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Introduction

The modelling of security returns is of vital importance in forecasting and risk man-

agement, with implications on the methods for allocating capital among competing

prospects. It forms a key part of the value added process of the investment allocation

life cycle, which is the dynamic process of model building, forecasting and the genera-

tion of optimal allocations of capital based on some risk-reward trade-off. Traditionally,

this process has been completely dominated by the classical model of Bachelier (1964),

developed further, most notably, by Fama (1970) in the Efficient Market Hypothesis,

and the modern portfolio theory of Markowitz (1952). Under this framework, secu-

rity returns are seen as being random, absent of any distorting ’effects’ and normally

distributed. While the randomness concept is not generally disputed, the absence of dis-

torting effects and the normality assumption, while offering tractability and elegance to

the mathematical modelling setup, are not borne out in reality. The distorting effects,

also called stylized facts, lead to behavior which deviates from the i.i.d. assumption,

with obvious consequences with respect to the summation of random sequences and

any inferences or forecasts based on this. There is an abundance of empirical evidence

documenting such effects as fat tails and skewness - a clear departure from normality,

autocorrelation in returns and volatility clustering. This has given rise to a new set

of models, methods and distributions aimed at providing a more realistic model of se-

curity dynamics, supported by more positive theories of investor behavior such as in

Kahneman and Tversky (1979). In what Rom and Ferguson (1994) called the ’Post-

Modern Portfolio’ age, the recognition of fat tails and asymmetry has given rise to new

models and measures of risk which more adequately capture these effects. Foremost

among these new models has been the ARMA model popularized by Box and Cox

(1964) and the GARCH model of Bollerslev (1986). These models have sought to pro-

vide simple dynamics for the conditional first and second moments of the distribution

of security returns. Numerous extensions such as the incorporation of the asymmetric

effect of negative and positive returns (TAR and TGARCH), long memory (ARFIMA

1



Introduction 2

and FIGARCH), the Taylor effect1 (APARCH), and omnibus distributions such as the

Generalized Hyperbolic of Barndorff-Nielsen (1977) have been used in an attempt to

capture increasing degrees of complexity in the observed dynamics of the underlying

securities.

The implications for risk management are clear, with a large number of studies showing

that GARCH models provide superior estimates of conditional density based tail mea-

sures such as VaR. In industry, J.P. Morgan’s Riskmetrics methodology (see Morgan

(1994)), being a restricted GARCH model with fixed parameters, has proved simple

and popular among practitioners leading to its wide adoption. Nevertheless, despite

the popularity of GARCH models and their applicability across a wide range of applica-

tions, they cannot account for the large security price fluctuations observed in practice,

even when accounting for fat tails and skewness with the use of highly parameterized

distributions. To correct this limitation, while staying within the tractable GARCH

framework, Hansen (1994) introduced dynamics to the parameters which control the

shape and skew of the distribution, thus potentially allowing for extreme events to be

modelled. However, this Autoregressive Conditional Density (ACD) model has not been

as popular as the simpler GARCH model, and many open questions remain such as the

generalization to the multivariate domain, parameter consistency, and the overall net

benefit for the added complexity.

The objectives of this thesis, are twofold. First, to address the issue of time varying

higher moments in the joint modelling of security returns with the objective of provid-

ing for a feasible and value added input to the portfolio allocation and risk management

setup. Second, to test this and related models using a new set of risk-reward models in

a large empirical setup and at the same time consider the question of the optimality of

the weighting schemes used by benchmark indices in the presence of such dynamics.

In Chapter 1, I review the literature on the ACD models, much of which attempts to

establish their value using a variety of mainly in-sample empirical applications covering

securities from real estate to foreign exchange, daily to monthly frequencies. The chap-

ter tries to answer a more general question, namely what is the cost of using GARCH

when the dynamics include time varying higher moments. Using a variety of tests, both

in- and out-of-sample, based on simulated and real data, I show that there is a real

cost to using GARCH in these circumstances but little cost to using ACD dynamics to

capture the infrequent extremes seen in practice. The chapter introduces the ACD-GH

1Named after Taylor (1986) who observed that the sample autocorrelation of absolute returns was
usually larger than that of squared returns
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model, a far more flexible representation than previously used in the literature, and

discusses its properties and the modelling challenges arising from the highly nonlinear

dynamics and presence of 2 shape parameters. The question of parameter consistency

is also partially addressed within a simulation exercise, something very rarely seen in

the literature.

Chapter 2 provides a general review of some popular multivariate GARCH models and

discusses the tradeoff between feasibility and complexity in the modelling process with

some interesting insights. In particular, the value of the DCC model versus more es-

tablished models like the BEKK, a question posed by Caporin and McAleer (2012), is

discussed and some evidence with general observations provided for why there is value

in a first stage univariate filter. Some recent enhancements to the DCC model are

reviewed with a particular emphasis on the problem of estimation in the presence of

covariance targeting. More positive enhancements in terms of the Copula DCC model

are summarized and form part of the large empirical application of Chapter 4.

In Chapter 3, the ACD model of the first chapter is extended to the multivariate domain

via the GO-GARCH framework of van der Weide (2002), providing the first feasible

and tractable approach for the joint modelling of time varying higher moments. The

affine representation of the model which gives rise to closed form expressions of higher

co-moment matrices and a semi-analytic form for the weighted portfolio density has

clear applications in portfolio and risk management. An extensive set of empirical ap-

plications establishes the value of the model and its features using two different datasets

and frequencies.

In Chapter 4, the models reviewed and introduced in the thesis form the data gen-

erating processes from which a large scale scenario based portfolio allocation exercise

is undertaken on the weekly point in time constituents of the Dow 30 index. Using

both long-only and long-short portfolios, by deriving new smooth NLP representations

of some popular risk measures such as CVaR and LPM, the application considers the

benefits of applying these new tools to beating the benchmark indices. In the presence

of the observed dynamics in the moments and co-moments of securities, it is argued

that static or simplistic weighting schemes used by the benchmark indices make them

suboptimal with clear implications for both active and passive investment.



Chapter 1

GARCH Dynamics and Time

Varying Higher Moments

Introduction

Since Mandelbrot (1963), researchers have discovered numerous statistical properties

in real market time series that contradict the theoretical results of their models. These

so called stylized facts, together with the paradigm shift away from the completely

rational, representative agent to a boundedly rational, heterogeneous agent, has mo-

tivated researchers to model financial markets with a new set of tools, distributions

and models. Among these, the pioneering work of Box and Cox (1964) in the area of

autoregressive moving average models paved the way for related work in the area of

volatility modelling with the introduction of ARCH and then GARCH models by Engle

(1982) and Bollerslev (1986), respectively. In terms of the statistical framework, these

models provide motion dynamics for the dependency in the conditional time variation

of the mean and variance, in an attempt to capture such phenomena as autocorrela-

tion in returns and squared returns. Extensions to these models have included more

sophisticated dynamics such as threshold models to capture the asymmetry in the news

impact, as well as distributions other than the normal to account for the skewness and

excess kurtosis observed in practise. With the introduction of flexible distributions,

such as those from the normal mixture family, which possess many desirable proper-

ties, the importance of conditional variations in moments other than the mean and

variance has been researched. Capturing the asymmetries and thick tails that are typ-

ically observed in the distribution of financial returns is particularly important in the

context of risk management and portfolio theory, with a number of authors, including
4
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Lai (1991), Prakash, Chang, and Pactwa (2003), and Jondeau and Rockinger (2006b),

providing evidence suggesting that the incorporation of higher moments in portfolio

allocation leads to superior approximations of expected utility.

Although models from the GARCH family are able under certain assumptions and pa-

rameterizations to produce thick-tailed and skewed unconditional distributions, they

typically assume that the shape and skewness parameters are time invariant. This

also leads to the assumption that the conditional distribution of the standardized in-

novations is independent of the conditioning information, for which there is no good

reason to believe so a-priori. Different models have been developed in the literature to

capture dependencies in higher moments, starting with Hansen (1994) who considered

the problem of modelling the full parameters of a generalized skew-student distribution

by imposing a quadratic law of motion on the conditioning information. With few

exceptions, the research on time varying higher moments has mostly explored different

parameterizations, in terms of dynamics and distributions, with little attention to the

performance of these models out-of-sample or in their ability to outperform GARCH

models with respect to such measures as Value at Risk (VaR) which are important

in risk management. The question of how these models perform out-of-sample with

respect to a range of measures is addressed in this chapter through an empirical ap-

plication on 14 international equity indices and a range of popular distributions. More

generally, using a Monte Carlo experiment, the more important question of the cost of

ignoring time varying higher moment dynamics is addressed with clear implications for

risk management. The chapter is organized as follows: Section 1.1 provides an intro-

duction to the ACD models dynamics, followed by a literature review of these models in

Section 1.2. Section 1.4 introduces a new model based on the Generalized Hyperbolic

distribution which is an omnibus distribution with many well researched sub-families,

and discusses its properties, estimation challenges and standardization. Section 1.5 dis-

cusses more general features of the ACD models including their estimation, forecasting,

simulation and inference methods, followed by an out-of-sample empirical application

comparing the performance of 14 international equity indices using both ACD and

GARCH models, and 5 very flexible and feature-rich distributions. The more general

question of ignoring ACD dynamics is addressed in Section 1.6 using a variety of tests,

and Section 1.7 concludes.
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1.1 The Autoregressive Conditional Density Model

The Autoregressive Conditional Density (ACD) model1, formally introduced by Hansen

(1994), generalizes GARCH type dynamics to time varying conditional higher moments

and as such subsumes them. In GARCH models, the density function is usually written

in terms of the location and scale parameters, normalized to give zero mean and unit

variance. The same arguments follow in ACD models, and I follow the exposition of

Hansen (1994) and consider the density function f(y|α), partitioned so that

αt = (µt, σt, ωt) , (1.1)

where the conditional mean is given by

µt = µ (θ, xt) = E (yt|xt) , (1.2)

and the conditional variance is,

σ2
t = σ2 (θ, xt) = E

((
yt − µt

2
)

|xt
)
, (1.3)

with ωt = ω(θ, xt) denoting the remaining parameters of the distribution, such as a

shape and skew parameter. The conditional mean and variance are used to scale the

innovations,

zt (θ) =
yt − µ (θ, xt)

σ (θ, xt)
, (1.4)

having conditional density which may be written as,

g (z|ωt) =
d

dz
P (zt < z|ωt) , (1.5)

and related to f(y|α) by,

f
(
yt|µt, σ2

t , ωt
)

=
1

σt
g (zt|ωt) . (1.6)

The difference between ACD and GARCH models is that in the latter case, ωt is time

invariant. A first order constant-GARCH(1,1) model with general ACD dynamics can

1Also abbreviated as ARCD in the literature, whilst ACD has also been used for the Autoregressive
Conditional Duration model of Engle and Russell (1998).



Chapter 1: GARCH Dynamics and Time Varying Higher Moments 7

thus be represented as,

xt = µt + εt,

εt = σtzt,

zt ∼ ∆ (0, 1, ωjt) , j = 1, . . . , l

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1,

ωjt = Φ (ω̄jt) ,

(1.7)

where ∆ is some appropriately scaled distribution with j = 1, . . . , l higher order time

varying dynamics denoted by parameters ωjt, and Φ(.) represents some appropriate

transformation, to the unconstrained motion dynamics ω̄jt, constraining them within

their distribution specific bounds. Contrary to variance, which is directly modelled and

constrained to be positive, the modelling of higher order moments is done indirectly

via the some distributional parameters which usually have to be constrained within

a specific range. The shape parameter(s) controls the tail thickness while the skew

parameter(s) the asymmetry, and both may be needed in the calculation of the higher

order central moments such as skewness and kurtosis. A key requirement for any

autoregressive type process is the self-decomposability of the conditional distribution,

while possessing the linear transformation property is required to center (xt − µt) and

scale (ǫt/σt) the innovations, after which the modelling is carried out directly using the

zero-mean, unit variance, distribution of the standardized variable z (which is a scaled

version of the same conditional distribution of xt). The ACD model can be modelled

with any type of dynamics for the variance, and higher moment parameters, but because

of the varying nature of the latter only certain types of dynamics will immediately lead

to closed form solutions for persistence in the conditional variance equation, while for

the higher moments only simulation methods are available to evaluate the unconditional

moments. For the simple model given above, the persistence and unconditional value

of the variance are easily derived from the literature on ARMA type processes, and

useful for imposing some stationarity conditions during estimation and for n-ahead

forecasting,

E
(
σ2
)

=
ω

1 − (α1 + β1)
,

E (ωj) ≡ E (Φ (ω̄j)) ,

(1.8)

which because of the nonlinear transformation, E (Φ (ω̄jt)) 6= Φ (E (ω̄jt)). As a result,

the unconditional value of the higher moment parameters, and hence the higher central

moments, must be estimated via simulation. A popular choice for the transformation
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Φ(.) is the logistic cumulative distribution function (CDF),2 in which case the expec-

tation reduces to the following form for the higher moment parameters,

E(ωj) = E

(
Lωj +

(Uωj − Lωj)

1 + e−ω̄

)

= Lωj + (Uωj − Lωj)E

(
1

1 + e−ω̄

)
,

(1.9)

where Uω and Lω represent the upper and lower distributional bounds of the higher

moment parameters. Unlike some other nonlinear GARCH models, where the logistic

transformation is used3, there does not appear to be any trick which can be used to

simplify this (such as an antisymmetric relationship around the expected value) as

a result of transforming the whole rather than parts of the function. Therefore, the

transition from simple GARCH to ACD models takes one well into the domain of non-

linear modelling. The original model of Hansen (1994) used quadratic type dynamics

for the higher order parameters:

ω̄1t = ζ0 + ζ1zt−1 + ζ2z
2
t−1 + ξω̄1t−1, (1.10)

while Jondeau and Rockinger (2003) used piecewise linear dynamics:

ω̄1t = ζ0 + ζ1zt−1Izt−16y + ζ2zt−1Izt−1>y + ξω̄1t−1, (1.11)

where I is the indicator function taking on the value 1 if true and 0 otherwise, y

the threshold value (normally set to 0) and zt the standardized residuals, though the

residuals have also been used by some researchers instead. I have found that using

instead a simple threshold value for y of 1 (i.e. one standard deviation either side of

zero) reduces some of the noise inherent in the higher moment dynamics, and hence all

subsequent reference to the piecewise linear dynamics will use this setup. The question

of parameter consistency of these different model dynamics is addressed in Section 1.5.1.

2Another choice would be the truncated Normal distribution which provides for a somewhat finer
control on the shape of the CDF.

3Such as the logistic Smooth Transition Models.
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1.2 Empirical Studies

The previous section set out a rather general setup, but other parameterizations have

been considered in the literature with regards to the proxy for the motion dynamics

of the higher moment parameters, and the underlying conditional distribution. In

Harvey and Siddique (1999), Brooks, Burke, Heravi, and Persand (2005), Premaratne

and Bera (2000), Rockinger and Jondeau (2002) and Jondeau and Rockinger (2003)

for example, different laws of motion and distributions for modelling the full time

varying conditional density parameters were considered, on instruments varying from

real estate to foreign exchange returns. The results were mixed, with Harvey and

Siddique (1999) finding significant evidence of time varying skewness, Jondeau and

Rockinger (2003) finding both time varying skewness and kurtosis significant, while

Premaratne and Bera (2000), Brooks, Burke, Heravi, and Persand (2005) and Rockinger

and Jondeau (2002) found little evidence of either. With regards to the frequency of

observation, Jondeau and Rockinger (2003) found the presence of time varying skewness

and kurtosis in daily but not weekly data, partly consistent with the observation that

excess kurtosis diminishes with temporal aggregation, while others including Hansen

(1994), Bond and Patel (2003) and Harvey and Siddique (1999) did find evidence of

time varying skewness and kurtosis in weekly and even monthly data. Other researchers

including Bond and Patel (2003) found the whole premise algorithmically unstable

leading to convergence problems, arising because of the constraints required to limit

the distribution parameters within certain bounds and the fact that both skewness

and kurtosis are driven by extreme events making their identification with a particular

law of motion and (standardized) residuals very hard. Brannas and Nordman (2003)

found that depending on the type of distribution, the results will vary, with more richly

parameterized distributions leading to a better overall fit and inference about time

variation in the parameters. Moreover, as argued by Jondeau and Rockinger (2003),

the method used to estimate the model may lead to very different results, demonstrated

by their use of an algorithm using a Sequential Quadratic Programming (SQP) solver

which constrains the parameters directly at every point in time. However, they also

pointed out that constraining the parameters at every time point does not solve the

problem of forecasting as the elimination of the nonlinear bounding transformation

leaves the dynamics absent of any rule to constrain the forecast from violating the

parameter bounds. Additionally, it is useful to be able to check and impose stationarity

on the variance through the calculation of the persistence, also necessary for n-step

ahead forecasting. In this setup, where the shape and skew parameters are allowed to

vary, this creates a constraint on the type of variance dynamics which may be used with
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such a constraint, effectively limiting the motion dynamics to symmetric type processes.

Consider for example the model of Jondeau and Rockinger (2003), where a piecewise

linear based law of motion is used for the variance,

σ2
t = ω + α1 max (zt−1, 0) + α2 min (zt−1, 0) + β1σ

2
t−1 . (1.12)

The problem with this setup is that in order to calculate persistence and hence im-

pose stationarity rules during estimation, the expectation of the min and max of the

distribution is required, by evaluating for instance the following integral for the max

case,

E (max (z, 0)) =

∞∫

−∞

max (z, 0)f (z; 0, 1, ωj) dz, (1.13)

which proves difficult and impractical when the higher order parameters ωj are time

varying. Therefore, laws of motion such as those considering asymmetric effects pose

certain challenges, unless one is prepared to assume that obtaining these values by sim-

ulation after the fact is reasonable, which is usually the case in most nonlinear models,

where stationarity conditions may be deemed sufficient but not necessary4. This should

not be seen as a severe limitation of ACD models, since by allowing the skew and shape

parameters to vary, there is less of a need to capture asymmetries from the law of motion

of the variance. Evidence of this was partly presented in Harvey and Siddique (1999)

where the inclusion of time varying skewness affected the persistence of the conditional

variance and caused some of the asymmetries in the variance to disappear (through a

reduced asymmetry coefficient in the variance dynamics).

With the exception of Wilhelmsson (2009), no other paper to my knowledge, has in-

vestigated the out-of-sample performance of the ACD models with respect to applied

measures such as VaR. In fact, the vast majority of papers reviewed simply investi-

gated the in-sample dynamics of the models, inferring from the estimated parameters

the presence or absence of time variation in the higher moments without attempting

to address the issue of how this translates, out-of-sample, to a value added input in

an applied setting. Using the NIG distribution, Wilhelmsson (2009) does provide a

large out-of-sample application, using a range of measures such as the test of VaR ex-

ceedances of Christoffersen (1998) and misspecification test of Hong and Li (2005), to

compare the ACD-NIG model against 4 other models including the model of Hansen

4In any case, simulation is required to evaluate the unconditional expectation of the higher order
parameters.
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(1994), and 3 GARCH models. Unfortunately, the application is based entirely on the

S&P 500 index, though it does go as far back as 1962, and uses a rolling scheme of

re-estimating the model, rolling the 1-ahead forecast every single day! In section 1.4, I

generalize the dynamics to the Generalized Hyperbolic distribution, which embeds the

NIG, and discuss its properties and estimation challenges.

1.3 Dataset Choice and Motivation

The empirical application considered in this chapter, while using daily data going back

only as far as 1996, includes 14 international equity indices, and thus a wide sample

from which to draw conclusions. I use a dataset comprised of indices simply because

of the continuity they offer for research purposes which is not always possible when

choosing individual equities. The fact that they represent weighted aggregates of their

respective constituents also alleviates any possible dataset bias from choosing securities

with highly pronounced idiosyncratic properties. Finally, the international nature of

this dataset provides diversity in the characteristics of the returns as well as comparison

between and across regional groupings. The period under consideration is also one of

the most feature rich in financial history presenting a unique testing ground for risk

and portfolio models.5 The importance of these exchange traded international equity

indices in portfolio allocation, and a more thorough description of their characteristics

can be found, among others, in Miffre (2007), Amenc and Goltz (2007) and Chen and

Huang (2010). A comprehensive survey of exchange traded funds (ETF) and the ways

they are used in asset management is published by the Edhec-Risk Institute.6.

In Table 1.1 I provide a summary of some key features of this dataset, made up

of 14 MSCI iShares7 representing a country sampling from 3 key geographic regions,

namely Americas, Asia and Europe, for the period 12/08/1996 to 02/03/2011, where

the starting date was chosen as the earliest available date common to all indices, after

truncating a few periods for the presence of an excessive amount of non-trading (zero

5The period includes the Asian Financial Crisis (1997), the Russian Financial Crisis (1998), the
Dot-Com bubble (2000) and subsequent economic downturn (2002), the Chinese Stock Bubble (2007),
the US Bear Market of 2007-2009, the European sovereign debt crisis (2010) as well as the flash crash
of May 2010.

6http://www.edhec-risk.com
7The data, comprised of adjusted log returns, was downloaded from Yahoo Finance with symbols

SPY (USA), EWC (Canada), EWW (Mexico), EWA (Australia), EWH (Hong Kong), EWJ (Japan),
EWS (Singapore), EWG (Germany), EWQ (France), EWP (Spain), EWI (Italy), EWU (UK), EWL
(Switzerland), EWD (Sweden).

http://www.edhec-risk.com
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Table 1.1: Summary statistics for 14 MSCI World iShares

mean sd skewness kurtosis min ARCH-LM(1) Ljung-Box(1) Ljung-Box(2) JB

USA 2.49E-04 0.013 -0.03 11.8 -0.104 0.00 0.00 0.00 0

Canada 4.58E-04 0.016 -0.48 8.1 -0.116 0.00 0.02 0.03 0

Mexico 5.43E-04 0.022 -0.01 11.2 -0.186 0.00 0.71 0.00 0

Australia 4.05E-04 0.019 -0.17 11.4 -0.132 0.00 0.00 0.00 0

Hong.Kong 2.05E-04 0.021 0.30 10.1 -0.133 0.00 0.00 0.00 0

Japan -2.81E-05 0.017 0.36 8.8 -0.109 0.00 0.00 0.00 0

Singapore 1.40E-04 0.021 0.20 8.4 -0.122 0.00 0.00 0.00 0

Germany 2.45E-04 0.018 0.08 10.1 -0.120 0.00 0.00 0.00 0

France 2.81E-04 0.017 -0.09 8.3 -0.116 0.00 0.00 0.00 0

Spain 3.95E-04 0.018 -0.05 8.7 -0.117 0.00 0.00 0.00 0

Italy 2.45E-04 0.018 -0.06 8.7 -0.112 0.00 0.00 0.00 0

UK 2.07E-04 0.016 -0.12 11.5 -0.128 0.00 0.00 0.00 0

Switzerland 2.60E-04 0.015 -0.20 6.9 -0.086 0.00 0.00 0.00 0

Sweden 3.71E-04 0.022 -0.14 7.5 -0.147 0.00 0.00 0.00 0

Notes to table 1.1: The Table presents summary statistic for the daily returns of 14 MSCI World
iShares for the period 12/08/1996 to 02/03/2011, including the mean (mean), minimum (min),
standard deviation (sd), skewness (skewness), kurtosis (kurtosis), the p-value of the ARCH-LM test
of Engle (1982) with 1 lag, the p-value of the test of Ljung and Box (1978) for independence using 1
and 2-lags, and the p-value of the normality test of Jarque and Bera (1987).

returns). Notable among the country groups is the mostly positive skewness of Asian

indices (excluding Australia), where mostly negative skewness is observed in all other

indices as would be expected (see for example French, Schwert, and Stambaugh (1987)

and Hong and Stein (2003)). Various theories have been put forward as to the reason

for the positive skewness, such as short sale bans (see for example Bris, Goetzmann,

and Zhu (2007)) and poor corporate governance (see for example Bae, Lim, and Wei

(2006)). Kurtosis is evenly high across all indices, beyond what one would expect if

the returns were normally distributed, and confirmed by almost zero p-values from

the test of Jarque and Bera (1987) (column ’JB’) which overwhelmingly rejects the null

hypothesis of normally distributed returns. Another effect present in the dataset is that

of non constant volatility, as evidenced by the rejection of the ARCH-LM test of Engle

(1982) under the null hypothesis of no heteroscedasticity. In terms of autocorrelation

in the returns, with the possible exception of Mexico, this is quite pronounced using

both 1 and 2 lags, as the low p-values from the test of Ljung and Box (1978) show,

under the null hypothesis of serial independence. Notably absent from the table is a

test of time varying higher moments. One could consider extending the concept of
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autocorrelation to measures of autocoskewness and autocokurtosis8, but it is not clear

what the distribution of these measures are and hence how to make any meaningful

inference. Instead, the presence or absence of ACD dynamics must be made post-

estimation, for which a number of misspecification tests exist and are extensively used

in the sections that follow.

1.4 The ACD-GH Model

Motion dynamics for the parameters form half of the modelling setup, with the choice

of distribution forming the other half. The type of distribution chosen depends on it

possessing certain desirable properties as mentioned in Section 1.1. Beyond the basic

requirements, a general distribution which might contain as special cases other dis-

tributions, and also possess a multivariate counterpart is preferred. The Generalized

Hyperbolic distribution (GH ), introduced by Barndorff-Nielsen, Blæsild, Jensen, and

Bagnold (1985) in the context of a sand project, is a variance-mean mixture of the

normal and Generalized Inverse Gaussian (GIG) distributions. It is an extremely flex-

ible distribution, allowing for skewness and fat tails, and nesting a large number of

other distributions which have proved popular in the empirical modelling of financial

asset returns, such as the Hyperbolic (HYP), Normal Inverse Gaussian (NIG), Variance

Gamma (VG), (skew) Laplace and as limiting cases, the Normal and (skew) Student

distributions. Tail flexibility is one particularly attractive feature of the GH model,

which allows for modelling asymmetrically the upper and lowers tails. The General-

ized Hyperbolic Skew Student (GHST ) distribution for example, analyzed in Aas and

Haff (2006), allows for the modelling of one heavy (with polynomial behavior) and one

8The lag − l sample autocoskewness of xt may be defined as:

ρ̂l,2−1 =

T∑
t=l+1

[(
x2
t − µ̂x2

)
(xt−l − µ̂x)

]

√
T∑
t=1

(x2
t − µ̄x2)2

√
T∑
t=1

(xt − µ̄x)2

(1.14)

The lag − l sample autocokurtosis of xt may be defined as:

ρ̂l,3−1 =

T∑
t=l+1

[(
x3
t − µ̂x2

)
(xt−l − µ̂x)

]

√
T∑
t=1

(x3
t − µ̄x2)2

√
T∑
t=1

(xt − µ̄x)2

(1.15)
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semi-heavy (with exponential behavior) tail.9 The GH distribution is part of an even

larger family of distributions called the Normal Mean-Variance Mixture distributions,

discussed in Barndorff-Nielsen, Kent, and Sörensen (1982).

Definition 1. The n-dimensional random variable X is said to have a normal mean-

variance mixture distribution of the following form:

X
d
= µ +Wγ +

√
WAZ, (1.16)

where Z ∼ Nq(0, Iq), W ∈ R
1
+, A ∈ R

n×q, and µ, γ ∈ R
n. From the definition it

follows that,

X |W ∼ Nq (µ +Wγ,WΣ) ,

E (X) = µ + E (W ) γ,

Cov (X) = E (W ) Σ + V ar (W ) γγ ′,

(1.17)

where Σ = AA′, and the mixing variable W is positive and has finite variance. A

very useful property is that if the distribution of W is infinitely divisible, then the

distribution of X is also infinitely divisible. This implies that there exists a Lèvy process

with support over the entire real line, which is distributed at time t = 1 according to

the law of X. Since the theoretical properties of Lèvy processes are well established,

this translates into the possibility of formulating financial models directly in terms

of such processes. A very popular choice for the mixing variable is the Generalized

Inverse Gaussian (GIG) distribution, so that W ∼ GIG(λ, χ, ψ)10, in which case the

multivariate GH distribution is obtained, which depends on the three real parameters of

the GIG distribution, the location (µ) and skewness (γ) vectors in R
n, and a positive

definite matrix Σ ∈ R
n×n. The kurtosis (tail behavior), described by the λ and χ

parameters, is driven by the univariate GIG mixing distribution and is therefore similar

in all dimensions. I leave the definition and discussion of the n-dimensional case for

Chapter 3, and follow Prause (1999) in defining the GH distribution in the 1-dimensional

case.

Definition 2. The 1-dimensional Generalized Hyperbolic distribution, represents the

mixture of X |W with respect to W and given by:

9It is in fact the only distribution in the GH family to allow for one polynomial and one exponential
tail.

10The χ and ψ parameters have also been represented as δ2 and α2 −β2 respectively in the literature.
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fX (x) =

∫ ∞

0
fX|W (x |w )fW (w) dw

=

∫ ∞

0
Nx|w (µ+ βw,w)GIGw

(
λ, δ2, α2 − β2

)
dw

= c (λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ−1/2)/2
× Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
eβ(x−µ)

(1.18)

c (λ, α, β, δ) =

(
α2 − β2

)λ/2

√
2παλ−1/2δλKλ

(
δ
√
α2 − β2

)

where N and GIG are the Normal and Generalized Inverse Gaussian distribution den-

sity functions respectively, and parameter domain of variation 0 6 |β| < α, µ, λ ∈ R,

δ > 0 and Kλ is the modified bessel function of the third kind. The asymmetry of the

GH distribution is purely down to the term eβ(x−µ) in the above definition. Special

cases of the distribution are obtained by varying λ. For example, the NIG distribution

has proved a very popular choice in the modelling of skewed and fat tailed financial

asset returns and is obtained by setting λ to −1
2 , while the HYP introduced in Eberlein

and Keller (1995) with applications in option pricing is obtained by setting λ = 1.

The GHST mentioned earlier is obtained by setting λ to −ν
2 (with ν representing the

degrees of freedom), and α → |β|, while the symmetric student distribution as β → 0.

Of particular note is that the Normal and (skew) Laplace can be represented as a lim-

iting cases, and using the (χ, ξ) parametrization given below, when χ → 1 and χ → 0

respectively. The parameters of the distribution may be interpreted as location (µ),

scale (δ), skewness (β) and shape (α and λ), thus allowing a richly parameterized setup

for modelling the observed financial market features of asymmetry and likelihood of

extreme events. A number of location and scale invariant parameterizations of the GH

have been proposed in the literature,

ζ = δ
√
α2 − β2, ρ =

β

α
,

ξ = (1 − ζ)−
1
2 , χ = ξρ,

ᾱ = αδ, β̄ = βδ.

(1.19)

Bläsild (1981) proved that a linear transformation of the form aX + b of a variable X

distributed according to a GH distribution would again lead to a variable distributed

with the same distribution and parameters λ∗ = λ, α∗ = α/ |a|, β∗ = β/ |a|, δ∗ = δ |a|,
and µ∗ = aµ + b. Therefore, for the modelling of (0,1) processes such as we find in

models which are centered and scaled by their mean and standard deviation, one can use

any of these location and scale invariant parametrization plus the following theoretical
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moment formulae for the Generalized Hyperbolic (needed to apply the centering and

scaling):

E (X) = µ+
βδ2

√
α2 − β2

Kλ+1 (ζ)

Kλ (ζ)
,

V ar (X) = δ2

(
Kλ+1 (ζ)

ζKλ (ζ)
+

β2

α2 − β2

[
Kλ+2 (ζ)

Kλ (ζ)
−
(

Kλ+1 (ζ)

Kλ (ζ)

)2
])

.

(1.20)

Prause (1999) suggests the use of the (ᾱ, β̄) parametrization, which is adopted by

Jensen and Lunde (2001) as well as Wilhelmsson (2009) in their GARCH and ACD -

NIG models respectively. However, using either the (ζ, ρ) or (ξ, χ) parameterizations

seems more natural as the two parameter representation is more directly linked with

skewness and kurtosis11. In any case, moving between any of these parameterizations

is a simple matter of applying the appropriate transformation. In Appendix A I pro-

vide the necessary formulae for scaling and centering the GH density in the (ζ, ρ) and

(ξ, χ) parameterizations for use in GARCH type processes and the more simplified

NIG standardization. In the ACD-GH model, the centered and scaled random variable

zt is conditionally distributed as a standardized GH, i.e., GH (zt;λ, ρt, ζt), with the

dynamics for the skew and shape parameters ρt and ζt defined as:

ρt = −0.99 +
1.98

1 + e−ρ̄t

ζt = 0.1 +
24.9

1 + e−ζ̄t

(1.21)

where the effective bounds of the distributional parameters are [−0.99, 0.99] and [0.1, 25]

for ρ and ζ respectively, while the GIG shape parameter λ is allowed to vary between

[−5, 5]. Because most of the variation in kurtosis with respect to the shape parameter

is obtained near the lower limit of ζ, care should be taken when choosing the upper

limit in the presence of the transformation function lest too narrow a CDF range results

when the bounds are too wide. The actual dynamics for the unconstrained parameters

ρ̄t and ζ̄t may be quadratic or piece-wise linear (or any other suitable representation

for that matter), and I selectively consider both in the sections that follow. In order to

transform the higher order parameters into higher order moments, I make use of the

11In fact, for the HYP distribution Barndorff-Nielsen and Bläsild (1981) show that skewness and
kurtosis are approximately equal to 3χ and 3ξ2 respectively
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moment generating function of the GH distribution,

MGH(λ,α,β,δ,µ)(u) = eµuM
GIG

(
λ,δ

√
α2−β2

)
(
u2

2
+ βu

)

= eµu
(

α2 − β2

α2 − (β + u)2

)λ/2 Kλ

(
δ
√
α2 − (β + u)2

)

Kλ

(
δ
√
α2 − β2

) ,

(1.22)

which for the NIG distribution we can greatly simplify because λ = −0.5, and the fact

that Kλ (x) = K−λ (x) to obtain the skewness (S) and kurtosis (K),

KNIG = 3 +
3
(
1 + 4β2

/
α2
)

δγ

SNIG =
3β

α
√
δγ

(1.23)

where γ =
√
α2 − β2. Scott, Würtz, Dong, and Tran (2011) provide some new results

and a quick recursion algorithm to calculate moments of any positive integer order for

the GH.

The choice of λ in the GH Distribution

The GIG mixing distribution shape parameter λ is responsible for defining the effective

variation in the shape and skew parameters of the GH. When the higher moments are

not time varying, estimating all 3 parameters in a GARCH setup, while challenging, is

quite feasible. However, when these parameters are time varying, there is a problem of

identification and uniqueness since some combinations of λ with ζt or ρt will yield the

same or very close likelihood. Further, since the likelihood surface becomes quite flat,

particularly for values of ζ beyond a narrow range, this poses substantial estimation

problems. It is therefore advisable to pre-specify λ. To illustrate, I consider, in Figure

1.1, contour plots of the log excess kurtosis 12 and skewness for 5 different values of

λ and combinations of ρ and ζ. It is quite clear that when λ = −0.5 , i.e. the NIG

distribution, both kurtosis and skewness have a much larger region of variation, and

similarly for λ = −2 and λ = −4 . The excess kurtosis contour plot also reveals two

additional insights. First, that the maximum kurtosis occurs as ζ → 0, for each value of

12The Log transformation is used to aid visual interpretation since differences in the admissible
regions of kurtosis for the different λ values are very large.
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λ. However, a more thorough investigation reveals that for values of λ below -2, we no

longer have the nice stepped contour but instead it looks more like a plateau with steep

peaks on either side of the extreme limits of ρ with the maximum kurtosis then being

slightly above the minimum limit of ζ. Secondly, while for larger values of ζ the shape

of the excess kurtosis contours looks similar for all values of λ, this rapidly changes as

ζ → 0 and ρ → |1|. For instance, when λ = −2, the contour near the lower limit of

ζ is quite flattened meaning that a large change towards the extremes of ρ is required

to move to a higher contour (i.e higher excess kurtosis) than would be required for the

case when λ = −0.5. Similar arguments apply for the skewness contour plot. While

I have considered here only a small range of values for λ, it is clear that in a higher

moment time varying context, it may be preferable to fix this parameter to some value

which offers a good range of values for skewness and kurtosis rather than estimating

it, both because of the non-uniqueness of those moments for different combinations of

the distributional parameters in a certain range, and the nonlinearity of the model.

Alternatively, controlling the domain of variation of λ in the estimation procedure to

a limited range is also a viable strategy, though care must be taken to ensure that

the likelihood is not lower than any of the known subclasses which may be checked

post-estimation (which is the strategy followed in this chapter).

1.5 Estimation

Following Hansen (1994), the log-likelihood function of ACD models can be written as,

lnL (θ|x1, x2, ., xn) =
n∑

t=1

lt (θ), (1.24)

where

lt (θ) = ln g (zt (θ) |ρt (θ) , ζt (θ)) − lnσ (θ, xt) . (1.25)

The maximum likelihood estimate (MLE) of the model, θ̂, is obtained by maximizing

the conditional log-likelihood (1.24). Assuming a correct specification, the likelihood

scores,
∂

∂θ
lt (θ) =

∂

∂θ
ln g (zt (θ) |ωt (θ)) − ∂

∂θ
ln σ (θ, xt) , (1.26)

are martingale differences and have variance, V ,

V = V (θ0) , V (θ) = −E
(

∂

∂θ∂θ′
lt (θ)

)
(1.27)
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Figure 1.1: GH Skewness and Excess Kurtosis Contour Plots

where θ0 denotes the true parameter value. Consistency of the MLE is obtained if

E(lt(θ)) < ∞ and E(∂/∂θ)lt(θ) < ∞, uniformly in θ, while asymptotic normality is

obtained if V < ∞ and the likelihood is sufficiently well behaved in the neighborhood

of θ0. As noted by Hansen (1994), a proof of this in such a general setting will be hard

to provide. However, it is instructive to obtain some insight into the distribution of the

parameters, given different motion dynamics, since this will provide guidance, among

other things, on the length of data required for modelling such processes with a certain

degree of confidence. This issue is also considered in Chapter 4 (see Section 4.4.2) when

generating simulated density forecasts from ACD type models. To assess this question

of parameter consistency, I employ in the next subsection some standard simulation
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methods to investigate the properties of the parameter distributions and behavior as

the length of the series, T , increases.

1.5.1 Simulated Parameter Consistency

Table 1.2 presents the average higher moment parameter estimates from data simulated

with quadratic and piece-wise linear dynamics, for data sizes of 1000, 2000, 3000, 4000

and 6000. For each data size, 500 independent simulated paths were created and fitted

under the different assumptions on the dynamics of the higher moments. The true

parameters from which the data were simulated are given in the first line of each

subtable (θ), while numbers in parenthesis under each estimates (θ̂) are the Root Mean

Squared Error (RMSE). The parameters chosen were based on different ACD models

fitted to the S&P 500 log returns for the period 10/03/1987 to 13/01/2003.
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Table 1.2: Simulated parameter density and RMSE of ACD higher moment dynamics

PANEL A

NIGquad (ρt,ζ) NIGquad (ρ,ζt)

ζ χ0 χ1 χ2 ξ1 ρ κ0 κ1 κ2 ψ1

θ 1.0000 -0.0320 0.4364 0.0774 0.5831 -0.6000 -0.3098 -0.0516 -0.0029 0.7806

θ̂1000 1.0288 -0.0356 0.4659 0.0852 0.5468 -0.6071 -0.3709 -0.0583 -0.0031 0.7369

[0.24244] [0.09434] [0.14088] [0.06652] [0.17753] [0.05093] [0.44520] [0.04655] [0.00326] [0.16281]

θ̂2000 1.0248 -0.0318 0.4558 0.0801 0.5693 -0.6032 -0.3180 -0.0543 -0.0031 0.7693

[0.16848] [0.05866] [0.09200] [0.04023] [0.10314] [0.03176] [0.18229] [0.01238] [0.00068] [0.06645]

θ̂3000 1.0138 -0.0313 0.4493 0.0778 0.5754 -0.6015 -0.3144 -0.0527 -0.0030 0.7745

[0.13175] [0.04651] [0.07504] [0.03056] [0.08137] [0.02602] [0.15495] [0.00970] [0.00053] [0.05219]

θ̂4000 1.0116 -0.0308 0.4452 0.0775 0.5786 -0.6009 -0.3085 -0.0523 -0.0030 0.7784

[0.11281] [0.03782] [0.06456] [0.02562] [0.06604] [0.02281] [0.09028] [0.00808] [0.00045] [0.03256]

θ̂6000 1.0056 -0.0306 0.4421 0.0771 0.5824 -0.6000 -0.3124 -0.0519 -0.0029 0.7786

[0.08796] [0.02983] [0.04971] [0.01980] [0.05182] [0.01860] [0.13005] [0.00673] [0.00038] [0.04413]

PANEL B

NIGpwl(ρt,ζ) NIGpwl(ρ,ζt)

ζ χ0 χ1 χ2 ξ1 ρ κ0 κ1 κ2 ψ1

θ 1.0000 -0.0762 0.1426 0.4683 0.6191 -0.1086 -0.3678 0.1272 -1.0906 0.7642

θ̂1000 1.0613 -0.0766 0.1485 0.4560 0.6017 -0.1078 -0.7234 0.0135 -1.1506 0.6223

[0.26179] [0.08574] [0.18083] [0.20547] [0.21352] [0.06741] [0.80938] [0.54059] [0.37507] [0.27997]

θ̂2000 1.0525 -0.0760 0.1482 0.4559 0.6120 -0.1050 -0.6115 0.0602 -1.1162 0.6647

[0.18164] [0.05704] [0.11913] [0.13461] [0.15035] [0.04672] [0.63329] [0.32997] [0.25700] [0.23000]

θ̂3000 1.0356 -0.0763 0.1497 0.4566 0.6165 -0.1071 -0.5837 0.0543 -1.0970 0.6810

[0.14129] [0.04367] [0.09329] [0.11004] [0.10970] [0.03868] [0.55987] [0.28811] [0.19110] [0.19702]

θ̂4000 1.0327 -0.0753 0.1481 0.4552 0.6209 -0.1047 -0.5731 0.0749 -1.0894 0.6846

[0.12370] [0.03693] [0.08017] [0.09528] [0.09124] [0.03283] [0.54302] [0.22428] [0.16618] [0.19570]

θ̂6000 1.0245 -0.0742 0.1470 0.4503 0.6294 -0.1044 -0.5213 0.1005 -1.0916 0.7038

[0.09739] [0.02762] [0.06502] [0.07981] [0.07692] [0.02652] [0.44998] [0.12714] [0.14317] [0.16529]

Notes to table 1.2: The Table presents the average higher moment parameter estimates from data simulated with dynamics given
by the subtable headings, for data lengths of 1000, 2000, 3000, 4000 and 6000. For each data size, 500 independent simulated paths
were created and fitted under the different assumptions on the dynamics of the higher moments. The true parameters from which
the data were simulated are given in the first line of each subtable (θ), while numbers in parenthesis under each estimates (θ̂) are
the RMSE values.
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Assuming
√
N consistency, the rate of change of the RMSE as the length increases

from TN to TN+1 should be approximately equal to
√
TN/TN+1. Taking for instance

the RMSE for T = 6000 and comparing it with T = 2000, the average decrease in the

RMSE for the parameters is 0.56 which is very close to the expected RMSE decrease

of 0.58(
√

2000/6000). The notable exceptions are the autoregressive parameters in the

case of the time varying shape dynamics ζt in the piecewise linear models which show

closer to cubic root consistency. Dark (2006) considered higher moment time variation

using the Generalized Skewed Student density of Hansen (1994) and a range of GARCH

models including the symmetric GARCH, asymmetric power ARCH (APARCH ) and

a Hyperbolic APARCH model for long memory processes. In a Monte Carlo study of

the parameter behavior and simulated distribution, he found similar results in that the

skew parameter was well behaved while the shape parameter was not in terms of RMSE,

using both quadratic and restricted non quadratic dynamics. Because this exercise was

carried out for only one set of parameters per model, it is hard to generalize to all

cases particularly because of the nonlinear transformation which affects quite strongly

parameters close to the distribution bounds. In addition, it is rare to see any papers on

ACD models publishing results of such simulations and as such this is one area which

could certainly benefit from more research. The implications would be that for some

combination of model dynamics and parameters a lot more data is required in order to

obtain the same degree of confidence as in GARCH models.

1.5.2 Inference and Goodness of Fit

Even though the GH is an extremely flexible distribution, the are many different types

of dynamics and alternative models which might fit the underlying data and belong to

the domain of the ’correct’ model. It is therefore recommended to report and use the

robust standard errors of White (1982) which produce asymptotically valid confidence

intervals by calculating the covariance of the parameters V as:

V̂ = −(A)−1B(−A)−1, (1.28)

where
A = L′′

(
θ̂
)
,

B =
n∑

i=1

gi
(
xi
∣∣∣θ̂
)T
gi
(
xi
∣∣∣θ̂
)
,

(1.29)

which is the Hessian and covariance of the scores at the optimum. The robust standard

errors are the square roots of the diagonal of V .

To investigate how well the time varying higher moments fit real data, I perform an LR
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test on the log returns of the 14 MSCI index iShares, introduced in Section 1.3, for the

full dataset period 12/08/1996 to 02/03/2011. The null is the restricted model whereby

the skew and shape parameters ([χ1, χ2, ξ1] and [κ1, κ2, ψ1] respectively) excluding the

intercepts are zero, which is effectively the GARCH model without time varying higher

moment dynamics. Table 1.3 reports the results of the test together with all parameters

and their respective robust p-values. Because of the presence of autocorrelation in the

return series, an AR(2) model was used to filter the conditional mean, the estimation

of which was performed in a joint step.13 Starting with the conditional mean, with the

exception of the USA and Canada, the intercept and autoregressive parameters are all

significant at the 10% level. The 3 GARCH parameters (ω, α1, β1) are significant for

all the securities with persistence hitting the estimation program’s constrained upper

bound of 0.99.14 This is likely the result of some structural break over this long and

specific time period considered rather than an indication of the presence of integrated

GARCH dynamics. Finally, with the exception of Canada15, all indices display some

degree of time varying higher moment dynamics as evidenced by their p-values.

While the likelihood of the ACD model will always be higher than that from a GARCH

model, given that the latter is a restricted version of the former, it is important to

consider the marginal value in the fit. In this particular case, and for the time periods

considered, the p-values from the LR test indicate a clear rejection of the restricted

GARCH model at the 10% significance level, in all cases, in favor of the ACD dynamics.

However, this does not immediately translate into out-of-sample out-performance vis-a-

vis a GARCH model with respect to some operational measure such as VaR exceedances

or Expected Shortfall (ES), which is why I consider a comparative empirical application

in Section 1.5.6, unlike the vast majority of the literature reviewed which has been

restricted to some in-sample inference procedures which even then are not always very

informative. For example, Hansen (1994) suggested the use of the parameter constancy

test of Nyblom (1989) as an additional diagnostic test. This is a Lagrange Multiplier

(LM ) test of the null hypothesis that the parameters are constant against the alternative

that the parameters follow a martingale process, with a joint parameter test looking

at the stability of the whole parameter vector. The problem with such a test, is that

13While it is also possible to perform the estimation in 2 steps, the 1 step approach provides more
efficient parameter estimates, particularly for not very large datasets.

14Persistence in the simple GARCH dynamics used is the sum of α1 and β1, and constrained to be
less than or equal to 0.99 in the estimation procedure used.

15It cannot be discounted that the lack of significance may also be a result of a local solution being
reached by the optimizer, and this is taken up in more detail in the next subsection on optimization.
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the null hypothesis will often be rejected since it is well known that structural breaks,

particularly when including long periods of data for estimation, are likely to create

instability in the intercepts of all the dynamics (including the mean, variance and

higher moment parameters). These structural breaks do not in themselves denote time

varying dynamics and hence such a test may prove misleading. Instead, misspecification

tests such as those used in Section 1.6 are more likely to be relevant and informative.
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Table 1.3: ACD parameter estimates for 14 MSCI World iShares

USA Canada Mexico Australia Hong Kong Japan Singapore Germany France Spain Italy UK Switzerland Sweden

µ 7.24E-05 9.06E-04 1.05E-03 5.47E-04 7.51E-04 7.22E-05 6.22E-04 6.54E-04 5.17E-04 5.84E-04 3.99E-04 4.62E-04 4.65E-04 8.32E-04

[0.73] [0.44] [0.00] [0.01] [0.00] [0.71] [0.01] [0.00] [0.02] [0.02] [0.10] [0.02] [0.01] [0.00]

ar1 -0.06 -0.05 0.00 -0.14 -0.10 -0.09 -0.11 -0.07 -0.07 -0.07 -0.09 -0.13 -0.14 -0.04

[0.13] [0.85] [0.83] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.09] [0.00] [0.00] [0.00] [0.03]

ar2 -0.07 -0.02 -0.05 -0.05 -0.04 -0.02 -0.07 -0.01 -0.03 -0.02 -0.02 -0.07 -0.04 -0.03

[0.29] [0.97] [0.00] [0.01] [0.02] [0.10] [0.00] [0.27] [0.64] [0.48] [0.19] [0.01] [0.01] [0.11]

ω 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[0.02] [0.60] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.01]

α1 0.09 0.06 0.10 0.07 0.09 0.07 0.10 0.08 0.07 0.07 0.09 0.07 0.08 0.07

[0.00] [0.07] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

β1 0.90 0.93 0.89 0.91 0.90 0.92 0.89 0.91 0.92 0.92 0.90 0.91 0.91 0.92

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

χ0 -0.02 -0.11 -0.16 -0.01 -0.08 -0.01 -0.27 -0.08 -0.03 -0.11 -0.03 -0.09 -0.25 -0.08

[0.36] [0.95] [0.00] [0.35] [0.01] [0.42] [0.00] [0.11] [0.76] [0.45] [0.83] [0.23] [0.02] [0.09]

χ1 -0.01 0.16 0.13 -0.02 0.12 0.00 0.21 0.08 0.02 -0.11 -0.06 0.07 0.18 0.08

[0.83] [0.86] [0.04] [0.04] [0.02] [0.80] [0.03] [0.08] [0.81] [0.31] [0.40] [0.49] [0.04] [0.29]

χ2 0.01 0.06 0.02 0.00 0.06 0.01 0.00 0.01 -0.04 0.00 -0.05 0.05 -0.16 0.03

[0.13] [0.87] [0.26] [0.52] [0.00] [0.43] [0.68] [0.55] [0.55] [0.90] [0.19] [0.25] [0.48] [0.16]

ξ1 0.99 0.83 0.53 1.00 0.83 0.99 0.00 0.76 0.78 0.55 0.76 0.84 0.00 0.78

[0.00] [0.79] [0.00] [0.00] [0.00] [0.00] [0.91] [0.00] [0.00] [0.13] [0.05] [0.00] [0.99] [0.00]

κ0 -0.29 -0.90 -0.31 -0.81 -2.37 -1.87 -1.04 -0.70 -0.92 -0.90 -2.12 -0.20 -1.10 -0.37

[0.18] [0.98] [0.00] [0.34] [0.00] [0.00] [0.00] [0.00] [0.17] [0.09] [0.00] [0.24] [0.04] [0.42]

κ1 -1.00 -0.71 -0.35 -0.34 -0.57 -0.37 -0.57 -1.00 -0.85 -0.30 -0.54 -0.34 -0.72 -0.40

[0.02] [0.95] [0.00] [0.16] [0.02] [0.34] [0.00] [0.00] [0.16] [0.18] [0.06] [0.12] [0.16] [0.04]

κ2 -0.15 0.01 -0.08 -0.09 0.21 -0.07 0.04 0.08 0.11 0.04 -0.02 -0.06 0.23 -0.05

[0.28] [0.99] [0.00] [0.16] [0.01] [0.60] [0.13] [0.10] [0.69] [0.87] [0.73] [0.45] [0.42] [0.71]

ψ1 0.80 0.61 0.85 0.61 0.00 0.00 0.58 0.64 0.59 0.66 0.00 0.88 0.52 0.81

[0.00] [0.96] [0.00] [0.09] [0.99] [1.00] [0.00] [0.00] [0.04] [0.00] [1.00] [0.00] [0.02] [0.00]

LL (GARCH) 11401.96 10551.45 9490.18 10184.74 9718.38 10298.49 9635.51 10214.47 10356.70 10176.02 10289.88 10629.21 10627.19 9499.30

LL (ACD) 11458.70 10569.09 9501.89 10195.22 9727.88 10307.76 9645.63 10229.41 10370.00 10181.68 10300.53 10638.04 10635.19 9506.57

LRstat 113.48 35.28 23.43 20.97 18.99 18.54 20.24 29.89 26.60 11.33 21.29 17.65 16.00 14.54

p-value 0.000 0.000 0.001 0.002 0.004 0.005 0.003 0.000 0.000 0.079 0.002 0.007 0.014 0.024

Notes to table 1.3: The Table presents parameter estimates of an AR(2)-GARCH(1,1)-NIG(ρt, ζt) for the daily log returns of 14 MSCI World iShares for
the period 12/08/1996 to 02/03/2011. The ACD NIG dynamics (ρt, ζt) were estimated using a quadratic model as in Equation (1.10). Values in square
brackets represent the p-values from the estimated robust standard errors. The Log-Likelihood of each model (LL(ACD)) is reported as well as the
Log-Likelihood of the restricted GARCH model (LL(GARCH)) where the restriction is of constant skew and shape. The Likelihood Ratio statistic (LRstat)
under the null of the restricted model is distributed χ2

6, with the 6 restrictions representing the dynamic model skew and shape parameters excluding their
intercepts. Tested at the 5% level of significance, the GARCH model is rejected in 13 of the 14 securities tested.
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1.5.3 Optimization Strategy

The nonlinear transformation required to constrain the higher moment parameters

within their distribution specific bounds creates certain challenges in the estimation

process. The likelihood surface is no longer smooth necessitating a global optimization

approach to solving such problems, and is quite typical in the nonlinear dynamics lit-

erature. A number of authors, including Hansen (1994) and Jondeau and Rockinger

(2003), have cited the use of a hierarchical type strategy to obtain estimates of the non

time varying skew and shape parameters as starting values to a second stage, where the

skewness and shape may be estimated incrementally, assessing their significance sepa-

rately and then jointly. I follow a similar strategy, with certain additional enhancements

which I have found to provide some more confidence of optimality. Namely, the parame-

ters from a GARCH model are estimated and used as starting parameters in the second

stage ACD model, with the non time-varying skew and shape parameters serving the

role of the higher moment dynamics recursion starting values (after transforming from

the constrained to the unconstrained domain by inverting the logistic transformation

function). Because of the sensitivity of the solution to the starting parameters, I have

found that a random search multi-start optimization algorithm offers the best outcome

amongst competing methods in getting close to a viable global optimum within an

acceptable time limit. I make use of results from Hu, Shonkwiler, and Spruill (1994)

who provide for strong arguments in favor of sampling the parameter space from the

uniform distribution based on each parameter’s upper and lower bounds, evaluating

the likelihood at these randomly sampled points, ranking the results and then starting

the solver from these different starting points. For this purpose, I use an augmented

Lagrange based solver with an SQP interior step method, described in Ye (1997)16.

1.5.4 ACD Forecasting and Simulation

While there is a common source for the shocks in the ACD models, that arising from

the innovations process and affecting the variance, skewness and shape parameters, it

is nevertheless time-varying, unlike in GARCH models. This means that the process

of simulation requires as many evaluations to the random number generator of the un-

derlying conditional distribution as there are simulated samples. Compare this with

16The solver is implemented in the R package Rsolnp of Ghalanos and Theussl (2012) and available
on the Comprehensive R Archive Network (CRAN). See Appendix F for details.
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GARCH models where one call to the generator is made at the beginning of the simula-

tion to generate the N samples required. That is, in order to generate the next sample

zt+n, we must know the value of zt+n−1, which means that the process of sampling from

ACD models is more time consuming17 and involved than models with time invariant

higher moment parameters.

The 1-step ahead forecast for ACD models is given by the same filtering mechanism

as that used in the maximum likelihood fitting phase, since GARCH type models au-

tomatically generate 1-step ahead forecasts. For n-step ahead forecasts, the variance

forecast should converge to its long run value given that E(zt) = 0, E(z2
t ) = 1 and

therefore E(ε2
t |Ωt−1) = E(σ2

t z
2
t ) = σ2

t giving σ2
t+n = ω + (α1 + β1)σ2

t . For the higher

moment n-ahead forecasts these must be derived iteratively since there is no closed

form solution in the presence of the nonlinear transformation.

1.5.5 Higher Moment News Impact Curves

The concept of a news impact curve was introduced by Engle and Ng (1993), and pro-

vides a visual representation of the impact of shocks on the time varying variance. More

specifically, it has been used to compare the role of asymmetric response of variance

to positive and negative shocks from which the sign bias tests were developed by the

same authors. While ACD models considered here do not provide for any variation in

terms of asymmetry in variance or the higher moments, I do extend the concept of the

role of standardized shocks on the higher time varying moments as a stepping stone to

a surface function in a multivariate extension in Chapter 3. It also serves as a useful

diagnostic tool in deciding on the types of dynamics to choose. Figure 1.2 shows the

higher moment news impact curves for an ACD-NIG model, with both quadratic and

piecewise linear dynamics for the shape and skew parameters. The first curve is of the

unconstrained dynamics, before the logistic transformation, the next 2 represent the

constrained dynamics and distributional moments, calculated taking into account all

the higher moment distributional parameters. Using this visual diagnostic, it appears

to make more sense to use quadratic dynamics for the skew parameter, providing for

a greater response with respect to shocks, and is the strategy followed in the empirical

application of this chapter. Because the news impact curve depends on certain long

run relationships to calculate, simulation methods are necessary in the presence of the

17This is particularly true when sampling from distributions which have expensive random number
generators.
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nonlinear transformation. Specifically, I simulate from the model to obtain the long

run value of the unconstrained higher moment parameters which I then use to evaluate

the news impact, which for the quadratic case is:

ζt+1 = Φ(ζ̄t+1) = Φ
(
χ0 + χ1zt + χ2z

2
t + ξ1ζ̄

∗
)
,

ρt+1 = Φ(ρ̄t+1) = Φ
(
κ0 + κ1zt + κ2z

2
t + ψ1ρ̄

∗
)
,

(1.30)

where ζ̄∗ and ρ̄∗ are the simulated long run unconstrained shape and skew parameters

respectively, and Φ(.) the CDF function for bounding transformation. The process of

translating the resulting curves into standardized skewness and kurtosis is then a simple

matter of applying the appropriate formulae from the GH moment generating function.

1.5.6 Competing Distributions

The distributions used in the ACD literature have mostly been limited to some variation

of the Student distribution. For example, Hansen (1994) and Jondeau and Rockinger

(2003) have used the Generalized Student distribution, Harvey and Siddique (1999)

the noncentral Student distribution, Lambert and Laurent (2001a) a skewed Student

distribution, while Brooks, Burke, Heravi, and Persand (2005) a standard Student dis-

tribution to model only kurtosis. Departures from the Student variations have included

a Pearson Type IV distribution in Brannas and Nordman (2003), an Entropy distribu-

tion in Rockinger and Jondeau (2002) and a Gram-Charlier expansion of the Normal

in León, Rubio, and Serna (2005). More recently, Wilhelmsson (2009) has used the

NIG distribution with ACD dynamics in a risk management exercise and shown that

compared to a number of competing models without higher moment dynamics, the

ACD-NIG model was the only one which could not be rejected as capturing the correct

number of VaR exceedances for the S&P500 in a test spanning a long time period. In

this section, I consider a number of interesting distributions with ACD dynamics and

compare their out-of-sample performance with equivalent GARCH models, using op-

erational measures relevant to risk management. The distributions used are the NIG,

HYP and omnibus GH, the Skew Student, and Johnson’s SU (see Johnson (1949)) dis-

tribution (JSU ) reparametrized and described in Rigby and Stasinopoulos (2005). The

Skew Student distribution (SSTD) is based on the inverse scale factor transformations

of Fernandez and Steel (1998), with details on its standardization for use in GARCH

processes given in Appendix B. To obtain some insight into the type and magnitude

of the skewness and kurtosis generated by these distribution, Figure 1.3 illustrates the
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Figure 1.2: Higher Moment News Impact Curves

skewness and kurtosis surfaces for different combinations of these distributions’ higher

moment parameters. The lower bound on the shape parameter is controlled in this

setup to enable better illustration.
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Figure 1.3: Skewness and Kurtosis Surfaces



Chapter 1: GARCH Dynamics and Time Varying Higher Moments 31

In all cases, as the shape approaches a certain bound, kurtosis increases rapidly. For the

skewed Student distribution, a skew parameter of 1 translates to no asymmetry while

in the JSU case as the shape approaches zero and skew= 0 the distribution approaches

the Normal. The GH distribution is not shown since the additional GIG mixing pa-

rameter λ makes any such representation difficult in 3 dimensions. Instead, the HYP

distribution is shown as a popular modelling choice within the GH family. While the

HYP distribution shows the least variation in skewness and kurtosis, the other 3 dis-

tributions allow for a very wide range in both, and well beyond what is likely to be

observed in practice. While skewness and kurtosis in the HYP, NIG and SSTD distri-

butions achieve their maximum variation as the skew and shape parameters approach

their limits, the JSU distribution achieves maximum variation in the region of 0.5. In

all cases, the maximum variation is achieved in a very narrow range of values for the

skew and shape parameters which should therefore act as a guideline for optimization

algorithms seeking to impose some bounds.

The out-of-sample application is based on the 14 MSCI iShares described earlier, span-

ning the period 12/08/1996 to 02/03/2011. Starting on 17/03/2000, each model was

estimated using all available data up-to that point and 1-ahead rolling forecasts for the

next 250 days generated. The process was repeated by increasing the data window18 up

to the last period, resulting in 3000 out-of-sample rolling conditional density forecasts.

For the GH distribution, the λ shape parameter for the ACD model was fixed to the

value obtained from the estimated GARCH-GH model so that the comparison would

be based on the same sub-distribution. An AR(2) filter was used for the conditional

mean equation, and quadratic dynamics for the skew and shape parameters of the ACD

model. To compare the models I made use of some popular tail related tests including

the conditional coverage VaR exceedances test of Christoffersen (1998) at the 1% quan-

tile and the ES test of McNeil and Frey (2000) at the 5% quantile, described in more

detail in Appendix C. The results are presented in Tables 1.4 and 1.5. It is difficult

to conclude that the ACD and GARCH with conditional distribution the NIG provide

for substantial differences with respect to VaR exceedances. For none of the indices

is the conditional coverage test rejected, with the possible exception of Japan for the

GARCH model, and the same applies to the ES test as evidenced by the high p-values.

In the case of the HYP distribution, there are marginally too many exceedances in the

18In this application I have used an expanding rather than moving window, unlike the multivariate
application of Chapter 3 where a moving window is important to capture changes in the co-movements
of the factors.
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case of the ACD model for Australia and marginally too few in the case of the GARCH

model for Japan. Too many exceedances would translate to too little risk capital allo-

cated, which is usually penalized by regulators, whilst too few exceedances means an

inefficient use of capital, which over the long run will be punished by shareholders. The

results for the GH, JSU and SSTD distributions are similar to the NIG distribution,

with the GARCH model for Japan once again being marginally rejected in terms of VaR

exceedances. The underestimation of VaR exceedances for the Japan index is the same

for all GARCH models, irrespective of the distribution, and this is likely related to the

’whipsaw’ pattern of the index for this period for which the strategy of re-estimating

the model every 250 days is too long and would probably require a more frequent win-

dow size. This is not a problem for the ACD models which can accommodate any such

shortcomings as a result of the added flexibility of tail dynamics from the shape param-

eter. Finally, for the ACD with conditional distribution SSTD, for both Australia and

Spain, there are too many exceedances generated indicating perhaps spurious higher

moment dynamics. As can be concluded from this application, it is not immediately ob-

vious, either from the preliminary summary statistics nor the in-sample fit (even when

covering the whole period) whether an ACD model will outperform out-of-sample the

equivalent GARCH model, a point obviously missed by most of the papers on covering

such models.
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Table 1.4: Out-of-sample VaR and density forecast tests for 14 MSCI World iShares (NIG, HYP and GH)

USA Canada Mexico Australia Hong Kong Japan Singapore Germany France Spain Italy UK Switzerland Sweden

ACD (NIG)

V aRExceed1% 22 26 24 34 21 21 27 34 26 35 32 34 29 26

V aR(cc)p − value 0.26 0.60 0.43 0.52 0.19 0.19 0.67 0.52 0.60 0.13 0.66 0.54 0.74 0.60

ES5% p-value 0.96 0.94 0.69 0.33 0.71 0.88 0.42 0.64 0.76 1.00 0.95 0.65 0.37 0.81

GARCH (NIG)

V aRExceed1% 23 27 21 29 22 18 23 34 25 32 31 33 29 29

V aR(cc)p − value 0.34 0.67 0.19 0.56 0.26 0.05 0.34 0.52 0.52 0.66 0.71 0.60 0.74 0.74

ES5% p-value 0.98 0.97 0.67 0.40 0.55 0.90 0.52 0.56 0.77 0.32 0.52 0.65 0.39 0.65

ACD (HYP)

V aRExceed1% 32 29 27 41 22 24 31 32 26 41 32 36 25 30

V aR(cc)p − value 0.61 0.74 0.67 0.09 0.26 0.43 0.71 0.66 0.60 0.05 0.66 0.43 0.52 0.74

ES5% p-value 0.77 0.83 0.40 0.08 0.60 0.77 0.32 0.46 0.41 0.13 0.43 0.42 0.65 0.53

GARCH (HYP)

V aRExceed1% 23 28 23 33 22 19 23 34 25 33 31 33 28 29

V aR(cc)p − value 0.34 0.72 0.34 0.59 0.26 0.09 0.34 0.52 0.52 0.59 0.71 0.60 0.72 0.74

ES5% p-value 0.96 0.90 0.56 0.31 0.50 0.87 0.46 0.45 0.74 0.32 0.48 0.62 0.34 0.63

ACD (GH)

V aRExceed1% 31 28 29 33 26 22 28 39 26 36 31 36 31 32

V aR(cc)p − value 0.61 0.72 0.74 0.60 0.60 0.26 0.72 0.17 0.60 0.12 0.71 0.43 0.71 0.66

ES5% p-value 0.98 0.93 0.62 0.39 0.47 0.94 0.58 0.38 0.48 0.28 0.62 0.50 0.34 0.44

GARCH (GH)

V aRExceed1% 22 28 22 28 22 18 23 33 25 33 31 33 28 29

V aR(cc)p − value 0.26 0.72 0.26 0.50 0.26 0.05 0.34 0.60 0.52 0.59 0.71 0.60 0.72 0.74

ES5% p-value 0.99 0.95 0.84 0.49 0.58 0.92 0.65 0.64 0.75 0.45 0.57 0.69 0.40 0.55

Notes to table 1.4: The Table presents comparative out-of-sample tail based forecast tests of 14 MSCI iShares for the period
12/08/1996 to 02/03/2011 based on AR(2) first order GARCH and ACD (with quadratic dynamics for the skew and shape)
models with conditional distributions the NIG, HYP and GH. Starting on 17/03/2000, each model was estimated using all
available data up-to that point and 1-ahead rolling forecasts for the next 250 days generated. The process was repeated up to the
last period resulting in 3000 out-of-sample rolling forecasts from which were calculated the VaR exceedances at the 1% coverage,
together with their respective p-values based on the conditional coverage (cc) test of Christoffersen (1998), the ES test of McNeil
and Frey (2000) at the 5% coverage (p-values shown).
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Table 1.5: Out-of-sample VaR and density forecast tests for 14 MSCI World iShares (SSTD and JSU)

USA Canada Mexico Australia Hong Kong Japan Singapore Germany France Spain Italy UK Switzerland Sweden

ACD (JSU)

V aRExceed1% 35 40 27 38 24 25 31 33 31 37 38 35 33 31

V aR(cc)p − value 0.49 0.13 0.67 0.23 0.43 0.52 0.71 0.60 0.71 0.11 0.23 0.13 0.60 0.71

ES5% p-value 0.78 0.66 0.71 0.33 0.68 0.72 0.31 0.70 0.60 0.35 0.25 0.44 0.42 0.66

GARCH (JSU)

V aRExceed1% 23 27 23 32 22 18 23 34 25 32 31 33 29 29

V aR(cc)p − value 0.34 0.67 0.34 0.61 0.26 0.05 0.34 0.52 0.52 0.66 0.71 0.60 0.74 0.74

ES5% p-value 0.98 0.97 0.73 0.39 0.53 0.93 0.59 0.59 0.81 0.41 0.59 0.66 0.37 0.62

ACD (SSTD) USA Canada Mexico Australia Hong Kong Japan Singapore Germany France Spain Italy UK Switzerland Sweden

V aRExceed1% 30 26 22 43 22 21 28 32 28 40 32 35 27 32

V aR(cc)p − value 0.59 0.60 0.26 0.04 0.26 0.19 0.72 0.66 0.72 0.06 0.66 0.49 0.67 0.66

ES5% p-value 0.93 0.97 0.81 0.12 0.81 0.94 0.52 0.69 0.62 0.35 0.50 0.62 0.73 0.80

GARCH (SSTD)

V aRExceed1% 23 28 25 34 24 18 25 36 25 33 31 34 32 30

V aR(cc)p − value 0.34 0.72 0.52 0.54 0.43 0.05 0.52 0.37 0.52 0.59 0.71 0.52 0.61 0.74

ES5% p-value 0.98 0.97 0.73 0.29 0.52 0.94 0.61 0.55 0.74 0.46 0.46 0.67 0.34 0.50

Notes to table 1.5: The Table presents comparative out-of-sample tail based forecast tests of 14 MSCI iShares for the
period 12/08/1996 to 02/03/2011 based on AR(2) first order GARCH and ACD (with quadratic dynamics for the skew
and shape) models with conditional distributions the Skew-Student of Fernandez and Steel (1998) (SSTD) and the
Johnson’s SU (JSU) distribution (see Johnson (1949)). Starting on 17/03/2000, each model was estimated using all
available data up-to that point and 1-ahead rolling forecasts for the next 250 days generated. The process was repeated up
to the last period resulting in 3000 out-of-sample rolling forecasts from which were calculated the VaR exceedances at the
1% coverage, together with their respective p-values based on the conditional coverage (cc) test of Christoffersen (1998),
the ES test of McNeil and Frey (2000) at the 5% coverage (p-values shown).
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The VaR exceedances test may be considered a rather crude method to capturing

the tail risk differences in the models, as it distinguishes only on the basis of integer

exceedances and requires a large amount of out-of-sample data to avoid the possibility

of data-snooping bias. A more informative way to compare the models is by using the

model confidence set (MCS) approach of Hansen, Lunde, and Nason (2011), described

in Appendix C.3, and using a tail based loss function which is able to distinguish

the average magnitude of the exceedances thus providing a more complete picture of

comparative model performance. I follow Gonzalez-Rivera, Lee, and Mishra (2004) and

define a statistical loss function used in quantile estimation, which for a given coverage

level α is defined as,

Qloss ≡ N−1
T∑

t=R

(
α− 1

(
rt+1 < V aRαt+1

)) (
rt+1 − V aRαt+1

)
, (1.31)

where P = T −R is the out-of-sample forecast horizon, T the total horizon to include

in estimation, and R the start of the out-of-sample forecast. This is an asymmetric

loss function, linearly penalizing exceedances more heavily by (1 − α). Because of the

non-differentiable nature of the indicator function 1, I adopt the recommendation of

Gonzalez-Rivera, Lee, and Mishra (2004) and replace it with the approximation:

1
(
rt+1 < V aRαt+1

)
≈
[
1 + exp

{
δ
(
rt+1 − V aRαt+1

)}]−1
(1.32)

which is found to very closely match the indicator function for values of δ equal to 25.19

Table 1.6 reports the probability of the 10 different models being in the MCS for each

of the 14 country indices using a coverage level of 5%. The results are much more

informative and provide for a much clearer picture of where the ACD models provide

for superior performance. There is a clear rejection of the GARCH models for Canada,

Mexico, Hong Kong, Singapore and Germany. Interestingly, the ACD model with

conditional distributions the NIG, GH and JSU are also rejected for the Hong Kong

index, where the ACD-HYP is almost certainly the superior model, whilst the ACD-

SSTD cannot be rejected as belonging to the MCS. Considering that the ACD-NIG

and ACD-HYP models had almost the same number of exceedances in Table 1.4, and

the ACD-GH had an exceedance value closer to the expected one of 30 than either

of the others, this is quite a surprising result and may be due to calibration issues

with respect to the distribution bounds. In the case of Spain and the ACD-NIG model,

19That is, when dealing with percentages, otherwise for decimals use 2500.
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considering the fact that all other ACD models belong to the MCS, this is clearly a case

of a badly-fitting distribution rather than the absence of time varying higher moments.
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Table 1.6: VaR model comparison on 14 MSCI World iShares

VaR Loss (5%) ACD (NIG) ACD (HYP) ACD (GH) ACD (SSTD) ACD (JSU) GARCH (NIG) GARCH (HYP) GARCH (GH) GARCH (SSTD) GARCH (JSU)

USA 0.65 0.65 1.00 0.65 0.06 0.42 0.42 0.40 0.40 0.42

Canada 0.82 1.00 0.82 0.82 0.03 0.03 0.01 0.01 0.01 0.01

Mexico 1.00 0.41 0.41 0.41 0.41 0.00 0.00 0.00 0.00 0.00

Australia 1.00 0.71 0.71 0.71 0.80 0.71 0.80 0.71 0.71 0.71

Hong Kong 0.04 1.00 0.07 0.33 0.07 0.03 0.03 0.03 0.04 0.04

Japan 0.95 0.84 0.95 1.00 0.95 0.32 0.32 0.84 0.32 0.32

Singapore 0.85 0.85 0.85 1.00 0.15 0.03 0.03 0.03 0.04 0.04

Germany 0.47 0.45 0.45 1.00 0.77 0.05 0.05 0.05 0.05 0.05

France 0.48 0.13 0.13 1.00 0.48 0.39 0.39 0.39 0.13 0.13

Spain 0.03 0.97 0.92 1.00 0.84 0.97 0.97 0.97 0.92 0.95

Italy 0.48 0.98 1.00 0.98 0.98 0.91 0.95 0.88 0.88 0.88

UK 0.40 1.00 0.18 0.19 0.40 0.40 0.71 0.19 0.38 0.40

Switzerland 0.38 1.00 0.38 0.38 0.38 0.38 0.38 0.35 0.38 0.38

Sweden 1.00 0.44 0.47 0.44 0.44 0.44 0.44 0.44 0.44 0.44

Notes to table 1.6: The Table reports the probability of being in the model confidence set of Hansen, Lunde, and Nason (2011)
for each of the 14 MSCI World iShares based on the VaR loss function, at the 5% quantile, defined in Gonzalez-Rivera, Lee, and
Mishra (2004). Density forecast for each of the 14 MSCI indices for the period 12/08/1996 to 02/03/2011 were calculated based on
AR(2) first order GARCH and ACD (with quadratic dynamics for the skew and shape) model with conditional distributions the
NIG, HYP, GH, the Skew-Student (SSTD) of Fernandez and Steel (1998) and Johnson’s SU (JSU) distribution (see Johnson
(1949)). Starting on 17/03/2000, each model was estimated using all available data up to that point and 1-ahead rolling forecasts
for the next 250 days generated. The process was repeated up to the last period resulting in 3000 out-of-sample rolling forecasts
from which was calculated the VaR at the 5% quantile for each model and from which the relevant loss function was extracted and
compared per country index.
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1.6 The Cost of GARCH

Evidence for the presence of higher moment dynamics was presented in the previous

section through an empirical application where the benefits where assessed through

certain operational measures. It was shown that for some of the indices, there was a clear

benefit to using such dynamics over GARCH models and, perhaps just as important,

little penalization in using them even when there was no clear out-performance. In this

section, the more general question of the cost of using GARCH dynamics in the presence

of time varying higher moments is considered. Since ACD models generalize GARCH

dynamics to higher moment distributional parameters, choosing which parameters to

keep, and hence the dynamics describing the model, is equivalent to evaluating the

significance of those fitted parameters, using an information criterion such as the Akaike

Information Criterion (AIC ) or undertaking an LR based test as in Section 1.5.2. If

on the other hand one were to ignore possible higher moment dynamics and simply

fit a GARCH model, then a key question would be to decide, in the ACD framework,

whether the model was misspecified, and what the cost would be in terms of some

operational tail based distribution measure. I investigate in this section, through a

small Monte Carlo study, various tests of misspecification relevant to these types of

models, as well as the possible cost of assuming constant higher moments when the

underlying dynamics are clearly not.

1.6.1 The BDS test of i.i.d.

A key assumption and requirement of most econometric models is that the standard-

ized innovations, that is the standardized noise left after filtering out the underlying

dynamics driving the observed process, are i.i.d. Violation of this assumption usually

implies a misspecified model which has not adequately captured the underlying dynam-

ics, making it difficult to make correct inferences from the unconditional distribution of

the resulting model. The BDS test of Brock, Dechert, and Scheinkman (1993) exam-

ines the spatial dependence of a series by embedding that series into an m-dimensional

space and counting the near points (defined as those points for which the distance is

less than some user defined value ǫ). Formally, the spatial correlation is computed using

the correlation integral as:

Cǫ,m = N−1
m

(
N−1
m − 1

) ∑
i6=j

Ii,j,

Ii,j =





1 if
∥∥∥xmi − xmj

∥∥∥ ≤ ε

0 otherwise

. (1.33)
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A series is then i.i.d if Cǫ,m ≈ [Cǫ,1]m, with their difference defined as the BDS statistic

and distributed asymptotically standard Normal. In one of the first papers to introduce

chaotic dynamics to the finance community, Hsieh (1991) investigated the power of the

BDS test to detect different types of dynamics giving rise to non i.i.d. behavior. It

was found that the test had good power to detect linear dependence, non-stationarity,

chaotic dynamics and non-linear stochastic processes. Using a set of stock indices and

CRSP value weighted decile portfolios, Hsieh found that most of the non-i.i.d. behavior

was driven by the non-linear dynamics induced by conditional heteroscedasticity20 . In

a further paper, running a large number of power tests, Brock and Dechert (1988)

showed the ability of the BDS test to detect nonlinearities in GARCH, NLMA, and

TAR models, and given further support in Barnett, Gallant, Hinich, Jungeilges, Kaplan,

and Jensen (1997). Nevertheless, the test has two major problems in implementation.

One is the choice of the embedding dimension m and the proximity parameter ǫ, with

various pairs of the parameters giving rise to different values. Hence without a general

guideline as to which combination of parameters to use, it is sometimes difficult to

draw clear conclusions. The other problem, examined in Brock and Dechert (1988) and

De Lima (1996) is the conditions under which the BDS statistic is nuisance-parameter

free. Effectively, what this implies for GARCH models is that in the case of the standard

model of Bollerslev (1986), a simple log transformation of the squared standardized

residuals from the fitted model allows to place that model in the class of linear additive

models for which the BDS statistic is nuisance-parameter free. For all other models not

fitting this category, the distribution of the test statistic must be simulated for each set

of model parameters estimated.

In Table 1.7 I present a simulation study where an AR(2)-GARCH(1,1) model

with conditional distribution NIG(ρ, ζ) is fitted to series simulated from 4 different

models. As a test case, the first model is simply an AR(2)-GARCH(1,1) with conditional

distribution NIG(ρ, ζ) (i.e. the fitted model). Under the assumption that the test

correctly identifies the model as the correct one, then the test should reject the model

5% of the time using a 95% confidence level21. With the exception of very low proximity

parameters and high embedding dimensions, the test is able to correctly identify the test

case with an average percent rejection rate of 5%. For the other models, the situation

is not as clear cut. When the dynamics include a time varying shape parameter, the

20Though to fully explain the dynamics, a stochastic volatility type representation was used
21Under a correctly identified model, the p-values of the test in the simulation should also be uniformly

distributed.
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Table 1.7: GARCH BDS test under alternative dynamics

AR(2)-GARCH(1,1)-NIG(ρ, ζ) AR(2)-GARCH(1,1)-NIG(ρ, ζt[1, 1, 1])

ǫ/σ ǫ/σ

m 0.5 1 1.5 2 2.5 m 0.5 1 1.5 2 2.5

2 4.8 4.3 4.4 4.7 4.9 2 41.0 38.6 34.8 30.8 25.3

3 5.6 4.7 4.6 4.5 4.3 3 49.9 47.6 43.4 37.9 31.1

4 8.2 5.0 4.6 4.4 4.4 4 52.2 48.9 45.1 39.8 32.9

5 16.8 5.2 4.8 5.1 4.5 5 52.8 49.2 45.2 40.3 33.1

6 38.2 5.2 5.0 5.2 4.5 6 55.3 47.6 43.3 38.4 32.1

7 63.4 6.8 4.9 4.6 4.7 7 69.9 45.5 42.0 36.8 31.1

8 81.3 10.3 4.9 4.6 4.6 8 82.5 43.6 39.5 34.9 29.8

9 98.0 17.7 5.4 4.7 4.8 9 100.0 45.0 37.3 32.9 28.5

10 100.0 30.6 6.4 4.7 4.7 10 100.0 49.6 35.9 32.2 27.4

AR(2)-GARCH(1,1)-NIG(ρt[1, 1, 1], ζ) AR(2)-GARCH(1,1)-NIG(ρt[1, 1, 1], ζt[1, 1, 1])

ǫ/σ ǫ/σ

m 0.5 1 1.5 2 2.5 m 0.5 1 1.5 2 2.5

2 6.1 5.8 6.0 5.9 6.0 2 48.6 46.3 41.4 36.3 29.8

3 6.9 6.3 5.9 5.6 5.8 3 52.7 50.7 47.0 42.3 35.3

4 9.3 6.1 5.2 5.3 5.8 4 52.6 49.4 46.5 41.9 35.2

5 18.0 5.8 5.3 5.3 5.6 5 52.1 48.3 45.4 40.9 34.3

6 37.0 5.6 5.4 5.2 5.3 6 53.5 45.9 43.5 39.4 32.5

7 64.0 7.5 5.4 4.9 4.7 7 67.3 43.6 40.8 37.1 31.6

8 81.5 11.2 5.8 5.0 4.7 8 82.8 44.0 38.5 35.3 30.1

9 97.7 18.5 6.5 5.0 4.7 9 100.0 44.1 37.2 33.4 28.9

10 100.0 33.6 7.1 4.7 4.7 10 100.0 48.8 35.5 31.6 27.0

Note: The table reports the percentage of rejections for the BDS test of i.i.d. (with embedding dimensions m 2 to 10 and ǫ
representing the range of standard deviations of the data) at the 95% confidence level, when applied to the log of the squared
standardized residuals of the GARCH-NIG model from simulated data under alternative data generating processes. The Monte
Carlo experiment used 2000 simulations with 8000 observations each from the AR(2)-GARCH(1,1) model with conditional
densities given by NIG(ρ,ζ), NIG(ρ,ζt[1, 1, 1]), NIG(ρt[1, 1, 1],ζ) and NIG(ρ[1, 1, 1],ζt[1, 1, 1]).

rejection rate is certainly higher but nowhere near conclusive. In the case of time

varying skew parameter, there is almost no difference from the test case implying that

such dynamics do not give rise to nonlinearity affecting the i.i.d. of the standardized

residuals. As a result, we may conclude that for the case of both time varying skew

and shape parameters, the degree of rejection is almost purely the result of the latter

dynamics. In the NIG distribution, both skew and shape parameters jointly determine

higher moments, with the shape parameter having a more direct impact on higher even

moments, and the skew on higher odd moments. It is clearly the case that in the

presence of time variation in the higher parameters the standardized residuals are no

longer identically distributed. However, whether it is a failing of the BDS methodology

in general to pick this up wholly or whether the marginal contribution of the time

varying parameters to the generation of a non-i.i.d. process is too small to be picked

up, under this distribution, is an open question. In the other tests that follow, the time

variation in the higher moments is therefore directly considered as an alternative to a

general test like the BDS which may not be sensitive enough to capture this type of

misspecification.
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1.6.2 GMM Orthogonality Test

The GMM type moment (orthogonality) tests of Hansen (1982) have been applied

to test the adequacy of ACD models in Harvey and Siddique (1999) and Jondeau

and Rockinger (2003). Under a correctly specified model, certain population moment

conditions should be satisfied and hold in the sample using the standardized residuals.

The moment conditions can be tested both individually using a t-test or jointly using

a Wald test. Formally, the following moment conditions can be tested:

M1 E [zt] = 0,

M2 E
[
z2
t − 1

]
= 0,

M3 E
[
z3
t

]
= 0,

M4 E
[
z4
t − 3

]
= 0,

Q2 E
[(
z2
t − 1

) (
z2
t−j − 1

)]
= 0,

Q3 E
[(
z3
t

) (
z3
t−j

)]
= 0,

Q4 E
[(
z4
t − 3

) (
z4
t−j − 3

)]
= 0,

(1.34)

where j = 1 . . . , p is the lag and usually p is set to 4. The last 3 conditions test

the conditional variance, skewness and kurtosis using p lags and may be tested using

a Wald test distributed χ2 with p d.o.f. It is also possible to test all the conditions

jointly using a Wald test distributed χ2 with 4 + 3p d.o.f. Table 1.8 reports

the results of applying the orthogonality test to standardized residuals of the fitted

AR(2)-GARCH(1,1) model with conditional distribution NIG(ρ, ζ) under 4 different

DGPs. In a reverse situation to the BDS test discussed previously, the orthogonality

test appears to have good power when the skew parameter is time varying, but very

poor power when the shape parameter is time varying. Strangely enough, the test also

rejects the joint case in the base model which should not happen since it represents

the correct model. Ergun and Jun (2010) find that the test does have some problem

detecting misspecification, particularly in the dynamics of the fourth moment, under

the skew Student distribution.

1.6.3 Non-Parametric Transition Density Test

The non parametric density test of Hong and Li (2005) provides for a powerful mis-

specification test, making few assumptions about the underlying dynamics. Ergun and

Jun (2010) used this to test ACD model misspecification using Hansen’s Generalized-

Student distribution and compared the size and power of this test with that of the

GMM type test described in the previous section. They found that it had significantly
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Table 1.8: GARCH orthogonality tests under alternative dynamics

AR(2)-GARCH(1,1)-NIG(ρ, ζ)

E[z] E[z2] − 1 E[z3] E[z4] − 3 Q2 Q3 Q4 Joint

Mean 0.000 -0.001 0.001 -0.014

s.e. 0.000 0.001 0.009 0.240

t-value 0.00 -0.03 0.01 -0.03 4.13 3.89 9.65 44.00

%Rejections: H0 7 3 44 79

AR(2)-GARCH(1,1)-NIG(ρ, ζt[1, 1, 1])

E[z] E[z2] − 1 E[z3] E[z4] − 3 Q2 Q3 Q4 Joint

Mean -0.005 0.006 -0.055 1.052

s.e. 0.000 0.001 0.033 6.899

t-value -0.41 0.23 -0.30 0.40 4.10 3.97 5.76 24.78

%Rejections: H0 4 2 16 37

AR(2)-GARCH(1,1)-NIG(ρt[1, 1, 1], ζ)

E[z] E[z2] − 1 E[z3] E[z4] − 3 Q2 Q3 Q4 Joint

Mean -0.002 0.003 -0.009 0.269

s.e. 0.000 0.001 0.011 0.374

t-value -0.19 0.14 -0.09 0.44 4.24 15.29 9.32 96.22

%Rejections: H0 8 87 41 99

AR(2)-GARCH(1,1)-NIG(ρt[1, 1, 1], ζt[1, 1, 1])

E[z] E[z2] − 1 E[z3] E[z4] − 3 Q2 Q3 Q4 Joint

Mean -0.006 0.009 0.180 2.914

s.e. 0.000 0.001 0.200 261.213

t-value -0.56 0.30 0.40 0.18 4.44 10.96 6.23 65.33

%Rejections: H0 8 58 19 96

Note: The table reports average mean, standard error and t-values of the orthogonality moment conditions described in
Hansen (1982) of the fitted standardized residuals from the GARCH-NIG model under alternative Data Generating Processes
(DGP). The Monte Carlo experiment uses 2000 simulations with 8000 observations each from the AR(2)-GARCH(1,1) model
with conditional densities given by NIG(ρ,ζ), NIG(ρ,ζt[1, 1, 1]), NIG(ρt[1, 1, 1],ζ) and NIG(ρ[1, 1, 1],ζt[1, 1, 1]). Q2, Q3, Q4 are
the Wald tests for the joint significance of E[(z2

t − 1)(z2
t−j

− 1)], E[(z3
t )(z3

t−j
)] and E[(z4

t − 3)(z4
t−j

− 3)], j = 1, ..., 4,

respectively and the t-value included is distributed χ2 with 4 (no. lags) d.o.f. The final column in each table (’Joint’) is the
Wald test of joint nullness of all the conditions with t-value distributed again as χ2 with 16 d.o.f. The percentage of rejections
of the null hypothesis is also reported for the 2000 simulations from each DGP.

more power than the latter, and since parameter uncertainty has no impact on the

asymptotic distribution of the test statistic, it is quite robust to model misspecification

under quite general conditions. The details of the test appear in Appendix C and I

focus instead on the results in this section. Table 1.9 reports the average statistics for

M (m, l) under the first four moments and using 4 lags, and Ŵ (4), from the Monte

Carlo simulation fitting an AR(2)-GARCH(1,1) model with conditional distribution

NIG(ρ, ζ) under 4 different DGPs. The test correctly captures the base model with

almost no rejections for the moments based tests, and 8% total rejections under the

portmanteau test statistic which is close to the 95% confidence level tested. When the

shape parameter is time varying, the average value for the third and fourth moment

tests, as well as the portmanteau W test are well above the critical value of 1.645 rep-

resenting the 95% quantile of the standard Normal density. In the case of only time

varying skew parameter, the same cannot be said, with the statistics falling well within

a correctly specified model. That is, when GARCH dynamics with constant skew and
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shape parameter from the NIG conditional density are used to model dynamics gener-

ated from the same model but with a time varying conditional skew parameter, the test

would appear to suggest that there is no explicit cost for this misspecification. This

is in direct contrast to the GMM orthogonality test discussed previously, but in line

with the results of the BDS test. Finally, when both higher moment parameters are

time varying, the test statistics overwhelmingly reject the null hypothesis of correct

specification. Interestingly, the third moment test now also rejects the null which is

not surprising since the NIG shape and skew parameters jointly determine the higher

moments, with variation in both creating a scenario where it is more likely that time

varying skewness is more pronounced when both parameters are time varying or both

at the limits.

Table 1.9: GARCH Hong-Li tests under alternative dynamics

AR(2)-GARCH(1,1)-NIG(ρ, ζ)

M(1,1) M(2,2) M(3,3) M(4,4) W

Mean 1.904 -1.701 -1.418 -1.181 -0.926

%Rejections: H0 0 0 1 2 8

AR(2)-GARCH(1,1)-NIG(ρ, ζt[1, 1, 1])

M(1,1) M(2,2) M(3,3) M(4,4) W

Mean -1.799 -0.760 2.431 5.556 2.156

%Rejections: H0 0 3 55 84 57

AR(2)-GARCH(1,1)-NIG(ρt[1, 1, 1], ζ)

M(1,1) M(2,2) M(3,3) M(4,4) W

Mean -1.236 -1.447 -1.127 -0.704 1.061

%Rejections: H0 0 1 2 7 33

AR(2)-GARCH(1,1)-NIG(ρt[1, 1, 1], ζt[1, 1, 1])

M(1,1) M(2,2) M(3,3) M(4,4) W

Mean -0.828 -0.964 1.689 3.536 4.895

%Rejections: H0 1 2 44 68 94

Note: The table reports the average value of the Hong and Li (2005) statistic from the Monte Carlo experiment using 2000
simulations with 8000 observations each from the AR(2)-GARCH(1,1) model with conditional densities given by NIG(ρ,ζ),
NIG(ρ,ζt[1, 1, 1]), NIG(ρt[1, 1, 1],ζ) and NIG(ρ[1, 1, 1],ζt[1, 1, 1]). M(j, j),j = 1, .., 4, represents the nonparametric test for
misspecification in the conditional moments of the standardized residuals from the fitted AR(2)-GARCH-NIG model, and
distributed as N(0, 1) under the null of a correctly specified model. The statistic W in column 5 of the table is the
Portmanteau type test statistic for general misspecification (using 4 lags) and distributed as N(0, 1) under the null of a
correctly specified model.

1.6.4 Value at Risk and Tail Events

In practice, what the inclusion of time variation in higher moments achieves is to

marginally increase the flexibility of capturing extreme tail events and time varying

asymmetry. While the tests considered thus far are in-sample misspecification tests,
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and may be used to test a model prior to its overall usage, it is also important to

consider the implication in a more operational setting. Specifically, I consider the out-

of-sample fit of GARCH forecasts when the underlying higher moment dynamics are

time varying. While the general density test of Berkowitz (2001) provides for a good

measure of the overall fit of the model, it is important to consider a test of the tail

fit which is where the cost of ignoring time variation in higher moments, particularly

the shape parameter, is most likely to manifest in practise. For this purpose, I choose

the tail test of Berkowitz (2001) since it provides for a reasonable indication of tail fit

and is less likely to depend on the size of the dataset as in the case of the VaR tests

discussed in Section 1.5.6. I simulate 1000 independent runs of size 4000 each, from

an AR(2)-GARCH(1,1) model with conditional distribution NIG(ρt, ζ) , NIG(ρ, ζt)

and NIG(ρt, ζt), for a total of 3000 simulated series representing varying degrees of

higher moment dynamics, where the same ACD estimates were used as in the previous

sub-sections. For each of the series I fit an AR(2)-GARCH(1,1) model with conditional

distribution NIG(ρ, ζ) in an out-of-sample rolling forecast application using a starting

window size of 2000 and moving the window every 25 days22 for a total of 2000 out-of-

sample density forecasts. Table 1.10 presents the results of this study where the median

p-value from the full density and tail tests (at the 5% coverage) of Berkowitz (2001)

are given together with the number of rejections of the null under the respective tests

with 95% confidence. For the full density test, time variation in the shape

Table 1.10: GARCH Berkowitz density tests under alternative dynamics

ACD[ρ, ζt] Berkowitz1 Berkowitz0.05

Median p-value 0.071 0.014

% Rejections 59 81

ACD[ρt, ζ] Berkowitz1 Berkowitz0.05

Median p-value 0.288 0.026

% Rejections 21 73

ACD[ρt, ζt] Berkowitz1 Berkowitz0.05

Median p-value 0.077 0.020

% Rejections 56 75

Note: The table reports the median p-value of the Berkowitz (2001) full density and tail tests (at the 5%
quantile) under the null that an AR(1)-GARCH(1,1)-NIG(ρ,ζ) model correctly fits the data out of sample. Using
1000 randomly generated scenarios of size 4000, the last 2000 points were left for out of sample 1-ahead rolling
forecasts, using a moving window of size 2000 and re-estimating the GARCH model every 25 periods. The
simulated data were generated from an AR(1)-GARCH(1,1) model with higher moment conditional densities given
by NIG(ρ,ζt[1, 1, 1]), NIG(ρt[1, 1, 1],ζ) and NIG(ρ[1,1, 1],ζt[1, 1, 1]), using quadratic dynamics (see Equation
(1.10)). The table also reports the percent rejection of the null at the 95% confidence level, across all scenarios.

22That means that the model is refitted every 25 days and for every fit, 25 rolling 1-ahead forecasts
are generated.
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parameter appears to be more important, similarly to the results in Section 1.6.3, and

with only about 50% rejection. However, when it comes to the tail test, the presence

of either shape or skew dynamics leads to a strong rejection of the GARCH model with

values well above 70%. This means that the presence of time varying higher moments

is unlikely to be well modelled by GARCH dynamics alone, particularly with respect

to measures depending on the tail of the distribution.

1.7 Conclusion

The ARMA-GARCH framework is one of the most flexible and popular methods for

the parametric modelling of the conditional density of portfolio returns. However,

its inability to accommodate extreme swings in returns and changes over time to the

asymmetry of the conditional distribution has important consequences for applications

depending on forecasts from these models, such as typically found in risk management

and portfolio applications . The majority of the literature on the use of ACD models

has been mainly restricted to in-sample model evaluation on a small cross section of

returns. In this chapter I have provided an out-of-sample application on a larger cross

section of international equity indices using a range of relevant conditional distributions.

The evidence points to visible benefits in the inclusion of time varying higher dynamics

within a GARCH framework, using a range of operational measures, and importantly

does not penalize for their inclusion in the absence, or lack of significant prevalence, of

such dynamics. Using a Monte Carlo experiment, I have also provided evidence that

when time varying higher moments are actually present, there is a high cost to ignoring

them using a range of misspecification tests in-sample as well as tail based tests out-

of-sample. The computational challenges arising from the presence of highly nonlinear

bounding transformations should no longer hinder the use of ACD models since recent

advances to global optimization strategies have taken advantage of parallel processing

making such problems much more approachable and feasible. Some open questions

remain in this field, such as tests for the detection of such dynamics, the asymptotic

properties of the parameters under different motion dynamics and the generalization to

a feasible multivariate model. I take up the challenge of providing a feasible multivariate

extension in Chapter 3.



Chapter 2

Multivariate GARCH Dynamics

and Dependence

Portfolio allocation and risk management require the modelling of a diverse and possibly

large universe of assets. The goal is usually to obtain some measure of a linear combi-

nation of these assets, either in-sample or forecasted. Modelling the linear combination

directly as a univariate problem is certainly one viable option. However, this approach

throws away information, which may be contained in the multivariate structure of the

assets, that may aid in inference and understanding. More importantly, when consider-

ing portfolio allocation decisions where weights are not predetermined, this approach is

rendered effectively worthless. Instead, one is interested in expressing the multivariate

dependence in terms of either a set of simulated scenarios, which approximate a point in

time multivariate density, else the conditional moment and co-moment matrices, such

as the mean and covariance. Given these measures of the multivariate distribution, it

should then be possible, subject to the properties of that distribution, to obtain the

weighted marginal density, or an approximation to that, from which any type of mea-

sure can then be extracted.

In the classical model of market behavior, models of risk and portfolio allocation are

usually based on a static Capital Asset Pricing Model (CAPM ) or multifactor based re-

gressions. The popularity of these models, particularly the multifactor extensions of the

CAPM (see for example Ross (1976)), is evidenced by the large number of investment

46
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professionals still using them and supported by numerous software and research com-

panies.1 While these models may be adequate when using low frequency data such as

monthly and quarterly returns, the evidence on the weekly and higher frequency scale

suggests that there exist dynamic interactions within and between securities which

cannot be modelled by traditional approaches (see for example Bollerslev, Engle, and

Wooldridge (1988) for a dynamic CAPM based model). It is therefore important to

have a model which captures as much of these interactions as possible, and from which

meaningful forecasts can be generated to aid in decision making. One of the first models

for capturing dynamic interactions emerged from industry in the form of J.P.Morgan’s

Riskmetrics methodology (see Morgan (1994)), which was effectively a restricted mul-

tivariate GARCH (MGARCH ) model with fixed parameters. While GARCH models

have proved very successful in capturing some of the most salient features of the ob-

served market phenomena, their extension to the multivariate domain has not enjoyed

the same level of success, largely due to dimensionality issues and feasibility of esti-

mation. The direct multivariate extensions have sought to generalize the univariate

dynamics into matrix form to capture the complex dependencies in the conditional co-

variance. Unfortunately, this has come at the cost of introducing a very large number

of parameters making their estimation infeasible and impractical for even a small set of

securities. Reduction in the problem dimension has been achieved through the indirect

and factor models by taking advantage of relationships inherent in elliptical distribu-

tions or compromises in the complexity of relationships modelled. These more feasible

models, coupled with flexible and feature rich multivariate distributions, have provided

portfolio and risk managers with an invaluable framework for the modelling of risk.

This chapter provides a review of MGARCH models, with a particular focus on the

DCC model originally proposed by Engle (2002) and its extension in terms of dynam-

ics and distributions. I try to address the question of dimensionality versus feasibility

and the cost, if any, of certain compromises used to address the former. Surprisingly,

I find that the 2-stage approach typically used in DCC modelling offers certain ad-

vantages beyond estimation ease, contrary to the arguments of Caporin and McAleer

(2012), and discuss possible reasons. In a departure from the more general review

setup, I also undertake an empirical investigation using the MSCI dataset of Chapter

1 to consider the relative in-sample goodness of fit of the diagonal BEKK and diagonal

AGDCC models with a range of different distributions, and attempt to form some gen-

eral conclusions on their relative merits. Finally, a small Monte Carlo exercise is used

1Such as MSCI Barra and Northfield Information Services.
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to compare the DCC and BEKK models, and consider, if any, the cost of switching one

for the other. This chapter is structured as follows: Section 2.1 considers the exten-

sion of the univariate GARCH dynamics to the multivariate domain with a focus on

the Asymmetric Generalized Dynamic Conditional Correlation (AGDCC ) model, and

in Section 2.2 the DCC-copula model is considered. The challenge of finding feasible

distributions with desirable properties is considered in Section 2.3 with a focus on the

normal mean-variance mixture family and the Generalized Asymmetric Laplace (GAL)

in particular. Section 2.4 examines more closely the diagonal AGDCC model within an

empirical application and contrasts it with a diagonal BEKK model under alternative

distributions. Section 2.5 concludes.

2.1 Multivariate GARCH

The generalization of univariate GARCH models to the multivariate domain is concep-

tually simple. Consider the stochastic vector process, xt {t = 1, 2, . . . , T} of financial

returns with dimension N × 1 and mean vector µt
2, given the information set It−1:

xt |It−1 = µt + εt, (2.1)

where the residuals of the process are modelled as:

εt = H
1/2
t zt, (2.2)

and H
1/2
t is an N×N positive definite matrix such that H t is the conditional covariance

matrix of xt
3, and zt an N × 1 i.i.d. random vector, with centered and scaled first 2

moments:

E [zt] = 0,

Var[zt] = IN, (2.3)

2The mean vector may for example be derived from a VARMA model or may simply represent the
unconditional means of the financial returns.

3One way to obtain the square root matrix is through the singular value decomposition of Ht.
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with IN denoting the identity matrix of order N. The conditional covariance matrix

H t of xt may be defined as:

Var (xt |It−1 ) = Vart−1(xt) = Vart−1(εt)

= H
1/2
t Vart−1(zt)(H

1/2
t )′

= H t. (2.4)

The literature on the different specifications of Ht may be broadly divided into direct

multivariate extensions, factor models and the conditional correlation models. The

usual trade-off of model parametrization and dimensionality clearly applies here, with

the fully parameterized models offering the richest dynamics at the cost of increasing

parameter size, making it unfeasible for modelling anything beyond a couple of assets.

There is, also, a not so evident tradeoff between those models which allow flexible

univariate dynamics to enter the equation at the cost of some multivariate dynamics,

and this is discussed more fully in Section 2.4. The next sections will review these

models and the tradeoffs they present for the decision maker. A more complete review

of multivariate GARCH (MGARCH ) models is provided in Bauwens, Laurent, and

Rombouts (2006) and Silvennoinen and Teräsvirta (2009b).

2.1.1 Direct Multivariate Extension Models

A direct extension of univariate GARCH dynamics to the multivariate domain was

proposed by Bollerslev, Engle, and Wooldridge (1988), where each element of the con-

ditional covariance matrix H t is composed of linear combinations of the lagged errors

and cross product errors and lagged values of H t.

Definition 3. The VEC(p,q) Model

vech (H t) = c +
p∑

j=1

Ajvech
(
εt−jε

′
t−j
)

+
q∑

j=1

Bjvech (H t−j) , (2.5)

where c is the N(N + 1)/2 × 1 intercept, vech is the operator that stacks the lower

triangular portion of the N × N symmetric matrix as an N(N + 1)/2 vector, and

matrices Aj and Bj are square of order N(N+1)/2, giving a total of 1
2n

4 +n3 +n2 + 1
2n

variables! Because H t is symmetric, vech(H t) contains all the unique elements in H t.

The richness of the model is immediately visible, as the variance of each individual

asset is a function of its own squared errors and variances, all other squared errors and

variances and all other cross lagged errors and covariances, and similarly modelled for
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the off diagonal elements (covariances). There is obviously a high cost to modelling

the full interaction of lags and cross lags and hence the contagion-effect, where the

(co)variance of an asset may be influenced by the lagged (co)variance of other assets.

However, the requirement that H t be positive definite for all values of εt in the sample

space is difficult to impose during estimation. The Diagonal VEC (DVEC ) model

was suggested by the same authors to partly alleviate the dimensionality problem4,

by foregoing the effect of cross lags on individual variances and covariances, modelling

At and Bt as diagonal matrices. Additionally, the diagonal representation, usually

expressed in terms of Hadamard products, also benefits from simpler conditions for

imposing positive definiteness of H t, derived in Attanasio (1991), which is a drawback

of the full VEC model for which such conditions are hard to arrive at.

To overcome the difficulties of imposing positive definiteness in the VEC model and the

high dimensionality, while not giving up as much as the DVEC, the BEKK model of

Engle and Kroner (1995) was proposed on the premise that co-movements of financial

assets are driven by a set of underlying factors. In terms of MGARCH categories, it

lies somewhere between the direct extension VEC model, for which it is a special case5,

and a class of factors models most of which can be expressed as special cases of the

BEKK model.

Definition 4. The BEKK(p,q,K) Model. The conditional covariance matrix H t is gov-

erned by the following motion dynamics,

H t = C ′C +
K∑

k=1

q∑

j=1

A′
jkεt−jε

′
t−jAjk +

K∑

k=1

p∑

j=1

B′
jkH t−jBjk, (2.6)

where C, Ajk and Bjk are N×N matrices, with C being upper triangular. A direct ad-

vantage of the BEKK model over the VEC model of Bollerslev, Engle, and Wooldridge

(1988), is that positivity of the covariance matrix H t is easy to impose. The number of

parameters is significantly less in the full BEKK model, being 5
2n

2 + 1
2n, and only about

5
3 times bigger than the DVEC model. Unlike the DVEC model, the BEKK specifica-

tion does model the dependence of conditional variances (covariances) subject to the

lagged values of all other variances (covariances), hence capturing the spillover effect.

The quadratic form of the model, means that certain sign restrictions are necessary to

ensure identifiability, which for simple models such as when K = 1 and p = q = 1 is

4The DVEC requires 3
2

(
n2 + n

)
parameters.

5In fact, for each BEKK model there is an equivalent VEC representation.
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a simple matter of ensuring the positivity of the upper diagonal elements of A11 and

B11. Consistency of the BEKK model was proved by Jeantheau (1998) under the log-

moment condition, which requires the existence of sixth-order moments, making this

untestable. Asymptotic normality of the Quasi Maximum Likelihood (QML) Estimates

of the BEKK model was established by Comte and Lieberman (2003), this time under

the existence of eighth order moments which again are untestable, while Hafner and

Preminger (2009) established the asymptotic normality of the VEC model (in which

the BEKK is nested) under the existence of sixth order moments. The dynamics of

both the VEC and BEKK models can be reduced to achieve dimensionality reduction

gains, leading to several variants such as diagonal and scalar models, as well as the use

of covariance targeting to reduce the number of parameters in the estimation of the

intercept. In the latter case, this is achieved by setting:

C ′C = Σ̄ − A′Σ̄A − B′Σ̄B (2.7)

where Σ̄ is the unconditional covariance matrix of ε which may be consistently esti-

mated by N−1(εε′). In order for H t to be positive definite in the presence of covariance

targeting, the eigenvalues of the intercept must be positive and checked during estima-

tion. This is a highly nonlinear constraint for which I find that standard solvers will

fail to converge to a global optimum most of the time, thus necessitating a global opti-

mization approach. Rotating between local and global based solvers (such as simulated

annealing or pattern search) will provide for a much more robust solution than either

individually6. Finally, covariance stationarity in the diagonal BEKK models is simply a

vectorized form of the scalar case so that the element-wise sum of the squared diagonal

parameters is less than unity:

p∑

i=1

a2
nn,i+

q∑

j=1

b2
nn,j < 1. (2.8)

It would appear that covariance targeting for large dimensional systems eliminates

N(N + 1)/2 parameters from the estimation thus making it more feasible. However,

6The strategy is quite simple: an SQP based solver which is guaranteed to find a local minimum
initiates the first run, and then a simulated annealing solver runs for N iterations to find a new direction,
after which the more efficient SQP solver takes over to find that direction’s local minimum. The strategy
iterates between the two solvers until the global based solver cannot find a better solution after N
iterations. As an added safety step, an alternative global based solver such as that of pattern search, is
then run N iterations at which point either the solution does not change else if a better point is found
the strategy restarts.
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this is only partly true. In the absence of covariance targeting, we can guarantee positive

definiteness of the intercept, by construction, through C ′C. With covariance targeting,

the added constraint of positive definiteness provides for 2 possible avenues. The first

one, imposes a proper constraint by adding N(N + 1)/2 parameters to the estimation

so that the intercept, Ω, calculated through targeting, is constrained to be positive

definite. Formally:

Property 1. A Matrix M is positive definite if and only if there is a positive definite

matrix B > 0 with B2 = M .7

The matrix B is called the ’square root’ of M . This matrix B is unique, but only

under the assumption B > 0. In terms of the optimization problem, we can include the

following constraint to ensure the positive definiteness of the intercept Ω: B2 − Ω = 0.

If Ω has a ’square root’ then it is positive semi-definite. One therefore models the lower

triangular part of B which creates an added N(N+1)/2 parameters in the optimization

problem. Thus in this case, the full constraint reintroduces back into the model the

same number of parameters eliminated because of covariance targeting in the first place,

which is possibly the reason it has not been considered in the literature thus far. The

second approach, which does not introduce this constraint involves the use of a global

optimization approach since checking for positive and real eigenvalues as an ’arbitrary’

constraint, introduces non-smoothness and discontinuity in the likelihood, and is likely

to lead to many local minima.

An alternative avenue for dimensionality reduction has been explored through the factor

and conditional correlation models which exploit certain distributional properties to

simplify or avoid the full multivariate density evaluation. The conditional correlation

model is discussed in the next section, while a statistical factor MGARCH framework

is discussed in Chapter 3.

2.1.2 Conditional Correlation Models

Conditional correlation models are founded on a decomposition of the conditional co-

variance matrix into conditional standard deviations and correlations, so that they may

be expressed in such a way that the univariate and multivariate dynamics may be sep-

arated, thus easing the estimation process. This decomposition comes at a cost of some

7Notation greater than in this context means positive definite
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dynamic structure as well as severe restriction on the type of multivariate distribution

which can usually be decomposed in such a way. As a result, the models have been

extended to allow for more flexible dynamic structure which unfortunately has led to

significant loss in the ease of estimation.

In the constant conditional correlation model (CCC) of Bollerslev (1990), the covariance

matrix can be decomposed into

H t = DtRDt = ρij
√
hiithjjt, (2.9)

where Dt = diag(
√
h11,t, ...,

√
hnn,t), and R is the positive definite constant condi-

tional correlation matrix. The conditional variances, and hii,t, which can be estimated

separately, can be written in vector form based on GARCH(p,q) models8

ht = ω +
p∑

i=1

Aiεt−i ⊙ εt−i+
q∑

i=1

Biht−i (2.10)

where ω ∈ R
n, Ai and Bi are N ×N diagonal matrices, and ⊙ denotes the Hadamard

operator. The conditions for the positivity of the covariance matrix H t are that R is

positive definite, and the elements of ω and the diagonal elements of the matrices Ai

and Bi are positive. In the extended CCC model (E-CCC) of Jeantheau (1998), the

assumption of diagonal elements on Ai and Bi was relaxed, allowing the past squared

errors and variances of the series to affect the dynamics of the individual conditional

variances, and hence providing for a much richer structure, albeit at the cost of a lot

more parameters. The decomposition in (2.9), allows the log-likelihood at each point

in time (LLt), in the multivariate normal case, to be expressed as

LLt =
1

2

(
log (2π) + log |H t| + ε′

tH
−1
t εt

)

=
1

2

(
log (2π) + log |DtRDt| + ε′

tD
−1
t R−1D−1

t εt

)

=
1

2

(
log (2π) + 2 log |Dt| + log |R| + z′

tR
−1z′

t

)
(2.11)

where zt = D−1
t εt. This can be described as a term (Dt) for the sum of the univariate

GARCH model likelihoods, a term for the correlation (R) and a term for the covariance

which arises from the decomposition.

Because the restriction of constant conditional correlation may be unrealistic in practice,

8The GARCH models are not restricted to be of one particular ’flavor’, allowing to mix for example
APARCH with EGARCH models in the univariate stage.
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a class of models termed Dynamic Conditional Correlation (DCC), due to Engle (2002)

and Tse and Tsui (2002), allow for the correlation matrix to be time varying with

motion dynamics, such that

H t = DtRtDt. (2.12)

In these models, apart from the fact that the time varying correlation matrix, Rt, must

be inverted at every point in time (making the calculation that much slower), it is

also important to constrain it to be positive definite. The most popular of these DCC

models, due to Engle (2002), achieves this constraint by modelling a proxy process, Qt

as:
Qt = Q̄ + a

(
zt−1z′

t−1 − Q̄
)

+ b
(
Qt−1 − Q̄

)

= (1 − a− b)Q̄ + azt−1z′
t−1 + bQt−1

(2.13)

where a and b are non negative scalars, with the condition that a + b < 1 imposed to

ensure stationarity and positive definiteness of Qt. Q̄ is the unconditional matrix of

the standardized errors zt which enters the equation via the covariance targeting part

(1 − a− b)Q̄, and Q0 is positive definite. The correlation matrix R is then obtained by

rescaling Qt such that,

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2. (2.14)

The log-likelihood function in Equation (2.10) can be decomposed more clearly into a

volatility and correlation component by adding and subtracting ε′
tD

−1
t D−1

t εt = z′
tzt,

LL =
1

2

T∑

i=1

(
N log (2π) + 2 log |Dt| + log |Rt| + z′

tR
−1
t z′

t

)

=
1

2

T∑

i=1

(
N log (2π) + 2 log |Dt| + ε′

tD
−1
t D−1

t εt

)
−1

2

T∑

i=1

(
z′
tzt + log |Rt| + z′

tR
−1
t z′

t

)

= LLV (θ1) + LLR (θ1, θ2)

(2.15)

where LLV (θ1) is the volatility component with parameters θ1, and LLR (θ1, θ2) the

correlation component with parameters θ1 and θ2. In the Multivariate Normal case,

where no shape or skew parameters enter the density, the volatility component is the

sum of the individual GARCH likelihoods which can be jointly maximized by separately

maximizing each univariate model. In other distributions, such as the multivariate Stu-

dent, the existence of a shape parameter means that the estimation must be performed
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in one step so that the shape parameter is jointly estimated for all models9. Separation

of the likelihood into 2 parts provides for feasible large scale estimation. Together with

the use of covariance targeting, very large scale systems may be estimated in a matter of

seconds with the use of parallel and grid computing. Yet as the system becomes larger

and larger, it becomes questionable whether the scalar parameters can adequately cap-

ture the dynamics of the underlying process. As such, Cappiello, Engle, and Sheppard

(2006) generalize the DCC model with the introduction of the Asymmetric Generalized

DCC (AGDCC ) where the dynamics of Qt are:

Qt =
(
Q̄ − A′Q̄A − B′Q̄B − G′Q̄

−
G
)

+ A′zt−1z′
t−1A + B′Qt−1B + G′z−

t z′
t
−

G

(2.16)

where A, B and G are the N × N parameter matrices, z−
t are the zero-threshold

standardized errors which are equal to zt when less than zero and zero otherwise, Q̄

and Q̄
−

the unconditional matrices of zt and z−
t respectively. Because of its high

dimensionality, restricted models have been used including the scalar, diagonal and

symmetric versions with the specifications nested being

• DCC : G = [0] ,A =
√
a,B =

√
b

• ADCC : G =
√
g,A =

√
a,B =

√
b

• GDCC : G = [0].

9In Section 2.2 I discuss the case of the DCC-Student copula where this may be relaxed
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Table 2.1: AGDCC comparative estimates (global equity and bond indices)

AGDCC (MVN) Model Original Estimates Revised Estimates

a2

i
g2

i
b2

i
a2

i
g2

i
b2

i

Australia stocks 0.006 0.008 0.790 0.002* 0.005* 0.928

Austria stocks 0.003 0.004 0.961 0.007 0.016* 0.890

Belgium stocks 0.010 0.008 0.950 0.010* 0.029* 0.910

Canada stocks 0.005 0.002 0.952 0.002* 0.027* 0.876*

Denmark stocks 0.003 0.005 0.965 0.005* 0.014* 0.933

France stocks 0.009 0.003 0.945 0.017* 0.042 0.853

Germany stocks 0.007 0.007 0.957 0.005* 0.031* 0.909

Hong Kong stocks 0.000* 0.002 0.956 0.000* 0.010* 0.937

Ireland stocks 0.000* 0.007 0.968 0.011 0.002* 0.786

Italy stocks 0.007 0.012 0.957 0.009* 0.025* 0.905

Japan stocks 0.002 0.003 0.953 0.004* 0.003* 0.947*

Mexico stocks 0.001* 0.019 0.938 0.000* 0.011* 0.900

Netherlands stocks 0.006 0.009 0.959 0.008* 0.016* 0.919*

New Zealand stocks 0.001* 0.001* 0.922 0.001* 0.004* 0.956*

Norway stocks 0.002 0.006 0.929 0.001* 0.002* 0.889

Singapore stocks 0.001* 0.002 0.976 0.000* 0.010* 0.925*

Spain stocks 0.006 0.007 0.954 0.016 0.028* 0.857

Sweden stocks 0.005 0.006 0.965 0.003* 0.026* 0.869*

Switzerland stocks 0.015 0.009 0.943 0.011* 0.028 0.900

U.K. stocks 0.007 0.006 0.955 0.006* 0.033* 0.875*

U.S. stocks 0.002 0.004 0.951 0.023 0.009* 0.801

Austria bonds 0.010 0.009 0.976 0.035* 0.003* 0.938

Belgium bonds 0.011 0.009 0.975 0.038* 0.004* 0.934

Canada bonds 0.005 0.006 0.859 0.006* 0.017* 0.859*

Denmark bonds 0.011 0.009 0.973 0.039* 0.008* 0.926

France bonds 0.011 0.008 0.973 0.035 0.007* 0.932

Germany bonds 0.013 0.009 0.972 0.036* 0.005* 0.934

Ireland bonds 0.014 0.007 0.968 0.042 0.006* 0.923

Japan bonds 0.005 0.006 0.964 0.020* 0.005* 0.932*

Netherlands bonds 0.013 0.008 0.972 0.035* 0.004* 0.936

Sweden bonds 0.008 0.012 0.962 0.021* 0.019* 0.939

Switzerland bonds 0.012 0.007 0.974 0.035* 0.002* 0.936

U.K. bonds 0.006 0.004 0.972 0.032 0.000* 0.923

U.S. bonds 0.006 0.003 0.936 0.008* 0.020* 0.898

LL 78,022 78,120

Notes to table 2.1: The Table presents the original parameter estimates and Log-Likelihood (LL) of the 34 global equity and
bond indices from the ADGCC (MVN) model in the paper by Cappiello, Engle, and Sheppard (2006) (Table 6a) and the revised
estimates after re-running the estimation using a global optimization strategy. * denotes insignificance at the 5% level.
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As discussed in the previous section, covariance targeting in such high dimensional

models where the parameters are no longer scalars, creates difficulties in imposing

positive definiteness during estimation while at the same time guaranteeing a global

optimum solution. In fact, investigating the model of Cappiello, Engle, and Sheppard

(2006), using the same dataset10, I find rather different results. Starting with their

parameters for the diagonal AGDCC model, displayed in Table 6a of their paper, I find

a log-likelihood of 78, 02211 , and continue the optimization using a global optimization

approach. This leads to a slightly higher likelihood of 78, 120, and more importantly

I find no significant asymmetry in the correlation dynamics (except for French and

Swiss Equity), unlike the authors who show in Table 6a of their paper that with the

exception of New Zealand Equity, all asymmetry parameters of the AGDCC model

are significant at the 5% level. Table 2.1 provides a side by side comparison of the

original parameters from the paper by Cappiello, Engle, and Sheppard (2006) and

the revised estimates. Besides the differences in the significance of the asymmetry

parameter (parameters in the original paper were reported as the squares of their values

and I follow the same format for this table), there are also significant differences in the

shock and persistence parameters a2
i and b2

i respectively, with the revised estimates

exhibiting much less significance at the 5% level. This certainly highlights the practical

problems in estimating this model. More substantially, Aielli (2009) points out that the

estimation of Q̄t as the empirical counterpart of the correlation matrix of zt in the DCC

model is inconsistent since E[ztzt] = E[Rt] 6= E[Q̄t]. He proposes instead the cDCC

model which includes a corrective step which eliminates this inconsistency, albeit at the

cost of targeting which is not allowed. Whether the identified inconsistency is significant

enough to merit widespread adoption is still an open question, since the elimination

of the 2 step approach also eliminates most of the advantages of using a DCC type

model over the BEKK, a point forcefully taken up by Caporin and McAleer (2012) who

question the merits of the DCC model over the BEKK model with covariance targeting

which has more consistent properties. I investigate this point further in Section 2.4 and

in fact find that there is value in the 2-stage approach.

10The dataset was kindly provided by Kevin Sheppard, and consists of FTSE All-World Indices for
21 countries and DataStream-constructed five-year average maturity government bond indices for 13
countries. The sample covers the period from January 8, 1987 to February 7, 2002 (785 observations),
of weekly (Thursday-to-Thursday close) continuously compounded returns. I would also note here that
this dataset, as provided, appears to be missing the whole month of February 1995, which equates to
4 missing data points (since it is weekly).

11Which is also different from the one the authors report in Table 6b of their paper (−25485.1),
probably since they exclude some constant or just report the second stage likelihood rather than the
overall one.
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Other notable DCC extensions have included the Smooth and double Smooth Transition

Conditional Correlation models of Silvennoinen and Teräsvirta (2009a) and the Regime

Switching Dynamic Correlation of Pelletier (2006). An interesting compromise in the

modelling of the dynamics in the AGDCC context was proposed by Billio, Caporin,

and Gobbo (2006) in terms of a block-diagonal structure so that the dynamics among

groups of highly correlated securities is the same. In a different direction, Pelagatti and

Rondena (2006) provide a rather obvious argument that any elliptical distribution could

be decomposed and used in DCC modelling, including the Student12 and Laplace, the

latter discussed in more detail in Section 2.3.1. Finally, Kroner and Ng (1998) introduce

an omnibus model, the Generalized Dynamic Covariance (GDC ) Model which nests the

VEC, BEKK, FGARCH, CCC and DCC models as special cases and written as

H t = DtRtDt + Φ ⊙ Θt, (2.17)

where Dt = dij,t, dii,t =
√
θii,t∀i and dij,t = 0∀i 6= j, ⊙ is the Hadamard operator,

Rt = ρij,t, and Θ = θij,t following BEKK dynamics as in Equation (2.6). Depending

on the parameter restrictions, various models arise such as the BEKK model when

R is diagonal and Φ with off-diagonal values of 1. Other restrictions, leading to other

models, are given in proposition 1 of Kroner and Ng (1998). The authors also describe in

the same paper an asymmetric version of this model by adjusting the BEKK dynamics

in θij,t to incorporate an asymmetry term for the zero-threshold shocks, which is a

natural generalization from such univariate models as the GJR-GARCH and T-GARCH

of Glosten, Jagannathan, and Runkle (1993) and Zakoian (1994) respectively. Like in

the case of the family GARCH model of Hentschel (1995) where comparison of nested

models was made via the news impact curve of Engle and Ng (1993), the authors

generalize the curve to a surface function providing for some revealing visual insights

into the different multivariate dynamics.

The main advantage of DCC models is the 2-step estimation process which effectively

allows any type of univariate model for the first stage dynamics. However, there is also a

cost to this method when it comes to calculating the standard errors, since any potential

speed gains in the 2 step method are almost eliminated when calculating the Hessian

which is partitioned13. For the scalar DCC model, this is not an issue, but quickly

12Technically, the Student cannot be used in a 2-stage estimation because of the presence of a shape
parameter in the density, as discussed previously, though in practice a first stage QML estimation has
been employed.

13Because of the two-stage estimation process, the standard error matrix in these DCC models is a
partitioned matrix with the first stage univariate GARCH parameters partitioned off from the second
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becomes computationally expensive in the diagonal and full Generalized DCC model

as the number of assets increases. In addition, for the Generalized DCC model, aside

from the problem of imposing stationarity and positive definiteness in the model, which

involves some very nonlinear constraints with the possibility of a non global solution,

the Hessian might be ill conditioned for parameters at the intercept’s limit of positive

definiteness or when the solution is only a local one. In such situations, one must ask

whether a BEKK model with covariance targeting is not better suited to the task since

there is no 2-stage estimation, and hence the full Hessian is more likely to depend on

the immediate optimization result rather than an afterthought in the calculation of the

partitioned Hessian. Nevertheless, the DCC model’s 2 stage estimation has proved quite

popular in practice, and the next section reviews an even more flexible representation

of the DCC model when the distribution is fitted using a copula.

2.2 MGARCH with Flexible Margins: The DCC Copula

model

Copula functions were introduced by Sklar (1959) as a tool to connect disparate marginal

distribution together to form a joint multivariate distribution. They were extensively

used in survival analysis and the actuarial sciences for many years before being intro-

duced in the finance literature more than a decade ago by Frey and McNeil (2000)

and Li (2000). They have since been very popular in investigating the dependence of

financial time series of various assets classes and frequencies. Breymann, Dias, and Em-

brechts (2003) investigate bivariate hourly forex spot returns finding that the Student

copula best fit the data at all horizons (with the shape parameter increasing with the

time horizon), while Malevergne and Sornette (2003) find that the Normal copula fits

pairs of currencies and equities well on the whole but unsurprisingly fails to capture

tail events where the Student copula does best.14 Junker and May (2005) use a Frank

copula with a transformation generator and GARCH dynamics for the margins using

the empirical distribution, to analyze the bivariate dependency of the daily returns of

6 stocks and 3 Euro swap rates (with horizons 2,5, and 10 Years). The comparison

with a range of popular copulas including the Normal and Student, in a risk exercise

stage DCC parameters. While it is also possible to estimate the system in one stage, that would defeat
the main purpose of the model which is ease and speed of estimation.

14Interestingly the authors argue that since such events are rare, the goodness of fit test they use
cannot always reject the Normal copula.
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shows that asymmetric tail dependency is important and usually not accommodated by

the Student distribution15 While most studies are predominantly focused on bivariate

copulas, the extension to n-variate models is not overtly challenging particularly for

elliptical distributions, or the use of the more recent Vine pair copulas (see for example

Joe, Li, and Nikoloulopoulos (2010)).

2.2.1 Copulas

An n-dimensional copula C (u1, . . . , un) is a distribution in the unit hypercube [0, 1]n

with uniform margins. Sklar (1959) showed that every joint distribution F of the

random vector X = (x1, . . . , xn) with margins F1 (x1) , . . . , Fn (xn), can be represented

as:

F (x1, . . . , xn) = C (F1 (x1) , . . . , Fn (xn)) (2.18)

for a copula C, which is uniquely determined in [0, 1]n for distributions F under abso-

lutely continuous margins and obtained as:

C (u1, . . . , un) = F
(
F−1

1 (u1) , . . . , F−1
n (un)

)
(2.19)

The density function may conversely be obtained as :

f (x1, . . . , xn) = c (F1 (x1) , . . . , Fn (xn))
n∏

i=1

fi (xi) (2.20)

where fi are the marginal densities and c is the density function of the copula given by:

c (u1, . . . , un) =
f
(
F−1

1 (u1) , . . . , F−1
n (un)

)

n∏
i=1

fi
(
F−1
i (ui)

) . (2.21)

with F−1
i being the quantile function of the margins. A key property of copulas is their

invariance under strictly increasing transformation of the components of the X, so that

for example the copula of the multivariate Normal distribution Fn (µ,Σ) is the same as

that of Fn (0,R) where R is the correlation matrix implied by the covariance matrix,

and the same for the copula of the multivariate Student distribution reviewed in detail

15An alternative would be to use the skew Generalized Hyperbolic Student distribution analyzed in
Aas and Haff (2006) which allows for the modelling of one heavy (with polynomial behavior) and one
semi-heavy (with exponential behavior) tail.
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in Demarta and McNeil (2005). The density of the Normal copula, of the n-dimensional

random vector X in terms of the correlation matrix R, is then:

c (u; R) =
1

|R|1/2
e− 1

2u
′
(
R′

−I
)
u (2.22)

where ui = Φ−1 (Fi (xi)) for i = 1, . . . , n, representing the quantile of the Probability

Integral Transformed (PIT ) values of X, and I is the identity matrix. Because the

Normal copula cannot account for tail dependence, the Student copula has been more

widely used for modelling of financial assets. The density of the Student copula, of

the n-dimensional random vector X in terms of the correlation matrix R and shape

parameter ν, can be written as:

c (u; R, ν) =
Γ
(ν+n

2

) (
Γ
(ν

2

))n(
1 + ν−1u′R−1u

)−(ν+n)/2

|R|1/2(
Γ
(ν+n

2

))n
Γ
(ν

2

) n∏
i=1

(
1 +

u2
i
ν

)−(ν+1)/2
(2.23)

where ui = tν
−1 (F (xi; ν)), where t−1

ν is the quantile function of the student distribu-

tion with shape parameter ν.

2.2.2 Correlation and Kendall’s τ

Pearson’s product moment correlation R totally characterizes the dependence structure

in the multivariate Normal case, where zero correlation also implies independence, but

can only characterize the ellipses of equal density when the distribution belongs to

the elliptical class. In the latter case for instance, with a distribution such as the

multivariate Student, the correlation cannot capture tail dependence determined by

the shape parameter. Furthermore, it is not invariant under monotone transformations

of original variables making it inadequate in many cases. An alternative measure which

does not suffer from this is Kendall’s τ (see Kruskal (1958)) based on rank correlations

which makes no assumption about the marginal distributions but depends only on the

copula C. It is a pairwise measure of concordance calculated as:

τ (xi, xj) = 4

∫ 1

0

∫ 1

0
C (ui, uj) dC (ui, uj) − 1. (2.24)

For elliptical distributions, Lindskog, Mcneil, and Schmock (2003) proved that there

is a one-to-one relationship between this measure and Pearson’s correlation coefficient
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ρ given by:

τ (xi, xj) =


1 −

∑

x∈R

(
P{Xi = x}2

)

 2

π
arcsin ρij (2.25)

which under certain assumptions (such as in the case of the multivariate Normal) sim-

plifies to 2
π arcsin ρij.

16 Kendall’s τ is also invariant under monotone transformations

making it rather more suitable when working with non-elliptical distributions. A useful

application arises in the case of the multivariate Student distribution, where a maximum

likelihood approach for the estimation of the correlation matrix R becomes unfeasible

for large dimensions. In this case, an alternative approach is to estimate the sample

counterpart of Kendall’s τ 17 from the transformed margins and then translate that

into the correlation matrix as detailed in (2.25), providing for a method of moments

type estimator.18 The shape parameter ν may then be estimated keeping the correla-

tion matrix constant, with little loss in efficiency vis-a-vis the full maximum likelihood

method.19

2.2.3 Transformations and Consistency

The estimation and PIT transformation of the margins provides for a great deal of

flexibility, with the possibility of adopting a parametric, semi-parametric or empirical

approach. The first method, whereby the margins and transformation are performed

using a parametric density, was termed the Inference-Functions-for-Margins (IFM ) by

Joe (1997) who also established the asymptotic theory for it. The semi-parametric

method (SPD) uses a distribution which couples together tails fitted by the generalized

Pareto distribution (GPD)20 with a kernel based interior and described in Davison

and Smith (1990), and offers a rather flexible method for capturing fat tails observed in

practice. Finally, the empirical approach, also called pseudo-likelihood, was investigated

by Genest, Ghoudi, and Rivest (1995) and asymptotic properties established under the

assumption that the sequence of X is i.i.d.( see Durrleman, Nikeghbali, and Roncalli

(2000) for an excellent summary of the different methods and their properties.)

16Another popular measure is Spearman’s correlation coefficient ρs which under Normality equates
to 6

π
arcsin

ρij

2 , and it is usually very close in result to Kendall’s measure.
17The matrix is build up from the pairwise estimates.
18It may be the case that the resultant matrix is not positive definite, in which case a variety of

methods exist to tweak it into one.
19 According to at least one study of Zeevi and Mashal (2002).
20For which a Probability Weighted Moment (PWM ) approach exists which is quite robust.
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2.2.4 The DCC Student Copula

The extension of the static copula approach to dynamic models, and in particular

GARCH, was investigated by Patton (2006) who extended and proved the validity of

Sklarś theorem for the conditional case. Jondeau and Rockinger (2006a) combined the

ACD model of Hansen (1994) with a skewed Student distribution to model time-varying

or regime switching Student copula for the dependence between pairs of countries,

while Chollete, Heinen, and Valdesogo (2009) used a GARCH with skewed Student

distribution in the first stage and a regime switching model with a Canonical vine copula

for the high dependence regime and a Normal copula for the low dependence regime.

The use of the skewed Student distribution in such models, beyond its tractability and

desirable features, according to Chollete, Heinen, and Valdesogo (2009) is so as to ensure

that the asymmetry in the dependence structure is purely the result of multivariate

asymmetry and not an artifact of poor modelling of the margins. Demarta and McNeil

(2005) described a skewed Student copula derived from the Normal Mean Variance

Mixture distribution (reviewed in the next section), with common shape (ν) univariate

skewed student margins and separate skewness (γ) parameters.21

In an elliptical distribution setting, adding dynamics to the correlation matrix of the

copula seems a natural extension of the 2-stage DCC model, and allows the estimation

of a Student copula with disparate shape parameters for the first stage, where this

was not possible using the standard DCC model (unless estimated jointly). Let the

n-dimensional random vector of asset returns rt = rit, . . . , rnt follow a copula GARCH

model with joint distribution given by:

F (rt|µt,ht) = C (F1 (r1t|µ1t, h1t) , . . . , Fn (rnt|µnt, hnt)) (2.26)

where Fi, i = 1, . . . , n is the conditional distribution of the ith marginal series density,

C is the n-dimensional copula. The conditional mean E [rit |ℑt−1 ] = µit, where ℑt−1

is the σ-field generated by the past realization of rt, and the conditional variance hit

21The reason for the common shape parameter is that the mixing variable W in the Normal Mean
Variance mixture is tge Inverse Gaussian distribution, W ∼ Ig (ν/2, ν/2). A grouped type copula
whereby the shape parameter is also allowed to vary is also described by Demarta and McNeil (2005),
in which case each variable has a different value for the mixing variable W , so that W j ∼ Ig (νj/2, νj/2),
for j = 1, . . . , n, and the W j are now perfectly correlated.
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follows a GARCH(1,1) process22:

rit = µit + εit, εit =
√
hitzit, (2.27)

hit = ω + α1ε
2
t−1 + βhit−1 (2.28)

where zit are i.i.d. random variables which conditionally follow some distribution with

the requisite properties. For the purpose of this exposition, and because it is used in

an empirical application extensively in Chapter 4, I consider the standardized skew

Student distribution, so that zit ∼ fi(0, 1, ξi, νi), of Fernandez and Steel (1998) with

skew and shape parameters ξ and ν respectively and derived in Appendix B.23 The

conditional GARCH dynamics are such as to ensure positivity and stationarity, namely

(ω,α1, β1) > 0 and (α1 + β1) < 1. The dependence structure of the margins is then

assumed to follow a Student copula with conditional correlation Rt and constant shape

parameter η. The conditional density at time t is given by:

ct (uit, . . . , unt |Rt, η ) =
ft
(
F−1
i (uit |η ) , . . . , F−1

i (unt |η ) |Rt, η
)

n∏
i=1

fi
(
F−1
i (uit |η ) |η

) (2.29)

where uit = Fit (rit |µit, hit, ξi, νi ) is the PIT transformation of each series by its con-

ditional distribution Fit estimated via the first stage GARCH process, F−1
i (uit |η )

represents the quantile transformation of the uniform margins subject to the common

shape parameter of the multivariate density, ft (. |Rt, η ) is the multivariate density of

the Student distribution with conditional correlation Rt and shape parameter η and

fi (. |η ) is the univariate margins of the multivariate Student distribution with common

shape parameter η. The dynamics of Rt are assumed to follow an AGDCC model as

in Section 2.1.2, though it is more common to use a restricted scalar DCC model for

not too large a number of series. Finally, the joint density of the 2-stage estimation is

written as:

f (rt |µt,ht,Rt, η ) = ct (uit, . . . , unt |Rt, η )
n∏

i=1

1√
hit
fit (zit |νi, ξi ) (2.30)

22For simplicity of exposition, a simple GARCH model is chosen, but in fact any combination of
GARCH models may be used.

23As mentioned in the previous section, one could adopt instead an empirical or semi-parametric
estimation and transformation approach.
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where it is clear that the likelihood is composed of a part due to the joint DCC copula

dynamics and a part due to the first stage univariate GARCH dynamics.

A similar model, with Student margins, was estimated by Ausin and Lopes (2010)

using a Bayesian setup, and an empirical risk management application, albeit once

again using only a bivariate series (DAX and Dow Jones indices), used to illustrate its

applicability and appropriateness. In Chapter 4, it is shown that this model performs

particularly well against a range of related models in the feasible MGARCH universe in

a large scale out of sample study on 30 Assets, verifying the benefits of flexible margins

combined with a copula DCC model.

2.3 Multivariate Distributions and Normal-Mean Variance

Mixtures

While univariate dynamics may easily be extended to the multivariate domain, by

simple equation manipulation, the concept of a multivariate distribution is far more

complicated and forms a constraining element in the data modelling process. Within

financial applications the emphasis has mostly been on either the elliptical methodol-

ogy, whereby the transition from the univariate to the multivariate domain has been

achieved through the construction of densities that are quadratic form functions of the

margins, or through copulas, where the dependency structure is separate from marginal

dynamics. A key step in the maximization of the likelihood function of a multivari-

ate density with GARCH dynamics, is to appropriately scale the data so that they

are i.i.d.24 This implies that a multivariate density with conditional mean µt(θ) and

conditional variance H t(θ), can be scaled so that:

f (yt |(θ, η) ,Ωt−1 ) = |Ht|−0.5g
(
H−0.5

t (yt − µt) |η
)

(2.31)

where g(.) is the conditional density of the standardized residuals zt with possible

additional nuisance parameters η. Traditionally, because of its tractability and desir-

able features, the multivariate normal distribution, uniquely determined by its mean

24The weaker assumption that they are a martingale difference sequence with respect to the condi-
tioning information leads to a quasi-likelihood approach.
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and covariance, has dominated financial modelling. It possesses many desirable fea-

tures such as invariance under affine linear transformation, infinite divisibility, self-

decomposability and formation of subsequences, making it ideal for the regressive and

autoregressive modelling as well as portfolio modelling. It also forms a sufficient con-

dition for the use of mean variance analysis developed by Markowitz (1952) and used

extensively in industry to this date. Even when the underlying data generating process

is not conditionally Multivariate Normal, it will still yield consistent estimates of θ, as

shown by Bollerslev and Wooldridge (1992) (see also Gourieroux (1997) for its asymp-

totic properties in the context of MGARCH) making it a rather ’forgiving’ distribution

in terms of consistency in the presence of misspecification. However, it has long been

established that the returns of financial assets exhibit characteristics such as fat tails

and skewness not captured by the normal distribution and for which such character-

istics matter in conditional density forecasting. The class of elliptical distributions,

introduced by Kelker (1970), may be considered as generalizations of the multivariate

normal distribution and therefore share many of its desirable properties, while also

allowing for some tail dependence. Very generally, an elliptical distribution can be

considered as an affine transformation of a spherical distribution, the latter being a

distribution which is invariant under rotations and reflections.

Definition 5. Elliptical Distributions. A random vector X has a multivariate ellip-

tical distribution, denoted as X ∼ En(µ,Σ, ψ), if its characteristic function may be

expressed as:

ϕX (t) = e
(it′µ)ψ

(
1
2 t

′Σt

)
, (2.32)

where µ ∈ R
n, Σ ∈ R

n×n and is positive definite, and ψ(t) is some characteristic

generator function. While it does not follow that X will necessarily have a density, if

it does it will be of the following form:

fX (x) =
cn√
|Σ|

gn
(

1
2 (x − µ)′

Σ−1 (x − µ)
)
, (2.33)

where gn is the density generator function and cn is some normalizing constant. The

generator may or may not depend on n, as is the case, for example, in the multivariate

normal case where the density generator is given by g(u) = e−u. If X belongs to

a multivariate elliptical distribution, then assuming that the mean exists, it will be

E(X) = µ and the covariance, again assuming that it exists, will be Var(X) = ∂ψ(0)
∂t Σ,

coinciding with the standard covariance matrix up to a constant. Examples of elliptical

distributions without either a mean or variance are the symmetric stable distributions
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with index of stability (α) less than 1.25

A very desirable feature of elliptical distributions is that of invariance under affine linear

transformation. If A is some q × n matrix of rank q 6 n and b ∈ R
q, then

AX + b ∼ Eq
(
Aµ + b,AΣA′, gq

)
. (2.34)

Hence marginal distributions of elliptical distributions are also elliptical distributions.

An additional property, particularly important in portfolio allocation, is that of invari-

ance under convolution of distributions, meaning that the sum of elliptical distributions

is also an elliptical distribution.

The ability to model tail dependence with elliptical distribution is rather limited because

of their radial symmetry, as upper and lower tail dependence is the same. However,

as McNeil, Frey, and Embrechts (2005) have observed, lower tail dependence is often

much stronger than upper tail dependence while Rachev and Mittnik (2000) find that

there is significant variation in the tail index between different assets. Kring, Rachev,

Höchstötter, Fabozzi, and Bianchi (2009) proposed a multi tail generalized elliptical

distribution which allows for just such asymmetry and variation between assets’ tail

index, and derive various properties of this class of distributions. In a slightly different

direction, a class of distributions called skew-elliptical, is reviewed in Genton (2004),

and includes among others various flavors of the skew-student such as those introduced

by Azzalini and Capitanio (2003), and the class of skew distributions of Fernandez and

Steel (1998) which additionally include the skew-Normal and skew-GED distributions.

However, these distributions are generally unable to capture the variation in tail index

between assets. As in the univariate case, it is important to be able to express the

moments of the distribution in such a way as to make modelling in a GARCH setup

possible. For 2-stage modelling, such as is typically used with the DCC model, the

distribution must be elliptical. For a 1-stage modelling, there is much more flexibility

in the class of distributions chosen, though more richly parameterized distributions usu-

ally have a complicated form for the covariance which may lead to problems in imposing

positive definiteness at each iteration of the conditional likelihood. In Chapter 1, the

Normal Mean-Variance Mixture distribution of Barndorff-Nielsen, Kent, and Sörensen

(1982) was referenced in a univariate context for ACD modelling. In the remainder of

this section I review its properties in a multivariate setting and 2 very special members

25The normal can be considered a special case of the symmetric stable class with index of stability
equal to 2, and is itself a spherical distribution.
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of its family derived under different mixing variables.

The n-dimensional random variable X is said to have a normal mean-variance mixture

distribution of the following form:

X
d
= µ +Wγ +

√
WAZ, (2.35)

where Z ∼ Nq(0, Iq), W ∈ R
1
+, A ∈ R

n×q, and µ, γ ∈ R
n. The basic premise behind

this distribution is to introduce noise in the covariance matrix and mean vector of a

multivariate Normal distribution through the mixing variable W . The vector-valued

variable γ introduces skewness, and when it is equal to zero, X is distributed as a

scale mixture of Normal distributions. Different mixing distributions for W give rise to

different families of distributions. A key distribution arising from this representation,

already discussed in Chapter 1 in the univariate context, is the GH distribution. When

the mixing variable W is GIG, the n-dimensional GH distribution of Barndorff-Nielsen

(1977) arises, which allows for the modelling of multivariate data with some very de-

sirable features such as the ability to model skewness individually for each dimension.

Additionally, the distribution has the property of infinite divisibility (inherited from

the GIG mixing distribution), and is closed under margining, conditioning and linear

affine transformations, and in the case of the NIG distribution is also closed under

convolution when the margins have the same skew and shape parameters.

Definition 6. The n-dimensional Generalized Hyperbolic distribution of the random

vector X ∈ R
n

GHn (x;α,β, δ,µ,Σ) = cn

Kλ−n/2

(
α
√
δ2 + (x − µ) Σ−1 (x − µ)

)

(
1
α

√
δ2 + (x − µ) Σ−1 (x − µ)

)n/2−λ
eβ

′
(x−µ).

cn =

(√
α2 − β′Σβ/δ

)λ

(2π)n/2Kλ

(
δ
√
α2 − β′Σβ

) .

(2.36)

with parameter domain of variation, λ ∈ R, β,µ ∈ R
n, δ > 0, α2 > β′Σβ, and

Σ ∈ R
n×n with determinant 1. The fact that the domain of α is 1-dimensional, is due

to the univariate GIG mixing distribution, and means that kurtosis is the same for all

dimensions. That is, there is one joint representation of extreme events, which may

not be an adequate reflection of the multivariate data, especially when they come from

not very highly correlated (at least in the tail sense) sets. Special subfamilies of the

distribution can be derived, as in the univariate case discussed in Chapter 1, includ-

ing the multivariate NIG, VG and (skew) Student, while the Laplace and Normal are
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limiting cases under the restrictions α → ∞, δ → ∞, δα → σ2 < ∞ respectively, which

means that they are directly comparable under a range of measures. A nice property

of GH distributions, inherited from their mean-variance mixture representation, is that

they are closed under margining, conditioning and regular affine transformations26 as

discussed in Bläsild (1981), hence satisfying the requirements of most financial applica-

tions. This also implies the ability to create location and scale invariant parameteriza-

tions, desirable for the modelling of MGARCH processes. An affine representation of

this distribution is considered in Chapter 3 where a new MGARCH model is presented,

while I consider another member of the normal mean-variance mixture distribution in

the next section which arises when W is Gamma (Γ) distributed.

2.3.1 The Multivariate Laplace Model and its Extensions

The Laplace, with its towering peak and heavy tails, has a special place alongside the

Normal distribution, being stable under geometric rather than ordinary summation,

thus making it suitable for stochastic modelling. In regression modelling, when the er-

rors have a Laplace distribution, then the least absolute deviation is also the maximum

likelihood estimate, equivalent to the least squared deviation estimate when the errors

have a Normal distribution. This can be easily inferred from the density function of

the Laplace which differs mainly from the Normal by including a term for the mean

absolute rather squared deviation of a random variable x. It also arises as a special

case in the Generalized Error distribution with shape parameters = 1, and the Geo-

metric Stable distribution with stability parameter = 2, and zero skewness and location

(also called the Linnik distribution with stability parameter = 2). Because it has tails

heavier than the Normal distribution it is more suitable for the modelling of financial

returns. In the multivariate setting, the multivariate Laplace has been analyzed, among

others, by Anderson (1992) as part of the multivariate Linnik distribution, Marshall

and Olkin (1993) and Kalashnikov (1997) as a multivariate distribution generated by

i.i.d. univariate Laplace margins, Fernandez, Osiewalski, and Steel (1995) as a natural

generalization of the univariate model to d-dimensions in the framework of the multi-

variate exponential power distribution. Recently, the distribution has been extended

by Kotz, Kozubowski, and Podgorski (2001) to the Generalized Asymmetric Laplace

26Assuming certain restrictions on the parameters.
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(GAL) distribution which is a member of the Normal Mean-Variance Mixture distribu-

tion given in (2.35) with mixing variable W distributed Γ(θ, 1). The density is given

by:

fGAL (x; m,Σ,γ) =
2|Σ|−1/2

(2π)n/2
Γ (θ)

e(x−m)′Σ
−1γ

(
(x − m)′

Σ−1 (x − m)

2 + γ′Σ−1γ

) 2θ−n
4

×K 2θ−n
2

(√(
2 + γ ′Σ−1γ

)
(x − m)′

Σ−1 (x − m)

)
(2.37)

where m ∈ R
n is the location vector, γ ∈ R

n the skewness vector and Σ ∈ R
n×n a pos-

itive definite scaling matrix. The parameter θ inherited from the Γ mixing distribution

determines various subfamilies of this distribution such as the widely cited Asymmetric

Multivariate Laplace (AML) described in Kotz, Kozubowski, and Podgorski (2001),

Kozubowski and Podgórski (2001) and Kotz, Kozubowski, and Podgórski (2002). This

particular subfamily is derived by setting θ = 1, but it is also and possible to derive it

as a special case of the GH distribution by setting the restrictions λ = 1, µ = 0, δ2 = 0,

α2 − β′Σβ = 2 and therefore that α =
√

2 + m′Σ−1m, in Equation (2.36). Using an

asymptotic relation discussed in Kotz, Kozubowski, and Podgorski (2001) when δ2 = 0,

the 2 parameter n-dimensional AML density (AMLn(m,Σ)) may be written as:

AMLn (x; m,Σ) =
2ex

′Σ
−1m

(2π)n/2|Σ|1/2

(
x′Σ−1x

2 + m′Σ−1m

)ν/2

Kν

(√(
2 + m′Σ−1m

)
(x′Σ−1x)

)

(2.38)

where ν = (2 - n) /2. The mixing distribution is therefore GIG(1, 0, 2) which is the

standard exponential. The moments of the distribution follow from its mean-variance

mixture form in Equation (2.35) and are:

E (X) = m

Var (X) = Σ + mm′.
(2.39)

The distribution is described as closed under a scaling transformation, but not as it

is appears under a location shift. Formally, let X = (X1, . . . ,Xn)′ ∼ AMLn (m,Σ)

and A be a real q × n matrix, then the random vector AX is AMLq (Am,AΣA′).

While this property is fine for portfolio applications where a linear combination of

assets results in a univariate AL distribution, for estimation purposes, it is not possible

to obtain a location invariant parametrization of the distribution since the moment

we subtract the mean vector we are effectively left with a non-skewed version of the

distribution. Consider the distribution of the zero mean residual εt = xt − mt, where

xt ∼ AMLn (mt,Σt), which under a scaling transformation by the matrix A, is equal to
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A (xt − mt) ∼ AMLq (0,AΣtA
′) ≡ MLq (0,AΣtA

′). Since the estimation of 2-stage

DCC models is done on the zero mean residuals, the conditional distribution of zt (see

Equation (2.12)) is that of the symmetric Laplace, while the conditional distribution of

the returns is Asymmetric. That is, the conditional mean mt from a possible filtration

process imparts the asymmetry to the conditional distribution of the returns27. Cajigas

and Urga (2006) discuss the properties of the AML distribution in the context of the

AGDCC model and proof of consistency established for the 2-stage estimation under the

multivariate symmetric Laplace, despite referencing the AML as the main distribution

of the paper. In this case, when m = 0, the distribution is Pareto stable, just as in

the Normal case, and in contrast to most of the other GH sub-family of distributions.

This condition implies an important property necessary for the modelling of financial

portfolios known as the additivity property, which is basically the concept that a linear

combination of independent random variables with stability index α is also stable with

the same parameter α (see Khindanova, Rachev, and Schwartz (2001)). Formally, the

random variable X is said to be Pareto stable if for any ai > 0, i = 1, ..., n there exist

a constant c = d1/α and ud ∈ R
n for any n ≥ 2 such that,

a1X(1)+...+adX
(d) D

= cX + ud (2.40)

where X(1), . . . ,X(d) are independent copies of X. In an alike way Laplace laws are

stable, but under geometric summation instead of random summation28. To be able

27This rather strange situation is further discussed in Lindsey and Lindsey (2006)
28 In the geometric stable model, the return rf(p) is considered to be the sum of smaller returns

r(i) over the period of time f(p) which is a stopping time random variable with geometric probability
function P (f(p) = j) = p(1 − p)j−1, j = 1, 2, . . . .
The geometric stable distribution can be approximated to a normalized geometric stable model sum
when the p parameter of the stopping time function f(p) approaches zero. More formally, the random
array X has a geometric stable distribution in R

n if and only if:

a(p)

f(p)∑

i=1

(
κ(p) + r

(i)
) d→ X, as p → 0 (2.41)

where
{

r
(d) =

(
r

(d)
1 , . . . , r

(d)
n

)
, d ≥ 1

}
is a sequence of i.i.d. random vectors in ℜn independent of f(p),

a(p) > 0, κ(p) ∈ R
n, and

d→ denotes convergence in distribution. Kozubowski and Podgórski (2001)
show that when each vector in r has mean mi, i = 1, ...n, a variance σij , i = 1, ...n, j = 1, ...n, and for
a(p) =

√
p and κ(p) = m

(√
p− 1

)
, the random variable X defined by the convergence in distribution

property in Equation (2.41) has an AML distribution with the characteristic function:

Ψ(t) =
1

1 + 1
2 t′Ht−it′m

(2.42)

where t ∈ R
n, and H ∈ R

n×n is a positive-definite matrix.
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to preserve stability we have to constrain the normalising constants a(p) and κ(p) in

Equation (2.41) to:

a(p) = α
√
p, κ(p) = 0 (2.43)

The first condition implies that for the case of the AML distribution α = 2. This is the

same α value of the normal distribution which is the only Pareto-stable distribution

with a finite second moment. The second condition κ(p) = 0 implies m = 0, limiting

one to the use of the symmetric version of the distribution. A final point of interest

arises from the mixture representation of the AML in that m = Σβ, where β is the

d-dimensional asymmetry vector of the GH distribution. When Σ is time varying, as

in the MGARCH models, this induces time variation in β and hence skewness.

In subsequent papers, Kotz, Kozubowski, and Podgórski (2002) and Kozubowski and

Podgórski (2001) describe further applications of the AML distribution, albeit in a

non dynamic setting. In an attempt to alleviate these problems, Kollo and Srivastava

(2005) reparameterized the AML to have covariance which does not depend on the

mean vector albeit present only the characteristic function of the distribution, while

Arslan (2010) derives an alternative multivariate skew Laplace distribution from the

GAL distribution where the mean now depends on location m and asymmetry γ,

∈ Rn, while the covariance matrix now depends only on the asymmetry vector γ. More

formally, setting θ in Equation (2.37) to 2n− 1 yields the following distribution:

fMSL (x; m,Σ,γ) =
|Σ|−1/2

2nπ(n−1)/2αΓ
(
n+1

2

)e−α
√

(x−m)′Σ
−1

(x−m)+(x−m)′Σ
−1γ

(2.44)

where (x,m,γ) ∈ R
n, and m now represent the location parameter vector and γ

the skew parameter vector, Σ is an R
n×n positive definite scaling matrix, and α =√

1 + γ ′Σ−1γ. The first two moments of the distribution are now, E (X) = m +

(n + 1) γ and Var (X) = H = (n + 1) (Σ + 2γγ′). Standardization of the distribution

proceeds as detailed in Equation (2.31), by making use of the moment conditions and the

fact that the MSL distribution is closed under location and scaling transformations29.

Formally, let:

• H = Var (X) = (n + 1) (Σ + 2γγ′),

• b = −E (X) = −m − (n + 1) γ,

29If X ∼ MSLn(m,Σ, γ), and Y = AX + b, where Aq×n and b ∈ R
q . then Y ∼ MSLq(Am +

b,AΣA′,Aγ).
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• Z = H−0.5 (X + b),

and define the transformed parameters

• m̄ = H−0.5m + H−0.5b,

• Σ̄ = H−0.5ΣH ′−0.5,

• γ̄ = H−0.5γ,

thus Z ∼
(
m̄, Σ̄, γ̄

)
. The density of X can be represented in terms of the density of

the transformed i.i.d variable Z as:

f
(
H−0.5 (X − E (X))

)
= |H|−0.5g (Z)

= |H|−0.5




∣∣∣Σ̄
∣∣∣
−1/2

2nπ(n−1)/2ᾱΓ
(
n+1

2

)e−ᾱ
√

(z−m̄)′
Σ̄−1(z−m̄)+(z−m̄)′

Σ̄−1γ̄




(2.45)

In terms of a BEKK-MSL model, the conditional log-likelihood at time t to be maxi-

mized is then given by:

LLt
(
zt|m̄t, Σ̄t, γ̄

)
= −0.5 log (|Ht|) − 0.5 log

(∣∣∣Σ̄t

∣∣∣
)

− n log (2) − 0.5 (n− 1) log (π)

− log (ᾱ) − log Γ

(
n+ 1

2

)
− ᾱ

√
(zt − m̄t)

′
Σ̄−1
t (zt − m̄t)

+ (zt − m̄t)
′
Σ̄−1
t γ̄

(2.46)

where H t is derived from the BEKK dynamics. The parameters of the MSL distribution

must be estimated jointly, therefore a 2-stage DCC does not appear feasible. For the

BEKK model on the other hand, this seems a perfectly adequate distribution adding

only 2 × n parameters beyond the multivariate Normal. It is even possible to reduce

this to just n parameters if we make some sacrifices in the efficiency of the location

estimator by conditioning it on the unconditional mean of the data E (X) = µ and

then only estimating the skewness vector γ, so that the location m = µ − (n + 1)γ.

Finally, the conditional covariance from the model H t is used to derive the conditional

scaling matrix Σt. The next section considers an in-sample empirical exercise using the

BEKK and AGDCC models for a range of distributions.
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2.4 Empirical Application

In the BEKK model, the diagonal and off diagonal covariance dynamics are jointly

estimated in one single step. In the AGDCC model, the correlation, not covariance

dynamics are estimated, given the diagonal volatility estimated from a first stage where

there is flexibility as to the model used, so that the standardized residuals may better

be filtered for asymmetry and other related effects. The advantage of this two stage

approach with flexible marginal dynamic models must be weighed against drawbacks

discussed in the previous sections such as the limited choice in admissible multivariate

distributions and certain inconsistencies in the DCC correlation setup. In their paper,

aptly titled ’Do we really need both BEKK and DCC?’, Caporin and McAleer (2012)

argue that the scalar BEKK, regardless of whether targeting was used or not, is the

optimal model to use, though this is not followed by any empirical investigation and is

based on derived arguments. In this section, I consider this question by undertaking an

in-sample comparison30 of the diagonal AGDCC and BEKK models, with covariance

targeting, using the same dataset presented in Chapter 1 of the 14 MSCI world equity

indices for the period 12/08/1996 to 02/03/2011. Admissible multivariate distributions

used for both models were the Multivariate Normal (MVN ) and Multivariate Laplace

(MVL) discussed in the previous section, whilst for diagonal BEKK the Multivariate

Student (MVT ) and Multivariate Skew Laplace (MSL) were also used, in order to

investigate the degree of kurtosis31 and asymmetry in the conditional distribution. For

the diagonal AGDCC model, the first stage estimation consisted of a joint AR(2)-

GARCH(1,1) model, whilst for the diagonal BEKK, the dataset was filtered by a first

stage AR(2) model.

30Because of the dimensionality of the models, an out of sample application was beyond the compu-
tational resources available to this researcher.

31Since the excess kurtosis in the MVL is fixed at 3, the use of the MVT distribution provides for a
more flexible calibration of the actual kurtosis which might be present
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Table 2.2: Diagonal BEKK Model under 4 conditional distributions (14 MSCI iShares)

MVN MVT MVL MSL

A B A B shape A B A B skew

USA 0.133*** 0.990*** 0.117*** 0.992*** 0.109*** 0.993*** 0.124*** 0.992*** -3.0E-4***

Canada 0.122*** 0.991*** 0.107*** 0.993*** 0.098*** 0.993*** 0.112*** 0.992*** -3.8E-4***

Mexico 0.129*** 0.990*** 0.108*** 0.993*** 0.100*** 0.993*** 0.115*** 0.992*** -4.7E-4***

Australia 0.117*** 0.992*** 0.102*** 0.994*** 0.094*** 0.994*** 0.109*** 0.993*** -5.0E-4***

Hong Kong 0.131*** 0.990*** 0.115*** 0.992*** 0.109*** 0.992*** 0.122*** 0.992*** -3.9E-4***

Japan 0.131*** 0.990*** 0.113*** 0.992*** 0.105*** 0.992*** 0.120*** 0.991*** -2.6E-4***

Singapore 0.129*** 0.991*** 0.117*** 0.992*** 0.111*** 0.992*** 0.122*** 0.992*** -4.2E-4***

Germany 0.127*** 0.991*** 0.110*** 0.993*** 0.101*** 0.994*** 0.116*** 0.992*** -4.0E-4***

France 0.114*** 0.993*** 0.102*** 0.994*** 0.093*** 0.995*** 0.107*** 0.994*** -3.6E-4***

Spain 0.115*** 0.993*** 0.103*** 0.994*** 0.092*** 0.995*** 0.106*** 0.994*** -3.0E-4***

Italy 0.114*** 0.993*** 0.102*** 0.994*** 0.092*** 0.995*** 0.106*** 0.994*** -3.2E-4***

UK 0.120*** 0.992*** 0.104*** 0.994*** 0.096*** 0.994*** 0.110*** 0.993*** -3.5E-4***

Switzerland 0.116*** 0.992*** 0.099*** 0.994*** 0.089*** 0.995*** 0.105*** 0.994*** -3.2E-4***

Sweden 0.121*** 0.992*** 0.110*** 0.993*** 0.103*** 0.993*** 0.114*** 0.992*** -4.2E-4***

10.018***

LL 161,696 163,255 162,082 163,118

Notes to table 2.2: The Table presents the diagonal BEKK parameter estimates and Log-Likelihood (LL) under 4 different conditional
distributions, for the daily log returns of 14 MSCI World iShares for the period 12/08/1996 to 02/03/2011. The data was first filtered by an
estimated AR(2) model prior to the MGARCH estimation. The *, ** and *** next to the parameters denote significance at the 10%, 5% and
1% levels respectively.
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Table 2.3: Diagonal AGDCC model under 2 conditional distributions (14 MSCI iShares)

MVN MVL

A B G A B G

USA 0.152*** 0.986*** 0.043 0.090*** 0.993*** 0.071***

Canada 0.126*** 0.990*** 0.017 0.080** 0.994*** 0.062***

Mexico 0.129*** 0.988*** 0.029 0.068 0.994*** 0.073*

Australia 0.129 0.987*** 0.056 0.068*** 0.995*** 0.066**

Hong Kong 0.120*** 0.986*** 0.076 0.071* 0.993*** 0.089**

Japan 0.108** 0.989*** 0.044 0.066*** 0.995*** 0.053**

Singapore 0.122*** 0.986*** 0.086 0.058 0.994*** 0.098*

Germany 0.164*** 0.982*** -0.004 0.094*** 0.993*** 0.040*

France 0.179** 0.980*** -0.013 0.100*** 0.993*** 0.043*

Spain 0.160*** 0.984*** -0.001 0.106*** 0.992*** 0.048

Italy 0.164** 0.983*** -0.011 0.100*** 0.993*** 0.047

UK 0.146*** 0.986*** 0.006 0.082*** 0.994*** 0.052***

Switzerland 0.125** 0.990*** -0.032 0.078** 0.996*** 0.011

Sweden 0.141*** 0.986*** -0.003 0.077*** 0.994*** 0.051***

LL 162,185 162,230

Notes to table 2.3: The Table presents the diagonal AGDCC parameter estimates and Log-Likelihood (LL) under 2
different conditional distributions, for the daily log returns of 14 MSCI World iShares for the period 12/08/1996 to
02/03/2011. The data was first filtered by an estimated AR(2)-GARCH(1,1) model prior to the second stage estimation.
The *, ** and *** next to the parameters denote significance at the 10%, 5% and 1% levels respectively
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The estimated parameters from the diagonal BEKK and AGDCC models are presented

in Tables 2.2 and 2.3, respectively. For the BEKK model, all parameter estimates were

found to be highly significant. Judging from the value of the shape parameter of the

MVT distribution, this implies an excess kurtosis of 1 which is significantly lower than

that of the MVL and MSL distributions which is fixed at 3. The MVT was also found

to have the highest likelihood among 4 distributions employed, a comparison of which

is possible as a result of the distributions being nested in the Multivariate Mean Vari-

ance Mixture family. The skew parameter for the MSL distribution was also found to

be highly significant and negative for all countries as one should expect, and without

any surprises for the Asian indices as found in the unconditional statistics in Table

1.1. For the AGDCC model, the estimates of the shock and persistence parameters (A

and B) were mostly significant with the exception of the shock parameters in the case

of Australia under the MVN distribution, and Mexico and Singapore under the MVL

distribution. The conditional correlation asymmetry parameter (G) was insignificant

under the MVN distribution but mostly significant under the MVL distribution. The

reason for this is not immediately clear, though the literature on the Laplace indicates

that it is more robust in the presence of outliers which, under the Normal, are penalized

at a squared rate. Thus if outliers are given more weight under the Normal, then it is

likely that dynamics which are more sensitive to the center of the mass, such as those

which measure separate reactions to positive and negative shocks, become crowded out

by extreme observations which place the focus on the tails. Therefore, in addition to

the accommodation of higher excess kurtosis, the MVL likelihood is somewhat higher

than that of the MVN.

In order to obtain a more complete picture of the goodness of fit of each model and

distribution combination with respect to this dataset, I make use of the GMM and

non-parametric density misspecification tests of Hansen (1982) and Hong and Li (2005),

respectively, introduced in Sections 1.6.2 and 1.6.3. These are univariate tests for which

the comparison is carried out on the weighted conditional density of each model.32 To

alleviate any bias from using any particular set of weights, 5000 randomly sampled set

of weights were generated from the exponential distribution and standardized to sum

to 1. Table 2.4 reports the average value and t-statistic from the GMM test on the

standardized weighted residuals of each model, where the first four columns denote the

unconditional population moment conditions (E[z], E[z2] − 1,E[z3], E[z4] − 3) that

32There are no equivalent feasible or practical tests available in the multivariate domain and this is
therefore considered a next best alternative method.
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should be satisfied, column Q2 the test for the conditional variance using 4 lags, and

column J the joint moment conditions.33 It is immediately clear that in terms

Table 2.4: MGARCH models: GMM misspecification test (14 MSCI
iShares)

E[z] E[z2] − 1 E[z3] E[z4] − 3 Q2 J

BEKK(D)-MVN 0.0004 -0.0543 -0.4684 2.5419

[0.02] [-1.53] [-2.72] [2.58] [34.60] [105.07]

BEKK(D)-MVT -0.0001 -0.0600 -0.4478 1.6785

[-0.01] [-1.66] [-2.54] [1.63] [38.39] [111.86]

BEKK(D)-MVL -0.0006 -0.0867 -0.4074 -0.5473

[-0.04] [-2.45] [-2.40] [-0.67] [40.48] [140.87]

BEKK(D)-MSL 0.0001 -0.0547 -0.2171 -0.3352

[0.01] [-1.52] [-1.22] [-0.45] [37.02] [89.80]

AGDCC(D)-MVN -0.0385 -0.0174 -0.5903 2.0646

[-2.35] [-0.52] [-3.72] [2.16] [9.38] [41.93]

AGDCC(D)-MVL -0.0380 -0.0205 -0.5769 -1.0127

[-2.32] [-0.62] [-3.72] [-1.19] [10.48] [139.78]

Note: The Table reports the average statistic and t-values from the GMM moment based test of
Hansen (1982) applied to the weighted standardized residuals of the in-sample fit of 14 MSCI iShares
for the period 12/08/1996 to 02/03/2011, from the diagonal BEKK and diagonal AGDCC models
under alternative conditional distributions. Using a set of 5000 randomly generated weights with full
budget constraint, the weighted margins were used to test for misspecification in the individual
moments (E[z], E[z2] − 1, E[z3], E[z4] − 3), the conditional variance (Q2) under 4 lags and all the
conditions jointly (J). Values in square brackets represent the t-values, which for the individual
moment conditions may be tested using a t-test under the null of not being significantly different
from zero, while the conditional variance and joint cases may be tested using a Wald test with 4 and
8 d.o.f. respectively (with critical values of 9.49 and 15.5).

of overall fit, none of the models provide an adequate representation of the underlying

dynamics with joint statistic t-values well outside the critical value. A closer look re-

veals why. Considering the small t-value of the first moment condition under the BEKK

model, it is clear that the mean of the series has been adequately removed (i.e. the mean

is not significantly different from zero). This is in direct contrast to the AGDCC model

where the t-values are quite high indicating just the opposite. This is somewhat sur-

prising, since both models were first filtered by estimating an AR(2) model. However,

in the case of the AGDCC model, this was based on a first stage AR(2)-GARCH(1,1)

joint estimation whilst in the BEKK case an AR(2) model with constant volatility was

used for demeaning the series. Estimating the AR(2)-GARCH(1,1) model jointly is the

more efficient strategy34, but it would seem that the DCC decomposition introduces

some inefficiency back into the unconditional mean of the standardized residuals. This

cost for using the AGDCC model is completely reversed in the case of the uncondi-

tional and conditional variance conditions (E[z2] − 1 and Q2), where the BEKK model

33For the last 2 columns, only the t-value is reported since the actual value is a vector and cannot
be represented compactly in a table. The critical values for the Q2 and Joint conditions at the 95%
confidence level, distributed χ2 with p d.o.f. and 4 + p d.o.f, are 9.488 and 15.507, respectively.

34Two stage estimation is consistent but not as efficient, see Engle (1982).
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now seems to fare rather badly, as evidence by the high t-values versus the AGDCC.

The first stage univariate GARCH filter appears to provide for some extra efficiency in

this sample size. Taken together, these two conditions (making up 5 of the 8 d.o.f. in

the test) lead to a much better fit overall. With respect to the higher moment condi-

tions and the distributions, there are no surprises with the MVN failing to capture the

skewness and kurtosis in the dataset, the MVT and MVL failing to capture skewness

but capturing kurtosis, and the MSL being the only distribution to adequately capture

all the unconditional moment conditions. However, the high t-value for the Q2 mo-

ment condition means that the diagonal BEKK model does not adequately capture the

structure of the conditional variance. Table 2.5 reports the average statistic

Table 2.5: MGARCH models: Hong-Li misspecification test (14
MSCI iShares)

Hong-Li Non-Parametric Test

M(1, 1) M(2,2) M(3, 3) M(4,4) W

BEKK-MVN 43.7 15.9 5.8 1.8 59.8

[100] [99.8] [90.3] [54.7] [100]

BEKK-MVT 43.1 16.3 6.5 2.5 40.3

[100] [99.9] [92.6] [63.6] [100]

BEKK-MVL 44.3 19.2 9.1 4.4 40.1

[100] [99.9] [96.4] [80.2] [100]

BEKK-MSL 43.1 18.8 9.2 4.7 32.4

[100] [99.9] [96.4] [82] [100]

AGDCC-MVN 28.7 9.9 3.9 2.8 29.1

[100] [99.1] [93] [91.6] [100]

AGDCC-MVL 28.2 11.8 5.6 3.5 48.6

[100] [99.1] [95.3] [92.5] [100]

Note: The Table reports the average statistic and percent rejections from the non parametric density
test of Hong and Li (2005) applied to the probability integral transformed weighted margins of the
in-sample fit of 14 MSCI iShares for the period 12/08/1996 to 02/03/2011, from the diagonal BEKK
and diagonal AGDCC models under alternative conditional distributions. M(j, j),j = 1, .., 4,
represent the nonparametric tests for misspecification in the conditional moments, and distributed as
N(0, 1) under the null of a correctly specified model. The statistic W in column 5 of the table is the
Portmanteau type test statistic for general misspecification (using 4 lags) and distributed as N(0, 1)
under the null of a correctly specified model. Values in square brackets are the percent rejections
under the null, with 95% confidence, for the 5000 randomly weighted margins.

and percent rejections from applying the test of Hong and Li (2005) on the randomly

weighted margins of each model. The first four columns are tests of the cross-correlation

of each moment based on four lags and described in Appendix C, whilst column W is

the nonparametric Portmanteau type test of the overall goodness of fit. Considering

the first column (M(1, 1)), this tells a rather different story to the GMM test previ-

ously considered and indicates that the AGDCC models, which filter the dataset with a

first stage joint AR(2)-GARCH(1,1) model do a better job at capturing the conditional

mean than a simple AR(2) filter with constant variance as in the case of the BEKK

models. This is not surprising since the GMM test considered the unconditional mean,

whereas this test considers the conditional mean. It is difficult to draw substantial

conclusions from the other cross-correlation based tests, other than to note that for

the conditional fourth moment (M(4, 4)) the MVL distribution appears to badly fit the
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tails since it imposes a fixed excess kurtosis of 3 whereas the observed excess kurtosis

from the MVT distribution appears to be only marginally higher than what would be

expected from the Normal case. Looking at the main goodness of fit statistic in column

5, it would appear that again the AGDCC dynamics provide for a much better relative

overall fit, possibly arising from the lower statistic in the first and second conditional

moments, closely followed by the BEKK-MSL for which it is not immediately clear

why, looking at the conditional moment tests but likely related to the accommodation

of both asymmetry and fat tails in the conditional distribution.

The empirical application considered thus far has indicated that the diagonal

Table 2.6: Scalar BEKK vs DCC: cost of misspecification

DGP: AR(2)-GARCH(SSTD)-DCC-Copula(MVT)

M(1,1) M(2,2) M(3,3) M(4,4) W

DCC(MVN)

statistic [4.405 ; -1.672] [2.770 ; -1.545] [2.283 ; -1.393] [2.708 ; -1.214] [7.468 ; 0.583]

%Rejections 10.5 11.0 13.0 14.8 38.1

sBEKK(MVN)

statistic [27.828 ; -1.550] [25.920 ; -1.353] [20.311 ; -1.102] [15.292 ; -0.848] [90.130 ; 1.308]

%Rejections 16.7 18.1 21.3 24.1 50.0

DGP: AR(2)-sBEKK(MVN)

M(1,1) M(2,2) M(3,3) M(4,4) W

DCC(MVN)

statistic [-1.614 ; -1.794] [-1.459 ; -1.673] [-1.513 ; -1.247] [-1.064 ; -1.414] [-0.706 ; -0.930]

%Rejections 0.2 0.8 2.2 3.6 7.6

DGP: AR(2)-GARCH(N)-DCC(MVN)

M(1,1) M(2,2) M(3,3) M(4,4) W

sBEKK(MVN)

statistic [-1.388 ; -1.65] [-1.189 ; -1.504] [-0.918 ; -1.308] [-0.674 ; -1.158] [-0.348 ; -0.573]

%Rejections 1.2 2.3 4.8 7.8 11.9

Note: The Table reports the mean and median (square brackets) statistic and percent rejections under the test of Hong and Li
(2005) for the randomly weighted margins of the DCC and scalar BEKK (sBEKK) models fitted to data sampled under 3 Data
Generating Processes (DGP) identified in the heading of each subpanel. For each DGP, 1000 scenarios of size 1000 were
generated and fitted using the scalar versions of the DCC and BEKK models with multivariate Normal distribution (MVN).
The probability integral transformation was then applied to the 100 randomly weighted margins of each scenario under each
model and the percent of rejections under the non parametric test evaluated. M(j, j),j = 1, .., 4, represents the nonparametric
test for misspecification in the conditional moments, and distributed as N(0, 1) under the null of a correctly specified model,
while W in column 5 of the table is the Portmanteau type test statistic for general misspecification (using 4 lags) and
distributed as N(0, 1) under the null of a correctly specified model.

AGDCC somewhat outperforms the diagonal BEKK model with conditional distribu-

tion the MVN. The assumption made, given the evidence presented, was that the first

stage conditional mean and variance filter provided for greater robustness in the pres-

ence of misspecification, and in particular in the presence of non-normally distributed

returns. To provide further evidence of this, I perform a Monte Carlo experiment as

follows. First, I estimate an AR(2)-GARCH(SSTD)-DCC copula (MVT) model on the

14 MSCI indices for the same period considered previously. Using a DCC-copula model

was deemed a very flexible method for capturing the observed underlying features of
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the dataset, if not the full covariance dynamics since the scalar DCC was used.35 The

first stage Skew Student distribution (SSTD) of Fernandez and Steel (1998) was already

discussed in Section 1.5.6 and allows the filtering of asymmetric and fat tailed behavior.

Across the 14 equity indices, the skew and shape parameters were significant and close

to 0.9 and 7 respectively, indicating skewness of around -0.3 and excess kurtosis of ap-

proximately 2. The second stage copula MVT had a significant shape parameter of 15

indicating that the majority of the excess kurtosis had been captured in the first stage

leaving an excess of around 0.5 for the joint tails. From this model, 1000 scenarios of size

1000×14 were simulated, and estimated using an AR(2)-scalar BEKK (sBEKK ) and an

AR(2)-GARCH(1,1)-DCC model both with MVN conditional distribution. The use of

a diagonal MGARCH model was deemed impractical in this application.36 For each of

the estimated scenarios, the weighted standardized residuals were estimated making use

of the residuals and conditional covariance matrix of the MGARCH models, using 100

randomly generated sets of weights. These model based weighted standardized residual

series were then transformed into U(0,1) series by applying the PIT transformation for

use in the test of Hong and Li (2005). Table 2.6 reports the mean and median statistic

for the test as well as the percent rejections under the null of a correctly specified model

at the 95% confidence level. To complete the exercise, the table also reports the results

with DGP an AR(2)-sBEKK model and AR(2)-GARCH(1,1)-DCC model with MVN

conditional distribution. The reason I report both the mean and median is because in

the case of the DCC-copula model, the distribution of the statistic across the different

scenarios and randomly generated weights is heavily skewed, particularly in the case

of the sBEKK estimated model. From the percent rejection results it is quite evident

that the DCC model is more robust to misspecification, and this is consistently shown

in all the moment conditions in columns 1-4 in the table. In particular, the M(4, 4)

column, which reports the misspecification for the conditional fourth moment, seems to

fare considerably better for the DCC model. Since it is known that univariate GARCH

models generate excess kurtosis37, a first stage GARCH filter of the data may therefore

provide for more robustness since it allows the filtering of each individual series which

35This was not included in the misspecification tests because of the nonlinear copula transformation
involved which makes the determination of the analytical weighted moments, required by the tests,
impossible.

36At a calculated time of 2 hours per estimated scenario for the diagonal model, 1000 estimations for
2 models would have required a total of 167 days under the available resources.

37 The kurtosis (κ) implied by the GARCH(1,1) process with parameters α and β is:

κ =
3
(
1 − P 2

)

(1 − P 2 − 2α2)
> 3 (2.47)
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is not possible with the BEKK dynamics (at least in the scalar case). Thus, in the

presence of skewed and fat-tailed data, even though the DCC model is still rejected

38% of the time, it is still much lower than the 50% rejection of the sBEKK model,

in this application. When it comes to using the sBEKK as DGP, the DCC model is

well within the expected 5% rejection zone for the 95% confidence level used, with an

overall rejection of 7.6% and even lower for the individual conditional moment con-

ditions. However, when it comes to using a DCC model as DGP, the sBEKK model

seems to have a higher rejection rate of about 12%. While more research is needed in

this area, particularly with respect to more highly parameterized models such as the

diagonal variants, it would certainly appear that some of the criticism targeted at the

DCC model is not particularly justified.

2.5 Conclusion

The importance of capturing the joint dynamics and features of securities is of paramount

importance in portfolio construction, risk management and in trading strategies such

as pairs and correlation trading. Multivariate dependence as captured by MGARCH

models is severely constrained by dimensionality issues and the availability of flexible

distributions with the desired features. Complex dynamics are difficult to model for

anything more than a few assets, and tradeoffs such covariance targeting introduce a

different set of challenges in the estimation. This chapter reviewed the 2 most popular

MGARCH models, the BEKK and DCC, with an in-sample relative comparison using a

range of popular distributions. While the BEKK model can be used with a wide choice

of conditional distributions, the 2-stage modelling process used by the DCC model has

the advantage of a first pass univariate GARCH filter which, from the evidence pre-

sented, is quite robust to misspecification. A Monte Carlo application shows that even

in the presence of non-normally distributed returns, the cost of misspecification is less

with the DCC than the BEKK model. Criticisms leveled against the DCC models,

such as lack of published theoretical proofs and inconsistency in model specification do

not appear to be backed by the empirical evidence. This chapter also considered the

extension of the DCC model to include more complex correlation dynamics in the form

of the AGDCC model. Unfortunately, this extension has come at the cost of increasing

where P is the persistence of the process and equal to α+ β, under the assumption of the existence of
the stationary fourth moment i.e.

(
β2 + 2αβ + 3α2

)
< 1.
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the dimensionality of the problem and, more importantly, the use of covariance tar-

geting in the presence of such complex nonlinear dynamics introduces non-smoothness

to the typical optimization setup increasing the complexity in solving such problems

with confidence. A more promising extension has come in the form of the dynamic

copula model which increases the flexibility of the types of distributions used in the

first stage GARCH estimation, and the possibility of using a richer multivariate distri-

bution in the second stage. The drawback of the use of this model is the absence of

certain closed form solutions for the weighted margins, but out-of-sample this can be

ameliorated by the use of simulation methods. Nevertheless, security dynamics con-

tain much more complex features than can currently be accommodated in a feasible

setup by typical MGARCH models, evidence of which was presented in the empirical

application where none of the models appeared to adequately capture the dynamics of

a typical international equity index dataset. With the advent of high speed trading

and advances in computational power, the importance of fast and realistic estimation

of the dynamics of large dimensional systems has become a key requirement in mod-

ern applied finance. The only framework in which parallel computation can be fully

realized for large dimensional systems is that of independence. In the next chapter, I

show how the independent factor framework can be used to jointly model time varying

higher moments, capturing a much richer set of features in the underlying data and

allowing for very fast estimation of large dimensional systems.



Chapter 3

Multivariate ACD Dynamics and

Independence

The multivariate GARCH models covered in the previous chapter quickly become com-

putationally infeasible for large dimensional problems. In addition, modelling of higher

moments in a time varying context is almost impossible or at least completely impracti-

cal in a multivariate dependence setting mainly because of the difficulty to parameterize

marginal and joint distributional parameters. Attempts to capture such higher moment

dynamics can be found for instance in Jondeau and Rockinger (2009) who provide for

an asymmetric DCC1 Skew-Student model with time varying higher moment dynamics.

Because of the presence of the skew and shape nuisance parameters in the conditional

likelihood, the estimation has to be carried out jointly which makes this model infea-

sible for anything but a few assets.2 Yet the importance of including time varying

higher moments within the GARCH framework, particularly for risk management, is

paramount and was covered extensively in Chapter 1, albeit in a univariate context. A

feasible multivariate extension has neither been attempted nor is there any comparative

empirical evidence as to its performance in a risk or portfolio management application.

As in the univariate ACD literature, the few authors which have attempted to model

time variation in higher moment in the multivariate domain have not provided for any

out-of-sample empirical applications, a sure indication of the dimensionality problem

1The authors also argue that an asymmetric BEKK is just as feasible.
2The added complexity of the nonlinear transformations required in constraining the higher moment

dynamics within their specific bounds does also makes this that much harder in a joint dependence
framework.
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faced in the typical joint dynamics setup. While an out-of-sample application on a spe-

cific period and dataset might not provide for conclusive evidence in favor of a model,

when it can be feasibly and confidently estimated, then its uptake by practitioners and

researchers will generate enough of a body of empirical evidence over time to gauge its

overall value. The typical MGARCH models discussed in Chapter 2, or extensions to

those such as proposed by Jondeau and Rockinger (2009) in terms of higher moment

dynamics, suffer from dimensionality issues and are therefore unlikely to be very useful

in practical risk and portfolio management applications.

In this chapter, I make use of a statistical Independent Factor GARCH framework to

create the only truly feasible multivariate time varying higher moment model. Building

on the Generalized Orthogonal GARCH (GO-GARCH ) framework of van der Weide

(2002), the Independent Components Analysis methodology of Hyvärinen and Oja

(2000), and making use of an affine representation of the multivariate Generalized

Hyperbolic distribution proposed by Schmidt, Hrycej, and Stützle (2006), it is possible

to reduce the problem of joint time varying higher moment dynamics to one of effec-

tively univariate estimation. Unlike other models, independence offers a greater deal

of flexibility in modelling the full marginal dynamics within a multivariate affine factor

framework, providing closed form higher co-moments and a semi-analytic representation

for the weighted conditional portfolio density, invaluable in risk and portfolio manage-

ment applications. I provide a comprehensive empirical application using two different

datasets, at different frequencies, and covering a very large out of sample period, to

show the value of such dynamics in a multivariate setting. The chapter is organized

as follows: Section 3.1 introduces the Independent Factor ACD (IFACD) model and

its motivation. Key features such as the conditional higher co-moment tensors are pre-

sented in Section 3.2, portfolio conditional density representation is detailed in Section

3.3 and estimation of the model and the ICA algorithm are discussed in Section 3.4.

To evaluate the performance of the proposed model, I carry out an empirical study of

VaR performance and dynamic moment based portfolio allocation in Section 3.5, using

the log returns on 14 MSCI tradeable country indices used in the previous chapters,

and also investigate a dynamic scenario based portfolio application using an alternate

dataset of the weekly log total returns of the Dow Jones Industrial Average (DJIA)

index constituents. Section 3.6 concludes.

3.1 The Independent Factor Model

Factor ARCH models, originally introduced by Engle, Ng, and Rothschild (1990) and

with foundations in the Arbitrage Pricing Theory of Ross (1976), are based on the
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assumption that returns are generated by a set of unobserved underlying factors that

are conditionally heteroscedastic, while the dependence framework is non-dynamic as

a consequence of large scale estimation in a multivariate setting. The dependence

structure of the unobserved factors then determines the type of factor model it belongs

to, with correlated factors making up the F-ARCH type models, while uncorrelated

and independent factors comprise the Orthogonal and Generalized Orthogonal Models

respectively.3 Because one can always re-discover uncorrelated or independent sources

by certain statistical transformations, the correlated factor assumption of F-ARCH

models does appear to be restrictive. GO-GARCH models on the other hand make use

of those transformations to place the factors in an independence framework with unique

benefits such as separability and the fast convolution of the weighted density giving rise

to truly large scale, real-time and feasible estimation. Consider a set of N assets whose

returns rt are observed for T periods, with conditional mean E[rt|Ft−1] = mt, where

Ft−1 is the σ-field generated by the past realizations of rt, i.e. Ft−1 = σ(rt−1, rt−2, . . .).

The GO-GARCH Model of van der Weide (2002) maps rt−mt onto a set of unobserved

independent factors f t (or "structural errors"),

rt = mt + ǫt t = 1, . . . , T (3.2)

ǫt = Af t, (3.3)

where A is invertible and constant over time and may be decomposed into the de-

whitening matrix Σ1/2, representing the square root of the unconditional covariance,

and an orthogonal matrix, U , so that:

A = Σ1/2U , (3.4)

and f t = (f1t, . . . , fNt)
′. The rows of the mixing matrix A therefore represent the

independent source factor weights assigned to each asset (i.e. rows are the assets and

3It should be noted, that most of these factor models may be seen as special cases of the BEKK
model. The GO-GARCH model has the following restricted BEKK representation:

Ht = C +

m∑

i=1

Aixt−1x
′
t−1A

′
i +BHt−1B

′. (3.1)

Under the assumption that all Ai and B are restricted to have the same eigenvector Z, with the
eigenvalues of A being all zero except the ith one, and the C can be decomposed into ZDZ′ where
D is some positive definite diagonal matrix, then this is a GO-GARCH (with GARCH(1,1) univariate
dynamics) model where Z is the linear ICA map. However, GO-GARCH model is not limited to
GARCH(1,1) or any particular process for the factors.
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columns the factors). In the IFACD model I assume that the factors have the following

specification:

f t = H
1/2
t zt, (3.5)

where H t = E[f tf
′
t|Ft−1] is a diagonal matrix with elements (h1t, . . . , hNt) which are

the conditional variances of the factors, and zt = (z1t, . . . , zNt)
′. The random variable

zit is independent of zjt−s ∀j 6= i and ∀s, with E[zit|Ft−1] = 0 and E[z2
it] = 1, this

implies that E[f t|Ft−1] = 0 and E[ǫt|Ft−1] = 0. The factor conditional variances,

hi,t, can be modelled as a GARCH-type process. The unconditional distribution of the

factors is characterized by:

E[f t] = 0 E[f tf
′
t] = IN (3.6)

which, in turn, implies that:

E[ǫt] = 0 E[ǫtǫ
′
t] = AA′. (3.7)

It follows that the returns can be expressed as:

rt = mt + AH
1/2
t zt. (3.8)

The conditional covariance matrix, Σt ≡ E[(rt − mt)(rt − mt)
′|Ft−1] of the returns is

given by:

Σt = AH tA
′. (3.9)

The Orthogonal Factor model of Alexander (2001)4 which uses only information in the

covariance matrix, leads to uncorrelated components but not necessarily independent

unless assuming a multivariate normal distribution. However, while whitening is not

sufficient for independence, it is nevertheless an important step in the preprocessing of

the data in the search for independent factors, since by exhausting the second order

information contained in the covariance matrix it makes it easier to infer higher order

information, reducing the problem to one of rotation (orthogonalization). The original

procedure of van der Weide (2002) used a 1-step maximum likelihood approach to

jointly estimate the rotation matrix and dynamics making the procedure infeasible

for anything other than a few assets. Alternative approaches such as nonlinear least

squares and method of moments for the estimation of U have been proposed in van der

4When U is restricted to be an identity matrix, the model reduces to the Orthogonal Factor model.
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Weide (2004) and Boswijk and van der Weide (2011), respectively. In this model, I

estimate the matrix U by ICA as in Broda and Paolella (2009) and Zhang and Chan

(2009). One of the computational advantages offered by the Generalized Orthogonal

approach is that following the estimation of the independent factors, the dynamics of

the marginal density parameters of those factors may be estimated separately. In this

context, I propose to extend the dynamics to the full conditional density parameters

to model in a multivariate setting time varying higher moments. This builds on the

CHICAGO5 model of Broda and Paolella (2009) where the factor dynamics have non-

time varying higher moments within the GH distribution, where the latter only differs

from the GHICA6 model of Chen, Härdle, and Spokoiny (2010) by using GARCH

type dynamics for the conditional variance rather than a local exponential smoothing

technique. While any multivariate distribution, admitting an affine representation may

be used in this setup, the GH distribution, introduced by Barndorff-Nielsen (1977) and

representing the case in the mean-variance mixture family given in Equation (2.35)

where W ∼ GIG(λ, δ2, α2 −β2), was chosen for its flexibility and rich parametrization,

and already discussed in Chapters 1 and 2.

3.1.1 Conditional factor dynamics

Although models from the GARCH family are able under certain assumptions and

parameterizations to produce thick-tailed and skewed unconditional distributions they

typically assume that the shape and skewness parameters are time invariant. This also

leads to the assumption that the conditional distribution of the standardized innovations

(zt) is independent of the conditioning information, for which there is no good reason to

believe so a-priori. There is an extensive empirical literature which has investigated time

variation in the full conditional density parameters, reviewed and discussed in Chapter

1. In the IFACD model I assume that the centered and scaled random variables zit

are conditionally distributed as standardized GH, i.e., GH(zit;λi, µi, δi, αi, βi). As in

the ACD models presented in Chapter 1, I assume separate dynamics for the skew and

shape parameters of the standardized GH distribution in the (ρ, ζ) parametrization.

Similar to Jondeau and Rockinger (2003), alternative specifications were explored for

the ACD parameter dynamics. Based on the bounds and hence resulting shape of the

moment dynamics, I selected piecewise linear dynamics for the shape parameter (ζ̆i,t)

5Conditionally Heteroscedastic Independent Components Analysis GO-GARCH model.
6Generalized Hyperbolic Independent Components Analysis.
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and quadratic dynamics for the skew parameter (ρ̆i,t)

ρ̆it = χ0i + χ1izit−1 + χ2iz
2
it−1 + ξ1iρ̆it−1

ζ̆it = κ0i + κ1izit−11[zit−1<−1] + κ2izt−11[zit−1>1] + ψ1iζ̆it−1,
(3.10)

where 1 is the indicator function such that positive (negative) standardized innovations,

larger (smaller) than one standard deviation, have a different impact on the shape dy-

namics. This is in the spirit of the Threshold Autoregressive Model of Tong and Lim

(1980), albeit I do not estimate the threshold but impose it a-priori at 1 standard devi-

ation. The intuition from experiments with these models is that most of the variation

is already captured by the conditional standard deviation, up to at least 1 standard

deviation events, so that shocks beyond this are more likely to be relevant lest one

introduces too much noise in the presence of over-parameterized dynamics. Thus the

threshold acts as a sensitivity barrier to noise which is already well modelled by varia-

tion in the second moment GARCH dynamics. The logistic transform is then used to

map the unconstrained processes ρ̆t and ζ̆t into ρi,t and ζi,t:

ρit = −0.99 +
1.98

1 + e−ρ̆it
(3.11)

ζit = 0.1 +
24.9

1 + e−ζ̆it
(3.12)

where the bounds of the distributional parameters are [−0.99, 0.99] and [0.1, 25] for ρ

and ζ, respectively. I limit the upper bound of ζ to 25 for estimation ease, since values

beyond this point lead to very little change in the skewness and kurtosis, with the range

0.1 to 25 representing most of the distribution. In theory, the GIG shape parameter

λi is allowed to vary for each factor, but as argued in Chapter 1, this introduces an

added layer of complexity because of certain identification issues. The NIG distribu-

tion, with a value of λ equal to −0.5, which results in a very tractable sub-family of

the GH, provides for a very rich modelling environment for financial time series, and

without much loss of generality I adopt this as the main distribution in the empirical

exercise.7 Eventually, the single factors, fit, i = 1, . . . , N , are conditionally distributed

as a GH(fit;λi, µit
√
hit, δit

√
hit, αit/

√
hit, βit/

√
hit). The relation between the parame-

ters in the (α, β, δ, µ) parametrization was already covered in Equation (1.19). Finally,

7Though I do present results for standardization and portfolio density in both the NIG and more
general GH cases.
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the vector of returns rt, which can be expressed as a linear transformation of indepen-

dent factors f t ∈ R
N , turns out to be conditionally distributed according to the maGH

distribution:

rt|Ft−1 ∼ maGHN (mt,Σt,ωt), (3.13)

where ωt = (ω1t, . . . , ωNt)
′ and ωit = (λi, αit, βit)

′, representing the conditional shape

and skew parameter vectors. The extension of dynamics to all the parameters of the

distribution presents the opportunity to go beyond the conditional time-varying co-

variance matrix, to higher co-moment tensors, the details and importance of which are

discussed in the next section.

3.2 Conditional Co-Moments

It seems to be a well-established stylized fact that the unconditional security return

distribution is not normal and the mean and variance of returns alone are insufficient

to characterize the return distribution completely. This has led researchers to pay

attention to the third moment - skewness - and the fourth moment - kurtosis. The

validity of the CAPM in the presence of higher-order co-moments and their effects

on asset prices has been investigated. The simple, single-factor, CAPM only holds

under very specific conditions. When asset prices are non-normal and investors have

non-quadratic preferences, then they will care about all return moments and not only

mean and variance, as in the standard CAPM. There are a number of extensions to the

basic two-moments CAPM which predict a linear relationship in which terms like co-

skewness and co-kurtosis are priced. For example, Kraus and Litzenberger (1976), Sears

and Wei (1985) extended the CAPM to incorporate skewness in asset valuation models

and provided mixed results. A few studies have shown that non-diversified skewness and

kurtosis play an important role in determining security valuations. Fang and Tsong-Yue

(1997), derived a four-moment CAPM where it was shown that systematic variance,

systematic skewness and systematic kurtosis contribute to the risk premium of an asset.

Harvey and Siddique (2000) examined an extended CAPM, including systematic co-

skewness, reporting that conditional skewness explains the cross-sectional variation

of expected returns across assets and is significant even when factors based on size

and book-to-market are included. As skewness of a portfolio matters to investors, an

asset’s contribution to the skewness of a broadly diversified portfolio, referred to as

"co-skewness" with the portfolio, may also be rewarded. Skewness preference further

suggests that the representative investor may adjust his diversified portfolio such that an

individual security’s contribution to the skewness of the market portfolio may become
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a component of the security’s expected returns. Mathematically, as demonstrated in

Conine and Tamarkin (1981), both individual assets’ skewness and co-skewness between

assets contribute to the skewness of the portfolio which is composed of these assets.

Intuitively, as positive (negative) skewness implies a probability of obtaining a large

positive (negative) return (relative to a benchmark such as the normal distribution), a

positive co-skewness of an asset with another asset means that, when the price volatility

goes up the return of this asset also goes up. The general acceptance that the conditional

density of asset returns is not completely and adequately characterized by the first two

moments, implies that the derivation of any measure of risk from that density requires

estimates for the higher order co-moments of the return distribution if one is work within

a multivariate setting. The linear affine representation of the IFACD model allows to

identify closed-form expression for the conditional co-skewness and co-kurtosis of asset

returns8, as described in de Athayde and Flôres Jr (2000). The novelty of the IFACD

model is that the third and fourth factor co-moment matrices are now time-varying, as

a consequence of the ACD specification of the conditional density of the standardized

innovations, e.g., zit. The conditional co-moments of rt of order 3 and 4 are represented

as tensor matrices,

M3
t = AM3

f,t(A
′ ⊗ A′),

M4
t = AM4

f,t(A
′ ⊗ A′ ⊗ A′),

(3.14)

where M3
f,t and M4

f,t are the (N × N2) conditional third co-moment matrix and the

(N × N3) conditional fourth co-moment matrix of the factors, respectively. M3
f,t and

M4
f,t, defined as are given by

M3
f,t =

[
M 3

1,f,t,M
3
2,f,t, . . . ,M

3
N,f,t

]
(3.15)

M4
f,t =

[
M 4

11,f,t,M
4
12,f,t, . . . ,M

4
1N,f,t| . . . |M4

N1,f,t,M
4
N2,f,t, . . . ,M

4
NN,f,t

]
(3.16)

where M3
k,f,t, k = 1, . . . , N and M4

kl,f,t, k, l = 1, . . . , N are the (N ×N) submatrices of

M3
f,t and M4

f,t, respectively, with elements

m3
ijk,f,t = E[fi,tfj,tfk,t|Ft−1]

m4
ijkl,f,t = E[fi,tfj,tfk,tfl,t|Ft−1].

8It is possible to go beyond these moments but the notation becomes cumbersome and the benefits
likely to be marginal.
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Since the factors fit can be decomposed as zit
√
hit, and given the assumptions on zit,

then E[fi,tfj,tfk,t|Ft−1] = 0. It is also true that for i 6= j 6= k 6= lE[fi,tfj,tfk,tfl,t|Ft−1] =

0 and when i = j and k = l,

E[fi,tfj,tfk,tfl,t|Ft−1] = h2
ith

2
kt.

Thus, under the assumption of mutual independence, all elements in the conditional

co-moments matrices with at least 3 different indices are zero. Finally, standardizing

the conditional co-moments one obtains conditional co-skewness and co-kurtosis of rt,

Sijk,t =
m3
ijk,t

(σi,tσj,tσk,t)
,

Kijkl,t =
m4
ijkl,t

(σi,tσj,tσk,tσl,t)
,

(3.17)

where Sijk,t represents the asset co-skewness between elements i, j, k of rt, σi,t the

standard deviation of ri,t, and in the case of i = j = k represents the skewness of asset

i at time t, and similarly for the co-kurtosis tensor Kijkl,t. Two natural applications of

return co-moments matrices are Taylor type utility expansions in portfolio allocation

and higher moment news impact surfaces, applications of which are featured in Sections

3.5.4.1 and 3.5.2 respectively.

3.3 The Portfolio Conditional Density

An important question that can be addressed in this framework is the determination

of the portfolio conditional density, an issue of vital importance in risk management

applications. The N -dimensional NIG distribution, closed under convolution, is suited

to problems in portfolio and risk management where a weighted sum of assets is con-

sidered. However, when the distributional parameters α and β, representing skew and

shape, are allowed to vary, as in the IFACD case, this property no longer holds and

numerical methods such as that of the Fast Fourier Transform (FFT ) are needed to

derive the weighted density by inversion of the characteristic function of the scaled

parameters9. In the case of the NIG distribution, this is greatly simplified because of

the representation of the modified Bessel function for the GIG shape index (λ) with

9This effectively means that the weighted density is not necessarily NIG distributed.
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value −0.5 which was derived in Barndorff-Nielsen and Bläsild (1981), otherwise the

characteristic function of the GH involves the evaluation of the modified Bessel func-

tion with complex arguments, which is considerably slower. Appendix A derives the

characteristic functions used in the case of independent margins for both the NIG and

full GH distributions. Let Rt be the portfolio return:

Rt = w′
trt = w′

tmt + (w′
tAH

1/2
t )zt (3.18)

where H
1/2
t is estimated from the ACD dynamics of yt. The IFACD model allows to

express the portfolio variance, skewness and kurtosis in closed form,

σ2
p,t = w′

tΣtwt,

sp,t =
w′
tM

3
t
(wt ⊗ wt)

(w′
tΣtwt)

3/2
,

kp,t =
w′
tM

4
t
(wt ⊗ wt ⊗ wt)

(w′
tΣtwt)

2 ,

(3.19)

where Σt, M3
t and M4

t are derived in (3.14). The portfolio conditional density may be

obtained via the inversion of the characteristic function through the FFT method as

in Chen, Härdle, and Spokoiny (2007) (see Appendix A for details) or by simulation.

I choose the former for its accuracy and speed. Provided that zt is a N -dimensional

vector of innovations, marginally distributed as 1-dimensional standardized GH, the

density of the weighted asset return, witrit, is

wi,tri,t = (wi,tmi,t+wi,tzi,t) ∼ GHλi

(
wi,tµi,t + wi,tmi,t, |wi,t| δi,t,

αi,t
|wi,t|

,
βi,t

|wi,t|

)
(3.20)

where w′
t is equal to w′

tAH
1/2
t , and wi,t is the i-th element of wt, mi,t the conditional

mean of the i-th underlying asset. In order to obtain the density of the portfolio, we

must sum the individual weighted densities of zi,t. The characteristic function of the

portfolio return Rt is

ϕR(u) =
n∏

i=1

ϕw̄Zi(u) = exp


iu

d∑

j=1

µ̄j +
d∑

j=1

(
λj
2

log

(
γ

υ

)
+ log

(
Kλj (δ̄j

√
υ)

Kλj (δ̄j
√
γ)

))


(3.21)

where, γ = ᾱ2
j − β̄2

j , υ = ᾱ2
j − (β̄j + iu)2, and (ᾱj , β̄j , δ̄j , µ̄j) are the scaled versions

of the parameters (α, βi, δi, µi) as shown in (3.20). The density may be accurately

approximated by FFT as follows,

fR(r) =
1

2π

∫ +∞

−∞
e(−iur)ϕR(u)du ≈ 1

2π

∫ s

−s
e(−iur)ϕR(u)du. (3.22)
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Expression (3.22) is the base for the calculation of VaR in the empirical application

reported in Section 3.5.

3.4 Estimation

The estimation of the factor loading matrix A exploits the decomposition in (3.4).

The estimation of Σ1/2, representing the square root of the unconditional covariance

matrix, is usually obtained from the OLS residuals ǫ̂t = rt − m̂t, while the orthogonal

matrix U can be estimated using ICA (see Broda and Paolella (2009), Zhang and Chan

(2009)). ICA is a computational method for separating multivariate mixed signals,

x = [x1, ..., xn]′, into additive statistically independent and non-Gaussian components,

s = [s1, ..., sn]′, such that x = Bs. The objective is to decompose the observed x =

[x1, ..., xn]′, into independent factors s = [s1, ..., sn]′ and a linear matrix B, such that

x = Bs. The independent source vector s ∈ R
n, is assumed to be sampled from a joint

distribution f(s),

f(s1, ..., sn) = f(s1)f(s2)...f(sn), (3.23)

where s is not directly observable, nor is the particular form of the individual distri-

butions, f(si), usually known.10 This forms the key property of independence, namely

that the joint density of independent signals is simply the product of their marginals.

The estimate of the linear mixing matrix B can be obtained via estimation methods

based on a choice of criteria for measuring independence which include the maximization

of non-Gaussianity through measures such as kurtosis and negentropy, minimization of

mutual information, likelihood and infomax. This follows from the Central Limit Theo-

rem which states that mixtures of independent variables tend to become more Gaussian

in distribution when they are mixed linearly, hence maximizing non-Gaussianity leads

to independent components (see Hyvärinen and Oja (2000) for more details).11 Entropy

may be thought of as the amount of information inherent within a random variable, be-

ing an increasing function of the amount of randomness in that variable. For a discrete

10If the distributions are known the problem reduces to a classical maximum likelihood parametric
estimation.

11Estimation by minimization of the mutual information was first proposed by Comon (1994) who
derived a fundamental connection between cumulants, negentropy and mutual information. The approx-
imation of negentropy by cumulants was originally considered much earlier in Jones and Sibson (1987),
while the connection between infomax and likelihood was shown in Pearlmutter and Parra (1997), and
the connection between mutual information and likelihood was explicitly discussed in Cardoso (2000)
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random variable X it is defined as,

H(X) = −
∑

i

P (X = bi) log P (X = bi), (3.24)

with bi denoting the possible values of X. In the continuous case, for a continuous

random variable X with density fX(x), the entropy12 H is defined as,

H(X) = −
∫
fX(x) log fX(x)dx. (3.25)

A key result from information theory states that among all random variables of equal

variance, a Gaussian variable has the largest entropy. Hence entropy could be used as

a measure of non-Gaussianity. A related measure of non-Gaussianity is the negentropy

which is always non-negative and zero for a Gaussian variable. It is defined as,

J(X) = H(Xgauss) −H(X), (3.26)

where H(Xgauss) is the entropy of a Gaussian random variable having the same covari-

ance matrix as X. As shown by Comon (1994), negentropy is invariant for invertible

linear transformations and is an optimal estimator of non-Gaussianity with regards

to its statistical properties (i.e. consistency, asymptotic variance and robustness). In

practice, because we do not know the density, approximations of negentropy are used

such as the one by Hyvärinen and Oja (2000),

J(X) ≈
p∑

i=1

ki[E(Gi(X)) − E(Gi(V ))]2, (3.27)

where ki are positive constants, V is a standardized Gaussian variable and Gi are non-

quadratic functions. The choice of the non-quadratic function has an impact on the

robustness of the estimators of negentropy. with G(x) = x4 (kurtosis based) being the

least robust while more robust measures would include,

g1(u) =
1

a1
log cosh a1u, g2(u) = − exp(−0.5u2). (3.28)

Because these non-quadratic functions present a complex nonlinear optimization prob-

lem, sophisticated numerical algorithms are usually necessary. Two main algorithms are

12In the continuous case this is usually called differential entropy.
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used, the online and batch methods, with the former based on stochastic gradient meth-

ods while in the latter case a popular choice is the natural gradient ascend of likelihood.

The FastICA of Hyvärinen and Oja (2000) is a very efficient batch algorithm with a

range of options for the non-quadratic functions. It can be used to estimate the compo-

nents either one at a time by finding maximally non-Gaussian directions or in parallel by

maximizing non-Gaussianity or the likelihood. The estimation procedure of the IFACD

model can be summarized as follows. First, the FastICA is applied to the whitened data

zt = Σ̂
−1/2

ǫ̂t, where Σ̂
1/2

is obtained from the eigenvalue decomposition of the OLS

residual covariance matrix, returning an estimate of f t, i.e., yt = W zt. Second, be-

cause of the assumption of independence, the likelihood function of the IFACD model is

greatly simplified so that the conditional log-likelihood function is expressed as the sum

of the individual conditional log-likelihoods, derived from the conditional marginal den-

sities of the factors, i.e., GHλi(yit) ≡ GH(yit;λi, µit
√
hit, δit

√
hit, αit/

√
hit, βit/

√
hit),

plus a term for the mixing matrix A, estimated in the first step by FastICA:

L(ǫ̂t |θ,A) = T log
∣∣∣A−1

∣∣∣+
T∑

t=1

N∑

i=1

log (GHλi(yit|θi)) (3.29)

where θ is the vector of unknown parameters in the marginal densities. Because ICA

is a linear noiseless model,13 the implication for this 2 stage estimation in the IFACD

model is that uncertainty plays no part in the derivation of the mixing matrix A and

hence does not affect the standard errors of the independent factors.

The possibility of modelling the independent factors separately not only increases the

flexibility of the model but also its computational feasibility, since the multivariate

estimation reduces to N univariate optimization steps plus a term which depends on

the factor loading matrix. Thus the independence property of the model allows the

estimation of very large scale systems on modern computational grids14 with the time

required to calculate any n-dimensional model equivalent to the time it takes to estimate

one single factor in the ACD framework.

13According to Hyvärinen and Oja (2000), this can be partially justified by the fact that most of the
research on ICA has also concentrated on the noise free model and it has been shown with overwhelming
empirical support across a number of different disciplines to be a very good approximation to a more
complex model with noise added. Because the estimation of the noise-free model has proved to be a
very difficult task in itself, the noise-free model may also be considered a tractable approximation of
the more realistic noisy model.

14For the large scale out-of-sample backtesting carried out in this application, the model was esti-
mated on the Amazon Elastic Cloud at a fraction of the time it would take to estimate either a DCC
model or any other multivariate GARCH type model.
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3.5 Empirical application

While the contribution of time varying higher moment dynamics is simple enough to

observe and evaluate in univariate models, in the IFACD model each underlying asset

is a weighted combination of the independent factors and the diverse dynamics they

possess. Assessing the relative goodness of fit of such a multivariate model is a daunting

task, not least because of the absence of relevant and feasible measures in this area.

Therefore, and in keeping with the applied aspect of the IFACD model in risk and

portfolio management, the evaluation of the model with respect to the risk application

was performed on a linearly weighted forecast density representing a typical portfolio

approach. To avoid any bias from using a particular weighting, a large number of

randomly weighted portfolios were formed in each risk management application and

the average statistic and percent rejection of each test reported. I continue to make

use of the MSCI dataset described in Section 1.3 and used in the empirical exercises

of Chapters 1 and 2. Additionally, a different dataset based on the weekly total log

returns of the point in time constituents of the DJIA index, was also used in order to

gauge the model’s performance on a larger cross-section and a lower frequency (weekly).

This is described and analyzed in more detail in Section 4.4.1. The next sections

present the detailed results of the relative performance of the IFACD model with respect

to the CHICAGO and other relevant MGARCH models, in both risk and portfolio

management applications.15

3.5.1 Model Estimation and In-Sample Fit

The MSCI dataset of 14 international equity indices was found to be well fitted in

a univariate context both in and out-of-sample by ACD models and ill fitted by the

multivariate GARCH models in-sample. In order to obtain an overall, full sample,

goodness of fit of the model, I repeat the empirical exercise of Section 2.4, using the

GO-GARCH (MVN), CHICAGO and IFACD models with conditional distribution the

maNIG. Table 3.1 reports parameter estimates and summary fit statistics of the IFACD

and CHICAGO models for the period 12/08/1996 to 02/03/2011. As in the empirical

application of Section 2.4, an AR(2) model was used to filter the data prior to applying

the FastICA algorithm using the hyperbolic tangent (tanh) contrast function to separate

15See Appendix F for details on the software used to estimate these models.
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the signals.16 In both models, the factor variance dynamics were assumed to follow a

GARCH(1,1) model with parameters (ω,α1, β1), and for the skew and shape dynamics

of the IFACD model, a first order quadratic and piece-wise linear model with parameters

(χ0, χ1, χ2, ξ1) and (κ0, κ1, κ2, ψ1) respectively was used, as in Equation (3.10).

16The nonlinearity contrast function tanh is optimal for a wide range of source distributions including
supergaussian and subgaussian.
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Table 3.1: IFACD vs CHICAGO: Parameter estimates and in-sample fit (14 MSCI iShares)

IFACD F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

ω 0.0095*** 0.0089*** 0.0037*** 0.0055** 0.0069*** 0.0028*** 0.0028*** 0.0043*** 0.0029** 0.0043*** 0.0012*** 0.0020*** 0.0026*** 0.0021**

α1 0.0842*** 0.0642*** 0.0404*** 0.0499*** 0.0820*** 0.0618*** 0.0498*** 0.0349*** 0.0535*** 0.0740*** 0.0289*** 0.0357*** 0.0441*** 0.0479***

β1 0.9094*** 0.9277*** 0.9554*** 0.9456*** 0.9138*** 0.9363*** 0.9479*** 0.9608*** 0.9441*** 0.9252*** 0.9697*** 0.9623*** 0.9539*** 0.9520***

χ0 0.4160*** 0.1176*** -0.0793 0.0855 0.1035 -0.0278 -0.0796 0.1336 0.0264 0.0700* 0.0278 0.0123 -0.0430 -0.0026

χ1 -0.1513*** 0.2342*** 0.0892 0.1810*** 0.0745 -0.0148 0.0558 0.0217 -0.0142 0.0043 -0.0310 0.0016 0.1680* 0.1624***

χ2 -0.0080 -0.0598*** 0.0083 -0.0467 -0.0532* 0.0470* 0.0295 -0.0672 -0.0253 -0.0462* 0.0598** -0.0512 0.0696** -0.0046

ξ1 0.2589 0.4874*** 0.2685 0.0069 0.0407 0.6591 0.2727 0.0115 0.8872*** 0.8603*** 0.0231 0.0007 0.1402 0.8033***

κ0 -0.3655 -1.5930*** -1.1093*** 0.0160 -0.4839 -0.2515 -1.1488*** -0.7475 -1.1168*** -1.5398*** -0.4182 -1.6048*** 0.0566 -0.9210***

κ1 0.7783*** 0.2958* 0.5646** 0.0410 0.0980 0.0119 -0.0264 -0.3710 -0.8221 -0.0002 0.2139** -0.9412 -0.1734 0.2361

κ2 0.1622 -0.1324 -0.3907 -0.1902 -0.3369*** -0.5411*** 0.9861 0.3700 -0.2340 0.2290 0.9651 0.0177 -0.4026*** 0.4300*

ψ1 0.7042** 0.0064 0.0056 0.9707*** 0.6292* 0.6401*** 0.1185 0.4766 0.0002 0.0056 0.6826*** 0.0057 0.9740*** 0.1963

CHICAGO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

ω 0.0082*** 0.0073*** 0.0037** 0.0055** 0.0065*** 0.0029** 0.0031** 0.0041** 0.0030** 0.0041** 0.0015 0.0020** 0.0030** 0.0020**

α1 0.0762*** 0.0580*** 0.0404*** 0.0454*** 0.0771*** 0.0623*** 0.0519*** 0.0346*** 0.0546*** 0.0724*** 0.0299*** 0.0347*** 0.0433*** 0.0441***

β1 0.9144*** 0.9350*** 0.9562*** 0.9492*** 0.9185*** 0.9361*** 0.9454*** 0.9612*** 0.9432*** 0.9266*** 0.9687*** 0.9634*** 0.9540*** 0.9544***

ρ 0.2603*** 0.0733** -0.0515 0.0242 0.0203 0.0394 -0.0314 0.0356 -0.0049 0.0683* 0.0514 -0.0217 0.0141 -0.0078

ζ 2.9990*** 2.2366*** 2.6669*** 3.2576*** 2.4429*** 3.3794*** 3.8397*** 3.7550*** 3.6924*** 2.7143*** 3.7625*** 2.8129*** 6.2489*** 4.2903***

PersistenceIF ACD[Fi] 0.994 0.992 0.996 0.995 0.996 0.998 0.998 0.996 0.998 0.999 0.999 0.998 0.998 1.000

PersistenceCHICAGO [Fi] 0.991 0.993 0.997 0.995 0.996 0.998 0.997 0.996 0.998 0.999 0.999 0.998 0.997 0.999

LLIF ACD[Fi] -4240.9 -4706.5 -4788.8 -4816.5 -4602.0 -4514.6 -4580.8 -4872.4 -4608.4 -4662.4 -4803.4 -4700.7 -4816.9 -4680.6

LLCHICAGO [Fi] -4255.5 -4716.8 -4793.7 -4822.4 -4607.9 -4518.4 -4583.9 -4874.4 -4611.3 -4665.6 -4809.1 -4704.6 -4826.8 -4686.5

LR(stat) -29.4 -20.7 -9.8 -11.9 -11.7 -7.6 -6.1 -3.8 -5.7 -6.3 -11.5 -7.8 -19.7 -11.8

LR(p − value) 0.00 0.00 0.13 0.07 0.07 0.27 0.41 0.70 0.46 0.39 0.08 0.25 0.00 0.07

LLIF ACD[Model] 163119.6

LLCHICAGO [Model] 163037.7

Note: The Table reports the parameter estimates under the IFACD and CHICAGO models under the NIG distribution, for the log returns of 14 MSCI indices from 12/08/1996 to
02/03/2011. The estimates are for the independent factors (F ) arising from the ICA transformation of the data, which was first demeaned and filtered for first and second order
autocorrelation using an AR(2) model. The *, ** and *** next to the parameters denote significance at the 10%, 5% and 1% levels respectively. The individual factor volatility
persistence, and Log-Likelihood are reported as is the overall model Log-Likelihood for comparison between the two models. The Likelihood ratio (LR) statistic reports the difference
between the IFACD and CHICAGO models under the assumption that the latter is a restricted version of the former, and distributed as χ2 with 6 degrees of freedom representing the
number of restrictions (time varying higher moment parameters excluding the intercept).

The conditional variance dynamics of the factors follow a GARCH(1,1) model: h2
i,t

= ωj + αjF
2
i,t−1 + βjh

2
i,t−1, i = 1, . . . , 14. The conditional skew dynamics of the factors are

bounded through a logistic transformation such that ρit = −0.99 + 1.98
1+exp −ρ̆it

, where the unconstrained parameters follow a first order quadratic model:

ρ̆it = χ0i + χ1izit−1 + χ2iz
2
it−1 + ξ1i ρ̆it−1. The conditional shape dynamics of the factors are bounded through a logistic transformation such that ζit = 0.1 + 24.9

1+exp −ζ̆it
, where the

unconstrained parameters follow first order piecewise linear model: ζ̆it = κ0i + κ1izit−11[zit−1<−1] + κ2izt−11[zit−1>1] + ψ1i ζ̆it−1.
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The results of this whole sample estimation suggest that there is some time variation

in the shape parameter in about half of the independent factors, and somewhat less in

the skew parameter. Compared to the CHICAGO model, and using an LR test under

the alternative hypothesis that a restricted model (with the restriction being that of

no time variation in the skew and shape parameters i.e. the CHICAGO model), it can

be concluded that in half the factors the restricted model can be rejected at the 10%

level of significance in favor of the IFACD model. In both models, one can also observe

a very high persistence in the variance dynamics which likely indicates some structural

break or shift which cannot be accounted for by the simple GARCH(1,1) model. This

is less likely to be a problem in the out-of-sample application considered later where a

smaller window size is considered in a rolling estimation and forecast setting. Across

the 14 factors (F1 to F14), the average estimated excess kurtosis from the CHICAGO

model is about 0.89, very close to what was observed in Section 2.4 for the BEKK

(MVT) model, and the average skewness close to zero.17 To compare the GO-GARCH

(MVN), CHICAGO and IFACD models, representing models within the independence

framework, with the MGARCH models of Chapter 2, I repeat the misspecification exer-

cise of Section 2.4 using the test of Hong and Li (2005). Table 3.2 displays the average

statistic and percent rejections of the test for the 3 models and for ease of comparison

includes the results already presented in Table 2.5 for the various MGARCH models

used in the previous chapter. While the GO-GARCH (MVN) model does no better

than the BEKK (MVN), it is the CHICAGO and IFACD models which have the lowest

overall, among all models, Portmanteau (W ) statistic indicating a better fit to the data.

Despite the AGDCC model having a lower conditional mean and variance (M(1, 1) and

M(2, 2)) statistic, for reasons already discussed, the flexibility of the maNIG distribu-

tion appear to provide for a lower overall cost of misspecification. However, within

this large in-sample application it is not clear whether there are substantial marginal

benefits to including time variation in higher moments, despite the slightly lower value

for the Portmanteau statistic in the case of the IFACD model. This question is more

readily addressed in the out-of-sample application in Sections 3.5.3 and 3.5.4.

17The skewness(S) and excess kurtosis(Kex) of the NIG distribution using the (α, β, δ, µ) parametriza-
tion are:

S =
3β

α
√
δγ
,

Kex =
3

δ
√
α2 − β2

(
1 + 4

β2

α2

)
.

(3.30)
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Table 3.2: Independence vs Dependence: Hong-Li misspecification
test (14 MSCI iShares)

Hong-Li Non-Parametric Test

M(1,1) M(2, 2) M(3, 3) M(4,4) W

BEKK-MVN 43.7 15.9 5.8 1.8 59.8

[100] [99.8] [90.3] [54.7] [100]

BEKK-MVT 43.1 16.3 6.5 2.5 40.3

[100] [99.9] [92.6] [63.6] [100]

BEKK-MVL 44.3 19.2 9.1 4.4 40.1

[100] [99.9] [96.4] [80.2] [100]

BEKK-MSL 43.1 18.8 9.2 4.7 32.4

[100] [99.9] [96.4] [82] [100]

AGDCC-MVN 28.7 9.9 3.9 2.8 29.1

[100] [99.1] [93] [91.6] [100]

AGDCC-MVL 28.2 11.8 5.6 3.5 48.6

[100] [99.1] [95.3] [92.5] [100]

GOGARCH-MVN 43.3 17.4 6.1 1.6 44.6

[100] [99.9] [90.3] [43.6] [100]

GOGARCH-NIG 39.7 15.0 5.1 1.3 23.8

[100] [99.8] [88.8] [43.7] [100]

IFACD-NIG 38.8 15.2 5.6 1.7 20.3

[100] [99.8] [90.6] [51] [100]

Note: The Table reports the average statistic and percent rejections from the non parametric density
test of Hong and Li (2005) applied to the probability integral transformed weighted margins of the
in-sample fit of 14 MSCI iShares for the period 12/08/1996 to 02/03/2011, from the diagonal BEKK
and diagonal AGDCC under alternative conditional distributions representing models from a
dependence based framework, and the GO-GARCH (MVN), CHICAGO (NIG) and IFACD (NIG)
representing models from the statistical independence based framework. M(j, j),j = 1, .., 4, represent
the nonparametric tests for misspecification in the conditional moments, and distributed as N(0, 1)
under the null of a correctly specified model. The statistic W in column 5 of the table is the
Portmanteau type test statistic for general misspecification (using 4 lags) and distributed as N(0, 1)
under the null of a correctly specified model. Values in square brackets are the percent rejections
under the null, with 95% confidence, for the 5000 randomly weighted margins.

3.5.2 Co-Moment News Impact Surface

Because the structural errors in the IFACD model are modelled as a linear combination

of independent factors, it is revealing to inspect the types of interactions created from

the factor dynamics. One way of understanding the impact of the factors on the un-

derlying assets is by simply inspecting the factor loadings in the mixing matrix where

common sources of risk may be identified.18 Back and Weigend (1997) for instance,

showed that a dominant set of factors obtained from ICA can reveal more of the under-

lying structure of the time series than PCA, while Xu (1999) provides for a heuristic

criterion for choosing such dominant factors. In Figures 3.1 and 3.2, the factor loadings

for the countries in the Americas, Europe and Asia are shown, where the blue colored

loadings represent those factors which had some degree of significant time variation in

the shape parameter in Table 3.1. While it is not always easy to make inference from

statistical factors, one can immediately observe the common to all indices, large and

18The columns in the mixing matrix A represent the asset loadings.
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negative loading on Factor 1 which may represent, for instance, some common risk to

the global equity markets such as an oil shock. Beyond this, it is difficult to infer with

confidence anything more about the factors without some substantial analysis and map-

ping of those factors to some fundamental combination of risk factors, and even then

this is a speculative exercise at best. A more revealing method for visualizing the
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Figure 3.1: Factor Loadings

multivariate dynamics in GARCH systems is through the news impact function. This

was originally suggested in the univariate literature by Engle and Ng (1993), providing
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Figure 3.2: Factor Loadings

a visual representation of the impact of shocks on the time varying variance. It was

extended to a surface function by Kroner and Ng (1998) who compared a number of

multivariate GARCH models and the type of surfaces they generate. This was further

extended in a natural direction by Jondeau and Rockinger (2009) to include the impact

of higher moment co-dependence. While the IFACD model is mainly one of univariate

independent dynamics, I investigate the type of interactions generated by the model

by constructing news impact surfaces for the covariance and co-skewness. Since shocks

impact the factors independently, the news impact surface is a combination of the in-

dependent news impact curves of the factors which, when combined via the mixing

matrix A, create the dynamics for the underlying asset-factor surface function. To

achieve this, a set of common shocks values is first passed to the individual factors to

obtain the univariate news impact curves of the variance, skew and shape, for which

simulation is used to obtain the unconditional long run values required in this setup.

The co-moment news impact surface is then obtained by evaluating the contribution

of the shocks on the factors under consideration while maintaining all other factors at

their no-shock values, and transforming the values using A into weighted shocks on

the underlying assets. Formally, let the vector zt−1 denote the conditioning variables

known at time t − 1 for the determination of the hi,t, m
3
i,t and m4

i,t, and let Z be the

unconditional value of the shocks assumed to be constant, beyond i and j. Let hab,t,

m3
abc,t and m4

abcd,t be the conditional covariance, third and fourth co-moments of the

assets a,b, and c. The news impact surfaces, with respect to shocks from factors i and
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j, are the three dimensional graphs of the functions:

σab,t = f(A,Hf,t−1|(ẑi,t−1, ẑj,t−1, Z)),

m3
abc,t = f(A,M 3

f,t−1|(ẑi,t−1, ẑj,t−1, Z)),

m4
abcd,t = f(A,M4

f,t−1|(ẑj,t−1, ẑj,t−1, Z)),

(3.31)

where, Hf,t−1, M3
f,t−1 and M4

f,t−1 represent the factor covariance matrix, the third

and fourth co-moment tensor matrices, respectively, as defined in Equations (3.15) and

(3.16).

Figures 3.3 and 3.4 display the covariance and co-skewness news impact surfaces
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Figure 3.3: Covariance News Impact Surface

for selected asset-factor combinations. The covariance news impact surfaces shown are

mostly ’U’ shaped indicating the dominance of one factor over another in addition to

the fact that they are independent. For example, the covariance between France and

Germany, when all other factors except 3 and 14 provide shocks, is dominated by Fac-

tor 3, which a visual inspection of the factor loading also confirms. The co-skewness

news impact surface figures, of the shocks from a set of factors to assets iij provide for

more interesting insights, since they show how good a hedge one asset (i) is in terms of

volatility changes in another (j), with a negative value indicating that asset j’s return

goes down with a positive increase in the volatility in country i, hence providing for a

poor hedge. For example, any shock from Factor 3, but mostly a positive one, leads to

a fall in the coskewness iij between Germany and France while a positive (negative)

shock from Factor 13 leads to an increase (decrease) in coskewness. Sub-figure 3.4d is

perhaps more revealing, showing the UK as a good hedge to increases in the volatility

of the US following a shock from Factor 1, as revealed by the increase in the coskewness

in reaction to shocks of any sign from that factor.
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Figure 3.4: CoSkewness News Impact Surface

While these types of visual diagnostics may prove useful, they should usually be sup-

plemented with more concrete analysis, as suggested by Jondeau and Rockinger (2009),

in terms of simulations to determine the finite sample distribution of the reactions to

shocks as well as Impulse Response functions to track the decay of the reactions to the

shocks over time.

3.5.3 Model Risk Forecast Comparison

The out-of-sample empirical application on the 14 MSCI index log returns is based on

a 5 day rolling forecast and re-estimation scheme. Starting from 10/08/2000, the last

4 years of daily log returns are used to estimate the models (IFACD and CHICAGO),

from which the next 5 days of 1-ahead rolling forecasts are created. The models are then

re-estimated moving the data window 5 days ahead and a new set of 5 day rolling 1-

ahead forecasts created for a total of 522 re-estimations resulting in 2610 forecasts. For

simplicity, an AR(1) models was used to capture the autocorrelation in the underlying

dataset, while consistency in comparison between the 2 models was guaranteed by
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using the same mixing matrix A across the 2 models for each estimation window so

that the only difference would be purely in the dynamics of the factors. Because of

the non-dynamic nature of the independence matrix in the IFACD model, the rolling

window re-estimation scheme with a fixed window size of 4 years enables the capturing

of any changes to the loadings, though tracking such changes is not trivial since the

independent components are identified only up to a permutation and scaling of the

sources.19 As an additional benchmark, a DCC-Normal model with AR(1) conditional

mean dynamics was also estimated so as to gauge the cost, if any, of non-dynamic

(in)dependence. To evaluate the performance of the models out-of-sample, a weighted

linear combination of the forecast density was used in order to form portfolios from

which measures could easily be calculated. To avoid bias from any particular weighting

scheme, 1000 + 120 random portfolios were generated by sampling weights from the

exponential distribution and dividing by the sum of the randomly generated deviates

to create the full investment constraint. The weighted densities of the IFACD and

CHICAGO models were estimated using the FFT method described in Section 3.3

from which quantile and distribution functions were then formed for use in the VaR

and PIT calculations respectively. To assess the adequacy of the risk forecasts a number

of tests were used, namely Berkowitz (2001) for testing the predictive density, Kupiec

(1995) and Christoffersen (1998) for VaR exceedances and Christoffersen and Pelletier

(2004) for VaR Durations, and described in Appendix C.

Table 3.3 reports the result under the different tests for the equally weighted (EW )

and average of the randomly weighted (RAND) portfolios. For the Berkowitz test,

there does not appear to be a significant difference between the 2 Factor models, with

a rejection rate among the randomly weighted portfolios of about 16% and 14% for

the IFACD and CHICAGO models respectively, indicating that overall both models fit

the out-of-sample forecast density well on average. The DCC model on the other hand

appears to fit the conditional weighted forecast densities very badly with an almost

100% rejection rate. For the VaR tests, both at the 1% and 5% coverage rates, the

IFACD model does substantially better than CHICAGO as evidenced by the large

difference in rejection rates between the two models. The DCC model does very badly

19For a small number of factors this is not too challenging as it is possible to use some type of pattern
matching on overlapping factors to identify the factors over the rolling window and their position in
the mixing matrix A. Nevertheless, this requires testing each factor from window i with time index
(ti−s+r) : ti with every other factor (including the rotated version of the factor) from the next window
i + 1 with time index ti+1 : (ti+1 − r), where r is the rolling period and s the window size, using for
instance a distance minimization criterion.

20The 1001th was the equally weighted portfolio.



Chapter 3: Multivariate ACD Dynamics and Independence 107

in capturing tail events as evidenced by the high rejection rates of this test, which is not

surprising given the inadequacy of the Normal distribution in capturing the observed

behavior of markets. In the VaR duration test, with 1% coverage the IFACD performs

somewhat better than the CHICAGO model, but at the 5% it would appear that both

Factor models perform equally well. However, the DCC outperforms the other models

here which is perhaps indicative of the value of dynamic dependence since the duration

indirectly tests for clustering of tail events which is not likely to be fully filtered out in

a static independence framework.

Table 3.3: IFACD vs CHICAGO: Forecast density and tail tests

Berkowitz V aR1% V aR5% V aRDur1%
V aRDur5%

IFACD

EW

p − value 0.097 0.359 0.055 0.085 0.005

RAND

p − value 0.160 0.170 0.100 0.070 0.021

%Reject 15.6 22.8 37.9 61.9 88.7

CHICAGO

EW

p − value 0.14 0.04 0.05 0.009 0.009

RAND

p − value 0.220 0.070 0.100 0.040 0.020

%Reject 13.7 60.8 53.3 74.7 87.3

DCC(N)

EW

p − value 0.001 0.000 0.006 0.085 0.136

RAND

p − value 0.010 0.000 0.030 0.090 0.140

%Reject 93.6 100.0 84.2 51.0 33.1

Note: The Table reports the out of sample performance of the IFACD and CHICAGO (maNIG), and DCC (N) models for 14
MSCI indices for the period 11/08/2000 to 28/12/2010 (2610 days) based on the density test of Berkowitz (2001), the
conditional coverage test for VaR exceedances of Christoffersen (1998), the ES test of McNeil and Frey (2000) and the duration
of VaR exceedances test of Christoffersen and Pelletier (2004). Starting on 10/08/2000 (T = 1), the last 4 years of data were
used to estimate the 3 models, after which the estimates were used to produce rolling forecasts for the next 5 days. The model
parameters were re-estimated taking into account new data every 5 days for a total of 522 re-estimations and 2610 out of
sample forecasts. The null hypothesis in all tests is equivalent to a correctly specified model for which the table reports the
p-values of the test under an equally weighted (EW) portfolio, and the average p-value of 1000 random weighted (RAND) long
only portfolios with full investment budget constraint. For the RAND portfolio, the number of rejections of the null hypothesis
at the 5% level of significance is also reported.

3.5.4 Model Optimal Portfolio Forecast Comparison

When moving away from the standard and nonrepresentative quadratic type utility

maximization of Markowitz (1952), portfolio allocation usually takes the form of either

some other type of utility maximization or minimization of some measure of risk such

as those from the family of spectral risk measures defined by Acerbi (2002). In either

case, it is usual to use simulated forecast scenarios to approximate the density, from

which any measure may then be computed and minimized using either LP or NLP based
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methods. An alternative approach, seeks to approximate a utility function via a Taylor

series expansion as in Jondeau and Rockinger (2006b) where the Constant Absolute

Risk Aversion (CARA) utility function was approximated using the first 4 moments of

the forecast density. This provides an interesting exposition of the value of the IFACD

model which generates time varying higher co-moments and as such is considered in

the next section. As an alternative, a scenario based optimization approach is also

considered based on the MiniMax criterion of Young (1998) which seeks to minimize

the regret from obtaining a very large loss, and is in fact the limit of the Conditional

Value at Risk (CVaR) as the quantile approaches zero. Since part of the value of ACD

based dynamics is in capturing the very extreme type movements which the non time

varying GARCH dynamics cannot accommodate, this type of risk measure is believed

to be ideally suited for this purpose.

3.5.4.1 Taylor Series Utility Expansion and Higher Moments

The approximation of expected utility based on the first four moments has been covered

among others in Jurczenko and Maillet (2006) and Jondeau and Rockinger (2006b),

with the higher co-moments exposition which follows taken from the latter. Consider

an investor who allocates capital in order to maximize the expected utility (UW ) over

his end of period wealth W , and with initial wealth set at 1. The optimal allocation

problem may be formulated as:

max
w

E [U (W )]

s.t.
n∑
i=1

wi = 1 w > 0, for i = 1, . . . ,n.
(3.32)

where we assume the absence of a riskless asset so that the sum of the weights w, repre-

senting the fraction of wealth allocated to risky assets, sums to one, and that we forbid

short-selling. Given a vector of returns R = (R1, . . . , Rn), the end of period wealth

WT = (1 + r̄), where r̄ = w′R. While it is possible to calculate any utility function us-

ing the semi-analytic approach described in Section 3.3, this becomes computationally

infeasible in an optimization setting. Instead, one can use a Taylor series expansion to

approximate the utility using only the moments, such that the expected utility for k

moments is given by:

E [U (W )] =
∞∑

k=0

U (k)
(
W̄
)

k!
E

[(
W − W̄

)k]
, (3.33)
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where W̄ = w′E [R], is the weighted mean expected return. Loistl (1976) explored the

necessary conditions for this infinite series to converge to the expected utility, strongly

depending on the type of utility function used. For the purpose of this exercise we

truncate the order to the first four moments for feasibility in the co-moment represen-

tation (the co-kurtosis tensor is already a daunting n×n3), being two orders more than

the Mean-Variance criterion, with skewness and kurtosis directly related to investor

preference (dislike) for odd (even) moments under certain mild assumptions given in

Scott and Horvath (1980). The expected Utility under the Taylor series expansion is:

E [U (W )] = U
(
W̄
)

+ U (1)
(
W̄
)
E
[
W − W̄

]
+

1

2
U (2)

(
W̄
)
E

[(
W − W̄

)2
]

+
1

3
U (3)

(
W̄
)
E

[(
W − W̄

)3
]

+
1

4
U (4)

(
W̄
)
E

[(
W − W̄

)4
]

+O
(
W 4

)

(3.34)

where O
(
W 4

)
represents the remainder of the Taylor series due to the truncation.

Define the expected return, variance skewness and kurtosis21 as follows:

W̄ = E [rp] = mp = w′m

E

[(
W − W̄

)2
]

= E
[
(rp −mp)

2
]

= σ2
p = w′ (AHA′)w

E

[(
W − W̄

)3
]

= E
[
(rp −mp)

3
]

= s2
p = w′

(
AM3 (A′ ⊗A′)) (w ⊗ w) (3.35)

E

[(
W − W̄

)4
]

= E
[
(rp −mp)

4
]

= k4
p = w′

(
AM4 (A′ ⊗A′ ⊗A′)) (w ⊗ w ⊗ w)

(3.36)

where A is the mixing matrix from the ICA decomposition, H the conditional factor

covariance (diagonal) matrix given in (3.9), M3 and M4 the conditional higher co-

moment tensors given in (3.15) and (3.16) respectively, and m the conditional mean

vector. The expected Utility is then approximated by:

E [U (W )] ≈ U
(
W̄
)

+
1

2
U (2)

(
W̄
)
σ2
p +

1

3!
U (3)

(
W̄
)
s3
p +

1

4!
U
(
W̄
)
k4
p. (3.37)

When the CARA utility function is used, then the approximation resolves to:

E [U (W )] = − exp (−λW ) ≈ − exp (−λmp)

[
1 +

λ

2
σ2
p +

λ3

3!
s3
p +

λ4

4!
k4
p

]
(3.38)

21All time indices are suppressed in the representations for clarity.
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where λ represents the investor’s constant absolute risk aversion, with higher (lower)

values representing higher (lower) aversion. I maximize this function for all rolling fore-

casts using an SQP based solver and making use of the first order derivatives given in

Jondeau and Rockinger (2006b). A budget constraint is also imposed as are positivity

and upper bounds on the assets weights of 50%. Table 3.4 shows the results for the

IFACD, CHICAGO and DCC models of CARA utility portfolios maximized under 4

different risk aversion coefficients, λ, representing the mildly risk averse to extremely

risk averse investor. The picture which emerges from this exercise is strikingly clear.

As the risk aversion coefficient increases, and more weight is given to the higher mo-

ments, the IFACD model progressively outperforms the CHICAGO model. This is

immediately evident from the p-value of the model confidence set (MCS)22 procedure

of Hansen, Lunde, and Nason (2011), using a simple loss function of the negative of

the portfolio returns which overwhelmingly rejects the CHICAGO model from λ = 5

onwards. A slower progression is seen when it comes to the significance of Risk-Reward

(RR) differences given by the test of Ledoit and Wolf (2008), with the IFACD model

RR ratio starting to look significantly better at λ = 25 with 90% confidence. Not

surprisingly, the DCC model based on the CARA utility expansion with only the first

2 moments fares worse at all levels of risk aversion, indicating that trading away some

dynamics in terms of conditional dependence for the flexibility of dynamic higher mo-

ments pays off. Figure 3.5 shows the cumulative wealth (W ) of the IFACD and

CHICAGO based CARA (λ = 25) portfolio and the relative difference in the aggregate

weights of the 3 regions represented by the 14 MSCI indices during 2 period. Since

both models share the exact same conditional mean dynamics and hence ICA mixing

matrix, the differences are purely the result of the conditional factor dynamics, cap-

tured in the relative weight distribution of the two optimized models in the two sub

figures. The first, showing a relatively mild period in 2004, indicates relative differences

in the weights of between -20% and 20% (i.e. a -20% on the aggregate Europe region

indicates that the CHICAGO model was 20% underweight that region relative to the

IFACD model). If that serves as a baseline for relatively mild periods, then surely

the next figure which captures the run-up to the 2008 crisis, and showing relative dif-

ferences of between -60% and 60%, clearly indicates where and how the two models

diverged during that extremely turbulent period. Thus, despite any noise present from

possibly over-parameterized dynamics, there can be no doubt that without allowing the

higher moments to vary, extreme market movements are unlikely to be accommodated

22See Appendix C.3 for more details.



Chapter 3: Multivariate ACD Dynamics and Independence 111

Table 3.4: Time varying higher co-moments portfolio with CARA utility

IFACD CHICAGO DCC(N)

λ = 1

W̄T 75.47 79.72 57.33

µ̂ 0.0018 0.0018 0.0017

σ̂ 0.0169 0.0170 0.0168√
(252)( µ̂

σ̂
) 1.69 1.71 1.60

LW [stat ; p-value] vs IFACD [1.248 ; 0.224] [1.106 ; 0.278]

MCS [p-value] [0.357] [1.000] [0.357]

Log Relative Wealth 0.05 -0.27

λ = 5

W̄T 94.07 58.60 43.89

µ̂ 0.0019 0.0017 0.0016

σ̂ 0.0175 0.0161 0.0159√
(252) µ̂

σ̂
1.72 1.66 1.58

LW [stat ; p-value] vs IFACD [0.559 ; 0.564] [1.186 ; 0.226]

MCS [p-value] [1.000] [0.054] [0.044]

Log Relative Wealth -0.47 -0.76

λ = 10

W̄T 64.20 39.84 26.02

µ̂ 0.0017 0.0015 0.0014

σ̂ 0.0163 0.0154 0.0151√
(252) µ̂

σ̂
1.69 1.58 1.43

LW [stat ; p-value] vs IFACD [1.301 ; 0.198] [2.316 ; 0.020]

MCS [p-value] [1.000] [0.021] [0.003]

Log Relative Wealth -0.48 -0.90

λ = 25

W̄T 23.83 17.82 13.24

µ̂ 0.0013 0.0012 0.0011

σ̂ 0.0145 0.0142 0.0140√
(252) µ̂

σ̂
1.44 1.34 1.23

LW [stat ; p-value] vs IFACD [1.636 ; 0.107] [2.306 ; 0.024]

MCS [p-value] [1.000] [0.039] [0.012]

Log Relative Wealth -0.29 -0.59

Note: The Table reports the out of sample performance of the IFACD and CHICAGO (maNIG), and DCC (N) models from
the optimization of the CARA utility approximation using only the first 4 co-moment matrices, for 14 MSCI indices for the
period 11/08/2000 to 28/12/2010 (2610 days). Starting on 10/08/2000 (T = 1), the last 4 years of data were used to estimate
the 3 models, after which the estimates were used to produce rolling forecasts for the next 5 days. The model parameters were
re-estimated taking into account new data every 5 days for a total of 522 re-estimations and 2610 out of sample forecasts. The
performance statistics reported are W̄T representing terminal wealth of a portfolio of starting value of 1, the average return

(µ̂), average volatility (σ̂), the annualized risk-return (
√

(252) (µ̂/σ̂)), the statistic and p-value of the Ledoit and Wolf (2008)

test for the difference in the RR ratio between the IFACD and other models, the p-value of the MCS procedure of Hansen,
Lunde, and Nason (2011) using 10000 bootstrap replications under the range statistic and the relative log difference in
Terminal Wealth between the IFACD and other models. The CARA utility was optimized under 4 different risk aversion levels
(λ) representing the mild to very risk averse investor.

by purely GARCH dynamics even when using a conditional distribution with fat tails

and skewness such as the NIG.
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3.5.4.2 Extreme Loss Aversion via MiniMax Optimization

Since part of the value of the IFACD model dynamics lies in capturing the extremes

of the tails, it seems natural to investigate a portfolio application which targets min-

imization of the maximum regret. The MiniMax23 model of Young (1998) has game

theoretic origins, where agents aim to minimize their expected maximum losses. For-

mally, when applied to portfolio selection, given N assets and T periods, the model

may be represented by as a Linear Programming (LP) problem:

min
Mp,w

Mp

s.t.

Mp −
m∑

j=1

wjri,j ≤ 0,∀i = {1, . . . , n}

m∑

j=1

wjµj = C

m∑

j=1

wj = 1

wj ≥ 0,∀j

(3.39)

where Mp is the objective minimization value representing the maximum loss of the

portfolio24 given a vector of weights w, C some minimum level of return and µ the

forecast return vector on the m securities. While the problem was originally considered

on historical data so that n represented the number of periods in the dataset, it is also

possible to consider n to be the size (rows) of a 1-ahead forecast scenario, in which case

the problem is equivalent to the maximization of the Conditional Value at Risk for a

quantile approaching zero. Because of this discretization of the forecast density, the

actual minimum quantile achieved will be loosely related to the number of scenarios

T generated.25 The first constraint in equation (3.39) guarantees that Mp is bounded

from above by the maximum portfolio loss. Tracing out the set of portfolios for different

23When dealing with a loss distribution, MiniMax is the technically correct term, whilst when working
with returns, maximizing the minimum negative return is equivalent to the MaxiMin problem, but in
keeping with the literature I will only refer to this problem as Minimax.

24To express this as a minimization problem I work with losses so that Mp represents the maximum
loss rather than the minimum return.

25This effectively means that there will always be some uncertainty when comparing models using
the same T sized scenarios, but this will always be the case for scenario based portfolio optimization
models with almost any measure.
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levels of G (using an equality rather than inequality), will generate the portfolio frontier

from which the optimal risk to return portfolio may for instance be chosen. Yet there is

no reason why we cannot directly estimate this optimal ratio of risk to return making

use of fractional programming as described in Charnes and Cooper (1962) and more

recently in Stoyanov, Rachev, and Fabozzi (2007). The Minimax LP problem can

therefore be reformulated as follows:

min
Mp,w,b

Mp

Mp −
m∑

j=1

wjri,j ≤ 0,∀i = {1, . . . , n}

m∑

j=1

wjµj = 1

m∑

j=1

wj = b

b ≥ 0

(3.40)

where b is the multiplier coefficient added to the optimization problem as a result

of transforming the fractional risk/reward problem. Further details can be found in

Charnes and Cooper (1962) for LP and Dinkelbach (1967) for NLP type problems.

For the empirical application using the MiniMax measure, I have chosen an alternative

dataset of weekly log total returns for the point in time constituents of the DJIA index

taken from the CRSP database.26 This dataset is analyzed in more detail in Section

4.4.1 where it is used in a large out-of-sample comparative model and risk measure ap-

plication. The dataset was chosen because of the continuity offered by the underlying

index and the liquidity of the stocks covered, which together with a choice of lower fre-

quency should hopefully provide some diversity in the evidence presented on the value

of the IFACD model.

The out-of-sample weekly forecasts, based on weekly re-estimation of the models using

all available data going as far back as 1965, covers the period 13/01/1975 to 03/01/2011

for a total of 1878 weeks. For each weekly forecast, a scenario of size 7000 × 30 was

created and optimized using the method in Equation (3.40) subject to positivity con-

straints on the weights, maximum allocation of 20% per security and a full investment

constraint. The conditional mean forecasts where generated from an AR(1) model,

26Whenever Dow Jones added, dropped or changed companies in the index, this was immediately
reflected in the application.
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and the model dynamics used were the same as in the previous application in Section

3.5.4.1. Additionally, an AR(1)-DCC model with multivariate Laplace innovations was

also fitted in order the gauge the cost of the non-dynamic independence while providing

for thicker tails than the Normal,27 thus not penalizing the model disproportionately

versus the IFACD and CHICAGO models which use the very flexible NIG distribution.

Table 3.5 reports the results of the application based on the terminal wealth, return to

risk (RR) ratio and VaR at the 1% quantile. I also report the standardized statistic of

the difference in the RR ratios between the IFACD and the other two models, together

with the p-value under the null that the difference is zero based on the test of Ledoit and

Wolf (2008). It would appear that the difference between the IFACD and CHICAGO

models based on the RR ratio is only just marginally insignificant at the 10% level,

despite almost a doubling of the terminal wealth without adding more risk, whilst in

the case of the DCC model the p-value is significantly higher indicating a strong rejec-

tion of the alternative hypothesis that the RR ratios differ. Using the MCS procedure

as in Section 3.5.4.1, under a simple loss function of the negative portfolio returns, all

3 models belong to the optimal set with 90% confidence, though it is clear from the

relative values that the IFACD dominates the CHICAGO with 70% confidence.

Table 3.5: IFACD, CHICAGO and DCC based portfolios under MiniMax criterion

MiniMax Optimization IFACD(NIG) CHICAGO DCC(MV L)

W̄T 892.8 486.2 577.7

µ̂ 0.003972 0.003650 0.003712

σ̂ 0.026270 0.026425 0.025241√
(52) µ̂

σ̂
1.090 0.996 1.060

LW [stat ; p-value] [1.53 ; 0.12] [0.48 ; 0.64]

MCS [p-value] [1.00] [0.31] [0.35]

V aR1% 0.0623 0.0637 0.0640

Note: The Table reports the out of sample performance of the IFACD, CHICAGO and DCC (Laplace) models optimized under
the mean-Minimax (LP) measure using scenario methods, for the weekly log returns of the 30 point in time constituents of the
DJIA index for the period 13/01/1975 to 03/01/2011 (1878 weeks). The models were re-estimated every week, and a scenario
forecast for the following week of size 7000 × 30 generated and optimized under a mean-Minimax fractional linear programming
model. The performance statistics reported are W̄T representing terminal wealth of a portfolio of starting value of $1, the

average mean (µ̂), average volatility (σ̂), the annualized return to risk (RR) ratio (
√

(252)( µ̂
σ̂

)), the statistic and p-value of

the Ledoit and Wolf (2008) test for the difference in the RR ratio between the IFACD and every other model, the p-value of
the MCS procedure of Hansen, Lunde, and Nason (2011) using 10000 bootstrap replications under the range statistic, and the
VaR at the 1% coverage rate.

27The weighted Laplace portfolio has an excess kurtosis of 3.
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3.6 Conclusion

In portfolio and risk management analysis it is important to consider not only asym-

metric and heavy tailed multivariate distributions but also time variation in skewness

and kurtosis. This is particularly true within a GARCH framework where the variance

dynamics are unable to accommodate the extreme swings in security prices. Modelling

the conditional density dynamics in a multivariate GARCH setup has proved unfeasible

mainly because of the difficulty in dealing with tractable representations of multivariate

distributions. The IFACD model presents the opportunity to use time varying dynam-

ics for all distributional parameters in a multivariate setting, without incurring the

usually penalty of increasing problem dimensionality, by making use of the statistical

independence factor framework. It provides for a truly large scale and very fast com-

putation of systems which can be estimated making use of parallel resources, a feature

only available within this framework. Some of the unique features of this model such

as closed form higher moments and the semi-analytic expression for the full weighted

portfolio density have clear applications in portfolio and risk management as shown

in this chapter. Modelling of higher moment dynamics appears to provide the most

benefit during periods of market stress when GARCH volatility with static higher mo-

ments cannot adjust to extreme expansions in the conditional density representative

of large negative returns. Evidence of this was presented in the empirical section of

this chapter with a risk and portfolio application using two different datasets. In the

VaR application, the IFACD model had the lowest number of rejections for correctly

capturing the exceedances at the 1% coverage level, surpassing both the CHICAGO

and DCC models. When using only the conditional co-moment forecasts, the IFACD

model again outperformed the CHICAGO and DCC models, using a variety of perfor-

mance measures, as more weight was assigned to the higher moments, commensurate

with increasing risk aversion. With the weekly DJIA index dataset, using a very large

out-of-sample rolling portfolio application and an extreme aversion risk measures, the

IFACD model again provided the superior performance based on the MCS procedure.

The tradeoff for working with such flexible dynamics in a multivariate setting is in

the use of static independence. However, when compared with a DCC model which

benefits from dynamics in multivariate dependence, any drawbacks were not apparent

under a frequent re-estimation and rolling update scheme in the empirical applications.

Possible avenues for further research with these models would include possible time

variation in the ICA mixing matrix, though the research thus far from the ICA com-

munity suggests this to be a rather hard problem. Dimensionality reduction via the

PCA whitening stage is also a possibility as long as the independent components are
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contained in the reduced subspace which is difficult to say a-priori. The most valuable

research would most likely focus on the univariate ACD estimation, with exploration

of alternative types of dynamics, possible use of estimation procedures such as GMM

and more robust optimization algorithms to deal with the nonlinear bounding trans-

formation.



Chapter 4

Active Weights for Bad

Benchmarks

Since their introduction in the early 90’s, Exchange Traded Funds (ETF) have ex-

ploded in popularity with assets growing to approximately $1.35 trillion by Q3:2010,1

with over 3,011 such funds globally, and accounting for about 12% of all mutual fund

assets. Not surprisingly, the top 16 ETF2 by Assets under Management (AuM ) are

populated with US based index trackers such as the ’SPY’ (State Street S&P 500 Index

Fund), ’QQQ’ (Invesco PowerShares NASDAQ-100 Index) and ’DIA’ (State Street Dow

Jones Industrial Average Fund), giving investors a relatively low cost way of passively

tracking these market indices. At the heart of this index fund growth phenomenon is a

long standing and ongoing debate on the merits of passive versus active investing. One

of the first studies to argue in favor of passive investing was Jensen (1968) who studied

the performance of 115 mutual fund managers for the period 1955-1964. He reported

that only 48 out of 115 mutual funds outperformed the market excluding management

fees, but after the fees had been subtracted, this number dropped to 39. Many studies

following Jensen’s appear to support his findings. Fama (1991) provided for a sum-

mary of subsequent studies showing in particular that pension funds under-performed

passive benchmarks on a risk adjusted basis. Malkiel (2003) argued on the absence

of any recognizable anomalies or irrationalities which would lead to superior returns,

hence advocating a passive investment strategy. French (2008) investigated the overall

1Source: BlackRock ETP Landscape Industry Highlights, Bloomberg, Year End 2011
2Source: http://etfdb.com/compare/market-cap/
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cost of active investing, concluding that over the period 1980-2006, the typical investor

would have increased his average annual return by 67 basis by switching to a passive

market portfolio. Yet despite the pedigree and force of arguments of these authors,

active investing continues to thrive, as witnessed by the equally strong growth of hedge

funds, which have grown from a ’paltry’ $2.8 billion in 1995 to over $2 trillion3 by 2012,

with the top 225 managers (approximately less than 2%) holding more than 60% of the

AuM, the majority of which came from institutional sources, representing a sophisti-

cated class of investor. Arguments in favor of active investment have looked at certain

market anomalies as the reasons for observed out-performance, such as momentum (see

for example Grinblatt and Titman (1992) and Jegadeesh and Titman (1993)), and more

generally the types of behavioral biases documented in Tversky and Kahneman (1974)

and Kahneman and Tversky (1979) which could give rise to non rational investment

decisions which can persist. There is little doubt that security returns do not conform

to the classical view of markets put forward by Bachelier (1964), as the evidence for the

stylized facts is now overwhelming. Specific evidence of this was presented in previous

chapters and a feasible solution to an important effect, the time variation in higher

moments, was proposed in a multivariate context. When the dynamics of securities are

characterized by time varying moments and co-moments, it is not very likely that a

simple index weighting scheme such as equal weighting or capitalization weighting will

be optimal. Even when using robust methods to calculate the covariance matrix for

mean variance optimization as in Scherer (2007) or Bayesian methods as in Pastor and

Stambaugh (2000) or Black and Litterman (1992), using the unconditional historical

data without accounting for conditional variation in the moments and co-moments is

not going to provide for a good forecast.

The majority of empirical studies have used a variety of index benchmarks to gauge

the performance of fund managers and the value of active investing. Worst still, these

indices form the basis for rewarding a large number of investment managers whose sole

aim is to outperform their benchmark. Grinold (1992) asked whether index bench-

marks are efficient, using the test of Gibbons, Ross, and Shanken (1989) on the country

indices of Australia, Germany, Japan, U.K. and U.S. for the period ending 1991 (with

start dates as early as 1973 for the U.S.). He found that 4 out of the 5 indices were

not efficient ex-post. Demey, Maillard, and Roncalli (2010) have also argued that nei-

ther capitalization nor price weighted indices are efficient, exposing investors to what

should be diversifiable risk. DeMiguel, Garlappi, and Uppal (2009) on the other hand

3Source: HFMWeek.
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argued that it is difficult to beat the equal weighting strategy, considering a number

of mostly mean-variance related models on limited history monthly data, but again

made no formal statistical comparison of the Sharpe ratio differences. In defense of

optimization, and a direct reply to the previous study which was criticized for using

very short histories for the estimation of the covariance, Kritzman, Page, and Turking-

ton (2010) provide a very thorough empirical application across a number of portfolios

using the mean-variance criterion, including one comprising daily returns of the point

in time constituents of the S&P500 from 1998 to 2008, and show substantially large

differences (though again not statistically tested) in Sharpe ratios against the equal

weighting strategy. Similarly, Martellini (2008) used total volatility as a model-free

estimate of a stock’s excess expected return in order to design improved equity bench-

marks, finding that the maximum Sharpe ratio portfolios significantly outperformed

capitalization weighted schemes on a risk adjusted basis. Unfortunately, the differences

in Sharpe ratios presented were again evaluated ad-hoc and not using any test of sig-

nificant statistical difference. Nevertheless, there is little doubt that a well thought out

approach to the investment allocation life cycle process can provide significant value

added versus either a naive 1/N strategy or many of the benchmark market indices.

The growth in active investment products means that investors face a daunting task

of sifting through relative risk and performance histories in order to rank and choose a

suitable investment. When the comparison is made against one of the typical market

indices, as is usually the practice, investors are setting the benchmark too low and

rewarding managers too high.

In this chapter I present evidence, through a large out of sample application, that it is

possible to outperform the benchmark index on which the performance of so many fund

managers is gauged and rewarded. Making use of a variety of models and measures,

representing varying degrees of modelling sophistication, and without any superior con-

ditional mean forecast model, I argue that the weighting of one of the most popular

indices, the Dow Jones Industrial Average (DJIA), is neither efficient nor does it repre-

sent a good benchmark. Outperforming this and related indices such as the S&P 500 is

both possible and feasible. Using this unique4 point in time deep historical dataset of

the DJIA index members, representing what is likely the most liquid stocks in the US

market, it is possible to invest within a compact set which is easy to track and replicate

4To the best of my knowledge, there has not been another study of this point in time constituents
of the Dow 30 used in an out-of-sample portfolio allocation application.
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over time. Unique features of this application also include the use of fractional pro-

gramming and the derivation and use of certain smooth Nonlinear Programming (NLP)

formulations allowing the inclusion of leverage in the optimization process, with confi-

dence, and without resorting to solutions requiring strong assumptions of the portfolio

weights’ trimability (see Section 4.3.2) or global optimization approaches.5 The models

from the previous chapters are used in this application as the data generating processes

for the modelling and simulation of scenario based density forecasts. Using a range of

models and risk measures it is possible to compare the different portfolios formed from

these, and unlike some previous studies in the literature on applied portfolio allocation,

the comparison is not limited to terminal wealth but makes use of tests such a the

Model Confidence Set of Hansen, Lunde, and Nason (2011) and the test of Ledoit and

Wolf (2008) for proper statistical evaluation of Sharpe ratio differences. Finally, the

application has a weekly holding/modelling cycle, which is a compromise between the

data length requirements of the econometric models which exclude the use of monthly

data and the noise in higher frequency datasets as well as the cost of more frequent

re-balancing which excludes the use of daily data.

The chapter is organized as follows. Section 4.1 briefly reviews stochastic programming

models and scenario optimization. Section 4.2 reviews the measures of risk and devia-

tion used in the empirical application while Section 4.3 discusses methods for optimizing

such measures using fractional linear and nonlinear programming methods, whilst also

proposing certain smooth approximations to the optimization of some discontinuous

functions. The results of the empirical application are presented and discussed in Sec-

tion 4.4, and Section 4.5 concludes.

4.1 Stochastic Programming Models

“. . . there are known knowns; there are things we know we know. We

also know there are known unknowns; that is to say we know there are some

things we do not know. But there are also unknown unknowns - the ones

we don’t know we don’t know.” − Donald Rumsfeld

5Some evidence is also presented to show that these smooth NLP approximations are very accurate
and provide for substantial speed increases versus equivalent LP formulations.
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Randomness in the underlying environment leads to uncertainty, which can be charac-

terized, albeit approximately, by a model with a probability distribution. The uncer-

tainty is by no means resolved by the modelling process, but simply structured under a

set of assumptions for enabling decision-making. In terms of the quotation, it allows the

assignment of probabilities to some unknowns so that they become ’known unknowns’.6

This structured uncertainty, usually arises in the following areas:

• Model Selection Uncertainty.

The underlying true Data Generating Process (DGP) is never known, but some

of its properties inferred from observing some limited history. The set of models

and distributions used in this chapter, while quite general are by no means ex-

haustive and in some cases, particularly with omnibus distributions like the GH

will overlap over a certain space.7 In Bayesian modelling, the problem of model

selection uncertainty has been approached by using ensemble learning techniques

such as model averaging (BMA), bagging and boosting (see for example Raftery,

Madigan, and Hoeting (1997) for BMA in linear regression and Polikar (2006)

for a general overview). Most of these methods however have mostly been used

in univariate linear models and it is not clear how to feasibly extend this to

multivariate GARCH type models let alone in a non Bayesian setting.

• Distributional Uncertainty.

In simulating forecasts from an estimated model, the explicit assumption is that

the forecast distribution is the same as the one used for the in-sample estimation,

adding another layer of uncertainty. For ARMA and GARCH based models,

Pascual, Romo, and Ruiz (2004, 2006) suggest to sample from the empirical dis-

tribution of the standardized residuals. However, depending on the actual size

of the in-sample data, this may be inadequate given the requirements of scenario

optimization using a large discrete set to approximate the continuous distribu-

tion. This is likely to be important when the measure applied to the scenario is

tail dependent.

6The ’unknown unknowns’ still remain as a result of imperfect models for capturing the underlying
dynamics, or what Nasim Taleb calls ’Black Swans’ events.

7For example, the DCC Student will overlap with the DCC Normal in cases here the data is mul-
tivariate Normal and the shape parameter > 30. However, there are efficiency gains from estimating
certain simpler models individually which is why I do not restrict myself to just 2 omnibus models for
estimation.
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• Parameter Uncertainty.

In a non Bayesian setting, explicitly accounting for parameter uncertainty is ex-

tremely difficult particularly in the multivariate case. In portfolio optimization,

this has usually been limited to the Mean-Variance (EV ) model using historical

data and choices on the prior mean vector and covariance matrix. For example,

Garlappi, Uppal, and Wang (2007) tackle both parameter and model uncertainty

in an EV setup and conclude that it leads to higher out-of-sample Sharpe ratios

for their set of 8 international equity indices.8

The purpose of stochastic programming (SP) is to incorporate such uncertainty into the

objective or constraint functions with a view to obtaining an optimal set of decisions.

This is done by constructing a scenario, or set of scenarios, representing the possible

future path or paths of the underlying process (as a discrete time approximation to the

continuous case) incorporating the uncertainty with respect to the model and future,

and from which decisions can be based. These types of models were originally proposed

and analyzed among others by Dantzig (1956, 1992), Beale (1955), Dantzig and Infanger

(1993), Madansky (1962) and Charnes and Cooper (1959). An excellent exposition of

SP models in asset and liability management can be found in Kouwenberg and Zenios

(2006), from which the notation in the remainder of this Section is based on. The basic

SP problem may be expressed as follows:

min
x

E [f0 (x, ω)]

s.t.

fi (x, ω) ≤ 0, i = 1, . . . , n

(4.1)

where x is an m-dimensional vector of decision variables, ω represents the random

vector, and the set of objective and constraint functions fi : Rm × Ω → R. When the

random vector ω can be represented by a discrete and finite distribution with support

the set Ω = {ω1, . . . , ωN}, this is called the scenario set. The 2 basic cases, representing

extremes in SP are the anticipative and adaptive models. In the anticipative model,

decisions are made before any uncertainty is resolved by conditioning the objective

and constraint functions on a random vector representing the anticipated realization

of future outcomes given an underlying DGP. In the adaptive model, decisions are

made after uncertainty in some of the variables is resolved. This does not provide

8Unfortunately, the comparison with other models stops at a simple comparative difference of Sharpe
ratios without mention of the significance of those differences.
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for a full resolution of uncertainty otherwise this would result in a fully deterministic

model. Formally, let A represent the set of all relevant information that could become

available by realizing an observation, being a subfield of the σ−field of all the outcomes

generated from the set Ω of the random vector ω. The decision x on the random vector

ω is termed A−measurable, and the adaptive SP can be represented as:

min
x(ω)

E [f0 (x (ω) , ω) |A ]

s.t. E [fi (x (ω) , ω) |A ] 6 0 i = 1, . . . , n

x (ω) ∈ X almost surely

(4.2)

The mapping x : Ω → X is such that x (ω) is A−measurable, and the problem can

be handled by solving a set of deterministic programs for every ω. Between the two

extremes of no information (anticipative model) and complete information (distribu-

tion model), is the partial information model which allows for intermediate actions

or recourse. These multi-stage SP with recourse problems, given a discrete and finite

distribution from which a scenario set can be extracted, may be formulated into de-

terministic large scale Linear (LP), Quadratic (QP) or Nonlinear Programming (NLP)

problems. Notable early contributions are Bradley and Crane (1972) who developed

a multi-stage SP model for bond portfolio management, where an LP decomposition

algorithm was presented allowing for the efficient and recursive solution of sub prob-

lems in the general portfolio model. More recently, applications in asset and liability

management can be found for instance in Dantzig and Infanger (1993), Kouwenberg

(2001), Mulvey and Shetty (2004), Herzog, Dondi, Keel, Schumani, and Geering (2007)

and Huang (2010). The evidence from the research on multistage SP models is that

they do add significant value to the modelling process. However, they incur a high

computational burden for the added complex modelling they enable and as such do not

readily lend themselves to the type of large scale empirical back-testing application un-

dertaken in this chapter, which is restricted to a single stage anticipative model, more

typically observed in practice.

Irrespective of the type of SP model used, two issues deserve particular attention. First,

it is important to check the consistency of the measures chosen against the model gen-

erated scenarios so as to gauge a reasonable scenario size and obtain some insight into

the degree of error arising from the discretization. When comparing multiple models,

it is likely that one size will not fit all. Ideally one would want to choose, for each

model, a size which will give the same type of consistency across all models. I take this

issue up in more detail in the empirical section. Secondly, it is important to ensure

that none of the scenario sets include risk free arbitrage. This might happen if the

objective function is unbounded from below (first order arbitrage) or a state exists for
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which it is zero (second order arbitrage) or alternatively that all states yield positive

payoffs. In practice, this can and should be checked post optimization, though is not

very common9 with the types of models and frequency of data used in the empirical

application.

4.2 Risk and Deviation: Models and Properties

In portfolio and resource allocation, characterization of the future uncertainty by a sce-

nario of possible outcomes does not in itself provide value to the decision maker unless

he is able to rank, choose and allocate among competing alternatives based on a set of

preferences. Historically, theories of such preferences have been normative, describing

a certain set of principles or axioms for rational behavior. The expected utility theory,

first proposed by Bernoulli (1954) as a solution to the St.Petersburg Paradox10, and

formalized by Von Neumann and Morgenstern (1944) into 4 key axioms (Completeness,

Transitivity, Independence, Continuity), provides the most popular approach11 to ra-

tional decision making. Risk attitudes in expected utility theory are usually measured

by the Arrow-Pratt (see Arrow (1963)) definitions of absolute and relative risk aversion

(ARA and RRA respectively) which are standardized measures of the degree of cur-

vature in the utility functions12 Utility functions of the form U (W ) = − exp (−λW ),

for instance, have constant absolute risk aversion, an application of which was used

in 3.5.4.1. Unfortunately, by solving 1 paradox, the theory introduced 2 others; the

Allais Paradox provides a challenge to the Independence axiom and relates to issues of

bounded rationality already discussed by Simon (1955) who also argued against the ho-

mogeneous decision maker so popular in classical finance theory; the Ellsberg Paradox

provides a challenge to the Completeness axiom leading to inconsistent choice and giv-

ing rise to ambiguity aversion. In terms of the quotation in Section 4.1, this is related

to preference for ’known’ versus ’unknown knowns’. Empirical studies have also found

inconsistencies between the prescribed behavior of expected utility and the observed

behavior of individuals. Lichtenstein and Slovic (1973) found that subjects sometimes

9In fact, no occurrence of arbitrage was found in any scenario in the empirical application.
10Where the distinction between expected utility and expected return was made.
11Though by no means the only approach. See for example Savage (1962) for subjective expected

utility, Quiggin (1982) and Schmeidler (1989) for rank dependent utility and Zadeh (1965) for Fuzzy
Logic.

12 Formally, ARA (W ) = −U′′(W )
U′(W ) and RRA (W ) = −WU′′(W )

U′(W ) .
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exhibit signs of preference reversals with regards to their certainty equivalents of dif-

ferent lotteries which may arise as a result of the way the decision problem is framed.

In fact many of the paradoxes investigated, and most importantly the actual behavior

observed in experiments is well captured by the behavioral approach to decision mak-

ing introduced by Kahneman and Tversky (1979) and formalized in their cumulative

prospect theory. Underreaction, overreaction and related irrational processing of in-

formation (see for example De Bondt and Thaler (1987) and Frazzini (2006)) are well

captured by a range of cognitive biases described in the behavioral finance literature.

More importantly, cumulative prospect theory is framed in terms of gains and losses

rather than Terminal Wealth (TW ) which may lead to a more practical approach to

defining disutility and risk for the average investor rather than the rigid axioms of ex-

pected utility theory.

The rather arbitrary nature of utility functions, and difficulty in pragmatically having

a one size fits all approach, has led to a parallel strand of research in an attempt to

depart from the utility framework altogether and to make use of criteria based on more

objective and concrete concepts, mainly related to loss aversion. A first attempt at

quantifying risk as the loss beyond a certain threshold was the Safety-First criterion

of Roy (1952) which aimed at minimizing the probability of being below an investor’s

minimum acceptable return (MAR). Later concepts looked at improving on this mea-

sure by penalizing losses below the threshold at different rates,13 representing different

preferences for risk. Irrespective of the type of measure, the more general reward-risk

approach has proved very popular both academically and in practise since it enables

preferences to be summarized in a few scalar parameters such as the mean and vari-

ance. However, it was not until recently that formal qualifications of the properties of

such measures were defined in seminal papers by Artzner, Delbaen, Eber, and Heath

(1999) and Acerbi (2002) on risk and Rockafellar, Uryasev, and Zabarankin (2006) on

deviation, with the latter establishing the connection between the two. Continuing with

the notation from Section 4.1, consider the probability space {Ω,A, P} where P is the

probability on the A measurable subsets of Ω. Rockafellar, Uryasev, and Zabarankin

(2006) defined a set of axioms which functions in the linear space L2 (which includes

the mean and variance) should satisfy. Formally, the deviation measure functionals

D : L2(Ω) → [0,∞] should satisfy the following axioms:

• (D1) D (C) = 0 ∀ constants C,

13The probability of being below a threshold Pr(Ri < θ) is equivalent to to E [(Ri − θ)a], with a = 0.
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• (D2) D (λX) = λD (X) ∀ X and λ > 0,

• (D3) D (X +X ′) ≤ D (X) + D (X ′) ∀ X and X ′,

• (D4) D (X) ≥ 0 ∀ X and D (X) > 0 ∀ nonconstant X,

where (D1) is the translation invariance property under the special condition given for

constants (i.e. insensitivity to constant shifts), (D2) represents the positive homogeneity

property, (D3) the subadditivity property , while (D4) is the lower bound implied by

the domain of D. Artzner, Delbaen, Eber, and Heath (1999) provide the equivalent

’coherent’ risk measure functionals R : L2(Ω) → (−∞,∞] which should satisfy the

following axioms:

• (R1) R (C) = −C ∀ constants C,

• (R2) R (λX) = λR (X) ∀ X and λ > 0,

• (R3) R (X +X ′) ≤ R (X) + R (X ′) ∀ X and X ′,

• (R4) R (X) ≤ R (X ′) whenever X ≥ X ′,

where (R1) is the translation invariance property, (R2) is positive homogeneity, (R3)

subadditivity property and (R4) the monotonicity property. More plainly, (R1) implies

that adding a constant to a set of losses does not change the risk,14 (R2) that holdings

and risk scale by the same linear factor, (R3) that portfolio risk cannot be more than the

combined risks of the individual positions, and (R4) that larger losses equate to larger

risks. Acerbi (2002) defined the family of spectral risk measures as those with weighted15

quantiles, possessing the properties of coherent risk measures and additionally:

• (R5) If F (X) = F (Y ), then R (X) = R (Y ),

which essentially implies that portfolios with equal cumulative distribution functions

(F) should have the same risk. Rockafellar, Uryasev, and Zabarankin (2006) defined a

one-to-one relationship between deviation and risk measures16 which satisfy properties

(R1), (R2), (R3) and are strictly expectation bounded (R(X) > E [−X]) as:

14A point taken up forcefully by Glyn Holton on his critique of these properties in his blog:
http://glynholton.com/2008/09/the-case-for-incoherence/

15With positive weights which are normalized to sum to 1.
16In the rest of chapter, I will refer to ’risk’ to mean both risk and deviation measures.

http://glynholton.com/2008/09/the-case-for-incoherence/
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• D (X) = R (X −E [X]),

• R (X) = E [−X] + D (X).

An alternative approach to the ranking of risky alternatives is based on stochastic

dominance theory developed by Quirk and Saposnik (1962), where pointwise compar-

ison between such alternatives is undertaken based on functions constructed from the

complete set of possible outcomes (or distribution). Define F (X) as the distribution

function of X, then:

F kx (r) =





Fx k = 1
r∫

−∞
F k−1
x (t) dt k ≥ 2

(4.3)

∀r ∈ R. Ranking of alternatives X and Y with distribution functions F (X) and

F (Y ) is such that X is preferred to Y with respect to the kth order stochastic domi-

nance17 if and only if Fk
X (r) 6 Fk

Y (r), with at least one strict inequality. There are

important implications arising from this type of ranking. For example, X≻1Y ⇐⇒
E [U (X)] ≥ E [U (Y )] for every non-decreasing utility function U, which is the choice

of rational investors. More importantly however, X≻2Y ⇐⇒ E [U (X)] > E [U (Y )]

for every non-decreasing and concave utility function U, which is the choice of every

rational AND risk averse investor. While very appealing as a theory with sound choice

criteria for making investment decisions, stochastic dominance relations are very diffi-

cult to apply in practice for more than a couple of outcomes. In addition, the theory

requires the complete enumeration of the outcome space by the decision maker which

may be infeasible in practice and may leave some prospects unranked. Nevertheless, a

certain family of risk measures discussed in this section has a strong link with stochastic

dominance which provides for an interesting and feasible alternative.

Whether a measure is coherent, spectral or meets certain stochastic dominance criteria

does not establish it as better or worse as a tool for decision making. The output

domain of these measures will certainly overlap at times depending for example on the

underlying dynamics and state of the market. In the following subsections, I consider

the properties and representations of 5 interesting and popular measures which are used

in the empirical application of Section 4.4. The first 3 loosely belong to the general Lp

17Denoted as X≻kY .
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function space18 and include the Absolute Deviation, Variance and Minimax measures,

while the other 2 are the threshold based measures of Lower Partial Moments (LPM )

and Conditional Value at Risk (CVaR).

4.2.1 Mean Variance (EV )

Markowitz (1952) ushered in the era of modern portfolio management with the intro-

duction of the Mean-Variance model of risk-return. Variance is a valid measure of risk

for ranking preferences if either the investor exhibits quadratic utility (in which case it

does not matter whether the underlying data is multivariate normal), or the underly-

ing data is multivariate normal (in which case the utility of the investor is irrelevant

since variance is the optimal choice). The optimization problem may be posed as the

following NLP problem:

min
w

1

n

n∑

i=1




m∑

j=1

wj (ri,j − µj)




2

s.t.

m∑

j=1

wjµj = C

m∑

j=1

wj = 1

wj ≥ 0,∀j ∈ {1, . . . ,m}

(4.5)

where w represent the weights of the j = 1, . . . ,m assets, i = 1, . . . , n are the number

of periods or scenario points for the returns r and µj the forecast return. The problem

effectively minimizes portfolio variance subject to the portfolio forecast return being

equal to C, a full investment constraint and positivity constraints on the weights.

While it is simple to express the problem in its quadratic form such that variance

18The Lp function space is defined as:

‖e‖p =

(
m∑

j=1

|ej |p
)1/p

(4.4)

with p = 1 representing the absolute (or Manhattan distance) measure, p = 2 the standard deviation (or
Euclidean distance) where we can make use of variance instead because of the monotone transformation
property, and p = ∞ represents the largest absolute value where we can represent the losses for Minimax
optimization.
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is equal to w′Σw, I leave the problem in its more general NLP form which admits

nonlinear constraints which would for example include long-short optimization with a

leverage constraint.19 Criticism of variance as a valid method for ranking portfolios

is mainly aimed at the quadratic utility assumption which seems nothing more than

a mathematical convenience rather than a reflection of reality, leading to the strange

case of investors desiring less to more after a certain point on the utility curve, whilst

the multivariate normality assumption is not usually borne out by the data. The

symmetric nature of variance, penalizing both up and down deviations at the same rate

was criticized quite early by Hanoch and Levy (1969)20, while its lack of consistency

with stochastic dominance relations should have effectively buried it as a method for

portfolio allocation. However, its tractability and ease of use has made it a very popular

choice, particularly for the modelling of monthly returns, with numerous extensions to

provide for robustness and uncertainty mainly in the derivation of the covariance matrix.

For example James and Stein (1956) provide for a shrinkage estimator, Black and

Litterman (1992) a semi-Bayesian approach while Michaud (1989) a general criticism

of the approach with a now patented alternative based on resampling methods.

4.2.2 Mean Absolute Deviation (MAD)

In the early days of computer programming, large scale quadratic problems were com-

putationally more demanding to solve than linear problems. In light of this, Konno

and Yamazaki (1991) introduced a piece-wise linear formulation of the absolute devi-

ation function as an alternative to the Markowitz (1952) method. The standard NLP

objective function may be formulated as:

1

n

n∑

i=1

∣∣∣∣∣∣

m∑

j=1

wj (ri,j − µj)

∣∣∣∣∣∣
(4.6)

19In the case of quadratic based constraints, the problem can also be posed as a second order cone
(SOCP) problem.

20The criticism was in fact also aimed at any symmetric dispersion measure, not just variance.
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which Konno and Yamazaki (1991) reduced to the following piece-wise linear problem:

min
w,d

1

n

n∑

i=1

di

s.t.

m∑

j=1

(ri,j − µj)wj ≤ yi,∀i ∈ {1, . . . , n}

m∑

j=1

(ri,j − µj)wj ≥ −yi,∀i ∈ {1, . . . , n}

m∑

j=1

wjµj = C

m∑

j=1

wj = 1

wj ≥ 0,∀j ∈ {1, . . . ,m}

(4.7)

where d represent the absolute deviations of the portfolio from its forecast mean, form-

ing a vector of variables of size n (length of the scenario) to be optimized. However, the

constraints imposed to create the piece-wise linear function for the absolute deviation

requires two n × n diagonal matrices stacked together21 which may lead to computer

memory problems for very large scenarios. This is in direct contrast to the EV model

which only depends on the number of assets. Furthermore, while in the EV model

deviations from the mean are penalized at an increasing rate arising from the square

function, in the MAD model deviations are penalized at a linear rate which may not

realistically represent the average investor. However, by not giving undue weight to the

extreme observations, the MAD model may be more robust to possible misspecification

in the dynamics from which the scenario was generated. Extensions to the model have

included the addition of skewness in Konno, Shirakawa, and Yamazaki (1993), and

semi-absolute deviation first suggested by Speranza (1993) who showed that the mean

semi-deviation is a half of the mean absolute deviation from the mean. Similar to the

EV model, the MAD model lacks consistency with stochastic dominance relations.

21Feinstein and Thapa (1993) provide for a reformulated representation with only one n diagonal
matrix.
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4.2.3 MiniMax

The MiniMax model of Young (1998), already introduced in an application in Section

3.5.4.2, aims to minimize the maximum loss, max

(
m∑
j=1

−ri,jwj ,∀i = 1, . . . , n

)
and as

such is a very conservative criterion. It has a very simple LP formulation:

min
Mp,w

Mp

s.t.

Mp −
m∑

j=1

wjri,j ≤ 0,∀i = {1, . . . , n}

m∑

j=1

wjµj = C

m∑

j=1

wj = 1

wj ≥ 0,∀j ∈ {1, . . . ,m}

(4.8)

where Mp is the objective minimization value representing the maximum loss of the

portfolio and guaranteed to be bounded from above by the maximum portfolio loss as a

result of the first constraint. While Young (1998) only considered the problem in light

of historical scenarios, there is no reason why r in the formulation may not represent

a future simulated forecast scenario. Contrary to the MAD model, it only requires 1

additional variable and an n × 1 additional constraint vector in the LP formulation,

and as such does not pose any computational challenges even for very large problems.

The Minimax principle is also consistent with expected utility theory at the limit based

on a very risk averse decision maker, and a good approximation to the EV model when

returns are multivariate Normal. Interestingly, the model is also a limiting case of the

Conditional Value at Risk spectral risk measure described in the next sections.

4.2.4 Lower Partial Moments

The concept of penalizing deviations below a certain threshold at a different rate is at

the heart of modern risk management and was already hinted at by Markowitz (1952)

in a reference to semi-standard deviation. This was later formalized into a very general

class of measures by Stone (1973), and the Lower Partial Moment (LPM ) framework
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of Fishburn (1977) which, in the continuous case, may be defined as:

LPMa,τ (f) =

τ∫

−∞

(τ − x)af (x) dx (4.9)

where a is some positive number which represents the rate at which deviations below

the threshold τ are penalized and f some density function. In the discrete case, the

function may be represented as:

LPMa,τ (x) = E [max (τ − x, 0)a] . (4.10)

Upper Partial Moments (UPM ) are defined similarly. Usually, in the portfolio opti-

mization context, the measure is standardized by raising it to the power of 1
a . Fish-

burn (1977) derived a utility representation for this measure consistent with the von

Neumann-Morgenstern axioms, and represented as:

U (x) =
x− k(τ − x)al x < τ

x x ≥ τ
(4.11)

where k is a positive constant. Harlow and Rao (1989) describe an asset pricing model

in the mean-lower partial moment framework (MLPM) and show that an MLPM frame-

work is consistent with a very general set of utility functions. For example, the hyper-

bolic absolute risk aversion (HARA) class of utility functions is consistent with 1st-

degree LPM, whereas any risk averse utility function displaying skewness preference

with positive first and third derivatives and negative second derivatives are consistent

with 2nd-degree LPM. In addition to this strong link with expected utility theory, Bawa

and Lindenberg (1977), Bawa (1978) and Fishburn (1977) showed that stochastic dom-

inance is equivalent to all degrees of n-degree LPM.

The portfolio optimization problem can be posed as follows:

min


 1

n

n∑

i=1

max


0, τ −




m∑

j=1

wjrj,i





a


1/a

s.t.

m∑

j=1

wjµj = C

m∑

j=1

wj = 1

wj ≥ 0,∀j ∈ {1, . . . ,m}

(4.12)
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Special cases are a = 0 representing the shortfall probability or Safety-First model of

Roy (1952), a = 1 the below target shortfall and a = 2 the shortfall variance which is

equivalent to the central semi-variance when τ = E (x). When a = 1, an LP formulation

exists and is given by:

min
w

1

n

n∑

i=1

di

s.t.

τ −
m∑

j=1

wjrj,i ≤ di,∀i ∈ {1, . . . , n}

m∑

j=1

wjµj = C

m∑

j=1

wj = 1

wj ≥ 0,∀j ∈ {1, . . . ,m}

di ≥ 0,∀i ∈ {1 . . . , n}

(4.13)

For positive values of a other than 1, the discontinuous max function appears to pose

some problems in the optimization strategy. Nawrocki and Staples (1989) devised a

heuristic measure which approximates the function using only quadratic programming

methods. Instead, I replace the max function with a smoothed approximation for which

derivatives exist and discussed further in Section 4.3.2. With regards to the choice of

threshold variable τ , the choice may be motivated by the investor’s minimum acceptable

return, some benchmark rate22 or any other reasonable choice. A simple choice which

makes use of the properties of this deviation measure is to use the mean of the portfolio

which is equivalently equal to using a threshold of zero and passing a demeaned scenario

matrix.23

22However, Brogan and Stidham(2005, 2008) have shown that for the linear separation property to
hold, which assumes convexity of the mean-LPM space, the threshold must either be equal to the risk
free rate or the mean of the portfolio.

23This is because the following relationship holds for LPM measures:

LPMτ,a (X) = LPMt+C,a (X + C) . (4.14)

which is equivalent to property (D1) in Section 4.2 when accounting for the threshold parameter’s shift
by the constant C. Additionally, and with important implications in fractional programming, the LPM
measure also has the scaling property so that:

LPMτ,a (X) =
1

b
LPMbt,a (bX) , (4.15)
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Because the linear reward function may be too restrictive in practise, Holthausen (1981)

extended the LPM model to include a non-linear reward measure so that for x ≥ τ in

(4.11) the utility is then U (x) = x+ (x− τ )au , where au is the power exponent for the

upper partial moment, thus effectively capturing a range of linear and nonlinear utility

curves (such as S-shaped and inverse S-shaped) with reference to gains and losses as

illustrated in the example in Figure 4.1. Farinelli and Tibiletti (2008) also proposed
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U
(x

)

θ = 0  al = 0.5  au = 0.5
θ = 0  al = 1  au = 1
θ = 0  al = 2  au = 2

Figure 4.1: Upper to Lower Partial Moment Utility

an Upper to Lower partial moment portfolio optimization approach, but surprisingly

failed to reference the original extension of Holthausen (1981)24, nor did they mention

where it is understood that for the non-standardized version of the measure, i.e. when not raised to
the power of 1

a
, the measure is multiplied not by 1

b
but 1

ba instead.
24In addition to this glaring omission, they then proceeded in subsequent papers to name the measure

after themselves as the Tibilleti-Farinelli ratio. A fashion for naming ratios derived from the LPM
framework can be seen in the Sortino ratio which is the return below target divided by the target semi-
deviation described in Sortino and Price (1994), the Sortino-Satchell ratio for the return below target
divided by the n-degree LPM described in Sortino and Satchell (2001) and the Omega Ratio which is
the Upper to Lower Partial Moment of degree 1 described in Keating and Shadwick (2002), and though
not named after the authors uses the last letter of the Greek alphabet in an obvious statement on the
finality of the measure for performance measurement after which no other measures need be defined!
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that such a measure is non-convex meaning that one has to resort to global optimization

approaches to obtain a solution.25

4.2.5 Conditional Value at Risk and Spectral Measures

Since the report by the Group of Thirty G30 (1993), the use of Value at Risk (VaR)

is almost universal among banks, trading desks and other financial entities as a key

measure for measuring and managing risk. Despite its popularity, it has come under

growing pressure as a non coherent (it lacks the subadditivity property) and inadequate

measure, or an imperfect measure which has been incorrectly used, overused, abused

and over-relied upon. An alternative measure, based on the average loss conditional

on the VaR being violated is called Conditional Value at Risk (CVaR)26 which is a

coherent and convex risk measure belonging to the class of spectral risk measures of

Acerbi and Tasche (2002). Formally, a spectral risk measure Mψ is a weighted average

of the loss distribution quantile q evaluated at p, such that:

Mψ =

∫ 1

0
ψ (p) qpdp (4.16)

where ψ (p) is a weighting function defined over the full range of probabilities p ∈ [0, 1]

and restricted to be non-negative, normalized to sum to 1, and increasing or constant in

p (such that higher losses have equal or higher weights to lower losses). VaR is clearly a

spectral risk measure with weighting the dirac delta function which is degenerate, while

CVaR is based on a step function (constant weight for losses greater than VaR). Cot-

ter and Dowd (2006) investigated alternative weighting functions to account for truly

risk averse behavior by considering strictly increasing weight functions in an applica-

tion for establishing futures clearinghouse margin requirements. While they found that

such weighting schemes were superior to the standard CVaR, Dowd, Cotter, and Sorwar

(2008) also found some problems in their implementation both in the choice of functions

as well as the mixing properties of these measures with respect to nonlinear weighting

functions. In a different direction Rockafellar, Uryasev, and Zabarankin (2006) consid-

ered the so called mixed-CVaR problem whereby it is possible to mix together CVaR

25The paper also alludes to the ease of estimation of some other measures of risk-reward such as the
upper to lower CVaR which were shown in other papers to require a Mixed Integer approach which is
by no means simple nor computationally feasible for a large number of assets.

26Also called Expected Tail Loss with distinctions in the names sometimes denoting differences for
the continuous and sample cases, with the latter requiring a specialized representation in order to be
deemed convex according to Rockafellar and Uryasev (2000).
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at different coverage rates using a weighting function, and established the relationship

between this and the spectral risk representation. In terms of the general optimization

problem, CVaR may be represented as an NLP minimization problem with objective

function given by:

min
w,v

1

na

n∑

i=1


max


0, v −

m∑

j=1

wjri,j




− v (4.17)

where v is the a-quantile of the distribution. For a discrete scenario, this can be

represented using auxiliary variables as the following LP problem (due to Rockafellar

and Uryasev (2000)):

min
w,d,v

1

na

n∑

i=1

di + v

s.t.

m∑

j=1

wjri,j + v ≥ −di,∀i ∈ {1, ..., n}

m∑

j=1

wjµj = C

m∑

j=1

wj = 1

wj ≥ 0,∀j ∈ {1, . . . ,m}

di ≥ 0,∀i ∈ {1, . . . , n}

(4.18)

where v represents the VaR at the a-coverage rate and di the deviations below the

VaR. The formulation presented here is in such a way as to represent the asset returns

scenario matrix rather than the more typical loss representation in the literature.

Direct extensions have followed in the same vein as the LPM measures with Biglova,

Ortobelli, Rachev, and Stoyanov (2004) proposing the Rachev Ratio as the upper to

lower CVaR for which a mixed integer representation is provided in Stoyanov, Rachev,

and Fabozzi (2007) (modified by Konno, Tanaka, and Yamamoto (2011) for cases when

the returns are completely distributed on the positive side), and also proposed in the

same paper the Generalized Rachev Ratio which is the Rachev Ratio but with the nu-

merator and denominator raised to different powers representing different penalization

to gains and losses beyond some upper and lower quantiles. Unfortunately, this gener-

alization, like the upper to lower LPM has both a convex numerator and denominator27

27Technically, both risk and reward CVaR functions are convex for values of the power ≥ 1.



Chapter 4: Active Weights for Bad Benchmarks 138

making it non quasi-convex and hence necessitating a global optimization approach.28

The empirical application in Biglova, Ortobelli, Rachev, and Stoyanov (2004) com-

pared a range of measures and concluded that based on the terminal wealth reached by

the Rachev and Generalized Rachev Ratios using a set of 9 German stocks optimized

during the period 1999-2003, that they are “...good criteria for portfolio optimization

because they yield the best performance for investors in the period examined”. It is

quite surprising how many authors use terminal wealth to make inference about the

performance of their measures given that is it sensitive to the starting period and does

not really take into account path riskiness which is the whole point of these measures.

4.3 Applied Optimization

The previous section outlined a number of popular risk-return measures for portfolio

allocation, setup up as risk minimization problems subject to some specified reward

constraint. Traditionally, at least in the finance literature, the method for choosing

the optimal risk-reward portfolio was to trace out the efficient frontier and then search

for the highest return-risk combination along that frontier. Additionally, assuming

the presence of a risk-free asset, the portfolio optimization was usually performed on

the excess forecast returns so that the tangency portfolio would intersect the 45◦ line

running from the origin, with clear links to the classic CAPM framework and two fund

separation theorem. The following section discusses the reformulation of the optimal

risk-reward ratio programming based on the well established literature on fractional

programming. As regards the risk free rate, at no point in this exercise is this used

ex-ante to generate excess forecast returns. The reason is quite simply that the AR(1)

forecast, used as the model for the conditional mean, is not likely to capture very

well the size of the ex-post return, but it is expected that at least it will have some

better properties with respect to the sign of the forecast if not the relative size of the

forecast across assets. Subtracting the risk free rate, particularly at times like the

early 1980’s when the annualized 1 Month Treasury Bill rate was almost 20% would

have likely changed the sign of the weekly forecast and excluded it from consideration

in the optimal set. Furthermore, modelling the excess returns directly when the risk

free is not constant but somewhat stochastic creates a host of other model consistency

28The mixed-integer approach for the Rachev Ratio is just as difficult to estimate as it is limited by
the size of the scenario which determines the number of binary variables required.
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problems. Therefore, all the modelling, forecasting and optimization is carried out

without reference to any risk free rate, though the ex-post performance measures do

account for it as does any portfolio accounting requirements described in more detail

in Section 4.4.4.

4.3.1 Fractional Programming and Optimal Risk-Reward Portfolios

Consider the general nonlinear problem of minimizing a risk to reward problem repre-

sented as a fraction:

min
w

ρrisk (Rw)

ρreward (Rw)

w′1 = 1

L ≤ Aw ≤ U

w ≥ 0

(4.19)

where w is an m× 1 vector of weights, R the n×m Scenario matrix of returns so that

the risk (ρrisk) and reward (ρreward) functions are applied on the weighted scenario

returns, 1 an m×1 vector of ones and A a q×m matrix of linear constraints with lower

and upper bounds given by L and U respectively. The key developments in the theory

of fractional programming were provided in the linear case by Charnes and Cooper

(1962), while for nonlinear cases the main contributions can be traced to Dinkelbach

(1967) and Schaible(1976a, 1976b). More recently, Stoyanov, Rachev, and Fabozzi

(2007) provided a more focused review of fractional programming with reference to

portfolio optimization. Under the assumption that both numerator and denominator

are positive homogeneous, the problem in (4.19) can be transformed into the following

simpler nonlinear fractional programming (NLFP) problem:

min
ŵ,υ

ρrisk (Rŵ)

ρreward (Rŵ) ≥ 1

ŵ′1 = υ

υL ≤ Aŵ ≤ υU

υ ≥ 0

(4.20)

where υ represents a scalar auxilliary scaling variable and ŵ the unconstrained optimal

weight vector such that the optimal weight vector w = ŵ

υ . In order for this problem to

be convex, the reward function must be concave and the risk function convex, with strict
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positivity required for both functions.29 Different relaxations of these basic conditions

lead to different classes of problems in the literature, some with unique solutions and

others requiring global search methods. Finally, these simple conditions admit both

convex risk and deviation measures as defined in Section 4.2. For the purpose of the

empirical exercise, the reward measure considered is linear, representing the weighted

expected forecast return, whilst the risk/deviation measure for the long only portfolios

is either linear or quadratic. The NLFP formulation of all the models used and their

derivatives is given in Appendix D.

4.3.2 Smooth Approximations to Discontinuous Functions

While it is preferable to work with an LP formulation of a decision problem, there are

certain situations where this poses certain challenges. First, for some LP problems, the

dimension of the dataset and constraints may tax the limits of computer memory. Con-

sider for example the MAD model presented in Section 4.2.2 which requires a constraint

matrix of size 2n×m in order to create the piecewise linear representation for the abso-

lute value, where for large scenarios (n) and assets (m) memory considerations become

important. Second, in practice, many problems and/or constraints simply cannot be

expressed in LP form necessitating the use of either QP or NLP based methods. In that

case, it is always preferable to have analytic derivatives of the function and constraints,

for speed and accuracy versus numerical evaluation methods. Interestingly, some prob-

lems, while convex are discontinuous because of the presence of such functions as the

min and abs. For these problems, an approximation may be obtained by considering

smooth and continuous versions of these functions. Consider for example the CVaR

and LPM measures, both of which depend on the max function, for which the following

smooth approximation, smax may be used:

max (x, 0) ≈ smax (x, 0) =

(√
x2 + ε+ x

)

2
(4.21)

29For the reward function the requirement is a little more relaxed in that there must be at least
some combination of the weights and returns for which the reward is positive. Additionally, for a linear
reward function the constraint becomes an equality.
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where ε is some very small positive number controlling the degree of approximation

error. The absolute value may also be approximated with the following function sabs:

abs (x) ≈ sabs (x) =
√

(x+ ε)2 (4.22)

although alternatives also exist30. Apart from allowing the MAD problem to be repre-

sented in NLP form with a smooth function, it also allows for the use of short positions,

replacing the full investment constraint with a leverage constraint (the absolute sum

of positions)31, without resorting to such methods as described in Jacobs, Levy, and

Markowitz (2006) which double the size of the problem and require certain very specific

assumptions about the ’trimability’ of the portfolio. Finally, for the case of the minimax

problem, I make use of the generalized mean function Mp (x1, . . . , xn) =

(
1
n

n∑
i=1

xpi

)1/p

,

which approximates the maximum of a set of positive values as p → ∞. In order to

obtain the maximum loss for use in the NLP minimax optimization function, I combine

this function with the smax function defined in (4.21) applied to the negative of the

scenario returns: (
1

n

n∑

i=1

smax

(
−w′ri, 0

)p
)1/p

. (4.23)

In practise, the optimization problem needs to be calibrated for p since very large values

will exceed the limits of even 64-bit architectures.32 To gauge how well these smooth

approximations work in practise, Tables 4.1 and 4.2 report the optimal weights and

timings of a number of models optimized under standard LP risk measures and their

smooth NLP counterparts.33 In terms of numerical accuracy, the average mean squared

error (MSE) across all models is 1.4E-4, and when excluding the MiniMax model the

average falls to 5.0E-6. The numerical accuracy can be controlled even more tightly by

changing ε in Equations 4.21 and 4.22 and the termination criteria of the NLP solver.

As was expected, the highest loss in numerical accuracy is with the MiniMax model

with an average MSE of 5.0E-5. The timings are also of particular interest with the

smooth NLP MAD models being on average 11.5× faster than their LP counterparts,

30One such alternative is: (2x/π)
(
tan−1 (ox)

)
, where o is some very large positive number.

31A common mistake is to keep the full investment constraint instead of replacing it with the leverage
constraint, which makes no sense even when controlling for individual position limits.

32The largest number which can be represented is about 1.7976e + 308.
33The optimization methods and models used in this chapter are available to use in the Portfolio

Allocation and Risk Management Applications (parma) package of Ghalanos (2012a). See Appendix
F for details. The dataset used here is one comprised of 15 ETFs and taken from the parma package
from which this example is reproduced.
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and between 3.4× and 1.4× for the rest of the models. Not shown is the relative memory

usage where the MAD model for instance required 10× more random access memory

in LP form than their smooth NLP counterpart. This is likely to be quite important

for models with larger dimensions.

Table 4.1: LP vs smooth approximations to NLP: (CVaR and LPM)

Panel A: CVaR

GO-GARCH (maNIG) DCC (MVN) DCC-Copula(MVT) VAR

LP NLP LP NLP LP NLP LP NLP

IWD 0.0415 0.0416

TLT 0.3678 0.3678 0.3119 0.3119 0.3145 0.3145 0.3036 0.3025

EWC 0.0907 0.0906 0.1881 0.1881 0.1855 0.1855

EWL 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

EWJ 0.0757 0.0764

EWQ 0.0119 0.0128

EZA 0.1088 0.1083

Risk/Reward 6.0682 6.0682 6.6554 6.6554 6.4094 6.4094 3.8895 3.8895

Elapsed(sec) 2.9932 2.8799 2.5986 1.0049 2.7549 0.6299 3.1299 2.6006

Panel B: LPM

GO-GARCH (maNIG) DCC (MVN) DCC-Copula(MVT) VAR

LP NLP LP NLP LP NLP LP NLP

IWD 0.0661 0.054 0.3531 0.3531 0.343 0.343

TLT 0.3748 0.3802 0.1469 0.1469 0.1570 0.1570 0.2816 0.2816

EWC 0.0591 0.0657 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

EWL 0.5000 0.5000 0.1061 0.1061

EWJ

EWQ

EZA 0.1124 0.1124

EPP

Risk/Reward 1.2888 1.2889 1.4908 1.4908 1.4080 1.4080 0.9310 0.9310

Elapsed(sec) 2.4893 0.9111 2.3486 0.5049 2.4110 0.5830 2.2705 0.9893

Note: The Table reports the weights, risk to return ratio and timing (in seconds) of portfolios optimized under the optimal
fractional programming model using for the CVaR and LPM risk measures using either an LP or smooth approximation NLP,
for 1-ahead scenarios generated under 4 different models. The dataset used was comprised of the daily log returns of 15
Exchange Traded Funds for the period 28/05/2003 to 01/06/2012 and available in the parma package on R-Forge (see
Appendix E).

4.4 Empirical Application

The DJIA index is perhaps the oldest and most cited benchmark index in the US and

around the world. Its 30 blue chip constituents are among the most recognized names

in the stock market and despite its price weighting methodology, it has mostly matched

the performance of the value weighted S&P500. Obviously, as a quoted benchmark

which is meant to be followed by both insiders and the general public, it is unlikely

to be constructed by complex methods which are difficult to comprehend. Such broad

market popular indices are likely to be based on simplified, non-optimal methods as

the companies creating them need to consider the factors which will lead to a general

acceptance of their product. Unfortunately, once a benchmark is created, accepted and
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Table 4.2: LP vs smooth approximations to NLP: (MAD and Minimax)

Panel A: MAD

GO-GARCH (maNIG) DCC (MVN) DCC-Copula(MVT) VAR

LP NLP LP NLP LP NLP LP NLP

IWD 0.0693 0.0692

TLT 0.3785 0.3785 0.3528 0.3528 0.3331 0.3331 0.2609 0.2609

EWC 0.0522 0.0523 0.1472 0.1472 0.1669 0.1669

EWL 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

EWJ 0.1155 0.1155

EWQ

EZA 0.1236 0.1236

Risk/Reward 2.6823 2.6823 3.0807 3.0807 2.9403 2.9403 2.0405 2.0405

Elapsed(sec) 3.8643 0.3643 3.6299 0.3486 2.8955 0.2080 2.8330 0.2549

Panel B: MiniMax

GO-GARCH (maNIG) DCC (MVN) DCC-Copula(MVT) VAR

LP NLP LP NLP LP NLP LP NLP

IWD 0.3428 0.3697 0.2627 0.2075

TLT 0.5000 0.5000 0.0126 0.0177 0.2548 0.3064 0.3587 0.3576

EWC 0.0444 0.0340 0.0315 0.0085

EWL 0.5000 0.5000 0.5000 0.5000 0.4510 0.4775 0.5000 0.5000

EWJ 0.0250 0.0199

EWQ 0.1164 0.1138

EZA 0.0249 0.0287

EPP 0.0752 0.0587

Risk/Reward 12.8921 12.8921 11.5635 11.6046 10.4623 10.4884 6.5808 6.5898

Elapsed(sec) 0.5488 0.2549 0.5361 0.7236 0.5361 0.5830 0.5674 0.3018

Note: The Table reports the weights, risk to return ratio and timing (in seconds) of portfolios optimized under the optimal
fractional programming model using for the MAD and Minimax risk measures using either an LP or smooth approximation
NLP, for 1-ahead scenarios generated under 4 different models. The dataset used was comprised of the daily log returns of 15
Exchange Traded Funds for the period 28/05/2003 to 01/06/2012 and available in the parma package on R-Forge (see
Appendix E).

popularized by the media, it is difficult to change despite any advances in knowledge

or computational power. So engrained in the popular culture and psyche can such

benchmarks become that they monopolize the space, making it very difficult for any

alternative benchmarks to gain a foothold. The application in this section aims to show

that the current bar on beating the DJIA or for that matter the S&P500 is set quite

low as evidenced by the performance of a number of models and measures which have

been considered throughout this thesis. Given the failure to reject tests of the presence

of conditional correlation, GARCH effects and fat tails, it is quite possible to create a

dynamic allocation strategy which takes these into account and provide superior out of

sample performance. There are multiple implications. First, there is certainly value in

active investing when the benchmark is sub-optimally constructed. Second, investors

should reconsider the reward of managers who benchmark against such indices. Third,

investors should reconsider the passive tracking of such indices. This implies that there

could be value in constructing more optimally weighted indices.
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4.4.1 Data Description and Characteristics

Weekly total returns data, based on the Friday close price, of the point in time con-

stituents of the DJIA was collected from CRSP, for the period 1960 to 2010. The

decision to use weekly data was determined by the need to have an adequate historical

length for the modelling process, and at the same time a reasonable forecast window.

It would have made little sense to use daily data within a static portfolio optimization

setting34, despite the extra window length it would have provided for the modelling,

as this would involve costly daily re-balancing, and in any case, the noise in daily

data is likely to negatively impact forecasts. Monthly data, while preferable from a re-

balancing point of view, does not provide enough historical information to be of much

use in the modelling process, and given the type of security dynamics present, would

likely be sub-optimal as large swings in prices would invalidate any average monthly

density forecast.

Starting on 06/01/1975 and using all available data since 196035, a number of models

were fitted and the 1-week ahead forecast scenario of size 7000 × 30 generated which

was used in the portfolio optimization. The process was repeated by moving the data

window 1 week ahead and taking into account any constituent changes in the Dow

membership, until the last forecast scenario, for 03/01/2011, was created for a total of

1878 forecasts. While the estimation and allocation of the models was always done on

a Friday, the actual formation of the portfolios was carried out on the following Mon-

day or nearest trading day after that, so as to realistically allow for a lag between the

estimation of the models, requiring the closing price of Friday, and the formation which

was executed at the closing price of Monday or nearest trading day after that. Table

4.3 shows the Dow constituents and their CRSP PERMNO36 as of 01/06/1959, and

the changes to the index following the original set which was used in this application.

The start of 1976 is significant as it marks the end of a painful energy crisis of 1973

and the 1973-1975 recession37, and the start of a series of more frequent changes to

the Dow, which until that date was quite stable in that no changes had occurred since

1959. In fact, this marks a shift from an Industrials based index to one more reflective

34As opposed to a dynamic stochastic optimization method discussed in Section 4.1
35The data was truncated to start on the first commonly available observation of the entire dataset

of 30 members.
36This is a unique permanent security identification number assigned by CRSP to each security, which

does not change following name or capital structure changes, nor delisting, thus making is possible to
track a company’s complete trading history.

37Source: NBER
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of the changes in the US economic landscape with the rise in importance of Technology,

Pharmaceutical, Banking/Credit and Entertainment industries. Thus while the calcu-

lation of the Dow may be completely inefficient, there is certainly value in the selection

of the constituents, representing a small, manageable cross section of large blue-chip

companies of the US economy.
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Table 4.3: Dow Jones Industrial constituent changes since 1959

01/06/1959 PERMNO 09/08/1976 PERMNO 06/05/1991 PERMNO 27/01/2003 PERMNO

Allied Chemical 10145 (-) Anaconda Copper 10495 (-) American Can 10241 (-) AlliedSignal Incorporated 10145

American Tobacco 10225 (-) Standard Oil (NJ) 11850 (-) Navistar International Corporation 12503 (-) Philip Morris Companies Inc. 13901

American Can 10241 (-) United Aircraft 17830 (-) USX Corporation 15069 (-) Minnesota Mining & Manufacturing 22592

American Telephone & Telegraph 10401 (-) International Nickel 12546 (+) Caterpillar Incorporated 18542 (-) J.P. Morgan & Company 48071

Anaconda Copper 10495 (+) Inco 12546 (+) Walt Disney Company 26403 (+) Altria Group Incorporated 13901

Bethlehem Steel 10786 (+) Esmark 19713 (+) J.P. Morgan & Company 48071 (+) Honeywell International 18374

Chrysler 11260 (+) Minnesota Mining & Manufacturing 22592 17/03/1997 (+) 3M Company 22592

DuPont 11703 (+) Exxon Corporation 11850 (-) American Telephone & Telegraph 10401 (+) J.P. Morgan Chase 47896

Eastman Kodak Company 11754 29/06/1979 (-) Bethlehem Steel 10786 08/04/2004

Standard Oil (NJ) 11850 (-) Chrysler 11260 (-) Texaco Incorporated 14736 (-) AT&T Incorporated 10401

General Electric Company 12060 (-) Esmark 19713 (-) Westinghouse Electric 15368 (-) Eastman Kodak Company 11754

General Motors Corporation 12079 (+) International Business Machines 12490 (-) Woolworth 15456 (-) International Paper Company 21573

International Harvester 12503 (+) Merck & Company, Inc. 22752 (+) AT&T Incorporated 10401 (+) Pfizer Incorporated 21936

International Nickel 12546 30/08/1982 (+) Johnson & Johnson 22111 (+) American International Group Inc. 66800

Owens-Illinois Glass 13661 (-) Johns-Manville 16707 (+) Hewlett-Packard Company 27828 (+) Verizon Communications Inc. 65875

Sears Roebuck & Company 14322 (+) American Express Company 59176 (+) Wal-Mart Stores Incorporated 55976 21/11/2005

Standard Oil of California 14541 30/10/1985 (+) Travelers Group 70519 (-) SBC Communications Incorporated 66093

Texaco Incorporated 14736 (-) Allied Chemical 10145 01/11/1999 (+) AT&T Incorporated 10401

U.S. Steel 15069 (-) American Tobacco 10225 (-) Sears Roebuck & Company 14322 19/02/2008

Westinghouse Electric 15368 (-) Standard Oil of California 14541 (-) Chevron 14541 (-) Altria Group Incorporated 13901

Woolworth 15456 (-) General Foods 16109 (-) Union Carbide 15659 (-) Honeywell International 18374

Union Carbide 15659 (+) AlliedSignal Incorporated 10145 (-) Goodyear 16432 (+) Chevron 14541

General Foods 16109 (+) Philip Morris Companies Inc. 13901 (-) Travelers Group 70519 (+) Bank of America Corporation 59408

Goodyear 16432 (+) Chevron 14541 (-) Aluminum Company of America 24643 22/09/2008

Johns-Manville 16707 (+) McDonaldŠs Corporation 43449 (+) Microsoft Corporation 10107 (-) American International Group Inc. 66800

United Aircraft 17830 12/03/1987 (+) Alcoa Incorporated 24643 (+) Kraft Foods Inc. 89006

Procter & Gamble Company 18163 (-) Owens-Illinois Glass 13661 (+) Intel Corporation 59328 08/06/2009

Swift & Company 19713 (-) U.S. Steel 15069 (+) SBC Communications Incorporated 66093 (-) General Motors Corporation 12079

International Paper Company 21573 (-) Inco 12546 (+) Home Depot Incorporated 66181 (-) Citigroup Incorporated 70519

Aluminum Company of America 24643 (-) International Harvester 12503 (+) Citigroup Incorporated 70519 (+) Travelers Companies 59459

(+) Boeing Company 19561 (+) Cisco Systems, Inc. 76076

(+) USX Corporation (formerly U.S. Steel) 15069

(+) Coca-Cola Company 11308

(+) Navistar International Corporation 12503

Note: The Table lists the 30 constituent companies of the DJIA as at 06/01/1959 together with their CRSP PERMNO’s, and changes to the index since. A (-) before a name indicates a removal
while a (+) indicates an addition to the index. These are not necessarily additions or deletions, but may represent mergers, change of name or other corporate actions which necessitated some
type of change, which may be inferred from the PERMNO.
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In order to check the accuracy of the collected data and constituent changes, and mak-

ing use of the changes to the Dow Divisor38, Figure 4.2 shows the overlapping plots

of the actual Dow and the Dow recreated using this dataset, constituent change tables

and divisor changes.

To gauge the performance of the various models and risk measures against the bench-

mark indices, I consider in this application the total return DJIA index (DJIAPW ) for

which data only exists back to 1987, an equally weighted total return version of the

DJIA (DJIAEW ) which starts in 1975 (the same date as the empirical application),

and the total return S&P500 (S&P500V W ) with dates starting in both 1975 and 1987

to allow comparison with the 2 DJIA indices. For the risk free rate, I use a proxy based

on the 1 Month Treasury Bill (TB1M ) where the daily return on this instrument is a

simple daily rate that compounds, over the number of trading days in a month, to the

TB1M rate.
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Figure 4.2: Actual vs Calculated DJIA

38The Dow Divisor adjusts the index for stock splits and other related changes in the index, with a
current value as of 02/07/2010 of 0.132129493.
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4.4.1.1 ARCH Effects

Table 4.4 reports the min, median and max p-values of the ARCH LM test of Engle

(1982) under the null of no ARCH effects using 1 lag, for each constituent which was part

of the Dow during the 1878 moving window estimations covering the period 1975-2010.

The test was carried out on the standardized squared residuals from a constant-AR(1)

model. With the exception of Kraft Food (CRSP PERMNO 89006), the null of no

ARCH can safely be rejected for all securities across all estimation windows.

Table 4.4: Dow Jones Industrial constituents ARCH effects

ARCH LM Test [p-values]

PERMNO Min Median Max PERMNO Min Median Max

10107 0.0001 0.0030 0.1142 17830 0.0000 0.0387 0.9995

10145 0.0000 0.0005 0.0393 18163 0.0000 0.0015 0.5048

10225 0.0002 0.0011 0.0314 18542 0.0000 0.3817 0.5552

10241 0.0000 0.0000 0.0001 19561 0.0025 0.0260 0.7334

10401 0.0000 0.0192 0.9694 19713 0.0001 0.0004 0.0005

10495 0.0000 0.0048 0.0188 21573 0.0069 0.1118 0.7644

10786 0.0000 0.1332 0.9785 21936 0.0000 0.0001 0.0124

11260 0.0000 0.0000 0.0002 22111 0.0000 0.0000 0.0009

11308 0.0000 0.0013 0.0643 22592 0.0000 0.0000 0.3609

11703 0.0000 0.0000 0.0989 22752 0.0000 0.0000 0.3157

11754 0.0000 0.0001 0.6782 24643 0.0000 0.0000 0.5767

11850 0.0000 0.0003 0.0151 26403 0.0000 0.0000 0.6884

12060 0.0000 0.0000 0.0002 27828 0.0000 0.0002 0.0458

12079 0.0000 0.0000 0.7233 43449 0.0000 0.0051 0.9993

12490 0.0000 0.0000 0.9398 47896 0.0000 0.0001 0.0125

12503 0.0000 0.0000 0.0000 48071 0.0000 0.0007 0.0317

12546 0.0002 0.0354 0.9571 55976 0.0000 0.0000 0.1949

13661 0.0000 0.0004 0.3942 59176 0.0000 0.0000 0.0027

13901 0.0000 0.0007 0.0190 59328 0.0000 0.0001 0.9984

14322 0.0000 0.0000 0.0069 59408 0.0000 0.0321 0.1123

14541 0.0000 0.0014 0.1865 59459 0.0000 0.0000 0.0000

14736 0.0000 0.0000 0.0000 65875 0.0000 0.0000 0.0515

15069 0.0000 0.0590 0.9999 66093 0.0278 0.0581 0.5478

15368 0.0000 0.0000 0.0008 66181 0.0004 0.0039 0.1088

15456 0.0000 0.0102 0.0554 66800 0.0000 0.0000 0.0028

15659 0.0000 0.1397 0.8278 70519 0.0000 0.0002 0.0704

16109 0.0036 0.0164 0.9904 76076 0.0009 0.0014 0.0029

16432 0.0018 0.0228 0.9996 89006 0.4196 0.4872 0.8809

16707 0.0000 0.0000 0.0000

Note: The Table reports the min, median and max p-value from the ARCH LM test of Engle (1982) under the null of no
ARCH, of the constituents of the DJIA during the period 1975 to 2010 based on their CRSP PERMNO. The test was applied
to the estimates of the squared standardized residuals from a constant-AR(1) model, at each period and for each constituent of
the index under the moving estimation scheme described in Section 4.4.1.

4.4.1.2 Multivariate Normality

To assess the degree of departure from multivariate Normality in the weekly dataset I

consider the test of Mardia (1980) which considers measures of multivariate skewness

and kurtosis based on the Mahalanobis distance metric. Formally, consider the random

sample Y = (y1, y2, . . . , yn) of size N from a d-variate distribution. The multivariate
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skewness (b1d) and kurtosis (b2d) are defined in Mardia (1970) as:

b1d = N−2
N∑

i=1

N∑

j=1

r3
ij

b2d = N−1
N∑

i=1

r4
i

(4.24)

where rij is the Mahalanobis angle between vectors yi and yj and defined as:

(yi − E (Y ))′Σ−1 (yj − E (Y )) , (4.25)

with Σ being the covariance matrix of Y . The limiting distribution of Nbid/6 is χ2 with

d (d+ 1) (d+ 2) /6 d.o.f, while for
√
N (b2d − d (d+ 2)) (8d (d+ 2))−1/2 the limiting dis-

tribution is Normal. Under the assumption of multivariate Normality, the data should

not have significant skewness or kurtosis. The first part of Table 4.5 reports the aver-

age test statistics for Mardia’s kurtosis and skewness across the 1878 rolling estimation

windows, encompassing the different point in time Dow 30 constituents, with values of

13550 and 112 and p-values of 0 and 0 respectively, indicating a clear departure from

multivariate normality.

Table 4.5: Dow Jones Industrial dataset multivariate characteristics

Multivariate Normality Test (Mardia)

Min Median Max

b1d 8523 13190 28710

b2d 41.23 110.9 211.8

DCC Test (Engle)

1975 − 2010 Min Median Max

Stat 0.69 8.08 26.50

[p− value] [0.706] [0.0176] [0.000]

1982 − 1985

Stat 0.89 1.20 3.04

[p− value] [0.640] [0.549] [0.218]

1997 − 2000

Stat 0.69 1.51 3.58

[p− value] [0.708] [0.470] [0.167]

Note: The Table show average statistics for the point in time DJIA dataset for the period 1975 to 2010. The first table shows
the multivariate normality test of Mardia (1970) based on multivariate skewness (b1d) and kurtosis (b2d) both of which are
well above their critical values for each period tested. The second table shows the test of constant correlation of Engle and
Sheppard (2001) which was based on estimating for each period a constant correlation model (CCC) and testing this under the
null of no dynamic correlation. With the exception of the 2 periods given (1982 − 1985 and 1997 − 2000), the test rejected the
null at the 10% confidence level for the remainder of the periods tested.
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4.4.1.3 Constant Correlation

Engle and Sheppard (2001) devised a method to test the assumption of constant cor-

relation, with the null hypothesis H0 : Rt = R̄∀t ∈ T against the alternative H1 of

dynamics in Rt given by:

H1 : vech(Rt) = vech(R̄) + β1vech(Rt−1) + ...+ βpvech(Rt−p). (4.26)

The test effectively estimates equates to estimating a multivariate dataset using the

Constant Conditional Correlation (CCC ) model of Bollerslev (1990) and after which the

standardized residuals39 should be i.i.d. with covariance the identity matrix. Testing for

this can be done using a series of artificial regressions on the outer and lagged product

of these residuals and a constant. The second part of Table 4.5 displays the min, median

and max of this statistic and its equivalent p-value (the statistic is distributed χ2 with

lags+1 d.o.f.) for the whole period 1975-2010, and 2 subperiods under the rolling

estimation scheme. That is, the CCC model was estimated, and the test calculated for

each of the 1878 moving windows. With the exception of the 2 subperiods displayed,

for most of the period under study the null of constant correlation can be rejected with

a high degree of confidence.

4.4.2 Data Generating Models

Having established the presence of such stylized facts as the presence of ARCH effects,

departure from multivariate normality and non-constant correlation, I have chosen to

use 8 different models, already discussed in Chapters 2 and 3. As a benchmark, and

because it is mistakenly used in many cases, I have also included the static Historical

(M1) approach whereby the recent history is used as a proxy for the forecast scenario.

That is, the unconditional multivariate density serves as a proxy for the conditional 1

step ahead forecast. Obviously, this method is only going to be valid, irrespective of

the use of robust or Baysian methods, in the absence of conditional dynamics in the

moments and co-moments. Apart from this, the models used briefly belong to 3 more

general processes. The dynamic correlation models (DCC) were chosen with multivari-

ate Normal, Laplace and Copula-Student distributions (M2, M3, M4), the Generalized

39Standardized by the symmetric square root decomposition of the estimated constant correlation
matrix
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Orthogonal models (GO-GARCH and CHICAGO) with multivariate Normal and affine

NIG distributions (M5, M6), and the Independent Factor ACD models (IFACD) with

multivariate affine NIG and GH distributions (M7, M8). As argued in Section 4.1, it is

important to have some idea of the consistency of measures derived from the scenario

forecasts from each model. Using 3 of the models (M3, M6, M8), one from each of

the more general classes of models discussed,40 Table 4.6 reports the average RMSE

of 3 forecast measures (mean, standard deviation and CVaR at the 5% coverage) for

which analytical (or semi-analytical) solutions exist against their equivalent scenario

generated average measure (for the generated scenarios of size 1000, 2000, 4000, and

7000). The comparison is undertaken for the 1878 forecast periods of the empirical ap-

plication and assuming an equally weighted portfolio of the point in time constituents

of the DJIA. Values in square brackets represent the ratio of the RMSE with scenario

size 1000 (S1000) against the RMSE with scenario size T (T>1000). Under
√
N con-

sistency, this number should be close to
√
T/1000. The forecast mean, generated from

AR(1) dynamics, is well within the expected consistency for all 3 models. The forecast

standard deviation and CVaR are also within the expected consistency for the DCC

and GO-GARCH based models, but not so for the IFACD model which appears to have

cubic or quartic consistency. This was already discussed in Section 1.5.1, and means

that we require a larger number of points per scenario for these types of models to have

the equivalent consistency with the other models considered. Taking into account the

actual level of the RMSE and computational resource constraints, I opt for a scenario

of size 7000 for each of the models except the IFACD based models for which I use a

scenario of size 10000 for each 1-ahead forecast.

4.4.3 Risk Models

For each forecast from the 8 models presented in the previous section, portfolios were

formed from the optimization of 6 different measures of risk-reward using the NLFP

method discussed in Section 4.3.1. These risk measures, already covered in Section

4.2 were CVaR at the 5% coverage rate (R1), MAD (R2), EV (R3), MiniMax (R4)

and LPM of orders 1 and 4 (R5 and R6, respectively) with threshold the portfolio

mean. Additionally, 2 sets of portfolios were considered, one with the standard long

only constraint (denoted [L]) for which an LP or QP formulation was possible, and one

40This excludes the DCC-Copula model for which there is usually no closed form analytic expression
for most of the measures in order to compare against the scenario average used.
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Table 4.6: Forecast scenario measures consistency

Forecast Mean (RMSE) S1000 S2000 S4000 S7000

M3 0.00057 0.00041 0.00029 0.00022

[1.3905] [1.9545] [2.6132]

M6 0.00061 0.00041 0.00031 0.00023

[1.4735] [1.9567] [2.6235]

M8 0.00060 0.00043 0.00031 0.00023

[1.3772] [1.9524] [2.5486]

Forecast SD (RMSE) S1000 S2000 S4000 S7000

M3 0.00043 0.00030 0.00023 0.00018

[1.3995] [1.8855] [2.3905]

M6 0.00045 0.00033 0.00023 0.00017

[1.376] [2.0047] [2.6305]

M8 0.00069 0.00056 0.00047 0.00045

[1.2259] [1.4557] [1.5415]

Forecast CV aR5% (RMSE) S1000 S2000 S4000 S7000

M3 0.00146 0.00104 0.00075 0.00057

[1.4026] [1.9509] [2.5521]

M6 0.00168 0.00118 0.00080 0.00062

[1.4204] [2.0888] [2.7019]

M8 0.00215 0.00169 0.00138 0.00127

[1.2698] [1.5553] [1.6889]

Note: The Table reports the average RMSE of 3 forecast measures (mean, standard deviation and CVaR at the
5% coverage) for which analytical (or semi-analytical) solutions exist against their equivalent scenario generated
average measure (for the generated scenarios of size 1000, 2000, 4000, and 7000) under 3 models (M3, M6, M8).
The comparison is undertaken for the 1878 forecast periods of the empirical application and assuming an equally
weighted portfolio of the point in time constituents of the DJIA index. Values in square brackets represent the
ratio of the RMSE with scenario size 1000 (S1000) against the RMSE with scenario size T (T>1000). Under√

(N) consistency, this number should be close to
√

(T/1000).

with no short sale constraints but a leverage constraint of 2 (denoted [LS]) for which

an NLP formulation was used, details of which are given in Appendix D. For the [L]

portfolios, upper bounds of 20% were used to avoid excess concentration, whilst for the

[LS] portfolios, lower and upper bounds of -30% and 30% were used respectively.

4.4.4 Transaction Costs and Long-Short Margin Accounting

The explicit modelling of transaction costs, both fixed and proportional, during the

optimization process may be important in light of costly re-balancing of positions vis-

a-vis the marginal expected return. Based on a review of current commercial broker

rates41, and for the purpose of the empirical application undertaken, a fixed cost of $10

per transaction, was deemed realistic and adequate. The TB1M was used for the margin

41See for example http://www.interactivebrokers.com/en/p.php?f=interest&ib_entity=uk and
http://www.schwab.com/public/schwab/investing/pricing_services/fees_minimums

http://www.interactivebrokers.com/en/p.php?f=interest&ib_entity=uk
http://www.schwab.com/public/schwab/investing/pricing_services/fees_minimums
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accounting of the [LS] portfolios, for which TB1M+50bp were charged for margins loans,

and TB1M-50bp paid for excess cash, where the initial and maintenance margin was set

at 30%. Costs arising as a result of differences in the closing price (which was used as

the price at which transactions were made), the amount of volume transacted (market

impact) and the bid-ask spread, were not explicitly modelled. The use of modern

algorithmic trading models has made possible the reduction if not elimination of such

costs or at least their meaning in the traditional sense presented in the literature. For

example, early studies on momentum trading strategies such as Jegadeesh and Titman

(1993) and Moskowitz and Grinblatt (1999) assume round-trip transaction costs of up

to 2%, while more recent studies such as in Kritzman, Page, and Turkington (2010)

assume round-trip transaction costs of 0.4%. However, such strategies include a large

cross-section of the US equity market, including small cap and non-liquid assets, and

where market impact was likely to be a significant factor in the pricing. Because the

application presented here is based on what is probably the 30 most liquid stocks in the

US market, costs relating to the sourcing of stocks for the purpose of shorting, market

impact and bid-ask spread costs are assumed to be small. This is not meant to imply

that such costs do not exist, but that certain simplifying assumptions had to be made

for the purpose of the backtest application, which given the type of securities used, was

not believed to stray too far from reality.

The formation and tracking of the optimal portfolios was based on the weights obtained

every Friday after the close of trading, based on which an integer number of shares

was bought on the following Monday close price, and any required re-balancing of the

portfolios undertaken. By forming the weekly portfolios in such a way, using shares

and tracking them daily, it was possible to obtain a much more detailed picture on the

drawdowns and daily risk as well as allow the realistic tracking of the margin positions

of the [LS] portfolios.

4.4.5 Results

To gauge the performance of the portfolios, the DJIA and S&P500 total return indices

were used as benchmarks. Because the total return DJIA index only started to be calcu-

lated in 1987, whilst the portfolio backtest started in 1975, comparison of the portfolios

was carried out using 2 different starting dates. For the starting year 1975, I used

an equally weighted total return index calculated from the point in time constituents

of the DJIA, and supplemented this with the S&P500 value weighted index. For the

starting year 1987, I used the actual total return price weighted DJIA index and again
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supplemented the comparison by including the S&P500 value weighted index, so that

the empirical application was not limited to only one benchmark.

Table 4.7 displays some key performance statistics of these benchmarks, where I have

also included an equally weighted version of the total return S&P500 index and the

TB1M which acted as a proxy for the risk-free rate. It is interesting to note that the

equally weighted indices, in both benchmarks, are clearly superior in terms of Sharpe

Ratio to their actual weighting schemes (price and value weighted), a point already

discussed in DeMiguel, Garlappi, and Uppal (2009) who argued that on the basis of

model and parameter uncertainty, nothing beats the 1/N rule. Not discussed in that

paper, was that an equally weighted index will also have the highest drawdown, since

by ignoring higher moments a disproportionate weight is placed on securities which

may experience large drops in value. This is usually not picked up by the Sharpe ratio

alone which is why other measures or ratios should be consulted in the presence of

non-normally distributed returns.

In Table 4.8, the alpha and beta from a CAPM regression on the monthly excess

Table 4.7: Benchmark indices

Benchmarks TW [1975] TW [1987] CV aR5% MaxDD SDA MeanA SharpeA

DJIAPW * 8.0 0.027 0.519 0.175 0.102 0.35

DJIAEW 133.1 8.2 0.026 0.628 0.176 0.142 0.43

S&P500V W 55.0 6.8 0.025 0.547 0.171 0.132 0.41

S&P500EW 186.1 12.0 0.026 0.590 0.183 0.172 0.59

TB(1M) 9.7 2.7 0.000 0.000 0.041 0.066 -

Note: The Table reports the performance of the S&P500 and Dow Jones Industrial Total Return benchmark indices under
alternative weighting schemes (PW=Price Weighted, EW=Equally Weighted, VW=Value Weighted) and the 1 Month Treasury
Bill (TM(1M)) as a proxy for the risk free rate for the period 13/01/1975 to 03/01/2011 (the DJIA Total Return index starts
in 1987). The measures of performance used were Terminal Wealth (TW ) of $1 starting from 2 different years, conditional
Value at Risk (CVaR) at the 5% coverage rate, maximum drawdown (MaxDD), standard deviation (SDA) formed from annual
returns, holding period mean return (MeanA) formed from annual returns and the annual Sharpe ratio (SharpeA).

portfolio returns, using the benchmark indices with different starting dates, is reported

for the [L] and [LS] portfolios. To account for the presence of heteroscedasticity and

autocorrelation in the portfolios, standard errors were calculated using the covariance

estimator of West and Newey (1987), with a lag length of 4, and significance at the

1%, 5% and 10% levels is denoted by ***, ** and * respectively. The first thing that

is clear from the table, and quite consistent throughout this empirical analysis, is the

significantly bad performance (negative and significant alpha) of M1 (the Historical

Scenario) as a model for stochastic programming. In dynamic markets with the types

of stylized facts observed and discussed in Section 4.4.1, a static approach, where the

unconditional history is used as a proxy for the forecast and as represented by M1, is

completely inadequate. Further, for the [L] portfolios, alpha is only significant in very

few cases. Specifically, when the risk measure is one which involves extreme tail risk

penalization, as in the Minimax (R4) and LPM of order 4 (LPM4), the IFACD models
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are the only models with a significant alpha representing an annualized excess return of

between 4% and 5% against the DJIA and S&P500 indices, respectively. Additionally,

with the exception of the EV (R3) criterion of Markowitz (1952), the IFACD models

display significant alpha in all other risk measures with respect to the S&P500 index,

in both the equal and value weighted versions. This is a rather surprising result. While

the stocks used, based on the DJIA universe, are also members of the S&P500, it

is likely that the latter, which includes another 470 securities, is adversely impacted

from a non-optimized allocation scheme of a larger number of securities. This might

therefore imply that the S&P500 is even less efficient that the DJIA. Overall, beta is

everywhere significant and usually less than 1 which lends support to the notion that

these portfolios are not just loading up on beta risk. The fact that the IFACD model

was the only one to generate significant alpha in these portfolios, again lends support

to the value of accounting for time varying higher moment dynamics, even on weekly

data with window length not exceeding 1000 points.

When it comes to the [LS] portfolios the results are quite different with a significant

alpha, except for the M1 model, almost everywhere and representing an average excess

annualized return of 8% against both the DJIA and S&P500 indices. Beta here is quite

low on average with the lowest value found among the 2 IFACD models. Nevertheless, it

is quite difficult to distinguish significant differences between models and risk measures

for the [LS] portfolios in these regressions.
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Table 4.8: Optimal portfolios: Benchmark regressions

DJIAP W (1987) DJIAEW (1975) S&P500V W (1987) S&P500V W (1975) DJIAP W (1987) DJIAEW (1975) S&P500V W (1987) S&P500V W (1975)

a b a b a b a b a b a b a b a b

R[L]1M1 -0.005*** 0.86*** -0.005*** 0.785*** -0.005*** 0.868*** -0.005*** 0.834*** R[LS]1M1 -0.004** 0.22*** -0.004*** 0.153*** -0.004 ** 0.247*** -0.004*** 0.226***

R[L]1M2 0.002 0.87*** 0.001 0.844*** 0.003 0.835*** 0.002 0.843*** R[LS]1M2 0.008*** 0.18*** 0.008*** 0.181*** 0.008*** 0.167*** 0.008*** 0.206***

R[L]1M3 0.000 0.90*** 0.001 0.850*** 0.001 0.855*** 0.001 0.863*** R[LS]1M3 0.008*** 0.16*** 0.007*** 0.131*** 0.008*** 0.132 ** 0.007*** 0.153***

R[L]1M4 0.001 0.89*** 0.001 0.854*** 0.002 0.841*** 0.001 0.851*** R[LS]1M4 0.008*** 0.17*** 0.008*** 0.185*** 0.009*** 0.154*** 0.008*** 0.212***

R[L]1M5 0.002 0.92*** 0.001 0.837*** 0.003 0.867*** 0.002 0.839*** R[LS]1M5 0.008*** 0.13*** 0.007*** 0.067 * 0.008*** 0.125 ** 0.007*** 0.102***

R[L]1M6 0.002 0.93*** 0.002 0.859*** 0.003 0.887*** 0.002 0.861*** R[LS]1M6 0.008*** 0.14*** 0.007*** 0.087 ** 0.008*** 0.137*** 0.007*** 0.120***

R[L]1M7 0.002 0.92*** 0.002 0.843*** 0.003 * 0.869*** 0.002 * 0.840*** R[LS]1M7 0.007*** 0.14** 0.007*** 0.093 ** 0.007*** 0.131 ** 0.007*** 0.119***

R[L]1M8 0.002 0.90*** 0.002 0.844*** 0.003 * 0.861*** 0.002 0.848*** R[LS]1M8 0.008*** 0.11* 0.008*** 0.066 0.008*** 0.111 * 0.008*** 0.102 **

R[L]2M1 -0.004*** 0.83*** -0.003*** 0.762*** -0.003 * 0.826*** -0.003*** 0.807*** R[LS]2M1 -0.001 0.60*** -0.002 0.540*** -0.001 0.620*** -0.002 0.576***

R[L]2M2 0.002 0.87*** 0.002 0.840*** 0.003 0.835*** 0.002 0.843*** R[LS]2M2 0.008*** 0.20*** 0.007*** 0.198*** 0.008*** 0.184*** 0.007*** 0.222***

R[L]2M3 0.000 0.90*** 0.001 0.851*** 0.001 0.853*** 0.001 0.861*** R[LS]2M3 0.008*** 0.14*** 0.007*** 0.123*** 0.009*** 0.114 ** 0.007*** 0.142***

R[L]2M4 0.001 0.89*** 0.001 0.856*** 0.002 0.840*** 0.001 0.853*** R[LS]2M4 0.009*** 0.19*** 0.008*** 0.179*** 0.009*** 0.164*** 0.008*** 0.207***

R[L]2M5 0.002 0.92*** 0.002 0.838*** 0.003 0.875*** 0.002 0.841*** R[LS]2M5 0.008*** 0.13** 0.007*** 0.074 * 0.008*** 0.123 ** 0.007*** 0.105 **

R[L]2M6 0.002 0.94*** 0.002 0.861*** 0.003 0.894*** 0.002 0.864*** R[LS]2M6 0.007*** 0.14*** 0.008*** 0.084 ** 0.008*** 0.138*** 0.007*** 0.117***

R[L]2M7 0.002 0.92*** 0.002 0.847*** 0.003 * 0.873*** 0.003 * 0.843*** R[LS]2M7 0.008*** 0.14** 0.007*** 0.087 ** 0.008*** 0.134 ** 0.007*** 0.121***

R[L]2M8 0.002 0.92*** 0.001 0.853*** 0.003 0.874*** 0.002 0.855*** R[LS]2M8 0.008*** 0.12** 0.008*** 0.069 * 0.008*** 0.113 * 0.008*** 0.104 **

R[L]3M1 -0.006*** 1.04*** -0.007*** 0.955*** -0.005*** 1.054*** -0.007*** 1.031*** R[LS]3M1 -0.004** 0.37*** -0.004 ** 0.274*** -0.004 * 0.385*** -0.005*** 0.364***

R[L]3M2 0.000 1.03*** 0.000 0.981*** 0.001 1.010*** 0.001 0.991*** R[LS]3M2 0.008*** 0.19*** 0.008*** 0.188*** 0.009*** 0.174*** 0.008*** 0.213***

R[L]3M3 0.000 1.01*** 0.000 0.957*** 0.001 0.988*** 0.001 0.986*** R[LS]3M3 0.008*** 0.14*** 0.007*** 0.123*** 0.009*** 0.118 ** 0.007*** 0.144***

R[L]3M4 0.002 1.06*** 0.001 0.998*** 0.003 1.035*** 0.001 1.013*** R[LS]3M4 0.009*** 0.17*** 0.008*** 0.171*** 0.009*** 0.152*** 0.008*** 0.199***

R[L]3M5 0.000 1.10*** 0.000 0.999*** 0.001 1.057*** 0.000 1.007*** R[LS]3M5 0.007*** 0.13** 0.007*** 0.074 * 0.008*** 0.126 ** 0.007*** 0.106 **

R[L]3M6 0.002 1.02*** 0.001 0.943*** 0.003 0.977*** 0.001 0.953*** R[LS]3M6 0.007*** 0.14*** 0.007*** 0.088 ** 0.007*** 0.141*** 0.007*** 0.120***

R[L]3M7 0.001 1.01*** 0.000 0.940*** 0.002 0.964*** 0.001 0.949*** R[LS]3M7 0.008*** 0.13** 0.008*** 0.081 * 0.008*** 0.124 ** 0.007*** 0.114 **

R[L]3M8 0.002 1.06*** 0.001 0.994*** 0.003 1.028*** 0.002 0.999*** R[LS]3M8 0.008*** 0.11** 0.008*** 0.065 0.008*** 0.111 * 0.008*** 0.102 **

R[L]4M1 -0.004** 0.88*** -0.004*** 0.824*** -0.003 * 0.893*** -0.004*** 0.871*** R[LS]4M1 -0.007*** 0.16*** -0.007*** 0.145*** -0.008*** 0.190*** -0.007*** 0.217***

R[L]4M2 0.001 0.88*** 0.000 0.844*** 0.002 0.836*** 0.001 0.850*** R[LS]4M2 0.006*** 0.17*** 0.006*** 0.172*** 0.006*** 0.161*** 0.006*** 0.194***

R[L]4M3 0.000 0.90*** 0.000 0.855*** 0.001 0.836*** 0.001 0.855*** R[LS]4M3 0.008*** 0.11** 0.007*** 0.108*** 0.008*** 0.093 * 0.007*** 0.127***

R[L]4M4 0.001 0.89*** 0.001 0.850*** 0.002 0.827*** 0.002 0.845*** R[LS]4M4 0.007*** 0.17*** 0.007*** 0.171*** 0.007*** 0.159*** 0.007*** 0.191***

R[L]4M5 0.003** 0.88*** 0.003 ** 0.829*** 0.004 ** 0.833*** 0.003 ** 0.836*** R[LS]4M5 0.007*** 0.15*** 0.006*** 0.083 ** 0.007*** 0.135 ** 0.006*** 0.103 **

R[L]4M6 -0.001 0.94*** 0.000 0.861*** 0.000 0.894*** 0.001 0.863*** R[LS]4M6 0.005*** 0.13*** 0.005*** 0.088 ** 0.005*** 0.124 ** 0.005*** 0.111***

R[L]4M7 0.003* 0.89*** 0.002 0.812*** 0.004 ** 0.842*** 0.002 * 0.822*** R[LS]4M7 0.006*** 0.10** 0.006*** 0.063 * 0.007*** 0.086 * 0.006*** 0.082 **

R[L]4M8 0.002 0.88*** 0.002 * 0.816*** 0.003 * 0.832*** 0.003 * 0.830*** R[LS]4M8 0.007*** 0.11* 0.006*** 0.070 * 0.007*** 0.106 * 0.006*** 0.095 **

R[L]5M1 -0.003** 0.81*** -0.003*** 0.752*** -0.003 * 0.806*** -0.003*** 0.791*** R[LS]5M1 -0.003 0.53*** -0.004 ** 0.442*** -0.003 0.525*** -0.004 ** 0.529***

R[L]5M2 0.002 0.87*** 0.001 0.840*** 0.003 0.834*** 0.002 0.842*** R[LS]5M2 0.008*** 0.19*** 0.008*** 0.192*** 0.009*** 0.178*** 0.007*** 0.214***

R[L]5M3 0.000 0.90*** 0.001 0.852*** 0.001 0.853*** 0.001 0.862*** R[LS]5M3 0.008*** 0.14*** 0.007*** 0.118*** 0.009*** 0.110 ** 0.007*** 0.138***

R[L]5M4 0.001 0.89*** 0.001 0.857*** 0.002 0.841*** 0.001 0.853*** R[LS]5M4 0.009*** 0.19*** 0.008*** 0.181*** 0.009*** 0.167*** 0.008*** 0.211***

R[L]5M5 0.002 0.92*** 0.002 0.839*** 0.003 0.875*** 0.002 0.842*** R[LS]5M5 0.007*** 0.13** 0.007*** 0.072 * 0.007*** 0.125 ** 0.007*** 0.105 **

R[L]5M6 0.002 0.94*** 0.002 0.862*** 0.003 0.896*** 0.002 0.865*** R[LS]5M6 0.007*** 0.14*** 0.007*** 0.085 ** 0.007*** 0.137*** 0.007*** 0.117***

R[L]5M7 0.002 0.92*** 0.002 0.847*** 0.003 * 0.872*** 0.003 * 0.843*** R[LS]5M7 0.008*** 0.14** 0.007*** 0.087 ** 0.008*** 0.134 ** 0.007*** 0.121***

R[L]5M8 0.002 0.92*** 0.001 0.854*** 0.003 0.875*** 0.002 0.856*** R[LS]5M8 0.008*** 0.12** 0.008*** 0.075 * 0.008*** 0.113 * 0.008*** 0.111 **

R[L]6M1 -0.005*** 0.84*** -0.005*** 0.777*** -0.004 ** 0.825*** -0.004*** 0.807*** R[LS]6M1 -0.006*** 0.23*** -0.005*** 0.188*** -0.006*** 0.256*** -0.006*** 0.269***

R[L]6M2 0.002 0.87*** 0.001 0.842*** 0.003 0.833*** 0.002 0.842*** R[LS]6M2 0.008*** 0.20*** 0.007*** 0.192*** 0.008*** 0.185*** 0.007*** 0.219***

R[L]6M3 0.000 0.90*** 0.001 0.848*** 0.001 0.852*** 0.001 0.861*** R[LS]6M3 0.008*** 0.15*** 0.007*** 0.128*** 0.008*** 0.126 ** 0.007*** 0.150***

R[L]6M4 0.001 0.89*** 0.001 0.855*** 0.002 0.844*** 0.002 0.853*** R[LS]6M4 0.008*** 0.18*** 0.008*** 0.185*** 0.009*** 0.154*** 0.008*** 0.210***

R[L]6M5 0.002 0.92*** 0.002 0.838*** 0.003 0.871*** 0.002 0.841*** R[LS]6M5 0.007*** 0.13*** 0.007*** 0.075 ** 0.008*** 0.129 ** 0.007*** 0.106***

R[L]6M6 0.002 0.93*** 0.002 0.854*** 0.003 * 0.883*** 0.002 * 0.857*** R[LS]6M6 0.007*** 0.14*** 0.007*** 0.086 ** 0.007*** 0.133 ** 0.007*** 0.118***

R[L]6M7 0.003 0.92*** 0.002 * 0.842*** 0.004 ** 0.863*** 0.003 * 0.837*** R[LS]6M7 0.007*** 0.13** 0.007*** 0.087 ** 0.008*** 0.120 ** 0.007*** 0.112 **

R[L]6M8 0.003* 0.88*** 0.002 * 0.826*** 0.004 ** 0.837*** 0.003 * 0.830*** R[LS]6M8 0.008*** 0.11* 0.008*** 0.064 0.008*** 0.106 * 0.007*** 0.098 **

Note: The Table reports the results of regressions of the excess monthly returns of the optimal long [L] and long-short [LS] portfolios formed under 6 different
measures of risk and 8 models, on the total excess returns of the DJIAP W , DJIAEW and S&P500V W indices. The first column, a, is the CAPM alpha and the
second, b, the CAPM beta. Significance at the 1%, 5% and 10% levels is denoted by ***, ** and * respectively, where standard errors were calculated using a
heteroscedasticity adjusted covariance matrix of West and Newey (1987) with 4 lags. The starting years used for the portfolio regressions are in parenthesis.
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A more revealing pattern is reported in Table 4.9 which shows the difference in Sharpe

Ratios (SR)42 between the portfolios and benchmarks. Among the risk measures for

the [L] portfolios benchmarked against the price weighted DJIA and S&P500 indices

with start year 1987, the Minimax (R4) and LPM of order 4 (R6) measures based on

GOGARCH (M5 and M6) and IFACD (M7 and M8) models have the most significant

positive differences, confirming the analysis in Table 4.8. It is interesting to note that

based on the ranking of portfolios using the SR difference, the two benchmarks appear

interchangeable. Using the equally weighted DJIA and S&P500 benchmarks with start

year 1975, the SR differences appear to be positive and significant for the majority of

portfolios formed under different measures of risk and models. Also, the SR differences

of the equal weighted indices are almost everywhere higher than their value or price

weighted equivalents, suggesting that, unlike the conclusions of DeMiguel, Garlappi,

and Uppal (2009), the 1/N strategy is less efficient and hence has more room for im-

provement (as evidenced by the higher SR differences) than value or price weighting

schemes.

In the long-short case, the majority of portfolios have positive and significant SR differ-

ences with respect to all the benchmarks and starting years, with more than a doubling

of the SR difference in some cases. Here, the higher significant SR differences are to

be found among the DCC type models (M2, M3 and M4), and this may be related

to the short history used and AR(1) model which under the DCC is jointly estimated

with the GARCH dynamics so that the parameter estimates are more efficient. Since

at least one measure of the second conditional moment, the beta, was lowest among

the IFACD models in the CAPM type regressions in Table 4.8, it follows that the SR

differences must be in the first conditional moment for which the differences can only

be accounted for by the reason stated, and already discussed in Chapter 2. While there

is clearly value in removing the short-sale constraint allowing for a greater degree of

diversification particularly in periods of falling prices, the simple AR(1) model used for

conditional mean in all the models does well in capturing positive trends but less well

in capturing negative ones. Table 4.10 shows the average directional accuracy (DA) of

each security which was included in the backtest and the breakdown of DA by positive

(DA+) and negative (DA−) returns. The DA is very high for positive returns which is

not surprising since most securities, over relatively sized time windows, have a positive

42While there are strong arguments against using the SR for performance measurement, it is still the
most widely cited ratio and the only one to my knowledge for which adequate tests for establishing the
significance of ratio differences exist.
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mean. More sophisticated models are certainly possible such as the factor based models

(see for example Grinold and Kahn (2000) and Chen, Roll, and Ross (1986)), but even

with this simple model it is possible to significantly outperform the benchmark using

weekly returns. As a further illustration of the degree to which the optimal portfo-

lios outperform the benchmarks, Figure 4.3 shows the log TW of selected [L] and [LS]

portfolios against the benchmark portfolios with starting years 1975 and 1987. Even

though TW is not a good guide to portfolio performance, since it is strongly biased

by the starting period and hence is strongly path dependent, it is still a high impact

visual method for assessing relative performance. The 2 chosen portfolios, based on the

IFACD (NIG) and DCC-Copula(T) models, with risk measure the Conditional Value

at Risk, clearly show that an investor choosing to follow an active portfolio strategy

using a universe comprised of liquid DJIA constituents members would have more than

trebled his terminal wealth versus the S&P500 and DJIA (equal weighted) indices start-

ing in 1975. Indirectly shown here, replicating the S&P500 index could be done more

compactly by simply following an equal weighted DJIA constituent strategy, with im-

portant implications for managers tracking the former with a limited number of stocks.
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Table 4.9: Optimal portfolios: Sharpe ratio benchmark difference

DJIAP W [1987] DJIAEW [1975] S&P500V W [1987] S&P500V W [1975] DJIAP W [1987] DJIAEW [1975] S&P500V W [1987] S&P500V W [1975]

R[L]1M1 -0.18 * -0.13 -0.14 -0.10 R[LS]1M1 -0.51 * -0.60*** -0.47 -0.57***

R[L]1M2 0.21 0.28 * 0.25 0.31 * R[LS]1M2 0.66*** 0.61*** 0.70*** 0.64***

R[L]1M3 0.16 0.27*** 0.20 0.30 ** R[LS]1M3 0.60*** 0.51 ** 0.64*** 0.54***

R[L]1M4 0.17 0.26 ** 0.21 0.29 ** R[LS]1M4 0.67*** 0.62*** 0.71*** 0.65***

R[L]1M5 0.24 0.28*** 0.28 * 0.31*** R[LS]1M5 0.48 ** 0.40 * 0.52 ** 0.43 **

R[L]1M6 0.25 * 0.30*** 0.29 * 0.33*** R[LS]1M6 0.49 ** 0.41 * 0.53 ** 0.45 **

R[L]1M7 0.27 * 0.30*** 0.31 ** 0.33*** R[LS]1M7 0.45 ** 0.37 * 0.49 ** 0.40 *

R[L]1M8 0.25 0.29*** 0.29 * 0.32*** R[LS]1M8 0.51 ** 0.41 * 0.55 ** 0.44 **

R[L]2M1 -0.09 -0.03 -0.05 0.00 R[LS]2M1 -0.13 -0.20 -0.09 -0.17

R[L]2M2 0.23 0.29 ** 0.27 0.32 ** R[LS]2M2 0.64*** 0.59*** 0.68*** 0.62***

R[L]2M3 0.16 0.26*** 0.20 0.30*** R[LS]2M3 0.66*** 0.53*** 0.70*** 0.57***

R[L]2M4 0.18 0.25 ** 0.21 0.28 ** R[LS]2M4 0.69*** 0.61*** 0.73*** 0.64***

R[L]2M5 0.25 * 0.29*** 0.29 * 0.32*** R[LS]2M5 0.49 ** 0.41 * 0.52 ** 0.44 **

R[L]2M6 0.25 0.29*** 0.29 * 0.33*** R[LS]2M6 0.48 ** 0.43 ** 0.52 ** 0.46 **

R[L]2M7 0.26 * 0.30*** 0.30 * 0.33*** R[LS]2M7 0.49 ** 0.41 * 0.53 ** 0.44 **

R[L]2M8 0.23 0.28*** 0.27 * 0.31*** R[LS]2M8 0.46 * 0.41 * 0.50 ** 0.44 *

R[L]3M1 -0.16 * -0.18 ** -0.12 -0.15 * R[LS]3M1 -0.40 -0.46 ** -0.36 -0.43***

R[L]3M2 0.15 0.20 * 0.19 0.23 * R[LS]3M2 0.68*** 0.62*** 0.72*** 0.66***

R[L]3M3 0.15 0.22 ** 0.18 0.25 ** R[LS]3M3 0.64*** 0.53*** 0.68*** 0.56***

R[L]3M4 0.24 0.25*** 0.28 * 0.28*** R[LS]3M4 0.68*** 0.61*** 0.72*** 0.64***

R[L]3M5 0.18 0.21 ** 0.22 0.24 ** R[LS]3M5 0.47 ** 0.39 * 0.51 ** 0.43 **

R[L]3M6 0.22 0.24 ** 0.26 0.28 ** R[LS]3M6 0.47 ** 0.42 ** 0.51 ** 0.45 **

R[L]3M7 0.22 0.22 ** 0.26 * 0.25 ** R[LS]3M7 0.50 ** 0.43 * 0.54 ** 0.46 **

R[L]3M8 0.24 0.27*** 0.28 * 0.30*** R[LS]3M8 0.47 * 0.41 * 0.51 ** 0.44 **

R[L]4M1 -0.10 -0.06 -0.06 -0.03 R[LS]4M1 -0.92*** -0.94*** -0.88*** -0.91***

R[L]4M2 0.17 0.23 ** 0.21 0.26 ** R[LS]4M2 0.45 ** 0.44 ** 0.49*** 0.47 **

R[L]4M3 0.16 0.24 ** 0.20 0.27 ** R[LS]4M3 0.56*** 0.46 ** 0.60*** 0.49 **

R[L]4M4 0.23 * 0.29*** 0.27 * 0.32*** R[LS]4M4 0.60*** 0.53*** 0.63*** 0.56***

R[L]4M5 0.32 ** 0.35*** 0.36*** 0.38*** R[LS]4M5 0.45 ** 0.29 0.48 ** 0.32

R[L]4M6 0.10 0.21 ** 0.14 0.24 ** R[LS]4M6 0.27 0.24 0.31 * 0.27

R[L]4M7 0.29 ** 0.29*** 0.33 ** 0.32*** R[LS]4M7 0.38 * 0.27 0.42 ** 0.31

R[L]4M8 0.25 ** 0.32*** 0.29 ** 0.36*** R[LS]4M8 0.38 * 0.27 0.42 ** 0.30

R[L]5M1 -0.09 -0.03 -0.05 0.00 R[LS]5M1 -0.23 -0.30 * -0.19 -0.26 *

R[L]5M2 0.22 0.28 * 0.26 0.31 * R[LS]5M2 0.68*** 0.61*** 0.72*** 0.64***

R[L]5M3 0.16 0.26 ** 0.19 0.29*** R[LS]5M3 0.65*** 0.52*** 0.69*** 0.56***

R[L]5M4 0.18 0.25 ** 0.22 0.28 ** R[LS]5M4 0.69*** 0.61*** 0.73*** 0.64***

R[L]5M5 0.25 * 0.29*** 0.29 * 0.32*** R[LS]5M5 0.46 ** 0.41 * 0.50 ** 0.44 **

R[L]5M6 0.25 * 0.30*** 0.29 * 0.33*** R[LS]5M6 0.46 ** 0.41 * 0.50 ** 0.44 **

R[L]5M7 0.27 * 0.30*** 0.31 * 0.34*** R[LS]5M7 0.50 ** 0.41 * 0.54 ** 0.45 **

R[L]5M8 0.23 0.27*** 0.27 * 0.31*** R[LS]5M8 0.45 * 0.39 * 0.49 * 0.43 *

R[L]6M1 -0.18 -0.12 -0.15 -0.09 R[LS]6M1 -0.65 ** -0.66*** -0.61 ** -0.63***

R[L]6M2 0.21 0.28 * 0.25 0.31 * R[LS]6M2 0.65*** 0.60*** 0.69*** 0.64***

R[L]6M3 0.16 0.27*** 0.20 0.30*** R[LS]6M3 0.61*** 0.52*** 0.65*** 0.55***

R[L]6M4 0.19 0.27 ** 0.23 0.30 ** R[LS]6M4 0.69*** 0.64*** 0.73*** 0.67***

R[L]6M5 0.25 * 0.29*** 0.29 * 0.32*** R[LS]6M5 0.48 ** 0.39 * 0.52 ** 0.42 **

R[L]6M6 0.26 * 0.31*** 0.30 ** 0.34*** R[LS]6M6 0.46 ** 0.40 * 0.50 ** 0.43 **

R[L]6M7 0.29 ** 0.32*** 0.33 ** 0.35*** R[LS]6M7 0.48 ** 0.39 * 0.52 ** 0.43 **

R[L]6M8 0.28 * 0.31*** 0.32 ** 0.34*** R[LS]6M8 0.50 ** 0.41 * 0.54 ** 0.44 **

Note: The Table reports the differences in the annualized SR of the excess returns of the long ([L]) and long-short ([LS]) portfolios formed under 6 different measures of risk and 8 DGPs,
against the total excess returns of the DJIAPW , DJIAEW and S&P500V W indices. Significance at the 1%, 5% and 10% levels is denoted by ***, ** and * respectively based on the test of
Ledoit and Wolf (2008). The starting years used for the calculations are in parenthesis.
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Table 4.10: Directional accuracy (conditional mean dynamics)

PERMNO 10107 10145 10225 10241 10401 10495 10786 11260 11308 11703 11754 11850 12060 12079 12490

DA 48 53 55 52 50 55 49 50 53 52 50 55 54 52 51

DA+ 89 87 97 94 83 88 90 97 89 87 81 83 80 88 96

DA− 7 14 2 6 16 23 11 3 12 15 20 21 24 15 2

% Up Weeks 50 53 56 52 51 49 48 50 54 52 50 55 53 51 52

% Down Weeks 50 47 44 48 49 51 52 50 46 48 50 45 47 49 48

No.Weeks 582 1729 565 853 1793 84 1159 234 1242 1878 1527 1878 1878 1797 1644

PERMNO 12503 12546 13661 13901 14322 14541 14736 15069 15368 15456 15659 16109 16432 16707 17830

DA 51 51 52 56 51 54 57 51 54 51 53 57 53 52 55

DA+ 74 79 91 92 78 85 85 85 94 90 96 99 99 89 93

DA− 34 28 7 12 23 19 24 17 8 11 5 1 1 12 9

% Up Weeks 45 46 53 55 50 53 54 50 54 51 53 57 53 51 55

% Down Weeks 55 54 47 45 50 47 46 50 46 49 47 43 47 49 45

No.Weeks 853 636 636 1164 1296 1445 1159 853 1159 1159 1296 564 1296 400 1878

PERMNO 18163 18542 19561 19713 21573 21936 22111 22592 22752 24643 26403 27828 43449 47896 48071

DA 54 52 52 51 52 53 53 54 53 53 52 53 54 52 50

DA+ 85 91 94 89 94 81 92 81 80 88 97 90 95 89 93

DA− 19 9 6 9 9 26 11 25 21 15 3 12 7 9 5

% Up Weeks 53 53 53 52 51 49 51 53 54 52 52 53 53 53 50

% Down Weeks 47 47 47 48 49 51 49 47 46 48 48 47 47 47 50

No.Weeks 1878 1025 1242 234 1527 351 719 1794 1644 1878 1025 719 1313 413 612

PERMNO 55976 59176 59328 59408 59459 65875 66093 66181 66800 70519 76076 89006

DA 56 53 53 47 54 53 55 47 51 51 54 57

DA+ 89 82 93 68 95 78 83 81 88 88 100 69

DA− 18 20 8 26 5 27 28 14 16 13 0 43

% Up Weeks 54 53 53 50 54 51 49 50 48 51 54 53

% Down Weeks 46 47 47 50 46 49 51 50 52 49 46 47

No.Weeks 719 1478 582 149 81 351 316 582 233 638 81 118

Note: The Table reports the average percent Directional Accuracy (DA), based on the constant-AR(1) conditional mean dynamics, of the securities (using their CRSP PERMNO) which were
included in the backtest and representing the point in time constituents of the DJIA. DA+ and DA− denotes the directional accuracy for positive and negative returns respectively.
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Figure 4.3: Selected Portfolios vs Benchmarks
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Table 4.11: Optimal Long-only portfolios under 6 different measures of risk

R1 TW CV aR5% MaxDD SDA MeanA SharpeA R2 TW MAD MaxDD SDA MeanA SharpeA

M1 32.9 0.024 0.578 0.184 0.119 0.292 M1 58.2 0.007 0.492 0.183 0.135 0.387

M2 589.2 0.025 0.607 0.221 0.216 0.700 M2 595.8 0.008 0.597 0.217 0.216 0.711

M3 511.2 0.025 0.538 0.217 0.209 0.687 M3 490.6 0.008 0.537 0.217 0.208 0.680

M4 477.4 0.025 0.570 0.216 0.208 0.680 M4 462.2 0.008 0.595 0.215 0.207 0.679

M5 631.5 0.026 0.635 0.223 0.219 0.702 M5 677.6 0.008 0.634 0.225 0.222 0.707

M6 763.4 0.026 0.638 0.227 0.226 0.719 M6 733.2 0.008 0.639 0.229 0.225 0.708

M7 727.7 0.026 0.641 0.226 0.224 0.712 M7 736.5 0.008 0.654 0.230 0.225 0.706

M8 679.3 0.026 0.647 0.229 0.223 0.702 M8 638.5 0.008 0.658 0.234 0.222 0.681

R3 TW SD MaxDD SDA MeanA SharpeA R4 TW Min MaxDD SDA MeanA SharpeA

M1 24.3 0.013 0.649 0.214 0.115 0.231 M1 52.1 -0.210 0.685 0.192 0.136 0.368

M2 540.6 0.013 0.725 0.255 0.222 0.626 M2 392.4 -0.241 0.534 0.211 0.199 0.650

M3 627.6 0.013 0.617 0.244 0.222 0.657 M3 422.4 -0.200 0.537 0.215 0.202 0.661

M4 747.6 0.013 0.558 0.226 0.223 0.704 M4 492.8 -0.179 0.517 0.195 0.204 0.741

M5 578.5 0.013 0.620 0.250 0.220 0.627 M5 923.7 -0.190 0.603 0.217 0.230 0.777

M6 718.0 0.013 0.579 0.251 0.227 0.652 M6 371.8 -0.200 0.608 0.208 0.200 0.664

M7 550.3 0.013 0.602 0.233 0.215 0.650 M7 622.8 -0.201 0.588 0.213 0.216 0.717

M8 829.2 0.013 0.560 0.237 0.228 0.699 M8 763.0 -0.210 0.471 0.218 0.222 0.732

R5 TW LPM1 MaxDD SDA MeanA SharpeA R6 TW LPM4 MaxDD SDA MeanA SharpeA

M1 57.2 0.004 0.496 0.175 0.134 0.393 M1 31.9 0.027 0.618 0.185 0.118 0.287

M2 576.9 0.004 0.600 0.217 0.215 0.706 M2 576.5 0.042 0.603 0.218 0.215 0.702

M3 481.0 0.004 0.542 0.218 0.207 0.674 M3 495.9 0.027 0.535 0.218 0.208 0.679

M4 465.6 0.004 0.594 0.216 0.207 0.678 M4 494.8 0.032 0.570 0.215 0.209 0.687

M5 685.3 0.004 0.633 0.225 0.222 0.710 M5 665.5 0.026 0.632 0.223 0.221 0.710

M6 739.7 0.004 0.639 0.229 0.226 0.708 M6 782.8 0.026 0.612 0.224 0.226 0.728

M7 752.6 0.004 0.652 0.230 0.226 0.710 M7 809.4 0.026 0.622 0.226 0.228 0.728

M8 630.6 0.004 0.656 0.234 0.221 0.678 M8 779.1 0.029 0.581 0.225 0.226 0.727

Note: The Table reports the out of sample performance of 8 models (M1 − M8) optimized under 6 different risk measures, using the weekly log total returns of the point in time
30 constituents of the DJIA index for the period 13/01/1975 to 03/01/2011 (1878 weeks). The models were re-estimated every week (Friday), and a scenario forecast for the
following week of size 7000 × 30. The set of weights for each model and measure was obtained by optimizing under optimal risk-reward fractional programming model with short
sale constraints and maximum bounds of 20%. Portfolios were formed/rebalanced on the Monday following the Friday’s estimation, by calculating the number of shares to
allocate/reallocate to each position after subtracting a flat commission of $10 per trade, and tracked daily. The measures of performance used, based on these daily portfolios,
were terminal wealth (TW ) of $1, maximum drawdown (MaxDD), standard deviation (SDA) formed from annual returns, holding period mean return (MeanA) formed from
annual returns and the annualized Sharpe ratio (SharpeA). The statistic for the risk measure optimized was also reported for each model based on the daily portfolio returns.
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Table 4.12: Optimal Long-Short portfolios under 6 different measures of risk

R1 TW CV aR5% MaxDD SDA MeanA SharpeA R2 TW MAD MaxDD SDA MeanA SharpeA

M1 3.1 0.017 0.472 0.123 0.039 -0.228 M1 29.1 0.007 0.400 0.202 0.114 0.234

M2 580.8 0.014 0.198 0.148 0.202 1.000 M2 541.9 0.005 0.191 0.150 0.200 0.975

M3 349.3 0.014 0.181 0.151 0.186 0.849 M3 396.6 0.005 0.162 0.153 0.190 0.868

M4 596.7 0.015 0.201 0.153 0.204 0.981 M4 610.6 0.005 0.187 0.153 0.205 0.986

M5 279.9 0.016 0.202 0.161 0.180 0.779 M5 299.7 0.005 0.276 0.163 0.182 0.787

M6 311.7 0.016 0.213 0.166 0.184 0.776 M6 329.1 0.005 0.294 0.171 0.186 0.773

M7 241.1 0.016 0.294 0.160 0.175 0.755 M7 306.2 0.005 0.316 0.168 0.184 0.769

M8 329.3 0.016 0.245 0.166 0.186 0.784 M8 358.3 0.006 0.304 0.166 0.189 0.807

R3 TW SD MaxDD SDA MeanA SharpeA R4 TW Min MaxDD SDA MeanA SharpeA

M1 5.1 0.009 0.492 0.142 0.056 -0.070 M1 0.8 -0.056 0.691 0.121 0.001 -0.592

M2 613.0 0.007 0.198 0.151 0.204 0.999 M2 251.3 -0.041 0.166 0.127 0.173 0.949

M3 393.8 0.007 0.171 0.149 0.190 0.889 M3 280.2 -0.053 0.179 0.164 0.180 0.737

M4 575.6 0.007 0.198 0.150 0.202 0.986 M4 345.0 -0.069 0.233 0.144 0.185 0.882

M5 277.2 0.008 0.280 0.163 0.180 0.768 M5 151.1 -0.087 0.310 0.161 0.160 0.630

M6 312.9 0.008 0.291 0.168 0.184 0.770 M6 118.2 -0.077 0.282 0.156 0.152 0.607

M7 327.2 0.008 0.294 0.168 0.186 0.785 M7 138.8 -0.069 0.276 0.160 0.157 0.631

M8 347.8 0.008 0.298 0.167 0.188 0.798 M8 148.7 -0.099 0.283 0.159 0.159 0.629

R5 TW LPM1 MaxDD SDA MeanA SharpeA LPM4 TW R6 MaxDD SDA MeanA SharpeA

M1 11.6 0.004 0.465 0.148 0.081 0.104 M1 2.2 0.010 0.570 0.129 0.031 -0.293

M2 576.5 0.003 0.194 0.151 0.202 0.981 M2 567.1 0.009 0.190 0.150 0.202 0.987

M3 388.2 0.003 0.171 0.150 0.189 0.879 M3 374.3 0.009 0.181 0.150 0.188 0.874

M4 609.6 0.003 0.195 0.150 0.204 0.999 M4 634.3 0.010 0.214 0.154 0.206 0.983

M5 297.0 0.003 0.275 0.165 0.182 0.784 M5 272.0 0.012 0.270 0.164 0.179 0.760

M6 291.2 0.003 0.290 0.168 0.182 0.753 M6 275.6 0.013 0.271 0.167 0.180 0.748

M7 318.7 0.003 0.317 0.168 0.185 0.780 M7 270.4 0.012 0.285 0.165 0.179 0.757

M8 339.6 0.003 0.304 0.166 0.187 0.798 M8 317.5 0.015 0.278 0.167 0.185 0.775

Note: The Table reports the out of sample performance of 8 models (M1 − M8) optimized under 6 different risk measures, using the weekly log total returns of the point in time
30 constituents of the DJIA index for the period 13/01/1975 to 03/01/2011 (1878 weeks). The models were re-estimated every week (Friday), and a scenario forecast for the
following week of size 7000 × 30. The set of weights for each model and measure was obtained by optimizing under optimal risk-reward fractional programming model with
maximum absolute bounds of 30% and 2× leverage. Portfolios were formed and rebalanced on the Monday following the Friday’s estimation, by calculating the number of shares
to allocate/reallocate to each position after subtracting a flat commission of $10 per trade, and tracked daily. Margin for the long and short positions was maintained at 30% of
gross value and debit interest on loans was charged at 50bp above the 1 Month T-Bill rate while credit interest on cash was set at 50bp below the same rate. The measures of
performance used, based on these daily portfolios, were terminal wealth (TW ) of $1, maximum drawdown (MaxDD), standard deviation (SDA) formed from annual returns,
holding period mean return (MeanA) formed from annual returns and the annualized Sharpe ratio (SharpeA). The statistic for the risk measure optimized was also reported for
each model based on the daily portfolio returns.



Chapter 4: Active Weights for Bad Benchmarks 164

Having presented evidence that there is value in an active portfolio strategy, even

when considering alternative weighting schemes for the benchmark, it is interesting

to investigate whether there is a particular set of measures or models which performs

better among those used to form optimal portfolios. Tables 4.11 and 4.12 present

performance statistics for the [L] and [LS] portfolios respectively, under the 6 risk

measures and 8 models for the dynamics. Immediately obvious, and already stated in

the benchmark comparison, is the poor relative performance of model M1. Within the

[L] portfolios, it is difficult to distinguish any particular model as being better based on

the SR, although models based on the Minimax and LPM of order 4 measures (R4 and

R6 models respectively) appear to provide for marginally better relative performance.

Within the Minimax portfolios the model based on the IFACD-GH dynamics (M8) has

the lowest maximum drawdown (MaxDD) among all [L] portfolios which highlights the

value of flexible dynamic higher moments for extreme losses, a good example of which

was already presented in Section 3.5.4.2. Within the [LS] portfolios it would appear

that the DCC models provide superior performance, confirming the results in Table

4.8, for the results already stated. Compared with the [L] portfolios, [LS] portfolios

have a significantly higher SR and less than half the drawdowns. However, because

of the lack of high DA in the negative returns of the [LS] portfolios, even with 2×
leverage the mean is still not as high as that of the [L] portfolios. As comparison of

SR differences has been notoriously absent in many papers, with most tables simply

presenting the SR without stating any formal test of their significance, I provide in

Appendix E.1 a detailed set of supplemental tables of the pairwise p-values for the

SR differences of all portfolios using the test of Ledoit and Wolf (2008). The tables

confirm the overall picture presented thus far, but also provide a more detailed view

of the relative differences. For example, the difference between the SR of model M8

against the DCC models M2 and M4 which appear to have the higher SR in the [LS]

portfolios, are only on average marginally significant with p-values near 10%. Whilst

the differences in many of the portfolios appear marginal, it is important to investigate

whether any of them offer any potential advantage in terms of lower turnover. To that

end, Table 4.13 reports the average weekly percent turnover rates for the intersection

of all models and measures, in the [L] and [LS] portfolios, where turnover is defined as

in Barber, Lehavy, McNichols, and Trueman (2001) in a three step procedure. First,

for each stock j in the portfolio at time t0, the percent holding in that portfolio at time

t1 is calculated based assuming no re-balancing, and denoting this as Gj,t:

Gj,t =
Sj,0Pj,1∑

∀j
Sj,0Pj,1

, (4.27)
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where Sj is the number of shares in stock j and Pj the price of stock j. This is then

compared to actual percent holding of firm j in the portfolio at the end of trading at

time t taking into account any portfolio re-balancing undertaken, and denoting this as

Fj,t:

Fj,t =
Sj,1Pj,1∑

∀j
Sj,1Pj,1

. (4.28)

Turnover at time t, Tt, is then defined as

Tt =
∑

∀j

max {Gj,t − Fj,t, 0}. (4.29)

For the [LS] portfolios the calculations have to be adjusted so that the absolute (gross)

value is used to calculate percent holdings, and sign reversals are properly accounted

for. Specifically:

• when Gj,t ≥ 0 && Fj,t ≥ 0, then Tj,t = max (Gj,t − Fj,t, 0).

• when Gj,t ≥ 0 && Fj,t < 0, then Tj,t = Gj,t.

• when Gj,t < 0 && Fj,t ≥ 0, then Tj,t = abs (Gj,t).

• when Gj,t < 0 && Fj,t < 0, then Tj,t = max (Fj,t −Gj,t, 0).

Table 4.13: Weekly portfolio turnover

M1 M2 M3 M4 M5 M6 M7 M8

R[L]1 4 60 62 61 69 69 69 69

R[L]2 3 60 62 61 69 69 69 69

R[L]3 3 66 66 67 72 72 72 73

R[L]4 4 71 70 71 73 73 73 73

R[L]5 11 60 62 61 69 69 69 69

R[L]6 15 60 62 61 69 69 69 69

R[LS]1 10 61 61 62 67 67 67 67

R[LS]2 16 61 61 62 67 67 67 68

R[LS]3 6 63 63 64 68 68 68 68

R[LS]4 3 61 61 62 67 67 67 67

R[LS]5 18 61 61 62 67 67 68 68

R[LS]6 7 61 61 62 67 67 67 67

Note: The Table reports the average weekly percent turnover for portfolio optimized under 8
different models (M1 to M8) and optimized under 6 different measures of risk with no short sale
constraint and 2× leverage (R[LS]1 to R[LS]6). Details of the turnover calculations can be found in
Equations 4.27, 4.28 and 4.29.

The first thing that is immediately obvious is the overall high percent turnover of

these models. Given that this is a weekly model, based on an AR(1) conditional mean

forecast, this is not very surprising considering the arguments made with regards to the

observed sign changes in the actual underlying returns and captured in the model DA

which was already discussed and summarized in Table 4.10. Secondly, there is little
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variation in the overall percent weekly turnover between risk measures but there is some

variation between models. The M1 model, which has the worst overall performance, is

unable to capture the conditional dynamics since using the unconditional history and

rolling the window by 1 week at a time is likely to lead to a very slow change in the

underlying weight distribution and hence very small turnover. Of more interest is the

7 to 10 percentage point difference between the DCC and the IFACD models. This is

surely related to the fact that the time variation in the higher moments modelled by

the IFACD model provides for additional variability at the margins of the risk return

space.

With the exception of the SR, for which a robust test exists for the statistical comparison

of pairwise differences, it is hard to draw strong conclusions from the other average point

measures. However, since the SR may not be an optimal measure for comparison and

inference in the presence of non-normally distributed returns, I use the MCS method of

Hansen, Lunde, and Nason (2011) separately and jointly on the [L] and [LS] portfolios

in Tables 4.14, 4.15 and 4.16. As it is not clear a-priori what loss function to use, I

present results using both a linear loss function of the negative of the excess (over the

TB1M rate) portfolio returns, and one based on the upper to lower Partial Moment

utility measure of Holthausen (1981)43 with threshold the TB1M, and parameters such

that an S-shaped utility curve results, based on the theory of Kahneman and Tversky

(1979) about investors’ reactions to gains and losses. The procedure is run on all the

portfolios in the [L], [LS] and the joint set of [L] and [LS] portfolios, and it therefore

identifies the intersection of models and measures which belong to the optimal set.

Neither the linear nor the partial moment loss functions suggest that any portfolio is

superior to any other, with the exception of model M1 which, as expected, does not

belong to the optimal set with at least 90% confidence. To investigate whether the test

was particulary sensitive to any other loss function, the MCS procedure was also tested

on losses based on a quadratic function, and an inverse S-shaped utility curve which

penalized (rewards) losses (gains) at an increasing rate. Neither returned results which

were substantially different.

The MCS procedure on the portfolios, using a number of different

43 The upper to lower partial moment loss function used, was defined as:

U (xt) = xt − kl (θt − xt)
al , xt < θt

U (xt) = xt + ku (xt − θt)
au , xt ≥ θt

were the 1 Month T-Bill rate was used as the threshold(θ), al = 0.3, au = 0.3, kl = 10 and ku = 10, so
as to represent an S-Shaped utility curve.
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Table 4.14: Model Confidence Set portfolios I (Long only)

Partial Moments Loss Function

M1 M2 M3 M4 M5 M6 M7 M8

R[L]1 0.00 0.68 0.68 0.68 0.68 0.68 0.68 0.68

R[L]2 0.09 0.68 0.68 0.68 0.68 0.68 0.68 0.68

R[L]3 0.00 0.68 0.68 0.68 0.41 0.68 0.48 0.48

R[L]4 0.04 0.68 0.68 0.68 0.68 0.48 0.68 0.68

R[L]5 0.03 0.68 0.68 0.68 0.68 0.92 0.68 0.68

R[L]6 0.00 0.68 0.68 0.68 0.68 1.00 0.68 0.68

Linear Loss Function

M1 M2 M3 M4 M5 M6 M7 M8

R[L]1 0.00 0.87 0.87 0.87 0.87 0.87 0.87 0.87

R[L]2 0.00 0.87 0.87 0.87 0.87 0.87 0.87 0.87

R[L]3 0.00 0.87 0.87 1.00 0.87 1.00 0.87 1.00

R[L]4 0.01 0.87 0.87 0.87 1.00 0.84 0.87 1.00

R[L]5 0.00 0.87 0.87 0.87 0.87 0.87 1.00 0.87

R[L]6 0.00 0.87 0.87 0.87 0.87 0.87 1.00 1.00

Note: The Table reports the Model Confidence Set (MCS) p-values of the portfolios estimated under 8 different
models (M1 to M8) and optimized under 6 different measures of risk with short sale constraints (R[L]1 to R[L]6).
The partial moment loss function used was based on a modified partial moment utility of Holthausen (1981) and
defined as:

U (xt) = xt − kl (θt − xt)al , xt < θt

U (xt) = xt + ku (xt − θt)au , xt ≥ θt

were the 1 month T-Bill rate was used as the threshold (θ), al = 0.3, au = 0.3, kl = 10 and ku = 10, so as to
represent an S-shaped utility curve. The linear loss function was based on the excess over the 1 month T-Bill rate.

Table 4.15: Model Confidence Set portfolios I (Long-Short)

Partial Moments Loss Function

M1 M2 M3 M4 M5 M6 M7 M8

R[LS]1 0.00 1.00 0.64 1.00 1.00 1.00 0.82 1.00

R[LS]2 0.01 1.00 0.99 1.00 1.00 1.00 1.00 1.00

R[LS]3 0.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00

R[LS]4 0.00 0.64 0.48 1.00 1.00 0.64 0.48 0.64

R[LS]5 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

R[LS]6 0.00 1.00 0.64 1.00 1.00 1.00 0.98 1.00

Linear Loss Function

M1 M2 M3 M4 M5 M6 M7 M8

R[LS]1 0.00 0.85 0.85 0.85 0.85 0.85 0.85 0.85

R[LS]2 0.00 0.85 0.85 0.85 0.85 0.85 0.85 0.85

R[LS]3 0.00 0.85 0.85 1.00 0.85 1.00 0.85 1.00

R[LS]4 0.01 0.85 0.85 0.85 1.00 0.84 0.85 1.00

R[LS]5 0.00 0.85 0.85 0.85 0.85 0.85 1.00 0.85

R[LS]6 0.00 0.85 0.85 0.85 0.85 0.85 1.00 1.00

Note: The Table reports the Model Confidence Set (MCS) p-values of the portfolios estimated under 8 different
models (M1 to M8) and optimized under 6 different measures of risk with no short sale constraint and 2× leverage
(R[LS]1 to R[LS]6). The partial moment loss function used was based on a modified partial moment utility of
Holthausen (1981) and defined as:

U (xt) = xt − kl (θt − xt)al , xt < θt

U (xt) = xt + ku (xt − θt)au , xt ≥ θt

were the 1 month T-Bill rate was used as the threshold(θ), al = 0.3, au = 0.3, kl = 10 and ku = 10, so as to
represent an S-shaped utility curve. The linear loss function was based on the excess over the 1 month T-Bill rate.

loss functions, did not provide a compact superior set of models or measures. It is

not clear why, but it appears that with the portfolios tested, each with a size of more

than 9000 points (daily returns), any marginal benefits from differences in the model

dynamics contribute very little to the overall losses based on the type of loss functions

used. While it is difficult to highlight one particular measure or model which does
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Table 4.16: Model Confidence Set portfolios II

Partial Moments Loss Function

M1 M2 M3 M4 M5 M6 M7 M8

R[L]1 0.01 0.88 0.88 0.88 0.88 0.88 0.88 0.88

R[L]2 0.07 0.88 0.88 0.88 0.88 0.88 0.88 0.88

R[L]3 0.00 0.88 0.88 0.88 0.68 0.88 0.74 0.69

R[L]4 0.05 0.88 0.88 0.88 0.88 0.69 0.88 0.88

R[L]5 0.05 0.88 0.88 0.88 0.88 0.92 0.88 0.88

R[L]6 0.01 0.88 0.88 0.88 0.88 1.00 0.88 0.88

R[LS]1 0.00 0.88 0.68 0.88 0.88 0.88 0.68 0.88

R[LS]2 0.00 0.88 0.68 0.88 0.88 0.88 0.88 0.88

R[LS]3 0.00 0.88 0.68 0.88 0.88 0.88 0.88 0.88

R[LS]4 0.00 0.68 0.17 0.88 0.69 0.68 0.68 0.68

R[LS]5 0.00 0.88 0.69 0.88 0.88 0.88 0.88 0.88

R[LS]6 0.00 0.88 0.68 0.88 0.88 0.88 0.69 0.88

Linear Loss Function

M1 M2 M3 M4 M5 M6 M7 M8

R[L]1 0.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95

R[L]2 0.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95

R[L]3 0.00 0.95 0.95 1.00 0.95 1.00 0.95 1.00

R[L]4 0.02 0.95 0.95 0.95 1.00 0.95 0.95 1.00

R[L]5 0.00 0.95 0.95 0.95 0.95 0.95 1.00 0.95

R[L]6 0.00 0.95 0.95 0.95 0.95 0.95 1.00 1.00

R[LS]1 0.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95

R[LS]2 0.22 0.95 0.95 0.95 0.95 0.95 0.95 0.95

R[LS]3 0.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95

R[LS]4 0.00 0.22 0.95 0.95 0.22 0.15 0.22 0.22

R[LS]5 0.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95

R[LS]6 0.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Note: The Table reports the Model Confidence Set (MCS) p-values of the portfolios estimated under 8 different
models (M1 to M8) and optimized under 6 different measures of risk with short sale constraints (R[L]1 to R[L]6)
and no short sale constraint with 2× leverage (R[LS]1 to R[LS]6) evaluated jointly. The partial moment loss
function used was based on a modified partial moment utility of Holthausen (1981) and defined as:

U (xt) = xt − kl (θt − xt)al , xt < θt

U (xt) = xt + ku (xt − θt)au , xt ≥ θt

were the 1 month T-Bill rate was used as the threshold(θ), al = 0.3, au = 0.3, kl = 10 and ku = 10, so as to
represent an S-shaped utility curve. The linear loss function was based on the excess over the 1 month T-Bill rate.

better all the time, for the [L] portfolios the LPM measures with the IFACD models

appears to be marginally better, when considering the results of Tables 4.8 and 4.9

and some of the point estimates in Table 4.11. For the [LS] portfolios the DCC based

models across most measures seems to provide marginal out-performance, and it was

hypothesized that this may be related to the joint AR-GARCH estimation under these

models, a point also highlighted in Section 2.4. Tests to evaluate significant differences

in measures other than the Sharpe Ratio, such as those from the LPM family discussed

in Section 4.2.4, would be particularly useful in relative performance evaluation.

4.5 Conclusion

Advances in knowledge and computational power are opening up new frontiers for ac-

tive investing and portfolio management. No longer is it necessary to make the usual
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simplifying assumptions of multivariate normality, nor be restricted to the EV model.

New models and measures can capture the observed market phenomena, in large di-

mensional systems with reasonable speed. Using fractional programming with smooth

approximations to discontinuous functions, it is possible to optimize with confidence

and speed these risk measures, something which previously proved challenging in an

NLP setup. Benchmarks for gauging the performance of these new models need to

reflect their sophistication and adapt accordingly. In this chapter I have used and

extended some of these new measures and models, and provided evidence via a large

scale realistic portfolio application of their ability to substantially outperform a pop-

ular set of benchmarks. The [L] portfolios based on the IFACD model and optimized

under the LPM risk measure provided the most significant alpha in Table 4.8 with

an expected excess return of between 4% and 5% against the DJIA and S&P500 in-

dices, and betas below 1. For the [LS] portfolios all models and measures provided

a significant alpha with very low betas. The portfolios based on the IFACD model

and optimized under the LPM measure had the lowest betas in this group. The SR

differences confirmed the findings from the CAPM regressions, with the DCC models

having the largest significant differences in the [LS] portfolios. It was hypothesized

that, given similar conditional mean forecast dynamics, the reason for this difference

was the better consistency of the joint AR-GARCH first stage estimation process of

the DCC models. Among the benchmarks, the equal weighted indices were the easiest

to outperform with significant SR differences in the [L] portfolios for all models and

measures. This is a clear indication that they are sub-optimally weighted against even

the value or price weighted indices on which they were calculated, and contrary to the

findings of DeMiguel, Garlappi, and Uppal (2009). The terminal wealth and drawdown

statistics in Tables 4.11 and 4.12 again confirmed the previous findings with the IFACD

models providing the best performance in the [L] portfolios and the DCC based models

in the [LS] portfolios. Unfortunately, the MCS procedure under a number of different

loss functions did not reveal any significant differences amongst the portfolios tested,

neither separately among the [L] and [LS] portfolios nor jointly, in Tables 4.14, 4.15

and 4.16. However, and consistent among all tests undertaken was the dismal perfor-

mance of all portfolios formed under the M1 model which completely ignores security

dynamics and goes to the very basis of the importance of modelling them.

At the weekly frequency tested, the security dynamics observed make a statically based

weighting scheme inefficient, with immediate value to models which capture these dy-

namics, and asymmetric risk measures which reflect realistic investor preferences for

gains and losses. More importantly, active investors should consider more carefully the

rewards to actively managed funds which benchmark against these indices, and passive
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investors should reconsider the optimality of an index tracking strategy. While it is

unlikely that the weighting of popularly tracked indices will ever be anything but the

most simple of schemes, there is certainly value in the creation of optimally redesigned

tradeable funds based on these indices. Because of the high turnover required by such

active models which trade on a weekly cycle, using a subset of very liquid and high

capitalization stocks is likely to provide for the lowest cost approach. Future research

might also consider a multi period dynamic programming model with recourse, opening

up the possibility of using daily data for n-ahead optimization and the consideration of

path dependent measures such as conditional drawdown at risk of Chekhlov, Uryasev,

and Zabarankin (2005). Additionally, the use of more sophisticated conditional mean

forecasts would certainly add value beyond the simple AR model tested.



Conclusion

When security returns are characterized by dynamics such as time varying moments and

co-moments, and heterogeneous investors trading at different frequencies with varying

degrees of rationality, the investment allocation life cycle of modelling, allocation and

risk management must be approached with a new set of tools and mindset. In this the-

sis I have sought to provide one avenue for rationally approaching this process which is

consistent with the observed phenomena of modern markets. To this end, a new model

for jointly estimating time varying higher moment dynamics was introduced and shown

to provide substantial relative value. New approaches for modelling and optimizing

portfolios, including smooth NLP based risk measures and fractional programming,

were shown to outperform established market aggregates over a long period, and using

weekly returns.

In Chapter 1, substantial evidence was presented of the presence and importance of

time varying higher moment dynamics for portfolio and risk management in a univari-

ate context. In the majority of the literature on time varying higher moments, only

inference on the in-sample estimation of these models has been supplied with little in

the way of either the out-of-sample performance nor the value of such models for risk

management. Making use of a feature rich distribution, the GH, the cost of ignoring

such dynamics using a number of misspecification tests in-sample as well as tail based

tests out-of-sample was shown to be high. The application examined the higher mo-

ment dynamics present in a set of 14 international equity indices for a 15 year period

which included a range of financial crises. Despite the widely held view that indices,

representing market aggregates, provide for an efficient weighting with less risk than

individual securities, the presence of higher moment dynamics was found to have a very

negative impact on the accurate estimation of risk measures such as VaR when using

GARCH models. Instead, accounting for such dynamics with ACD models, using a

variety of distributions, the evidence clearly showed that better estimates of VaR were

obtained and a simulation study confirmed this. The chapter also addressed some more

171
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specific issues of ACD models, often overlooked in the literature, such as the consis-

tency of the parameters under different dynamics and the estimation using a global

optimization approach, both of which are important in confidently using and applying

these models.

Chapter 2 provided a review of multivariate GARCH models, their feasibility and value

in an applied setting. More specifically, an alternative answer was put forward to the

that provided by Caporin and McAleer (2012) regarding the value of the 2-stage DCC

model versus the more established BEKK. Using an in-sample empirical application

with the same dataset of Chapter 1, some evidence for the superior performance of

DCC models as a result of the 2 stage estimation process was provided and a reason-

able explanation put forward as to why this might be the case in general. A small

Monte Carlo application provided further support to this. The chapter also discussed

in more detail the problem of imposing covariance targeting for the extensions to the

DCC model proposed by Cappiello, Engle, and Sheppard (2006), something which the

majority of the literature has simply ignored, despite the fact that it may lead to local

rather than global optima. A more promising extension to the model in the form of

the DCC Student Copula was analyzed, and shown in Chapter 4 to provide for a very

flexible and feasible model for security dynamics.

In Chapter 3, the first feasible multivariate higher moment dynamics model, making

use of the independent factor framework, was presented and its unique properties such

as closed form higher co-moments and semi-analytic weighted density discussed. Con-

tinuing with the same dataset from Chapters 1 and 2, the empirical application both

highlighted the practical applications of these properties and the superior performance

of this model out-of-sample in both risk and portfolio applications in a crisis rich histor-

ical subperiod. Additional evidence was provided by using a weekly dataset, comprising

the point in time constituents of the DJIA index in a portfolio application using an ex-

treme loss aversion metric. Beyond the unique properties and dynamics of this model,

in a multivariate setting, the additional feature of separability means that this model

may be estimated in real time on any number of securities by making use of parallel

computational resources, making it ideal for mission critical risk management applica-

tions.

In chapter 4, the research focus was shifted from the modelling to the allocation stage

in the investment life-cycle. The question, given the dynamics established in previ-

ous chapters, of outperforming statically or sub-optimally weighted indices was posed

and answered in a large scale portfolio application making use of many new innovative

methods. Using a weekly dataset of the point in time constituents of the DJIA index

going back to 1970, and already used in an application in Chapter 3, a rolling portfolio
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estimation and optimization backtest provided strong evidence of the statistically sig-

nificant superior performance of a range of models against both the Dow and S&P500

indices. The proposition of DeMiguel, Garlappi, and Uppal (2009) of the superiority

of the 1/N rule was squarely rejected on both theoretical and empirical grounds, as

the rich dynamics observed in the underlying securities can simply not be handled by

static weighting schemes. A comparison between models, based on some measures,

highlighted the superior performance of the IFACD and Copula DCC models. Asym-

metric and tail based measures of risk such as the LPM and MiniMax were also shown

to provide some marginal improvement over other measures. Conclusions were drawn

from statistically robust measures of comparison such as the test of Sharpe ratio differ-

ences of Ledoit and Wolf (2008) and the Model Confidence Set of Hansen, Lunde, and

Nason (2011), departing from the usual practise of either simply looking at terminal

wealth or reporting the Sharpe ratios without testing their relative significance. The

inefficiency of these equity indices, already brought to light by Grinold (1992) and De-

mey, Maillard, and Roncalli (2010), has serious implications for both active and passive

investors who rely on them for different purposes. Whether these models and methods

can be leveraged to create optimized index products remains an open question.

There are certainly other avenues and models with which to approach the investment

allocation lifestyle. Recent advances in machine learning, have opened up a host of new

options for identifying hidden trends and information in large datasets. With regards

to the models already used and for very large datasets, dimensionality reduction can be

used with the IFACD model via the PCA whitening stage. However, the main bottle-

neck remains the estimation of the ACD dynamics, and hence alternative approaches

to their estimation would provide for the most useful contribution to the model. The

combination of traditional fundamental or statistical return factor models could cer-

tainly be combined with any of the feasible multivariate GARCH extensions, to create

even better models for portfolio allocation. Multi-step dynamic programming with re-

course is also an avenue worth exploring, particularly with daily data, opening up the

possibility of trading at different frequencies and using path dependent measures such

as maximum drawdown, among others. Internalizing transaction and turnover costs

in the portfolio process is also a possibility, though this would require a mixed integer

approach for the traditional minimum risk problem but a global optimization approach

when using fractional programming. Finally, the clear evidence of dynamics not fully

explained by traditional models, leading to the increased popularity of new risk mea-

sures in risk and portfolio management, necessitates a set of robust tests to evaluate

such measures, as exist for testing the differences in Sharpe ratios.



Appendix A

The Generalized Hyperbolic

Distribution

A.1 The Standardized GH Density

In order to model zero-mean, unit variance processes, the distribution, which must

posses the scaling property, needs to be properly standardized. In the case of the

GH distribution, because of the existence of location and scale invariant parameter-

izations and the possibility of expressing the mean and the variance in terms of one

of those parametrizations, namely the (ζ, ρ), the task of standardizing the density can

be broken down to one of estimating those 2 parameters, representing a combination

of shape and skewness, followed by a series of transformation steps to translate the

parameters into the (α, β, δ, µ) parametrization for which standard formulae exist for

the likelihood function. The (ξ, χ) parametrization, which is a simple transformation

of the (ζ, ρ), could also be used in the first step and then transformed into the latter

before proceeding further. The steps to transforming from the (ζ, ρ) to the (α, β, δ, µ)

parametrization, while at the same time standardizing for zero mean and unit variance

are given henceforth. Let X be a random variable distributed as a GH(ζ, ρ), where

ζ = δ
√
α2 − β2. ρ =

β

α
, (A.1)

Inverting (A.1) we can express α and β in terms of ζ, ρ and δ,

α =
ζ

δ
√

1 − ρ2
, (A.2)

β = αρ. (A.3)
174
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For standardization we require that,

E (X) = µ+
βδ√

α2 − β2

Kλ+1 (ζ)

Kλ (ζ)
= µ+

βδ2

ζ

Kλ+1 (ζ)

Kλ (ζ)
= 0

V ar (X) = δ2

(
Kλ+1 (ζ)

ζKλ (ζ)
+

β2

α2 − β2

(
Kλ+2 (ζ)

Kλ (ζ)
−
(

Kλ+1 (ζ)

Kλ (ζ)

)2
))

. (A.4)

It follows that

µ = −βδ2

ζ

Kλ+1 (ζ)

Kλ (ζ)
(A.5)

δ =

(
Kλ+1 (ζ)

ζKλ (ζ)
+

β2

α2 − β2

(
Kλ+2 (ζ)

Kλ (ζ)
−
(

Kλ+1 (ζ)

Kλ (ζ)

)2
))−0.5

. (A.6)

Since we can express, β2/
(
α2 − β2

)
as,

β2

α2 − β2
=

ρ2

(1 − ρ2)
, (A.7)

then we can re-write the formula for δ in terms of the parameters ζ and ρ as,

δ =

(
Kλ+1 (ζ)

ζKλ (ζ)
+

ρ2

(1 − ρ2)

(
Kλ+2 (ζ)

Kλ (ζ)
−
(

Kλ+1 (ζ)

Kλ (ζ)

)2
))−0.5

. (A.8)

Transforming into the (α, β, δ, µ) parametrization proceeds by first substituting (A.8)

into (A.2) and simplifying,

α =

ζ




Kλ+1(ζ)

ζKλ(ζ)
+

ρ2

(
Kλ+2(ζ)

Kλ(ζ)
−

(Kλ+1(ζ))
2

(Kλ(ζ))
2

)

(1−ρ2)




√
(1 − ρ2)

0.5

,

=




ζKλ+1(ζ)

Kλ(ζ)

(1 − ρ2)


1 +

ζρ2

(
Kλ+2(ζ)

Kλ+1(ζ)
− Kλ+1(ζ)

Kλ(ζ)

)

(1 − ρ2)







0.5

. (A.9)
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Finally, the rest of the parameters are derived recursively from α and the previous

results,

β = αρ, (A.10)

δ =
ζ

α
√

1 − ρ2
, (A.11)

µ =
−βδ2Kλ+1 (ζ)

ζKλ (ζ)
. (A.12)

For the use of the (ξ, χ) parametrization in estimation, the additional preliminary steps

of converting to the (ζ, ρ) are,

ζ =
1

ξ2
− 1, (A.13)

ρ =
χ

ξ
. (A.14)

A.2 The GH characteristic function

The moment generating function (MGF) of the GH distribution is,

MGH(λ,α,β,δ,µ)(u) = eµuM
GIG

(
λ,δ

√
α2−β2

)
(
u2

2
+ βu

)

= eµu
(

α2 − β2

α2 − (β + u)2

)λ/2 Kλ

(
δ
√
α2 − (β + u)2

)

Kλ

(
δ
√
α2 − β2

) ,

(A.15)

where MGIG represents the moment generating function of the Generalized Inverse

Gaussian which forms the mixing distribution in this variance-mean mixture subclass.

Powers of the MGF, MGH(u)p, only have the representation in (A.15) for p = 1, which

means that GH distributions are not closed under convolution with the exception of

the NIG, and only in the case when the shape and skew parameters are the same. The

MGF of the NIG is,

MNIG(α,β,δ,µ)(u) = eµu
eδ

√
α2−β2

eδ
√
α2−(β+u)2

. (A.16)

Powers of p are equivalent in this case to multiplication by p of δ and µ, so that,

NIG(α, β, δ1 , µ1)×...×NIG(α, β, δn, µn) = NIG(α, β, δ1+...+δn, µ1+...+µn). (A.17)

When the distribution is not closed under convolution, numerical methods are required

such as the inversion of the characteristic function by FFT. Because the MGF is a
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holomorphic function for complex z, with |z| < α− β, we can obtain the characteristic

function of the GH distribution, using the following representation,

φGH(u) = MGH(iu), (A.18)

so that the characteristic function may be written as,

φGH(λ,α,β,δ,µ)(u) = eµiu

(
α2 − β2

α2 − (β + iu)2

)λ/2 Kλ

(
δ
√
α2 − (β + iu)2

)

Kλ

(
δ
√
α2 − β2

) . (A.19)

and for the NIG this is simplified to,

φNIG(α,β,δ,µ)(u) = eµiu eδ
√
α2−β2

eδ
√
α2−(β+iu)2

. (A.20)

In order to find the portfolio density in the case of the IFACD model, the characteristic

function required for the inversion of the NIG density was already used in Chen, Härdle,

and Spokoiny (2010) and given below,

φport(u) = exp



iu

d∑

j=1

µ̄j +
d∑

j=1

δ̄j

(√
ᾱ2
j − β̄2

j −
√
ᾱ2
j − (β̄j + iu)

2

)
 (A.21)

where ᾱj , β̄j , δ̄j and µ̄j represent the parameters scaled as described in the main text of

the paper. In the case of the GH characteristic function, this is a little more complicated

as it involves the evaluation of modified Bessel function of the third kind with complex

arguments.1 Taking logs and summing,

φport(u) = exp

{
iu

d∑

j=1

(
µ̄j +

λj
2

log
(
ᾱ2
j − β̄2

j

)
− λj

2
log

(
ᾱ2
j − (β̄j + iu)2

)
+

log

(
Kλj

(
δ̄j

√
ᾱ2
j − (β̄j + iu)2

))
− log

(
Kλj

(
δ̄j

√
ᾱ2
j − β̄2

j

)))}
(A.22)

which is more than 30 times slower to evaluate than the equivalent NIG function because

of the Bessel function evaluations.

1Routines for this exist for example on Netlib, see http://www.netlib.org/amos/zbesk.f

http://www.netlib.org/amos/zbesk.f


Appendix B

The Student and Skewed Student

Distributions

B.1 The Standardized Student Density

The GARCH-Student model was first used described in Bollerslev (1987) as an alterna-

tive to the Normal distribution for fitting the standardized innovations. It is described

completely by a shape parameter ν, but for standardization we proceed by using its 3

parameter representation as follows:

f (x) =
Γ
(
ν+1

2

)

√
βνπΓ

(ν
2

)
(

1 +
(x− α)2

βν

)−( ν+1
2 )

(B.1)

where α, β, and ν are the location, scale1 and shape parameters respectively, and Γ is

the Gamma function. Similar to the Normal and Generalized Error distributions, this

is a unimodal and symmetric distribution where the location parameter α is the mean

(and mode) of the distribution while the variance is:

V ar (x) =
βν

(ν − 2)
. (B.2)

1In some representations, mostly Bayesian, this is represented in its inverse form to denote the
precision.
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For the purposes of standardization we require that:

Var(x) =
βν

(ν − 2)
= 1

∴ β =
ν − 2

ν

(B.3)

Substituting (ν−2)
ν into B.1 we obtain the standardized Student’s distribution:

f

(
x− µ

σ

)
=

1

σ
f (z) =

1

σ

Γ
(
ν+1

2

)

√
(ν − 2)πΓ

(
ν
2

)
(

1 +
z2

(ν − 2)

)−( ν+1
2 )

. (B.4)

The Student distribution has zero skewness and excess kurtosis equal to 6/(ν − 4) for

ν > 4.

B.2 The Standardized Skewed Student Density

Fernandez and Steel (1998) induced skewness into unimodal and symmetric distribu-

tions by introducing inverse scale factors in the positive and negative real half lines. Let

z be a zero mean, unit variance i.i.d. random variable with unimodal and symmetric

density g (.), z ∼ g (0, 1), and ǫ the mixture of |z| based on a Bernoulli process w with

probability of success ξ2

1+ξ2
2:

ǫ = wξ |z| − (1 − w)
1

ξ
|z| . (B.5)

The density of f (ǫ|ξ) is then:

f (ǫ; ξ) =
2

ξ + ξ−1

(
g
(
ǫξ−1

)
H (ǫ) + g (ǫξ)H (−ǫ)

)
(B.6)

where ξ ∈ R
+3 and H(.) is the Heaviside step function.4 Assuming that the rth moment

of g (0, 1) exists, then its skewed version also has a finite rth moment given by

E (ǫr |ξ ) = Mr

ξr+1 + (−1)r

ξr+1

ξ + ξ−1
(B.7)

2This exposition is based on Lambert and Laurent (2001b).
3When ξ = 1, the distribution is symmetric.
4This is equal to (1+sgn(ǫ))/2, for which a number of smooth approximations exist, such as 1

1+e−2kǫ

for large k
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where Mr denotes the absolute moment function of g (0, 1), and given by:

Mr = 2

∫ ∞

0
ǫrf (ǫ; ν) dǫ (B.8)

so that when g (0, 1) is the Student distribution, this simplifies to:

Mr|ν =
Γ
(ν−r

2

)
Γ
(

1+r
2

)
(ν − 2)

1+r
2

√
π (ν − 2)Γ

(ν
2

) (B.9)

The mean and variance are then defined as:

E (ǫ |ξ ) = M1

(
ξ − ξ−1

)

Var (ǫ |ξ ) =
(
M2 − M2

1

) (
ξ2 + ξ−2

)
+ 2M2

1 − M2

(B.10)

which for the Skew Student distribution, and provided that ν > 2, simplifies to:

E (ǫ |ξ , ν) ≡ µ̄ =
Γ
(
ν−1

2

)√
ν − 2

√
πΓ

(ν
2

)
(
ξ − ξ−1

)

Var (ǫ |ξ , ν) ≡ σ̄2 =
(
ξ2 + ξ−2 − 1

)
− µ̄2

(B.11)

Finally, the density of the standardized variable, z, is given by:

f

(
(x− µ)

σ
|ξ, ν

)
=

1

σ
f (z |ξ, ν )

=
2σ̄

σ (ξ + ξ−1)

[
g (ξ (σ̄z + µ̄) |ν )H (− (z + µ̄/σ̄)) + g

(
ξ−1 (σ̄z + µ̄) |ν

)
H (z + µ̄/σ̄)

]

(B.12)

When f (.) is the skewed Student distribution, g (.) is the standardized Student distri-

bution given in (B.4). Similar arguments can be used to derive the standardized skew

Normal and Generalized Error distributions.



Appendix C

Goodness of Fit and Operational

Risk Tests

C.1 Parametric and Non Parametric Density Tests

Consider a random variable (r.v.) rt such that rt |ℑt−1 ∼ f (µt, σt, ωt), with f(.) being

the density, µt the conditional mean, σt the conditional standard deviation and ωt

any additional distributional parameters, given the information set ℑt−1 at time t− 1.

A novel method to analyze how well a conditional density fits the underlying data is

through the probability integral transformation (PIT ) discussed in Rosenblatt (1952)

and defined as:

xt =

rt∫

−∞

f̂ (u) du = F̂ (rt;µt, σt, ωt) (C.1)

which transforms the data rt, using the estimated distribution F̂ conditional parameter

into i.i.d. U(0, 1) under the correctly specified model. The visual test of Tay, Diebold,

and Gunther (1998) and formal test of Berkowitz (2001) is based on this transforma-

tion. Because of the difficulty in testing for i.i.d. under U(0, 1), Berkowitz transforms

the uniform data into conditionally standard normal N(0, 1) by applying the quantile

normal transformation, Φ−1. A likelihood ratio test of the i.i.d assumption can the be

formulated as:

LR = −2
(
L (0, 1, 0) − L

(
µ̂, σ̂2, ρ̂

))
(C.2)

where the restriction is of zero mean, unit variance and no autocorrelation, and dis-

tributed χ2(3). It is also possible to extend the methodology to test for tail fit
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More recently, Hong and Li (2005) introduced a nonparametric portmanteau test, build-

ing on the work of Ait-Sahalia (1996), which tests the joint hypothesis of i.i.d and

U(0, 1) for the sequence xt. As noted by the authors, testing xt using for instance

the Kolmogorov-Smirnov test would only check the U(0,1) assumption under i.i.d. and

not the joint assumption of U(0, 1) and i.i.d. Their approach is to compare a kernel

estimator ĝj (x1, x2) for the joint density gj (x1, x2) of the pair {xt, xt−j} (where j is

the lag order) with unity, the product of two U(0, 1) densities. Given a sample size n

and lag order j > 0, their joint density estimator is:

ĝj (x1, x2) ≡ (n− j)−1
n∑

t=j+1

Kh

(
x1, X̂t

)
Kh

(
x2, X̂t−j

)
(C.3)

where X̂t = Xt

(
θ̂
)
, and θ̂ is a

√
n consistent estimator of θ0. The function Kh is a

boundary modified kernel1 defined as:

Kh (x, y) ≡





h−1k
(
x−y
h

)/∫ 1
−(x/h) k (u) du, ifx ∈ [0, h) ,

h−1k
(
x−y
h

)
, ifx ∈ [h, 1 − h] ,

h−1k
(
x−y
h

)/∫ (1−x)/h
−1 k (u) du, ifx ∈ (1 − h, 1] ,

(C.4)

where h ≡ h (n) is a bandwidth such that h → 0 as n → ∞, and the kernel k(.) is a

pre-specified symmetric probability density, which is implemented as suggested by the

authors using a quartic kernel,

k (u) =
15

16

(
1 − u2

)2
1 (|u| ≤ 1) , (C.5)

where 1 (.) is the indicator function. Their portmanteau test statistic is defined as:

Ŵ (p) ≡ p−1/2
p∑

j=1

Q̂ (j), (C.6)

where

Q̂ (j) ≡
[
(n− j)hM̂ (j) −A0

h

]/
V

1/2
0 , (C.7)

and

M̂ (j) ≡
∫ 1

0

∫ 1

0
[ĝj (x1, x2) − 1]2dx1dx2. (C.8)

1This is a key advancement over the test Ait-Sahalia (1996) which has been shown to produce biased
estimates near the boundaries of the data as discussed in Chapman and Pearson (2001).
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The centering and scaling factors A0
h and V0 are defined as:

A0
h ≡

[(
h−1 − 2

) ∫ 1
−1 k

2 (u) du+ 2
∫ 1

0

∫ b
−1 k

2
b (u) dudb

]2
− 1

V0 ≡ 2

[∫ 1
−1

[∫ 1
−1 k (u+ v) k (v) dv

]2
du

]2 (C.9)

where,

kb (.) ≡ k (.)

/∫ b

−1
k (v) dv. (C.10)

Under the correct model specification, the authors show that Ŵ (p) → N (0, 1) in

distribution. Because negative values of the test statistic only occur under the null

hypothesis of a correctly specified model, the authors indicate that only upper tail

critical values need be considered. The test is quite robust to model misspecification as

parameter uncertainty has no impact on the asymptotic distribution of the test statistic

as long as the parameters are
√
n consistent. Finally, in order to explore possible causes

of misspecification when the statistic rejects a model, the authors develop the following

test statistic:

M (m, l) ≡


n−1∑

j=1

w2 (j/p) (n− j) ρ̂2
ml (j) −

n−1∑

j=1

w2 (j/p)



/
2

n−2∑

j=1

w4 (j/p)




1/2

(C.11)

where ρ̂ml (j) is the sample cross-correlation between X̂m
t and X̂ l

t−|j|, and w (.) is a

weighting function of lag order j, and as suggested by the authors implemented as the

Bartlett kernel. As in the Ŵ (p) statistic, the asymptotic distribution of M (m, l) is

N (0, 1) and upper critical values should be considered.

C.2 Value at Risk Tests

Consider a random variable (r.v.) rt such that rt |ℑt−1 ∼ f (µt, σt, ωt), with f(.) being

the density, µt the conditional mean, σt the conditional standard deviation and ωt any

additional distributional parameters, given the information set ℑt−1 at time t− 1. The

Value at Risk measure with coverage probability p is then defined as:

Pr
(
rt 6 qt|t−1 (p;µt, σt, ωt) |ℑt−1

)
= p (C.12)

where qt|t−1 is the quantile function of the density. If the density is also location and

scale invariant, then the quantile function can also be written as:

qt|t−1 (p) = µt + qt|t−1 (p; 0, 1, ωt) σt. (C.13)
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Define the sequence of VaR exceedances (or hits) as:

HITt =





1, if rt < −V aRt (p)

0, otherwise
(C.14)

where t = 1, . . . , N . The unconditional coverage (uc), or proportion of failures, test of

Kupiec (1995) tests whether the observed frequency of VaR exceedances is consistent

with the expected exceedances, defined as p × N , given the chosen quantile and a

confidence level. Under the null hypothesis of a correctly specified model, the number

of exceedances, X =
∑
HIT , follows a binomial distribution. A probability below a

given significance level leads to a rejection of the null hypothesis. The test is usually

conducted as a likelihood ratio test, with the statistic taking the form,

LRuc = −2 ln




(1 − p)N−XpX
(
1 − X

N

)N−X(
X
N

)X


 (C.15)

Under the null the test statistic is asymptotically distributed as a χ2 with 1 degree

of freedom. The test does not consider any potential violation of the assumption of

the independence of the number of exceedances. The conditional coverage (cc) test of

Christoffersen, Hahn, and Inoue (2001) corrects this by jointly testing the frequency as

well as the independence of exceedances, assuming that the VaR violation is modelled

with a first order Markov chain with switching probability matrix given by:

Π =


 1 − π01 π01

1 − π11 π11


 (C.16)

where πij is the probability of hit-no hit sequence (i.e. 01 represents no-hit followed by

hit on 2 consecutive days). The test is again a likelihood ratio, with the statistic taking

the form:

LRcc = −2 log







(1 − p)N−XpX
(
1 − X

N

)N−X(
X
N

)X


+

(
(1 − π)π00+π10ππ01+π11

(1 − π0)π00π0
π01(1 − π1)π10π1

π11

)


(C.17)

where π0 = π01
π00+π01

, π1 = π11
π10+π11

and π = π01+π11
π00+π01+π10+π11

. The null is that the

conditional and unconditional coverage are equal to p, and is asymptotically distributed

as χ2(2).

In a further paper, Christoffersen and Pelletier (2004) consider the duration between

VaR violations as a stronger test of the adequacy of a risk model. The duration of

time between VaR violations (no-hits) should ideally be independent and not cluster.
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Under the null hypothesis of a correctly specified risk model, the no-hit duration should

have no memory. Since the only continuous distribution which is memory free is the

exponential, the test can conducted on any distribution which embeds the exponential

as a restricted case, and a likelihood ratio test then conducted to see whether the

restriction holds. Following Christoffersen and Pelletier (2004), the Weibull distribution

is used with parameter b = 1 representing the case of the exponential, by maximizing

the following likelihood:

LL (D; Θ) = C1 log S (D1) + (1 − C1) log f (D1) +
NT−1∑

i=1

log (f (Di))

+ CNT log S (DNT ) + (1 − CNT ) log f (DNT ) (C.18)

where S (Di) = 1−F (Di) is the survival function, D the duration between hits, and Ci

a series used to denote whether a duration is censored or not. While the Weibull density

fW (D; a, b) = abbDb−1e−(aD)b , has 2 parameters, the parameter a can be calculated

given b2 making the problem quite fast and feasible. The likelihood ratio statistic under

a restricted model with b = 1 (the exponential distribution) is then distributed χ2(1).

Because VaR tests deal with the occurrences of hits, they are by definition rather crude

measures to compare how well one model has done versus another, particularly with

short data sets. The expected shortfall test of McNeil and Frey (2000) measures the

mean of the excess shortfall given the VaR violations which should be zero under the

null of a correctly specified risk model. Formally, define the 1-step ahead Expected

Shortfall as:

Sp,t = µt+1 +
σ

p

∫ p

0
q (x; 0, 1, ωt+1) dx (C.20)

where p is the coverage rate, and q is the quantile function with possible higher moment

dynamic forecasts ωt+1 and forecast conditional mean and standard deviation µt+1 and

σt+1 respectively. Equivalently, Equation C.20 can be represented as Sp,t = µt+1 +

σt+1E [Z |Z > zp ], where zp is the upper pth quantile of the marginal distribution of

Zt which will only depend on t if ωt is time varying (as in ACD models). The shortfall

2From Equation (29), p. 92 of their paper this is:

â =



NT − C1 − CNT

NT∑
i=1

Db
i




1/b

(C.19)
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residuals S∗
t+1 are then defined as:

S∗
t+1 =

(Sp,t − rt+1) I[rt+1<V aR(rt+1)]

σt+1
(C.21)

where rt+1 is the realized return and I the indicator function representing here the cases

where the forecast VaR underestimated the loss (negative return). The null is that these

shortfall residuals are i.i.d with mean equal to zero, which can be tested usually by a

one sided t-test where the alternative is that the mean is greater than zero. McNeil and

Frey (2000) suggest bootstrapping the p-value so as to avoid unnecessary assumptions

about the distribution of the shortfall residuals, and all tests using this measure in the

thesis have reported the bootstrapped p-value.

C.3 The Model Confidence Set

The Model Confidence Set (MCS) procedure of Hansen, Lunde, and Nason (2011)

(henceforth HLN ) provides for a ranking of models given some penalized measure on

their relative loss function difference. Define a set M0 as the original model comparison

set with i models and t the time index, and let Li,t (.) be some user specified loss

function. The ranking of the models is then based on the relative difference of the

pairwise loss function, dij,t:

dij,t = Li,t − Lj,t ∀i, j ∈ M0, (C.22)

where it is assumed that µij ≡ E [dij,t] is finite and does not depend on t, and that i is

preferred to j if µij ≤ 0. The set of models which can then be described as superior is

defined as:

M∗ ≡
{
i ∈ M0 : µij 6 0 ∀j ∈ M0

}
. (C.23)

The determination of M∗ is done through a sequence of significance tests with models

found to be significantly inferior eliminated from the set. The null hypothesis takes the

form:

H0,M : µij = 0 ∀i, j ∈ M (C.24)

with M ∈ M0, and tested using an equivalence test δM . In case of rejection of the null,

an elimination rule eM is then used to identify the model to be removed from the set

and the procedure repeated until all inferior models are eliminated. Given a significance

level a, the models which are not eliminated are deemed the model confidence set M̂∗
1−a

with the key theorem of the test, given a set of assumptions on δM and eM , being that
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limn→+∞ P
(
M∗ ⊂ M̂∗

1−a

)
> 1 − a. The actual studentized measure used to compare

models is defined as:
d̂i√

var
(
d̂i
) (C.25)

with d̂i derived as:

d̂ij ≡ 1

N

N∑

t=1

dij,t

d̂i ≡ 1

m− 1

∑

j∈M

d̂ij

(C.26)

where d̂ij measures the relative performance between models, and d̂i the measures the

relative performance of model i to the average of all the models in M , and the variance

of d̂i, var(d̂i) may be derived by use of the bootstrap. The statistic then used to

eliminate inferior models is the range statistic3 and defined as:

TR = max
i,j∈M

∣∣∣d̂i
∣∣∣

√
var

(
d̂i
) . (C.27)

The asymptotic distribution of TR, and hence the p-values reported, is obtained via the

bootstrap procedure, the validity of which is established in HLN.

3Other options are available such as the semi-quadratic statistic, but only the range statistic was
used in this Thesis for all tests.



Appendix D

Nonlinear Fractional

Programming Portfolios

D.1 General Constraints and Derivatives

The long-short nonlinear fractional programming (NLFP) portfolios all share the same

constraints (C) and are summarized in this section. Vector notation is used were

possible, and ŵ represents the m×1 vector of unconditional weights which when scaled

by the auxiliary variable υ from the optimization problem will yield the optimal vector

of weights. The upper and lower bounds are imposed via the linear inequality constraint

and given below.

D.1.1 Linear Reward Fractional Constraint

C1 : ŵ′µ − 1 = 0 (D.1)

dC1

dŵ
= ŵ, (D.2)

where µ is the m× 1 vector of forecast returns.
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D.1.2 Leverage Constraint

C2 :

[√
(ŵ + ε)2

]′

1 − lυ = 0 (D.3)

dC2

dŵ
=

ŵ√
(ŵ + ε)2

(D.4)

dC2

dυ
= l, (D.5)

where l is the leverage, 1 an m×1 vector of ones and ε some very small positive number

controlling the degree of error in the absolute value smooth function approximation.

D.1.3 Linear Bounds and Inequalities

In the NLFP setup, the upper and lower bounds on the weights (ŵ) are unconstrained

in the main routine, so that the limits on the final optimal weights are instead imposed

as inequality constraints:

C3 : Iŵ − υU ≤ 0 (D.6)

dC3

dŵ
= I (D.7)

dC3

dυ
= −U, (D.8)

where I is an m × m identity matrix, and U an m × 1 vector of the upper bounds on

w. Similarly, for the lower bounds given by the m × 1 vector L the constraint and its

derivative are given by:

C4 : υL − Iŵ ≤ 0 (D.9)

dC4

dŵ
= −I (D.10)

dC4

dυ
= L. (D.11)

D.2 Objective Functions and Derivatives

For ease of exposition, define the portfolio returns ri,p =
m∑
j=1

(ri,jŵj).
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D.2.1 Fractional Mean-Variance Objective

P1 : min
ŵ,υ

1

n− 1

n∑

i=1

r2
i,p (D.12)

dP1

dŵj
=

1

n− 1

n∑

i=1

2ri,jri,p, ∀j = {1, . . . ,m} (D.13)

dP1

dυ
= 0. (D.14)

D.2.2 Fractional Mean-Minimax

P2 : min
ŵ,υ




1

n

n∑

i=1




√
r2
i,p + ε− ri,p

2



p


1/p

(D.15)

dP2

dŵj
=

n∑
i=1

(
p

(
−ri,j +

(ri,jri,p)√
r2
i,p+ε

)
ci
p−1

)(
1

2pn

n∑
i=1

(ci
p)

) 1
p−1

2pnp
, ∀j = {1, . . . ,m} (D.16)

dP2

dυ
= 0, (D.17)

where ci =
√
r2
i,p + ε− ri,p.

D.2.3 Fractional Mean-MAD

P3 : min
ŵ,υ

1

n− 1

n∑

i=1

√
(ri,p + ε)2 (D.18)

dP3

dŵj
=

1

n− 1

n∑

i=1

ri,j (ε+ ri,p)(√
(ri,p + ε)2

) , ∀j = {1, . . . ,m} (D.19)

dP3

dυ
= 0. (D.20)
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D.2.4 Fractional Mean-LPM

P4 : min
ŵ,υ

(
1

n2a

n∑

i=1

(√
(τ − ri,p)

2 + ε+ (τ − ri,p)

)a)1/a

(D.21)

dP4

dŵj
= − 1

2aan




n∑

i=1

(
di +

√
ε+ d2

i

)a

2an




1
a−1

(D.22)

×

 1

2aan

n∑

i=1

a


ri,j +

(ri,jdi)√
ε+ d2

i



(
di +

√
ε+ d2

i

)a−1

 , ∀j = {1, . . . ,m}

dP4

dυ
= 0, (D.23)

where di = τ − ri,p. A particular note is merited with regards to the LPM measure

and fractional programming. Because of the presence of the threshold parameter in

the optimization, this must be scaled by the fractional parameter υ which is possible

since the measure is both location and scale invariant. In the optimization exercise

undertaken the demeaned scenario was used and hence the threshold was zero which

why is the formula in this case is greatly simplified, but in all other cases this needs to

be addressed using the relationship in Equation (4.15).

D.2.5 Fractional Mean-CVaR

P5 : min
ŵ,υ,v

−v +
1

2na

n∑

i=1

(√
d2
i + ε+ d

)
(D.24)

dP5

dŵj
=

1

2na

n∑

i=1


 ri,j (ri,p − v)√

ε+ (ri,p − v)2
− ri,j


, ∀j = {1, . . . ,m} (D.25)

dP5

dv
= −1

a




n∑

i=1

ri,p − v

2n
√
ε+ (ri,p − v)2

− 0.5


− 1 (D.26)

dP5

dυ
= 0, (D.27)

where v is the VaR estimated at the a-quantile, and di = v − ri,p.



Appendix E

Supplemental Tables

E.1 Pairwise P-values of Portfolio SR Differences

Table E.1, E.2 and E.3 provide the pairwise p-values of the Ledoit and Wolf (2008)

test under the null H0 : SRi − SRj = 0, of the [L] and [LS] portfolio SR differences.

There are 6 (risk measures) × 8 (models) × 2 ([L] and [LS]) portfolios in total, and split

among the 3 tables. Table E.1 displays the comparison of the [L] against [L] portfolios,

Table E.2 [LS] against [L] portfolios, and Table E.3 [LS] against [LS] portfolios. For

visual clarity, a red colored number denotes failure to reject H0 at the 10% level.
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Table E.1: Long-only portfolios: Significance of pairwise Sharpe ratio differences

R[L]1M2 0.01

R[L]1M3 0.00 0.98

R[L]1M4 0.00 0.82 0.84

R[L]1M5 0.00 0.94 0.95 0.96

R[L]1M6 0.00 0.90 0.80 0.73 0.44

R[L]1M7 0.00 0.90 0.82 0.74 0.36 0.97

R[L]1M8 0.00 0.97 0.98 0.91 0.92 0.58 0.60

R[L]2M1 0.00 0.06 0.01 0.02 0.01 0.00 0.01 0.01

R[L]2M2 0.01 0.58 0.91 0.70 0.89 0.94 0.94 0.90 0.04

R[L]2M3 0.00 0.93 0.62 0.92 0.99 0.75 0.77 0.97 0.01 0.86

R[L]2M4 0.00 0.53 0.69 0.56 0.85 0.66 0.67 0.77 0.04 0.39 0.76

R[L]2M5 0.00 1.00 0.97 0.88 0.42 0.60 0.56 0.91 0.01 0.95 0.92 0.78

R[L]2M6 0.00 0.96 0.90 0.81 0.57 0.57 0.73 0.75 0.00 1.00 0.85 0.74 0.79

R[L]2M7 0.00 0.91 0.84 0.75 0.45 0.95 0.86 0.56 0.01 0.95 0.78 0.66 0.62 0.81

R[L]2M8 0.00 0.89 0.87 0.98 0.85 0.33 0.35 0.43 0.01 0.82 0.92 0.89 0.65 0.46 0.28

R[L]3M1 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[L]3M2 0.03 0.10 0.14 0.12 0.23 0.12 0.14 0.13 0.21 0.07 0.16 0.16 0.18 0.15 0.12 0.18 0.01

R[L]3M3 0.01 0.42 0.20 0.35 0.28 0.15 0.16 0.24 0.10 0.37 0.22 0.49 0.24 0.18 0.17 0.28 0.00 0.71

R[L]3M4 0.01 0.67 0.48 0.60 0.47 0.32 0.33 0.51 0.06 0.61 0.52 0.75 0.42 0.38 0.36 0.55 0.00 0.58 0.65

R[L]3M5 0.02 0.51 0.29 0.43 0.16 0.11 0.10 0.26 0.16 0.44 0.30 0.56 0.12 0.12 0.13 0.27 0.00 0.93 0.84 0.49

R[L]3M6 0.00 0.56 0.38 0.53 0.26 0.11 0.11 0.26 0.06 0.51 0.42 0.66 0.22 0.15 0.14 0.34 0.00 0.58 0.75 0.91 0.53

R[L]3M7 0.01 0.55 0.33 0.48 0.17 0.09 0.07 0.26 0.09 0.50 0.35 0.62 0.13 0.11 0.10 0.29 0.00 0.78 0.96 0.69 0.65 0.72

R[L]3M8 0.00 0.76 0.66 0.77 0.61 0.44 0.43 0.63 0.04 0.72 0.67 0.87 0.56 0.49 0.47 0.68 0.00 0.55 0.58 0.78 0.18 0.69 0.39

R[L]4M1 0.36 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.44 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.12 0.11 0.04 0.03 0.10 0.03 0.06 0.02

R[L]4M2 0.00 0.65 0.53 0.66 0.69 0.48 0.51 0.63 0.02 0.58 0.57 0.85 0.63 0.56 0.51 0.74 0.00 0.34 0.53 0.79 0.52 0.71 0.61 0.94 0.00

R[L]4M3 0.00 0.78 0.61 0.83 0.80 0.59 0.60 0.77 0.01 0.72 0.68 0.99 0.75 0.67 0.61 0.87 0.00 0.30 0.38 0.67 0.40 0.59 0.48 0.83 0.00 0.85

R[L]4M4 0.00 0.78 0.60 0.54 0.62 0.82 0.84 0.65 0.00 0.82 0.53 0.50 0.70 0.77 0.82 0.57 0.00 0.12 0.14 0.28 0.14 0.22 0.17 0.41 0.00 0.31 0.39

R[L]4M5 0.00 0.60 0.38 0.40 0.12 0.30 0.28 0.27 0.00 0.61 0.34 0.40 0.15 0.23 0.31 0.17 0.00 0.09 0.06 0.09 0.01 0.04 0.01 0.11 0.00 0.21 0.25 0.61

R[L]4M6 0.00 0.54 0.36 0.47 0.29 0.13 0.16 0.29 0.04 0.48 0.37 0.62 0.25 0.18 0.17 0.35 0.00 0.59 0.79 0.94 0.64 0.98 0.82 0.79 0.02 0.67 0.57 0.17 0.04

R[L]4M7 0.00 0.95 0.89 0.84 0.78 0.95 0.95 0.86 0.00 0.98 0.84 0.77 0.87 0.95 0.98 0.75 0.00 0.28 0.28 0.39 0.10 0.28 0.14 0.45 0.00 0.61 0.66 0.81 0.34 0.27

R[L]4M8 0.00 0.76 0.64 0.64 0.49 0.70 0.69 0.59 0.00 0.79 0.58 0.61 0.55 0.63 0.69 0.50 0.00 0.22 0.17 0.22 0.04 0.15 0.06 0.20 0.00 0.40 0.44 0.86 0.72 0.16 0.62

R[L]5M1 0.01 0.04 0.00 0.01 0.01 0.00 0.00 0.01 0.77 0.03 0.00 0.03 0.01 0.00 0.00 0.01 0.01 0.18 0.08 0.06 0.16 0.05 0.08 0.04 0.53 0.01 0.01 0.00 0.00 0.03 0.00 0.00

R[L]5M2 0.01 1.00 0.97 0.81 0.94 0.91 0.90 0.96 0.06 0.11 0.93 0.49 1.00 0.95 0.90 0.89 0.00 0.09 0.41 0.64 0.49 0.55 0.54 0.76 0.02 0.64 0.78 0.78 0.59 0.51 0.94 0.76 0.04

R[L]5M3 0.00 0.89 0.33 0.99 0.96 0.71 0.72 0.91 0.01 0.81 0.33 0.81 0.88 0.81 0.73 0.97 0.00 0.17 0.25 0.56 0.33 0.45 0.38 0.71 0.00 0.62 0.76 0.49 0.33 0.41 0.80 0.56 0.01 0.89

R[L]5M4 0.00 0.55 0.72 0.58 0.86 0.67 0.67 0.79 0.05 0.40 0.78 0.49 0.80 0.73 0.67 0.90 0.00 0.16 0.49 0.74 0.55 0.65 0.60 0.86 0.02 0.84 0.98 0.53 0.42 0.61 0.78 0.61 0.03 0.52 0.82

R[L]5M5 0.00 0.99 0.95 0.87 0.36 0.66 0.63 0.86 0.01 0.97 0.90 0.76 0.71 0.87 0.70 0.60 0.00 0.18 0.21 0.42 0.12 0.20 0.12 0.52 0.00 0.60 0.71 0.71 0.16 0.23 0.90 0.57 0.00 0.99 0.85 0.77

R[L]5M6 0.00 0.95 0.89 0.81 0.55 0.63 0.77 0.72 0.01 0.99 0.83 0.71 0.78 0.54 0.85 0.43 0.00 0.16 0.18 0.37 0.14 0.15 0.10 0.47 0.00 0.56 0.64 0.77 0.24 0.17 0.97 0.64 0.00 0.94 0.79 0.73 0.84

R[L]5M7 0.00 0.89 0.80 0.72 0.36 0.95 0.96 0.51 0.00 0.93 0.75 0.64 0.56 0.70 0.05 0.23 0.00 0.11 0.15 0.33 0.12 0.13 0.09 0.45 0.00 0.48 0.58 0.84 0.31 0.16 0.95 0.71 0.00 0.88 0.71 0.65 0.61 0.75

R[L]5M8 0.00 0.88 0.84 0.96 0.79 0.30 0.33 0.36 0.01 0.81 0.90 0.90 0.62 0.42 0.27 0.22 0.00 0.18 0.31 0.58 0.27 0.35 0.30 0.71 0.01 0.75 0.89 0.55 0.16 0.38 0.73 0.50 0.01 0.87 0.95 0.91 0.56 0.39 0.21

R[L]6M1 0.89 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.28 0.05 0.02 0.01 0.04 0.01 0.01 0.01 0.34 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[L]6M2 0.01 0.69 0.99 0.85 0.96 0.88 0.88 0.98 0.07 0.42 0.95 0.56 0.98 0.94 0.90 0.90 0.00 0.10 0.44 0.67 0.52 0.57 0.57 0.77 0.02 0.67 0.80 0.76 0.60 0.54 0.94 0.76 0.04 0.82 0.91 0.58 0.97 0.94 0.87 0.88 0.01

R[L]6M3 0.00 0.95 0.70 0.88 0.97 0.78 0.78 0.99 0.00 0.89 0.77 0.75 0.95 0.87 0.80 0.89 0.00 0.16 0.21 0.49 0.29 0.41 0.34 0.66 0.00 0.55 0.62 0.55 0.35 0.35 0.86 0.59 0.00 0.95 0.45 0.76 0.92 0.86 0.78 0.87 0.00 0.98

R[L]6M4 0.00 0.96 0.99 0.22 0.95 0.82 0.83 0.99 0.01 0.86 0.93 0.42 0.97 0.90 0.85 0.88 0.00 0.08 0.29 0.57 0.38 0.44 0.42 0.71 0.00 0.54 0.71 0.61 0.45 0.39 0.90 0.67 0.01 0.95 0.85 0.44 0.95 0.89 0.81 0.86 0.00 0.98 0.97

R[L]6M5 0.00 1.00 0.98 0.89 0.33 0.58 0.53 0.93 0.01 0.94 0.92 0.79 0.95 0.78 0.60 0.66 0.00 0.19 0.23 0.42 0.13 0.21 0.13 0.55 0.00 0.61 0.73 0.68 0.14 0.25 0.87 0.56 0.01 1.00 0.88 0.80 0.73 0.74 0.52 0.64 0.00 0.99 0.95 0.98

R[L]6M6 0.00 0.83 0.69 0.65 0.30 0.44 0.77 0.43 0.00 0.87 0.64 0.57 0.43 0.34 0.69 0.25 0.00 0.10 0.11 0.26 0.08 0.08 0.06 0.35 0.00 0.40 0.48 0.93 0.37 0.05 0.85 0.77 0.00 0.83 0.58 0.58 0.48 0.37 0.77 0.22 0.00 0.82 0.66 0.73 0.41

R[L]6M7 0.00 0.76 0.59 0.57 0.16 0.49 0.26 0.29 0.00 0.78 0.55 0.50 0.23 0.32 0.29 0.12 0.00 0.08 0.10 0.25 0.07 0.07 0.04 0.32 0.00 0.33 0.41 0.95 0.52 0.07 0.69 0.88 0.00 0.75 0.51 0.53 0.26 0.35 0.34 0.12 0.00 0.75 0.56 0.63 0.23 0.70

R[L]6M8 0.00 0.77 0.65 0.57 0.42 0.72 0.76 0.26 0.00 0.82 0.59 0.47 0.52 0.60 0.67 0.15 0.00 0.05 0.14 0.33 0.14 0.12 0.13 0.42 0.00 0.34 0.47 0.97 0.50 0.09 0.82 0.82 0.00 0.77 0.54 0.49 0.56 0.62 0.76 0.14 0.00 0.75 0.61 0.64 0.51 0.92 0.82

Note: The table displays the Ledoit and Wolf (2008) p-values of the differences in Sharpe ratios of the long-only [L] portfolios formed under 6 different measures of risk and deviation (R[L]1
to R[L]6) and 8 models for the conditional dynamics (M1 to M8), under the null that the differences are equal to zero. Red colored cells denote significance at at the 10% level.
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Table E.2: Long&Long/Short portfolios: Significance of pairwise Sharpe ratio differences

R[LS]1M1 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]1M2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]1M3 0.00 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.01 0.02 0.00 0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.03 0.00 0.01 0.01 0.01 0.01 0.01

R[LS]1M4 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]1M5 0.00 0.17 0.12 0.12 0.08 0.11 0.12 0.12 0.01 0.18 0.12 0.12 0.10 0.11 0.11 0.10 0.00 0.04 0.04 0.05 0.03 0.04 0.03 0.06 0.00 0.09 0.09 0.16 0.20 0.04 0.12 0.16 0.01 0.17 0.11 0.12 0.10 0.11 0.13 0.09 0.00 0.18 0.12 0.14 0.09 0.12 0.15 0.14

R[LS]1M6 0.00 0.17 0.10 0.11 0.07 0.10 0.09 0.09 0.01 0.17 0.09 0.10 0.08 0.10 0.09 0.08 0.00 0.04 0.03 0.04 0.02 0.04 0.02 0.05 0.00 0.07 0.07 0.15 0.18 0.04 0.10 0.15 0.00 0.17 0.09 0.11 0.08 0.09 0.10 0.09 0.00 0.15 0.10 0.12 0.08 0.11 0.12 0.13

R[LS]1M7 0.00 0.24 0.16 0.16 0.13 0.15 0.15 0.14 0.01 0.24 0.16 0.16 0.14 0.14 0.14 0.13 0.00 0.07 0.06 0.08 0.04 0.06 0.05 0.08 0.01 0.11 0.12 0.21 0.26 0.06 0.16 0.22 0.01 0.22 0.14 0.17 0.14 0.15 0.16 0.13 0.00 0.23 0.15 0.18 0.13 0.17 0.20 0.19

R[LS]1M8 0.00 0.19 0.13 0.14 0.11 0.13 0.13 0.12 0.01 0.20 0.12 0.14 0.12 0.13 0.13 0.12 0.00 0.05 0.05 0.07 0.03 0.05 0.05 0.07 0.01 0.11 0.10 0.18 0.23 0.06 0.14 0.20 0.01 0.19 0.12 0.14 0.12 0.12 0.14 0.11 0.00 0.20 0.13 0.14 0.10 0.15 0.18 0.16

R[LS]2M1 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]2M2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]2M3 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.01

R[LS]2M4 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]2M5 0.00 0.17 0.10 0.11 0.07 0.09 0.10 0.09 0.00 0.16 0.09 0.11 0.08 0.09 0.10 0.08 0.00 0.04 0.04 0.04 0.02 0.03 0.03 0.05 0.00 0.08 0.08 0.15 0.18 0.04 0.10 0.14 0.00 0.15 0.08 0.11 0.08 0.09 0.11 0.07 0.00 0.17 0.09 0.11 0.08 0.11 0.13 0.12

R[LS]2M6 0.00 0.14 0.08 0.09 0.07 0.08 0.08 0.08 0.00 0.14 0.08 0.08 0.06 0.07 0.08 0.06 0.00 0.04 0.03 0.04 0.02 0.03 0.02 0.03 0.00 0.06 0.06 0.12 0.15 0.03 0.09 0.12 0.00 0.14 0.08 0.09 0.08 0.07 0.08 0.06 0.00 0.14 0.08 0.09 0.06 0.08 0.10 0.10

R[LS]2M7 0.00 0.17 0.10 0.13 0.08 0.11 0.10 0.10 0.01 0.17 0.10 0.12 0.09 0.10 0.11 0.09 0.00 0.04 0.04 0.05 0.02 0.04 0.03 0.06 0.00 0.08 0.09 0.16 0.20 0.04 0.11 0.15 0.01 0.15 0.10 0.12 0.11 0.10 0.10 0.09 0.00 0.16 0.10 0.13 0.09 0.12 0.14 0.14

R[LS]2M8 0.01 0.25 0.18 0.19 0.15 0.18 0.18 0.16 0.02 0.25 0.17 0.18 0.16 0.18 0.19 0.16 0.00 0.07 0.08 0.09 0.06 0.08 0.07 0.10 0.01 0.14 0.14 0.26 0.30 0.08 0.19 0.24 0.02 0.24 0.17 0.19 0.16 0.18 0.19 0.14 0.00 0.23 0.16 0.19 0.16 0.21 0.22 0.21

R[LS]3M1 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]3M2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]3M3 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01

R[LS]3M4 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]3M5 0.00 0.19 0.12 0.13 0.09 0.12 0.12 0.10 0.00 0.18 0.12 0.12 0.09 0.10 0.12 0.09 0.00 0.04 0.05 0.05 0.03 0.05 0.03 0.06 0.01 0.09 0.09 0.18 0.20 0.05 0.12 0.17 0.01 0.18 0.11 0.12 0.11 0.11 0.12 0.09 0.00 0.18 0.12 0.14 0.10 0.13 0.14 0.14

R[LS]3M6 0.00 0.16 0.09 0.10 0.06 0.08 0.09 0.08 0.01 0.15 0.09 0.09 0.08 0.08 0.09 0.07 0.00 0.03 0.03 0.04 0.02 0.03 0.02 0.04 0.00 0.08 0.07 0.14 0.16 0.03 0.09 0.13 0.00 0.14 0.08 0.11 0.07 0.08 0.09 0.07 0.00 0.15 0.09 0.10 0.07 0.10 0.12 0.11

R[LS]3M7 0.00 0.15 0.09 0.10 0.07 0.09 0.09 0.08 0.01 0.15 0.09 0.11 0.07 0.08 0.09 0.06 0.00 0.03 0.03 0.04 0.02 0.03 0.02 0.04 0.00 0.07 0.07 0.14 0.16 0.03 0.09 0.12 0.00 0.14 0.09 0.10 0.08 0.08 0.08 0.07 0.00 0.16 0.09 0.11 0.07 0.10 0.11 0.10

R[LS]3M8 0.00 0.22 0.16 0.16 0.14 0.17 0.17 0.16 0.02 0.22 0.16 0.17 0.15 0.15 0.16 0.14 0.00 0.07 0.07 0.09 0.05 0.07 0.05 0.09 0.01 0.14 0.13 0.24 0.29 0.07 0.18 0.23 0.01 0.22 0.15 0.17 0.16 0.15 0.17 0.14 0.00 0.22 0.16 0.19 0.14 0.17 0.21 0.19

R[LS]4M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]4M2 0.00 0.06 0.02 0.02 0.02 0.03 0.03 0.02 0.00 0.06 0.02 0.03 0.03 0.03 0.03 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.03 0.06 0.01 0.02 0.04 0.00 0.06 0.02 0.02 0.03 0.03 0.03 0.02 0.00 0.06 0.02 0.02 0.03 0.03 0.04 0.03

R[LS]4M3 0.00 0.05 0.02 0.02 0.02 0.03 0.03 0.02 0.00 0.05 0.01 0.02 0.02 0.03 0.03 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.03 0.06 0.01 0.02 0.04 0.00 0.04 0.01 0.02 0.03 0.02 0.03 0.02 0.00 0.05 0.01 0.02 0.02 0.03 0.04 0.03

R[LS]4M4 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.02 0.00 0.00 0.01 0.01 0.01 0.01

R[LS]4M5 0.01 0.35 0.26 0.27 0.22 0.28 0.28 0.26 0.02 0.34 0.26 0.25 0.24 0.26 0.27 0.23 0.00 0.11 0.12 0.14 0.08 0.12 0.11 0.15 0.01 0.22 0.21 0.35 0.43 0.12 0.28 0.35 0.02 0.34 0.24 0.26 0.25 0.25 0.28 0.22 0.01 0.34 0.26 0.29 0.25 0.30 0.33 0.31

R[LS]4M6 0.01 0.47 0.41 0.39 0.34 0.42 0.41 0.38 0.04 0.49 0.38 0.37 0.38 0.39 0.41 0.35 0.00 0.18 0.20 0.23 0.13 0.20 0.17 0.24 0.02 0.32 0.34 0.50 0.63 0.19 0.41 0.54 0.03 0.47 0.37 0.37 0.38 0.40 0.42 0.35 0.01 0.46 0.39 0.42 0.38 0.45 0.50 0.47

R[LS]4M7 0.01 0.37 0.31 0.30 0.26 0.32 0.31 0.29 0.02 0.38 0.28 0.28 0.28 0.29 0.31 0.27 0.00 0.12 0.14 0.16 0.09 0.14 0.12 0.18 0.01 0.24 0.25 0.38 0.49 0.14 0.31 0.41 0.02 0.36 0.27 0.28 0.27 0.28 0.31 0.24 0.01 0.38 0.29 0.30 0.28 0.32 0.38 0.36

R[LS]4M8 0.01 0.44 0.36 0.35 0.32 0.37 0.38 0.34 0.03 0.45 0.35 0.35 0.35 0.35 0.37 0.31 0.00 0.16 0.17 0.21 0.13 0.19 0.15 0.22 0.02 0.28 0.28 0.44 0.56 0.18 0.37 0.48 0.03 0.44 0.33 0.35 0.34 0.38 0.38 0.32 0.01 0.43 0.35 0.37 0.34 0.41 0.45 0.42

R[LS]5M1 0.32 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.04 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.87 0.04 0.02 0.01 0.03 0.01 0.01 0.01 0.18 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.31 0.02 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]5M2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]5M3 0.00 0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01

R[LS]5M4 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]5M5 0.00 0.17 0.10 0.11 0.08 0.10 0.10 0.10 0.01 0.17 0.10 0.11 0.09 0.10 0.11 0.09 0.00 0.04 0.04 0.05 0.02 0.04 0.02 0.05 0.00 0.08 0.08 0.15 0.19 0.04 0.10 0.16 0.00 0.16 0.09 0.11 0.09 0.10 0.10 0.08 0.00 0.18 0.11 0.12 0.09 0.11 0.13 0.13

R[LS]5M6 0.00 0.18 0.11 0.11 0.08 0.11 0.10 0.10 0.01 0.18 0.09 0.11 0.09 0.10 0.11 0.08 0.00 0.04 0.04 0.05 0.03 0.04 0.03 0.06 0.00 0.09 0.08 0.15 0.20 0.04 0.12 0.15 0.00 0.17 0.10 0.11 0.08 0.09 0.11 0.08 0.00 0.16 0.10 0.12 0.09 0.12 0.13 0.13

R[LS]5M7 0.00 0.18 0.11 0.11 0.08 0.10 0.10 0.09 0.01 0.16 0.09 0.11 0.09 0.09 0.10 0.08 0.00 0.03 0.04 0.04 0.02 0.04 0.03 0.05 0.00 0.08 0.08 0.15 0.18 0.04 0.11 0.15 0.00 0.16 0.09 0.12 0.08 0.09 0.10 0.09 0.00 0.17 0.11 0.12 0.09 0.11 0.14 0.13

R[LS]5M8 0.01 0.27 0.20 0.20 0.17 0.21 0.20 0.18 0.02 0.27 0.19 0.20 0.18 0.18 0.20 0.18 0.00 0.08 0.09 0.12 0.06 0.09 0.07 0.12 0.01 0.17 0.16 0.28 0.33 0.10 0.21 0.27 0.02 0.26 0.19 0.20 0.18 0.19 0.21 0.17 0.01 0.27 0.19 0.22 0.18 0.22 0.26 0.24

R[LS]6M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]6M2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]6M3 0.00 0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01

R[LS]6M4 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]6M5 0.00 0.19 0.12 0.13 0.10 0.12 0.11 0.11 0.01 0.18 0.11 0.13 0.11 0.12 0.12 0.10 0.00 0.04 0.04 0.05 0.03 0.05 0.03 0.06 0.00 0.09 0.09 0.17 0.21 0.04 0.12 0.18 0.00 0.19 0.11 0.12 0.10 0.12 0.13 0.09 0.00 0.18 0.11 0.14 0.09 0.13 0.16 0.15

R[LS]6M6 0.00 0.20 0.12 0.12 0.09 0.12 0.12 0.10 0.01 0.19 0.11 0.12 0.10 0.09 0.11 0.10 0.00 0.04 0.04 0.05 0.02 0.05 0.03 0.06 0.00 0.09 0.08 0.16 0.20 0.04 0.12 0.17 0.01 0.19 0.10 0.13 0.10 0.11 0.12 0.09 0.00 0.18 0.11 0.13 0.10 0.12 0.15 0.14

R[LS]6M7 0.00 0.19 0.12 0.13 0.09 0.12 0.12 0.12 0.01 0.19 0.11 0.13 0.11 0.12 0.11 0.10 0.00 0.05 0.05 0.05 0.03 0.04 0.03 0.06 0.00 0.09 0.09 0.17 0.21 0.04 0.12 0.16 0.01 0.18 0.10 0.12 0.10 0.10 0.12 0.09 0.00 0.19 0.11 0.13 0.10 0.12 0.15 0.15

R[LS]6M8 0.00 0.19 0.13 0.14 0.10 0.14 0.13 0.13 0.01 0.19 0.12 0.14 0.11 0.12 0.14 0.11 0.00 0.05 0.05 0.06 0.03 0.05 0.03 0.07 0.01 0.10 0.10 0.19 0.22 0.06 0.13 0.18 0.01 0.19 0.11 0.14 0.12 0.12 0.14 0.10 0.00 0.20 0.12 0.14 0.11 0.14 0.18 0.15

Note: The table displays the Ledoit and Wolf (2008) p-values of the differences in Sharpe ratios of the long-short [LS] with 2× leverage versus long-only [L] portfolios formed under 6 different
measures of risk and deviation (R[LS]1 to R[LS]6 and R[L]1 to R[L]6 respectively) and 8 models for the conditional dynamics (M1 to M8), under the null that the differences are equal to
zero. Red colored cells denote significance at at the 10% level. The column headings for the pairwise comparison, not displayed here, are equivalent to the row headings of Table E.1.
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Table E.3: Long-Short portfolios: Significance of pairwise Sharpe ratio differences

R[LS]1M2 0.00

R[LS]1M3 0.00 0.13

R[LS]1M4 0.00 0.90 0.10

R[LS]1M5 0.00 0.04 0.24 0.05

R[LS]1M6 0.00 0.05 0.29 0.06 0.79

R[LS]1M7 0.00 0.03 0.17 0.04 0.56 0.41

R[LS]1M8 0.00 0.08 0.31 0.09 0.99 0.80 0.59

R[LS]2M1 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]2M2 0.00 0.39 0.25 0.62 0.07 0.07 0.04 0.11 0.00

R[LS]2M3 0.00 0.26 0.35 0.21 0.18 0.20 0.12 0.23 0.00 0.43

R[LS]2M4 0.00 0.91 0.13 0.59 0.06 0.08 0.04 0.10 0.00 0.77 0.26

R[LS]2M5 0.00 0.06 0.29 0.06 0.54 0.95 0.35 0.77 0.00 0.08 0.22 0.08

R[LS]2M6 0.00 0.09 0.38 0.10 0.42 0.42 0.17 0.47 0.00 0.12 0.28 0.11 0.62

R[LS]2M7 0.00 0.06 0.27 0.07 0.86 0.91 0.28 0.86 0.00 0.08 0.20 0.08 0.86 0.49

R[LS]2M8 0.00 0.08 0.27 0.09 0.75 0.60 0.93 0.53 0.00 0.11 0.22 0.11 0.59 0.39 0.61

R[LS]3M1 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]3M2 0.00 0.58 0.09 0.97 0.04 0.04 0.02 0.07 0.00 0.05 0.18 0.76 0.04 0.07 0.05 0.07 0.00

R[LS]3M3 0.00 0.24 0.19 0.19 0.16 0.20 0.12 0.23 0.00 0.40 0.97 0.24 0.21 0.28 0.21 0.21 0.00 0.15

R[LS]3M4 0.00 0.91 0.12 0.50 0.06 0.08 0.04 0.10 0.00 0.78 0.26 0.97 0.07 0.10 0.07 0.10 0.00 0.75 0.23

R[LS]3M5 0.00 0.04 0.23 0.06 0.97 0.76 0.54 0.99 0.00 0.07 0.17 0.06 0.15 0.36 0.83 0.75 0.00 0.04 0.17 0.06

R[LS]3M6 0.00 0.07 0.33 0.08 0.51 0.54 0.22 0.59 0.00 0.10 0.24 0.10 0.78 0.54 0.62 0.45 0.00 0.06 0.25 0.09 0.45

R[LS]3M7 0.00 0.08 0.34 0.10 0.52 0.72 0.06 0.54 0.00 0.12 0.26 0.11 0.73 0.85 0.10 0.41 0.00 0.07 0.26 0.11 0.45 0.96

R[LS]3M8 0.00 0.08 0.27 0.09 0.79 0.64 0.85 0.57 0.00 0.10 0.23 0.11 0.60 0.37 0.64 0.67 0.00 0.06 0.22 0.12 0.81 0.45 0.41

R[LS]4M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]4M2 0.00 0.01 0.51 0.06 0.48 0.54 0.38 0.54 0.00 0.04 0.36 0.07 0.57 0.65 0.54 0.48 0.00 0.01 0.33 0.07 0.49 0.62 0.65 0.50 0.00

R[LS]4M3 0.00 0.12 0.57 0.11 0.42 0.46 0.32 0.46 0.00 0.19 0.32 0.13 0.49 0.56 0.46 0.42 0.00 0.09 0.31 0.12 0.43 0.53 0.56 0.42 0.00 0.82

R[LS]4M4 0.00 0.50 0.66 0.34 0.18 0.21 0.14 0.24 0.00 0.68 0.86 0.47 0.21 0.27 0.22 0.22 0.00 0.43 0.85 0.46 0.17 0.23 0.26 0.21 0.00 0.32 0.48

R[LS]4M5 0.00 0.01 0.08 0.01 0.17 0.19 0.47 0.30 0.00 0.02 0.06 0.01 0.12 0.10 0.20 0.51 0.00 0.01 0.06 0.02 0.19 0.13 0.13 0.45 0.00 0.23 0.18 0.06

R[LS]4M6 0.00 0.00 0.03 0.00 0.07 0.03 0.18 0.12 0.00 0.00 0.02 0.00 0.05 0.02 0.07 0.25 0.00 0.00 0.02 0.00 0.07 0.02 0.03 0.22 0.00 0.09 0.08 0.02 0.57

R[LS]4M7 0.00 0.01 0.07 0.01 0.24 0.17 0.29 0.29 0.00 0.01 0.04 0.01 0.15 0.10 0.17 0.50 0.00 0.01 0.04 0.01 0.21 0.11 0.09 0.44 0.00 0.17 0.14 0.05 0.86 0.69

R[LS]4M8 0.00 0.01 0.06 0.01 0.11 0.07 0.23 0.10 0.00 0.01 0.04 0.01 0.07 0.04 0.08 0.27 0.00 0.01 0.04 0.01 0.10 0.04 0.05 0.23 0.00 0.15 0.12 0.04 0.70 0.84 0.84

R[LS]5M1 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]5M2 0.00 0.78 0.16 0.79 0.05 0.06 0.03 0.09 0.00 0.38 0.31 0.99 0.06 0.09 0.07 0.09 0.00 0.23 0.28 1.00 0.04 0.08 0.09 0.08 0.00 0.02 0.14 0.55 0.01 0.00 0.01 0.01 0.00

R[LS]5M3 0.00 0.19 0.59 0.15 0.22 0.22 0.14 0.26 0.00 0.34 0.58 0.18 0.25 0.31 0.24 0.25 0.00 0.12 0.48 0.18 0.19 0.28 0.31 0.24 0.00 0.43 0.42 0.77 0.07 0.03 0.05 0.04 0.00 0.23

R[LS]5M4 0.00 0.90 0.14 0.55 0.07 0.07 0.04 0.10 0.00 0.81 0.29 0.89 0.08 0.11 0.09 0.11 0.00 0.73 0.26 0.92 0.07 0.10 0.11 0.11 0.00 0.07 0.13 0.49 0.02 0.00 0.01 0.01 0.00 0.98 0.22

R[LS]5M5 0.00 0.06 0.27 0.07 0.73 0.95 0.43 0.85 0.00 0.08 0.19 0.08 0.76 0.55 0.96 0.65 0.00 0.04 0.19 0.07 0.53 0.70 0.67 0.67 0.00 0.53 0.47 0.20 0.14 0.06 0.16 0.09 0.00 0.06 0.23 0.07

R[LS]5M6 0.00 0.05 0.27 0.06 0.83 0.91 0.41 0.85 0.00 0.07 0.20 0.07 0.88 0.11 0.97 0.62 0.00 0.04 0.20 0.07 0.80 0.27 0.62 0.66 0.00 0.54 0.46 0.21 0.20 0.04 0.17 0.08 0.00 0.06 0.23 0.08 0.98

R[LS]5M7 0.00 0.06 0.29 0.08 0.81 0.99 0.26 0.80 0.00 0.09 0.21 0.09 0.94 0.58 0.77 0.57 0.00 0.05 0.22 0.08 0.76 0.71 0.39 0.60 0.00 0.56 0.48 0.23 0.19 0.05 0.16 0.07 0.00 0.07 0.25 0.10 0.97 0.94

R[LS]5M8 0.00 0.06 0.24 0.07 0.59 0.47 0.90 0.34 0.00 0.09 0.19 0.08 0.45 0.28 0.44 0.47 0.00 0.06 0.18 0.08 0.60 0.33 0.30 0.35 0.00 0.42 0.37 0.19 0.61 0.33 0.57 0.36 0.00 0.07 0.21 0.08 0.51 0.47 0.41

R[LS]6M1 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R[LS]6M2 0.00 0.55 0.19 0.76 0.05 0.06 0.03 0.09 0.00 0.60 0.34 0.95 0.07 0.10 0.06 0.09 0.00 0.24 0.31 0.95 0.05 0.08 0.10 0.09 0.00 0.01 0.13 0.58 0.01 0.00 0.01 0.01 0.00 0.88 0.24 0.97 0.07 0.06 0.08 0.07 0.00

R[LS]6M3 0.00 0.18 0.34 0.14 0.21 0.24 0.15 0.26 0.00 0.33 0.61 0.19 0.25 0.32 0.25 0.26 0.00 0.13 0.44 0.17 0.20 0.28 0.30 0.24 0.00 0.41 0.38 0.76 0.07 0.03 0.05 0.04 0.00 0.23 0.97 0.20 0.24 0.24 0.25 0.20 0.00 0.25

R[LS]6M4 0.00 0.68 0.05 0.32 0.04 0.05 0.03 0.06 0.00 0.43 0.12 0.20 0.05 0.07 0.05 0.08 0.00 0.80 0.12 0.10 0.04 0.07 0.06 0.07 0.00 0.03 0.06 0.18 0.01 0.00 0.01 0.01 0.00 0.60 0.09 0.19 0.05 0.05 0.06 0.05 0.00 0.55 0.08

R[LS]6M5 0.00 0.04 0.22 0.04 0.80 0.71 0.61 0.95 0.00 0.06 0.16 0.06 0.33 0.35 0.78 0.79 0.00 0.03 0.16 0.06 0.83 0.44 0.42 0.84 0.00 0.48 0.40 0.17 0.15 0.07 0.22 0.12 0.00 0.05 0.20 0.06 0.58 0.75 0.71 0.64 0.00 0.05 0.19 0.04

R[LS]6M6 0.00 0.04 0.24 0.05 1.00 0.46 0.53 1.00 0.00 0.07 0.17 0.06 0.72 0.16 0.84 0.74 0.00 0.03 0.18 0.05 0.99 0.16 0.50 0.79 0.00 0.49 0.40 0.18 0.24 0.02 0.21 0.11 0.00 0.05 0.20 0.06 0.81 0.70 0.78 0.58 0.00 0.05 0.20 0.04 0.93

R[LS]6M7 0.00 0.04 0.24 0.05 0.96 0.75 0.10 0.98 0.00 0.07 0.17 0.06 0.69 0.41 0.75 0.76 0.00 0.04 0.18 0.06 0.97 0.51 0.25 0.82 0.00 0.48 0.40 0.18 0.28 0.08 0.11 0.12 0.00 0.05 0.20 0.07 0.80 0.80 0.69 0.61 0.00 0.05 0.20 0.04 0.97 0.96

R[LS]6M8 0.00 0.06 0.28 0.07 0.98 0.77 0.58 0.95 0.00 0.10 0.22 0.09 0.73 0.43 0.82 0.59 0.00 0.05 0.21 0.09 0.99 0.53 0.49 0.61 0.00 0.52 0.45 0.21 0.30 0.11 0.28 0.06 0.00 0.08 0.24 0.09 0.83 0.82 0.76 0.39 0.00 0.08 0.25 0.06 0.96 0.98 0.99

Note: The table displays the Ledoit and Wolf (2008) p-values of the differences in Sharpe ratios of the long-short [LS] portfolios with 2× leverage formed under 6 different measures of risk
and deviation (R[LS]1 to R[LS]6) and 8 models for the conditional dynamics (M1 to M8), under the null that the differences are equal to zero. Red colored cells denote significance at at the
10% level.



Appendix F

Software

F.1 Univariate GARCH and ACD Models

The ACD models were estimated by modifying the rugarch package of Ghalanos

(2012c) and available on the Comprehensive R Archive Network (CRAN ):

http://cran.r-project.org/web/packages/rugarch/index.html. A vignette of the

package, Introduction to the rugarch package, provides comprehensive details of the

models and methods used. For global optimization problems, the multistart gosolnp

solver found in the solnp package of Ghalanos and Theussl (2012) is already linked with

the rugarch package and includes parallel estimation for use in multicore computer

systems.

F.2 Multivariate GARCH and ACD models

The diagonal BEKK and GDCC models, together with the different conditional dis-

tributions used, were estimated in Matlab using a combination of the nonlinear solver

fmincon, the simulated annealing solversimulannealbnd, and the direct search algorithm

found in patternsearch. Scalar DCC and the Copula DCC model described in Chapter 2

were estimated using the multivariate GARCH package rmgarch of Ghalanos (2012b)

which is available on the R-Forge development repository:

http://rgarch.r-forge.r-project.org/. This package also includes the GO-GARCH

models with MVN, maNIG and maGH distributions, along with a complete set of

methods and functions such as the FFT based approach to obtain weighted margins,

the conditional co-moments tensors etc. In addition, 2 ICA algorithms are included,
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the FASTICA of Hyvärinen and Oja (2000) and the RADICAL of Learned-Miller and

Fisher III (2003), with a range of locally implemented options such as covariance shrink-

age using the method of Ledoit and Wolf (2003), and dimensionality reduction in the

PCA stage. To estimate and work with the IFACD model, the GO-GARCH models in

the rmgarch package were modified to account for the use of time varying higher mo-

ments and linked to the modifications made in the rugarch package for the estimation

of ACD models.

F.3 Portfolio Optimization

All measures and methods described in Chapter 4 are included in the parma package

of Ghalanos (2012a) and available to download from the R-Forge development reposi-

tory:

http://r-forge.r-project.org/projects/parma/. A vignette, Portfolio Optimiza-

tion in parma, provides comprehensive details of the package with examples.

http://r-forge.r-project.org/projects/parma/
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