the cortices (K-

values) of the humeri varies between 0.68 and 0.86: the K-value for the humerus of C. livia 

domestica is 0.83 (Currey and Alexander 1985). These values are similar to our value for F. 

peregrinus (0.85). 

 

Most previous studies that assessed the mechanical properties of bones used a Berkovich tip and 

the Oliver and Pharr calculation (Oliver and Pharr 1992). There is some evidence that E of a bone 

can be overestimated by using this method (Rodriguez-Florez et al. 2013). Bones are anisotropic 

and viscoelastic. To obtain realistic values with a Berkovich tip (Oliver and Pharr 1992), the 

material under investigation must be isotropic and elasto-plastic. To get realistic values we 

corrected for viscoelastic effects as described by Tang and Ngang (2004) and Tang et al. (2007). 

Based on these studies, Ngan (University of Hong Kong, Department of Mechanical 

Engineering) calculated, that our data must be multiplied with the correction factor 0.78. 

 

Bones  

A long bone rarely fractures in a living animal due to pure axial loads (Carter and Spengler 

1982). Most fractures are caused by stresses created by bending and torsion (Rubin and Lanyon 

1982; Biewener et al. 1983; Biewener and Taylor 1986a, b), forces that especially affect the 

humerus and the forearm of a bird (Bou et al. 1991; Biewener and Dial 1995). The resistance 

against bending and torsion is higher in thin walled bones with a large diameter (de Margerie et 
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al. 2005). For bending and torsional loading, the force that is required to fracture a bone is 

proportional to BM2/3 (Selker and Carter 1989; Currey 2002). In the bird species investigated in 

this study, forces that may lead to bone fracture were more than twice as high in F. peregrinus 

than in A. nisus and F. tinnunculus and 1.3 times higher than in C. livia domestica. The large 

body mass of the peregrine falcon is one factor that requires solid bones, i.e. bones that resist 

fractures. A second factor are probably the forces to which the wing bones of a peregrine are 

exposed during a high-speed dive (Figs. 10, 11). The humerus, radius and ulna of peregrines 

probably resist these loads more effectively than the corresponding bones of the other bird 

species investigated. 

 

Bone geometry is the primary variable that determines bone strength (Selker and Carter 1989). 

The midshaft cross-section of long bones can resist the highest bending stresses (Biewener and 

Taylor 1986; Beer et al. 2006). A circular structure with a large diameter and a thin cortex (e.g. 

the humeri of alate birds) has a higher I value and a greater resistance against bending and 

especially against torsion than a structure with a small diameter and a thick cortex (Biewener 

1982; Alexander 1983; Currey and Alexander 1985; Swartz et al. 1992; Swartz 1997; de 

Margerie et al. 2005; Habib and Ruff 2008; Dumont 2010). All humeri of the bird species 

investigated in the present study had thin cortices and a high K-value. This indicates a potential 

bending in multiple planes and/or high amounts of torsion in the humerus (Habib and Ruff 2008). 

The relatively low K-value of F. peregrinus coincides with the higher mass and a higher M value 

of its arm skeleton. Even though the difference to the other species is small it may indicate an 

adaptation to fast flight manoeuvres.  

 

Circular humeri are equally resistant against bending in all directions, whereas elliptical humeri 

have the highest resistance to bending in the direction of the largest cross section (Simons et al. 

2011). The cross sections of the humeri of the bird species investigated in this study were round 

or elliptical. Because of the high second moments of area I and polar moments of area J in F. 

peregrinus, the bending loads and the resistance to torsion were higher in F. peregrinus than in 

the other three species (Figs. 4, 5). If normalized to body mass (Fig. 4a), the humeri of F. 

peregrinus still have the highest I value in the bending directions tested. The round shaped cross 

section of the humerus together with the high I and J values might ascertain that this bone can 

resist high forces from all directions.  
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The resistance to compressional loads (CA) was higher in F. peregrinus than in the other species 

investigated. However, if normalized to body mass, values no longer were significantly different 

from the value of C. livia domestica (Fig. 6b). CA most likely is not an important parameter for 

coping with the high forces during a dive. BMD derived from quantitative CT as measured by 

dipotassium hydrogenphosphate equivalents per volume unit reflect bone strength and correlates 

with the relative risk of fracture (Marshall et al. 1996). Besides the higher M-value of the humeri, 

BMD-values of the entire wing bones also indicate that the wing bones of F. peregrinus are more 

stable than the wing bones of the other bird species investigated. In F. peregrinus, the scapula 

and furcula are less mineralised than in C. livia domestica. The high mineralization of the scapula 

and furcula of C. livia domestica most likely is an adaptation to the forces produced by the great 

breast muscles (especially the M. pectoralis) of pigeons.  

 

Forces acting on the wings  

Our CFD simulations show that the aerodynamic lift force component acting on the wings (in 

dorsal direction) is the highest, followed by the side-force component (distal) that tries to pull the 

cupped part of the wings away from the body. Both are of the same order of magnitude, while the 

drag force component (caudal) is considerably lower. The flight muscles of a diving peregrine 

have to counter-act these aerodynamic forces to keep the wings close to the body. The 

calculations for three diving speeds show that the forces acting on the wings scale proportional to 

the square of diving velocity. The flight muscles of a peregrine falcon of 500 g weight and an 

assumed diving velocity of 80 ms-1 (288 kmh-1) must develop a force of -11.5 Newton in dorsal 

direction and -9 Newton in distal direction (the negative sign indicates that the muscle forces are 

pointing towards the body axis to counter-act the aerodynamic forces). Thus, compared to the 

weight of the falcon the forces that the wings experience at the end of a dive are about 3-times 

higher. Note that these aerodynamic forces may even be larger if the bird is going into a higher 

angle of incidence during pull-out. This probably explains while the bones of the arm and 

shoulder are so strong in peregrine falcons. 

 

The present study shows, that the forces acting on the wings of a diving bird largely depend on 

flight velocity (Fig. 11). Kestrels dive after a windhovering bout to stoop on their ground 

dwelling prey, however, the estimated height from which they start a dive usually is below 60 

meters (personal observation). From this height even a diving peregrine falcon does not reach 

speeds larger than 60 kmh-1 (Ponitz et al. 2014a). Thus the velocity of a diving kestrel is far less 

than the velocity of a diving peregrine falcon. Consequently, the maximal forces acting on the 
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wings of a diving kestrel are much smaller than the forces acting on the wings of a diving 

peregrine. During courtship or prior to prey capture many eagles also dive. To our knowledge the 

maximum diving speed of eagles has, however, never been measured. So far, no bird known can 

match the flying speed of a peregrine falcon in its hunting dive. Further investigations should 

analyse the bone architecture of peregrine falcons in more detail as the ultrastructure may also be 

crucial in determining the biomechanical properties of bones adapted to potentially extreme 

loads. 
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Figure legends 

 

Fig. 1 Cross-sections through the humeri of F. peregrinus (a), Columba livia domestica (b), F. 

tinnunculus (c), and A. nisus (d). All humeri are oriented with dorsal side up (dorsal refers to the 

dorsal side of the wing when fully extended). (e) directions of measurement. d dorsal, diag 

diagonal, lat lateral, v ventral.   

 

Fig. 2 BMD measurements. a General set up with the phantom (P) placed directly on the chest of 

a bird. The gap between the phantom and the animal was reduced to a minimal extent (range 1 to 

10 mm depending on species). The picture in a shows the transverse image of an entire bird 

through the breast and wings. Right: thorax of the bird in dorso-ventral and left-lateral view, 

respectively. Muscles and inner organs are coloured in grey. Example for the measurement of the 

diaphysis of the ulna of F. tinnunculus (b) and F. peregrinus (c). The histograms in d and e show 

the distribution of the Hounsfield units measured within the region of interest. Size relationships 

are also indicated. H  humerus, Mp  M. pectoralis,  R radius,  U ulna, VC  vertebral column, W  

wing. 

 

Fig. 3 Length and mass of the arm skeleton (a, b) and mass of the shoulder skeleton (scapula, 

coracoid and half of furcula) (c) normalized to body mass. Significant differences (P<0.001) are 

marked by ** (ANOVA, N=8 per species).  

 

Fig. 4 Second moment of area (I) of cross-sections of the humeri (a) and specific bending 

stiffness M calculated for the cross sections (b). All data are normalized to body mass. Data are 

given for (from left to right) the diagonal, lateral and dorso-ventral bending direction (c.f. Fig. 

1e). In all cases four animals per species were investigated. Significant differences between F. 

peregrinus and the other species are marked by ** (ANOVA, P<0.001). 

 

Fig. 5 Polar moment of area J of the humerus. Polar moment of area (a) and polar moment of 

area normalized to body mass (b) for four individuals (2 males and 2 females) of each species 

(measured in the centre of the humeri). Significant differences are marked by ** (ANOVA, 

P<0.001).  
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Fig. 6 Area of the middle humeral cortex (a) and the middle humeral cortex normalized to body 

mass (b). Four individuals (2 males and 2 females) per species were investigated. Significant 

differences are marked by ** (ANOVA, P<0.001).   

 

Fig. 7 K-values of the humeri of the four bird species investigated. Significant differences are 

marked by ** (ANOVA, P<0.001).   

 

Fig. 8 a Hounsfield units HU (mg cm-3) - measured directly on the bones - on the Hounsfield 

scale with SD (vertical bars). Values are given for the wing and shoulder skeleton. Significant 

differences are indicated (P<0.01, ANOVA, post-hoc Bonferroni). b HA values for the bones of 

the wing and shoulder skeleton. HA-values were calculated by using the Hounsfield unit data and 

calibration data obtained with the phantom.  

 

Fig. 9. Computer aided design model of the cupped wing shape geometry of a peregrine falcon. 

Contours were generated from multi-view high-resolution camera recordings of a life bird (adult 

peregrine falcon, mass 500g) in diving motion along a dam wall (c.f. Ponitz et al. 2014a). Note 

the gap between the inner and outer side of the wing, which allows for aerodynamic side-forces 

to build up in addition to the lift forces.  

 

Fig. 10. Isolated forces on the wings for the cupped wing geometry obtained from CFD 

simulations. Assumed flight speed was 22,5 ms-1, angle of incidence was 5°. The calculated 

aerodynamic forces are given in a body-related-coordinate-systems (x-direction for caudal, y-

direction for dorsal, and z-direction for distal). 

 

Fig. 11. Scaling of forces with the diving velocity U. For CFD-simulations assumed speeds were 

22,5 ms-1, 40 ms-1, and 80 ms-1. The resulting forces are given in a body-related coordinate 

system (x caudal, y dorsal, and z distal) (c.f. Fig. 10). 

 

Table 1: Maxima and minima of the second moment of area (I) and Young’s modulus E of the 

humeri of the bird species investigated. Results are given as arithmetic mean (± SD). Significant 

differences between F. peregrinus and the other bird species are marked by * (ANOVA, post-hoc 

Bonferroni, P<0.01; Mann-Whitney U-test for Young’s modulus). 
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Species Imax (± SD) mm4 Imin (± SD) mm4 Young’s modulus 

(GPa) 

    

F. peregrinus 132.98 (±35.5) 107.29 (±29.2) 22.7 (±3.9) 

C. livia domestica 37.95 (±14.8) * 23.26 (±8.1) * 18.7 (±2.4)  

F. tinnunculus 11.76 (±2.27) * 10.21 (±2.15) * 22.6 (±4.3) 

A. nisus 15.81 (±5.0) * 12.76 (±4.4) * 19.6 (±3.6)  
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