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Abstract

Major (2018) discusses Euler/Aumann-Shapley allocations for non-linear posi-

tively homogeneous portfolios. For such portfolio structures, plausibly arising in

the context of reinsurance, he defines a distortion-type risk measure that facilitates

assessment of ceded and net losses with reference to gross portfolio outcomes. Sub-

sequently, Major (2018) derives explicit formulas for Euler allocations for this risk

measure, thus (sub-)allocating ceded losses to the portfolio’s original components. In

this comment, we build on Major’s (2018) insights but take a somewhat different

direction, to consider Euler capital allocations for distortion risk measures directly

applied to homogeneous portfolios. Explicit formulas are derived and our approach

is compared with that of Major (2018) via a numerical example.

Keywords Distortion risk measures, capital allocation, Euler allocation, Aumann-

Shapley, reinsurance, aggregation.

1 Preliminaries

We use notation slightly different to Major (2018), which is better suited to the exposition

of the ideas in this note. Consider a probability space (Ω,A,P) and let X and (for a

positive integer n) X n be, respectively, the sets of random variables and n-dimensional

random vectors on that space, which are bounded from below. Positive outcomes of

random variables in X represent financial losses. For any Y ∈ X , denote its distribution

by FY , its (left-)quantile function by F−1Y , and by UY a uniform random variable on (0, 1)

comonotonic to Y , such that Y = F−1Y (UY ) almost surely. A distortion risk measure

ρζ : X → R ∪ {∞} can be defined as (Wang et al., 1997; Acerbi, 2002)

ρζ(Y ) :=

∫ 1

0
F−1Y (u)ζ(u)du = E(Y ζ(UY )),
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where ζ is a density on (0, 1). The risk measure ρζ is positively homogeneous, that is,

ρζ(βY ) = βρζ(Y ) for any Y ∈ X , β ≥ 0.

Consider a linear portfolio Y w =
∑n

j=1wjXj , where w = (w1, . . . , wn) ∈ Rn+ and

X = (X1, . . . , Xn) ∈ X n are vectors of exposures and losses respectively, for the n lines

of business that an insurance portfolio is made of. Let the capital requirement for Y w

be calculated as ρζ(Y
w) for a distortion risk measure ρζ . The Euler capital allocation for

the portfolio Y := Y 1 with unit exposures is given by the functional (Tasche, 2004):

d : X n → Rn, di(X) :=
∂

∂wi
ρζ(Y

w)

∣∣∣∣
w=1

.

By the positive homogeneity of ρζ and Euler’s theorem for homogeneous functions, we have

that
∑n

j=1 dj(X) = ρζ(Y ). In particular, subject to differentiability, it holds (Tsanakas,

2004)

di(X) = E(Xiζ(UY )), i = 1, . . . , n. (1)

The Euler capital allocation (1) also occurs as a special case of the optimization approach

to economic capital allocation, developed in Laeven and Goovaerts (2004); Dhaene et al.

(2012).

2 Non-linear portfolios

Insurance portfolios are often non-linear, typically due to the presence of non-proportional

reinsurance contracts. This makes Euler allocations as discussed above not obviously

applicable, particularly when reinsurance contracts cover more than one line of business;

equivalently when reinsurance recoveries cannot be easily attributed to individual lines

of business. A non-linear portfolio can be formalised by an operator F : X n → X .

Assume that, for the purposes of the capital allocation exercise, the random vector X

is fixed so that the portfolio loss, with exposures w, is F(w ∗X), where ‘∗’ stands for

the Hadamard (elementwise) vector product. We assume that one can represent the

portfolio structure via a function h : Rn × Rn → R, such that, for a given X, it is

h(w,X(ω)) := F(w ∗ X)(ω) for all ω ∈ Ω; hence the possible dependence of h on

the distribution of X is suppressed. We denote the portfolio with unit exposures as

Y = F(X) ≡ F(1 ∗X). Let hi(z) = ∂h(w,z)
∂wi

∣∣∣
w=1

. If h is positively homogeneous in

the first argument, that is h(βw, z) = βh(w, z) for any β ≥ 0 and z, w ∈ Rn, then the

following decompositions hold:

h(1, z) =

n∑
j=1

hi(z) =⇒ F(X) =

n∑
j=1

hi(X).

Major (2018) considers the situation where the portfolio F , while non-linear, is posi-

tively homogeneous, which implies homogeneity of h as discussed above. This situation is

plausible in the presence of non-linear reinsurance contracts, if key features of such con-
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tracts, such as deductibles and limits, are themselves positively homogeneous functionals

of the loss variables. While deductibles and limits are generally not explicitly defined in

this way, it is not unreasonable that, implicitly, they may be set in a way that scales with

gross losses. For example, Major (2018) considers the reinsurance portfolio:

F(X) = min
{(
X1 +X2 − F−1X1+X2

(p)
)
+
, F−1X1+X2

(q)− F−1X1+X2
(p)
}
, (2)

h(w, z) = min
{(
w1z1 + w2z2 − F−1w1X1+w2X2

(p)
)
+
, F−1w1X1+w2X2

(q)− F−1w1X1+w2X2
(p)
}

for 0 < p < q < 1 and FX1+X2 the distribution of X1 +X2. It is straightforward to check

that the function h is positively homogeneous in w and remains so if the percentiles are

replaced by e.g. multiples of means or standard deviations.

Major (2018) proceeds by considering the positively homogeneous (in the loss variable

X) functional

ψζ(X,F) := E
(
F(X)ζ

(
U∑n

j=1Xj

))
.

This functional can be understood as an expectation of the portfolio loss subject to a

probability distortion derived from the linearly aggregated portfolio loss
∑n

j=1Xj , which

operates as a benchmark with respect to which the risk of any non-linear portfolio F(X)

is evaluated.

This construction serves Major’s (2018) aim of allocating the impact of a risk trans-

formation, such as a reinsurance contract, to the original loss variables X1, . . . , Xn. To

clarify this point, let
∑n

j=1Xj stand for an insurance portfolio loss, gross of reinsur-

ance and F(X) the portion of the gross loss ceded to the reinsurer, such that F̄(X) :=∑n
j=1Xj −F(X) is the net loss. Then it is straightforward that

ρζ

(∑n
j=1Xj

)
= ψζ(X,F) + ψζ(X, F̄).

Major’s (2018) capital allocation is defined via the partial derivatives of ψζ(w∗X,F),

which are shown to be equal to (Major, 2018, Th. 3),

cFi (X) :=
∂

∂wi
ψζ(w ∗X,F)

∣∣∣∣
w=1

= E
(
hi(X)ζ

(
U∑n

j=1Xj

))
+ E2. (3)

The term E2 is quite involved and vanishes for example if F is a function of
∑n

j=1Xj alone

(Major, 2018, Th. 5). Hence, the capital allocation of Major (2018) can be understood as

a sub-allocation of the ceded loss F(X) to the underlying portfolio components.

3 Euler allocations for non-linear portfolios

The allocation proposed by Major (2018) makes the implicit assumption that portfolio

risk is evaluated with respect to
∑n

j=1Xj . However, in the context of setting the economic
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capital of a financial firm (e.g. an insurer or reinsurer), capital is calculated by a risk

measure of the actual non-linear portfolio that the firm holds, after the completion of risk

transfers.

Hence, we would argue that in many capital allocation applications, the amount that

needs to be allocated is ρζ(F(X)) rather than ψζ(X,F). Note that here we do not

interpret F(X) generally as a ceded loss, but as any non-linear portfolio, belonging to an

insurer or reinsurer, for which a capital requirement ρζ(F(X)) needs to be evaluated. We

proceed by showing that such a capital allocation of ρζ(F(X)) can be obtained, building

on Major’s (2018) insights and previous work on risk measure sensitivity (Hong, 2009;

Hong and Liu, 2009; Tsanakas and Millossovich, 2016).

Assume that, as before, Y = F(X), h(w,X) = F(w ∗X), and h is homogeneous in

w. Then ρζ(F(w ∗X)) is also homogeneous in w. Consequently, we can define the Euler

allocation for a non-linear portfolio F :

dF : X n → Rn, dFi (X) :=
∂

∂wi
ρζ(F(w ∗X))

∣∣∣∣
w=1

,

where it holds that
∑n

j=1 d
F
j (X) = ρζ(F(X)) = ρζ(Y ).

Remark: Following comments from a reviewer, we note that, if one is to interpret F(X)

as the net loss of an insurer, F needs to also reflect the potential for reinsurance credit

risk, in order for ρζ(F(X)) to be a capital requirement consistent with current regulatory

practice in insurance. This is not a problem, as long as F(w ∗ X) remains positively

homogeneous in w. For example, assume that
∑n

j=1Xj is a gross loss, R : X n → X is a

positively homogeneous reinsurance contract, and the random variable ID is the indicator

of a reinsurance default event D. In that case, the net position is F(X) =
∑n

j=1Xj −
(1 − ID) · R(X), where the additional uncertainty due to possible default is subsumed

in the operator F ; in particular one can write F(w ∗X)(ω) = h(w,X(ω), ID(ω)) for an

(augmented) function h : Rn × Rn × R → R. Then, as long as the default event is not

affected by the exposures w, the operator F(w ∗X) remains positively homogeneous in

w and our proposed method is still applicable.

The explicit calculation of the allocation dF (X) for distortion risk measures follows

from Hong (2009); Hong and Liu (2009) or, alternatively, Tsanakas and Millossovich

(2016). Subject to differentiability conditions stated in those papers, we have the alloca-

tion

dFi (X) = E(hi(X)ζ(UY )), i = 1, . . . , n, (4)

which obviously subsumes the linear case. This allocation satisfies a version of the well

studied core property (Tsanakas, 2004; Kalkbrener, 2005), that is, if ζ is non-decreasing

or equivalently if ρζ is subadditive, we have that

dFi (X) ≤ ρζ(hi(X)), i = 1, . . . , n,
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often interpreted as a requirement that the allocation does not produce incentives for

portfolio fragmentation. The following two examples illustrate how the capital allocation

dF differs from that of Major (2018).

Example. First consider the portfolio structure given in (2). As Major (2018) notes, by

positive homogeneity we can write F(X) =
∑2

j=1 hi(X), where

hi(X) = I{X1+X2∈[F−1
X1+X2

(p),F−1
X1+X2

(q)]}

(
Xi − E

(
Xi|X1 +X2 = F−1X1+X2

(p)
))

+ I{X1+X2>F
−1
X1+X2

(q)}

(
E
(
Xi|X1 +X2 = F−1X1+X2

(q)
)
− E

(
Xi|X1 +X2 = F−1X1+X2

(p)
))
.

The above calculation utilises quantile derivatives, see Tasche (2004). Notice that, since

the portfolio defined in (2) is a non-decreasing function of X1 + X2, the E2 term in (3)

vanishes. Moreover, the random variables F(X) and X1 + X2 are comonotonic. Hence,

we can choose UF(X) = UX1+X2 almost surely and therefore ρζ(F(X)) = ψζ(X,F). This

implies that the Euler allocation we propose coincides with Major’s allocation. Indeed

dFi (X) = E(hi(X)ζ(UY )) = E (hi(X)ζ (UX1+X2)) = cFi (X)

by comparing equations (3) and (4).

Thus, in the case when the portfolio F(X) is comonotonic to
∑n

i=1Xi, the Euler

allocation and the allocation proposed by Major are equivalent. In general however, the

two allocations differ, even if the E2 term in (3) vanishes, for example if the portfolio

F(X) is a function of
∑n

i=1Xi that is not non-decreasing. The probability distortions

derived with reference to F(X) (approach taken in this note) and
∑n

i=1Xi (approach

taken by Major) are in general different. This is demonstrated in the following example.

Example. Consider now a different portfolio structure, where for some λ ≥ 1, p ∈ (0, 1),

we have

F(X) = min
{(
X1 − λE(X1)

)
+

+
(
X2 − λE(X2)

)
+
, F−1X1+X2

(p)− λE(X1 +X2)
}
.

In this case, it is seen that F(X) is not comonotonic with X1 + X2 and thus E2 6= 0.

Hence, ρζ(F(X)) 6= ψζ(X,F) and the Euler allocation dFi (X) does not coincide with the

allocation cFi (X) of Major.

We demonstrate this by a numerical example. First note that for the given portfolio,

h(w, z) = min{
(
w1z1 − λE(w1X1)

)
+

+
(
w2z2 − λE(w2X2)

)
+
,

F−1w1X1+w2X2
(p)− λE(w1X1 + w2X2)

}
,

hi(X) = IAI{Xi>λE(Xi)}
(
Xi − λE(Xi)

)
+ IAc

(
E
(
Xi|X1 +X2 = F−1X1+X2

(p)
)
− λE(Xi)

)
,

where A =
{(
X1 − λE(X1)

)
+

+
(
X2 − λE(X2)

)
+
≤ F−1X1+X2

(p)− λE(X1 +X2)
}

.
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Table 1: Comparison of risk measures ψζ , ρζ and respective allocations cF ,dF , with
standard errors for a simulated sample of size 106.

λ = 1 λ = 1.8

ψζ(X,F)
3.902 0.563

(0.004) (0.004)

cF (X)

ψζ(X,F)

36.4%, 63.6% 62.7%, 37.3%
(0.1%, 0.1%) (0.6%, 0.6%)

ρζ(F(X))
3.956 0.691

(0.004) (0.005)

dF (X)

ρζ(F(X))

36.9%, 63.1% 54.2%, 45.8%
(0.1%, 0.1%) (0.6%, 0.6%)

Let X1 ∼ Γ(4, 1), X2 ∼ Γ(8, 1) be independent, such that X1 has a lower standard

deviation, but higher skewness coefficient, than X2. Same as Major (2018), we consider a

distortion risk measure with ζ(u) = 1
2(1−u)−1/2, 0 < u < 1. For the portfolio parameters,

we fix p = 0.999 and let λ ∈ {1, 1.8}.
In Table 1, values for the risk measures ψζ(X,F) and ρζ(F(X)) are reported, as well

as the corresponding Euler capital allocations cF and dF , normalised to add up to 1.

The results were derived from 500 sets of simulated samples, each of size 106. On each of

the 500 samples, the risk measures and capital allocations were calculated. The reported

values are the average risk measures and allocations across the 500 samples. In addition,

we report estimated standard errors (pertaining to a sample size of 106), calculated as

standard deviations of the risk measure and allocation estimates across the 500 samples.

As λ increases in value from 1 to 1.8, dependence between X1 +X2 and F(X) weak-

ens, such that the two random variables attain extreme values for different states. This

implies that the differences between ρζ(F(X)) and ψζ(X,F), as well as the respective

allocations, become more pronounced, as can be seen in the table. In particular, the rel-

ative allocations are nearly identical for λ = 1, with X2 being allocated almost twice the

amount of capital than X1. For λ = 1.8, emphasis is placed on the tails of the variables

X1, X2, as is apparent from the form of F . As a result, for both allocations, the picture

is reversed, with X1 allocated a larger percentage of the risk; this may be explained by

the higher skewness of X1. This change in allocations appears to be more pronounced in

the allocation cF compared to dF .

4 Conclusions

Both Major’s (2018) allocation and the allocation proposed in this note are concerned

with apportioning the capital of a non-linear positively homogeneous portfolio, such as
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the ones arising from reinsurance, to its underlying components. Both methods operate

within the context of distortion risk measures. In Major’s (2018) case, allocation is with

respect to distortion weights derived from the sum of portfolio components, which can be

interpreted as a loss gross of reinsurance. In our case, the weights come from the non-linear

portfolio itself, which, depending on context, could be interpreted as a net or ceded loss.

The two approaches address subtly different concerns, as they set different benchmarks

(kernels) with respect to which portfolio components are evaluated. Consequently, they

generally give somewhat different answers.

While Major’s (2018) results are original, the allocation proposed in this note is a

corollary of a solved problem in the sensitivity analysis literature (Hong, 2009; Hong and

Liu, 2009; Tsanakas and Millossovich, 2016). Allocations according to our method would

generally be easier to calculate.

Naturally, the choice of allocation method depends on the exact business context in

which the capital allocation exercise is taking place, e.g. sub-allocation of ceded risk in

the context of a reinsurance risk transfer or allocation of regulatory capital within a given

portfolio.
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