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Abstract

In this paper, we present a transform-based algorithm for pricing discretely monitored arith-

metic Asian options with remarkable accuracy in a general stochastic volatility framework,

including affine models and time-changed Lévy processes. The accuracy is justified both theo-

retically and experimentally. In addition, to speed up the valuation process, we employ high-

performance computing technologies. More specifically, we develop a parallel option pricing

system that can be easily reproduced on parallel computers, also realized as a cluster of per-

sonal computers. Numerical results showing the accuracy, speed and efficiency of the procedure

are reported in the paper.
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1. Introduction

Transform methods have driven much innovation in financial engineering (see examples of

application for different purposes in Carr and Madan, 1999, Albanese et al., 2004, Feng and

Lin, 2013, Cai et al., 2014, Sesana et al., 2014, Fusai et al., 2016, Cui et al., 2017) and enjoyed

wide use in operations research, particularly in queueing theory (see, e.g., Abate and Whitt,

1992, 1995, Abate et al., 2013, Drekic and Stanford, 2001) with applications as diverse as

health care and computer systems’ performance evaluation, but also in probability, insurance

and radio engineering. It is the scope of the current research to advance the applicability of

this indispensable tool by making use of computer technology.

In this paper, we revisit the long-standing problem of valuing non-linear derivatives contin-

gent on the arithmetic average of the underlying asset prices with general monitoring frequency

over a prespecified time period. Asian options are very popular among derivatives traders and

risk managers, mainly due to the averaging’s smoothing of possible market manipulations near

the expiry date. Averaging also provides volatility reduction and better cash-flow matching to

firms facing streams of cash flows. For this, they appear in currency, energy, metal, agricultural

∗Corresponding author
Email addresses: stefania.corsaro@uniparthenope.it (Stefania Corsaro),

ioannis.kyriakou@city.ac.uk (Ioannis Kyriakou), daniele.marazzina@polimi.it (Daniele Marazzina),
zelda.marino@uniparthenope.it (Zelda Marino)

Preprint submitted to September 8, 2018



and freight markets and, unsurprisingly, represent a large fraction of the options traded in these

markets. Nevertheless, arithmetic averages see wider application in many fields of finance, such

as in project valuation (see Zahra and Reza, 2012), optimal capacity planning under average

demand uncertainty (see Driouchi et al., 2006), stock-swap merger proposals (see Officer, 2006),

technical analysis and algorithmic trading (see Zhu and Zhou, 2009, Kim, 2007).

There is a large body of literature on Asian options; examples include Sesana et al. (2014),

Cai et al. (2015), Cui et al. (2018), Černý and Kyriakou (2011) under general Lévy and/or local

volatility models. Chang and McAleer (2015) study Garch-like models, which are closely linked

with econometric analysis, and their relation to option pricing; examples of option applications

include Majewski et al. (2015), but also Mercuri (2011) on Asian options. For a more detailed

literature survey, we refer to Fusai and Kyriakou (2016).

In this paper, we consider a general stochastic volatility model framework with or without

asset price jumps. Stochastic volatility is a salient and well-documented feature of financial

assets. Empirical results of Bakshi et al. (1997) suggest that stochastic volatility is a primary

factor driving option prices. Diffusion-based volatility models account for dependence in in-

crements and long-term smiles and skews, but cannot give rise to realistic short-term implied

volatility patterns; this shortcoming can be overcome by introducing jumps in the returns (see

Cont and Tankov, 2004). Under such models, analytical price solutions for Asian options are

approximate and scarce, including Yamazaki (2014), Zeng and Kwok (2016), and Fusai and Kyr-

iakou (2016). Instead, we resort to a recursive transform approach, which is free from restricted

closeness to the true option price but rather enjoys superior efficiency that has been evidenced,

for example, by Carverhill and Clewlow (1990) and Černý and Kyriakou (2011) under simpler

model constructions.

We present a parallel system aiming to enhance the computational tractability of the valu-

ation problem, an important aspect of concern of transform techniques in operations research

(e.g., see Drenovak et al., 2017). By applying the parallel system to the numerical pricing

procedure, we show that it leads to fast computation which further allows the users to exploit

its smooth convergence, thereby producing price results at any desired accuracy level. We also

conduct a theoretical analysis of the errors due to truncation and discretization involved in the

transforms.

Our parallel system is inexpensive as it comprises a Non-Uniform Memory Access machine

equipped by open-source software at all levels, including the operating system, the compiler,

the message-passing system and the routines for main computational kernels arising in the pric-

ing procedure. The hardware architecture is representative of many recent high-performance

computing (HPC) ones. We recognize in them a mixed-memory (distributed and shared) archi-

tecture. The processors are typically grouped by their physical location on a node, a multi-core

Central Processing Unit (CPU) package, and the nodes are coupled via high-speed intercon-

nects. We point out that modern personal computers (PCs) have multi-core processors equipped

with local cache memory; thus, mixed-memory models adapt to them, too. The option pricing

system can then be easily ported on parallel computers, also realized as a cluster of PCs.

The proposed parallel procedure enjoys flexibility as it is built on sophisticated asset price

model dynamics reflecting the market realism, while remaining computationally tractable, hence
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advancing the universality of transform methods in this direction. In particular, the method re-

lies on knowledge of the characteristic function of the (log) price conditional on the current and

future variance states, which we derive for different affine stochastic volatility models including,

among others, time changed Lévy processes (Carr et al., 2003) as well as the classical Heston

(1993) and Bates (1996) models. We bypass increases in computational complexity and memory

allocation due to increasing dimensionality by employing HPC technologies. HPC is recognized

as mandatory for the effective solution of many financial problems when complex simulations

must be performed in a suitable turnaround time; see, for example, Östermark (2017) where a

recursive portfolio decision system is described. In this paper, we employ domain decomposition,

according to which the computational domain is split among the involved processes. Then, each

process works on a local sub-domain, communicating with the others when required. Clearly, a

good strategy should require limited communication, so as to minimize the impact of commu-

nication overhead on performance. We show that our strategy leads to an inherently parallel

procedure: the grid is split in such a way that processes work concurrently on a local sub-grid

most of the time. In particular, communication is not required in the transform computation,

which is crucial for the sake of parallel efficiency. We show that efficiency values close to the

ideal ones are feasible.

The remainder of the paper is organized as follows. Section 2 presents our financial modelling

framework and main preliminary results. Section 3 develops the backward-recursive integral

pricing scheme, whereas Section 4 discusses its numerical implementation and introduces the

parallel system. Section 5 provides a theoretical error analysis of the scheme. Section 6 presents

some numerical experiments, and Section 7 concludes the paper. Proofs and additional results

are collected in appendices.

2. Stochastic volatility framework

Let (Ω,F , P̂ ) be a complete probability space upon which all stochastic processes are defined.

We denote by P̂ the risk neutral probability measure.

When the risk neutral dynamics of the log-price is given by a process with independent

increments, the implied volatility surface follows a deterministic evolution (see Cont and Tankov,

2004); introducing stochastic volatility can tackle this difficulty. Such models are popular among

practitioners and academics as they are able to account for volatility clustering and dependence

in increments, and give rise to realistic implied volatility patterns (short-term and/or long-term

skews). In this work, we study models from the affine class, such as Heston (1993), Bates (1996)

and Carr et al. (2003), although non-affine models (e.g., see Hagan et al., 2002) represent an

interesting direction for future research.

2.1. Diffusion-based stochastic volatility

In the Heston model, the stochastic variance V follows the CIR (named after Cox, Ingersoll

and Ross, Cox et al., 1985; see also Feller, 1951) mean reverting, square root diffusion model

dVt = α (β − Vt) dt+ γ
√
VtdW

V
t , V0 = υ0, (1)
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where (W V
t )t≥0 is a standard Brownian motion. The parameters α, β, γ, v0 are positive

constants. Process (1) is continuous and non-negative. Its exact behavior near zero depends on

the parameters’ values: if γ2 ≤ 2αβ, the process never touches zero. The log-price under the

risk neutral measure P̂ is given by

dXt =

(
r − 1

2
Vt

)
dt+

√
Vt

(
ρdW V

t +
√

1− ρ2dWX
t

)
, (2)

where r is the continuously compounded risk free interest rate and (WX
t )t≥0 a standard Brow-

nian motion. W V and WX are independent. Finally, ρ is the correlation coefficient between

processes V and X: ρ < 0 leads to the so-called leverage effect of large downward price moves

being associated with upward volatility moves, and is offered as an explanation for implied

volatility skews (e.g., see Cont and Tankov, 2004).

2.2. Stochastic volatility model with price jumps

Diffusion-based stochastic volatility models cannot generate sufficient asymmetry in the

short-term returns, hence are unable to match the empirical short-term skews. The jump

diffusion stochastic volatility model of Bates (1996) addresses this shortcoming by superimposing

price jumps (see Cont and Tankov, 2004). In addition, the leverage effect and the long-term

skews are achieved using correlated Brownian motions in the price and variance processes. More

specifically, in this model, the risk neutral log-price is given by

dXt =

(
r − λ(ek(1) − 1)− 1

2
Vt

)
dt+

√
Vt

(
ρdW V

t +
√

1− ρ2dWX
t

)
+ dLt, (3)

where (Lt)t≥0 is an independent compound Poisson process with intensity λ and Gaussian

distribution of jump sizes with mean µL and standard deviation σL, hence with characteristic

exponent k(iu) = iuµL − σ2
Lu

2/2. Jump sizes can be represented by any other convenient

distribution with known characteristic function, such as the double exponential (Kou, 2002).

2.3. Time changed Lévy models

Carr et al. (2003) extend Lévy process models by incorporating stochastic and mean revert-

ing volatilities, by taking, for example, a homogeneous Lévy process and subordinating it by

the integrated variance. The randomness of the CIR process induces stochastic volatility, and

its mean reversion induces volatility clustering. The governing equations in this case are

Xt = X0 + rt+ LYt , (4)

dYt = Vtdt,

where (Lt)t≥0 denotes an independent Lévy process. The normal inverse Gaussian (NIG) and

the tempered stable (CGMY, named after Carr, Geman, Madan and Yor, Carr et al., 2002)

processes are among the popular Lévy choices with known characteristic exponents: for NIG,

k(iu) = iuµ + (1 −
√

1 + κσ2u2 − 2iθκu)/κ, where µ = (
√

1− κσ2 − 2θκ − 1)/κ; for CGMY,

k(iu) = iuµ+CΓ(−Y )((M − iu)Y −MY + (G+ iu)Y −GY ), where µ = CΓ(−Y )(MY − (M −
1)Y +GY −(G+1)Y ). The double exponential jump diffusion of Kou (2002) is another plausible
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model as it allows controlling the relative sizes of positive and negative jumps.1

In all the above described models, V is given by (1). The advantage of the CIR process is in

its analytical tractability; the results we derive in the following proposition form the building

block for our option price recursion in Section 3.

Proposition 1. Assume that V evolves according to (1). Define Zt = Xt − X0. Under the
measure P̂ , the conditional characteristic functions on the state of the variance process at time t,
ζ(t, u|υ0, υ) = Ê(exp(iu

∫ t
0 Vsds)|V0 = υ0, Vt = υ) and φ̂(t, u|υ0, υ) = Ê (exp(iuZt)|V0 = υ0, Vt = υ),

are given by

ζ(t, u|υ0, υ) =
ψ (u)

√
e−(ψ(u)−α)t

(
1− e−αt

)
α
(
1− e−ψ(u)t

)
× exp

{
υ0 + υ

γ2

(
α
(
1 + e−αt

)
1− e−αt

−
ψ (u)

(
1 + e−ψ(u)t

)
1− e−ψ(u)t

)}

×
Id

(
4ψ(u)
√
υ0υe−ψ(u)t

γ2(1−e−ψ(u)t)

)
Id

(
4α
√
υ0υe−αt

γ2(1−e−αt)

) , (5)

where ψ (u) :=
√
α2 − 2iuγ2 (see Broadie and Kaya, 2006), Id(·) is the modified Bessel function

of the first kind of order d = 2αβ/γ2 − 1, and

i) for X as in (2),

φ̂(t, u|υ0, υ) = exp

{
iu

((
r − ραβ

γ

)
t+

ρ

γ
(υ − υ0)

)}
×ζ

(
t, u

(
ρα

γ
− 1

2
+
iu
(
1− ρ2

)
2

)∣∣∣∣∣ υ0, υ

)
; (6)

ii) for X as in (3),

φ̂(t, u|υ0, υ) = exp

{
iu

((
r − λek(1) − ραβ

γ

)
t+

ρ

γ
(υ − υ0)

)
+ λek(iu)t

}
×ζ

(
t, u

(
ρα

γ
− 1

2
+
iu
(
1− ρ2

)
2

)∣∣∣∣∣ υ0, υ

)
; (7)

iii) for X as in (4),
φ̂(t, u|υ0, υ) = eiurtζ ( t,−ik(iu)| υ0, υ) . (8)

Proof. See Appendix A.1.

1Leverage effect can be accommodated by allowing (negative) correlation between increments in the Lévy
process and increments in the activity rate process. If the Lévy process is pure jump, nonzero correlation can be
induced by a jump component in the activity rate process. Carr and Wu (2004) consider examples of introducing
leverage via compound Poisson jumps or infinite-activity jumps. We do not consider the latter cases in this
paper since, as explained in Kallsen (2006, Section 4.6), are not of a simple structure and nontrivial ordinary
differential equations have to be solved numerically in order to obtain the required characteristic function φ̂ as
in Proposition 1 or equation (B.1), raising substantially the computational cost. This leaves us with an open
numerical challenge, which might not be insurmountable and we expect by continuing research to shed further
light on.
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Model Ê (exp(iuZt)|V0 = υ0, Vt = υ)

Heston (1993) exp
{
iu
((
r − ραβ

γ

)
t+ ρ

γ (υ − υ0)
)}

×ζ
(
t, u

(
ρα
γ −

1
2 +

iu(1−ρ2)
2

)∣∣∣∣ υ0, υ

)
Bates (1996) exp

{
iu
((
r − λek(1) − ραβ

γ

)
t+ ρ

γ (υ − υ0)
)

+ λek(iu)t
}

×ζ
(
t, u

(
ρα
γ −

1
2 +

iu(1−ρ2)
2

)∣∣∣∣ υ0, υ

)
Carr et al. (2003) eiurtζ ( t,−ik(iu)| υ0, υ)

Table 1: Summarized characteristic functions (see Proposition 1). Notes: Heston (1993), Bates (1996), Carr
et al. (2003): ζ(t, u|υ0, υ) given by (5).

Characteristic functions (6)–(8) are summarized in Table 1.

Remark 1. The analytical results presented in Proposition 1 rely on the assumption of the

variance evolving according to model (1). In Appendix B, we discuss the extension to general

affine stochastic volatility models lacking the analytical tractability of model (1).

3. Valuation of Asian options under stochastic volatility: a recursive-integral ap-
proach

Consider an Asian option with underlying S observed over the period [0, T ] at the equidistant

monitoring dates t0 = 0, t1 = ∆, t2 = 2∆, . . . , tN = N∆ = T . Let {Zj}Nj=1 be a collection of

random variables on the probability space (Ω,F , P̂ ) and F = {Fj}Nj=1 the information filtration

generated by {Zj}, with F0 trivial. {Zj} represents the set of log-returns on S so that

Sk = S0 exp

(∑k

j=1
Zj

)
, k = 1, . . . , N, S0 > 0.

In what follows, we focus on the case of a floating strike put option with payoff(
1

N + 1

∑N

j=0
Sj −KSN

)+

,

where K > 0 and (·)+ denotes the positive part function. The floating strike option is an

important contract with a helpful structure in volatile or hardly predictable markets which

justifies its high demand. Fixed exchange rate linked quanto floating strike options are, among

others, particularly popular and actively traded over-the-counter as they can hedge both the

foreign stock price and exchange risks for domestic investors (see Chang and Tsao, 2011). In

Proposition 3 we consider the case of the call-type option, whereas in Remark 2 the fixed strike

option; alternatively, one may consider applying the duality result of Eberlein et al. (2008)

under stochastic volatility Lévy models.

Define

ξk =
1

N + 1

(∑k
j=0 Sj

Sk
− 1

)
≥ 0, 0 ≤ k ≤ N, (9)

from which

ξk =

(
1

N + 1

(∑k−1
j=0 Sj

Sk−1
− 1

)
+

1

N + 1

)
e−Zk =

(
ξk−1 +

1

N + 1

)
e−Zk (10)
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where ξ0 = 0. Furthermore, in virtue of (9) and for Y := ln ξ, we get

Y1 = ln
1

N + 1
− Z1, (11)

Yk = ln

(
eYk−1 +

1

N + 1

)
− Zk, 1 < k ≤ N. (12)

From (9)–(12), the price of the floating strike Asian put option is given under the risk neutral

measure P̂ by

Ê

(
e−rTSN

(
ξN +

1

N + 1
−K

)+
)

= S0E

((
eYN +

1

N + 1
−K

)+
)
, (13)

where the equality follows from a change to measure P with the underlying asset representing

the numéraire and corresponding Radon–Nikodym derivative

dP

dP̂

∣∣∣∣
t

=
St

Ê(St)
= e−rt+Zt . (14)

The measure change is valid if the discounted asset price is a true martingale. Andersen and

Piterbarg (2007, Proposition 2.5) show this for the Heston model, while Bernard et al. (2017)

study the special case when the Feller condition is satisfied. Cont and Tankov (2004, Lemma

15.2) also show that, in the case of an independent time change, the martingale version of the

time changed Lévy process is constructed simply by applying the time change to a martingale

version of the Lévy process.

This change of measure reduces effectively the pricing problem to a two-dimensional one.

More specifically, the process Y is not Markov as its evolution is determined also by the level

of volatility. To regain a Markov process one must consider the two-dimensional process (Y, V ),

then (13) can be computed recursively under P .

Theorem 2. Let

c(∆, yυ|xυ) =
2α

γ2 (1− e−α∆)
e
−

2α(xυe−α∆+yυ)
γ2(1−e−α∆)

(
yυ

xυe−α∆

) d
2

Id

(
4α
√
xυyυe−α∆

γ2 (1− e−α∆)

)
, (15)

be the CIR variance transition density (see Cox et al., 1985), and f the log-return density
conditional on the variance levels xυ and yυ at the endpoints of the time interval [tk−1, tk].
Define

pN (y) =

(
ey +

1

N + 1
−K

)+

, (16)

hk(y) = ln

(
ey +

1

N + 1

)
, 0 < k < N, (17)

q̃k−1(x, xυ, yυ) =

∫
R
pk(x− z, yυ)f(∆, z|xυ, yυ)dz, 0 < k ≤ N (18)

qk−1(x, xυ) =

∫
R+

∫
R
pk(x− z, yυ)g(∆, z, yυ|xυ)dzdyυ, 0 < k ≤ N, (19)

=

∫
R+

q̃k−1(x, xυ, yυ)c(∆, yυ|xυ)dyυ, (20)

pk−1(y, yυ) = qk−1(hk−1(y), yυ), 1 < k ≤ N, (21)
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where qk−1 is the option value function at time tk−1. Moreover,

g(∆, z, yυ|xυ) = c(∆, yυ|xυ)f(∆, z|xυ, yυ)

is the joint density of the log-return and variance at tk given the information at tk−1 from which
(18)–(20) follow. Here (18) is the convolution of the function pk with the log-return density f .

Then, the expected value (13) is given by

E

((
eYN +

1

N + 1
−K

)+
)

= q0

(
ln

1

N + 1
, υ0

)
. (22)

Proof. See Appendix A.2.

A few comments are in order. First, the inner integral in (19) is isolated and defined

separately in (18), and (19) is re-expressed accordingly in (20) aiming to facilitate the imple-

mentation of Algorithm 1. Second, the conditional log-return density f in (18) is not known

explicitly, however through Proposition 1 and the measure change (14) we gain access to the

associated characteristic function

φ(∆, u|xυ, yυ) = e−r∆φ̂(∆, u− i|xυ, yυ) (23)

under the measure P , which serves efficiently when solving the problem numerically by Fourier

transform (see Algorithm 1).

Proposition 3 (Asian call option). Given the price of the floating strike put option, the call
option price is given by

S0

(
q0

(
ln

1

N + 1
, v0

)
+K − er∆ − e−rT

(N + 1)(er∆ − 1)

)
. (24)

Proof. (24) follows from the basic parity relationship(
KSN −

1

N + 1

∑N

j=0
Sj

)+

=

(
1

N + 1

∑N

j=0
Sj −KSN

)+

+KSN −
1

N + 1

∑N

j=0
Sj .

Remark 2 (Fixed strike Asian option). Consider the Asian call option with payoff(
1

N + 1

∑N

j=0
Sj −K

)+

,

where K is the strike price. Define

ξk =
1

N + 1

(∑k
j=0 Sj −K(N + 1)

Sk

)
, 0 ≤ k ≤ N, (25)

from which

ξk =
1

N + 1

(∑k−1
j=0 Sj −K(N + 1)

Sk−1

)
e−Zk +

1

N + 1
= ξk−1e

−Zk +
1

N + 1
,

where ξ0 = 1/(N + 1)−K/S0. From (25), the price of the Asian call option is given by

Ê
(
e−rTSNξ

+
N

)
= S0E

(
ξ+
N

)
,
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Algorithm 1: Backward pricing algorithm

Input: number of time steps N , grid parameters n, nυ
Output: option price
% Preliminary computations
1: set grids;
2: compute CIR variance transition density c (15);
3: compute pN (16);
4: compute characteristic function φ (23);
% Backward loop in time
for k = N − 1, 1 step −1

5: compute hk (17);
6: compute q̃k (18);
7: compute qk (20);
8: compute pk (21);

end for
9: compute q0 on grid of nυ initial variance values υ0;
10: compute option price for given initial variance value.

where the second expectation is computed under the measure P . (The price of the put-type

option is given via the relevant put-call parity.)

4. A parallel system for the recursive-integral implementation

In this section, we present the basis of the implementation of the pricing scheme. This serves

as the building block for our parallel processing system with efficient memory allocation and

execution time.

4.1. The basic numerical procedure

Equations (16)–(21) provide the outline of the pricing procedure based on backward time

recursion. At each time step, evaluating q in (19) requires a convolution computation by discrete

Fourier transform (DFT) combined with standard trapezoidal quadrature rule. Algorithm 1

provides a sketch of the numerical implementation. More in details:

1: • Set the grids in the state space. We require grids for quantities xυ, yυ, x and y

appearing in (16)–(21). We use the same grid υ = {υmυ}nυ−1
mυ=0 of size nυ and spacing

δυ for xυ and yυ, and x = {xm}n−1
m=0 of size n and spacing δ for x and y, on the log

scale2 (for an example of grid construction, we refer to Fang and Oosterlee, 2011).

• Set the grid in the Fourier space. Define the grid u = {(mu − n/2)δu}n−1
mu=0 of size

n and spacing δu. The range of values of the grid u is chosen so that the tail of the

absolute value of the characteristic function φ defined in (23) is sufficiently captured

at the tails, i.e., |φ| ≤ 10−% where % ∈ N is guided by the desired precision. For an

2Numerical experiments in Fang and Oosterlee (2011) show that the order d = 2αβγ−2 − 1 of the Bessel
function Id affects the behavior of the CIR density with respect to the decay rate in its left tail: decreasing d
towards zero slows down the decay of the left tail; this is almost constant for d approaching zero from above;
finally, when d ∈ [−1, 0], it drastically increases in value. This issue can be avoided by transforming to the
log-variance domain.
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efficient DFT implementation we require that the Nyquist relation δuδ = 2π/n holds,

otherwise the original grids must be accordingly adjusted.

2: Evaluate the CIR variance transition density c (15). This is pre-computed once on the

two-dimensional variance grid (υ,υ) and stored for use in the loop.

4: Evaluate the characteristic function φ (23). This is pre-computed once on the three-

dimensional grid (u,υ,υ) and stored for use in the loop.

6: Compute q̃k−1 on the grid x given the variance levels at the endpoints of the time interval

[tk−1, tk] represented by grid (υ,υ). We compute the inverse DFT (IDFT)

q̃k−1,·,jυ ,mυ =
δu
2π
ei
n
2
δu(xT−x0) ◦

n−1∑
mu=0

e−i
2π
n
mum

(
e−iu

Tx0 ◦ Pk,·,jυ ◦ φ·,jυ ,mυ
)
mu

(26)

for each jυ,mυ = 0, . . . , nυ − 1, where ◦ denotes the Hadamard element-wise product and

Pk,·,jυ = δei(u+n
2
δu)y0 ◦

n−1∑
j=0

ei
2π
n
muj

(
e−i

n
2
δuy ◦ pk,·,jυT ◦w

)
j

(27)

is the DFT of pk on grid u. w is the vector of trapezoidal weights.

7: Compute qk−1 on the grid x given the variance level at time tk−1 represented by grid υ.

We compute this by standard trapezoidal quadrature rule:

qk−1,·,mυ = q̃k−1,·,·,mυ
(
c·,mυ ◦wT

)
for each mυ = 0, . . . , nυ − 1.

8: Compute pk−1 on (x,υ). We have that pk−1(x,υ) = qk−1(hk−1(x),υ), hence we need to

fit a cubic interpolating spline to (x, qk−1,·,mυ), for mυ = 0, . . . , nυ − 1, with not-a-knot

endpoint conditions to evaluate qk−1 at hk−1(x) ⊆ x; for hk−1(x) * x, we use linear

extrapolation in ex.

4.2. The parallel algorithm

To ensure efficient memory allocation and execution time, we introduce our parallel sys-

tem. We start by describing the parallel architecture. This includes a Non-Uniform Memory

Access (NUMA) machine equipped with Linux operating system. This hardware architecture

is representative of many modern high-performance computers (see the TOP 500 list3 of su-

percomputers). The processors are grouped by their physical location on a multi-core CPU

package (the node), and the nodes are coupled via high-speed interconnects. At the machine

level, we recognize a distributed-memory architecture; at the node level, the architecture is

either distributed or shared-memory, or both. In a NUMA machine, each processor has its own

local memory module that can be accessed directly at a highest speed. At the same time, it can

also access any memory module belonging to another processor using a certain type of intercon-

nection. Access to remote memory can be achieved by message-passing parallel programming.

We choose this, hence we adopt a distributed-memory programming model. We employ the

3https://www.top500.org/
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Figure 1: Parallel decomposition of the three-dimensional computational grid. Example with four processes.

Message Passing Interface (MPI) standard4 for message passing; experimental studies on MPI

latest releases show that our choice is competitive with hybrid models combining MPI and

OpenMP, the native system for shared memory architectures. It is worth noting that modern

PCs have multi-core processors equipped with local cache memory, and thus mixed-memory

models adapt to them, too. As we explain in more detail in Section 6.2, our parallel system is

based on open-source software, therefore it can be easily reproduced also on a cluster of PCs.

In what follows, we present our parallel pricing algorithm. We call process each processing

element involved in the computation. Let nproc be the number of processes. For convenience,

the grid sizes and nproc are given by powers of 2. Each process is identified by a number, the

process id, with id = 0, . . . , nproc− 1; we define the Root process the one identified by id = 0.

In Algorithm 1, the CIR transition density (see step 2) is computed on a two-dimensional

grid of size nυ × nυ, and the characteristic function (see step 4) on a three-dimensional grid

of size n × nυ × nυ. We adopt a domain decomposition parallelization strategy, i.e., we split

the computational domain among processes rather than computations to be performed. In

particular, we split the 3-d grid (u,υ,υ) of size n×nυ×nυ among processes in such a way that

each process manages a local sub-grid of size n × nlocυ × nυ, where nlocυ := nυ/nproc. As both

nυ and nproc are powers of 2, nlocυ is an integer. The parallelization strategy is represented in

Figure 1. The grid points are independent in the sense that all the involved function values

at each point depend on that point only, therefore the processes work concurrently on local

sub-grids most of the time, computing their own local variables. The parallelization strategy is

designed, in particular, to avoid communication for the computation of the DFT. Indeed, all the

computations on the x grid are performed concurrently by processes without communication.

Functions evaluated on the 3-d grid are locally stored according to the grid decomposition

represented in Figure 1; functions q̃k, qk, pk, and c are stored in 2-d arrays, for which we use

4http://www.mcs.anl.gov/research/projects/mpi/
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Figure 2: Left: block-column distribution. Right: block-row distribution. Example with four processes..

one-dimensional block column distribution according to the overall domain decomposition. This

distribution strategy is exhibited in Figure 2, applied to a matrix of generic size m × n and

nproc = 4: the block-column distribution is shown on the left, the block-row on the right. The

block-column distribution assigns a block of nloc = dn/nproce contiguous columns to successive

processes, conceptually arranged in a 1 × nproc process grid. Each process receives at most

one block of columns of the matrix. Column k is stored on process bk/nlocc. Note that if the

value of nproc evenly divides the value of n, as in our case, then each process owns a block

of equal size. Consider step 6 of Algorithm 1. Note that (27) requires nυ DFTs of length n.

As pk is distributed in block-column fashion, the processes compute concurrently the Fourier

transforms; each process computes nlocυ DFTs of length n. Then, in (26), for each jυ, nυ IDFTs

– one for each value mυ – of length n are computed. Therefore, after the first stage in which

the nυ DFTs are computed, an all-to-all communication step is required to collect the DFTs.

The processes exchange blocks of size n × nlocυ ; this is the only communication required in the

parallel algorithm and is performed for each monitoring date. After that, the processes compute

concurrently the IDFT.

Once the time loop is completed, only process Root computes the solution. This step requires

communication if the element of position (− ln (N + 1), υ0) in q0 (see equation 22) is not stored

by process Root.

We sketch the parallel procedure in Algorithm 2, where local variables indicated by the

superscript “loc” are computed on local grids, thus are different on each process, whereas

variables without the “loc” mark are replicated by the processes, i.e., all processes independently

compute and store them.

5. Error analysis

In this section, we study the numerical errors of our pricing procedure.

Proposition 4. Let us define

aN = 1, ak−1 = akµ̂, bN =

(
1

N + 1
−K

)+

, bk−1 =
ak−1

N + 1
+ bk

for k = N, . . . , 1, with

µ̂ = max
(xυ ,yυ)∈R2

+

∫
R
e−zf(∆, z|xυ, yυ)dz < +∞.

12



Algorithm 2: Parallel backward pricing algorithm

Input: number of time steps N , grid parameters n, nυ, number of processes nproc
Output: option price
% Parallel preliminary computations
each process:
1: set local grids;
2: compute CIR variance transition density cloc;
3: compute pN ;
% Parallel backward loop in time
each process:
for k = N − 1, 1 step −1

4: compute hk;
5: compute local DFT;
6: collect DFT;
7: compute φloc;
8: compute q̃lock ;
9: compute qlock ;
10: compute plock ;

end for
% Compute the id of the process which stores q0

each process:
11: compute idq0 ;
12: if idq0 6= Root, process idq0 sends q0 to Root;
% Process Root computes option price
only process Root:

13: either computes or receives q0;
14: computes option price.

Then, the following bound holds:

pk (y, yυ) ≤ akey + bk. (28)

Proof. See Appendix A.3.

Let us define functions Q̃k, Qk, Pk as the truncated counterparts of functions q̃k, qk, pk:

PN (y, yυ) = pN (y, yυ)1[DN ,UN ](y)1[d,u](yυ),

Q̃k−1(x, xυ, yυ) =

(∫
R
Pk(x− z, yυ)f(∆, z|xυ, yυ)dz

)
1[D̄k−1,Ūk−1](x)1[d,u]×[d,u](xυ, yυ),(29)

Qk−1(x, xυ) =

∫
R+

Q̃k−1(x, xυ, yυ)c(∆, yυ|xυ)dyυ, (30)

Pk−1(y, yυ) = Qk−1(hk−1(y), yυ)1[Dk−1,Uk−1](y),

with D̄0 = Ū0 = − ln(N + 1),

Dk = D̄k−1 − uk, Uk = Ūk−1 − dk, (31)

and

D̄k = ln

(
eDk +

1

N + 1

)
, Ūk = ln

(
eUk +

1

N + 1

)
. (32)
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The following theorem provides a bound for the error due to truncation to the compact intervals

(dk, uk) and (d, u).

Theorem 5. Let us define

ãN = 0, ãk−1 = ãkµ̂+ ak [F (dk;−1) +G(uk;−1)] + ak−1

[
F̂ (d; 0) + Ĝ(u; 0)

]
,

b̃N = 0, b̃k−1 = b̃k + bk

[
F (dk; 0) +G(uk; 0) + F̂ (d; 0) + Ĝ(u; 0)

]
+

ãk−1

N + 1
,

for k = N, . . . , 1, where

F (z;β) = max
(xυ ,yυ)∈R2

+

∫ z

−∞
eβxf(∆, x|xυ, yυ)dx,

F̂ (z;β) = max
xυ∈R+

∫ z

0
eβyυc(∆, yυ|xυ)dyυ,

G(z;β) = max
(xυ ,yυ)∈R2

+

∫ ∞
z

eβxf(∆, x|xυ, yυ)dx,

Ĝ(z;β) = max
xυ∈R+

∫ ∞
z

eβyυc(∆, yυ|xυ)dyυ.

The following bound then holds:

qk−1(x, xυ)−Qk−1(x, xυ) ≤ ãk−1e
x + b̃k−1 −

ãk−1

N + 1
.

Proof. See Appendix A.4.

The results of Theorem 5, coupled with

lim
dk→−∞

F (dk, β) = lim
uk→+∞

G(uk, β) = 0, β = 0,−1, for any k,

and

lim
d→0

F̂ (d, 0) = lim
u→+∞

Ĝ(u, 0) = 0,

allow us to control the error due to domains’ truncation

q0

(
ln

1

N + 1
, v0

)
−Q0

(
ln

1

N + 1
, v0

)
by decreasing dk and d and increasing uk and u.

Next, we study the integration error when approximating the integrals by the trapezoidal

quadrature rule.

Theorem 6. Let us assume that a constant C exists such that∫
R e
−βz∂

(i)
xυ f(∆, z|xυ, yυ)dz < C,

∫
R
e−βz∂(i)

yυ f(∆, z|xυ, yυ)dz < C,∫
R∂

(i)
xυ c(∆, yυ|xυ)dz < C,

∫
R
e−zf(∆, z|xυ, yυ)dz < C,

where β ∈ {0,−1}, i ∈ {1, 2}, and ∂
(i)
x denotes the i-th order derivative with respect to x.

Moreover, assume that

|∂(i)
z f(∆, z|xυ, yυ)| <∞, |∂(i)

yυ c(∆, yυ|xυ)| <∞, i = 1, 2. (33)
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Model parameter sets

NIG+CIR α = 3.99, β = 0.014, γ = 0.27, v0 = 0.008836,
k = 0.00294, θ = −11.00604, σ = 0.84059

CGMY+CIR α = 3.99, β = 0.014, γ = 0.27, v0 = 0.008836,
C = 15.6840, G = 10.2115,M = 43.1510, Y = 0.8

Heston α = 1, β = 0.09, γ = 1, ρ = −0.3, v0 = 0.09
Bates α = 3.99, β = 0.014, γ = 0.27, ρ = −0.79, v0 = 0.008836,

µL = −0.12, σL = 0.15, λ = 0.11

Table 2: Model parameter sets.

H
HHHHHnv

N
4 8 16 32

28 1.592924 1.648851 1.680491 1.695505
29 1.592924 1.648851 1.680466 1.689633
210 1.592924 1.648851 1.680466 1.689633

Table 3: Asian option prices under the NIG+CIR model computed using Algorithm 2 for increasing number of
grid points nυ = 28, 29, 210 in the variance dimension, with n = 211 held fixed, for given number of monitoring
dates N = 4, 8, 16, 32. Model parameters: see Table 2.

Then, the error from approximating integrals (29)–(30) by the trapezoidal rule with n and nυ
points is of the order O(n−2) and O(n−2

υ ), respectively.

Proof. See Appendix A.5.

6. Numerical results

In this section, we study the performance of our pricing algorithm based on numerical results

from tests on accuracy and parallel efficiency.

6.1. Accuracy of pricing methodology

For the sake of illustration, we consider a floating strike Asian option with time to maturity

T = 1 under the NIG+CIR model, i.e., the NIG model with integrated CIR time change (see

Section 2.3). We assume an initial price of the underlying S0 = 100 and a risk free interest rate

r = 0.04. Numerical results are presented in Tables 3–4, whereas Figure 3 and Table 5 exhibit

summarized results for additional model specifications. For the purposes of our experiments,

we use the stochastic volatility parameter values reported in Table 2 taken from Broadie and

Kaya (2006), Andersen (2008) and Glasserman and Kim (2011), which correspond to different

market calibrations and are described as challenging and intended to reflect parameter values

commonly used in practice.

We investigate the impact on precision of successive grid refinements, i.e., increasing number

of grid points n and nυ, for different number of monitoring dates N = 4, 8, 16, 32. We find that

increasing nυ from 29 to 210, or higher, has negligible effect on precision as shown in Table 3.

Moreover, Table 4 shows that increasing n = 29, . . . , 214, with nυ = 29 fixed, results in notable

precision improvement of the computed prices using our algorithm that fall eventually within

the 95% confidence intervals estimated using Monte Carlo simulation.

Our numerical analysis suggests a quadratic convergence, as expected in view of Theorem

6. In Figure 3, we present on a log-log scale the convergence patterns of the computed option
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HH
HHHHn

N
4 8 16 32

29 1.585 1.689 2.069 1.016
210 1.591 1.648 1.707 1.766
211 1.5929 1.6488 1.6804 1.6896
212 1.59326 1.64925 1.68066 1.69742
213 1.59335 1.64935 1.68078 1.69754
214 1.59337 1.64938 1.68081 1.69757

Conf. interval (1.5932, 1.5934) (1.6492, 1.6494) (1.6807, 1.6808) (1.6974, 1.6976)

Table 4: Asian option prices under the NIG+CIR model computed using Algorithm 2 for increasing number
of grid points n = 29, . . . , 214, with nυ = 29 held fixed, for given number of monitoring dates N = 4, 8, 16, 32.
Also reported 95% confidence intervals for Monte Carlo price estimates based on 105 simulations and variance
reduction using the lower bound of Fusai and Kyriakou (2016) as control variate. Model parameters: see Table
2.

Figure 3: Convergence patterns of computed option prices under different model specifications using Algorithm
2 for increasing number of grid points n = 29, . . . , 214, with nυ = 29 held fixed, and number of monitoring dates
N = 8 (left plot), 16 (right plot). Price patterns resulting from Richardson extrapolation (RE) also presented.
Model parameters: see Table 2.

prices under the Heston, Bates, NIG+CIR and CGMY+CIR models. We observe that smoothly

diminishing error patterns are preserved under different model specifications, confirming the

quadratic convergence under all models. Therefore, the following result can be applied: let

pN,n0 be the numerical price of an option with N monitoring dates corresponding to a grid of

size n; then, for sufficiently large n, we observe that pN,n0 − pN,2n0 = 4(pN,2n0 − pN,4n0 ). Given

this, we are able to accelerate the convergence rate of the price sequence {pN,n0 }n using standard

Richardson extrapolation (0.52pN,n0 −pN,2n0 )/(0.52−1) (e.g., see Quarteroni et al., 2010), leading

to high accuracies, e.g., at least 6 decimal digits, as shown in Table 5. The effect of Richardson

extrapolation on the improvement of the accuracy is also evident in Figure 3.

In addition, we compare our option prices with relevant methods from the literature, in

particular, the approximations of Zeng and Kwok (2016) and Fusai and Kyriakou (2016), and

the very effective Monte Carlo method with the lower bound of the latter used as control

variate. To this end, we adopt the same parameters as in Zeng and Kwok (2016) for the

NIG+CIR model. From the reports in Table 6 it becomes obvious that, by increasing n, we

can achieve accuracy of 5 decimal places in 2.5 to 13 seconds, depending on the number of
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(n, 2n) RE prices
NIG+CIR CGMY+CIR Bates Heston

(29, 210) 1.634 1.615 2.008 4.0529
(210, 211) 1.649 1.628 2.00689 4.05299
(211, 212) 1.64939 1.62899 2.006895 4.052992
(212, 213) 1.649393 1.628997 2.006895 4.052992
(213, 214) 1.649393 1.628997 2.006895 4.052992

Conf. interval (1.6492, 1.6494) (1.6288, 1.6290) (2.0068, 2.0069) (4.0524, 4.0535)

Table 5: Asian option prices under the NIG+CIR, CGMY+CIR, Bates and Heston models by Richardson
extrapolation (RE) of pairs of option prices corresponding to number of grid points (n, 2n) computed using
Algorithm 2, with nυ = 29 held fixed, and N = 8 dates. Confidence intervals: refer to notes of Table 4. Model
parameters: see Table 2.

RE prices
PPPPPPPPP(n, 2n)

N
4 8 16 32

(28, 29) 2.105 (1.3) 2.158 (2.1) 2.190 (3.8) 2.207 (6.9)
(29, 210) 2.10527 (2.5) 2.15886 (4.1) 2.19016 (7.1) 2.20714 (13)
(210, 211) 2.105269 (5.1) 2.158865 (8.3) 2.190160 (15) 2.207132 (28)
(211, 212) 2.1052692 (10) 2.1588649 (17) 2.1901597 (31) 2.2071324 (58)

Lower bound 2.105161 2.158767 2.190065 2.207046

Conf. interval (2.10526, 2.10527) (2.15886, 2.15887) (2.19015, 2.19016) (2.20713, 2.20714)

Table 6: Asian option prices for varying monitoring dates N = 4, 8, 16, 32 under the NIG+CIR model computed
using Algorithm 2 and improved by Richardson extrapolation (RE) based on paired prices corresponding to
number of grid points (n, 2n) with nυ = 29 held fixed (computing times in parentheses correspond to our parallel
strategy with 64 processes, see Section 6.2); lower bound of Fusai and Kyriakou (2016) (of equal accuracy to
Zeng and Kwok, 2016); 95% confidence intervals based on 106 simulations and variance reduction using the lower
bound as control variate. Model parameters: α = β = γ = υ0 = 1, k = 0.01, θ = −0.5, σ = 0.1 (Zeng and Kwok,
2016). Other parameters: S0 = 100, r = 0.01, T = 1.

monitoring dates (we show later how this can be managed efficiently). Our method benefits

from unlimited increase in precision (7 decimals, or more) subject to a reasonable computing

time increase as shown in Table 6, but also yields lower accuracies of, say, 3 decimals, which

could be relevant for practical applications, in 1.3 to 6.9 seconds. This flexibility of controlling

the precision of the method as desired, renders it a suitable benchmark for other methods. The

partially exact and bounded approximation by Zeng and Kwok (2016) and the lower bound of

Fusai and Kyriakou (2016) strongly compete each other with a discrepancy of ±10−4 between

them and are accurate to 3 decimals, although the former is more computationally demanding,

while, contrary to our method, they both suffer by restricted sharpness and proximity to the

true option price. Although quite satisfactory, the Gram–Charlier expansion of Yamazaki (2014)

is less accurate and slower requiring more characteristic function evaluations, hence we do not

explicitly report numerical results in the interest of space. On the other hand, despite the

use of control variates, Monte Carlo simulation still converges more slowly than our method

yielding accurate results at 4–5 decimal places (with 95% confidence) with substantial excess

computational cost.

We conclude this part by studying the convergence of the price of the discrete to the con-

tinuous Asian option with increasing N , which we can then exploit to reduce the impact of

17



Figure 4: Convergence pattern of computed option prices using Algorithm 2 for increasing number of monitoring
dates N = 4, 8, 16, 32, with n = 214 and nυ = 29 held fixed. Model parameters: see Table 2.

increasing dates on the computational speed. Figure 4 exhibits a linear convergence, coherently

with the analysis of Fusai et al. (2008). This further allows the use of Richardson extrapo-

lation as a “cost-free” way of speeding up the convergence of the discrete Asian option price

pN,n0 to the continuous p+∞,n
0 , i.e., p+∞,n

0 ≈ (0.5pN,n0 − p2N,n
0 )/(0.5 − 1), or the discrete Asian

option price for N ′ dates, pN
′,n

0 ≈ kp2N,n
0 + (1 − k)p+∞,n

0 , where k := 2N/N ′ < 1. For exam-

ple, under the NIG+CIR model, for (n, 2n) = (213, 214) (RE), N = 16, N ′ = 50, we compute

p+∞,n
0 = 1.714351 and p50,n

0 = 1.703621 which falls within the 95% Monte Carlo confidence

interval (1.7035, 1.7038).

6.2. Parallel efficiency

In this section, we analyze the performance of our parallelization strategy. First, we provide

some implementation details. All the numerical tests are performed on a HP ProLiant BL460c

Gen8 Server Blade, a NUMA machine consisting of 8 nodes, the Blades, each equipped with

two quad-core Intel Xeon E5-2609. Figure 5 presents the topology of each blade.

The Linux operating system is installed on the Bladecenter. The parallel pricing algo-

rithm is implemented in C; message passing is performed by means of MPI. To compute

the Bessel function Id(z) (see equations 5 and 15), we use the SLATEC Common Math-

ematical Library, a comprehensive software library containing general purpose mathemati-

cal and statistical routines written in Fortran 77, which is freely available from NETLIB

(http://www.netlib.org/slatec/); included routines are based on the algorithm of Amos

(1986). We compute the IDFT in (26) and the DFT in (27) using FFTW, a C subroutine library

for computing one- or multi-dimensional Fourier transforms of arbitrary input size and of both

real and complex data (see Frigo and Johnson, 2005). It is worth noting that all software ele-

ments at different levels in our system – operating system, compiler, message-passing system,

and routines for main computational kernels – are freely available, thus the parallel option

pricing code that we describe in this paper can be easily used on a cluster of PCs as well as a
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Figure 5: Architecture of a blade in the HP ProLiant BL460c Gen8 Server Blade.

multi-core PC.

We analyze the speed-up of the parallel code using a standard metric for evaluating a parallel

software. Recalling that nproc is the number of processes involved in the computation, one

would ideally want to solve the problem nproc times faster than using 1 process; the speed-up

takes a value between 1 and nproc, providing an estimate of how effective parallelism is. This

value also suggests what we should expect in terms of computing time reduction, if the number

of processes were further increased. The speed-up is defined in the following way:

Spnproc =
T1(n, nυ)

Tnproc(n, nυ)
,

where Tk(n, nυ), k = 1, . . . , nproc, is the execution time with k processes on a grid of size

n × nυ × nυ. The ideal value is actually never realized due to both communication time and

serial parts of the algorithm that cannot be avoided. The communication overhead typically

increases with the number of processes. This can be attributed to the increasing number of

communications with the number of processes involved in the computations. Moreover, the

single process workload decreases with nproc, thus the ratio between communication time and

computing time increases, affecting the parallel performance.

In our experiments, we fix n = 211 and nυ = 29. Figure 6 shows the ideal speed-up as well as

the observed one for N = 4, 8, 16, 32 monitoring dates. Note that our results remain unaffected

by the underlying model specification. Also, the speed-up does not significantly decrease with

increasing number of processes, i.e., the parallel algorithm exhibits good scalability. In fact, if

we consider 64 processes, as for Table 6, the pricing procedure is 58–62 times faster than the

serial code, depending on the number of monitoring dates.

7. Conclusions

In this work, we present a parallel pricing procedure for Asian options with discrete monitor-

ing. Our method is suitable for general affine stochastic volatility models, including the Heston,

Bates, and time changed Lévy models. We prove and demonstrate quadratic error convergence

of the numerical scheme in the number of grid points. We also test its accuracy against a control
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Figure 6: Speed-up for different number of monitoring dates N = 4, 8, 16, 32. Ideal speed-up also included.

variate Monte Carlo strategy, which is de facto standard for this class of models, as well as other

methods from the recent literature.

To accelerate the valuation process, we develop a parallel system that is based on free

software at all levels, thus can be easily ported on parallel computers, also realized as a cluster

of PCs. We show that accurate results can be obtained in a suitable turnaround time. We

also compute the speed-up of the parallel software in order to measure the performance of the

parallel algorithm. Our results confirm the effectiveness of the adopted parallelization strategy

and are unaffected by the underlying model specification.

The development of parallel strategies aiming to reduce the computing time without sac-

rificing for the precision of numerical procedures is an important task in finance and beyond,

as discussed in the Introduction, especially when the parallel strategy is not trivial (see, for

example, Corsaro et al., 2015). Future research will include, but not be limited to, the study of

parallelization in multi-asset contracts.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

i) From the tower property of expectations, it holds that

Ê
(
eiuZt |V0 = υ0, Vt = υ

)
= Ê

[
Ê
(
eiuZt

∣∣Yt)∣∣∣V0 = υ0, Vt = υ
]
. (A.1)

From (1), we have that∫ t

0

√
VsdW

V
s =

1

γ

(
Vt − V0 − αβt+ α

∫ t

0
Vsds

)
,

hence we get from (2)

Zt = rt+
ρ

γ
(Vt − V0 − αβt) +

(
ρα

γ
− 1

2

)∫ t

0
Vsds+

√
1− ρ2

∫ t

0

√
VsdW

X
s .

Then, by normality of Zt conditional on the integral of the variance process Yt =
∫ t

0 Vsds,

(A.1) equals

exp

{
iu

((
r − ραβ

γ

)
t+

ρ

γ
(υ − υ0)

)}
×Ê

[
exp

{
iu

(
ρα

γ
− 1

2
+
iu(1− ρ2)

2

)
Yt

}∣∣∣∣V0 = υ0, Vt = υ

]
,
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from which (6) follows by virtue of (5).

ii) (7) follows from (6) by independence of the jump component in (3).

iii) By conditioning on Yt, we recover the characteristic function of the driving Lévy process

Ê
(
eiuZt

∣∣Yt) = exp (iurt+ k(iu)Yt) ,

hence, given (5), (8) follows from

Ê [ exp (iurt+ k(iu)Yt)|V0 = υ0, Vt = υ] .

Appendix A.2. Proof of Theorem 2

We prove by induction on k that E[(eYN + 1/(N + 1) − K)+|Fk] = pk(Yk, Vk) for k =

0, . . . , N . Trivially the result holds for k = N . Suppose that E[(eYN +1/(N +1)−K)+|Fk+1] =

pk+1(Yk+1, Vk+1) holds for arbitrary k < N − 1. By iterated expectations,

E

((
eYN +

1

N + 1
−K

)+
∣∣∣∣∣Fk

)
= E

[
E

((
eYN +

1

N + 1
−K

)+
∣∣∣∣∣Fk+1

)∣∣∣∣∣Fk
]

= E[pk+1(Yk+1, Vk+1)|Fk]

= E

[
pk+1

(
ln

(
eYk +

1

N + 1

)
− Zk+1, Vk+1

)∣∣∣∣Fk] ,
where the last equality follows from (12). Then

E

[
pk+1

(
ln

(
eYk +

1

N + 1

)
− Zk+1, Vk+1

)∣∣∣∣Fk]
=

∫
R+

∫
R
pk+1

(
ln

(
eYk +

1

N + 1

)
− z, yυ

)
g(∆, z, yυ|xυ)dzdyυ

= qk

(
ln

(
eYk +

1

N + 1

)
, Vk

)
= pk (Yk, Vk) ,

where the last two equalities follow from (19) and (21). Therefore, by induction, we have

E

[(
eYN +

1

N + 1
−K

)+
]

= E

[(
eYN +

1

N + 1
−K

)+
∣∣∣∣∣F0

]
= q0

(
ln

1

N + 1
, v0

)
.

Appendix A.3. Proof of Proposition 4

For k = N , equation (16) implies pN (y, yυ) ≤ aNe
y + bN for any yυ. Along the arguments

of the proof of Theorem 3.1 in Černý and Kyriakou (2011), we proceed with proving our thesis

by induction on k. Suppose that pk (y, yυ) ≤ ake
y + bk holds for arbitrary k ≤ N and any yυ.

Then from (18) we have

q̃k−1 (x, xυ, yυ) =

∫
R
pk (x− z, yυ) f (∆, z|xυ, yυ) dz ≤ akµ̂ex + bk = ak−1e

x + bk,

and from (20) we obtain qk−1 (x, xυ) ≤ ak−1e
x + bk. Finally, from (21) we have

pk−1 (y, yυ) ≤ ak−1e
hk−1(y) + bk = ak−1

(
ey +

1

N + 1

)
+ bk

= ak−1e
y +

(
ak−1

N + 1
+ bk

)
= ak−1e

y + bk−1.
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This completes the proof.

Appendix A.4. Proof of Theorem 5

We proceed by induction on k. More specifically, assume that the following holds for arbi-

trary 0 < k ≤ N

0 ≤ pk(y, yυ)− Pk(y, yυ) ≤ ãkey + b̃k for y ∈ [Dk, Uk], yυ ∈ [d, u]

(this trivially holds for k = N), and for 0 ≤ k < N

0 ≤ qk(x, xυ)−Qk(x, xυ) ≤ ãk
(
ex − 1

N + 1

)
+ b̃k for x ∈ [D̄k, Ūk], xυ ∈ [d, u].

We have that

q̃k−1(x, xυ, yυ)− Q̃k−1(x, xυ, yυ) =

∫
R

(pk(x− z, yυ)− Pk(x− z, yυ))f(∆, z|xυ, yυ)dz ≥ 0.

From (31) we obtain for any x ∈ [D̄k−1, Ūk−1], (xυ, yυ) ∈ [d, u]× [d, u]

q̃k−1(x, xυ, yυ)− Q̃k−1(x, xυ, yυ)

=

∫
[dk,uk]

(pk(x− z, yυ)− Pk(x− z, yυ))f(∆, z|xυ, yυ)dz

+

∫
R\[dk,uk]

(pk(x− z, yυ)− Pk(x− z, yυ))f(∆, z|xυ, yυ)dz

≤
∫

[dk,uk]
(ãke

x−z + b̃k)f(∆, z|xυ, yυ)dz +

∫
R\[dk,uk]

pk(x− z, yυ)f(∆, z|xυ, yυ)dz

≤
∫
R

(ãke
x−z + b̃k)f(∆, z|xυ, yυ)dz +

∫
R\[dk,uk]

(ake
x−z + bk)f(∆, z|xυ, yυ)dz

≤ ãkµ̂e
x + b̃k + ake

x [F (dk;−1) +G(uk;−1)] + bk [F (dk; 0) +G(uk; 0)] ,

and

qk−1(x, xυ)−Qk−1(x, xυ)

=

∫
R+

(
q̃k−1(x, xυ, yυ)− Q̃k−1(x, xυ, yυ)

)
c(∆, yυ|xυ)dyυ

=

∫
[d,u]

(
q̃k−1(x, xυ, yυ)− Q̃k−1(x, xυ, yυ)

)
c(∆, yυ|xυ)dyυ

+

∫
[0,d]∪[u,+∞)

q̃k−1(x, xυ, yυ)c(∆, yυ|xυ)dyυ

≤ ãkµ̂e
x + b̃k + ake

x [F (dk;−1) +G(uk;−1)] + bk [F (dk; 0) +G(uk; 0)]

+(ak−1e
x + bk)

[
F̂ (d, 0) + Ĝ(u, 0)

]
≤ ãk−1e

x + b̃k−1 −
ãk−1

N + 1
.
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From (32) we have for any y ∈ [Dk−1, Uk−1] that hk−1(y) ∈ [D̄k−1, Ūk−1] and, thus,

0 ≤ pk−1(y, yυ)− Pk−1(y, yυ) = qk−1(hk−1(y), yυ)−Qk−1(hk−1(y), yυ)

≤ ãk−1

(
ehk−1(y) − 1

N + 1

)
+ b̃k−1 = ãk−1e

y + b̃k−1.

Appendix A.5. Proof of Theorem 6

Consider the derivatives with respect to x and y. The proof proceeds by induction on k.

Function PN is piecewise differentiable and satisfies

0 ≤ ∂yPN (y, yυ) ≤ aNey + cN for y ∈ (DN , UN ), yυ ∈ (d, u)

with cN = 0. In addition, assume that

0 ≤ ∂yPk(y, yυ) ≤ akey + ck for y ∈ (Dk, Uk), yυ ∈ (d, u)

for arbitrary k < N and some constant ck. Note that ∂yPk(y, yυ) = Pk(y, yυ) = 0 for any y 6∈
(Dk, Uk), yυ 6∈ (d, u). Function 0 ≤ ∂xPk(x− z, yυ)f(∆, z|xυ, yυ) is dominated by an integrable

function of x in a compact interval, thus we can interchange integration and differentiation to

obtain for x ∈ (D̄k−1, Ūk−1), xυ ∈ (d, u)

0 ≤ ∂xQ̃k−1(x, xυ, yυ) =

∫
R
∂xPk(x− z, yυ)f(∆, z|xυ, yυ)dz ≤

∫
R

(ake
x−z + ck)f(∆, z|xυ, yυ)dz

≤ ak−1e
x + ck.

The same bound holds for Q implying that ∂xQk−1 is continuous in (D̄k−1, Ūk−1). As h′k−1(y) ∈
(0, 1) for all y, we also obtain

0 ≤ ∂yPk−1(y, yυ) ≤ ∂xQk−1(x, yυ)|x=hk−1(y) ≤ ak−1e
hk−1(y) + ck = ak−1e

y + ck−1, (A.2)

where ck−1 = ck + ak−1/(N + 1). Similarly we proceed with the second order derivatives and

obtain

0 ≤ ∂yyPk(y, yυ) ≤ akey + ck. (A.3)

We are now able to define the discretization error from evaluating integral (29) with the

trapezoidal rule with n points. More specifically, in computing Q̃k−1 we have

Q̃k−1(x, xυ, yυ) =

∫ Uk

Dk

Pk(y, yυ)f(∆, x− y|xυ, yυ)dy,

which, when approximated by the trapezoidal rule, yields an error bounded (see Quarteroni

et al., 2010) by
(Uk −Dk)

3E

12n2
,
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with

E = max
y∈[Dk,Uk]

|∂yy(Pk(y, yυ)f(∆, x− y|xυ, yυ))|

≤ max
y∈[Dk,Uk]

|(akey + ck)f(∆, x− y|xυ, yυ) + (ake
y + bk)∂zzf(∆, z|xυ, yυ)|z=x−y

−2(ake
y + ck)∂zf(∆, z|xυ, yυ)|z=x−y| ,

due to (28) (recall that Pk ≤ pk by definition), (A.2) and (A.3). Note that E is bounded by

assumption (33).

Consider now the derivatives with respect to xυ and yυ. We have that

∂xυQ̃k−1(x, xυ, yυ) =

∫
R
Pk(x− z, yυ)∂xυf(∆, z|xυ, yυ)dz 1[D̄k−1,Ūk−1](x)1[d,u]×[d,u](xυ, yυ)

≤ ake
x

∫
R
e−z∂xυf(∆, z|xυ, yυ)dz + bk

∫
R
∂xυf(∆, z|xυ, yυ)dz =: Ak(x, xυ, yυ),

and, similarly,

∂xυQk−1(x, xυ) ≤
∫
R+

Ak(x, xυ, yυ)c(∆, yυ|xυ)dyυ + (ak−1e
x + bk)

∫
R+

∂xυc(∆, yυ|xυ)dyυ,

∂yυPk−1(y, yυ) = ∂yυQk−1(hk−1(y), yυ)

≤
∫
R+

Ak(hk−1(y), yυ, zυ)c(∆, zυ|yυ)dzυ + (ak−1e
y + bk−1)

∫
R+

∂yυc(∆, zυ|yυ)dzυ

=: Bk−1(y, yυ)

and

∂yυQ̃k−1(x, xυ, yυ) ≤ ake
x

∫
R
e−z∂yυf(∆, z|xυ, yυ)dz + bk

∫
R
∂yυf(∆, z|xυ, yυ)dz

+

∫
R
Bk(x− z, yυ)f(∆, z|xυ, yυ)dz.

We proceed similarly with the second order derivatives. Thus, we have that Q̃k−1 is differentiable

and Q̃k−1, ∂yυQ̃k−1 and ∂yυyυQ̃k−1 are bounded.

Therefore, the discretization error from evaluating integral (30) with the trapezoidal rule

with nυ points is bounded by
(u− d)3Eυ

12n2
υ

,

with

Eυ = max
yυ∈[d,u]

∣∣∣∂yυyυQ̃k−1(x, xυ, yυ)c(∆, yυ|xυ) + 2∂yυQ̃k−1(x, xυ, yυ)∂yυc(∆, yυ|xυ)

+Q̃k−1(x, xυ, yυ)∂yυyυc(∆, yυ|xυ)
∣∣∣ .

Note that Eυ is bounded due to assumption (33).

Appendix B. Extension to general affine stochastic volatility models

When deriving the results in Proposition 1 we exploit the analytical tractability of the square

root volatility. Nevertheless, we can extend to general affine stochastic volatility models in the
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absence of an analytical solution for the characteristic function of the log-return conditional

on the current and terminal variance states. In particular, from Bartlett (1938, p. 62–63) and

Bates (2006, Proposition 1),

φ̂(t, u|υ0, υ) =

∫
e−iυωÊ (exp(iωVt + iuZt)|V0 = υ0) dω∫

e−iυωÊ (exp(iωVt)|V0 = υ0) dω
, (B.1)

where Ê (exp(iωVt + iuZt)|V0 = υ0) admits explicit representations under various affine volatil-

ity models (see Table B.7); for more details about the derivation of the relevant expressions,

we refer, for example, to Hubalek et al. (2017). In what follows, we present concrete paradigms

with jumps in the volatility.

Appendix B.1. Stochastic volatility with concurrent and correlated price and variance jumps

In addition to the Heston and Bates models, Duffie et al. (2000) include jumps in the variance

process. The governing equations are

dXt =

(
r − λk(1, 0)− 1

2
Vt

)
dt+

√
Vt

(
ρdW V

t +
√

1− ρ2dWX
t

)
+ dLXt ,

dVt = α (β − Vt) dt+ γ
√
VtdW

V
t + dLVt ,

where processes (LVt )t≥0 and (LXt )t≥0 have a common Poisson driver, hence jumps in price and

volatility occur concurrently, have correlated sizes with parameters ρX,V , µX , σX , µV , and jump

transform k(u1, u2) := exp(µXu1 + σ2
Xu

2
1/2)/(1− ρX,V µV u1 − µV u2)− 1. The volatility jumps

are positive (the jump size is exponential).

Appendix B.2. Non-Gaussian Ornstein–Uhlenbeck stochastic volatility models

Barndorff-Nielsen and Shephard (2001) and Barndorff-Nielsen et al. (2002) consider Lévy-

driven positive Ornstein–Uhlenbeck (OU) models for the variance process:

dVt = −λVtdt+ dLt,

where λ > 0 and the background driving Lévy process (Lt)t≥0 is a zero-drift subordinator with

Laplace exponent k(u). For example, the OU process with a gamma stationary law corresponds

to a compound Poisson subordinator with exponential jump sizes (see Cont and Tankov, 2004,

Example 15.1) with k(u) = νu/(α− u), ν, α > 0. Another concrete case is that of the variance

process with an inverse Gaussian stationary law with k(u) = νu/
√
α2 − 2u, ν, α > 0. The risk

neutral specification of the log-price is given by

dXt =

(
r − λk(ρ)− 1

2
Vt

)
dt+

√
VtdW

X
t + ρdLt,

where the standard Brownian motion WX is independent of L, ρ ≤ 0 and the ρdLt term accounts

for the leverage effect.

Table B.7 summarizes the joint laws of (V,Z) for use in (B.1).
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Model Ê (exp(iωVt + iuZt)|V0 = υ0)

Duffie et al. (2000) exp
{
t
(
r − ραβ

γ − λk(1, 0)
)
iu

+αβ
γ2

[
αt+ ln

(
ϑ2(u)(1+ϕ2

s(ω,u))
γ2(2(iuργ−α)iω−γ2ω2+iu(iu−1))

)]
+λ
∫ t

0 k
(
iu, ϕs(ω,u)ϑ(u)+α−iuργ

γ2

)
ds

+ϕt(ω,u)ϑ(u)+α−iuργ
γ2 υ0

}
Barndorff-Nielsen and Shephard (2001), exp {t(r − λk(ρ))iu

Barndorff-Nielsen et al. (2002) +λ
∫ t

0 k
(
e−λsiω + 1−e−λs

2λ (iu− 1)iu+ ρiu
)
ds

+
[
e−λtiω + 1−e−λt

2λ (iu− 1)iu
]
υ0

}
Table B.7: Summarized characteristic functions (see equation B.1). Notes: Duffie et al. (2000): ϕt(ω, u) :=
tan

[
ϑ(u)t/2 + arctan

(
(iuργ − α+ iωγ2)/ϑ(u)

)]
and ϑ(u) :=

√
(iu− 1)iuγ2 − (α− iuργ)2.
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