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Dade’s ordinary conjecture implies the Alperin–McKay
conjecture
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Abstract. We show that Dade’s ordinary conjecture implies the Alperin–
McKay conjecture. We remark that some of the methods can be used to
identify a canonical height zero character in a nilpotent block.
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Dade proved in [4] that his projective conjecture [4, 15.5] implies the Alperin–
McKay conjecture. Navarro showed in [11, Theorem 9.27] that the group ver-
sion of Dade’s ordinary conjecture implies the McKay conjecture. We show
here that Dade’s ordinary conjecture [3, 6.3] implies the Alperin–McKay con-
jecture. Let p be a prime number.

Theorem 1. If Dade’s ordinary conjecture holds for all p-blocks of finite groups,
then the Alperin–McKay conjecture holds for all p-blocks of finite groups.

The proof combines arguments from Sambale [17] and formal properties of
chains of subgroups in fusion systems from [7]. Let (K,O, k) be a p-modular
system. We assume that k is algebraically closed, and let K̄ be an algebraic
closure of K. By a character of a finite group, we will mean a K̄-valued char-
acter. For a finite group G and a block B of OG, let Irr(B) denote the set of
irreducible characters of G in the block B, and let Irr0(B) denote the set of
irreducible height zero characters of G in B. For a central p-subgroup Z of G
and a character η of Z, let Irr0(B|η) denote the subset of Irr0(B) consisting of
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those height zero characters which cover the character η. The following lemma
is implicit in [17].

Lemma 2. Let P be a finite p-group, let F be a saturated fusion system on P ,
and let Z ≤ Z(F). Suppose that η is a linear character of P . There exists a
linear character η̂ of P such that η̂|Z = η|Z and foc(F) ≤ Ker(η̂).

Proof. First consider the case that η|Z is faithful. Then Z ∩ [P, P ] = 1. Hence
by [5, Lemma 4.3], foc(F)∩Z = 1. The result is now immediate. Now suppose
Z0 = Ker(η|Z) and let F̄ = F/Z0. By the previous argument, applied to P/Z0

and F̄ , there exists a character η̂ of P/Z0 such that η̂|Z/Z0 = η|Z/Z0 and
foc(F̄) ≤ Ker(η̂). Denote also by η̂ the inflation of η̂ to P . Then η̂ has the
required properties since foc(F̄) = foc(F)Z0/Z0. �

The following result is a special case of a result due to Murai; we include a
proof for convenience.

Lemma 3 (cf. [9, Theorem 4.4]). Let G be a finite group, B be a block of OG,
and P a defect group of B. Let Z be a central p-subgroup of G and let η be an
irreducible character of Z such that Irr0(B|η) �= ∅. Then η extends to P .

Proof. By replacing K by a suitable finite extension, we may assume that K
is a splitting field for all subgroups of G. Let i ∈ BP be a source idempotent
of B and let V be a KG-module affording an element of Irr0(B|η). Then
n := dimK(iV ) is prime to p (see [13]). Since i commutes with P , iV is a
KP -module via x · iv = ixv, where x ∈ P, v ∈ V . Let ρ : P → GLn(K)
be a corresponding representation and let δ : P → K× be the determinantal
character of ρ. Then δ|Z = ηn. The result follows since n is prime to p. �

Lemma 4. Let G be a finite group, let B be a block of OG with a defect group
P , and let Z be a central p-subgroup of G. Then | Irr0(B)| equals the product of
| Irr0(B|1Z)| with the number of distinct linear characters η of Z which extend
to P .

Proof. Let F = F(P,eP )(G,B) be the fusion system of B with respect to a
maximal B-Brauer pair (P, eP ), and let η be a linear character of Z which
extends to P . Since Z ≤ Z(F), by Lemma 2 there exists a linear character η̂
of P such that η̂|Z = η and foc(F) ≤ Ker(η̂). By the properties of the Broué-
Puig ∗-construction [1,16] the map χ 	→ η̂∗χ is a bijection between Irr0(B|1Z)
and Irr0(B|η). The result follows by Lemma 3. �

Slightly strengthening the terminology in [10], we say that a pair (G,B)
consisting of a finite group G and a block B of OG is a minimal counterexample
to the Alperin–McKay conjecture if B is a counterexample to the Alperin–
McKay conjecture and if G is such that first |G : Z(G)| is smallest possible
and then |G| is smallest possible.

Proposition 5. Let (G,B) be a minimal counterexample to the Alperin–McKay
conjecture. Then Op(G) = 1.
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Proof. By a result of Murai [10], we have that Z := Op(G) is central in G. Let P
be a defect group of B and let C be the block of ONG(P ) in Brauer correspon-
dence with B. By Lemma 4, | Irr0(B)| = | Irr0(C)| if and only if | Irr0(B̄)| =
| Irr0(C̄)| where B̄ (resp. C̄) is the block of OG/Z (resp. ONG(P )/Z) domi-
nated by B (resp. C). The result follows since NG/Z(P/Z) = NG(P )/Z and B̄

and C̄ are in Brauer correspondence. �

Let F be a saturated fusion system on a finite p-group P , and let C be a
full subcategory of F which is upwardly closed; that is, if Q, R are subgroups
of P such that Q belongs to C and if HomF (Q,R) is nonempty, then also
R belongs to C. Drawing upon notation and facts from [7, §5], S�(C) is the
category having as objects nonempty chains σ = Q0 < Q1 < · · · < Qm of
subgroups Qi of P belonging to C such that m ≥ 0 and Qi is normal in Qm,
for 0 ≤ i ≤ m. Morphisms in S�(C) are given by certain ‘obvious’ commutative
diagrams of morphisms in F ; see [7, 2.1, 4.1] for details. With this notation,
the length of a chain σ in S�(C) is the integer |σ| = m. The chain σ is called
fully normalised if Q0 is fully F-normalised and if either m = 0 or the chain
σ≥1 = Q1 < Q2 < · · · < Qm is fully NF (Q0)-normalised. Every chain in S�(C)
is isomorphic (in the category S�(C)) to a fully normalised chain. There is an
involution n on the set of fully normalised chains which fixes the chain of
length zero P and which sends any other fully normalised chain σ to a fully
normalised chain n(σ) of length |σ| ± 1. This involution is defined as follows.
If σ = P , then set n(σ) = σ. If σ = Q0 < Q1 < · · · < Qm is a fully normalised
chain different from P such that Qm = NP (σ), then define σ by removing the
last term Qm; if Qm < NP (σ), then define σ by adding NP (σ) as last term to
the chain. Then n(σ) is fully normalised, and n(n(σ)) = σ. Denote by [S�(C)]
the partially ordered set of isomorphism classes of chains in S�(C), and for
each chain σ by [σ] its isomorphism class. We have a partition

[S�(C)] = {[P ]} ∪ B ∪ n(B),

where B is the set of isomorphism classes of fully normalised chains σ satisfying
|n(σ)| = |σ| + 1. The following Lemma is a very special case of a functor
cohomological statement [7, Theorem 5.11].

Lemma 6. With the notation above, let f : [S�(C)] → Z be a function on the
set of isomorphism classes of chains in S�(C) satisfying f([σ]) = f([n(σ)]) for
any fully normalised chain σ in S�(C). Then

∑

[σ]∈[S�(C)]
(−1)|σ|f([σ]) = f([P ]).

Proof. The hypothesis on f implies that the contributions from chains in B
cancel those from chains in n(B), whence the result. �

Proposition 7. Let G be a finite group such that Op(G) = 1, and let B be a block
of OG with nontrivial defect groups. Suppose that Dade’s ordinary conjecture
holds for B and that the Alperin–McKay conjecture holds for any block of any
proper subgroup of G. Then the Alperin–McKay conjecture holds for the block
B.
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Proof. Let (P, e) be a maximal B-Brauer pair, and denote by F the associated
fusion system on P . For d a positive integer, denote by kd(G,B) the number
of ordinary irreducible characters in B of defect d. If pd = |P |, then kd(G,B)
is the number of height zero characters, and if pd > |P |, then kd(G,B) = 0.

Let C be the full subcategory of F consisting of all nontrivial subgroups of
P . We briefly describe the standard translation process between chains in a
fusion system of a block and the associated chains of Brauer pairs. The map
sending a chain σ = Q0 < Q1 < · · · < Qm in S�(C) to the unique chain of
nontrivial B-Brauer pairs τ = (Q0, e0) < (Q1, e1) < · · · < (Qm, em) contained
in (P, e) induces a bijection between isomorphism classes of chains in S�(C)
and the set of G-conjugacy classes of normal chains of nontrivial B-Brauer
pairs (cf. [7, 2.5]). If σ is fully normalised, then the corresponding chain of
Brauer pairs τ = (Q0, e0) < (Q1, e1) < · · · < (Qm, em) has the property that
eτ = em remains a block of NG(τ), and by [7, 5.14], NP (σ) = NP (τ) is a
defect group of eτ as a block of NG(τ). Denote by n(τ) the chain of Brauer
pairs corresponding to n(σ).

Let d > 0 such that pd = |P |. Define a function f on S�(C) by setting

f([σ]) = kd(NG(τ), eτ )

for any fully normalised chain σ and corresponding chain τ of Brauer pairs. If
NP (σ) is a proper subgroup of P , then f([σ]) = 0, and if NP (σ) = P , then
f([σ]) is the number of height zero characters of the block eτ of NG(τ). Dade’s
ordinary conjecture for B, reformulated here in terms of chains of Brauer pairs,
asserts that kd(G,B) is equal to the alternating sum

∑

[σ]∈S�(C)
(−1)|σ|f([σ]).

The passage between formulations in terms of normalisers of chains of Brauer
pairs rather than normalisers of chains of p-subgroups is well known; see e.g.
[6, 4.5], [15].

If |n(σ)| = |σ| + 1, then, setting H = NG(τ), we have NG(n(τ)) =
NH(NP (τ), en(τ)); that is, (NP (τ), en(τ)) is a maximal (H, eτ )-Brauer pair.
By the assumptions, the Alperin–McKay conjecture holds for the block eτ of
H. This translates to the equality f([σ]) = f([n(σ)]). That is, the function f
satisfies the hypotheses of Lemma 6. Thus the above alternating sum is equal
to f([P ]), which by definition is kd(NG(P, e), e), and thus the Alperin–McKay
conjecture holds for B. �

Theorem 1 follows now immediately from combining Propositions 5 and 7.

Remark 8. By work of Dade [2] and Okuyama and Wajima [12], the Alperin–
McKay conjecture holds for blocks of finite p-solvable groups. G. R. Robinson
pointed out that Proposition 5 yields another short proof of this fact.

Remark 9. Let G be a finite group, B a block algebra of OG, (P, eP ) a maxi-
mal (G,B)-Brauer pair with associated fusion system F on P , and let Z be a
central p-subgroup of G. Let η be a linear character of Z, and suppose that η
extends to a linear character η̂ of P satisfying foc(F) ≤ Ker(η̂). The proof of
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Lemma 4 is based on the fact that the ∗-construction χ 	→ η̂ ∗χ yields a bijec-
tion Irr(B|1Z) → Irr(B|η). There is some slightly more structural background
to this. For χ ∈ Irr(B), denote by e(χ) the corresponding central primitive
idempotent in K ⊗O B. Set

e1 =
∑

χ∈Irr0(B|1Z)

e(χ), eη =
∑

χ∈Irr0(B|η)
e(χ).

Identify B with its image in K⊗OB. Multiplying B by the central idempotents
e1 and eη in K ⊗O B yields the two O-free O-algebra quotients Be1 and Beη

of B. By [8, Theorem 1.1], there is an O-algebra automorphism α of B which
induces the identity on k⊗O B and which acts on Irr(B) as the map χ → η̂∗χ.
Thus the extension of α to K ⊗O B sends e1 to eη, and hence induces an
O-algebra isomorphism

Be1 ∼= Beη.

We conclude this note with an observation regarding canonical height zero
characters in nilpotent blocks, based in part on some of the above methods.

Let G be a finite group, B a block algebra of OG, P a defect group of B,
and i ∈ BP a source idempotent of B. Denote by F the fusion system of B
on P determined by the choice of i. Suppose that K is a splitting field for all
subgroups of G. For V a finitely generated O-free B-module, denote by

ΔV,P,i : P → O×

the map sending u ∈ P to the determinant of the O-linear automorphism of
iV induced by the action of u on V (this makes sense since all elements in P
commute with i). By standard properties of determinants, this map depends
only on the (BP )×-conjugacy class of i and the isomorphism class of the K ⊗O
B-module K ⊗O V . Thus if V affords a character χ ∈ Irr(B), we write Δχ,P,i

instead of ΔV,P,i.

Proposition 10. With the notation above, let χ ∈ Irr(B) and η ∈ Irr(P/foc(P )).
Regard η as a linear character of P . We have

Δη∗χ,P,i = ηχ(i)Δχ,P,i.

Proof. The statement makes sense as the value of χ on an idempotent is a
positive integer. Let V be an O-free OG-module affording χ. By [8, Theorem
1.1] there exists an O-algebra automorphism α of B such that the module V α

(obtained from twisting V by α) affords η ∗ χ and such that α(ui) = η(u)ui
for all u ∈ P . Since in particular α(i) = i, it follows that

ΔV α,P,i(u) = ΔV,P,i(η(u)u)

for all u ∈ P . The result follows as rankO(iV ) = χ(i). �

Denote by Irr′(B) the set of all χ ∈ Irr(B) such that Δχ,P,i is the trivial
map (sending all elements in P to 1). Set Irr′

0(B) = Irr′(B) ∩ Irr0(B). The
maximal local pointed groups on B are G-conjugate. Thus if P ′ is any other
defect group of B and i′ ∈ BP ′

a source idempotent, then there exist g ∈ G
and c ∈ (BP ′

)× such that P ′ = gPg−1 and i′ = cgig−1c−1. Therefore the map
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ΔV,P,i is trivial if and only if the map ΔV,P ′,i′ is trivial, and hence the sets
Irr′(B) and Irr′

0(B) are independent of the choice of P and i. The following is
immediate.

Proposition 11. The sets Irr′(B) and Irr′
0(B) are invariant under any auto-

morphism of G which stabilises B.

The next result shows that if B is nilpotent, then Irr′
0(B) consists of a

single element.

Proposition 12. Suppose that B is nilpotent. Then | Irr′
0(B)| = 1. Moreover,

if p is odd, then the unique element of Irr′
0(B) is the unique p-rational height

zero character in B.

Proof. Let χ ∈ Irr0(B). Since i is a source idempotent of B, χ(i) is prime to p.
Hence if η, ζ are linear characters of P , then ηχ(i) = ζχ(i) implies that η = ζ.
Since B is nilpotent, we have that foc(F) = [P, P ] and | Irr0(B)| = |P : [P, P ]|.
Thus, by Proposition 10, the map χ 	→ Δχ,P,i is a bijection from Irr0(B) to
Irr(P/[P, P ]). This proves the first assertion.

Suppose that p is odd. Let χ0 be the unique p-rational character in Irr0(B).
Let W (k) be the ring of Witt vectors in O. By the structure theory of nilpotent
blocks (see [14]), there exists a W (k)G-module V affording χ0. Since the source
idempotent i can be chosen to be in W (k)G, we have that Δχ,P,i takes values
in W (k). Since p is odd, it follows that the trivial character of P is the unique
linear character of P which takes values in W (k). �
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