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RESEARCH ARTICLE

Improving Music Genre Classification Using Automatically Induced
Harmony Rules
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2National Institute of Advanced Industrial Science and Tietbgy (AIST), Japan
(Received 00 Month 200x; final version received 00 Month P00x

We present a new genre classification framework using botHdegel signal-based features and high-level
harmony features. A state of-the-art statistical genresiflas based on timbral features is extended using
a first-order random forest containing for each genre ruéeiveld from harmony or chord sequences. This
random forest has been automatically induced, using thedfidgr logic induction algorithm TILDE, from

a dataset, in which for each chord the degree and chord cgtagmidentified, and covering classical, jazz
and pop genre classes. The audio descriptor-based gessdielacontains 206 features, covering spectral,
temporal, energy, and pitch characteristics of the audioaighe fusion of the harmony-based classifier
with the extracted feature vectors is tested on three-gauieets of the GTZAN and ISMIR04 datasets,
which contain 300 and 448 recordings, respectively. Maekearning classifiers were tested using 5x5-fold
cross-validation and feature selection. Results inditizéi¢ the proposed harmony-based rules combined
with the timbral descriptor-based genre classificationesydead to improved genre classification rates.

1. Introduction

Because of the rapidly increasing number of music files onesavrtan access online,
and given the variably reliable/available metadata assediwith these files, the Music
Information Retrieval (MIR) community has been working anamating the music data
description and retrieval processes for more than a dedader(e et al. 2009). One
of the most widely investigated tasks is automatic genrssdi@ation (Lee et al. 2009).
Although a majority of genre classification systems are sigaaed — cf. (Scaringella
et al. 2006) for an overview of these systems — they suffenfseveral limitations, such
as the creation of false positive hubs (Aucouturier and e2008) and the glass-ceiling
reached when using timbre-based features (AucouturiePantlet 2004). They also lack
high-level and contextual concepts which are as importattva-level content descriptors
for the human perception/characterisation of music gefivieay and Fujinaga 2006).
Recently, several attempts have been made to integrate stat®-of-the-art low-level
audio features with higher-level features, such as lomg-taudio features (Meng et al.
2005), statistical (Lidy et al. 2007) or distance-based dligpe et al. 2007) symbolic
features, text features derived from song lyrics (Neumayet Rauber 2007), cultural
features or contextual features extracted from the web tfw4n and Smaragdis 2002)
or social tags (Chen et al. 2009) or combinations of sevdrtiese high-level features
(McKay and Fujinaga 2008)

Another type of high-level feature is concerned with mukigaal concepts, such as
harmony, which is used in this work. Although some harmoaicchord) sequences are
famous for being used by a composer or in a given genre, haris@tarcely found in
the automatic genre recognition literature as a means tettth Tzanetakis et al. (2003),

LGiven the extensive literature on automatic music genreiization only one example for each kind of feature is cited
here.
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introduced pitch histograms as a feature describing thediaic content of music. Sta-
tistical pattern recognition classifiers were trained toamtithe genres. Classification of
audio data covering 5 genres yielded recognition ratesnar@0%, and for audio gen-
erated from MIDI files rates reached 75%. However this studud$es on low-level har-
mony features. Only a few studies have considered usingehiglkiel harmonic structures,
such as chord progressions, for automatic genre recognitiqShan et al. 2002), a fre-
guent pattern technique was used to classify sequencesmisinto three categories:
Enya, Beatles and Chinese folk songs. The algorithm lookettdquent sets, bi-grams
and sequences of chords. A vocabulary of 60 different cheradsextracted from MIDI
files through heuristic rules: major, minor, diminished angraented triads as well as
dominant, major, minor, half and fully diminished seventiods. The best two way clas-
sifications were obtained when sequences were used withaaiesibetween 70% and
84%. Lee (2007) considered automatic chord transcriptia@dan chord progression.
He used hidden Markov models on audio generated from MIDItesided by genre to
predict the chords. It turned out he could not only improverdhiranscription but also es-
timate the genre of a song. He generated 6 genre-specific ;yaael although he tested
the transcription only on the Beatles’ songs, frame rateii@ay reached highest level
when using blues- and rock-specific models, indicating ngdah identify genres. Fi-
nally, Ferez-Sancho et al. have investigated whether stochasgiodae models including
nave Bayes classifiers and 2-, 3- and 4-grams could be used tmmatic genre classi-
fication on both symbolic and audio data. They report bettegsdigation results when
using a richer vocabulary (i.e. including seventh choro=sjching 3-genre classification
accuracies on symbolic data of 86% withiveaBayes models and 87% using bi-grams
(Pérez-Sancho et al. 2009). To deal with audio data generaiadNtiDI they use a chord
transcription algorithm and obtain accuracies of 75% witfve Bayes (Brez-Sancho
2009) and 89% when using bi-grams(Bz-Sancho et al. 2010).

However, none of this research combines high-level harnd@scriptors with other
features. To our knowledge no attempt to integrate sigaaed features with high-level
harmony descriptors has been made in the literature. Imthik, we propose the combi-
nation of low-level audio descriptors with a classifier tedron chord sequences which
are induced from automatic chord transcriptions, in anreffoimprove on genre classi-
fication performance using the chord sequences as an addliitnsght.

An extensive feature set is employed, covering temporactsal, energy, and pitch
descriptors. Branch and bound feature selection is apptieatder to select the most
discriminative feature subset. The output of the harmorsebteaclassifier is integrated
as an additional feature into the aforementioned featurevheh in turn is tested on
two commonly used genre classification datasets, namely TZA® and ISMIR04. Ex-
periments were performed using 5x5-fold cross-validatinr8-genre taxonomies, using
support vector machines and multilayer perceptrons. Remdicate that the inclusion of
the harmony-based features in both datasets improves gkssfication accuracy in a
statistically significant manner, while in most feature fib& moderate improvement is
reported.

The outline of the paper is as follows. The harmony-based iirss presented in
Section 2. In Section 3, a standard state-of-the-art clagsifiicaystem together with the
fusion procedure employed for genre classification experimare described. Section
4 briefly presents the datasets used and assesses the paderofidhe proposed fused
classifier against the standard classifier. Conclusions asendand future directions are
indicated in Section 5.
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2. Learning Harmony Rules

Harmony is a high-level descriptor of music, focusing ondtrecture, progression, and
relation of chords. As described by Piston (1987), in Westenal music each period
had different rules and practices of harmony. Some harmatieqms forbidden in a pe-
riod became common practices afterwards: for instancetritome was considered the
diabolus in musicauntil the early 18th century and later became a key compaofahie
tension/release mechanism of the tonal system. Moderncalupenres are also charac-
terised by typical chord sequences (Mauch et al. 2007). Lé&te2Sancho et al. (2010),
we base our harmony approach to music genre classificatioheoassumption that in
Western tonal music (to which we limit our work) each musipatiod and genre ex-
hibits different harmony patterns that can be used to ckeriae it and distinguish it from
others.

2.1 Knowledge Representation

Characteristic harmony patterns or rules often relate tmccprogressions, i.e. sequences
of chords. However, not all chords in a piece of music are afakgignificance in har-
monic patterns. For instance, ornamental chords (e.girgasisords) can appear between
more relevant chords. Moreover, not all chord sequences) athen these ornamental
chords are removed, can be typical of the genre of the piecausfc they are part of:
some common chord sequences are found in several genrbsastite perfect cadence
(moving from the fifth degree to the first degree) which is pregemll tonal classical
music periods, jazz, pop music and numerous other genres, Taichord sequences to
look for in a piece of music as hints to identify and chardsteits genre are sparse, can
be punctuated by ornamental chords, might be located amgwhehe piece of music,
and additionally, they can be of any length. Our objectivéoislescribe these distinc-
tive harmonic sequences of a style. To that end we adopt @&xteinee definite-clause
grammar representation which proved to be useful for sglaistructurally similar prob-
lem in the domain of biology: the logic-based extraction aftgrns which characterise
the neuropeptide precursor proteins (NPPs), a particulas dhamino acids sequences
(Muggleton et al. 2001).

In this formalism we represent each song as the list or seguehchords it contains
and each genre as a set of music pieces. We then look for a setrrobny rules de-
scribing characteristic chord sequences present in thgssoineach genre. These rules
define a Context-Free Grammar (CFG). In the linguistic and l&églds, a CFG can be
seen as a finite set of rules which describes a set of sequéeEmise we are only in-
terested in identifying the harmony sequences charairtgr@gsgenre, and not in building
a comprehensive chord grammar, we use the concept of ‘gaphépecified length) be-
tween sub-sequences of interest to skip ornamental chois@n-characteristic chord
sequences in a song, as done by Muggleton et al. (2001) whiginigutheir grammar
to describe NPPs. Notice that like them, to automate the psamiegrammar induction
we also adopt a Definite Clause Grammar (DCG) formalism toesst our Context-
Free Grammars as logic programs, and use Inductive Logic Rrogireg (ILP), which is
concerned with the inference of logic programs (Muggleteal).

We represent our DCGs using theference-listrepresentation, and not the DCG rep-
resentation itself, as this is what TILDE, the inference systegnuse, returns. In our
formalist the letters of our alphabet are the chords labetiea jazz/pop/rock shorthand
fashion (e.g. G7, B BM7, F#m7, etc.). Properties of the chords are describedyusin
predicates (i.e. operators which return eithreie or falsé. In the difference-list repre-
sentation these predicates take at least two argumentspahlist, and an output list.
The predicate and the additional arguments (if there are @pply to the difference be-
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| .. |Emin7| Cmaj [ Faim | .. | G7 |Cmaj7]..| Dmin7 [Faug| .. |
< A >
>« B >
gap(A,B)
< > < C >
degreeAndCategory(3,min7,B,C ,cmajor)
< > D >
degreeAndCategory(1,maj,C,D,cmajor)
< > E >
degreeAndCategory(4,dim,D ,E,cmajor)
< > < F >
gap(E,F)
> G——

degreeAndCategory(5,7,F,G,cmajor)

etc.

>

gap(K,L)

Figure 1.: A piece of music (i.e. list of chords) assumed tab@ major, and its Definite
Clause Grammar (difference-list Prolog clausal) repreximt.

tween the input list and the output list (which could be oneseveral elements). For
instancedegree(1,[cngj 7, bm e7],[ bm e7], cngj or) says thatin the key of
C major (last argumentmaj or) the chord Cmaj7 (difference between the input list
[cmaj 7, bm e7] and the output lisf bm e7] ) is on the tonic (or first degred,).
Previous experiments showed that the chord propertiesrigddithe best classification
results with our context-free grammar formalism are degrekchord category (Anglade
et al. 2009b). So the two predicates that can be used by thensyst rule induction are
defined in the background knowledge:

o degrees (position of the root note of each chord relativeedey) and chord categories
(e.g. min, 7, maj7, dim, etc.) are identified using tlegr eeAndCat egor y/ 5' pred-
icate;

e thegap/ 2 predicate matches any chord sequence of any length, atiowiskip un-
interesting subsequences (not characterised by the graratag) and to handle large
sequences for which otherwise we would need very large gamsim

Figure 1 illustrates how a piece of music, its chords and thveiperties are represented
in our formalism.

2.2 Learning Algorithm

To induce the harmony grammars we apply the ILP decision tidaction algorithm
TILDE (Blockeel and De Raedt 1998). Each tree built by TILDE is aheoed set of rules
which is a genre classification model (i.e. which can be usexdbssify any new unseen
song represented as a list of chords) and describes thectdréstc chord sequences of
each genre in the form of a grammar. The system takes as lgataia a set of triples

1/n at the end of a predicate represents its arity, i.e. the nupoftlguments it takes
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(chord_sequence, tonality, genre), chord_sequence being the full list of chords present
in a songtonality being the global tonality of this song apdnre its genre.

TILDE is a first order logic extension of the C4.5 decision treguiction algorithm
(Quinlan 1993). Like C4.5 it is a top-down decision tree indutalgorithm. The differ-
ence is that at each node of the trees conjunctions of ltaraltested instead of attribute-
value pairs. At each step the test (i.e. conjunction ofdigrresulting in the best split of
the classification exampléss kept.

Notice that TILDE does not build sets of grammar rules for edabkscbut first-order
logic decision trees, i.e. ordered sets of rules (or Prolagiams). Each tree covers one
classification problem (and not one class), so in our case dalgcribing harmony patterns
of a given genre coexist with rules for other genres in theestnee (or set of rules).
That is why the ordering of the rules we obtain with TILDE is anesssl part of the
classification: once a rule describing gepris fired on an example thene is classified
as a song of genrg and the following rules in the grammar are not tested evdtus,
the rules of a model can not be used independently from eel. ot

In the case of genre classification, the target predicatendivd ILDE, i.e. the one we
want to find rules for, igenr e/ 4, wheregenr e( g, A, B, Key) means the song (rep-
resented as its full list of chords) in the tonalikgy belongs to genrg. The output lisB
(always an empty list), is necessary to comply with the definiause grammar represen-
tation. We constrain the system to use at least two conseaigigr eeAndCat egory
predicates between any twap predicates. This guarantees that we are considering local
chord sequences of at least length 2 (but also larger) inathgss

Here is an example in Prolog notation of a grammar rule builflhyDE for classical
music (extracted from an ordered set containing rules feersé genres):

genre(classical,A,Z,Key) :-
gap(A,B), degreeAndCategory(2,7,B,C,Key),
degreeAndCategory(5,maj,C,D,Key),
gap(D,E), degreeAndCategory(1,maj,E,F,Key),
degreeAndCategory(5,7,F,G,Key), gap(G,2).

Which can be translated asSome classical music pieces contain a dominant 7th chord
on the supertonic (Il) followed by a major chord on the domityéater (but not necessar-
ily directly) followed by a major chord on the tonic followbg a dominant 7th chord on
the dominant’”

Or: “Some classical music pieces can be modelled as: ... 17 -\ V.7 ...

Thus, complex rules combining several local patterns (oflangth greater than or equal
to 2) separated bgaps can be constructed with this formalism.

Finally, instead of using only one tree to handle each claasidic problem we construct
arandom forestcontaining several trees. A random forest is an ensemiésidiler whose
classification output is the mode (or majority vote) of thepot of the individual trees
it contains which often leads to improved classification aacy (Breiman 2001). Like
in propositional learning, the trees of a first-order randonest are built using training
sub-datasets randomly selected (with replacement) freroldssification training set and
no pruning is applied to the trees. However, when buildincheaode of each tree in a
first-order random forest, a random subset of the possibleygeBnements is considered
(this is called query sampling), and not a random subseteoédttiibutes as when building
propositional random forests (Assche et al. 2006).

L As explained in (Blockeel and De Raedt 1998) “the best spliamsdhat the subsets that are obtained are as homogeneous
as possible with respect to the classes of the examples”. Bylti& ILDE uses the information gain-ratio criterion (Qlan
1993) to determine the best split.



September 14, 2010 18:31 Journal of New Music Research jnperpa

6 Journal of New Music Research

2.3 Training Data

The dataset used to train our harmony-based genre class#ibeka collected, annotated
and kindly provided by the Pattern Recognition and Artifidraklligence Group of the
University of Alicante, and has been referred to as Peeez-9-genre€orpus (Rrez-
Sancho 2009). It consists of a collection of 856 Band in a’Bd&s (i.e. symbolic files
containing chords) from which audio files have been syntkdsend covers three genres:
popular, jazz, and classical music. The Popular music seatanpop (100 files), blues
(84 files), and celtic music (99 files); jazz consists of a prp-tlass (178 files) grouping
swing, early, and Broadway tunes, bop standards (94 filed)bassanovas (66 files); and
classical music consists of Baroque (56 files), Classicalffi{&8) and Romantic Period
music (129 files). All the categories have been defined by mugieres, who have also
collaborated in the task of assigning meta-data tags to #editd rejecting outliers.

In the merging experiments, involving both our harmonyeobslassifier and a timbre-
based classifier, we use two datasets containing the foliptyiree genres: classical,
jazz/blues and rock/pop (cf. Section 4.1). Since these datifer from the ones present
in the Perez-9-genre€orpus, we re-organise the latter into the following thrisses,
in order to train our harmony-based classifier on classesntlasth the testing datasets
classes: classical (the full classical dataset fromRérez-9-genre€orpus, i.e. all the
files from its 3 sub-classes), jazz/blues (a class groupiadlies and the 3 jazz subgen-
res from thePerez-9-genre€orpus) and pop (containing only the pop sub-class of the
popular dataset from theerez-9-genre€orpus). Thus we do not use the celtic subgenre.

2.4 Chord Transcription Algorithm

To extract the chords from the synthesised audio dataged)dmfrom the raw audio files
on which we want to apply the harmony-based classifier, amaatio chord transcrip-
tion algorithm is needed. We use an existing automatic chadydlling method, which
can be broken down into two main steps: generation of a hgehsonous chromagram
and an additional beat-synchronous bass chromagram, anéteaence step using a mu-
sically motivated dynamic Bayesian network (DBN). The fallog paragraphs provide
an outline of these two steps. Please refer to (Mauch 201(pt€tsa4 and 5) for details.
The chroma features are obtained using a prior approximaggtramscription based on
the non-negative least squares method (NNLS). We first cadcal&ig-frequency spec-
trogram (similar to a constant-Q transform), with a resolubf three bins per semitone.
As is frequently done in chord- and key- estimation (e.g.teland Sandler), we adjust
this spectrogram to compensate for differences in the guymitch. The tuning is estimated
from the relative magnitude of the three bin classes. Usirsgstimate, the log-frequency
spectrogram is updated by linear interpolation to ensuatttie centre bin of every note
corresponds to the fundamental frequency of that note imldgmperament. The spec-
trogram is then updated again to attenuate broadband nogsd¢irabre. To determine
note activation values we assume a linear generative modeghich every fram&” of
the log-frequency spectrogram can be expressed appratingt the linear combination
Y ~ Ez of note profiles in the columns of a dictionary matfix multiplied by the acti-
vation vectorz. Finding the note activation vector that approximaiebest in the least-
squares sense subjectito> 0 is called the non-negative least squares problem (NNLS).
We choose a semitone-spaced note dictionary with expallntieclining partials, and
use the NNLS algorithm proposed by Lawson and Hanson (Lawsohlansion 1974) to
solve the problem and obtain a unigue activation vectortietme and bass chroma map-
ping we choose different profiles: the bass profile emphadisa®w tone range, and the

2http://www.pgmusic.com/productsb.htm
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treble profile encompasses the whole note spectrum, with ahasis on the mid range.
The weighted note activation vector is then mapped to thevenygikch classes C,...,B by
summing the values of the corresponding pitches. In ordebtain beat times we use an
existing automatic beat-tracking method (Davies et al9208 beat-synchronous chroma
vector can then be calculated for each beat by taking theandi the time direction)
over all the chroma frames whose centres are situated betiveesame two consecutive
beat times.

The two beat-synchronous chromagrams are now used as diesvim the DBN,
which is a graphical probabilistic model similar to a hietdcal hidden Markov model.
Our DBN jointly models metric position, key, chords and bpissh class, and parameters
are set manually according to musical considerations. Thet likely sequence of hidden
states is inferred from the beat-synchronous chromagrdrtie2ovhole song using the
BNT! implementation of the Viterbi algorithm (Rabiner 1989). Tinethod detects the
24 major and minor keys and 121 chords in 11 different chotdgmaies: major, minor,
diminished, augmented, dominant 7th, minor 7th, major midjor 6th, and major chords
in first and second inversion, and a ‘no chord’ type. The chaddeription algorithm
correctly identifies 80% (correct overlap, Mauch 2010, Ceaag) of the chords in the
MIREX audio data.

To make sure training and testing datasets would contaisaire chord categories we
apply the following post-processing treatments to our sylimpsynthesised audio and
real audio datasets:

e Since they are not used in the symbolic dataset, after angdrigtion of synthesised
audio or real audio we replace the major chords in first andskicwersion with major
chords, and the sections with no chords are simply ignored.

e Before classification training on symbolic data, the extensiet of chord categories
found in the Band in a Box dataset is reduced to eight categomajor, minor, di-
minished, augmented, dominant 7th, minor 7th, major 7thpn@h. This reduction is
done by mapping each category to the closest one in term bfraohber of intervals
shared and musical function.

Note however that the synthesised audio datasets are ¢gohén@m the original Band
in a Box files, so the ones containing the full set of chord aaieg and not the ones
reduced to eight chords.

o Finally, in all datasets, repeated chords are merged to &esimgjance of the chord.

2.5 Learning Results

The performance of our harmony-based classifier was preyioesied on both the full
original symbolicPerez-9-genre€orpus, and automatic chord transcriptions of its syn-
thesised version when using a single tree model (Anglade 20@9a,b), and not random
forests as used here. For 3-way classification tasks, wetegpars-fold cross-validation
classification accuracy varying between 74% and 80% on théslordata, and between
58% and 72% on the synthesised audio data, when using thedrasteters. We adopt the
best minimal coverage of a leaf learned from these expetsnem constrain the system
so that each leaf in each constructed tree covers at leastdimeng examples. By setting
this TILDE parameter to 5 we avoid any overfitting — as a smallenlver of examples
for each leaf means a larger number of rules and more spediis +uand in the same
time it is still reasonable given the size of the dataset +gelavalue would have been
unrealistically too large for the system to learn any treewould have required a long
computation time for each tree. We also set the number of freeach random forest

Lhttp://code.google.com/p/bnt/
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to thirty, since preliminary experiments showed it was aoeable compromise between
rather short computation time and good classification resQitiery sampling rate is set
to 0.25.

We evaluate our random forest model using again 5-fold evaldation and obtain 3-
genre classification accuracies of 87.7% on the full symbediez-9-genre€orpus, and
75.9 % on the full audio synthesised from MIBérez-9-genre€orpus. Notice that these
results exceed those obtained with thévedBayes classifiers employed bgréz-Sancho
et al. in their experiments on the same dataset, and the dgmésults are comparable to
those they obtain with their n-gram models.

We now simultaneously train our random forest classifier atichate the best results it
could obtain on clean and accurate transcriptions by peifay a 5-fold cross-validation
on the restricted and re-organised symbolic and synttabaisdio dataset we created from
the Perez-9-genre€orpus (cf. Section 2.3). The resulting confusion matrigas given
in Table 1 and Table 2. The columns correspond to the prediotegic genres and the
rows to the actual ones. The average accuracy is 84.8% fordigdata, and 79.5%
for the synthesised audio data, while the baseline clagstficaccuracy is 55.6% and
58%, when attributing the most probable genre to all the sohige classifiers detects the
classical and jazz/blues classes very well but only cdyretassifies a small number of
pop songs. We believe that this is due to the shortage of pagsga our training dataset,
combined with the unbalanced number of examples in each:dlas jazz set is twice as
large as the classical set which in turn is twice as large eptp set. Performance of
these classifiers on real audio data will be presented in Sett

Real/Predicted classical jazz/blues popTotal
classical 218 15 1 234
jazz/blues 9 407 2 |418
pop 26 61 13 | 100
Total 253 483 16 | 752

Table 1.: Confusion matrix (test results of the 5-fold creakdation) for the
harmony-based classifier applied on the classical-jazzébphop restricted and
re-organised version of tHeerez-9-genre€orpus (symbolic dataset).

Real/Predicted classical jazz/blues popTotal
classical 181 20 1 | 202
jazz/blues 34 373 1 | 408
pop 31 57 5 93
Total 246 450 7 | 703

Table 2.: Confusion matrix (test results of the 5-fold creakdation) for the
harmony-based classifier applied on the classical-jazzébhop restricted and
re-organised version of tHeerez-9-genre€orpus (synthesised audio dataset).

INote that the total numbers of pieces in the tables do not magctotal number of pieces in therez-9-genre€orpus:

o 5filesin the symbolic dataset have “twins”: i.e. different meyseces with different names which can be represented by
the exact same list of chords. These twins are treated asdtgdiby TILDE, which automatically removes duplicate
files before training, and are thus not counted in the totailver of pieces.

o Afew files from thePerez-9-genre€orpus were not used in the synthesised audio dataset agéneyunusually long
files resulting in large memory allocations and long computetiimes when performing chord transcription.
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| Feature | # Values per segment
| Short-Time Energy (STE) | I1x4=4 |
Spectrum Centroid (SC) 1x4=4
Spectrum Rolloff Frequency (SRF) 1x4=4
Spectrum Spread (SS) 1x4=4
Spectrum Flatness (SF) 4x4=16
Mel-frequency Cepstral Coefficients (MFCCs) 24 x 4 =96
Spectral Difference (SD) 1x4=14
Bandwidth (BW) 1x4=4
Auto-Correlation (AC) 13
Temporal Centroid (TC) 1
Zero-Crossing Rate (ZCR) 1x4=4
Phase Deviation (PD) 1x4=4
Fundamental Frequency (FF) 1x4=14
Pitch Histogram (PH) 1x4=4
| Rhythmic Periodicity (RP) | 1x4=4 |
Total Loudness (TL) 1x4=4
Specific Loudness Sensation (SONE) 8§ x4 =32
| Total number of features | 206 |

Table 3.: Extracted Features

3. Combining Audio and Harmony-based Classifiers

In this section, a standard state-of-the-art classificaimtem employed for genre clas-
sification experiments is described. The extracted featueetisted in Section 3.1, the

feature selection procedure is described in Section 3.2 aallyfthe fusion procedure is

explained and the employed machine learning classifiersrasepted in Section 3.3.

3.1 Feature Extraction

In feature extraction, a vector set of numerical represiems, that is able to accurately
describe aspects of an audio recording, is computed (Tadsetad Cook 2002). Ex-
tracting features is the first step in pattern recognitiotesys, since any classifier can be
applied afterwards. In most genre classification experigg extracted features belong
to 3 categories: timbre, rhythm, and melody (Scaringelld @0©6). For our experiments,
the feature set proposed in (Benetos and Kotropoulos 20&68)amployed, which con-
tains timbral descriptors such as energy and spectralre=gtas well as pitch-based and
rhythmic features, thus being able to accurately deschbeatidio signal. The complete
list of extracted features can be found in Table 3.

The feature related to the audio signal energy is the STE. Speéetsatiptors of the
signal are the SC, SRF, SS, SF, MFCCs, SD (also called spectral fladg\VanTemporal
descriptors include the AC, TC, ZCR, and PD. As far as pitch-dbdsatures are con-
cerned, the FF feature is computed using maximum likelih@dhbnic matching, while
the PH describes the amplitude of the maximum peak of the dohdgtogram (Tzane-
takis et al. 2003). The RP feature was proposed in (Pampalk20@4). Finally, the TL
feature and the SONE coefficients are perceptual descriptuchware based on auditory
modeling.

Allin all, 206 feature values are extracted for each soundnding. For the computation
of the feature vectors, the descriptors are computed omzeflzasis and their statistical
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No. Selected Feature
1 | Variance of 1st order difference of 7th SONE
2 Variance of BW

3 Mean of SD

4 Variance of PH

5 Mean of 7th MFCC
6 Variance of 5th MFCC
7 Mean of SS

8 | Variance of 1st order difference of 9th MFCIC
9 Variance of FF

10 | Variance of 1st order difference of 1st SONE

Table 4.: The subset of 10 selected features.

measures are employed in order to result in a compact regpetism of the signal char-
acteristics. To be specific, their mean and variance are ctad@ong with the mean and
variance of the first-order frame-based feature differemmses a 1 sec texture window.
The same texture window size was used for genre classificatjperienents in (Tzane-
takis and Cook 2002). Afterwards, the computed values armged for all the segments
of the recording, thus explaining the factor 4 appearingabld 3. This is applied for
all extracted features apart from the AC values and the TCghlware computed for the
whole duration of the recording. In addition, it should bdetbthat for the MFCCs, 24
coefficients are computed over a 10 msec frame (which is a cansatiing for audio
processing applications), while 8 SONE coefficients are caatpover the same duration
—which is one of the recommended settings in (Pampalk eDak R

3.2 Feature Selection

Although the extracted 206 features are able to capture mspgcts of the audio signal,
it is advantageous to reduce the number of features throfiggitare selection procedure
in order to remove any feature correlations and to maximiassdfication accuracy in
the presence of relatively few samples (Scaringella et &l6200ne additional motiva-
tion behind feature selection is the need to avoid the dedaurse of dimensionality
phenomenon (Burred and Lerch 2003).

In this work, the selected feature subset is chosen as tonmseithe inter/intra class
ratio (Fukunaga 1990). The aim of this feature selection m@shais to select a set of
features that maximizes the sample variance betweenadtiffetasses and minimizes the
variance for data belonging to the same class, thus leadid@ssification improvement.
The branch-and-bound search strategy is employed for caihpleduction purposes,
being also able to provide the optimal feature subset. Irséagch strategy, a tree-based
structure containing the possible feature subsets isrsadaising depth-first search with
backtracking (van der Hedjen et al. 2004).

For our experiments, several feature subsets were creamutaining © =
{10, 20, ...,100} features. In Table 4, the subset for 10 selected featurestés| where
it can be seen that the MFCCs and the SONE coefficients appeardsdreninative
features.

3.3 Classification System

Figure 2 represents the steps that are performed to buildenueglassification system.
The proposed classifier combines the extracted and selectetlds presented in Sections
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Figure 2.: Block diagram of the genre classifier

3.1 and 3.2 with the output of the harmony-based classifiesritesi in Section 2. Con-
sidering the extracted feature vector for a single recgradisiv (with length©®) and the
respective output of the harmony-based classifierasl, .. ., C, whereC' is the number
of genre classes, a combined feature vector is created fortimeof v/ = [v r]. Thus, the
output of the harmony-based classifier is treated as an additieature used, along with
the extracted and selected audio features, as an input teaireng phase of the overall
genre classifier.

Two machine learning classifiers were employed for the gelagsification experi-
ments, namely multilayer perceptrons (MLPs) and supporovestachines (SVMs). For
the MLPs, a 3-layered perceptron with the logistic activafimction was utilized, while
training was performed with the back-propagation algamithr learning rate equal to 0.3,
500 training epochs, and momentum equal to 0.1. A multiscBAgM classifier with a 2nd
order polynomial kernel with unit bias/offset was also ugedlkopf et al. 1999). The
experiments with the aforementioned classifiers were cdrdugn the training matrix
V' = [v] v --- v},], whereM is the number of training samples.

4. Experiments

4.1 Datasets

Two commonly used datasets in the literature were employeddnre classification ex-
periments. Firstly, the GTZAN database was used, which cani®lf0 audio recordings
distributed across 10 music genres, with 100 recordindgsaed for each genre (Tzane-
takis and Cook 2002). From the 10 genre classes, 3 were stlectéhe experiments,
namely the classical, jazz, and pop classes. All recordingsnono channel, are sampled
at 22.05 kHz rate and have a duration of approximately 30 sec.
The second dataset that was used was created for the ISMIR 2804 Glassifica-

tion Contest (ISMIR 2004). It covers 7 genre classes, fronttviBiwere used: classical,
jazz/blues, and pop/rock. The classical class contains&d#dings, the jazz/blues class
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26, and the pop/rock class 102. The duration of the recordsgst constant, ranging
from 19 seconds to 14 minutes. The recordings were samplegk&tz2rate and were
converted from stereo to mono.

4.2 Results

First the harmony-based classifier (trained on both the ranisgd symbolic and synthe-
sised audid’erez-9-genredatasets) was tested on these two audio datasets. The ezsults
shown in Table 5. For the GTZAN dataset, the classification aoyunsing the harmony-
based classifier is 41.67% (symbolic training) and 44.67%tf®sised audio training),
while for the ISMIR04 dataset it is 57.49% (symbolic trainimmd 59.28% (synthesised
audio training). Even though the classifier trained on symglkdsaudio data obtained
worse results than the one trained on symbolic data wheonoeirig cross-validation on
the Perez-9-genredatasets, the opposite trend is observed here when testiba two
real audio datasets. We believe the symbolic model doesearfirpn as well on audio
data because it assumes that the chord progressions agetlyetfanscribed, which is
not the case. The synthesised audio model on the other hasdadoeunt for this noise
in transcription (and includes it in its grammar rules). &ithese results we will use the
classifier trained on synthesised audio data in the expetémegrging the harmony-based
and the audio feature based classifiers.

Real/Predicted classical jazz pop Total
classical 38 47 15 | 100
jazz 19 72 9 100
pop 24 61 15 | 100
Total 81 180 39 | 300
(a)
Real/Predicted classical jazz pop Total
classical 59 39 2 100
jazz 21 70 9 |100
pop 22 73 5 |100
Total 102 182 16 | 300
(b)
Real/Predicted classical jazz/blues pop/rogkTotal
classical 207 34 78 319
jazz/blues 8 10 8 26
pop/rock 47 15 40 102
Total 262 59 126 447

()

Real/Predicted classical jazz/blues pop/rogkTotal

classical 233 61 25 319

jazz/blues 9 16 1 26

pop/rock 27 59 16 102

Total 269 136 42 447
(d)

Table 5.: Confusion matrices for the harmony-based classifimed on: (a) symbolic
data and applied on the GTZAN dataset, (b) synthesised autiadd applied on the
GTZAN dataset, (c) symbolic data and applied on the ISMIRO4s#dtdd) synthesised

audio data and applied on the ISMIR04 dataset.
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Figure 3.: Classification accuracy for the GTZAN dataset usimgpwua feature subsets.

Then experiments using the SVM and MLP classifiers with 5x5-fotess-validation
were performed using the original extracted audio feateeorv which does not in-
clude the output of the harmony-based classifier. First thiassitiers were tested on the
synthesisedPerez-9-genre€orpus which is described in Section 2.3. The full set of 206
audio features was employed for classification. For the SVikgification accuracy is
95.56%, while for the MLP classifier, the classification acculia®©5.67%. While clas-
sification performance appears to be very high compared thaheony-based classifier
for the same data, it should be stressed thaPtdrez-9-genredataset consists of synthe-
sised MIDI files, making the dataset unsuitable for audio @ssing-based experiments.
This happens because these files use different sets of sygsti@sstruments for each of
the 3 genres, which produce unrealistic results when a #ihibature-based classifier is
employed.

Finally, experiments comparing results of the SVM and MLP dfeess with and with-
out the output of the harmony-based classifier (trained othegised audio data) were
performed with the various feature subsets on the SVM and MhBsiiers using 5x5-
fold cross-validation. The average accuracy achieved bycldmssifiers using 5x5-fold
cross-validation for the various feature subset sizesgusia GTZAN dataset is shown
in Figure 3, while the average accuracy for the ISMIR04 datigsg#town in Figure 4. In
Table 6 the best accuracy achieved for the various featureessiand classifiers is pre-
sented. The SVM-H and MLP-H classifiers stand for the standardrieaetv (without
harmony), while the SVM+H and MLP+H classifiers stand for thedeasetv’ (with
harmony).

For the GTZAN dataset, the highest classification accuracyheeed by the SVM+H
classifier using the 50 features subset, reaching 91.13%amcurhe MLP classifiers
seem to fall behind the SVM classifiers for the various featultessts, apart from the
subsets containing 70, 80, or 90 features. For the ISMIR04segt the highest accu-
racy is also achieved by the SVM+H classifier, reaching 95.3@&siication accuracy,
for the 80 features subset. The SVM-H classifier reaches 93.@®/4or the same sub-
set. In most cases, the SVM+H and MLP+H classifiers display isedalassification
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Figure 4.: Classification accuracy for the ISMIR04 datasetgugarious feature subsets.

Classifier | GTZAN Dataset ISMIRO4 Dataset
SVM-H | 88.66% (60 Features) 93.77% (70 Features)
SVM+H | 91.13% (50 Featureg) 95.30% (80 Features)
MLP-H | 87.19% (60 Features) 91.45% (90 Features)
MLP+H | 87.53% (60 Featureg)91.49% (Full Feature Set)

Table 6.: Best mean accuracy achieved by the various clasdifiethe GTZAN and
ISMIR04 datasets using 5x5-fold cross-validation.

rates over the SVM-H and MLP-H classifiers, respectively. Thezdnawever some cases
where the classification rate is identical, for example ferMiP classifiers using the 60
features subset for the ISMIR04 dataset. The fact that the IBMtes are higher than
the GTZAN rates can be attributed to the class distribution.

In order to compare the performance of the employed featirevish other feature
sets found in the literature, the extracted features frarMARSYAS (Tzanetakis 2007)
toolbox were employed, which contain the mean values of pleetsal centroid, spectral
rolloff, spectral flux, and the mean values of 30 MFCCs for a isetire window. Results
on genre classification using the MARSYAS feature set with 8-cross-validation on
both datasets and using the same classifiers (SVM, MLP) and #spective settings
can be seen in Table 7, where it can be seen that for the MLHfetasthe classification
accuracy between the MARSYAS feature set and the employéaréeset is roughly the
same for both datasets. However, when the SVM classifier is tise@mployed feature
set outperforms the MARSYAS features by at least 3% for the GTZ£ABE and 4% for
the ISMIR04 set. It should be noted however that no featurecieh took place for the
MARSYAS features.

Insight to the performance of the best cases of the vari@ssifiers using both datasets
is offered by confusion matrices determined by one classifiarusing 5-fold cross-
validation. The confusion matrices using the best SVM-H and $WMlassifiers for the
GTZAN and ISMIR04 datasets are presented in Table 8. For the GTZa&thsdt most
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Classifier | GTZAN Dataset | ISMIR04 Dataset
SVM 85.66% 91.51%
MLP 85.00% 91.96%

Table 7.: Mean accuracy achieved by the various classifieth€GTZAN and
ISMIR04 datasets, using the MARSYAS feature set and 5x5-faldszvalidation.

misclassifications occur for the pop class, in both cases ederythe SVM+H algorithm
rectifies some misclassifications of the pop class compardet&YM-H classifier. For
the ISMIR04 dataset, most misclassifications occur for the/lpdaes class for both clas-
sifiers. Even for the SVM+H classifier, when taking normalizedsathe jazz/blues class
suffers the most, having only 63.58% correct classificat&te.fdt should be noted though
that the SVM+H classifier has 6 more jazz/blues samples ctyreletssified compared
to the SVM-H one. The classical class on the other hand, seageyainaffected by
misclassifications.

Real/Predicted classical jazz pop Total
classical 97 3 0 100
jazz 8 91 1 100
pop 3 19 78 | 100
Total 108 113 79 | 300
(a)
Real/Predicted classical jazz pop Total
classical 97 3 0 100
jazz 8 90 2 100
pop 3 10 87 | 100
Total 108 103 89 | 300
(b)
Real/Predicted classical jazz/blues pop/rogkTotal
classical 319 0 0 319
jazz/blues 10 11 5 26
pop/rock 12 1 89 102
Total 341 12 94 447
(©)
Real/Predicted classical jazz/blues pop/rogkTotal
classical 317 0 2 319
jazz/blues 6 17 3 26
pop/rock 7 3 92 102
Total 330 20 97 447
(d)

Table 8.: Confusion matrices for one 5-fold cross validation of: (a) the SVM-H
classifier applied on the GTZAN dataset using the 60 selectedréssaset, (b) the
SVM+H classifier applied on the GTZAN dataset using the 50 saldet&tures set, (¢)
the SVM-H classifier applied on the ISMIR04 dataset using thesTécged features set,
(d) the SVM+H classifier applied on the ISMIR04 dataset usingthselected features

set.

Concerning the statistical significance of the proposedifeatectorv’ compared to
the performance of the standard feature vestpthe McNemar test (McNemar 1947)
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was employed, which is applied to 2x2 contingency tablesfsingle classifier run. We
consider the cases exhibiting the highest classificatiogsyats shown in Table 6. For
the GTZAN dataset, the SVM-H classifier using the 60 featuressssimpared against
the SVM+H classifier using the 50 features set. For the ISMIRG4sd4, the SVM-H
classifier using 70 features is compared against the SVM+Hifilrsusing 80 features.
The contingency tables for the GTZAN and ISMIR04 datasets apeotisely:

264 10 416 10
[ 2 24] and [ 3 18] @)

The binomial distribution is used to obtain the McNemar teatistic, where for both
cases the null hypothesis (the difference between the tagsifiers is insignificant) is
rejected with 95% confidence.

4.3 Discussion

This improvement of the classification results might come agprise when one consid-
ers that the harmony-based classifier by itself does not persafficiently well on audio
data. Indeed on the ISMIR04 dataset its accuracy is lowerttabaseline (59.28% vs.
71.36%). However, harmony is only one dimension of musicclidespite being rele-
vant for genre identification can not capture by itself allgshspecificities. The authors
believe that the classification improvement lies in the faat it covers an aspect of the
audio-signal (or rather of its musical properties) thatdtteer (low-level) features of the
classifier do not capture.

In order to justify that the combination of several featuraproves classification ac-
curacy even when they are lower than the baseline, the metlie &th MFCC was em-
ployed as an example feature. 5-fold cross-validation exmnts were performed on the
GTZAN and ISMIR04 datasets based on this single feature usingsSREsults indicated
that classification accuracy for the GTZAN dataset was 31.338evior the ISMIR04
dataset it was 71.36%, both of which are below the baselioegder the feature, being
one of the selected ones, when combined with several oth&rréss manages to report a
high classification rate as shown in Section 4.2. Thus, the siartuof the output of the
harmony-based classifier, while being lower than the basdljnitself, still manages to
provide improved results when combined with several otleescdptors. In addition, in
order to compare the addition of the harmony-derived diaasion to the feature set with
an additional feature, the Total Loudness (TL) was added it&WiM-H classifier using
the 70 features subset (TL is not included in the set). Usisg@fZAN dataset for ex-
periments, classification accuracy for the 70 features $i82%, while adding the TL
feature it increased by 0.66%, where the performance ingmnewt is lower compared to
the harmony-based classifier addition (which was 1.66%).

5. Conclusions

In the future, the combination of the low-level classifiermtiie harmony-based classifier
can be expanded, where multiple features stemming fromddinansitions can be com-
bined with the low-level feature set in order to boost perfance. In addition, the chord
transition rules can be modeled to describe more genredinpao experiments con-
taining more elaborate genre hierarchies. This would altotest how well our method
scales.

In this work, an approach for automatic music genre classificavas proposed, com-
bining low-level features with a first-order logic randomdstbased on chord transitions
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and built using the Inductive Logic Programming algorithm TILDEaree-class genre
classification experiments were performed on two commordy uktasets, where an im-
provement was reported for both cases when the harmonylloéesssifier was combined
with a low-level feature set using support vector machines$ multilayer perceptrons.
The combination of these low-level features with the harmbaged classifier produces
improved results despite the fact that the classificatiom sathe harmony-based classi-
fier is not sufficiently high by itself. For both datasets whes VM classifier was used,
the improvement over the standard classifier was found tadbstitally significant when
the highest classification rate is considered. All in all, #svsshown that the combination
of high-level harmony features with low-level features daad to genre classification
accuracy improvements and is a promising direction for getassification research.
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