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Abstract

The thesis focuses on risk measures used to calculate solvency capital re-

quirements. It consists of three independent papers.

The first paper (Chapter 2) investigates time-consistency, the relation

that should hold across risk measurements of the same financial position at

different time points. Sufficient conditions are provided for coherent risk

measures, in order to satisfy the requirements of acceptance-, rejection- and

sequential consistency. It is shown that risk measures used in practice usually

do not satisfy these requirements. Hence a method is provided to systemat-

ically construct sequentially consistent risk measures. It is also emphasized

that current approaches to dynamic risk measurement do not consider that

risk measures at different time points have different arguments. Here we

briefly discuss this new setting highlighting that the notions of time consis-

tency presented in the literature need to be reinterpreted.

The second and third papers (Chapters 3 and 4) consider respectively the

risk arising from parameter and model mis-specification due to estimation

from a limited amount of available data. This risk may have a substantial

impact on risk measures used to quantify solvency capital requirements. We

introduce a new method to quantify this impact measured as the additional

capital needed to allow for randomness in the data sample used for the esti-

mation procedure. This level of capital we call residual estimation risk.

In the second paper, for parameter uncertainty we prove the effective-

ness of three approaches for reducing residual estimation risk in the case of

location-scale families. These are based on (a) raising the capital require-

ment by adjusting the risk measure, (b) Bayesian predictive distributions

under probability-matching priors and (c) residual risk estimation via para-

metric bootstrap. Risk measures satisfying standard properties are used,

for example the popular TVaR. For more general distributions only (a) and

(b) are investigated and a truncated version of TVaR is used. Numerical

results obtained via Monte-Carlo simulation demonstrate that the proposed

x



methods perform well.

In the third paper (Chapter 4), we compare the effectiveness of four dif-

ferent approaches to estimate capital requirements in the presence of model

uncertainty. For a given set of candidate models the model posterior weights

can be obtained via a Bayesian approach. Then we consider approaches

based on: (a) worst case scenario, (b) highest model posterior, (c) averaging

the capital under each model according to the model posterior weights and

(d) determining the predictive distribution of the financial loss and using it

to calculate the capital. It is shown that all these methods are very sensitive

to the set of candidate models specified. If this has been carefully selected

(for instance via expert judgement) the approach based on the highest pos-

terior performs slightly better than the others. Alternatively, if there is poor

prior information on the model set the effectiveness of all these approaches

decreases substantially. In particular, the worst case approach has a very

low performance. It also emerges that mis-specifying the model by using

distributions that are more heavy-tailed than the one generating the data,

may reduce the capital and thus it is not a conservative approach.
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Chapter 1

Introduction

1.1 Literature review

The correct quantification of risks faced by financial or insurance firms is

a central task for both investors and regulators. Risk can be defined as

the possibility that future events may cause adverse effects. In particular,

financial risks can be modelled via random variables that assume different

values accordingly to possible future events. Hence the last decades have

seen an increasing interest in approaching risk assessment from a quantitative

point of view.

The essential technical tools to quantify risks are risk measures. A risk

measure is a functional that assigns to every financial position a real number.

Such a number summarizes the information relative to the future monetary

outcomes of the financial position and their probability. It provides insight

on the level of risk of the position and suggests, according to the preferences

or constraints of an investor, whether it is acceptable or not. It has been

stressed by Artzner et al. (1999) that although gathering all the information

of a position in a single number may be simplistic, it is consistent with the

binary choice that investors and regulators have to make: accept the position

or reject it.

Risk measures are very versatile and have been object of research in sev-
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eral fields. Here we give a brief overview of the main areas of application and

research.

Apart from the work of Markowitz (1951), where the variance of a port-

folio was used as first attempt to measure its desirability, risk measures find

their roots in the actuarial theory of premium calculation more than 40 years

ago. In such a context, the outcome of the measurement represents the price

that an insurer should charge for bearing the risk of the insured claim (or

financial loss). Premium principles, as risk measures are called in this litera-

ture, are constructed in such a way to rank financial losses consistently with

stochastic orders and can often be associated to expected utility functions.

For rigorous treatments of risk measures, their properties, and stochastic or-

ders, we refer to Bühlmann (1970), Gerber (1979), Goovaerts et al. (1984),

Wang et al. (1997) and more recently to Denuit et al. (2005).

In the last two decades new applications of risk measures have emerged.

During the period 1993-1996 some substantial derivative-based losses oc-

curred (such as Orange County and Metallgesellschaft), which emphasized

the need for a rigorous technique to manage and control market risk. Hence,

in 1994, JP Morgan proposed the use of Value-at-Risk (VaR) to assess and

interpret easily the riskiness of financial positions. Since then, the use of

this risk measure in banking has become an imperative. For an in-depth

treatment of VaR we refer to Jorion (1996) and Duffie and Pan (1997).

The rapidly growing financial market, together with its deregulation and

globalization led also regulators to require a more detailed and systematic

quantification of the risk. The Basel accord in 1988 sets the first step towards

internationally coordinated regulatory capital requirements for the banks and

in 1996 an amendment to Basel I allows the use of VaR-based internal models

for measuring market risk. Nowadays, the projects Basel III and Solvency

II systematically require financial and insurance firms to use risk measures

to calculate solvency capital requirements. When used to determine capital

requirement, the value of the risk measure represents the minimal amount

of capital that a company is asked to hold as a buffer against unexpected

2



losses.

From an academic point of view, risk measures have become of primary

interest in financial mathematics since the seminal paper by Artzner et al.

(1999). They proposed four properties that a risk measure should satisfy,

defining in this way the class of coherent risk measures. These requirements

were then relaxed in various directions, in particular two of the axioms (sub-

additivity and positive homogeneity) were substituted with a weaker one

(convexity) by Föllmer and Schied (2002) and Frittelli and Rosazza Gianin

(2002), obtaining the class of convex risk measures. Detlefsen and Scandolo

(2005) extended the above-mentioned theory to a dynamic context where

new available information is used to update the risk assessment.

Risk measures find a natural application also in option pricing in incom-

plete markets. In the standard equivalent martingale measures approach, an

entire interval of no arbitrage prices is available. Risk measures can be used

to narrow this interval, for instance via the “good-deal” approach (Černý

and Hodges, 2000) or to pick one price. For instance Föllmer and Schweizer

(1991) propose to use the price corresponding to the minimal martingale

measure, Frittelli (2002) to the minimal entropy martingale measure and

Bellini and Frittelli (2002) to the mini-max martingale measure.

It is worth noting that several risk measures used in practice are defined

as functionals on the probability distribution of the financial position to

assess. Since this distribution is generally unknown and estimated from past

available data, the calculation of risk measures becomes a statistical issue.

Several approaches, such as Historical Simulation and Extreme Value theory

have been developed to compute risk measures in such a context. For an

overview of the statistical methods used and the literature we refer to McNeil

et al. (2005).

It is clear then that risk measures are very versatile tools, in continuous

development and object of research in several fields. Also the literature is

quite wide and together with the notation used, changes according to the

field of application. For instance the convention in financial mathematics
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and banking is to represent with a random variable X a financial position,

for instance the Profit and Loss of a company or the outcome of a portfolio

of stocks. A positive value of X corresponds to a gain, while X ≤ 0 is a

loss. On the contrary in insurance the convention is to work with loss ran-

dom variables, Y = −X, thus all the definitions and properties have to be

adapted. In the following sections and Chapter 2, consistently with the liter-

ature in financial mathematics we work with financial positions. Afterwards,

in Chapters 3 and 4 we will switch to loss random variables. This choice has

been made in order to remain consistent with the main literature on the topic

treated in each chapter. The main definitions and properties are restated in

the new notation within each chapter.

1.2 Definitions and properties

1.2.1 Risk measures

In order to work with risk measures in mathematical terms, we need to

introduce a sample space Ω that represents the set of all possible states of

nature at a certain future date. A financial position is thus defined specifying

the monetary outcome for every possible scenario, i.e. it is a real-valued

function taking value on R. We denote the set of all financial positions with

X . A risk measure is a functional ρ : X −→ R that assigns to every financial

position a real value.

Traditional examples of risk measures used in actuarial science are the

expected premium principle:

ρ(X) := (1 + α)E[−X] for X ∈ X and α ≥ 0, (1.1)

and the variance premium principle:

ρ(X) := E[−X] + αV ar(−X) for X ∈ X and α ≥ 0. (1.2)
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For more examples we refer to Bühlmann (1970) and Goovaerts et al. (1984).

In both cases the risk measure considers the expected loss of the position

(E[−X]) and adds to it an extra load that acts as a buffer against unex-

pected losses. The variance premium principle penalizes positions with a

high variance. While this seems reasonable, it does not distinguish between

the signs of the variation.

A risk measure that focuses more on negative outcomes is VaR. VaRp

(level of confidence p) is the most widespread risk measure in banking and

regulatory contexts. For instance, Basel II requires financial institution to

measure market risk using VaR with a time horizon of 10 days and a prob-

ability level of 99%, see (Basel Committee on Banking Supervision, 2009).

Solvency II, proposed as capital requirement for insurance companies, VaR at

level of 99.5% with a time horizon of 1 year (European Insurance and Occu-

pational Pensions Authority, 2009). This means that an insurance company

is considered reliable if the difference between its net assets and liabilities

is non-negative with a probability of at least 0.995 over a time period of 1

year. In mathematical terms, given a measurable space (Ω,F) and a financial

position X, VaRp(X) is given by:

V aRp := inf{m ∈ R : P(X +m ≥ 0) ≥ p} (1.3)

where P is a probability measure on (Ω,F). V aRp thus requires companies

to hold enough capital to cover their losses with probability p.

This risk measure has the advantage of being relatively easy to evaluate

and to understand. This made it very popular from the practitioner point

of view. However, it has some important deficiencies that should be consid-

ered. First, it does not warn about the magnitude of losses occurring in the

remaining 1 − p probability. For instance consider two financial positions

X, Y , such that Y = min(X, d) where d corresponds to the p−quantile of

X. Such random variables are assessed in the same way by VaR although X

may cause much higher losses that Y .
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Another shortcoming is that VaR may penalize diversification, that is

pooling together different positions does not necessarily reduce the final risk

of the portfolio.

To overcome these issues Artzner et al. (1999) proposed a set of axioms

that a risk measure should satisfy. The starting point is to decide what has

to be considered too risky and what not. For this purpose an acceptance set

A is defined as:

A := {X ∈ X : X is considered an acceptable risk by the regulator or investor}.

Acceptance sets clearly depend on measurement scope and will vary with

the context of application. Artzner et al. (1999) worked in a regulatory

framework (this work was done at the same time of the regulatory project

Basel II). Here, given an acceptance set A, a risk measure is interpreted as

the minimal amount of capital that should be safely invested and added to

the financial position X in order to make it acceptable:

ρ(X) = inf{m ∈ R : X +m ∈ A}. (1.4)

Artzner et al. (1999) took into account also the return r arising from investing

money in a safe instrument, in this case definition (1.4) becomes

ρ(X) = inf{m ∈ R : X +m · (1 + r) ∈ A}. (1.5)

Without loss of generality, and consistently with most of the papers on this

topic, we assume that our payoff corresponds to the already discounted fi-

nancial position, so that (1.4) is used from now on.

1.2.2 Coherent risk measures

Artzner et al. (1999) proposed a set of axioms that risk measures should

satisfy. For every X, Y ∈ X
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(1) Monotonicity. If X ≤ Y , then ρ(X) ≥ ρ(Y );

(2) Translation invariance. If m ∈ R, then ρ(X +m) = ρ(X)−m;

(3) Subadditivity. ρ(X + Y ) ≤ ρ(X) + ρ(Y );

(4) Positive homogeneity. If λ ≥ 0 then ρ(λX) = λρ(X).

A risk measure satisfying axioms (1), (2), (3) and (4) is called a coherent risk

measure.

Monotonicity implies that if the position’s payoff increases in every state

of nature, then its riskiness should decrease. Translation invariance suggests

that adding safe capital to a financial position, decreases the riskiness of the

position by the same amount. In particular, it implies

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0. (1.6)

This property again suggests the idea of risk measure as capital requirement,

as ρ(X) represents the amount of money that, added to the financial position

X, makes it marginally acceptable.

The subadditivity axiom requires that adding two positions together

should decrease the total risk. Positive homogeneity implies that the risk

of a payoff increases linearly with the size of the investment. It also implies

the normalization property, that is ρ(0) = 0, which is usually considered a

natural condition to require. Together with the translation invariance and

monotonicity requirements, normalization allows the following interpretation

of the risk measure for fixed capital

ρ(0 +m) = −m for m ∈ R. (1.7)

Holding some safely invested capital m is of course not risky and m is the

maximal amount of capital that can be withdrawn maintaining the position

acceptable. In most of the situations normalization is required even if positive

homogeneity does not hold.
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Other important properties and definitions for risk measures are the fol-

lowing. For every X,Y in X

(5) Comonotone additivity. If X and Y are comonotone, ie

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0 ∀ω1, ω2 ∈ Ω

then

ρ(X + Y ) = ρ(X) + ρ(Y );

(6) Continuity from above. If Xn ↘ X, then ρ(Xn)↗ ρ(X);

(7) Continuity from below. If Xn ↗ X, then ρ(Xn)↘ ρ(X).

Comonotone additivity implies that adding comonotone random variables

does not reduce the amount of capital required. Axioms (6) and (7) are

technical conditions that will be used in the following sections for the repre-

sentation theorems.

One of the main and most important results obtained in risk measure

theory is that all the coherent risk measures admit a representation in terms

of generalized scenarios. There are different versions of this theorem; we

provide here the one by Delbaen (2002).

Theorem 1.2.1. All coherent risk measures that are continuous from above,

admit a representation in terms of generalized scenarios

ρ(X) = sup
P∈P

EP [−X] (1.8)

where the set P is a set of probability measures on the measurable space

(Ω,F). If the risk measure is also continuous from below, then the supremum

is actually a maximum:

ρ(X) = max
P∈P

EP [−X] (1.9)
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Also the contrary holds: every risk measure defined as (1.2) is coher-

ent. This representation makes clear the idea behind coherent risk measures.

Given a financial position X, its expected loss (EP [−X]) is specified accord-

ingly to different possible scenarios P ∈ P . The supremum is then taken so

that the capital held, ρ(X), corresponds at least to the expected loss in the

worst case scenario.

A representation in terms of probability measures without requiring con-

tinuity from above is possible if we work in a finite framework (i.e. Ω is a

finite set) as Artzner et al. (1999) proved.

1.2.3 Distortion risk measures

Distortion risk measures represent an important class risk measures, that

is obtained via Choquet integrals. They have been developed by Denneberg

(1994b) and Wang et al. (1997), mostly within an insurance context. Here,

we consider distortion risk measures that are also coherent. This class of risk

measures corresponds to the spectral risk measures, introduced by Acerbi

(2002).

Let us consider a measurable space (Ω,F) and a reference probability

measure P. We also assume that X = L∞(Ω,F ,P). We start with the

definition of Choquet integral for a bounded measurable function X ∈ X .

Given a set function or capacity v : F −→ [0, 1] that satisfies

(8) Normalization. v(∅) = 0, v(Ω) = 1;

(9) Monotonicity. v(A) ≤ v(B) for A ⊆ B.

the Choquet integral of X ∈ X with respect to v is defined as

∫
Xdv =

∫ 0

−∞
(v(X > t)− 1)dt+

∫ ∞
0

v(X > t)dt. (1.10)

This integral is generally not linear, but it coincides with the Lebesgue inte-

gral when the function v is a probability measure. It satisfies the following

properties
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(10) Positive homogeneity.
∫
λXdv = λ

∫
Xdv for λ ≥ 0

(11) Translation invariance
∫

(X +m) dv =
∫
Xdv +m for m ∈ R.

Now consider a distortion function g : [0, 1]→ [0, 1] increasing and concave,

with g(0) = 0 and g(1) = 1. The set function v(A) = g(P(A)) is called dis-

tortion of the probability measure P. It satisfies normalization, monotonicity

and

(12) Submodularity. v(A ∪B) + v(A ∩B) ≤ v(A) + v(B).

With these properties, for a given financial position X ∈ X , the Choquet

integral

ρ(X) =

∫
−Xdv = −

∫ 0

−∞
(1− v(−X > t))dt+

∫ ∞
0

v(−X > t)dt (1.11)

defines a coherent risk measure.

It is possible to prove that a risk measure admits a representation as

Choquet integral with respect to a capacity v if and only if it is a coherent

risk measure satisfying comonotone additivity. For more details see Föllmer

and Schied (2004) and Kusuoka (2001).

Furthermore, this risk measure admits a representation in terms of gen-

eralized scenarios

ρ(X) =

∫
(−X)dv = sup

Q∈Q̃
EQ[−X] (1.12)

where

Q̃ = {Q� P : Q(A) ≤ v(P(A)) ∀A ∈ F}

is called the core of the convex distortion of P. Here, Q � P means that Q

is absolutely continuous with respect to P on the σ− algebra F , that is:

P(A) = 0 ⇒ Q(A) = 0 ∀A ∈ F .

Alternatively, we can say that Q is absolutely continuous with respect to P
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if and only if, it exists its Radon-Nikodym derivative dQ
dP , such that:

∫
FdQ =

∫
F
dQ

dP
dP for any F −measurable function F ≥ 0.

For details on distortion risk measures see Carlier and Dana (2003).

Example 1. A standard example of distortion risk measure is Tail Value at

Risk (TVaR). It arises as a natural extension of VaR in order to avoid its

deficiencies. Given a financial position X, TVaRp is defined as:

TVaRp(X) :=
1

p

∫ p

0

VaRγ(X)dγ.

This is an average of VaR over the percentiles from 0 to p. In this way

the whole tail risk is considered and included in the assessment. TVaR is

a coherent risk measure, in particular it satisfies the axiom of subadditivity

that VaR fails and also satisfies comonotone additivity. Its representation in

terms of generalized scenario is obtained as

TV aRp(X) := sup
Q∈Q

EQ[−X] (1.13)

where

Q := {Q� P :
dQ

dP
≤ p−1}

The set Q has a specific meaning: given a reference probability measure P,

we aim at distorting it in order to emphasize negative events and have a

more conservative assessment of the risk. At the same time we want to avoid

probability measures that differ to much from the physical one, thus present-

ing a completely unrealistic scenario. To solve this issue, a bound on the

Radon-Nikodym derivative is imposed so that the probability measure Q is

not too “distant” from P. TVaRp arises as a distortion risk measure, consid-

ering the distortion function g(s) := min(p−1s, 1). It has been proposed by

several authors independently and can be found in the literature under dif-

ferent names such as Expected Shortfall (ES), Tail Conditional Expectation
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(TCE), Conditional Value at Risk (CVaR). For an overview of the different

definitions and how they are related we refer to Acerbi and Tasche (2002).

1.2.4 Convex risk measures

We now discuss one of the main extensions made to coherent risk measure

theory. Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2002) in

independent papers proposed to drop the positive homogeneity and subaddi-

tivity axioms and introduced the following. For any X,Y in X and 0 ≤ δ ≥ 1

(13) Convexity. ρ(δX + (1− δ)Y ) ≤ δρ(X) + (1− δ)ρ(Y ).

Risk measures satisfying axioms (1), (2) and (13) are called convex risk

measures. Risk measures satisfying convexity and positive homogeneity re-

quirements satisfy also subadditivity. It follows that coherent risk measures

are a subclass of convex ones. Föllmer and Schied (2002) proved that also in

the context of convex risk measures a representation in terms of generalized

scenarios is possible. For the rest of the chapter, we will assume that a refer-

ence probability measure P is given and we will only consider risk measures

that satisfy

ρ(X) = ρ(Y ) if X = Y P− a.s. (1.14)

meaning that financial positions that are almost surely equivalent are assessed

in the same way. With assumption (1.14) the set of risks will be identified

by the space X = L∞(Ω,F ,P) of all bounded real valued functions. The

following notation is used

M1 := {Q probability measures on (Ω,F)} (1.15)

M1(P) := {Q probability measures on (Ω,F) : Q� P} (1.16)
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Proposition 1.2.2. A convex risk measure ρ(X) can be represented as

ρ(X) = sup
Q∈M1(P)

(EQ[−X]− αmin(Q)) (1.17)

if and only if it is continuous from above, i.e.

if Xn ↘ X P− a.s. then ρ(Xn)↗ ρ(X).

Here αmin(Q) is the minimal penalty function representing ρ and corresponds

to

αmin(Q) := sup
X∈X

(EQ[−X]− ρ(X)) = sup
X∈Aρ

EQ[−X]

For the coherent case, this result leads to a representation where the

supremum is actually attained.

Proposition 1.2.3. With the assumptions of the previous theorem, a coher-

ent risk measure admits the following representation

ρ(X) = max
Q∈Qmax

EQ[−X] (1.18)

for the convex set

Qmax = {Q ∈M1(P) : αmin = 0}

where the minimal penalty function of a coherent risk measure can only as-

sume values 0 or +∞. The set Qmax is the largest one that permits such a

representation.

Assuming that no physical probability measure is given, and denoting

withM1,f the set of all finitely additive normalized set functions on (Ω,F),

a general result still holds

Theorem 1.2.4. Any convex risk measure ρ(X) on X has the form

ρ(X) = max
Q∈M1,f

(EQ[−X]− αmin(Q)) (1.19)
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where

αmin(Q) := sup
X∈Aρ

EQ[−X] for Q ∈M1,f .

Even though we will not investigate this general case, it is worth noticing

that if the risk measure ρ(X) is continuous from below, then the penalty

function α is concentred on the set M of probability measures on (Ω,F).

Therefore, not only ρ admits a representation in terms of probability mea-

sures, but it has the additional property that the supremum is actually at-

tained. Föllmer and Schied (2002) extended further this topic in a topological

setting. We will not treat this approach here, as it is far from the focus of

our research.

Example 2. One of the best known examples of convex risk measure is the

entropic one. Consider a probability space (Ω,F ,P) and an acceptance set

defined as

A := {X ∈ X : E[e−βX ] ≤ 1}. (1.20)

The corresponding risk measure is

ρ(X) := inf{m ∈ R : X+m ∈ A} = inf{m ∈ R : E[e−β(X+m)] ≤ 1} (1.21)

with some calculation we have

ρ(X) = inf{m ∈ R : E[e−βX ] ≤ eβm}

= inf{m ∈ R : log(E[e−βX ]) ≤ βm}

=
1

β
· log E[e−βX ]

In this case it is possible to evaluate exactly the minimal penalty function
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αmin(Q). With few steps, we obtain

αmin(Q) := sup
X∈X
{EQ[−X]− ρ(X)}

= sup
X∈X

{
EQ[−X]− 1

β

[
log(E[e−β(X)])

]}
=

1

β

[
sup
X∈X
{EQ[−βX]− log(E[e−βX ])}

]
=

1

β

[
sup
Z∈X
{EQ[Z]− log(E[eZ ])}

]
=

1

β

[
H(Q|P)

]
where we used Z = −βX and H(Q|P) = supZ∈X{EQ[Z]− log(E[eZ ])} comes

from Lemma 3.29 in Föllmer and Schied (2004). The penalty function is

nothing but the relative entropy of the probability measure Q with respect

to the physical one P, modified by the factor 1
β
. We recall that the relative

entropy is defined as H(Q|P) := E[dQ
dP log(dQ

dP )] if Q� P

H(Q|P) := +∞ otherwise
(1.22)

Again as in TVaR probability measures that are considered too far from the

physical one are more penalized. In this case, the bound is not anymore

on the Radon-Nikodym derivative as it was in TVaR, but it arises from the

penalty function αmin(Q) that “measures” the level of entropy (distance)

from P.

1.3 Law-invariance

The wide majority of risk measures used and known in practice are law-

invariant or model-dependent. Given a probability space (Ω,F ,P), a risk

measure ρ is said to be law invariant if ρ(X) = ρ(Y ) whenever X and Y have

the same distribution under P. This means that the outcome of law-invariant

risk measures is uniquely determined by the probability distribution (model)
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of the financial position to assess. VaR and the distortion risk measures are

examples of law-invariant risk measures.

For practical applications the probability distribution of a financial posi-

tion is unknown (in more general terms the reference probability measure P

is not assigned) and it is estimated from a set of available data. This set of

data is of limited and often small size and it may not be sufficient to estimate

properly the tail of the distribution where the extreme losses occur.

Law-invariant risk measures do not include in their assessment the risk

arising from model mis-specification and estimation. Moreover their outcome

depends on the estimation procedure and hence is itself subject to an error.

The sensitivity of risk measures to the estimation error has been investi-

gated, among others, by Cont et al. (2010), Gerrard and Tsanakas (2011)

and Gourieroux and Liu (2006). It is discussed in more detail in Chapters 3

and 4.

Going back to the definition of coherent risk measure in (1.8) (but also

convex risk measures (1.19)) we note that it requires a measurable space

(Ω,F), without specifying a reference (or physical) probability measure P.

Such risk measures are then expressed as the worst expected loss over a set

P of generalized scenarios. Each scenario is represented by a probability

measure P on (Ω,F). While this approach has a specific meaning, as it

recognizes that a reference probability measure is generally not given, it may

be difficult to deal with and is therefore not often discussed in the literature.

1.4 Dynamic risk measures

After static risk measures were studied and understood in depth, the prob-

lem of extending the above theory to a dynamic context has naturally arisen.

In many applications, for example with long-term financial positions, assess-

ments at more than one point in time are necessary. Here, newly available

information and intermediate payoffs play a central role. There is a wide

literature on the topic, see Artzner et al. (2007), Riedel (2004), Roorda and
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Schumacher (2007) for the coherent case, Detlefsen and Scandolo (2005),

Weber (2006), Föllmer and Penner (2006), Roorda and Schumacher (2008),

Cheridito et al. (2006) for more general contexts. In particular Detlefsen

and Scandolo (2005) extended most of the definitions and the results known

for the static case to the dynamic one, and proved similar representation

theorems.

There are two main approaches available for the dynamic extension of risk

measures. The first is to consider financial positions as random variables with

values on Ω, the set of all possible states of nature at a future time point. New

available information is described by a filtration Ft∈[0,T ], where the set [0, T ]

can be discrete, continuous, finite or infinite, depending on the context. This

approach, not accommodating intermediate payoffs, is treated for instance

in Detlefsen and Scandolo (2005), Roorda and Schumacher (2007), Tutsch

(2008) and will be presented in detail in Chapter 2.

The second approach is to consider financial positions as cash-flows on

a filtered probability space, in this way both intermediate payoffs and ad-

ditional information are taken into a account. This approach is presented

in Artzner et al. (2007), Riedel (2004), Weber (2006) and many others. A

detailed review can also be found in Roorda and Schumacher (2007).

A major problem concerning dynamic risk measures is time consistency,

that is, the relation that should hold between risk assessments of the same

position at different time points. If they should be related and in what sense

is still a subject of debate and captures the attention of a wide literature. The

most commonly treated notion of time consistency is dynamic consistency,

which corresponds to a generalization to risk measures of the tower law for

conditional expectation. However, it has been proved that under mild con-

ditions only a very restricted class of risk measures satisfies this requirement

(Kupper and Schachermayer, 2009). Weaker notions of consistency, such as

acceptance and rejection consistency, are considered by Tutsch (2008) and

Weber (2006) and treated in detail by Roorda and Schumacher (2007). Chap-

ter 2 aims at investigating in depth this topic, focusing in particular on a
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weak condition of time consistency, called sequential consistency.

1.5 Research aims and structure

Although much progress has been made and risk measurement is now a sys-

tematic activity in every financial or insurance firm, several aspects of risk

measurement still need to be analyzed and clarified.

The aim of this thesis is to develop new risk measurement approaches

that address research questions concerning: time-consistency, the relation

that should hold across risk measurements of the same financial position

at different time points; and parameter/model risk, the risk arising from

parameter/model mis-specification due to estimation from a limited amount

of available data.

In Chapter 2, we investigate coherent risk measures used to calculate

solvency capital for long-term portfolios. As time evolves, new information

becomes available and the measurement needs to be updated consequently.

Simple examples show that re-applying the same risk measure with new in-

formation could lead to over- or under-estimation of capital. In this study, we

characterize and construct coherent risk measures that satisfy the notion of

sequential consistency, introduced by Roorda and Schumacher (2007). This

states that financial positions that are acceptable (resp. not acceptable) in

all states of the world at some future time, should also be acceptable (resp.

not acceptable) at all previous times. Satisfying this requirement is impor-

tant from both regulators and financial firms point of view as it leads to an

efficient management of the risk capital and can reduce the risk of insolvency.

For the two most common families of risk measure updates, discussed, among

others, by Tutsch (2008) and Detlefsen and Scandolo (2005), we present suf-

ficient conditions to ensure sequential consistency. Our results show that

most of the coherent risk measures used in practice (such as TVaR) satisfy

only partially these conditions.

Consequently, we provide a general method of constructing sequentially
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consistent risk measures, which entails modification of the risk measure used

at the initial time. The technique is illustrated by building a sequentially

consistent version of TVaR, of the coherent entropic risk measure and of the

general class of distortion risk measures. Furthermore, we also introduce a

conditional version of the coherent entropic risk measure, recently proposed

by Föllmer and Knispel (2011).

The last part of the chapter investigates the time horizon of risk assess-

ment, a topic generally not treated in the literature on risk measures. Even

when exposure is to long term positions, the portfolio holder or the regulator

is interested in determining the capital required at a fixed future time point.

For example, the impending Solvency II framework for European insurers

requires that the safely invested capital corresponds to 99.5% VaR with 1

year time horizon. If the financial position expires after the time horizon, as

is typical for insurance liabilities, the risk measure is applied to the fair value

of the position at the horizon, rather than to the position itself. Taking into

account this consideration, we introduce a new type of coherent risk mea-

sure with a rolling time horizon. We show that in this setting, the dynamic

risk measures earlier constructed are no more sequentially consistent, but the

weaker requirement of acceptance consistency can still be preserved.

The study of dynamic risk measures and time consistency properties is

very sophisticated from a mathematical and numerical point of view (see

for instance Föllmer and Penner (2006), Kupper and Schachermayer (2009)

and the literature therein). However, it generally relies on the assumption

that the probability distribution of financial positions is well specified and

known. In reality this probability is not observable and generally estimated

from a limited sample of past data, creating potential for substantial param-

eter and model error. Parameter error arises from the deviation of estimated

parameters from their true values, in the context of a correctly chosen proba-

bility distribution for the financial position. Model error arises from incorrect

specification of the distribution itself. For the potential of parameter (resp.

model) error occurring, we use the term parameter (resp. model) uncertainty.
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Cont et al. (2010), among others, emphasize how a proper risk measurement

procedure should also take into account this estimation issue.

Chapter 3 contributes to understanding the impact of parameter uncer-

tainty on risk measures used as solvency capital requirement. We follow a

parametric approach where, for a given financial position, a probability dis-

tribution is fixed while the parameters are estimated from a limited random

sample. The solvency capital that a firm should hold is calculated according

to a law-invariant risk measure and hence depends on the random sample

used to estimate the distribution parameters. The effect of parameter uncer-

tainty can be seen as the mismatch between the theoretical and the estimated

capital. Specifically, we propose to quantify this residual estimation risk as

the extra capital that needs to be added to the position in order to allow for

the randomness of the estimated capital.

The residual risk in general depends on the true but unknown parame-

ters and remains in theory unknown. However, for location-scale families,

we show that this dependence can be eliminated and thus we suggest ad-

justments of the risk measure to compensate that residual risk. In par-

ticular, we demonstrate the effectiveness of approaches based on (a) ade-

quate increase of capital level, (b) Bayesian predictive distributions under

probability-matching priors (Severini et al., 2002) and (c) residual risk esti-

mation via parametric bootstrap.

For transformed location-scale families, approaches (b) and a heuristic

modification of (a) are investigated. It is shown that trying to quantify the

residual estimation risk and to apply those methods can lead to distribution

functions with infinite means, which do not allow for the evaluation of co-

herent risk measures such as TVaR. Consequently the effectiveness of those

methods is demonstrated using of a truncated version of TVaR proposed in

Cont et al. (2010).

In Chapter 4 we discuss the impact of model uncertainty on risk measures

used as solvency capital requirements. We assume that the correct model for

the probability distribution of a financial position is unknown and instead a
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set of candidate models has been specified. In this setting the effectiveness of

different approaches to estimate the capital under model uncertainty is em-

pirically investigated. In particular we consider four methods: (a) selecting

the capital according to the model that represents the worst case scenario;

(b) calculating the capital according to the model with the highest poste-

rior weight calculated according to a Bayesian perspective; (c) computing

the capital under each candidate model and then averaging according to the

posterior weights; (d) calculating the predictive distribution of the financial

position and computing the risk measure on this distribution.

The effectiveness of these approaches is quantified via a generalization

of the residual estimation risk introduced in Chapter 3. As this risk does

depend on the true but unknown model, we introduce a Test Set of models

that are used as benchmarks. By applying each capital estimation method

to data generated from every model in the test set, we are able to better

assess their performance. In order to compare the results, for each method

we also report the average, maximum and maximum of the absolute value of

the residual estimation risk across models in the test set.

We perform a Monte-Carlo simulation study, using VaR and considering

two different types of candidate model sets. The first where the model set

almost overlaps with the test set used. This setting aims at representing

a situation where the model set has been carefully specified according to

expert judgment and it is termed Informative model set. In the second one,

the model set is rather different from the test set used and corresponds to

a situation where no prior information on the candidate models is available

and we call this setting Non-informative model set.

From our analysis it appears that all the estimation approaches considered

are sensitive to the model set used. In particular, for an informative model

set, approach (b) performs slightly better than the others. When no prior

information is available on the model set, then it is better to use an approach

that averages the capital according to different models, that is approaches

(c) or (d).
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Interestingly, we highlight that mis-specifying the model by choosing dis-

tributions that are more heavy-tailed than the one generating the data, may

reduce the capital causing a higher residual estimation risk. Hence this is

not necessarily a conservative approach.

Finally in Chapter 5 we summarize the main findings of our research and

outline future possible developments.
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Chapter 2

Characterization and

construction of sequentially

consistent risk measures

Abstract: In dynamic risk measurement the problem emerges of assessing

the risk of a financial position at different times. Sufficient conditions are pro-

vided for conditional coherent risk measures, in order that the requirements

of acceptance-, rejection- and sequential consistency are satisfied. It is shown

that these conditions are often violated for standard methods of updating. A

method is consequently proposed for constructing a sequentially consistent

risk measure, which entails the modification of the set of probability mea-

sures used, to obtain the risk assessment at an initial time. Consequently,

time-consistent dynamic generalizations are given for well known risk mea-

sures used in insurance, such as the TVaR and distortion / Choquet risk

measures, as well as the recently introduced coherent entropic risk measure.

Finally we consider the situation where the term of risk exposures is longer

than the time horizon used in solvency assessment. Then, regulation such as

Solvency II requires replacing the financial position itself with its fair value

at the time horizon. We show that in this setting acceptance consistency can

be preserved, though the same is not true about rejection consistency.

23



2.1 Introduction

The correct quantification of risks faced by insurance companies and other

financial institutions is a central task for both investors and regulators. Risk

measures are essential tools for quantifying financial risks. Static risk mea-

sures, where uncertainty is resolved over a single period, have been exten-

sively studied in the insurance and finance literature. Indicatively, book-

length treatments with particular focus on the relationship between risk mea-

sures, their properties and stochastic orders are Goovaerts et al. (1984) and

Denuit et al. (2005), while an emphasis on axiomatic characterizations can

be found in Wang et al. (1997), Artzner et al. (1999), Föllmer and Schied

(2002), and Frittelli and Rosazza Gianin (2002). An important class of risk

measures emerging in the literature is that of distortion / Choquet risk mea-

sures, introduced in the insurance literature by Wang (1996) satisfying the

properties posed by Wang et al. (1997) as well as Artzner et al. (1999).

These risk measures produce the popular TVaR measure as a special case;

more technical detail on them can be found in eg Carlier and Dana (2003).

Recent years have also seen an increasing interest in a dynamic approach

to risk measurement, where several time periods are considered. In a dynamic

setting, several issues emerge: the impact of available information on the

risk assessment, the occurrence of intermediate payoffs, the time consistency

among measurements of the same position at different points in time, and

the assessment time horizon. A variety of approaches have been taken in the

literature. Early attempts at conditioning distortion risk measures based on

the results of Denneberg (1994a) are Wang and Young (1998) and Tsanakas

(2004). The link between conditioning of risk measures and BSDEs has been

studied by Barrieu and El Karoui (2004), Rosazza Gianin (2006), and Stadje

(2010).

The strand of literature that our work most closely relates to focuses

on notions of time consistency in dynamic risk measures and corresponding

characterizations. Detlefsen and Scandolo (2005) considered conditional risk
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measures, where the assessment outcome depends on new information be-

coming available. Riedel (2004), Weber (2006), Frittelli and Scandolo (2006),

Artzner et al. (2007), Cheridito et al. (2006), among others, focused on risk

measurements for stochastic processes. Roorda et al. (2005), Föllmer and

Penner (2006), Rosazza Gianin (2006), Tutsch (2006), Weber (2004), Ro-

orda and Schumacher (2007) discussed different types of time consistency.

In the literature on dynamic preferences, properties of time consistency were

already studied by Koopmans (1960) and Epstein and Schneider (2003).

In the first part of the chapter, we discuss the time consistency between

assessments of the same financial position at several times. A risk measure

satisfying appropriate time consistency can lead to more efficient capital man-

agement and reduce the risk of insolvency. A key notion in this area is that

of dynamic consistency, see for example Föllmer and Penner (2006). It states

that, if two positions are assessed in the same way in every future state, then

should have the same assessment at the present time as well. Roorda and

Schumacher (2007) proved that this requirement is equivalent to an attractive

tower law property. However, in many cases dynamic consistency leads to a

risk measure that produces very high capital requirement (see Tutsch (2006),

Roorda and Schumacher (2008)). Furthermore, Kupper and Schachermayer

(2009) prove that, under technical conditions, law-invariance (where the risk

assessment depends only on the distribution of the position) and dynamic

consistency reduce the class of possible risk measures to the entropic one.

In this chapter we focus on the weaker requirement of sequential consistency

(Roorda and Schumacher, 2007), combining the ideas of acceptance and re-

jection consistency (Weber, 2004), (Tutsch, 2006). This states:

a) A financial position cannot be considered acceptable at an initial time if

it will be unacceptable in each successor state (acceptance consistency).

b) If the position is rejected in any state of nature at a future time point,

then it should be rejected at an earlier time as well (rejection consis-

tency).
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We investigate sequential consistency for two of the standard ways of

updating a coherent risk measure, discussed by Detlefsen and Scandolo (2005)

and Tutsch (2008). The first update is obtained assuming that the new

available information reduces the set of generalized scenarios that are used to

construct the corresponding static risk measure. The second type of update

assumes instead that new information does not influence this set. In both

cases, we present sufficient conditions to ensure sequential consistency. Our

results show that standard updates of a coherent risk measure (such as TVaR)

often satisfy only the conditions for either acceptance or rejection consistency.

Consequently we provide a general method of constructing sequentially

consistent dynamic risk measures, which requires modification of the risk

measure used at the initial time. The technique is illustrated by building

a sequentially consistent version of TVaR, which essentially coincides with

the one proposed by Roorda and Schumacher (2008) and then extending

the method to the general class of distortion / Choquet risk measures. A

consistent update is also presented for the coherent entropic risk measure

recently introduced by Föllmer and Knispel (2011)

The last part of the chapter concerns the time horizon of risk assessment.

Even when exposure is to long term positions, the portfolio holder or the

regulator is interested in determining the capital required at a future time

point δ. For example, the impending Solvency II framework for European

insurers requires that the safely invested capital corresponds to 99.5% VaR

with 1 year time horizon. When the financial position expires before or at

the time horizon δ, all the results of the first part apply. However, for longer

term exposures, typical in insurance liabilities, the risk measure is applied to

the fair value of the position at time δ, rather than to the position itself. This

situation is outside the usual framework in the risk measures literature, as it

essentially corresponds to risk measurement with an argument that changes

over time, as the fair value at δ time units after measurement changes with

new information. We show that even in this setting, acceptance consistency

can still be preserved, but rejection consistency will in general not hold.
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The chapter is organized as follows. In Section 2.2 we review the notion

of conditional coherent risk measures and discuss sequential consistency. In

Section 2.3, we present technical conditions on the set of generalized scenar-

ios to ensure acceptance and rejection consistency for two different types of

update. In Section 2.4 a procedure for constructing a sequentially consis-

tent risk measure is presented. Section 2.5 discusses the relation between

sequential consistency and time horizon of risk assessment.

2.2 Conditional risk measures and time con-

sistency

2.2.1 Conditional risk measures

Let (Ω,F ,P) be a probability space and define X = L∞(Ω,F ,P) the set

of all bounded financial positions. Every inequality and equality involving

elements of X is meant as holding P-a.s. In order to take into account

the role of new information, we introduce a non-trivial σ-algebra G, such

that {∅,Ω} ⊂ G ⊂ F . This means that at an intermediate time point

before the expiry date of the portfolio, the investor or the regulator receives

additional information G. A re-assessment of the riskiness of the position at

that time becomes of interest. The outcome of the new risk measurement

ρG will depend on the information contained in G, and ρG(X) will be a G-

measurable random variable. We will often refer to the starting time of the

position as time 0 and the intermediate point in time, when the information

is G is revealed, as time 1. Let XG := L∞G (Ω,G,P) denote the set of all

bounded random variables that are G-measurable. Detlefsen and Scandolo

(2005) introduce the following definition:

Definition 1. A map ρG : X −→ XG is called a conditional convex risk

measure if, for every X, Y ∈ X , it satisfies the following properties:

Monotonicity: If X ≤ Y , then ρG(X) ≥ ρG(Y ).
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Conditional cash invariance: If Z ∈ XG, then ρ(X + Z) = ρ(X)− Z.

Conditional convexity: ρ(αX + (1 − α)Y ) ≤ αρ(X) + (1 − α)ρ(Y ) for

α ∈ XG, 0 ≤ α ≤ 1.

Normalization: ρG(0) = 0.

If it also satisfies

Conditional positive homogeneity: ρ(βX) = βρ(X) for β ∈ XG, β ≥ 0,

it is called a conditional coherent risk measure.

From the above properties, we can recover the definition of static coherent

and convex risk measures introduced by Artzner et al. (1999) and Föllmer

and Schied (2004), by simply substituting the σ-algebra G with the trivial

one {∅,Ω}. In this case, we simply denote the risk measure ρ(·).

In the next sections we will make extensive use of the following sets:

M1(P) := {Q is a probability measure on (Ω,F) : Q� P}

PG := {Q ∈M1(P) : Q ≡ P on G}.

Furthermore we recall the definition of essential supremum and essential

infimum of a random variable.

Definition 2. For a given set of random variables Φ on (Ω,F ,P), we denote

the essential supremum of Φ, the random variable φ∗, such that:

1) P(φ∗ ≥ φ) = 1 ∀φ ∈ Φ; and

2) If φ∗∗ is another random variable satisfying 1), then P(φ∗∗ ≥ φ∗) = 1.

We write

φ∗ := ess.supφ∈Φφ

Similarly, we denote the essential infimum of Φ, the random variable

φ∗ := −ess.supφ∈Φ(−φ).
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Detlefsen and Scandolo (2005) proved that any risk measure of the form

ρG(X) = ess.supQ∈QGE
Q[−X|G]

for QG ⊆M1(P) is a conditional coherent risk measure.

A collection of conditional risk measures, with increasing level of infor-

mation, is called dynamic risk measure. In our simple setting, the dynamic

risk measure is given only by an unconditional and a conditional risk mea-

sure (ρ, ρG). Unless otherwise specified, the conditional risk measure ρG(X)

will be an update of ρ, meaning that ρG = ρ whenever G = {∅,Ω}. There

does not exist a unique update for a risk measure. For example, for a set of

probability measures Q ⊆M1(P), one can define the coherent risk measure:

ρ(X) = sup
Q∈Q

EQ[−X] (2.1)

and the updates:

ρ̂G(X) = ess.supQ∈Q̂GE
Q[−X | G] (2.2)

where Q̂G ⊆ {PG ∩ Q} and

ρ̃G(X) = ess.supQ∈QE
Q[−X | G] (2.3)

where the set Q remains unchanged over time. Update (2.3) is probably one

of the simplest and most intuitive way of updating a risk measure, (Tutsch,

2008). Update (2.2), actually representing a class of possible updates, is more

sophisticated and encompasses two key features of conditional risk measure-

ment. First, the newly available information allows us to drop some proba-

bility measures, by the requirement Q̂G ⊆ Q. Secondly, the property Q ≡ P

on G, means that at time 1 risk measurement proceeds so that the set of

measures constructed is forward rather than backward looking. This way of

updating a risk measure was used, among others, by Detlefsen and Scandolo
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(2005). In what follows we use extensively the two updates (2.2) and (2.3).

2.2.2 Examples of conditional risk measures

For an example consider the risk measure Tail Value at Risk (TVaR), that

was proposed by Artzner et al. (1999) as a way to address the shortcom-

ings of V aR. TVaR is a coherent risk measure and admits the following

representation:

TVaR(X) = sup
Q∈Q

EQ[−X] (2.4)

where

Q := {Q ∈M1(P) :
dQ

dP
≤ λ−1}.

A possible update of type (2.2) for TVaR, proposed by Detlefsen and Scan-

dolo (2005), corresponds to:

T̂VaRG(X) = ess.supQ∈Q̂GE
Q[−X | G] (2.5)

where

Q̂G := {Q ∈ PG :
dQ

dP
≤ λ−1},

here Q̂G = {PG ∩Q}. Update (2.3) for TVaR corresponds to the conditional

risk measure:

T̃VaRG(X) = ess.supQ∈QE
Q[−X | G]. (2.6)

A conditional risk measure that is introduced in this chapter is the condi-

tional coherent entropic risk measure. This arises as a natural generalization

of the static coherent entropic risk measure of Föllmer and Knispel (2011).

In the unconditional case, this risk measure is defined as:

ρe(X) := sup
Q
EQ[−X] (2.7)
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where

Q := {Q ∈M1(P) : H(Q | P) ≤ c}

and

H(Q | P) =

 EQ[ log(dQ
dP ) ] = EP[dQ

dP log(dQ
dP ) ] if Q� P

+∞ otherwise

is the relative entropy of Q with respect to P. A possible update, consistent

with (2.2), is given by:

ρ̂eG(X) := ess.supQ̂GE
Q[−X|G] (2.8)

where

Q̂G := {Q ∈ PG : HG(Q | P) ≤ c}

and

HG(Q | P) := EQ[log(
dQ

dP
) | G] = EP[

dQ

dP
log(

dQ

dP
) | G]

is the conditional relative entropy of Q with respect to P. To verify that

(2.8) is in the class of updates (2.2), we have to check if Q̂G ⊆ {PG ∩ Q}.

The first inclusion Q̂G ⊆ PG is given. Now consider Q ∈ Q̂G:

HG(Q | P) ≤ c ⇒ EP[ HG(Q | P) ] ≤ c ⇒

EP[ EQ[ log(
dQ

dP
)|G] ] ≤ c ⇒ EQ[ log(

dQ

dP
) ] = H(Q | P) ≤ c

where we used Q ≡ P on G.

2.2.3 Sequential consistency

It is reasonable to assume that a dynamic risk measure satisfies some notions

of consistency. To illustrate this issue we present here two examples of incon-

sistency that are not desirable in a dynamic risk measure and that generally

31



�
��

�
��*

P(ω1) P(ω|ω1) P(ω) −X(ω) −Y (ω)

1/2

HH
HHHHj

u

1/2 d

1/3
1/3

1/3

1/3
1/3

1/3

u

m

1/6 10 10

d

m 1/6

1/6

−12 −12

−20 −14

u 1/6 14 20

1/6

d 1/6

−22

−22

−22

−22

��
��

��1

-PPPPPPq

��
��

��1

-PPPPPPq

Figure 2.1: Probability distribution of −X and −Y under P.

occur when we use updates (2.2) and (2.3). Example 4 was introduced by

Artzner et al. (2007). By slightly modifying it, we obtained Example 3 that

we use to show a different type of time inconsistency.

Example 3. Consider the dynamic risk measure (TV aR, T̃V aRG) defined

as in (2.4) and (2.6). Let Ω = {uu, um, ud, du, dm, dd} be the event space

and P assign equal weight to every possible outcome as suggested by the

binomial tree in figure 1. Set λ = 2/3. The set of probability measures Q is

given by:

Q := {Q ∈M1(P) : Q(ω) ≤ 3

2
P(ω) =

1

4
∀ ω ∈ Ω}.

For the financial position:

X = [−10, 12, 20,−14, 22, 22],

TVaR(X) is obtained assigning the highest admissible probability (i.e. 1/4)

to the worst loss, then to the second worst one and so on until the probabil-

ities used sum up to 1. Hence:

TVaR(X) = (14 + 10− 12− 20)
1

4
= −2 ≤ 0.

For the conditional risk measure T̃VaRG we seek to maximize independently

the conditional expectations EQ[−X| u] and EQ[−X| d] over Q ∈ Q. Note

that the probability measure that maximizes the expectation in the upper
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brunch (u), is generally different from the one maximizing the lower branch

(d). For the upper (u) branch the probability Q ∈ Q that achieve the maxi-

mum expectation is obtained by setting Q(uu|u) = 1, Q(um|u) = Q(ud|u) =

0 and Q(u) = 1
4
. Then it may be assumed that Q(du|d) = Q(dm|d) =

Q(dd|d) = 1
3
. Similarly for the lower branch (d) we can find R ∈ Q such that

supQ∈QE
Q[−X| d] = ER[−X| d] = 14. Therefore we have:

T̃VaRG(X)(ω) = ess.supQ∈QE
Q[−X | G] =

 10 ≥ 0 if ω ∈ {uu, um, ud}

14 ≥ 0 if ω ∈ {du, dm, dd}.

Here, the position is acceptable at time 0 and 2 units of capital can be

withdrawn from it. In contrast, at time 1, in both scenarios, the position

is considered unacceptable and an amount of respectively 10 and 14 units

of capital is required. This type of inconsistency, is particularly undesirable

from the regulatory point of view as the risk holder may not be able to raise

all the money needed (12 and 16 units in this example), leading to a possible

insolvency risk. A good risk measure should detect the certainty of future

capital needs, so that appropriate levels of capital can already be held at

time 0.

The above example is close to the one used by Artzner et al. (2007) to

illustrate a different type of inconsistency as follows:

Example 4 (Artzner et al. (2007)). Here we consider update (2.2) for TVaR.

Using the same setting than the previous example, we have

Q̂G := {Q ∈ PG : Q(ω|ω′) ≤ 3

2
P(ω|ω′) =

1

2
∀ ω ∈ Ω and ω′ = u, d.}

For the financial position:

Y = [−10, 12, 14,−20, 22, 22],
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the risk measurement at time 0 is:

TVaR(Y ) = (20 + 10− 12− 14)
1

4
= 1 ≥ 0.

To calculate T̂ V aRG, we need to maximize the conditional probability of

adverse outcomes, under the constraint Q(ω|ω′) ≤ 1
2
. The probability of the

upper and lower branch is already fixed to be equal to P, so Q(u) = Q(d) = 1
2

for every Q ∈ Q̂G. Then, we obtain:

T̂VaRG(Y ) =

 (10− 12)1
2

= −1 ≤ 0 if ω ∈ {uu, um, ud}

(20− 22)1
2

= −1 ≤ 0 if ω ∈ {du, dm, dd}.

At time 0, the position Y is considered unacceptable and an amount of 1

unit of capital is required. At time 1, the position is considered acceptable

in every state of the world and 1 unit of capital can actually be withdrawn.

It means that TVaR penalizes a position that will anyway be accepted later

on, requiring some capital that is not needed and that could be invested in

a better way.

The same inconsistency holds for the coherent entropic risk measure ρe(·)

and the update ρ̂eG(·) as it is shown in the following example.

Example 5. Assume the same setting as in Example 3 and set c = − ln(2/3).

For the financial position:

Z = [−3, 14, 10,−9, 32, 32],

standard optimization techniques give ρe(Z) = 0.6821 ≥ 0. The probability

measure that attains the maximum in (2.7) is

Q = [0.2931, 0.0913, 0.1201, 0.4424, 0.0266, 0.0266].
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For the conditional entropic risk measure, we have:

ρ̂eG(Z) =

 −0.3483 ≤ 0 if ω ∈ {uu, um, ud}

−0.3108 ≤ 0 if ω ∈ {du, dm, dd}.

Again, at time 0 it is required to hold some capital, that in no-case will

be asked at time 1.

To address such inconsistencies the notion of sequential consistency was

proposed by Roorda and Schumacher (2007). It emerges as a combination of

the two requirements of acceptance and rejection consistency, introduced by

Weber (2004) for cash-flows and Tutsch (2006) for random variables.

Definition 3. An unconditional and a conditional risk measure ρ and ρG are

said to be sequentially consistent if, for every X ∈ X , they satisfy:

ρG(X) ≤ 0 =⇒ ρ(X) ≤ 0 acceptance consistency (2.9)

ρG(X) ≥ 0 =⇒ ρ(X) ≥ 0 rejection consistency. (2.10)

A risk measure satisfying (2.9) would not be subject to the inconsistencies

seen in Example 4. Similarly, a risk measure satisfying (2.10) would avoid

inconsistency faced in Example 3.

As stated by Roorda and Schumacher (2008) a dynamic risk measure

(ρ(X), ρG(X)) is sequentially consistent if and only if, for every X ∈ X ,

ess.infω∈ΩρG(X) ≤ ρ(X) ≤ ess.supω∈ΩρG(X). (2.11)

This implies that the capital requirement at time 0 cannot be higher than

the highest amount that could ever be asked in the future. On the other

side, it cannot be smaller than the lowest amount of capital that would ever

be required in the future.
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2.3 Conditions for sequential consistency

2.3.1 Preliminaries

Before starting, we recall some notions that are essential for the next sections.

Let L0(R) be the space of extended random variables, i.e. of maps from Ω

to R := [−∞,∞].

Definition 4. A set Y ⊆ L0(R) is upward directed if, for any two elements

Y1, Y2 ∈ Y, there is always a third one Y ∈ Y such that Y ≥ max(Y1, Y2).

For upward directed sets, the following result holds:

Lemma 2.3.1. If Y ⊆ L0(R) is upward directed, then

EP[ess.supY ] = sup
Y ∈Y

EP[Y ],

provided that both expectations exist.

The same holds if we replace the expectation with the expectation con-

ditional to a σ-algebra G ⊆ F (for a proof, see Detlefsen and Scandolo

(2005)). In what follows we will extensively apply the above result to the

set C := {EQ[−X | G], Q ∈ Q̂G}. Here, for every X ∈ X , each probability

measure Q ∈ Q̂G identifies a random variable EQ[−X | G] and the essential

supremum of C can be expressed as

ess.supQ∈Q̂GE
Q[−X|G].

Following Detlefsen and Scandolo (2005), consider a probability space

(Ω,F ,P) and a σ-algebra G ⊆ F . A regular conditional probability QG is

defined as a map QG : Ω × F → [0, 1], that is, a version of the expected

conditional value of IA for any A ∈ F and a probability measure for ω ∈ Ω.

For every Q ∈M1(P), the pasting probability PQG is defined as

PQG(A) := EP[QG(·, A)] ∀A ∈ F ,
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where QG(·, A) is a version of EQ[IA|G].

In the case of a two-period binomial tree this concept becomes straight-

forward. The probability PQG is obtained using P for the first period, from

time 0 to time 1, and then switching to Q in the second one, from time 1 to

time 2. The main property of pasting probability is:

EPQH [X | G] = EP[ EQ[X | H] | G] for H ⊆ G,

for any σ-algebra H such that H ⊆ G ⊆ F .

2.3.2 Conditions for sequential consistency

Sequential consistency conditions for update ρ̂G(·)

Consider two risk measures as in (2.1) and (2.2). For the dynamic risk

measure (ρ, ρ̂G), the following proposition holds:

Proposition 2.3.2. (i) If, for every X ∈ X , the set C := {EQ[−X | G], Q ∈ Q̂G}

is upward directed, then the risk measures ρ and ρ̂G are rejection con-

sistent.

(ii) If, for every Q in Q, the pasting probability PQG is in Q̂G , then the

risk measures ρ and ρ̂G are acceptance consistent.

Hence, if (i) and (ii) hold, then ρ and ρ̂G are sequentially consistent.

Proof. (i) Let ρ̂G(X) ≥ 0. Since the expected value of a positive random

variable is again positive, we have:

ρ̂G(X) = ess.supQ∈Q̂GE
Q[−X|G] ≥ 0 =⇒ EP[ ess.supQ∈Q̂GE

Q[−X|G] ] ≥ 0.

As the set C is upward directed, Lemma 2.3.1 leads to:

EP[ ess.supQ∈Q̂GE
Q[−X | G] ] = sup

Q∈Q̂G
EP[ EQ[−X | G] ] ≥ 0
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but Q ≡ P on G, therefore

EP[ EQ[−X|G] ] = EQ[ EQ[−X|G] ] = EQ[−X] =⇒ sup
Q∈Q̂G

EQ[−X] ≥ 0.

Since Q̂G ⊆ Q, we obtain:

ρ(X) = sup
Q∈Q

EQ[−X] ≥ sup
Q∈Q̂G

EQ[−X] ≥ 0

as desired.

(ii) If ρ̂G(X) ≤ 0 then

EQ[−X | G] ≤ 0 ∀Q ∈ Q̂G.

As PQG ∈ Q̂G for every Q ∈ Q:

EPQG [−X | G] ≤ 0 ∀Q ∈ Q.

By definition of the pasting probability:

0 ≥ EPQG [−X | G] = EP[ EQ[−X | G] | G] = EQ[−X | G] ∀Q ∈ Q.

Hence:

EQ[−X] = EQ[ EQ[−X | G] ] ≤ 0 ∀Q ∈ Q

and

ρ(X) = sup
Q∈Q

EQ[−X] ≤ 0

as desired.

Remark 1. (i) is a technical condition ensuring that we can exchange the

essential supremum and the expectation, where (ii), instead, requires that at

time 0, we only use probability measures that will be also used for the risk

assessment at time 1. In this way, we avoid measuring risk using probability

measures that, in any case, will not even be considered when the information
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G is revealed.

Remark 2. Risk measures as in (2.1) and (2.2) generally fail acceptance

consistency. Indeed, the proof of Prop. 2.3.2 cannot be applied in this case,

because:

ess.supQ∈Q̂GE
Q[−X|G] ≤ 0 =⇒ sup

Q∈Q̂G
EQ[−X] ≤ 0

but generally,

sup
Q∈Q

EQ[−X] ≥ sup
Q∈Q̂G

EQ[−X] ≤ 0,

so we cannot deduce

ρ(X) ≤ 0.

Lemma 2.3.3. TV aR and T̂ V aRG are rejection consistent.

Proof. To prove it, we need to verify that the set C := {EQ[−X | G], Q ∈ Q̂G}

is upward directed , i.e. condition (i). Consider two probability measures Q′

and Q′′ in Q̂G and define Q as

Q(B) = Q′(A ∩B) +Q′′(Ac ∩B) (2.12)

where the set A ∈ G is defined as

A := {EQ′ [−X | G] ≥ EQ′′ [−X | G]}.

It is not difficult to see that Q ∈ Q̂G. For every C ∈ G

Q(C) = Q′(A ∩ C) +Q′′(Ac ∩ C) = P(A ∩ C) + P(Ac ∩ C) = P(C)

so Q ≡ P on G. Similarly, for every B ∈ F

Q(B) = Q′(A ∩B) +Q′′(Ac ∩B) ≤ λ−1(P(A ∩B) + P(Ac ∩B)) ≤ λ−1P(B)

39



so dQ
dP ≤ λ−1 and

EQ[−X | G] = IAEQ′ [−X | G] + IAcEQ′′ [−X | G] (2.13)

≥ max{EQ′ [−X | G], EQ′′ [−X | G]}.

Therefore C is upward directed and TV aR and T̂ V aRG are rejection consis-

tent.

TVaR and the update T̂ V aRG do not satisfy sequential consistency be-

cause, as we have already seen in Example 4, they are acceptance incon-

sistent. It is immediate to verify that condition (ii) of Proposition 2.3.2

is not satisfied because the probability measure Q∗ ∈ Q that maximizes

supQ∈QE
Q[−X] in Example 4, is such that PQ∗G does not belong to Q̂G .

Lemma 2.3.4. The coherent entropic risk measures ρe(·) and ρeG(·) are re-

jection consistent.

Proof. Again, we only need to prove that the set C := {EQ[−X|G], Q ∈ Q̂G}

is upward directed for every X ∈ X . Following the steps of Lemma 2.3.3, we

define a probability measure Q as in (2.12). We already know that Q ≡ P

on PG. By definition:

HG(Q|P) = EQ[log
dQ

dP
| G]

= IAEQ′ [log
dQ′

dP
|G] + IAcEQ′′ [log

dQ′′

dP
|G]

≤ max{EQ′ [log
dQ′

dP
|G], EQ′′ [log

dQ′′

dP
|G]} ≤ c

so that Q ∈ Q̂G and the set is upward directed.

Also (ρe(·), ρeG(·)) does not satisfy sequential consistency as follows from

Example 5.
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Sequential consistency conditions for update ρ̃G(·)

We now discuss time consistency for risk measures where the set of probability

measures is not updated when new information arrives, that is, the risk

measures (2.1) and (2.3).

Proposition 2.3.5. (i) The risk measures ρ and ρ̃ are acceptance consis-

tent.

(ii) If, for every X ∈ X

(a) the set C := {EQ[−X | G] : Q ∈ Q} is upward directed and

PQG ∈ Q for every Q in Q; or

(b) the supremum in the definition of ρ̃ is attained, that is ∃ P ∗ ∈ Q:

EP ∗ [−X |G] = ess sup
P∈Q

EP [−X |G] ≥ EP ′ [−X |G], ∀P ′ ∈ Q

(2.14)

then ρ and ρ̃ are rejection consistent. Hence, if (a) or (b) hold, then ρ and

ρ̃ are sequentially consistent.

Proof. (i) is proved by Tutsch (2008). Now we show that either of the con-

ditions (a) and (b) implies rejection consistency. For (a) the proof follows

the same steps of Prop. 2.3.2(i). For (b), condition (2.14) together with

ρ̃G(X) ≥ 0,

imply that

∃P ∗ ∈ Q such that EP ∗ [−X | G] = ρ̃G(X) ≥ 0.

Then,

EP ∗ [EP ∗ [−X | G]] = EP ∗ [−X] ≥ 0.
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As P ∗ ∈ Q, we have:

ρ(X) = sup
Q∈Q

EQ[−X] ≥ EP ∗ [−X] ≥ 0.

Remark 3. Conditional risk measures with the additional property of being

continuous from below admit a representation in terms of probability mea-

sures where the supremum is attained. Nevertheless, it is usually attained on

a different set than Q, such that condition (2.14) is not necessarily verified.

For details see Bion-Nadal (2004). The situation becomes easier if we work

in a setting where Ω is finite. In this case, the supremum is attained if the

set Q is closed and convex and there exists a probability measure P ∈ Q

such that

PQG ∈ Q for every Q ∈ Q. (2.15)

An example of such a risk measure, satisfying sequential consistency on a

finite probability space, was proposed by Roorda and Schumacher (2007).

Define

STV aR(X) = sup
Q∈Q′

EQ[−X]

where

Q′ := {Q ∈M1(P) :
dQ

dP
≤ λ−1,

dPQG
dP

≤ λ−1}

and consider the update

˜STV aRG(X) = ess.supQ∈Q′E
Q[−X | G].

When Ω is finite, the set Q′ is a polytope and P satisfies condition (2.15),

so, using convex analysis arguments, it is possible to show that the essential

supremum is attained and the risk measure is sequentially consistent. A

similar argument, where the supremum is attained, is used by Fasen and

Svejda (2010) to construct a sequentially consistent version of distortion risk

measures in a finite framework.
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2.4 Constructing sequentially consistent risk

measures

2.4.1 General construction

In the previous sections, conditions for the sequential consistency of dynamic

risk measures were presented. However no risk measure considered actually

satisfies these conditions on an infinite probability space. Now, drawing in-

spiration from Roorda and Schumacher (2007), we show that it is possible to

slightly modify a dynamic risk measure in order to turn it into a sequentially

consistent one. The method is applied to produce a sequentially consistent

version of the coherent entropic risk measure as well as the class of coherent

distortion / Choquet risk measures. A numerical example is given for TVaR.

Start again with a coherent risk measure as in (2.1). Suppose that we

consider ρ suitable for our measurement purposes, but the update ρ̂G does

not satisfy the conditions for sequential consistency required by Proposition

2.3.2. In order to construct a sequentially consistent risk measure, starting

from the update ρ̂G, we work backwards, defining a new unconditional risk

measure as:

ρ̂′(X) = sup
Q∈Q̂′

EQ[−X]

where

Q̂′ := {Q ∈M1(P) : Q ∈ Q, PQG ∈ Q̂G}.

Proposition 2.4.1. If the set C := {EQ[−X |G] : Q ∈ Q̂G } is upward

directed, then the risk measures ρ̂′(X) and ρ̂G(X) are sequentially consistent.

Proof. From Prop. 2.3.2 they are sequentially consistent by construction.

Remark 4. Notice that ρ(X) and ρ̂′(X) admit the same update (2.2), i.e.

ρ̂′G(X) = ess.supQ∈Q̂′G
EQ[−X | G] = ρ̂G(X)

43



where

Q̂′G := {Q ∈ PG : Q ∈ Q̂G}.

Moreover, they are close in the sense that ρ̂′(X) requires, at time 0, all the

conditions on the set of measures, required by ρ(X), but in addition the

conditions that will be required at time 1, when new information arrives.

In other words, the condition PQG ∈ Q̂G excludes, at time 0, probability

measures that will not be used in the representation of the update. In this

way, we avoid rejecting financial positions that would be accepted when the

information in G is revealed.

Remark 5. Once we have constructed the new unconditional risk measure

ρ̂′(X) = sup
Q∈Q̂′

EQ[−X]

where

Q̂′ := {Q ∈M1(P) : Q ∈ Q, PQG ∈ Q̂G},

we can easily see that, if the set C := {EQ[−X |G] : Q ∈ Q } is upward

directed, also the update (2.3)

ρ̃′G(X) = ess.supQ∈Q̂′E
Q[−X|G]

satisfies sequential consistency as it verifies all the conditions required in

Prop. 2.3.5. We remark that in this case, the two updates are actually the

same, ie:

ess.supQ∈Q̂′E
Q[−X|G] = ess.supQ∈Q̂′G

EQ[−X|G]

due to the structure of the probability measure sets Q̂′ and Q̂′G.

2.4.2 Examples of sequentially consistent risk measures

In this section, sequentially consistent versions of TVaR, coherent entropic,

and distortion / Choquet risk measures are introduced.
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We start from the static TVaR and the update T̂ V aRG. From Example

4, we already know that this update fails acceptance consistency. As shown

in Lemma 2.3.3, the set C := {EQ[−X | G] : Q ∈ Q̂G} is upward directed.

Therefore, we can define a new unconditional risk measure, as:

T̂ V aR
′
(X) = sup

Q∈Q̂′
EQ[−X]

where

Q̂′ := {Q ∈M1(P) : Q ∈ Q, PQG ∈ QG} (2.16)

= {Q ∈M1(P) :
dQ

dP
≤ λ−1,

dPQG
dP

≤ λ−1}.

From Prop. 2.4.1, T̂ V aR
′

and T̂ V aRG are sequentially consistent.

In the following example it is seen how the sequentially consistent version

of TVaR solves the inconsistencies faced in the examples 3 and 4.

Example 6. To see this, consider again the same setting as in Example

4, where Ω = {uu, um, ud, du, dd, dm}, P(ω) = 1/6 for every ω ∈ Ω and

λ = 2/3. The set of probability measures considered at time 0 and time 1

are respectively:

Q̂′ := {Q ∈M1(P) : Q(ω) ≤ 3

2
P(ω) =

1

4
,

Q(ω|ω′) ≤ 3

2
P(ω|ω′) =

1

2
∀ ω ∈ Ω, ω′ = {u, d}}

and

Q̂G = {Q ∈ PG : Q(ω|ω′) ≤ 3

2
P(ω|ω′) =

1

2
∀ ω ∈ Ω, ω′ = {u, d}}.

For the financial position:

Y = [−10, 12, 14,−20, 22, 22],
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we have

T̂VaR
′
(Y ) = (10− 12 + 20− 22)

1

4
= −1 6= TV aR(Y )

and

T̂VaRG(Y ) =

 (10− 12)1
2

= −1 if ω = uu, um, ud

(20− 22)1
2

= −1 if ω = du, dm, dd

Therefore, the acceptance inconsistency has been eliminated.

The new risk measure does not present the rejection inconsistency of

Example 3 either. Indeed for the random variable:

X = {−10, 12, 20,−14, 22, 22},

we have

T̂ V aR
′
(X) = (10− 12 + 14− 22)

1

4
= −5

2

while

T̂VaRG(X) =

 (10− 12)1
2

= −1 if ω = uu, um, ud

(14− 22)1
2

= −4 if ω = du, dm, dd.

Now we show how Prop. 2.4.1 can be used to construct a sequentially

consistent version of the coherent entropic risk measure. As shown in Lemma

2.3.4, the set C := {EQ[−X|G], Q ∈ Q̂G} is upward directed. To have se-

quential consistency we define a new risk measure

ρ′e(X) := sup
Q̂′

EQ[−X] (2.17)

where

Q̂′ := {Q ∈M1(P) : H(Q|P) ≤ c and HG(PQG|P) ≤ c}.

From Prop. 2.4.1 (2.17) and (2.8) are sequentially consistent.
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The same procedure can be used to obtain a sequentially consistent ver-

sion of distortion risk measures. Distortion risk measures are types of Cho-

quet integrals (Denneberg, 1994b), and can be seen as generalizations of

TVaR. A similar result to what we present here was obtained by Fasen and

Svejda (2010) for distortion risk measures in a finite setting. For a compre-

hensive discussion of distortion risk measures we refer to Carlier and Dana

(2003). Here, we define a distortion risk measure as:

ρC(X) = sup
Q∈Q

EQ[−X],

where

Q = {Q ∈M1(P) : Q(A) ≤ g(P(A)) ∀A ∈ F}

and g : [0, 1] 7→ [0, 1] is an increasing, concave function such that:

g(0) = 0; g(1) = 1.

A possible update for a distortion risk measure is the following:

ρ̂CG (X) = sup
Q̂G

EQ[−X|G] (2.18)

where

Q̂G := {Q ∈ PG : QG(·, A) ≤ g(PG(·, A)) ∀A ∈ F}

and QG(·, A) is a version of EQ[IA|G]. To see that (2.18) belongs to the class

of updates (2.2), we show that Q̂G ⊆ Q. For every Q ∈ Q̂G and for every

A ∈ F :

QG(·, A) ≤ g(PG(·, A)) ⇒ (2.19)

PQG(·, A) = EP[QG(·, A)] ≤ EP[g(PG(·, A))] ⇒ (2.20)

Q(A) ≤ g(EP[PG(·, A)]) = g(P(A)), (2.21)

where, in (2.20) we used the definition of pasting probabilities and (2.21)
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follows from Q ∈ PG and the Jensen’s inequality. We have already seen from

Example 3 that this kind of update generally is not acceptance consistent.

Now, consider the new risk measure:

ρ̂′C(X) = sup
Q∈Q̂′

EQ[−X] (2.22)

where

Q̂′ := {Q ∈M1(P) : Q(A) ≤ g(P(A)) andQG(·, A) ≤ g(PG(·, A)) ∀A ∈ F},

the following result holds:

Lemma 2.4.2. The risk measures (2.22) and (2.18) are sequentially consis-

tent.

Proof. We need to prove that the set C := {EQ[−X|G], Q ∈ Q̂G} is upward

directed. To see it, consider again a probability measure Q and the set A

defined as in (2.12), we only need to show that Q ∈ Q̂G. If P(A) = {0, 1} the

proof is immediate. Assume now that P(A) 6= {0, 1}, by the definition of Q′

and Q′′, for every B ∈ F we have:

Q(B) = P(A)Q′(B|A) + P(Ac)Q′′(B|Ac)

≤ P(A)g(P(B|A)) + P(Ac)g(P(B|Ac))

≤ g(P(A)P(B|A) + P(Ac)P(B|Ac)) = g(P(B)),

where we used the concavity of g(·). It follows from Prop. 2.4.1 that (ρ̂′C , ρ̂CG )

is sequentially consistent.
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2.5 The solvency time horizon in dynamic

risk measurement

2.5.1 Sequential consistency in multiple periods

Here we briefly discuss the results of Sections 2.3 and 2.4 in a multi-period

setting. Let (Ω,F ,P) be a probability space and {F}n∈[0,N ] a filtration with

N ∈ N and F ≡ FN . A dynamic coherent risk measure is then defined as a

collection

(ρ0, ρ1, . . . , ρN−1), (2.23)

where:

ρn(X) := ρFn(X) = ess.supQ∈QnE
Q[−X | Fn] ∀n ∈ [0, . . . , N − 1].

for a certain set of measures Q0, . . . ,QN−1.

The extension of the notion of sequential consistency to this setting is

straightforward.

Definition 5. The dynamic risk measure (ρ0, ρ1, . . . , ρN−1) is sequentially

consistent if, for every X ∈ X , it satisfies:

(i) acceptance consistency

ρn(X) ≤ 0 =⇒ ρn−1(X) ≤ 0 ∀n ∈ [0, N − 1]; and (2.24)

(ii) rejection consistency

ρn(X) ≥ 0 =⇒ ρn−1(X) ≥ 0 ∀n ∈ [0, N − 1] (2.25)

Again, given a static risk measure as in (2.1) we can define the updates:

ρ̂n(X) = ess.supQ∈Q̂nE
Q[−X|Fn] (2.26)
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and

ρ̃n(X) = ess.supQ∈QE
Q[−X|Fn] (2.27)

where

Q̂n ⊆ {Q ∈ Pn ∩ Q ∈ Q}

and

Pn := {Q ∈M1(P) : Q ≡ P on Fn}

The results presented in Section 2.3 still hold. Specifically we have:

Corollary 2.5.1. (i) If, for every X ∈ X , the set C := {EQ[−X | Fn], Q ∈ Q̂n}

is upward directed for every n ∈ [0, . . . , N − 1], then the risk measure

(ρ, ρ̂1, . . . , ρ̂N−1) is rejection consistent.

(ii) If, for every Q in Q, the pasting probability PQFn is in Q̂n for every

n ∈ [0, . . . , N−1], then the risk measure (ρ, ρ̂1, . . . , ρ̂N−1) is acceptance

consistent.

Hence, if (i) and (ii) hold, then (ρ, ρ̂1, . . . , ρ̂N−1) is sequentially consistent.

Corollary 2.5.2. (i) The dynamic risk measure (ρ, ρ̃1, . . . , ρ̃N−1) is ac-

ceptance consistent.

(ii) If, for every X ∈ X ,

(a) the set C := {EQ[−X | Fn] | Q ∈ Q} is upward directed and

PQn ∈ Q for every Q in Q for every n ∈ [0, . . . , N − 1], or

(b) the supremum in (2.27) is attained, i.e. ∃ P ∗ ∈ Q s.t.:

EP ∗ [−X |Fn] = ess sup
P∈Q

EP [−X |Fn] ≥ EP ′ [−X |Fn] ∀P ′ ∈ Q

(2.28)

then (ρ, ρ̃1, . . . , ρ̃N−1) is rejection consistent.

Hence, if (a) or (b) hold, then (ρ, ρ̃1, . . . , ρ̃N−1) is sequentially consistent.

Remark 6. The procedure to build a sequentially consistent version of a

dynamic coherent risk measure, is the same as the one seen in Section 2.4.

50



We start from the update (2.26) at time N − 1 and we proceed backwards,

adding all the conditions that we need. For a random variable X, the new

risk measure will be (ρ̂′n)n∈[0,N ], where:

ρ̂′n(X) = ess.supQ∈Q̂′nE
Q[−X|Fn]

and the set Q̂′n is defined as:

Q̂′n := {Q ∈ Pn : PQl ∈ Q̂′l ∀l ∈ N, s.t. n ≤ l ≤ N − 1}.

Note that, at the penultimate time, ρ̂′N−1 coincides with ρN−1.

2.5.2 Dynamic risk measures and solvency time hori-

zon

Here we consider the effect of a solvency time horizon on risk measurement.

Often regulatory capital requirements are specified in relation to a fixed time

horizon, eg 1 year in insurance regulation such as Solvency II (or a much

shorter horizon of 10 days, in banking under Basel II). When a portfolio

contains long term liabilities (eg insurance contracts) that expire beyond

the time horizon, the random terminal payoff has to be substituted with its

(random) market consistent value at the time horizon. Valuation may be

carried out either using “mark-to-market” replication arguments or, if that

is not possible, using a “mark-to-model” cost of capital approach (see eg

Wüthrich and Salzmann (2010)).

Here, we assume that a “mark-to-market” valuation is possible via a risk

neutral measure Q∗. Hence, the position X is substituted with its price at

the solvency time horizon δ. In insurance, this price is for example the price

of reinsuring the position at time δ. In what follows, we will introduce a new

risk measure that takes into account this aspect. Consider a random variable
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X ∈ X and define the functional:

ρδ0(X) := sup
P∈Q

EP
[
−EQ∗ [X | Fδ]

]
for a certain pricing measure Q∗. In general, for n ∈ [0, N − 1],

ρδn(X) := ess.supP∈QnE
P
[
−EQ∗ [X|Fn+δ] | Fn

]
.

For the moment, we do not specify the set Qn and thus what kind of up-

date we will be using. Note that ρδn(X) is nothing but the application of a

conditional coherent risk measure

ρn(·) = ess.supP∈QnE
P [− · |Fn ]

to the conditional expectation of the position X under a certain probability

measure Q∗. It is straightforward to prove that the conditional risk measure

ρδn(X) is coherent.

2.5.3 Sequential consistency of ρδ(·)

We now consider whether the coherent risk measures

ρδn(X) = ρn(EQ∗ [X | Fn+δ])

and

ρδn+1(X) = ρn+1(EQ∗ [X | Fn+1+δ])

inherit some time consistency from ρn and ρn+1. For convenience, consider

ρδ0(X) and ρδ1(X):

ρδ0(X) := sup
Q∈Q

EQ[ EQ∗ [−X | Fδ] ] (2.29)

and

ρδ1(X) := ess.supQ∈Q1
EQ[ EQ∗ [−X | F1+δ] | F1] (2.30)
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for certain sets Q and Q1.

Lemma 2.5.3. If ρ0(X) and ρ1(X) are acceptance consistent, then so are

ρδ+1
0 (X) and ρδ1(X).

Proof. If ρ0(X) and ρ1(X) are acceptance consistent, then

ρδ1(X) = ρ1( EQ∗ [X | F1+δ] ) ≤ 0 =⇒ ρ0( EQ∗ [X | F1+δ] ) = ρδ+1
0 (X) ≤ 0.

To establish consistency between ρδ0 and ρδ1, we need some additional

conditions on the set Q and the probability measure Q∗. In particular, we

recall that a risk measure is law-invariant, if it assigns the same value to

financial positions having the same distribution.

Proposition 2.5.4. If the risk measures ρ0 and ρ1 are acceptance consistent,

and either

(i) The probability measure Q∗ belongs to Q and QQ∗n ∈ Q for every Q ∈ Q

and for every n ∈ [0, N − 1]; or

(ii) Q∗ ∈ M1(P) and the risk measure ρ(·) is coherent law-invariant and

continuous from below,

then ρδ0 and ρδ1 are acceptance consistent.

Proof. (i) We already know that ρδ1(X) ≤ 0, implies

ρ1+δ
0 (X) = sup

Q∈Q
EQ[ EQ∗ [−X | F1+δ] ] ≤ 0

so

EQ[ EQ∗ [−X | F1+δ] ] ≤ 0 ∀Q ∈ Q

In particular we can choose Q = RQ∗δ ∈ Q for every R ∈ Q and obtain

ERQ∗δ [ EQ∗ [−X | F1+δ] ] = ER[ EQ∗ [−X | Fδ] ] ≤ 0 ∀R ∈ Q
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therefore

ρδ0(X) = sup
R∈Q

ER[ EQ∗ [−X | Fδ] ] ≤ 0.

(ii) The proof follows from Corollary 4.59 in Föllmer and Schied (2004),

where is proved that ρ is monotone with respect to the second order

stochastic dominance �. From

EQ∗ [−X | F1+δ] � EQ∗ [−X | Fδ]

and Lemma 2.5.3, we obtain the acceptance consistency of ρδ0 and ρδ1.

Therefore, acceptance consistency can still be valid when we substitute

X with EQ∗ [X|Fδ].

Remark 7. The same does not hold for rejection consistency. Even if ρ0(X)

and ρ1(X) are rejection consistent, this does not imply that ρδ0(X) and ρδ1(X)

are as well. To see it, consider

ρδ0(X) := sup
Q∈Q

EQ[ EQ∗ [−X | Fδ] ] (2.31)

and

ρδ1(X) := ess.supQ∈Q1
EQ[ EQ∗ [−X | F1+δ] | F1] (2.32)

for certain sets Q and Q1. Again from the rejection consistency of ρ0(X)

and ρ1(X), we have

ρδ1(X) ≥ 0 =⇒ ρ
1+δ(X)
0 ≥ 0

but in general we do not have enough information to derive

ρ1+δ
0 (X) ≥ 0 =⇒ ρδ0(X) ≥ 0.

Then, if a position is rejected, this does not give enough information to
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reject also its conditional expectation, which is generally less volatile than

the position itself.

2.6 Conclusions

We contribute to the discussion of the properties of dynamic risk measures,

focusing on the time consistency of conditional coherent risk measures. Tech-

nical conditions are discussed to ensure sequential consistency for different

types of updates. These requirements are generally not satisfied by coherent

risk measures, such as e.g. TVaR. Hence, it becomes sometimes necessary

to modify slightly the risk measure in order to obtain consistent dynamic

risk measurements. This is achieved by an adjustment to the coherent risk

measure set of generalized scenarios. The procedure amounts to excluding, a

priori, probability measures that will not be taken into account, in any case,

when new information is available. As an example, an application of this

approach to TVaR, to the coherent entropic risk measure and to the class of

distortion / Choquet risk measures is presented. Finally, we discuss the role

of the solvency time horizon. When the position has a long term, solvency

regulation often requires that risk is measured at an earlier time horizon. In

this case, the argument of the risk measure is the position’s fair value at that

horizon. In this changed setting, acceptance consistency can be preserved,

but in general we lose rejection consistency.
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Chapter 3

Quantifying and controlling

residual estimation risk

Abstract: In the present contribution, we address the problem of quanti-

fying and controlling the impact of parameter uncertainty on risk measures

used to calculate solvency capital requirements. We introduce a new mech-

anism to quantify this impact measured as the additional capital needed to

allow for randomness in the data sample. Generalizing the arguments of

Gerrard and Tsanakas (2011), we show that for risk measures used in prac-

tice, parameter uncertainty originates a residual risk that can increase the

probability of insolvency and the size of the shortfall. For location-scale dis-

tribution families, we prove the effectiveness of three approaches for reducing

this residual risk. These are based on (a) raising the capital requirement, (b)

Bayesian predictive distributions under probability-matching priors (Severini

et al., 2002) and (c) residual risk estimation via parametric bootstrap. For

heavy-tailed distributions it emerges that for law-invariant coherent risk mea-

sures the residual risk is hard to quantify and control. Hence, we investigate

a truncated version of Tail Value at Risk (Cont et al., 2010) and investigate

the effectiveness of (a) and (b) above for heavy-tailed distributions arising as

increasing transformations of location-scale families. Numerical results ob-

tained via Monte-Carlo simulations demonstrate that the proposed methods
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still perform well.

3.1 Introduction

A risk measure is a map that assigns to every financial position a number

summarizing the information relative to the future monetary outcomes of the

financial position and their probability. Risk measures have become everyday

tools in the quantification of risk and receive major interest from both prac-

titioners and academics in finance and actuarial science. We refer, among

others, to Goovaerts et al. (1984) and Wang et al. (1997) for a theoretical

approach to risk measures in insurance; to Artzner et al. (1999), Delbaen

(2002), Föllmer and Schied (2002), Frittelli and Rosazza Gianin (2002) and

Acerbi (2002) for an in-depth analysis of coherent, spectral and convex risk

measures and to McNeil et al. (2005) for an overview of the literature with

focus on statistical methods.

The wide majority of risk measures used in finance and actuarial science

are law-invariant (Kusuoka (2001), Acerbi (2007)), so that their outcome

depends uniquely on the distribution of the financial loss itself. In practice,

such distribution is unknown and estimated from a finite sample of data. The

estimated risk measure is then subject to parameter/model error. There is

a wide literature on parameter and model uncertainty in risk analysis, see

for instance Cairns (2000) and Gibson, R. (ed.) (2000). The impact of this

estimation procedure on risk measurement has been investigated by Jorion

(1996) and Gerrard and Tsanakas (2011) for Value at Risk, by Dowd and

Blake (2006) Gourieroux and Liu (2006), Heyde et al. (2007), Cont et al.

(2010) for coherent, spectral and distortion risk measures. There is also a

wide literature on quantile estimation that is related to this subject, see

for example Christoffersen (1998), McNeil and Frey (2000). For statistical

methods for estimating VaR and TVaR, including methods from Extreme

Value Theory, see McNeil et al. (2005).

In the present contribution, we follow a parametric approach where the
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loss probability distribution is known while the parameters are unknown.

The randomness implicit in the parameter estimation generates an exposure

to uncertainty that is not addressed by the risk measure itself. In particu-

lar, Gerrard and Tsanakas (2011) prove that parameter uncertainty increases

the probability of failure when the capital is calculated according to Value-

at-Risk. They demonstrate the effectiveness of two approaches based, re-

spectively, on frequentist statistics and Bayesian prediction with probability

matching priors (Severini et al., 2002). Here, we generalize their arguments to

law-invariant, translation invariant and positive homogeneous risk measures

and propose a frequentist approach to measuring the impact of parameter

uncertainty on risk assessment. The estimated risk measure is considered as

a random variable depending on a sample of available data. If there was no

parameter uncertainty, the risk measure would be the minimum amount of

capital required to make the position acceptable. Due to the randomness in

the sample, the estimated risk measure could be higher or lower than the

nominal capital. Hence we suggest measuring the impact of parameter un-

certainty as the extra capital needed to account for this additional source of

uncertainty, calculated under the true but unknown parameters and we call

this residual estimation risk.

Once the residual estimation risk has been quantified, we investigate three

different approaches to control it:

(a) Setting the capital requirement according to a more conservative risk

measure to compensate the impact of parameter uncertainty;

(b) Calculating the capital using the Bayesian predictive distribution of

the loss;

(c) Increasing the estimated risk measure, by an amount of capital cor-

responding to the residual estimation risk as estimated by parametric

bootstrap.

For location-scale families all these methods prove to be effective and their
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performance does not depend on the true but unknown parameters. In par-

ticular we show that (a) eliminates the residual estimation risk completely.

The Bayesian approach (b) achieves the same result for location families. For

scale families, it allows to control a ratio of the loss and estimated capital,

while for location-scale families its effectiveness is demonstrated numerically.

We also demonstrate that for location-scale families, every iteration of para-

metric bootstrap leads to a reduction of the risk and does not increase the

computational expense and it works exactly for location families.

Recently there has been a debate on the difficulties in using coherent

risk measures, especially for heavy-tailed distributions. Nešlehová et al.

(2006) emphasize that law-invariant coherent risk measures are not defined

for heavy-tailed distributions with infinite mean and hence cannot be used

in the context of extreme value theory. Cont et al. (2010) prove that coher-

ent risk measures are less robust than VaR to small changes in the data set.

In Section 3.4, we join that debate and show that the impact of parameter

uncertainty for heavy-tailed distributions arising as increasing transforma-

tions of location-scale families (eg Log-normal, Pareto) cannot generally be

quantified nor controlled with coherent risk measures. Hence, we investi-

gate a truncated version of TVaRp (Cont et al., 2010), which we call here

TTVaRp1,p2 . This arises from averaging quantiles starting from p1 to p2 < 1.

We adapt the approaches used for location-scale families and show numeri-

cally that they still perform well.

The chapter is organized as follows. In Section 3.2 we revisit the main

definitions and properties of risk measures and introduce the notion of resid-

ual estimation risk. In Section 3.3 approaches (a), (b), (c) for controlling the

residual estimation risk for location-scale families are investigated and the

numerical results presented. Section 3.4 discusses the impact of parameter

uncertainty on heavy-tailed distributions and non location scale families. Fi-

nally, Section 3.5 contains the conclusions. Tables with the numerical results

are presented at the end of the chapter.
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3.2 Residual estimation risk

3.2.1 Risk measures

The financial loss of a portfolio is modelled by a random variable Y . Thus,

in the event {Y > 0} a portfolio loss occurs, while {Y ≤ 0} corresponds

to a gain. Throughout the chapter we assume that the mean of Y is finite.

Formally, (Ω,F ,P) is a probability space and X ⊆ L1(Ω,F ,P) represents

the set of all financial losses considered. The distribution of Y ∈ X is F (·; θ)

where θ ∈ Θ is a vector of parameters. We write Y ∼ F (·; θ) and assume

throughout that F is continuous, invertible, with density function f(·; θ).

Consistently with McNeil et al. (2005), a risk measure is a functional

ρ : X −→ R that assigns to every financial loss Y ∈ X a real number ρ(Y ).

ρ(Y ) is expressed in monetary units and may represent a regulatory capital

requirement, which is the interpretation we follow here. Alternatively, in the

context of the actuarial literature, ρ(Y ) may represent the technical price of

an insurance contract with liability Y (Goovaerts et al. (1984); Wang et al.

(1997)). Following Artzner et al. (1999), a loss is acceptable if ρ(Y ) ≤ 0 and

not acceptable if ρ(Y ) > 0.

The risk measures considered here satisfy the following standard proper-

ties.

(1) Translation invariance. If m ∈ R, ρ(Y +m) = ρ(X) +m;

(2) Positive homogeneity. If λ ≥ 0, ρ(λY ) = λρ(Y );

(3) Law-invariance. If Y1
d
= Y2, ρ(Y1) = ρ(Y2),

where
d
= denotes equality in distribution. Translation invariance reflects the

requirement that adding a sure loss to the portfolio will increase its capital

requirement by the same amount, while positive homogeneity implies that

risk measurement is insensitive to scale. Law-invariance requires that two

losses with the same distribution be subject to the same capital requirement.

Because of this, a risk measure can also be evaluated as a functional of a dis-
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tribution, such that for Y ∼ F (·; θ) we may denote ρ(Y ) ≡ ρ[F (·; θ)]. With

this notation, which will also be used in the sequel, translation invariance

and positive homogeneity can be written as ρ[F (· −m; θ)] = ρ[F (·; θ)] + m

and ρ[F ( ·
λ
; θ)] = λρ

[
F (·; θ)

]
respectively.

Three risk measures satisfying the above properties are

VaRp(Y ) := inf{m ∈ R : P(Y ≤ m) ≥ p}, (3.1)

TVaRp(Y ) :=
1

1− p

∫ 1

p

VaRu(Y )du, (3.2)

TTVaRp1,p2(Y ) =
1

p2 − p1

∫ p2

p1

VaRu(Y )du. (3.3)

The VaRp measure, used extensively in insurance and banking regulation, is

the 100pth percentile of the loss distribution; in particular for invertible dis-

tributions such as the ones we consider here it is VaRp[F (·; θ)] = F−1(p; θ).

VaRp is characterised by its insensitivity to the extreme tails of loss distri-

butions, which is related to its violation of the coherence axioms of Artzner

et al. (1999). TVaRp, also termed Expected Shortfall, corrects for this defect

by considering the average of all VaRs above the 100pth percentile. However,

this introduces sensitivity to extreme percentiles, which may not be reliably

estimable from limited data. TTVaRp1,p2 , proposed by Cont et al. (2010),

offers a compromise between those two risk measures: while it considers most

of the tail, it does not reflect some very extreme losses (beyond the 100pth2

percentile) that TVaR does consider.

3.2.2 Parameter uncertainty and residual estimation

risk

For a loss Y ∼ F (·; θ), the value of the parameter θ is typically unknown and

needs to be estimated from a sample. An i.i.d. random sample of size n from

F (·; θ) will be denoted by X = {X1, . . . , Xn}; with slight abuse of notation

we write X ∼ F (·; θ) and from now on we assume that Y is also independent

of X. An estimator of θ, typically a Maximum Likelihood Estimator (MLE),
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will be denoted by θ̂. As θ̂ depends on the random sample X, it can itself be

viewed as a random variable.

The capital that the holder of Y needs to hold, consistently with the risk

measure ρ, will also depend on the random sample and is denoted by η(X).

A standard choice of capital estimator arises from applying the risk measure

to the estimated loss distribution, that is, setting

η(X) = ρ[F (·; θ̂)]. (3.4)

We reserve the notation η(X) for the capital estimator derived by MLE,

but we will see in Section 3.3 that other choices of capital estimator can

be appropriate. It is useful to distinguish between η(X), a random variable

representing the estimator of required capital, and η(x), a fixed number rep-

resenting the estimated required capital for a particular dataset x obtained

as a realisation of X.

We now introduce the key idea by which we propose to measure estimation

risk. First, note that from translation invariance, we have that

ρ(Y − ρ(Y )) = 0, (3.5)

such that ρ(Y ) is the amount of capital that needs to be subtracted from

the loss Y to make it marginally acceptable. For a given estimate of the

capital η(x), it will generally be the case that η(x) 6= ρ(Y ) and therefore

ρ(Y − η(x)) 6= 0. Reflecting the variability in the random sample X, we can

consider Y − η(X) as the random variable that represents the loss, after the

(variable) capital estimator has been subtracted from it. We then define as

residual estimation risk the quantity

RR(θ, η) = ρ(Y − η(X)). (3.6)

Equation (3.6) is analogous (3.5), with the theoretical capital value ρ(Y )

substituted by the capital estimator η(X). The residual estimation risk thus
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reflects the amount of capital that needs to be subtracted from the loss

Y − η(X) in order to make it acceptable. A positive residual risk implies

that the impact of parameter uncertainty is such that subtracting the capital

estimator η(X) from the loss Y does not produce an acceptable loss. Hence

more safely invested capital needs to be held.

The residual estimation risk depends on the true but unknown parameter

θ and on the capital estimator η (it also depends on the risk measure ρ,

the family of distribution F , and the number of samples n, though these

dependencies are suppressed in the notation). In particular, the dependence

on the true parameter implies that the residual risk cannot in general be

exactly calculated when the parameter θ is unknown, as is the case in any

realistic application. However, it will be shown in Section 3.3 that in some

cases, judicious choice of the capital estimator η can nonetheless eliminate

residual estimation risk.

In the particular case where the risk measure is VaR, such that

η(X) = VaRp[F (·; θ̂)], the following equivalence holds

VaRp(Y − η(X)) ≥ 0⇔ P(Y > η(X)) ≥ 1− p. (3.7)

The right-hand-side of inequality (3.7) signifies a probability of failure (fu-

ture loss exceeding the capital estimator) higher than the acceptable level

1 − p and was used as a measure of parameter uncertainty by Gerrard and

Tsanakas (2011), whose approach the present paper thus generalises. The

quantity P(Y > η(X)) can be interpreted as the relative frequency of ex-

ceptions when back-testing a VaR model, see for instance Chapter 13 in

Christoffersen (2011). Hence our definition of residual estimation risk (3.6)

can be seen as a back-testing criterion for general risk measures. Alterna-

tively, if we interpret the randomness of the capital estimator as volatility

across agents in a financial market, the failure probability can be interpreted

as an expected frequency of failures (i.e. defaults) across an idealised market

of agents with identical but independent exposures. Under this interpreta-
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tion, (3.6) is a regulatory measure of the effectiveness across the market of

the capital estimator η(X) = ρ[F (·; θ̂)].

We now present a simple example to illustrate the concepts above. Fur-

ther examples with numerical evaluation of residual estimation risk are given

in Section 3.3.5.

Example 7. To enable the derivation of simple closed form expressions,

we focus on a simple normal model, where Y,X ∼ N (µ, σ2). The mean

µ is unknown, but the standard deviation σ is known. Hence we write

Y ∼ F (·;µ) ≡ Φ
( ·−µ

σ

)
, where Φ is the standard normal distribution. The

standard normal density is denoted by φ. Also note that we can write

Y
d
= µ+ σZ, where Z ∼ N (0, 1).

The location parameter µ is estimated via its MLE

µ̂ =
1

n

n∑
i=1

Xi.

Since µ̂ ∼ N (µ, σ2/n), we can also write µ̂
d
= µ + σ√

n
U, where U ∼ N (0, 1).

We recall that the random variables U and Z are independent.

The risk measure ρ ≡ TVaRp is used. It is well known that the TVaR for

a normal variable is given by (see Example 2.18 in McNeil et al. (2005))

TVaRp(Y ) = µ+ σ
φ(Φ−1(p))

1− p
.

From now on we denote:

c(p) :=
φ(Φ−1(p))

1− p

and use it throughout the chapter. The capital estimator then becomes

η(X) = TVaRp[F (·; µ̂)] = µ̂+ σc(p)
d
= µ+

σ√
n
U + σc(p).
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Consequently, the residual risk can be calculated as

RR(µ, η) = TVaRp(Y − η(X))

= TVaRp

(
µ+ σZ − µ− σ√

n
U − σc(p)

)
= σTVaRp

(
Z − 1√

n
U

)
− σc(p),

which is independent of the unknown parameter µ. Since Z − 1√
n
U ∼ N (0, 1 + 1/n),

it is

RR(µ, η) = σ

√
1 +

1

n
c(p)− σc(p)

= σ

(√
1 +

1

n
− 1

)
c(p).

The formula for RR(µ, η) shows that the residual risk is always positive,

such that parameter uncertainty has always an adverse effect and necessitates

holding capital in excess of what is given by the MLE-based capital estimator

η(X). As expected, as the sample size n increases, the residual risk decreases.

Unsurprisingly, a long history of i.i.d. data tends to eliminate the residual

estimation risk.

�

3.3 Controlling residual estimation risk for

location-scale families

3.3.1 Location-scale distribution families

Throughout Section 3.3, we focus on distribution functions that belong to

location-scale families. Such distributions, like the normal, student-t, and

Laplace (double-exponential) distribution are commonly used in modelling

asset returns. They admit simple parameterisations, with one parameter

measuring location (e.g. mean) and another measuring scale (e.g. standard
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deviation). It is noted that increasing transformations of random variables

in location-scale families are useful models for insurance losses and for asset

prices (rather than returns) – such distributions will be further discussed in

Section 3.4.

Formally, two random variables, Y and Z belong to the same location-

scale family, if there exist a ∈ R and b > 0, such that Y
d
= bZ + a. Denote

the parameter vector θ = (µ, σ), such that any random variable in the lo-

cation scale family follows F (·, (µ, σ)). We say that Z ∼ F (·, (0, 1)) has a

standardised distribution and simply denote it by F ≡ F (·, (0, 1)). Hence,

we can write Y ∼ F (·, (µ, σ)) = F
(
·−µ
σ

)
. For example, for the normal distri-

bution, where µ stands for the mean and σ for the standard deviation, the

standardised distribution is denoted by Φ.

The analysis of location-scale families is further aided by the simple rep-

resentation of parameter estimators. If the parameter vector θ = (µ, σ) is

estimated via Maximum Likelihood, then standard results (see for instance

Gerrard and Tsanakas (2011)) show that

µ̂
d
= µ+ σU, σ̂

d
= σV, (3.8)

where U and V are random variables whose distribution depends on the

sample size n, but not on θ. Hence µ̂ and σ̂ also belong to a location-scale

and scale family respectively.

Now we consider the impact of parameter uncertainty on the risk measure,

via the notion of residual estimation risk. From the translation invariance,

positive homogeneity, and law-invariance properties of the risk measure, it

follows that for Y ∼ F (·; (µ, σ)), Z ∼ F , it is

ρ(Y ) = ρ(µ+ σZ) = µ+ σρ[F ]. (3.9)

Let the capital estimator be based on the MLE, such that η(X) = ρ[F (·; θ̂)],
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where θ̂ = (µ̂, σ̂). It follows that

η(X) = µ̂+ σ̂ρ[F ]
d
= µ+ σU + σV ρ[F ]. (3.10)

Consequently, the residual estimation risk can be calculated as:

RR(θ, η) = ρ(Y − ρ[F (·, θ̂)])

= ρ(µ+ σZ − µ− σU − σV ρ[F ]) (3.11)

= σρ(Z − U − V ρ[F ]).

Hence, while in general the residual estimation risk remains unknown,

for location-scale families it does not depend on the location parameter µ

and is directly proportional to the scale one σ. In particular, the amount

ρ(Z − U − V ρ[F ]) does not depend on the unknown parameters. The sim-

plicity of this representation enables us to provide simple approaches for

bringing the residual risk close to zero, which are investigated in the remain-

der of Section 3.3.

3.3.2 Adjustment to the risk measure

The first approach that we investigate relates to modifying the risk measure

in a way that compensates for parameter uncertainty and brings the residual

estimation risk down to zero. To motivate the approach, consider another

risk measure ρadj, that may be used to set capital. Under this risk measure,

the capital estimator, using again MLE, will be

ηadj(X) = ρadj[F (·; θ̂)] (3.12)

Analogously with (3.11), we can write

RR(θ, ηadj) = ρ(Y − ρadj[F (·, θ̂)]) = σρ(Z − U − V ρadj[F ]). (3.13)
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Noting that the quantity ρ(Z − U − V ρadj[F ]) does not depend on the

true but unknown parameters θ, it becomes apparent that we can choose

the risk measure ρadj[F ]) specifically so as to set the residual risk of (3.13)

to zero. This is simple enough to do for a risk measure defined for a given

security level that can be varied. For example, if ρ = TVaRp, we can let

ρadj = TVaRq for some q 6= p. The value of q (generally larger than p) is

then chosen such that TVaRp(Z − U − V TVaRq[F ]) = 0. The process is

illustrated by the following example.

Example 8. We continue Example 7 of a normal distribution with unknown

mean. Let us assume that a capital estimator

ηadj(X) = TV aRq[F (·; µ̂)] = µ̂+ σc(q)
d
= µ+

σ√
n
U + σc(q)

is used, where q is higher than the confidence level p of the regulatory risk

measure TVaRp and again c(q) = φ(Φ−1(q))
1−q .

The residual estimation risk is then calculated using similar arguments

as in Example 7:

RR(µ, ηadj) = TVaRp

(
µ+ σZ − µ− σ√

n
U − σc(q)

)
= σTVaRp

(
Z − 1√

n
U

)
− σc(q)

= σ

√
1 +

1

n
c(p)− σc(q).

Therefore, to achieve RR(µ, ηadj) = 0, one needs to solve for q the equation

√
1 +

1

n
c(p) = c(q),

which is easily done numerically.

The required level of q is plotted in Figure 8, against the sample size n,

for p ∈ {0.95, 0.99, 0.995}. It can be seen that in each case q > p and as the

sample size increases the adjusted confidence level q decays to the nominal
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Figure 3.1: Confidence level q required to eliminate the residual estimation
risk for a normal random with known scale parameter and risk measure
TVaRp.

level p. The difference q− p is more pronounced for very small sample sizes,

such that, if ηadj were adopted, portfolios with a longer history would be

subject to a lower capital requirement. �

Example 8 demonstrates that, in order to eliminate residual estimation

risk, the adjusted risk measure ρadj produces a more severe risk assessment

than the risk measure ρ capturing regulatory preferences. However, the ad-

justment depends both on the family of distribution used and on the sample

size. This means that the adjustment in the risk measure would be im-

plausible in the context of a principles-based regulatory regime, as different

financial firms, with different exposures and datasets, would have to calcu-

late their capital requirement according to different risk measures imposed

by the regulator. Hence, while the approach discussed in the present section

is technically successful, it would be desirable to develop alternative meth-

ods where the risk measure is left unmodified and parameter uncertainty is

reflected in the estimation procedure itself. The next two approaches follow
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that route.

3.3.3 Capital set by a predictive distribution

The use of a Bayesian predictive distribution is a standard approach to pa-

rameter uncertainty, see Cairns (2000). Under a Bayesian approach, the

parameter θ ∈ Θ is considered a random variable itself with prior distribu-

tion π(θ). Once data x have been collected, the posterior of the parameter,

π(θ|x), is obtained by

π(θ|x) ∝ π(θ)
n∏
i=1

f(xi; θ). (3.14)

The predictive distribution of Y , given the data x, is defined as

F̂ (·|x) =

∫
θ∈Θ

F (·; θ)π(θ|x)dθ. (3.15)

Probabilities and expectations calculated according to the predictive distri-

bution are respectively denoted by P̂(·|x) and Ê(·|x).

We consider now whether evaluating the regulatory risk measure ρ with

the predictive distribution F̂ (·|x) leads to an elimination of the residual risk.

That is, we set

ηbay(X) = ρ[F̂ (·|X)] (3.16)

and examine whether the residual risk RR(θ, ηbay) = ρ(Y − ηbay(X)) is close

to zero. Note the switch in (3.16) from a particular set of observations x

to a random sample X. This represents the fact that, while we are using

a Bayesian technique, we are evaluating its performance by a frequentist

criterion. In other words, in this paper we are dispensing with the deeper

interpretation of Bayesian methods and consider F̂ (·|X) purely as an alter-

native estimator of the distribution F (·; θ).

Using the capital estimator (3.16) is plausible, as a predictive distribution

tends to be more dispersed than the MLE; as seen in (3.15) the predictive
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distributions F̂ (·|x) emerges as the weighted average of F (·; θ), over dif-

ferent values of θ. This increased volatility in the predictive distribution,

which is more pronounced for small sample sizes n, will tend to increase

the estimated capital and thus may compensate for the impact of parame-

ter uncertainty. In fact, Gerrard and Tsanakas (2011) have shown that for

distributions belonging to location-scale families (and also for distributions

of random variables that are increasing transformations of random variables

following location-scale distributions), it is P(Y > VaRp[F̂ (·|X)]) = 1− p, as

long as the probability matching prior (Severini et al., 2002) π(µ, σ) = 1/σ is

used. This implies that VaRp(Y −VaRp[F̂ (·|X)]) = 0, such that the residual

risk is completely eliminated.

For the more general class of risk measures considered here and for location-

scale families, we can show that (a) when the scale parameter is known,

residual risk is completely eliminated, and (b) when the location parameter

is known, a quantity similar to residual risk equals zero. The proofs are given

in Section 3.6.1 of the Appendix. For the case that both location and scale

parameters are unknown, the simulation study of Section 3.3.5 provides some

evidence that the Bayesian predictive distribution approach nearly eliminates

residual estimation risk.

To clarify the above ideas, a simple example is presented below.

Example 9. Continuing from the previous examples, let Y, X again fol-

low a normal distribution with unknown mean µ and standard deviation σ,

such that Y ∼ F (y;µ) = Φ(y−µ
σ

). Here we do not specify the risk measure

used; it may be TVaRp or indeed any other positive homogenous, translation

invariant, and law-invariant risk measure ρ.

The improper prior π(µ) = 1 is used. Using standard arguments (similar

to Hogg et al. (2012) Example 11.3.1) this leads respectively to a normal

posterior distribution π(µ|x) ≡ N (µ̂, σ
2

n
), where µ̂ is the sample mean of X.
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The predictive distribution can then be easily obtained as

F̂ (y|x) =

∫ ∞
−∞

Φ

(
y −m
σ

)
π(m|x)dm = Φ

(
y − µ̂

σ
√

1 + 1/n

)
.

Hence the predictive distribution is again normal F̂ (·|x) ≡ N (µ̂, σ2(1+1/n)),

but it is more dispersed than the distribution estimated by MLE, which is

just F (·; µ̂) ≡ N (µ̂, σ2).

A regulatory risk measure ρ is used, not necessarily TVaR. The capital

estimator then becomes

ηbay(X) = ρ[F̂ (·|X)] = µ̂+ σ

√
1 +

1

n
ρ[Φ].

We can now show that the residual risk when using ηbay(X) becomes

zero, which is consistent with Proposition 3.6.2 in Section 3.6.1. As before,

we write Y
d
= µ+σZ and µ̂

d
= µ+ σ√

n
U , where Z, U are independent standard

normal variables. We have

RR(µ, ηbay) = ρ(Y − ηbay(X))

= ρ
(
µ+ σZ − µ− σ√

n
U − σ

√
1 +

1

n
ρ[Φ]

)
= σρ

(
Z − 1√

n
U
)
−σ
√

1 +
1

n
ρ[Φ]

Since Z − 1√
n
U ∼ N (0, 1 + 1/n), it is ρ

(
Z − 1√

n
U
)

=
√

1 + 1/nρ[Φ], yielding

RR(µ, ηbay) = σ

√
1 +

1

n
ρ[Φ]− σ

√
1 +

1

n
ρ[Φ] = 0.

Therefore, the residual risk is completely eliminated for any positive homoge-

nous, translation invariant, and law-invariant risk measure ρ. �
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3.3.4 Bootstrap estimation

In this section we propose to adjust the capital estimator by adding to η(X),

the MLE of risk measure ρ, an estimator of the residual risk under η. Hence,

we are trying to correct η(X), by estimating the residual risk RR(θ, η) that

it gives rise to. Insofar, the approach proposed in the current section is a

form of parametric bootstrapping; for a rigorous treatment of the bootstrap

see Hall (1992).

To start with, denote by

r1(θ) = RR(θ, η) (3.17)

the residual estimation risk as a function of only the true parameter θ. As

before, η(X) = ρ[F (·; θ̂)], where θ̂ is the MLE of θ. Then, an estimator

of the residual risk itself, from the sample X, is given by r1(θ̂). Since we

can interpret r1(θ) = RR(θ, η) as the additional capital that needs to be

subtracted from Y − η(X) in order to make it acceptable, it is reasonable to

propose the following first order bootstrap capital estimator

ηbs1(X) = ρ[F (·; θ̂)] + r1(θ̂). (3.18)

The process can be repeated in order to refine the adjustment to the capital

estimator. Let the residual risk arising from using the capital estimator ηbs1

be

r2(θ) = RR(θ, ηbs1) (3.19)

Consequently, we can define the second order bootstrap capital estimator as

ηbs2(X) = ηbs1(X) + r2(θ̂) = ρ[F (·; θ̂)] + r1(θ̂) + r2(θ̂), (3.20)

and the associated residual risk by

r3(θ) = RR(θ, ηbs2) (3.21)
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The process can be further repeated in order to derive bootstrap capital

estimators of higher orders.

Higher order bootstrap iterations are typically computationally expen-

sive, as they rely on nested simulations. Let θ̂ follow distribution G(·; θ).

A naive simulation-based algorithm for evaluating ηbs2 in (3.20) would then

require us to follow these steps:

1. Calculate θ̂ from X and evaluate ρ[F (·; θ̂)].

2. i) Simulate m samples from the pair (Y ∗, θ̂∗) defined as Y ∗|θ̂ ∼

F (·; θ̂), θ̂∗|θ̂ ∼ G(·; θ̂).

ii) For each simulated pair (Y ∗i , θ̂
∗
i ), i = 1, . . . ,m, evaluate s∗i =

Y ∗i − ρ[F (·; θ̂∗i )].

iii) Let HS be the empirical distribution of the sample s∗1, . . . , s
∗
m. Set

r1(θ̂) = ρ[HS].

3. i) For each simulated value θ̂∗i , simulate m values from the pair

(Y ∗∗, θ̂∗∗) defined as Y ∗∗|θ̂∗i ∼ F (·; θ̂∗i ), θ̂∗∗|θ̂∗i ∼ G(·; θ̂∗i ).

ii) For each simulated pair (Y ∗∗ik , θ̂
∗∗
ik ), k = 1, . . . ,m, evaluate s∗∗ik =

Y ∗∗ik − ρ[F (·; θ̂∗∗ik )].

iii) Let HS
i be the empirical distribution of the sample s∗∗i1 , . . . , s

∗∗
im.

Set r1(θ̂∗i ) = ρ[HS
i ].

iv) Evaluate w∗i = s∗i − r1(θ̂∗i ), i = 1, . . . ,m.

v) Let HW be the empirical distribution of the sample w∗1, . . . , w
∗
m.

Set r2(θ̂) = ρ[HW ].

4. Set ηbs2(X) = ρ[F (·; θ̂)] + r1(θ̂) + r2(θ̂).

For the location-scale families studied in this section, this calculation can

be substantially simplified, avoiding the need for nested simulations. Let

Y
d
= µ + σZ ∼ F (·; (µ, σ)) belong to a location-scale family, with Z ∼ F .

Noting the representation (3.8) for the MLEs (µ̂, σ̂), we can show that

ηbs1(X) = µ̂+ σ̂
(
ρ(Z) + ρ(Z − U − V ρ(Z))

)
, (3.22)
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ηbs2(X) = µ̂+σ̂
[
ρ(Z)+ρ(Z−U−V ρ(Z))+ρ

(
Z−U−V (ρ(Z)−ρ(Z−U−V ρ(Z)))

)]
.

(3.23)

Formulas (3.22) and (3.23) are derived in Section 3.6.1 of the Appendix.

Since the distribution of the random variables Z,U, V does not depend on

the true parameters (µ, σ), formulas (3.22) and (3.23) can be evaluated from

a single set of simulated values from Z,U, V .

In Section 3.3.5, it is shown via a simulation study that the residual esti-

mation risk decreases with repeated applications of the parametric bootstrap,

such that it is RR(θ, η) ≥ RR(θ, ηbs1) ≥ RR(θ, ηbs2). Moreover, it is proved in

Section 3.6.1 that, in the particular case where the scale parameter is known,

the first order bootstrap capital estimator actually reduces the residual risk

to zero, that is, RR(θ, ηbs1) = 0. This result is demonstrated via the simple

normal example that follows.

Example 10. We continue from previous examples of a normal distribution

with an unknown mean and a risk measure ρ. Similarly to Example 7, it is:

r1(µ) = ρ(µ+ σZ − µ̂− σρ[Φ])

= σρ

(
Z − 1√

n
U

)
− σρ[Φ]

= σ

(√
1 +

1

n
− 1

)
ρ[Φ].

As r1(µ) does not depend on the true value of the location parameter, it is

r1(µ) = r1(µ̂) and we can write

ηbs1(X) = µ̂+ σρ[Φ] + σ

(√
1 +

1

n
− 1

)
ρ[Φ] = µ̂+ σ

√
1 +

1

n
ρ[Φ].

Note that ηbs1 above is identical to ηbay in Example 9, which we know elimi-

nates residual risk. Hence it also is RR(µ, ηbs1) = 0.
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3.3.5 Simulation study

In this section, we present simulation results for the normal and the ex-

ponential distributions. The risk measure ρ ≡ TVaRp is used, and we

investigate the residual risk arising from using the capital estimator η(X)

as well as the alternative capital estimators derived in Sections 3.3.3 and

3.3.4. (The adjustment of Section 3.3.2 is not discussed, as it guarantees

that RR(θ, ηadj) = 0.)

To quantify residual risk independently of the value of the scale parame-

ter, we report the following normalised quantity

RR(θ, η)

ρ(Y )− E[Y ]
, (3.24)

representing residual risk as a percentage of pure risk capital. For location-

scale families the value of (3.24) does not depend on the unknown parameters

and the same is true when η is changed to ηbay, ηbs1, and ηbs2.

The risk measure TVaRp is used with confidence levels p ∈ {0.95, 0.99, 0.995}

and different sample sizes n ∈ {10, 20, 50, 100} are considered.

The normal distribution is considered with both location and scale param-

eters unknown. The MLEs are given by µ̂ = 1
n

∑n
j=1 Xj and σ̂2 = 1

n

∑n
j=1(Xj − µ̂)2.

The exponential distribution is given by F (y; θ) = 1− exp(−y/θ), y ≥ 0,

where θ = E(Y ) is an unknown scale parameter. The MLE is the sample

mean θ̂ = 1
n

∑n
j=1Xj. It can be easily shown that the TVaRp of an exponen-

tial variable Y equals TVaRp(Y ) = θ(1− log(1− p)).

A Monte Carlo sample size of m = 107 is used. Convergence is im-

proved via a simple importance sampling procedure, whereby, when sim-

ulating Y , 0.9m, samples are drawn from the conditional distribution of

Y |Y > VaR0.9(Y ) and 0.1m samples are drawn from Y |Y ≤ VaR0.9(Y ).

Residual risk for η(X)

Table 3.1 provides results for the normal distribution. The values obtained

demonstrate the sensitivity of residual risk on the sample size. In particular,
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for very small sample sizes the impact of parameter uncertainty is substantial.

Thus, when n = 10 the residual risk is between 21% and 29% of the required

capital and for a somewhat larger sample of n = 50, the residual risk takes

values around 5% of capital. Even for a sample of n = 100 the residual

risk does not reach zero. Consistent results are obtained for an exponential

distribution, seen in Table 3.2.

From Example 7 we can see that, in the case that the scale parameter

σ is known and only the location parameter µ is estimated, the normalised

residual estimation risk equals to
√

1 + 1/n − 1, which is independent of

the confidence level p. For the sample sizes n ∈ {10, 20, 50, 100} used,

this formula give normalised residuals risks of {0.049, 0.0247, 0.010, 0.005}

respectively. Note that these numbers are substantially lower than the corre-

sponding figures reported in Table 3.1, implying that estimation of the scale

parameter has a substantially higher impact on residual risk than estimation

of the location parameter.

Residual risk for ηbay(X)

Here we demonstrate numerically the performance of the predictive distribu-

tion approach of Section 3.3.3.

For a normal distribution, with prior π(µ, σ) = 1/σ, a standard argument

(similar to Hogg et al. (2012), Example 11.3.1) shows that the predictive

distribution is a student-t distribution

F̂ (y|X) = tn−1

(√
n− 1

n+ 1

y − µ̂
σ̂

)
, (3.25)

where µ̂, σ̂ are the MLEs of µ, σ, and tn−1 is the distribution function of a

standard t variable with n− 1 degrees of freedom. The corresponding value
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of TVaR is (McNeil et al. (2005), Example 2.19)

ηbay(X) = TVaRp[F̂ (y|X)] (3.26)

= µ̂+ σ̂

√
n+ 1

n− 1

(
gn−1(t−1

n−1(p))

1− p

)(
n− 1 + (t−1

n−1(p))2

n− 2

)
,

where gn−1 is the density of a standard t variable with n − 1 degrees of

freedom.

Consider now an exponential distribution. Using the prior π(θ) = 1
θ
,

the predictive distribution is a Pareto distribution (Gerrard and Tsanakas

(2011), Example 9) with

F̂ (y|X) = 1−

(
nθ̂

y + nθ̂

)n

, (3.27)

where θ̂ is the MLE of θ. It is easily shown that the corresponding value of

TVaR is

ηbay(X) = TVaRp[F̂ (y|X)] = nθ̂

(
n

n− 1
(1− p)−1/n − 1

)
. (3.28)

Thus in both the normal and exponential cases, the respective t and Pareto

predictive distributions are heavy tailed, which leads to higher estimated

capital levels.

In Tables 3.3 and 3.4 we can see that using ηbay is a very effective method

for reducing residual estimation risk. Even with only 10 data points, the

residual estimation risk is nearly eliminated, reducing by more than an order

of magnitude in comparison to the results for η reported in Tables 3.1 and

3.2.

Residual risk for ηbs1(X) and ηbs2(X)

As was seen in Section 3.3.4, the bootstrap correction to the risk measure

for location-scale families can be applied several times without increase in

computing time. Here we report the residual estimation risk of the first
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and second order bootstrap capital estimator for exponential and normal

distributions.

Tables 3.5 and 3.6 report the normalised residual estimation risk for the

two distributions examined. The first order bootstrap capital estimator ηbs1

works somewhat better for the normal than for the exponential distribution.

However, in both cases, the second order estimator ηbs2 gives satisfactory

results, comparable to the results with ηbay reported in Tables 3.3 and 3.4. It

may be convenient to use a higher order bootstrap approach in comparison

to a Bayesian predictive distribution capital estimator, as for more complex

models predictive distributions are not always available in closed form.

3.4 Beyond location-scale families

3.4.1 Transformed location-scale families

Section 3.3 outlined methods for controlling residual estimation risk, when

Y follows a location-scale family, such as the normal distribution. However,

location-scale families are not always appropriate modelling choices. For

example, insurance claims or operational risk losses can often be modelled

via distributions that can be said to belong to a transformed location-scale

family.

Specifically, let as before Y ∼ F (·; (µ, σ)) belong to a location-scale fam-

ily and consider a strictly increasing function h that is well defined on the

range of Y . Then the random variable Y ′ follows a transformed location-

scale family. We write Y ′ ∼ F ′(·; (µ, σ)) ≡ F
(h−1(·)−µ

σ

)
. Also, the VaR of the

transformed variable is simply given by VaRp(Y
′) = h(VaRp(Y )).

The most common choice of transformation function is an exponential,

h(x) = exp(x). This transformation is used in financial risk management to

move from asset returns to prices. However, as risk measures are typically

applied on returns rather than prices, transformed location-scale families are

more relevant for insurance rather than finance applications. For example,
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using an exponential transformation, a normal variable Y becomes a log-

normal one Y ′. The log-normal distribution is one of the most common

insurance loss models used in practice. Similarly, an exponential variable

transforms into a Pareto distributed one. The Pareto distribution is a popu-

lar model for tails of distributions, supported by theoretical arguments from

extreme value theory, see for instance McNeil et al. (2005), Section 7.2.4.

Additional examples are the Weibull distribution, which emerges through an

exponential transformation of a Negative Gumbel distributed random vari-

able, and the log-logistic or Champernowne distribution, which arises from

transforming a Logistic variable and has been used for modelling insurance

and operational risks, see Klugman et al. (2008), Guillen et al. (2007).

The log-normal and (single-parameter) Pareto distributions will be the

focus of our examples throughout Section 3.4.

The methods for controlling residual estimation risk that were discussed

in Section 3.3 are generally not applicable for transformed location scale

families. In particular, an equation similar to (3.13) does not exist, so it is not

possible to eliminate residual risk without knowledge of the true parameters.

Hence the approach of adjusting the risk measure as in Section 3.3.2 is no

longer applicable. Nonetheless, a heuristic modification of that method is

presented in Section 3.4.3. A related problem concerns the application of

the bootstrap corrections of Section 3.3.4; they can still be performed but

at the cost of computational expense, since nested simulations cannot be

avoided. Finally, the Bayesian approach of Section 3.3.3 is still applicable to

the case of transformed location-scale families. However the performance of

the Bayesian method is no longer directly supported by theoretical results

and will be illustrated by numerical examples in Section 3.4.4.

3.4.2 Heavy tails and coherent risk measures

Before considering methods for reducing the residual risk for the log-normal

and Pareto distributions, it is necessary to discuss the substantial problems

80



that may arise from the tail-behaviour of these distributions. In particular,

we find that trying to quantify the residual estimation risk and to apply

the methods of Section 3.3 can lead to distribution functions with infinite

means, which do not allow for the evaluation of coherent risk measures such

as TVaR. It is shown by Delbaen (2002) that for a law-invariant coherent

risk measure ρ and a random variable Y ′ ∈ X it always is ρ(Y ′) ≥ E[Y ′],

such that the risk measure is not well defined when the mean is not finite.

We introduce the ideas by two examples.

Example 11. Let Y,X follow an exponential distribution with mean θ and

define the transformed variables Y ′ = exp(Y ), X′ = (exp(X1), . . . , exp(Xn)).

Then Y ′,X′ follow a one-parameter Pareto with distribution function

F ′(y; θ) = 1− y−1/θ, y ≥ 1.

The Pareto distribution has a finite mean if and only if the parameter θ < 1;

in that case the mean equals E(Y ) = 1
1−θ . (More generally, the kth moment

is finite for θ < k.) The MLE of θ is given by

θ̂ =
1

n

n∑
i=1

Xi =
1

n

n∑
i=1

log(X ′i)

and follows a Gamma distribution, θ̂ ∼ Γ(n, θ/n), with meanE(θ̂) = n(θ/n) =

θ. This means that there is a non-zero probability that an outcome {θ̂ ≥ 1}

is observed, hence

P(θ̂ ≥ 1) > 0.

For such outcomes of θ̂ the estimated distribution F ′(·; θ̂) will have an infinite

mean. Therefore, if a coherent risk measure ρ is used, there are outcomes

of θ̂ for which the capital estimator η(X′) = ρ[F ′(·; θ̂)] is not well defined.

Thus, the residual risk

RR(θ, η) = ρ(Y ′ − ρ[F ′(·; θ̂)])
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will also not be well defined. This also creates a problem with calculating

the estimate of residual risk r1(θ̂) as defined in Section 3.3.4, which means

that the derivation of bootstrap capital estimators is also not feasible. �

Similar situations to that of Example 11 arise more generally with dis-

tributions that have regularly varying tails, see Embrechts et al. (1997), p.

37. For all such distributions, the mean becomes infinite for a given range

of a parameter called the tail index. Moreover it has been shown that esti-

mated distributions with infinite means often appear in real-world applica-

tions, such as operational risk modelling (Nešlehová et al., 2006). We note

that such problems are not specific to our definition of residual estimation

risk. For instance, if one was interested in working out the bias of the capital

estimator, it would be necessary to evaluate E(ρ[F ′(·; θ̂)]), which again is not

well defined.

A related problem can occur, when applying coherent risk measures on

Bayesian predictive distributions, which can also turn out to have infinite

means.

Example 12. Let Y,X ∼ N (µ, σ2) and again Y ′ = exp(Y ),

X′ = (exp(X1), . . . , exp(Xn)), such that Y ′,X′ ∼ LN (µ, σ2). For the log-

normal distribution all moments exist, regardless of the value of the param-

eters, such that the problems reported in Example 11 do not appear, i.e.

for a risk measure such as TVaR, the quantity ρ[F ′(·; θ̂)] will always be well

defined.

Consider now capital being set using the predictive distribution of Y ′,

such that ηbay(X
′) = ρ[F̂ ′(·|X′)]. From equation (3.25) we know that the

predictive distribution of the normal variable Y is a student-t distribution

with n − 1 degrees of freedom. It follows that the predictive distribution of

the log-normal variable Y ′ is a “log-t” distribution (see Lemma 1ii) in Ger-

rard and Tsanakas (2011); a more detailed discussion of this transformation

is given in Section 3.4.3). This means that, under its predictive distribu-

tion F̂ ′(·|X′), Y ′ is a random variable the logarithm of which follows a t
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distribution. Thus the predictive distribution of Y ′ takes the form

F̂ ′(y|X′) = tn−1

(√
n− 1

n+ 1

log(y)− µ̂
σ̂

)
,

where µ̂, σ̂2 are still the sample mean and variance of the normal sample X.

This implies that the expected value associated with F̂ ′(·|X′) is:

Ê(Y ′|X′) = Ê (exp(Y )|X) .

However, since the t distribution has a regularly varying tail (see McNeil

et al. (2005), p. 293), its moment generating function is not well defined (see

Embrechts et al. (1997), p. 50), implying that Ê(exp(Y )|X) = ∞. Since

the mean associated with the predictive distribution F̂ ′(·|X′) is infinite, any

capital estimator of the form ρ[F̂ ′(·|X′)] will also be infinite, when a coherent

risk measure ρ is used. �

Coherent risk measures are seen as theoretically superior, by their full

consideration of the extreme tails of distributions. However, it seems that

precisely this feature becomes a drawback when dealing with heavy-tailed

distributions in the presence of parameter uncertainty. Recent literature

has stressed this point; in particular, Cont et al. (2010) show that coherent

risk measures such as TVaR are less robust to data contamination than VaR.

While our context is different to Cont et al. (2010), we adopt their suggestion

of using the TTVaR risk measure as defined in equation (3.3). The risk

measure TTVaRp1,p2 , by ignoring the tails of loss distributions beyond VaRp2 ,

does not require the distribution to have a finite mean. Thus the problems

encountered in Examples 11 and 12 would not appear if TTVaR was used

rather than TVaR.

For this reason, for the rest of Section 3.4, the risk measure TTVaR is

used, such that ρ ≡ TTVaRp1,p2 .

Finally, we remark that the problems of heavy-tailedness are not specific

to transformed location-scale families. There certainly exist location-scale
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families that are heavy tailed, and transformed location-scale families that

are not. The reason that the discussion of heavy tails occurs at this place

is driven by the properties of the log-normal and Pareto models that we are

using as examples throughout Section 3.4.

3.4.3 Reducing residual estimation risk

Two methods for reducing residual risk for transformed location-scale fam-

ilies are used here, adjusting the methods of Sections 3.3.2 and 3.3.3. The

bootstrapping method of Section 3.3.4 is not considered, due to the compu-

tational expense involved in nested simulations.

Heuristically adjusting the TTVaR risk measure

As discussed in Section 3.4.1, for transformed location scale families the

residual risk depends on both parameters and cannot be easily eliminated

using the method of Section 3.3.2. In other words, it is not straightforward

to find q1, q2 such that for the capital estimator

ηadj(X
′) = TTVaRq1,q2 [F

′(·; θ̂)] (3.29)

it is

RR(θ, η) = TTVaRp1,p2(Y
′ − TTVaRq1,q2 [F

′(·; θ̂)]) = 0. (3.30)

Instead we use a heuristic argument. Since TTVaRp1,p2 captures information

about the distribution of Y ′ between VaRp1(Y
′) and VaRp2(Y

′), we propose

deriving q1, q2 from solving instead:

VaRpi(Y
′ − VaRqi [F

′(·, θ̂)]) = 0 for i = 1, 2. (3.31)

For the distributions that we consider in this section, (3.31) can be solved

exactly. As before, let Y ′ = h(Y ), where h is a strictly increasing function
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and Y is distributed according to a location-scale family. Then it is

VaRpi(Y
′ − VaRqi [F

′(·; θ̂)]) = 0⇔

VaRpi(h(Y )− h(VaRqi [F (·; θ̂)])) = 0⇔

P(h(Y )− h(VaRqi [F (·; θ̂)]) ≤ 0) = pi ⇔ (3.32)

P(Y − VaRqi [F (·; θ̂)] ≤ 0) = pi ⇔

VaRpi(Y − VaRqi [F (·; θ̂)]) = 0

Since Y is in a location-scale family, we can solve VaRpi(Y − VaRqi [F (·; θ̂)]) = 0

for qi, using the arguments of Section 3.3.2.

Application of a Bayesian predictive distribution

The predictive distribution for transformed location-scale families is derived

by a straightforward transformation of the predictive distribution for the

corresponding location-scale family. In particular, following Lemma 1ii) in

Gerrard and Tsanakas (2011), we know that the posterior distribution of the

parameter θ is the same, regardless of conditioning on the sample X or X′,

that is, π(θ|X′) = π(θ|X). It follows that:

F̂ ′(y|X′) =

∫
θ∈Θ

F ′(y; θ)π(θ|X′)dθ

=

∫
θ∈Θ

F (h−1(y); θ)π(θ|X)dθ (3.33)

= F̂ (h(y)−1|X).

Consequently, the VaRs of the two predictive distributions are related by

VaRp[F̂
′(·|X′)] = h(VaRp[F̂ (·|X)]), (3.34)
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such that the TTVaR risk measure can be evaluated by

ηbay(X
′) = TTVaRp1,p2 [F̂

′(·|X′)] (3.35)

=
1

p2 − p1

∫ p2

p1

h(VaRu[F̂ (·|X)])du.

3.4.4 Simulation study

In this section, simulation results are presented for the residual estimation

risk, when the losses Y ′, X′ follow the log-normal and Pareto distributions of

Examples 12 and 11 respectively. For the log-normal distribution, the param-

eter choices (µ, σ) ∈ {(4.6002, 0.0998), (4.5856, 0.1980), (4.4936, 0.4724))} are

used, corresponding to the same mean E(Y ′) = 100 but different coefficients

of variation CV(Y ′) =
√

Var(Y ′)/E(Y ′) ∈ {0.1, 0.2, 0.5}. For the Pareto dis-

tribution, parameter values θ ∈ {0.1, 0.25, 0.5} are used. The Pareto becomes

more heavy-tailed as θ increases; here θ = 0.25 corresponds to a situation

where the fourth moment (kurtosis) is not well defined, while for θ = 0.5

even the second moment (variance) becomes infinite.

The risk measure TTVaRp1,p2 is used throughout, with p1 ∈ {0.95,0.99,0.995}

and p2 = 0.997.

Similarly to Section 3.3.5, we report the residual estimation risk as a

percentage of the true pure risk capital. The capital estimators used are (a)

the MLE η(X′), (b) the estimator ηadj(X
′) derived by adjusting the TTVaR

measure as in Section 3.4.3, and (c) the estimator ηbay(X
′) following from

the Bayesian predictive distribution of Section 3.4.3.

As in Section 3.3.5, a Monte-Carlo sample of size m = 107 combined with

a simple importance sampling scheme is used.

Residual risk for η(X′) = TTVaRp1,p2 [F
′(·; θ̂)]

The normalised residual estimation risks for the log-normal and Pareto dis-

tributions are presented in Tables 3.7 and 3.8 respectively. Similar to the

results for the normal and exponential distribution in Tables 3.1 and 3.2,
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the impact of parameter uncertainty on residual estimation risk is substan-

tial. As opposed to examples drawn from location-scale families, there is now

substantial dependence of the normalised residual risk on the shape param-

eters of the log-normal and Pareto distributions, σ and θ respectively. In

particular, higher values of σ and θ imply heavier tails and produce higher

residual estimation risks. Residual risk also increases with p1, as the impact

of parameter uncertainty becomes more pronounced for risk measures that

focus further on the tail.

Residual risk for ηadj(X
′) = TTVaRq1,q2 [F

′(·; θ̂)]

Following equation (3.32) in Section 3.4.3, we need to determine the adjusted

probability levels q1, q2, such that for i ∈ {1, 2} it is

P(Y − VaRqi [F (·; θ̂)] ≤ 0) = pi ⇔ VaRpi(Y − VaRqi [F (·; θ̂)]) = 0, (3.36)

where Y = h−1(Y ′) follows a location scale family, Y ∼ F (·; θ).

When Y ′ is log-normally distributed, Y is normal. For a normal distri-

bution, it is shown in Example 5 of Gerrard and Tsanakas (2011) that

P(Y − VaRqi [F (·; θ̂)] ≤ 0) = tn−1

(√
n− 1

n+ 1
Φ−1(qi)

)
. (3.37)

Therefore,

tn−1

(√
n− 1

n+ 1
Φ−1(qi)

)
= pi ⇔ qi = Φ

(√
n+ 1

n− 1
t−1
n−1(pi)

)
, i ∈ {1, 2}.

(3.38)

On the other hand, when Y ′ is Pareto distributed, Y is exponential.

For an exponential distribution, it is shown in Example 4 of Gerrard and

Tsanakas (2011) that

P(Y − VaRqi [F (·; θ̂)] ≤ 0) = 1−
(

1− 1

n
ln(1− qi)

)−n
. (3.39)
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Therefore,

1−
(

1− 1

n
ln(1− qi)

)−n
= pi ⇔ (3.40)

qi = 1− exp
(
−n
(
(1− pi)−1/n − 1

))
, i ∈ {1, 2}.

The normalised residual estimation risks for the log-normal and Pareto

distributions are presented in Tables 3.9 and 3.10 respectively. It can be

seen that the heuristic method followed here effects a substantial reduction

in residual risk, comparing with the results for MLE estimation in Tables 3.7

and 3.8. In contrast to the results for MLE, it is notable that the residual

risk actually decreases with p1. The reason is that, for fixed p2 = 0.997,

as p1 approaches p2, the TTVaRp1,p2 risk measure approaches VaRp2 and we

know from Gerrard and Tsanakas (2011) that for a VaR risk measure, such

an adjustment to the confidence level exactly eliminates residual risk.

Residual risk for ηbay(X
′) = TTVaRp1,p2 [F̂

′(·|X′)]

When Y ′ follows a log-normal distribution, from the predictive distribution

of the normal (3.25), the predictive distribution of Y ′ is:

F̂ ′(y|X′) = tn−1

(√
n− 1

n+ 1

log(y)− µ̂
σ̂

)
. (3.41)

As discussed in Example 12, this is a “log-t” distribution, with infinite mean.

For the VaR and TTVaR measures of Y ′ we have, following equations (3.34)

and (3.35) in Section 3.4.3,

VaRp[F̂
′(y|X′)] = exp

(
VaRp[F̂ (y|X)]

)
(3.42)

= exp

(
µ̂+ σ̂

√
n+ 1

n− 1
t−1
n−1(p)

)
,

TTVaRp1,p2 [F̂
′(y|X′)] =

1

p2 − p1

∫ p2

p1

exp

(
µ̂+ σ̂

√
n+ 1

n− 1
t−1
n−1(u)

)
du.

(3.43)
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When Y ′ follows a Pareto distribution, from the predictive distribution

of the exponential (3.27), the predictive distribution of Y ′ is:

F̂ ′(y|X′) = 1−

(
nθ̂

log (y) + nθ̂

)n

. (3.44)

That is a “log-Pareto” distribution, again with infinite mean. For the VaR

and TTVaR measures of Y ′ we now have,

VaRp[F̂
′(y|X′)] = exp

(
VaRp[F̂ (y|X)]

)
(3.45)

= exp
(
θ̂n((1− p)−1/n − 1)

)
,

TTVaRp1,p2 [F̂
′(y|X′)] =

1

p2 − p1

∫ p2

p1

exp
(
θ̂n((1− u)−1/n − 1)

)
du. (3.46)

The integrals in (3.43) and (3.46) can be easily solved numerically.

The normalised residual estimation risks for the log-normal and Pareto

distributions are presented in Tables 3.11 and 3.12 respectively. The use

of the predictive distribution is effective, producing a better improvement

than that of the heuristic adjustment method in Tables 3.9 and 3.10. Again

residual risk actually decreases with p1, which can be explained by the fact

that for a VaR risk measure, using a predictive distribution to set capital

exactly eliminates residual risk (Gerrard and Tsanakas, 2011).

3.5 Conclusions

In the present contribution, we have introduced a method for measuring the

impact of parameter uncertainty for risk measures based on a frequentist ap-

proach. For location-scale families we have shown how the dependence of this

residual estimation risk on the true parameters may be eliminated. We in-

vestigated three approaches to reduce the residual estimation risk: adjusting

the risk measure, using Bayesian predictive distributions and a parametric

bootstrap procedure. We have seen how all these methods work well for
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location-scale families. We showed that for heavy-tailed distributions, the

residual estimation risk cannot be defined nor controlled properly when a

law-invariant coherent risk measure is used. Hence we consider the use of

the risk measure TTVaR. In particular, for transformed location-scale dis-

tributions, we investigate the effectiveness of adjusting the solvency capital

requirement and the Bayesian techniques. Numerical results are presented

for both location-scale families and transformed location-scale families. For

location families the residual estimation risk is eliminated completely while

in all the other cases we obtain a substantial reduction of the residual esti-

mation risk.

3.6 Appendix

3.6.1 Formal results

Results relating to Section 3.3.3

We reformulate without proof, the content of Prop. 1 in Severini et al. (2002)

which is used in the present section. For the sake of simplicity, details about

the technical conditions are omitted, but Example 1 in Severini et al. (2002),

implies that location-scale families satisfy all the necessary conditions to

apply the proposition.

Proposition 3.6.1. Severini et al. (2002). Let H(X) be a region such that

P̂(Y ∈ H(X)|x) = 1− α.

Let H satisfy the following conditions:

(i) H is invariant, ie for each θ = (µ, σ) ∈ Θ, y ∈ H(x) if and only if

y + µ ∈ H(µ+ x) for location models,
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and

σy ∈ H(σx) for scale models.

(ii) Let C(x, y) = 1 if y ∈ H(x) and 0 otherwise, such that

Ê[C(X, Y )|x] = 1− α.

It follows that

Eθ[C(X, Y )] = 1− α.

Consider first a location family with parameter θ. The prior π(θ) = 1 is

used. It is known that (eg see Gerrard and Tsanakas (2011)), if X = Z + b,

where Z = (Z1, . . . , Zn) and Z ∼ F , then

F̂ (y|z + b) = F̂ (y − b|z).

Therefore,

ρ[F̂ (·|x)] = ρ[F̂ (· − b|z)] = ρ[F̂ (·|z)] + b,

due to the translation invariance property of ρ(·).

Proposition 3.6.2 shows how using the predictive distribution eliminates

residual risk for location families.

Proposition 3.6.2. For location families, using the capital estimator ηbay(X) =

ρ[F̂ (·|X)] yields

ρ(Y − ηbay(X)) = 0.

Proof. The proof follows from an application of Prop. 3.6.1. Consider the

predictive region

Hc(X) = (−∞, ρ[F̂ (·|X)] + c]
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for any constant c ∈ R. This region is invariant as required, indeed:

Y + b ∈ Hc(X + b)⇔

Y + b ≤ ρ[F̂ (·|X + b)] + c = ρ[F̂ (·|X)] + b+ c⇔

Y ≤ ρ[F̂ (·|X)] + c⇔

Y ∈ Hc(X).

It follows that

P̂(Y − ρ[F̂ (·|X)] ≤ c|x) = P(Y − ρ[F̂ (·|X)] ≤ c) ∀c ∈ R.

As this holds for every c ∈ R, it is implied that the random variable W =

Y − ρ[F̂ (·|X)] has the same distribution under P̂(·|x) and P(·). Thus if

G(w) = P(W ≤ w) and Ĝ(w|x) = P̂(W ≤ w|x) it is G(w) = Ĝ(w|x) for all

w. By law invariance of ρ it then is:

ρ[G(·)] = ρ[Ĝ(·|x)]

However, by the construction of the random variable W it is ρ[Ĝ(·|x)] = 0.

Hence

ρ[G(·)] = ρ(Y − ρ[F̂ (·|X)]) = 0.

Suppose now that Y belongs to a scale family, with parameter θ. We use

the prior π(θ) = 1/θ. It is known that (eg see Gerrard and Tsanakas (2011)),

if X = bZ, where b > 0, Z = (Z1, . . . , Zn) and Z ∼ F , then

F̂ (y|bz) = F̂ (y/b|z).

Therefore,

ρ[F̂ (·|x)] = ρ[F̂ (·/b|z)] = bρ[F̂ (·|z)],
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due to the positive homogeneity property of ρ(·).

Proposition 3.6.3 shows that for scale-families the residual risk is not

completely eliminated by using the capital estimator ηbay(X). Instead, a

scaled version of the residual risk goes to zero.

Proposition 3.6.3. For scale families, using the capital estimator ηbay(X) =

ρ[F̂ (·|X)] yields

ρ

(
Y

ρ[F̂ (·|X)]
− 1

)
= 0.

Proof. The same procedure as in the proof of Proposition 3.6.2 is followed.

The predictive region is

Hc(X) = (−∞, cρ[F̂ (·|X)]]

for any constant c ∈ R. This region is invariant as required in Prop 3.6.1,

indeed

bY ∈ Hc(bX)⇔

bY ≤ cρ̂[F̂ (·|bX)] = cbρ̂[F̂ (·|X)]⇔

Y ≤ cρ[F̂ (·|X)]⇔

Y ∈ Hc(X).

It follows that:

P̂
( Y

ρ[F̂ (·|X)]
≤ c|x

)
= P

( Y

ρ[F̂ (·|X)]
≤ c
)
∀c ∈ R.

As this holds for every c ∈ R, it is implied that the random variableW = Y/ρ[F̂ (·|X)]

has the same distribution under P̂(·|x) and P(·). Thus if G(w) = P(W ≤ w)

and Ĝ(w|x) = P̂(W ≤ w|x) it is G(w) = Ĝ(w|x) for all w. By law-invariance

of ρ it then is:

ρ[G(·)] = ρ[Ĝ(·|x)]
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However, by the construction of the random variable W it is ρ[Ĝ(·|x)] = 1.

Hence

ρ[G(·)] = ρ

(
Y

ρ[F̂ (·|X)]

)
= 1.

Results relating to Section 3.3.4

First, the stated equations (3.22) and (3.23) for ηbs1(X) and ηbs2(X) respec-

tively are derived. Using identical notation to Section 3.3.4, the residual

estimation risk r1(θ) is:

r1(θ) = ρ(µ+ σZ − µ̂− σ̂ρ(Z))

= ρ(µ+ σZ − µ− σU − σV ρ(Z))

= σρ(Z − U − V ρ(Z)),

and thus

r1(θ̂) = σ̂ρ(Z − U − V ρ(Z)).

The capital estimator ηbs1(X) is

ηbs1(X) = ρ[F (·, θ̂)] + r1(θ̂)

= µ̂+ σ̂ρ(Z) + σ̂ρ(Z − U − V ρ(Z))

= µ+ σU + σV (ρ(Z) + ρ(Z − U − V ρ(Z)))

It follows that

r2(θ) = ρ(Y − ηbs1(X))

= ρ(µ+ σZ − µ− σ(U + V (ρ(Z) + ρ(Z − U − V ρ(Z)))))

= σρ(Z − U − V (ρ(Z)− ρ(Z − U − V ρ(Z)))),
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and thus

r2(θ̂) = σ̂ρ(Z − U − V (ρ(Z)− ρ(Z − U − V ρ(Z)))).

Therefore

ηbs2(X) = ηbs1(X) + r2(θ̂)

= µ̂+ σ̂ [ρ(Z) + ρ(Z − U − V ρ(Z)) + ρ(Z − U − V (ρ(Z)− ρ(Z − U − V ρ(Z))))]

Now it is shown that, for location families the first order bootstrap capital

estimator bootstrap ηbs1 eliminates exactly the residual estimation risk, that

is,ρ(Y − ηbs1(X)) = 0. Let µ be the location parameter, such that we can

write Y=µ+ Z for Z ∼ F and ρ(Y )
d
= µ+ ρ(Z)

d
= µ+ ρ[F ]. The MLE of µ̂

can be written as µ̂
d
= µ + U , where the distribution of U does not depend

on µ. It is

r1(µ) = ρ(µ+ Z − µ̂− ρ(Z))

= ρ(µ+ Z − µ− U − ρ(Z))

= ρ(Z − U)− ρ(Z)

As this does not depend on µ we have r1(µ) = r1(µ̂). Thus

ηbs1(X) = ρ[F (·, µ̂)] + r1(µ̂)

d
= µ+ U + ρ(Z) + ρ(Z − U)− ρ(Z)

= µ+ U + ρ(Z − U).

The residual risk from using ηbs1(X) then is

r2(µ) = ρ(Y − ηbs1(X))

= ρ(µ+ Z − µ− U − ρ(Z − U))

= 0.

95



Table 3.1: Normalised residual estimation risk for a normally distributed risk
with sample size n, risk measure TVaRp, and the MLE capital estimator η.

n=10 n=20 n=50 n=100
p=0.95 0.216 0.112 0.046 0.023
p=0.99 0.266 0.141 0.059 0.030
p=0.995 0.286 0.154 0.065 0.033

Table 3.2: Normalised residual estimation risk for an exponentially dis-
tributed risk with sample size n, risk measure TVaRp, and the MLE capital
estimator η.

n=10 n=20 n=50 n=100
p=0.95 0.212 0.118 0.051 0.026
p=0.99 0.251 0.144 0.063 0.033
p=0.995 0.267 0.156 0.069 0.036

Table 3.3: Normalised residual estimation risk for a normally distributed risk
with sample size n, risk measure TVaRp, and the Bayes capital estimator ηbay.

n=10 n=20 n=50 n=100
p=0.95 -0.017 -0.007 -0.003 -0.001
p=0.99 -0.013 -0.005 -0.002 -0.001
p=0.995 -0.011 -0.005 -0.002 -0.001

Table 3.4: Normalised residual estimation risk for an exponentially dis-
tributed risk with sample size n, risk measure TVaRp, and the Bayes capital
estimator ηbay.

n=10 n=20 n=50 n=100
p=0.95 -0.016 -0.009 -0.003 -0.002
p=0.99 -0.012 -0.006 -0.002 -0.001
p=0.995 -0.010 -0.005 -0.002 -0.001
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Table 3.5: Normalised residual estimation risk for a normally distributed risk
with sample size n, risk measure TVaRp, and the bootstrap capital estimators
ηbs1, ηbs2.

ηbs1 n=10 n=20 n=50 n=100
p=0.95 0.046 0.012 0.002 0.000
p=0.99 0.081 0.023 0.003 0.001
p=0.995 0.096 0.030 0.005 0.001

ηbs2 n=10 n=20 n=50 n=100
p=0.95 0.011 0.002 0.000 0.000
p=0.99 0.030 0.004 0.000 0.000
p=0.995 0.041 0.006 0.000 0.000

Table 3.6: Normalised residual estimation risk for an exponentially dis-
tributed risk with sample size n, risk measure TVaRp, and the bootstrap
capital estimators ηbs1, ηbs2.

ηbs1 n=10 n=20 n=50 n=100
p=0.95 0.065 0.020 0.004 0.001
p=0.99 0.096 0.032 0.007 0.002
p=0.995 0.110 0.040 0.008 0.001

ηbs2 n=10 n=20 n=50 n=100
p=0.95 0.022 0.004 0.000 0.000
p=0.99 0.039 0.007 0.001 0.000
p=0.995 0.049 0.012 0.001 0.001
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Table 3.7: Normalised residual estimation risk for a log-normally distributed
risk with different values of the coefficient of variation CV(Y ′), sample size
n, risk measure TTVaRp1,0.997, and the MLE capital estimator η.

n=10 n=20 n=50 n=100
CV(Y ′) = 0.1
p1 = 0.95 0.227 0.119 0.049 0.025
p1 = 0.99 0.270 0.147 0.062 0.031
p1 = 0.995 0.284 0.156 0.066 0.034
CV(Y ′) = 0.2
p1 = 0.95 0.244 0.131 0.055 0.028
p1 = 0.99 0.289 0.161 0.070 0.036
p1 = 0.995 0.304 0.171 0.075 0.039
CV(Y ′) = 0.5
p1 = 0.95 0.288 0.163 0.071 0.037
p1 = 0.99 0.336 0.200 0.091 0.048
p1 = 0.995 0.351 0.212 0.098 0.052

Table 3.8: Normalised residual estimation risk for a Pareto distributed
risk with different values of the parameter θ, sample size n, risk measure
TTVaRp1,0.997, and the MLE capital estimator η.

n=10 n=20 n=50 n=100
θ = 0.1
p1 = 0.95 0.226 0.130 0.057 0.030
p1 = 0.99 0.260 0.156 0.071 0.038
p1 = 0.995 0.273 0.165 0.077 0.040
θ = 0.25
p1 = 0.95 0.257 0.155 0.072 0.038
p1 = 0.99 0.289 0.183 0.089 0.048
p1 = 0.995 0.302 0.194 0.096 0.052
θ = 0.5
p1 = 0.95 0.309 0.207 0.107 0.060
p1 = 0.99 0.327 0.227 0.123 0.070
p1 = 0.995 0.337 0.237 0.130 0.075
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Table 3.9: Normalised residual estimation risk for a log-normally distributed
risk with different values of the coefficient of variation CV(Y ′), sample size
n, risk measure TTVaRp1,0.997, and the adjusted capital estimator ηadj.

n=10 n=20 n=50 n=100
CV(Y ′) = 0.1
p = 0.95 0.068 0.028 0.010 0.005
p1 = 0.99 0.024 0.008 0.002 0.001
p1 = 0.995 0.005 0.002 0.001 0.000
CV(Y ′) = 0.2
p1 = 0.95 0.074 0.031 0.011 0.005
p1 = 0.99 0.025 0.009 0.003 0.001
p1 = 0.995 0.006 0.002 0.001 0.000
CV(Y ′) = 0.5
p1 = 0.95 0.089 0.038 0.014 0.007
p1 = 0.99 0.029 0.011 0.003 0.002
p1 = 0.995 0.008 0.002 0.001 0.000

Table 3.10: Normalised residual estimation risk for a Pareto distributed
risk with different values of the parameter θ, sample size n, risk measure
TTVaRp1,0.997, and the adjusted capital estimator ηadj.

n=10 n=20 n=50 n=100
θ = 0.1
p1 = 0.95 0.057 0.027 0.011 0.005
p1 = 0.99 0.015 0.007 0.002 0.001
p1 = 0.995 0.003 0.002 0.000 0.000
θ = 0.25
p1 = 0.95 0.068 0.036 0.015 0.007
p1 = 0.99 0.018 0.009 0.003 0.002
p1 = 0.995 0.003 0.002 0.000 0.000
θ = 0.5
p1 = 0.95 0.098 0.064 0.032 0.018
p1 = 0.99 0.024 0.016 0.009 0.005
p1 = 0.995 0.004 0.003 0.001 0.000
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Table 3.11: Normalised residual estimation risk for a log-normally distributed
risk with different values of the coefficient of variation CV(Y ′), sample size
n, risk measure TTVaRp1,0.997, and the Bayes capital estimator ηbay.

CV(Y ′) = 0.1 n=10 n=20 n=50 n=100

p1 = 0.95 -0.010 -0.004 -0.001 -0.001
p1 = 0.99 -0.002 -0.001 0.000 0.000
p1 = 0.995 0.000 0.000 0.000 0.000
CV(Y ′) = 0.2
p1 = 0.95 -0.013 -0.006 -0.003 -0.002
p1 = 0.99 -0.003 -0.002 -0.001 -0.001
p1 = 0.995 -0.001 -0.001 -0.001 -0.001

CV(Y ′) = 0.5
p1 = 0.95 -0.018 -0.008 -0.003 -0.001
p1 = 0.99 -0.002 -0.001 0.000 0.000
p1 = 0.995 0.000 0.000 0.000 0.000

Table 3.12: Normalised residual estimation risk for a Pareto distributed
risk with different values of the parameter θ, sample size n, risk measure
TTVaRp1,0.997, and the Bayes capital estimator ηbay.

n=10 n=20 n=50 n=100
θ = 0.1
p1 = 0.95 -0.010 -0.005 -0.002 -0.001
p1 = 0.99 0.001 0.000 0.000 0.000
p1 = 0.995 0.000 0.000 0.001 0.001
θ = 0.25
p1 = 0.95 -0.006 -0.001 0.001 0.001
p1 = 0.99 0.000 0.001 0.002 0.002
p1 = 0.995 0.001 0.001 0.001 0.001

θ = 0.5
p1 = 0.95 0.012 0.018 0.012 0.008
p1 = 0.99 0.006 0.007 0.006 0.004
p1 = 0.995 0.002 0.002 0.002 0.002
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Chapter 4

Risk Measurement and Model

Uncertainty

Abstract: In the present contribution we investigate the impact of model

uncertainty on the calculation of risk measures, such as VaR, used to quan-

tify solvency capital requirements. We propose to measure that impact as

the extra capital that needs to be added to the position in order to elim-

inate the additional risk that model error incurs and we call this residual

estimation risk. With such an approach we measure the effectiveness of four

different methods. For a given set of candidate models the model poste-

rior weights can be obtained via a Bayesian approach. Then we consider

approaches based on: (a) worst case scenario, (b) highest model posterior,

(c) averaging the capital under each model according to the model posterior

weights and (d) determining the predictive distribution of the financial loss

and using it to calculate the capital. It emerges that all these methods work

rather well when a set of candidate models has been carefully specified, for

instance via expert judgment. However, when the model set has been chosen

with poor prior information the effectiveness of these approaches decreases

substantially, highlighting high sensitivity to the model set specification. It

is also shown that with poor prior information on the model set, averaging

across models is more efficient than selecting a single model; in particular (a)
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performs very poorly. Furthermore, it appears that mis-specifying the model

by choosing distributions that are more heavy-tailed than the one generating

the data, may reduce the capital causing a higher residual risk.

4.1 Introduction

Current financial and insurance practice, largely motivated by solvency cap-

ital requirements, places a substantial focus on the accurate quantification

of the risk of financial losses via risk measures. For instance, capital re-

quirements under the EU project Solvency II require the calculation of the

Value-at-Risk with confidence level p = 0.995, see European Insurance and

Occupational Pensions Authority (2009).

As the actual probability distribution of losses remains unknown, it needs

to be estimated from samples of past available data, which are always limited

in size and, sometimes, very small. Thus the limitations of available data

create potential for substantial parameter and model error.

The following distinction of parameter and model error is often made in

the literature and is used in this chapter. Parameter error arises from the

deviation of estimated parameters from their true values, in the context of a

correctly chosen probability distribution. Model error arises from incorrect

specification of the loss probability distribution itself. For the potential of

parameter (resp. model) error occurring, we use the term parameter (resp.

model) uncertainty. For a review of the literature on risk measures and

parameter uncertainty we refer respectively to Chapters 1 and 3.

In this contribution we focus on model uncertainty. In the statistical

literature an early treatment of model uncertainty and model selection can

be found in Jeffreys (1961), while Ellsberg (1961) is one of the first authors

to investigates the impact of model uncertainty on decision making. Gilboa

and Schmeidler (1989) present an axiomatic approach to model uncertainty

where among a set of candidate models it is preferable to use the one that

presents the worst case scenario. Also, coherent and convex risk measures,
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see Artzner et al. (1999) and Föllmer and Schied (2002), can be represented

as worst expected loss across a set of generalized scenarios.

Large attention has been given to model uncertainty in the context of

Bayesian literature. Here a procedure called Bayesian Model Averaging

(BMA) is generally proposed, where both parameters and models are con-

sidered as random variables with their own prior and posterior distributions.

For a detailed treatment of Bayesian approaches we refer to Draper (1995),

Hoeting et al. (1999) and Bernardo and Smith (2000). Such approaches has

been investigated in the context of insurance by Klugman (1992) and Cairns

(2000).

While the wide majority of risk measures used in practice and in the

literature are law-invariant (or model-dependent), the impact of model un-

certainty on risk measurement has been only partially investigated. Föllmer

and Knispel (2011) propose a worst case approach so that each law-invariant

coherent and convex risk measure is calculated across different models and

then the supremum is taken. Branger and Schlag (2004) investigate differ-

ent approaches to calculate risk measures under model uncertainty and their

impact on hedging strategies.

The purpose of this chapter is to estimate the potential impact of model

uncertainty on risk measures used to quantify solvency capital requirements

and to investigate the effectiveness by which different approaches to esti-

mating capital requirements address model uncertainty. In particular, for a

specified set of candidate models M = {M1, . . . ,MK}, we investigate four

approaches:

(a) Calculating the capital according to the most conservative model;

(b) Calculating the capital according to the model with the highest poste-

rior weight;

(c) Calculating the capital under each model and averaging the capital

amounts according to the model posterior weights;
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(d) Determining a weighted average of candidate model distribution: ac-

cording to their posterior weights, and using that distribution to cal-

culate the capital.

For each approach considered, its performance is quantified via the resid-

ual estimation risk that represents the extra capital needed to account for

model uncertainty (already introduced in Chapter 3 for measuring parame-

ter uncertainty). In order to compensate for parameter uncertainty, for every

candidate model, we work with its predictive distribution. It was proved by

Gerrard and Tsanakas (2011) that for a wide class of distributions and the

capital calculated according to VaR, this approach eliminates the residual

risk completely when there is no model uncertainty. In Chapter 3, it was

proved that also for more general risk measures used to quantify solvency

capital requirement this approach is very effective in reducing the effect of

parameter uncertainty. Hence the residual estimation risk measured here is

only due to model uncertainty.

We also distinguish two degrees of model uncertainty:

An informative model setM1 has been specified, for instance by expert

judgment. The true model M may or may not belong to this set;

A non-informative model set M2 has been specified without expert

judgment. Again the true model may or may not belong to this set.

To compare the different approaches we specify a Test Set T of models.

Since we do not know in reality the true model, the models in the Test Set

serve as benchmarks on which the performance of different capital estimation

methods is assessed. A Test Set is not generally identical with the set of can-

didate models considered. Essentially, assuming that the set of benchmark

models (the Test Set) for an application is identical to the set of models that

a statistician specifies is a best case scenario. In reality the two sets will be

different, for reasons such as insufficient expert knowledge of the statistician

or computational convenience.
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Finally, for each estimation method the average, the maximum and the

maximum of the absolute residual risk across test models is calculated. These

figures summarize the performance of each capital estimation method in re-

lation to the Test Set.

From our study, it emerges that all the approaches considered are sensitive

to the specification of the model set. In particular when this is informative,

all the approaches are rather effective with the highest posterior approach

being the best one. For a non-informative model set, the worst case approach

performs very poorly requiring a capital that is extremely conservative, while

approaches based on model averaging seem to be more effective. It is also

shown that using models that are more heavy-tailed than the test model may

produce the counterintuitive result of reducing the capital causing a higher

residual risk.

This chapter is organized as follows. Section 4.2 introduces in more de-

tail model uncertainty and briefly reviews risk measures. In Section 4.3 we

describe the four approaches to model uncertainty considered, while Section

4.4 introduces the procedure to compare their effectiveness. Finally Sections

4.5 and 4.6 report the simulation study and the discussion of the results

obtained.

4.2 Preliminaries

4.2.1 Model Uncertainty

Let (Ω,F ,P) be a probability space and X ⊆ L0(Ω,F ,P) represent the set

of all financial losses considered. The random variable Y ∈ X represents

the loss of a portfolio over a given time horizon, thus the event Y > 0

corresponds to a loss, while Y ≤ 0 is a gain. Under the true model M , we

say that Y has distribution FM(·; θM) and we write Y ∼ FM(·; θM), where F

is continuous, invertible, with density function fM(·; θM). θM ∈ ΘM ⊂ RdM

is the parameter vector of model M .
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For practical applications, apart from the randomness due to the stochas-

tic nature of the random variable Y , we have to consider two other sources

of uncertainty:

• Uncertainty about the parameter vector θ for model M (parameter

uncertainty);

• Uncertainty about the model M that specifies the loss distribution

(model uncertainty).

In these situations the probability distribution of Y is generally estimated

from a sample of past available data X. Here we assume that these data are

generated from the same distribution of Y and, with slight abuse of notation,

write X ∼ F (·; θ).

4.2.2 Risk measures

A risk measure is a functional ρ : X −→ R that assigns to every financial

loss Y ∈ X a real number ρ(Y ). In the present contribution, ρ(·) represents

a regulatory capital requirement. A negative outcome of ρ indicates that the

financial loss Y is acceptable, vice versa ρ(Y ) > 0 means that the loss is not

acceptable.

We work with risk measures satisfying the following conditions. For every

X, Y ∈ X :

(1) Law-invariance. If X
d
= Y ⇒ ρ(X) = ρ(Y );

(2) Translation invariance. If m ∈ R, ⇒ ρ(X +m) = ρ(X) +m;

(3) Positive homogeneity. If λ ≥ 0, ⇒ ρ(λX) = λρ(X),

(4) Monotonicity. If X ≥ Y P a.s, ⇒ ρ(X) ≥ ρ(Y ),

where
d
= denotes equality in distribution. Thanks to law-invariance, for a

random variable Y ∼ F (·; θ), we can use both the notations ρ(Y ) or ρ[F (·; θ)],

for details we refer to Chapter 3. A risk measure ρ(·) that satisfies the
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Figure 4.1: VaRp for the Normal and t-Student distribution for p ∈ [0.97, 1)

above properties can be used to calculate solvency capital requirements. Its

outcome, ρ(Y ), identifies the smallest capital that added to the position

makes it acceptable, ie:

ρ(Y − ρ(Y )) = 0. (4.1)

A standard example of risk measure that satisfies (1), (2), (3) and (4) is

VaRp(Y ) := inf{m ∈ R : P(Y ≤ m) ≥ p}. (4.2)

Law-invariant risk measures assess risk due to the stochastic nature of

the financial loss Y assuming that a model for the loss probability distri-

bution is known. Hence they do not take into account the additional risk

arising from parameter and model uncertainty. As a very simple but illus-

trative example of model mis-specification, consider two possible models for

a random variable Y : under model M1, Y ∼ N (0, 4); under M2, Y follows

a Student-t distribution Y ∼ t8/3. Both models have a mean of 0 and a

standard deviation of 2. It is rather common in finance to choose between

these two models (see Christoffersen (2011)). Fig. 4.1 gives the VaRp for

different values of p under the two models. The higher the confidence level

p, the wider the gap between the two required capitals. For instance, under
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M1, VaR0.995(Y ) = 5.15 while under M2, VaR0.995(Y ) = 6.63. Even in this

basic example, model mis-specification produces a 22% difference in capital.

4.2.3 Residual estimation risk and parameter uncer-

tainty

When the distribution of a loss Y ∈ X is unknown and estimated from a

random sample X, the capital ρ(Y ) is also estimated and denoted η(X).

Here η(X) can represent any kind of estimation procedure used to calculate

the capital requirement, that depends on the data. It follows that equation

(4.1) does not hold anymore, instead we have:

ρ(Y − η(X)) 6= 0. (4.3)

We denote the quantity on the left-hand side residual estimation risk and

use it as a measure of model uncertainty. Note that η(X) is random and

not fixed. Hence, the residual risk represents the extra amount of capital

required to make the position Y acceptable when assessing simultaneously

the randomness arising from the stochastic nature of Y and the estimation

procedure, indeed:

ρ(Y − η(X)− ρ(Y − η(X))) = 0. (4.4)

4.3 Risk measurement approaches under pa-

rameter and model uncertainty

In this section we outline different methods proposed in the literature to

deal with model uncertainty and see how they apply to the context of risk

measurement. We denote byM = {M1, . . . ,MK} the set of candidate models

considered. We assume that under each model Mk, the random variable Y

has distribution Fk(·; θMk
), with the parameter vector θMk

∈ ΘMk
⊆ RdMk .
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The true model M may or may not belong to M.

Following Cairns (2000), we identify three main classes of approaches to

cope with parameter and model uncertainty:

[i ] Fix a model Mk ∈M and a parameter θ∗Mk
∈ ΘMk

that, according to

some criterion, fit better the data and proceed with the analysis as if

they were the true ones;

[ii ]According to some criterion, fix a model Mk ∈M and use a Bayesian

approach to deal with parameter uncertainty;

[iii ] Use a Bayesian approach for both model and parameters.

In all the approaches considered here we deal with parameter uncertainty

by using the predictive distribution of each model as explained in the next

subsection. In Sections 4.3.2 and 4.3.3 we describe two approaches in class

[ii], while in Sections 4.3.4 and 4.3.5 we discuss two approaches in class [iii].

4.3.1 Parameter uncertainty

In this subsection, we briefly review the Bayesian estimation method used in

Chapter 3 to cope with parameter uncertainty. We assume that a model M

for the loss Y ∈M is fixed. UnderM , the random variable Y has distribution

F (·; θ) where only the parameter θ ∈ Θ is unknown and estimated from a

sample of past data X, where we assume X ∼ F (·; θ). The key idea in

the Bayesian technique, is that the unknown parameter θ is treated as a

random variable. The prior π(θ) represents the parameter distribution when

no information on the data is available. After a sample of data X = x has

been collected, a posterior distribution given the data is calculated according

to the Bayes formula:

π(θ|x) =
f(x; θ) · π(θ)∫

u∈Θ
f(x;u) · π(u)du

(4.5)

where f(x|θ) =
∏n

i=1 f(xi; θ) is the likelihood of the data sample x =

(x1, . . . , xn). The predictive cumulative distribution function of Y given the
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data is obtained as:

F̂ (y|x) =

∫
θ∈Θ

F (y; θ) · π(θ|x)dθ. (4.6)

For a fixed sample X = x, the estimated capital according to the Bayesian

approach is:

η(x) := ρ[F̂ (·|x)], (4.7)

that is the risk measure ρ applied to the predictive distribution of Y . When

the sample is not fixed, then the estimated capital becomes a random variable

itself:

η(X) := ρ[F̂ (·|X)]. (4.8)

For location-scale families of distributions and their increasing transforma-

tions (for definitions and details we refer to Chapter 3) such approach elim-

inates completely the estimated residual risk, if we use the risk measure

ρ(·) := VaRp(·) and the right choice of prior (Gerrard and Tsanakas (2011)).

This means that the Bayesian approach eliminates completely the risk due

to parameter uncertainty independently of the unknown parameter θ. Also

for other law-invariant risk measures, it was shown in Chapter 3, that this

approach is very effective.

The rest of the chapter is devoted to investigate and compare different

approaches to deal with model uncertainty when a Bayesian approach is used

to cope with parameter uncertainty.

Assuming that the model M is unknown and instead a set M of candi-

date model has been specified, we denote ρ[F̂Mk
(·|X)] the estimated capital

according to model Mk ∈ M. We highlight that in general Y,X ∼ F (·; θ) 6=

FMk
(·; θMk

). Hence, although the capital is estimated assuming that Mk is

the correct model, it may be that Y and X are generated from a different

distribution. Model uncertainty arises exactly from here: using a model that

is not the one generating the data.
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4.3.2 Worst-case approach (WC)

The first method that we consider is the Worst Case approach (WC). For each

model Mk ∈ M, we calculate the risk measure according to the predictive

distribution F̂Mk
(·|X), that is, ρ[F̂Mk

(·|X)]. Then we set the capital according

to the most conservative model

ηWC(X) := max
k∈K

ρ[F̂Mk
(·|X)]. (4.9)

This method finds its root in Gilboa and Schmeidler (1989) on robust utility

maximization, but its use is widespread among practitioners and academics.

The idea behind it is straightforward: in order to be on the safe side we

hold capital according to the worst case possible. This approach generally

requires more capital than needed and is also computationally easy.

The set of modelsM considered plays a central role. Intuitively, the wider

the set, the higher is the capital. It is clear that a model set that is too wide

can easily lead to trivial results, such as an infinite capital. Moreover when

true model M does not belong to the setM specified, the WC approach loses

its interpretation because the true model may be more conservative than any

model in M. We will show in Section 4.5.3, how this approach may lead to

unrealistic results depending on the set M specified.

4.3.3 Highest posterior approach (HP)

The second approach that we suggest is that of choosing the model that,

according to the data, has the highest posterior weight. Details for this

approach can be found in Draper (1995), Bernardo and Smith (2000) and

Cairns (2000). This technique, based on a Bayesian perspective requires to

specify, for each model in the set M a prior probability p(Mk) and a prior

distribution to its parameters vector π(θMk
| Mk). The posterior probability
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that Mk is the correct model, given data X = x is:

p(Mk|x) =
p(x|Mk)p(Mk)∑K
i=1 p(x|Mi)p(Mi)

, (4.10)

where

p(x|Mk) =

∫
ΘMk

fMk
(xθMk

)π(θMk
|Mk)dθMk

(4.11)

is called marginal distribution or prior predictive distribution and represents

the likelihood of x given Mk.

Formula (4.10) can be rewritten as:

p(Mk|x) =
( K∑
i=1

p(Mi)

p(Mk)
·Bik

)−1

, (4.12)

where Bik is called Bayes factor of Mi on Mk and is defined by:

Bik =
p(x|Mi)

p(x|Mk)
. (4.13)

The Bayes factor is the ratio of the marginal distributions. Values of Bik

greater than 1 suggest that Mi has a higher chance than Mk to be the correct

model given the data sample. If there is no prior information on the models,

one can use p(Mi) = 1/K for each model, and the Bayes factors encloses all

the information required to calculate the model posterior distribution. Once

we compute the Bayes factor, we choose the model that, given the data, is

the most favorable one, that is the one that has the highest posterior.

The estimated capital is:

ηHP (X) := ρ[F̂∗(·|X)] (4.14)

where

M∗ ∈M and p(M∗|x) ≥ p(Mk|x) ∀k ∈ {1, . . . , K}.

The HP approach gives a rigorous and unified approach to deal with model
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uncertainty. It selects the model that is the most favourable given the data

and the prior knowledge. Moreover when the true model M belongs to M,

this approach recognizes it asymptotically (see for instance Bernardo and

Smith (2000)) in the sense that the true model’s posterior weight tends to 1.

When M is not in M, the effectiveness of this approach weakens and does

not necessarily improve when the number of data increases. This is because

the approach tends to focus on an incorrect model.

4.3.4 Bayesian Model Averaging 1 (BMA1)

Here we focus on a fully Bayesian approach. It takes as quantity of inter-

est the estimated capitals under each model ρ[F̂Mk
(·|X)] and averages them

according to the posterior probability of each model Mk. The capital then

is:

ηBMA1(X) :=
∑
k∈K

ρ[F̂Mk
(·|X)] · p(Mk|X). (4.15)

Similarly to the HP approach, this method assigns more weight to the model

that is the most favourable according to the data but it has the advantage of

keeping all the models in consideration. Averaging across models seems to

be more reasonable than picking a single one, especially when the true model

may not belong to the model set.

Moreover, if the predictive distribution for each model can be computed

analytically, calculating ρ[F̂Mk
(·|X)] is easy so that BMA1 can be simply cal-

culated. Branger and Schlag (2004) describes a more conservative approach

where the aversion to model risk is emphasized by a convex function φ. This

approach is not pursued here.

4.3.5 Bayesian Model Averaging 2 (BMA2)

The last approach that we consider is again in a fully Bayesian perspective.

Similarly to BMA1, the model is considered as a parameter itself lying in

the setM and all the models inM are considered. The quantity of interest
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here is the predictive distribution under each model. We first compute the

predictive distribution of Y given data X = x. This is obtained computing

the predictive distribution for each model Mk as in (4.6), and then averaging

according to the model posteriors:

F̂ (y|x) =
K∑
k=1

F̂Mk
(y|x) · p(Mk|x). (4.16)

Once we have the predictive probability distribution for Y , the estimated

capital is simply the risk measure applied to this distribution:

ηBMA2(X) := ρ[F̂ (·|X)]. (4.17)

With such an approach, both parameter and model uncertainty are incorpo-

rated in the stochastic nature of Y and dealt with as if they were possible

scenarios. As BMA1, when the true model belongs to model set, BMA2

chooses it asymptotically. When, on the other side, the model is not in the

specified set, dealing with an average of different models seems to be more

appropriate that picking a single one.

Methods 2, 3 and 4 all consider a Bayesian approach based on model

posterior probability. In the following section we highlight some difficulties

related to computing posterior model weights.

4.3.6 Computational issues

The use of model posteriors requires to specify a prior for each model. In

general it is not clear how to select the priors and their choice may influence

substantially the results. Moreover, posterior weights p(Mk|X) are generally

difficult to compute, indeed the marginal distributions p(x|Mk) are often

not available in a closed form and require numerical calculation. Secondly,

if p(x|Mk) is calculated using an improper prior (such as the probability

matching priors used here), it will be defined only up to a constant cMk
.

This constant will also appear in the Bayes factor Bik as cMi
/cMj

. Several
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solutions have been proposed to overcome this issue. In what follows we will

use the approach suggested in Berger and Pericchi (1996) named Intrinsic

Bayes factor. This method consists in using part of the data to estimate the

constant ci and make the prior proper. The rest of the data are used to com-

pute the Bayes factor according to this new proper prior. While selecting the

correct set of training data is generally computationally demanding, it has

been proved (Berger and Pericchi, 1996) that for location-scale families, or

scale families, the constant cMi
/cMj

is always equal to 1 when using the In-

trinsic Bayes Factor. In what follows, in order to focus on model uncertainty

and not on computational issues, we will only work with scale distributions

for which we are able to analytically compute the model posterior.

4.4 Assessing the effectiveness of risk mea-

surement approaches under model uncer-

tainty

We have outlined different approaches to deal with model uncertainty. The

remainder of the paper is dedicated to compare such methods and understand

if there is one that is always preferable to the others.

4.4.1 Model Set

We consider two different degrees of model uncertainty. In the first one

we assume that a set of models M1 = {M1, . . . ,MK} is well specified, for

instance it has been chosen by expert judgment. We call this setting Informa-

tive model set and it corresponds to a best-case scenario. In our simulation

study in Section 4.5, we consider an Informative model set, where each model

identifies a loss distribution belonging to a scale family.

Alternatively we can assume that the model set is determined with no

use of expert judgement and suggest instead using a non-informative model
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set M2 consisting of K = 10 Gamma distributions with different values of

the shape parameter α. Varying α we are able to reproduce a wide range of

skewness.

4.4.2 Test Set

The residual estimation risk does depend on the true distribution of Y and

hence it is in principle unknown. In order to compare different approaches

we use a Test Set of distribution models T := {T1, . . . , TL} that we use as

benchmark. For each approach to model uncertainty, we measure its effec-

tiveness on every distribution in the test set T . We use the notation YTl ,XTl

to emphasize that under the test model Tl the distribution is FTl(·; θTl). In

other words, for each approach, we compute:

ρ(YTl − η(XTl)) where YTl ,XTl ∼ FTl(·; θ) ∀l ∈ {1, . . . , L}. (4.18)

Again YTl and XTl are assumed to be independent. In such a way we can

appreciate the effectiveness of each method across a set of different models.

In order to make the results comparable, for any capital estimation method

considered η, we compute the average

1

L

L∑
l=1

ρ(YTl − η(XTl)) (4.19)

the maximum

max
Tl

ρ(YTl − η(XTl)) (4.20)

and the maximum absolute value

max
Tl
|ρ(YTl − η(XTl))| (4.21)

of the residual estimation risk across models in the Test Set. Depending on

our preferences, we may consider more suitable the approach that gives the

minimum average residual estimation risk, or the approach that minimizes

116



the maximum residual risk. It is also worth considering the maximum ab-

solute value of the residual estimation risk because we may have approaches

too conservative that always require an extremely high capital. Such ap-

proaches would always produce a negative residual estimation risk that is

not necessarily desirable.

4.5 Simulation study

In this section the effectiveness of different approaches to model uncertainty

is verified using Monte-Carlo simulations. The risk measure that we consider

for residual estimation risk is VaRp with level of confidence p = 0.99. We use

a Monte-Carlo simulation with m = 107 simulations. As we did in Chapter

3, in order to make the results comparable, we normalize the residual risk in

the following way:
ρ(Y − η(X))

ρ(Y )− E(Y )
. (4.22)

In order to reduce the impact of the simulation error, we apply a sim-

ple importance sampling procedure. Instead of simulating m = 107 sam-

ples for Y ∼ FTl(·, θTl) we simulate a high proportion λm of observations

from Y > VaR0.9[FTl(·; θTl)] = β and only (1 − λ)m observations from

Y ≤ VaR0.9[FTl(·; θTl)], where λ = 0.9. In this way we have more accu-

racy in the estimation of the tail of the probability distribution of Y . Then,

in order to compute:

VaR0.99(Y − η(XTl)) (4.23)

We need to find the value of z such that

P (Y − η(XTl) ≤ z) = 0.99. (4.24)
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Table 4.1: Distributions used for the Test set T
Test models E[Y ] σ(Y ) VaR0.99(Y) VaR0.995(Y)

GM 100 20 152.30 158.98
LN 100 19.02 152.30 158.98
WB 100 24.63 152.30 157.00
IG 100 18.19 152.30 160.32

With few steps we have:

P(Y − η(XTl) ≤ z)− 0.99 (4.25)

= P(Y − η(XTl) ≤ z|Y > β)P(Y > β)

+ P(Y − η(XTl) ≤ z|Y ≤ β)P(Y ≤ β)− 0.99

= P(Y − η(XTl) ≤ z|Y > β)(0.1)

+ P(Y − η(XTl) ≤ z|Y ≤ β)0.9− 0.99.

The value of z can be computed by searching for the root of (4.25). This

simple approach allows us to reduce the sampling error.

4.5.1 Test Set

The Test Set considered consists of a Gamma, Log-normal, Weibull and

Inverse-Gamma distribution and it is denoted T := {GM,LN,WB, IG}.

The shape and scale parameters of each distribution are chosen so that they

all have a mean of 100 and the same VaR0.99 of 152.30. Table 4.1, summarizes

the characteristics of the distributions used. Figures 4.2 and 4.3 report

respectively the probability density functions and quantile functions of the

distributions specified. From now on we denote YGM ,XGM the loss and

random sample generated from the Gamma distribution and similarly for

the other models in the Test Set.
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Figure 4.2: Probability density function for the models in T

Figure 4.3: VaRp for the models in T
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4.5.2 Model Set 1

In this section we investigate the effectiveness of approaches discussed in

Section 4.3, where an informative model set M1 is used. In our simulation

study, the fact that M1 has been carefully specified by expert judgment is

represented by using a model set that almost overlaps with the Test Set.

Hence, it consists of a Gamma, Log-normal and Inverse Gamma distribu-

tions. We denote it M1 := {GM,LN, IG}. The shape parameter are fixed

and corresponds to the ones used for the Test Set T , while the scale param-

eters are unknown. The purpose of this model set choice is two-folded: to

verify the effectiveness of the approaches considered when the model set is

carefully specified and when the true model may or may not belong to the

set considered (Weibull). The capital calculated according to the Gamma

model is denoted VaRp[F̂GM(·; XTl)] and similarly for the other models in

M1. In particular, if the data are generated from the Weibull distribution

but the capital is calculated according to the Gamma model, we denote it

VaRp[F̂GM(·; XWB)].

Worst-case approach

We start considering the WC approach. Using Monte-Carlo simulation, we

compute:

VaRp(YTl − ηWC(XTl)) ∀l ∈ {1, . . . , L} (4.26)

where

ηWC(XTl) = max
k∈{1,...,K}

VaRp[F̂Mk
(·|XTl)]. (4.27)

The exact formula for VaRp[F̂Mk
(·|XTl)] is given in the Appendix 4.7.1.

Each row in Table 4.2 reports the residual risk when Y and X are respec-

tively generated by the Gamma, Lognormal, Weibull and Inverse-Gamma

distributions with a sample of size n. As we would expect, when the test

model belongs to the model set, eg Gamma, Lognormal and Inverse-Gamma,

the residual estimation risk is negative. This is exactly the theoretical aim
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Table 4.2: Normalized residual risk using WC forM1 and a sample of size n
Test models n=10 n=30 n=50 n=100 n=150

GM -0.003 -0.001 -0.001 -0.000 0.000
LN -0.016 -0.008 -0.005 -0.003 -0.003
WB 0.070 0.024 0.014 0.007 0.006
IG -0.027 -0.014 -0.010 -0.008 -0.008

AVERAGE 0.006 0.0000 0.001 -0.001 -0.001
MAX 0.070 0.024 0.014 0.007 0.006
MAXABS 0.070 0.024 0.014 0.008 0.008

of the WC approach: to require enough capital to cover any scenario. This

method though, fails its purpose when the test model is not in the model set,

eg for the Weibull distribution.

The Weibull distribution is less heavy-tailed than any other distribution

in the Test Set (as we can see from Figure 4.3), and hence, intuitively we

would expect that it requires a lower capital than the others. However, it is

the only one for which calculating the capital according to the WC approach

produces a positive residual estimation risk. This is because mis-specifying

the model by choosing distributions that are more heavy-tailed than the

one generating the data, may reduce the capital. To understand better this

concept, in Table 4.3 we report the average capital calculated according to

each model (GM,LN,IG) when the data are generated from the distributions

in the test set. For instance, the values in the third position in the last column

(145.61), represents the average capital calculated according to the formula

for the Inverse-Gamma model when the data are generated by a Weibull.

We can see that this value is lower than the capital required if there was no

model uncertainty (152.30). Thus in this case, calculating the capital using

a distribution that is a more heavy tailed than the one generating the data

underestimates the capital. As all the distributions considered in M1 are

more heavy-tailed than the Weibull, they all underestimate the capital and

hence the residual estimation risk is positive. Using the same reasoning, we

can see that when the data come from the Gamma model, the highest capital
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is given by the Gamma itself because the Lognormal and Inverse Gamma are

more heavy tailed. Thus the model generating the data and the one that

corresponds to the worst case are the same and hence the residual risk tends

to 0 very quickly.

Note that, in general this approach does not improve its performance

when the number of data increases. Here all the residual risks tend to 0

solely because all the distributions in T are chosen to have the same value for

VaR0.99(Y ). Hence, asymptotically all the estimated capital VaR0.99(YTl |XTl)

tend to the same value 152.30.

Table 4.3: Average of capital E[VaRp[F̂Mk
(·|XTl)]] for n = 150 with p = 0.99

Test models E[VaRp[F̂GM(·|XTl)]] E[VaRp[F̂LN(·|XTl)]] E[VaRp[F̂IG(·|XTl)]]

GM 152.58 152.18 151.10
LN 152.61 152.56 151.92
WB 152.58 149.95 145.61
IG 152.60 152.83 152.51

Highest posterior approach

Consider now the second approach proposed. Here, for each model Mk ∈M

we compute the model posterior given the data generated by the model Tl ∈

T , p(Mk|XTl). We then select the capital calculated according to the model

with the highest posterior and calculate the residual estimation risk on that.

From Table 4.4 we can see that this approach works rather well. All the

residual risks tend to 0. When the true distribution does not belong to the

model set (Weibull), the residual risk is much worse. For instance, for n = 10

it is almost 10 times higher, than the other residual risks. However, as in the

WC approach, it improves with the number of data points. For the Gamma,

Lognormal and the Inverse Gamma the residual estimation risk tends to

0 because the posterior weight corresponding to the model generating the

data tends to 1 when the sample size increases. By looking at the average,

maximum and maximum absolute value of the residual estimation risks it
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Table 4.4: Normalized residual risk using HP for M1

Test models n=10 n=30 n=50 n=100 n=150

GM 0.007 0.002 0.001 0.000 0.000
LN -0.006 -0.002 -0.001 0.000 0.000
WB 0.073 0.024 0.014 0.007 0.005
IG -0.016 -0.008 -0.006 -0.004 -0.003

AVERAGE 0.014 0.004 0.002 0.001 0.000
MAX 0.073 0.024 0.014 0.007 0.005
MAXABS 0.073 0.023 0.014 0.007 0.005

emerges then that with a high number of data the HP approach appears to

be slightly better than WC.

Bayesian model averaging 1

We now move to a fully Bayesian approach. Here we do not select any single

model but keep all of them in consideration with their respective posterior

weights. Again each capital is calculated according to the formulas in Ap-

pendix 4.7.1 and the posterior weights as in (4.12). For each model in the

test set, the estimated capital is then:

ηBMA1(XTl) =
K∑
k=1

VaRp[F̂Mk
(·|XTl)] · p(Mk|XTl). (4.28)

The results are presented in Table 4.5.

Table 4.5: Normalized residual risk using BMA1 for M1

Test models n=10 n=30 n=50 n=100 n=150

GM 0.016 0.006 0.004 0.002 0.001
LN 0.000 0.000 0.000 0.001 0.001
WB 0.089 0.027 0.015 0.007 0.005
IG -0.014 -0.007 -0.005 -0.004 -0.003

AVERAGE 0.023 0.007 0.004 0.002 0.001
MAX 0.089 0.027 0.015 0.007 0.005
MAXABS 0.089 0.027 0.015 0.007 0.005
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The residual estimation risk quickly goes to 0. It is interesting to note

that the Inverse Gamma has a negative residual risk. This can be explained

using a converse argument to the one used to explain the positive residual

risk of the Weibull distribution. By looking at the last row in Table 4.3

we can see that the average capital calculated according to the Gamma and

Lognormal is higher than the one calculated according to the Inverse Gamma

(and that would give a null residual risk if there was no model uncertainty).

All the three approaches analyzed lead approximately to the same capital

for data generated by the Weibull model. This is because, for the particular

model set chosen, the Gamma is the model that gives the worst case scenario,

but also the one with the highest posterior when the data come from the

Weibull distribution. Hence all the three approaches give very similar results.

Bayesian Model Averaging 2

The last approach that we investigate is a fully Bayesian approach. The

estimated capital is calculated according to:

ηBMA2(Xl) = VaRp[F̂ (·|Xl)].

where F̂ (·|Xl) is obtained as in (4.16). From Table 4.6 we can see that

this approach presents an estimated residual risk very similar to the BMA1

approach. From a computational point of view, though it is slower. Indeed,

in general, F̂ (·|Xl) is not available in a closed form and the estimated capital

needs to be computed numerically.

4.5.3 Model Set 2

We now pass to the second type of model uncertainty. Here the model set is

unknown and instead a set of 10 Gamma distributions with different values

of the shape parameter α is considered. We denoteM2 = {GM1, . . . , GM10}

the model set with parameters α respectively given by α = {20, 21, . . . , 29}.

The Test Set remains unchanged. The Gamma distribution in the Test Set,
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Table 4.6: Normalized residual risk using BMA2 for M1

Test models n=10 n=30 n=50 n=100 n=150

GM 0.014 0.007 0.005 0.003 0.002
LN -0.001 0.000 0.001 0.001 0.002
WB 0.090 0.027 0.015 0.007 0.006
IG -0.015 -0.007 -0.006 -0.004 -0.003

AVERAGE 0.022 0.007 0.003 0.002 0.002
MAX 0.090 0.027 0.015 0.007 0.006
MAXABS 0.090 0.027 0.015 0.007 0.006

with our parameter choice, has shape parameter α = 25, hence it is the only

one that belongs also to the model set. The purpose of this model set choice

is to test the sensitivity of these approaches when we do not have enough

information to properly specify the model set.

Worst Case approach

The worst case residual risk is presented in Table 4.7. As we anticipated,

Table 4.7: Normalized residual risk using WC for M2

Test models n=10 n=30 n=50 n=100 n=150

GM -0.140 -0.135 -0.133 -0.133 -0.133
LN -0.155 -0.139 -0.137 -0.134 -0.134
WB -0.063 -0.109 -0.118 -0.125 -0.127
IG -0.164 -0.143 -0.139 -0.136 -0.134

AVERAGE -0.130 -0.131 -0.132 -0.132 -0.132
MAX -0.063 -0.109 -0.118 -0.125 -0.127
MAXABS 0.164 0.143 0.139 0.136 0.134

using a wider model set improves our chance to cover any scenario. Here, for

instance the capital for the Weibull distribution produces a negative residual

risk, while under the model set M1 it was positive. On the other side, such

an approach leads to unrealistic results when the model set is too wide. The

capital required is extremely high and the residual risk that does not improve

with the increasing number of data.
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Highest Posterior approach

From Table 4.8, the HP approach gives results that looks much better com-

pared to WC. When the test model does belong to the set M2 (Gamma),

the residual estimation risk tends to 0. However, also HP is sensitive to the

model set specified. For instance, under M2 the residual estimation risk

for the Gamma test model is at least 7 times higher than under M1, which

emphasizes a much lower performance for a non informative model set. For

the other distributions, the residual risk tends to increase with the number

of data. This may be interpreted by the fact that the more data we collect

the more the posterior weights focus on a small portion of models that do

not necessarily lead to the correct capital. In other words, with few data

Table 4.8: Normalized residual risk using HP for M2

Test models n=10 n=30 n=50 n=100 n=150

GM 0.015 0.010 0.008 0.007 0.007
LN 0.026 0.038 0.043 0.050 0.053
WB -0.018 -0.091 -0.110 -0.123 -0.127
IG 0.033 0.053 0.060 0.070 0.071

AVERAGE 0.014 0.048 0.000 0.001 0.001
MAX 0.033 0.091 0.060 0.0679 0.071
MAXABS 0.033 0.091 0.110 0.123 0.127

points there are several models that are possible candidates to be the most

favourable ones. Hence the estimated capital changes frequently across sim-

ulations producing a residual risk that is moderately low. With more data

points, the model posterior weights focuses on one or two models that may

overestimate (Weibull) or underestimate (Inverse Gamma) the capital pro-

ducing respectively a negative or a positive residual risk. In such cases, the

more data points we collect, the worse the performance of HP gets.

Bayesian Model Averaging 1

The last approach that we present is the BMA1. Here again, from Table

4.9 we can see that if the test model belongs to the model set, the BMA1
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approach recognizes it asymptotically and the residual risk tends to 0 slightly

faster than with the HP approach. For the Lognormal, the Inverse-Gamma

and Weibull its absolute value increases. As it was for the HP, the posterior

weights tend to focus on a single model that does not correspond to the exact

capital. However, since also the other models are kept in the average, this

effect is moderated.

While looking at the average residual risk across distributions, it seems

that the BMA1 is worse than the HP, but by looking at the maximum residual

estimation risk, BMA1 appears preferable.

It seems then that when the model set is not accurately specified, aver-

aging across several models is better than focussing on one or very few of

them.

We do not report here results for BMA2 as they are very similar to what

we obtain here and do not add much to the discussion.

Table 4.9: Normalized residual risk using BMA1 for M2

Test models n=10 n=30 n=50 n=100 n=150

GM -0.017 -0.013 -0.011 -0.007 -0.004
LN -0.024 -0.005 0.004 0.019 0.028
WB 0.02 -0.053 -0.078 -0.106 -0.116
IG -0.029 0.001 0.015 0.035 0.046

AVERAGE -0.012 -0.017 -0.017 -0.015 -0.012
MAX 0.02 0.001 0.015 0.035 0.046
MAXABS 0.029 0.053 0.078 0.106 0.116

4.6 Discussion and conclusions

It appears from our study that model uncertainty is a very difficult and deli-

cate matter. All the results presented show that there is not a straightforward

and systematic approach that permits to deal with model uncertainty with-

out requiring an in-depth analysis of the results obtained. When the model

set almost overlaps with the Test Set, all the approaches considered are quite
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effective. In particular, we have shown that although the WC approach does

not ensure that the capital required is enough to cover also the worst case

scenario, it gives the same residual risk than the HP and BMA approaches.

When the model set is non-informative and contains a wide range of mod-

els, the WC approach performs badly. This is because it requires a capital

by far higher than what is actually needed by the test models. The HP and

BMA approaches work better. However the posterior weights agglomerate

around few models that are unable to furnish the exact capital required to

eliminate the residual risk. Hence an increasing number of data corresponds

to a worse performance of these approaches. This highlights that if the test

model does not belong to the model set and we do not have expert judgment

to properly specify a model set, then averaging across several models is better

than focussing on few of them.

When the model set is informative, we find the HP approach slightly

superior to the others. Otherwise, for a non informative model set, the

BMA1 performs slightly better.

We do not notice any significant difference between approaches BMA1 and

BMA2 apart from the fact that BMA2 is computationally more expensive.

Hence, from our analysis it emerges that all the approaches examined

are very sensitive to the choice of the model set. When this substantially

overlaps with the Test Set, the residual risk is significantly reduced, even if

the test model do not belong to the model set.
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4.7 Appendix

4.7.1 Model Set

In this section we report the calculation for the predictive density and cu-

mulative distribution for each model Mk in M and the respective capital

VaRp[F̂Mk
(·|X)]. The model considered have shape parameter fixed and un-

known scale parameter θ. We only use the uninformative prior π(θ) = 1
θ
.

The parameter posterior is given by the formula:

π(θ|x) =
π(θ)

∏n
i=1 f(xi; θ)

m(x)

where m(x) =
∫∞

0
π(θ)

∏n
i=1 f(xi; θ)dθ. The predictive density and cumula-

tive function are calculated as:

f̂(y|x) =

∫ ∞
0

f(y; θ) · π(θ|x)dθ

and

F̂ (y|x) =

∫ y

0

f̂(t|x)dt

Gamma

Let Y,X1, . . . , Xn ∼ Γ(α, θ) with fixed shape parameter α and unknown scale

parameter θ. The probability density function is

f(x; θ) =
1

Γ(α)θα
xα−1e−

x
θ π(θ) =

1

θ
.

For the parameter posterior we have

π(θ|x) ∝
∏n

i=1 x
α−1
i

Γ(α)nθnα+1
e−

∑n
i=1 xi
θ

=

∏n
i=1 x

α−1
i

Γ(α)n
Γ(nα)

(
∑n

i=1 xi)
nα
·
[(∑n

i=1 xi)
nα

Γ(nα)
θ−nα−1e−

∑n
i=1 xi
θ

]
.
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The quantity in the squared bracket is the density function of an Inverse-

Gamma distribution with parameters nα and (
∑n

i=1 xi). It follows that for it

to integrate to 1, the marginal distribution m(x) is the normalizing constant:

m(x) =

∏n
i=1 x

α−1
i

Γ(α)n
Γ(nα)

(
∑n

i=1 xi)
nα
.

The predictive density function is then

f̂(y|x) =

∫ ∞
0

f(y; θ) · π(θ|x)dθ

=

∫ ∞
0

1

Γ(α)θα
yα−1e−

y
θ

(
∑n

i=1 xi)
nα

Γ(nα)
θ−nα−1e−

∑n
i=1 xi
θ dθ

=
yα−1(

∑n
i=1 xi)

nα

Γ(α)Γ(nα)

∫ ∞
0

θ−α(n+1)−1e−
y+

∑n
i=1 xi
θ dθ

=
yα−1(

∑n
i=1 xi)

nαΓ(α(n+ 1))(y +
∑n

i=1 xi)
α(n+1)

Γ(α)Γ(nα)(y +
∑n

i=1 xi)
α(n+1)Γ(α(n+ 1))

∫ ∞
0

θ−α(n+1)−1e−
y+

∑n
i=1 xi
θ dθ

=
Γ(α(n+ 1))(

∑n
i=1 xi)

nα

Γ(α)Γ(nα)

yα−1

(y +
∑n

i=1 xi)
α(n+1)

.

and the predictive distribution is:

F̂ (y|x) =

∫ y

0

f̂(t|x)dt =
Γ(α(n+ 1))(

∑n
i=1 xi)

nα

Γ(α)Γ(nα)

∫ y

0

tα−1

(t+
∑n

i=1 xi)
α(n+1)

dt.

Considering the change of variable

z =
t

(t+
∑n

i=1 xi)

with

dz =

∑n
i=1 xi

(t+
∑n

i=1 xi)
2
dt,
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the above integral becomes

F̂ (y|x) =
Γ(α(n+ 1))

Γ(α)Γ(nα)

∫ y
(y+

∑n
i=1

xi)

0

tα−1(
∑n

i=1 xi)
nα

(t+
∑n

i=1 xi)
α(n+1)

(t+
∑n

i=1 xi)
2∑n

i=1 xi
dz

=
Γ(α(n+ 1))

Γ(α)Γ(nα)

∫ y
(y+

∑n
i=1

xi)

0

tα−1(
∑n

i=1 xi)
nα−1

(t+
∑n

i=1 xi)
α(n+1)−2

dz

=
Γ(α(n+ 1))

Γ(α)Γ(nα)

∫ y
(y+

∑n
i=1

xi)

0

tα−1

(t+
∑n

i=1 xi)
α−1
· (

∑n
i=1 xi)

nα−1

(t+
∑n

i=1 xi)
nα−1

dz

=
Γ(α(n+ 1))

Γ(α)Γ(nα)

∫ y
(y+

∑n
i=1

xi)

0

zα−1 · znα−1dz = I(
y

(y +
∑n

i=1 xi)
;α, nα).

This corresponds to the Beta cumulative distribution function. To compute

VaRp[F̂ (y|x, G)], we need to invert that function. Hence we have

y

(y +
∑n

i=1 xi)
= I−1(p, α, nα)

and

VaRp[F̂GM(|x)] =
( n∑
i=1

xi
) I−1(p, α, nα)

1− I−1(p, α, nα)

Lognormal

Consider a lognormal distribution with fixed shape parameter σ and unknown

scale parameter γ = eµ. Its probability density function is

f(x, γ) =
1

x
√

2πσ2
exp

(log(x)− log(γ))2

2σ2
.

The predictive cumulative function can be easily computed from the pre-

dictive cumulative function of a normal distribution with known parameter

σ. Indeed if Y ∼ N (µ, σ2) then Y ′ = eZ ∼ LN (µ, σ2) and F̂LN(y|X′) =

F̂N(log(y)|X) where X = log(X′) (for details see Chapter 3). The predictive

distribution for the normal distribution is given N (X̄, σ2(1 + 1
n
)). It fol-

lows that the lognormal predictive cumulative function is again Lognormal

with scale parameter e
∑n
i=1 ln(xi)

n and shape parameter
√

1 + 1
n
σ. The capital

VaRp[F̂LN(·|X)] is obtained inverting that function.
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Inverse-Gamma

The predictive cumulative function for the Inverse Gamma is obtained anal-

ogously to the Gamma distribution. The capital is obtained as

VaRp[F̂IG(·|X)] =
I−1(p, α, nα)∑n

i=1(1/Xi)
(4.29)
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Chapter 5

Directions for future research

The thesis investigates different challenges emerging from the use of risk

measures to quantify solvency capital requirements.

Chapter 2 states sufficient conditions for a risk measure to satisfy mild

notions of time-consistency with particular focus on sequential consistency.

It emerges that most of the risk measures used in practice fail to satisfy

these conditions. Hence, a systematic procedure to construct sequentially

consistent risk measures is provided. We also propose a new approach to

dynamic risk measurement, which is closer to current insurance practice. In

real life, risk measures assess the risk of a financial position at a certain

time horizon δ. While academic literature generally assumes that this is also

the expiry date of the financial position, this is very atypical. In current

practice, the risk measure is applied to the fair value of the position at the

time horizon, rather than to the position itself. This situation is outside the

usual framework of the risk measures literature, as it essentially corresponds

to risk measurement with an argument that is shifting over time, as the

fair value itself changes with newly available information. We called this

setting risk measurement with rolling time horizon. This procedure not only

contributes to reduce the gap between academic literature and practitioner

needs, but offers some new of mathematical challenges. First one needs to

characterize the new structure and properties that the risk measure has,
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depending on the type of pricing measure that is used. After characterizing

this new class of risk measures more appropriate time-consistency notions

have to be determined. Here, indeed, all the notions of time-consistency

introduced in the literature must be reinterpreted. This setting is briefly

treated in the last part of Chapter 2, however it deserves more attention and

it is our intent to build upon this research.

Arguably, constructing a risk measure that is consistent with future risk

measurements, but ignores that these are substantially affected by model

uncertainty, is of little use from a practical point of view. Hence, in Chapters

3 and 4 we discussed different approaches to reduce the residual estimation

risk due to parameter and model uncertainty and verified their effectiveness

via Monte-Carlo simulation studies.

It would be interesting to relate more closely the research done on dy-

namic risk measurement and on model uncertainty. The focus of this work

would then be to construct risk measurement procedures like the ones pro-

posed in Chapters 3 and 4, which allowing for model uncertainty in the

probability space, are still able to produce assessments that are somehow

consistent over time. The key point here is to define a new class of risk

measures where it is possible to identify and separate the two sources of ran-

domness: randomness due to model uncertainty and due to the stochastic

nature of the process. In particular the component due to model uncertainty

should decrease with time as the estimation procedure will be based on more

data points becoming available and thus will be more accurate. A possible

strategy would be to consider a worst case approach such as the one proposed

in Chapter 4, where we calculate the risk measure according to different can-

didate models in a certain setM and then take the worst outcome. Allowing

for a dynamic component in the selection of the set of modelsM used, would

be a first step to include model uncertainty in dynamic risk measurements.

Another interesting link among the work done in the first and second

part of this thesis relates to the notion of sequential consistency and residual

estimation risk introduced respectively in Chapters 2 and 3. From Chapter
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2 a risk measure is sequentially consistent if

ρ(Y − ρt(Y )) = 0. (5.1)

Similarly, a capital estimator approach eliminates the residual estimation risk

if

ρ(Y − η(X)) = 0. (5.2)

Equation (5.1) seeks to eliminate the residual risk due to uncertainty in the

future outcome of the risk measurement. Equation (5.2) aims at eliminating

the residual risk due to the estimation procedure. It would be interesting

to investigate whether approaches to deal with parameter and model uncer-

tainty are useful for obtaining sequentially consistent risk measurement and

vice versa.
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