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Abstract

An algorithm for automatic speaker segmentation based @Bé#yesian Information Criterion (BIC)
is presented. BIC tests are not performed for every windaf @g. every milliseconds), as previously,
but when a speaker change is most probable to occur. Thisrie by estimating the next probable
change point thanks to a model of utterance durations. usd that the inverse Gaussian fits best the
distribution of utterance durations. As a result, less B¢6tg are needed, making the proposed system
less computationally demanding in time and memory, andiderably more efficient with respect to
missed speaker change points. A feature selection algotitsed on branch and bound search strategy
is applied in order to identify the most efficient features $peaker segmentation. Furthermore, a new
theoretical formulation of BIC is derived by applying cerg and simultaneous diagonalization. This
formulation is considerably more computationally efficiéiman the standard BIC, when the covariance
matrices are estimated by other estimators than the usuafmn likelihood ones. Two commonly used
pairs of figures of merit are employed and their relationskipstablished. Computational efficiency is
achieved through the speaker utterance modeling, wheodrsstness is achieved by feature selection
and application of BIC tests at appropriately selected iimsgants. Experimental results indicate that the

proposed modifications yield a superior performance coetp#w existing approaches.
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. INTRODUCTION

Nowadays, a vast rise in multimedia archives has occurradiafly due to the increasing number of
broadcast programs, the decreasing cost of mass storaigesldhe advances in compression techniques,
and the wide prevalence of personal computers. The funditipred such archives would be in doubt,
unless data management is employed. Data management issagcdor organizing, navigating, and
browsing the multimedia content, as is manifested by the MPEEandard. Here, we focus on speech.
Speaker segmentation is an efficient tool for multimedia aechianagement. It aims to find the speaker
change points in an audio recording. Speaker segmentatios fincherous applications, since it is
a prerequisite for audio indexing, speaker identificatierification/tracking, automatic transcription,
and dialogue detection in movies. MPEG-7 audio low-level dpgws (e.g. AudioSpectrumProjection,
AudioSpectrumEnvelope) can be used to describe efficientlyeactprecording [1]. In addition, MPEG-

7 high-level tools, (e.g. SpokenContent) exploit speakens’d usage or prosodic features that are also
useful for speaker segmentation. A large number of groupsrasearch centers compete for improved
speaker segmentation. An example is the segmentation thmkniatrated by theNational Institute of
Standards and TechnolodiIST) [2]. NIST has also been working towards rich transcoiptevaluation

(NIST/RT). Rich transcription includes speaker segmentati®m part of its diarization task [3].

A. Related Work

Extensive work in speaker segmentation has been carriedboutdre than two decades. Three major
categories of speaker segmentation algorithms can be fooodel-basedmetric-basedandhybrid ones.

In model-based segmentatiam set of models is trained for different speaker classegtathcoming
speech recording is classified using the trained modelsodarnethods have been used in order to create
generic models. Starting from the less complex case, a waivbackground model (UBM) is utilized to
separate speech from non-speech [4]. The UBM is trained Img@slarge volume of speech data off-line.
The algorithm can be used in real-time, because the modets lieen pre-calculated. Second, instead
of using just one generic model, two universal gender mo¢gGM), that discriminate between male

and female speakers can be used [5]. Third, the so-calledisappaker model (SSM) can be adopted
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[5]. This is a predetermined, generic, speaker-indepenaualel, which is progressively adapted into a
specific speaker-dependent one. Alternatively, an anchdehwan be utilized, where a speaker utterance
is projected onto a subspace of reference speakers [6]¥imadre sophisticated models can be created
with the help of hidden Markov models (HMMs) [7], [8], [9] oupport vector machines (SVMs) [10].

Metric-based techniquedetect the local extrema of a proper distance between neigigowindows
in order to segment an input recording. Various distances baen employed. For example, a weighted
squared Euclidean distance has been used, where the weighipdated by Fisher linear discriminant
analysis [11]. Another criterion is the generalized likeldbd ratio (GLR) test [5], [6], [9], [12], [23].
The Kullback-Leibler divergence is also commonly employddislused either in conjunction with
the Bayesian Information Criterion (BIC) [12], [13] or inglendently [14]. Alternatively, second-order
statistics could be used [12]. Another closely related memss the HotellingZ? statistic, which is
combined with BIC to achieve a higher accuracy than the stahBIC for turns of short duration [15],
[16]. However, the most popular criterion is BIC [7], [121L9], [17], [18], [19], [20], [21]. Commonly
used features in speaker segmentation are the mel-cepstreificients (MFCCs), applied in conjunction
with BIC [1], [4], [5], [7], [8], [9], [11], [12], [213], [15], [18], [20], [22]. A milestone variant of BIC-
based algorithms is DISTBIC, that utilizes distance-basedspgmentation before applying BIC [12].
Most recently, BIC is compared to agglomerative clustermgnimum description length-based Gaussian
modeling, and exhaustive search. It is found that applyindia classification into speech, noise, and
music prior to speaker segmentation improves speaker sggtima accuracy [22]. An approach to
segmentation and identification of mixed-language speeth BiC has been recently proposed [20].
In particular, BIC is employed to segment an input utteraimte a sequence of language-dependent
segments, each of which is used then as processing modeliXed fanguage identification.

Many researchers have experimented wittbrid algorithms where first metric-based segmentation
creates an initial set of speaker models and model-baskditees refine the segmentation next. In [8],
HMMs are combined with BIC. In [23], another hybrid systempi®posed, where the audio stream is
recursively divided into two subsegments and speaker seigitien is applied to both of them separately.
Another interesting hybrid system is described in [9], veh&wo systems are coupled, namely the LIA
system and the CLIPS system. The LIA system is based on HMMs, Wigal€LIPS system is based on

BIC speaker segmentation followed by hierarchical cluisterThe aforementioned systems are combined

March 22, 2008 DRAFT



using different strategies to further improve performance

B. Proposed Approach

In this paper, an unsupervised, BIC-based system for spesdgmentation is proposed. The first
contribution of the paper is in modeling the distribution tbe duration of speaker utterances. More
specifically, the next probable change point is estimated rapleying the utterance duration model.
In this way, several advantages are gained, because thehdeano longer “blind” and exhaustive, as
is the common case in speaker segmentation algorithms.eGoastly, a considerably less demanding
algorithm in time and memory is developed. Several distidingt have been tested as hypotheses for the
distribution speaker utterance durations and their pat@mdave been estimated by maximum likelihood
estimation (MLE). Both the log-likelihood criterion and theolikhogorov-Smirnov criterion yield the
inverse Gaussian (IG) distribution as the best fit. More djpadly, distribution fitting in three datasets
having substantially different nature verifies that IG madalore accurately the distribution of speaker
utterance duration. The first dataset, contains recordeaspéeoncatenated short utterances, the second
dataset contains dialogues between actors that followifgpéim grammar rules, while the last dataset
contains spontaneous speech.

The second contribution is in feature selection appliedrpdsegmentation aiming to determine which
MFCCs are most discriminative for the speaker segmentatisk fThe branch and bound search strategy
using depth-first search and backtracking is employed, stageerformance is near optimal [24]. In the
search strategy, the performance measure resorts to theofdhe inter-class dispersion over the intra-
class one. That is, the trace of the product of the inversamwdlass scatter matrix and the between-class
scatter matrix is employed.

The third contribution is of theoretical nature. An alteim@tformulation of BIC for multivariate
Gaussians is derived. The new formulation is obtained byyamplcentering and simultaneous diagonal-
ization. A detailed proof can be found in Appendix I. It is ghmothat the new formulation is significantly
less computationally demanding than the standard BIC, wlgariance matrix estimators other than the
sample dispersion matrices are employed, such as the re$tirstators [25], [26] or the regularized MLE
[27]. In particular, simultaneous diagonalization replaenatrix inversions and simplifies the quadratic
forms to be computed. A detailed analysis of the computatiocost can be found in Appendix Il. The

block diagram of the proposed approach is illustrated in feidgu
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Fig. 1. The block diagram of the proposed approach.

Experimental results are reported with respect to the twonsonty used sets of figures of merit,
namely: (i) the precision rate?RC), the recall rate RC'L), and the associatefl, measure; (ii) the false
alarm rate f AR) and the miss detection rat&/(D R). By utilizing both sets of figures of merit, a straight-
forward comparison with other experimental results regabiin related works is enabled. Furthermore,
relationships between the aforementioned figures of megitderived. The proposed approach yields a
significant improvement in efficiency compared to previousrapphes. Experiments were carried out on
two datasets. The first dataset has been created by concatesydiakers from the TIMIT database [28].
This dataset will be referred to as the conTIMIT test datase¢. §étond dataset has been derived from
RT-03 MDE Training Data Speech [44]. In essence, the HUB-4718Aglish Broadcast News Speech
part has been utilized. The greatest improvement is achifreshissed speaker turn points. Compared
with other approaches, the number of missed speaker chanigts 5 smaller as explained in Section V.
This is attributed to the fact that BIC tests take place whepealker change is most probable to occur.

The remainder of the paper is organized as follows. In Sectiovafious distributions are tested for
modeling the duration of speaker utterance and the IG Wigidn is demonstrated to be the best fit.
The feature selection algorithm is sketched in Section llISattion IV, the standard BIC is presented
and its equivalent transformed BIC is derived. In Sectionhg évaluation of the proposed approach is
undertaken. Finally, conclusions are drawn in Section VI. Taevdtion of the transformed BIC can be

found in Appendix | and the computational cost analysis isited in Appendix Il.
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[I. M ODELING THE DURATION OF SPEAKER UTTERANCES
A. Distribution of speaker utterance durations

The first contribution of this paper is in modeling the disttibn of the duration of speaker utterances.
Let us argue why such a modeling is advantageous. By estignétenduration of a speaker’s utterance,
the search is no longer “blind”. After modeling, it is safediaim that the next speaker change point
most probably occurs after as many seconds dictated byististalf speaker utterance durations. In this
context, several distributions have been tested for a gessdof-fit to the empirical distribution of speaker
utterance durations. A question that arises is why fitting eoitétical distribution of speaker utterance
durations to the empirical one is necessary. The answer tidyhdoing so, distribution parameters take
into account the structure of the data. Moreover, finding sautheoretical distribution is interesting per
se and this result may find additional applications, e.g. Eesp synthesis.

The following distributions have been considered: BirnbeBaunders, Exponential, Extreme value,
Gamma, IG, Log-logistic, Logistic, Lognormal, Nakagami, NatmRayleigh, Rician, t-location scale,
and Weibull. MLE has been used to calculate the best fittingnpeters of each distribution. Here, the
parameters under consideration are the mean and the \ariBnorder to evaluate the goodness-of-fit,
the log-likelihood and the Kolmogorov-Smirnov criteria kaveen computed.

The TIMIT database was used first in order to model the duratiospetiker utterances. The TIMIT
database includes 6300 sentences uttered by 630 speakrsydle and female ones, who speak various
U.S. English dialects. The recordings are mono-channel, telggy frequency is 16 KHz, and the audio
PCM samples are quantized in 16 bits [28]. In total, 55 recwysliof artificially created dialogues along
with the ground-truth associated with speaker changes dsenfhe conTIMIT datasét.The recordings
have a total duration of about 1 hour. Since a transition betwspeech and silence is not similar to a
transition between two speakers, the inter-speaker sifehave been reduced so that conversations sound
like real [12]. Thus, each segment of a speaker is followed Be@ment of another speaker. This is
equivalent to silence removal, which is a common pre-prsiogsstep [4], [8], [13], [15]. 935 speaker
change points occur in the conTIMIT dataset. Throughout thelB8dIT dataset, the minimum duration
of an utterance is 1.139 s and the maximum one is 11.751 se & mean duration is 3.286 s with

a standard deviation equal to 1.503 s. 10 out of the 55 reogsdof the conTIMIT dataset, randomly

lconTIMIT dataset is available at http:/poseidon.csd.auth.gr/LRBSEARCH/Latest/data/conTIMITdataset.zip
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chosen, were used to create the conTIMIT training-1 datesgbloyed in modeling the speaker utterance
duration.

IG distribution has been found to be the best fit with respedidit log-likelihood and Kolmogorov-
Smirnov test. The values of mean utterance duration and sthad@aiation for the conTIMIT training-1
dataset under the IG model equal 3.286 s and 1.388 s, resggctin illustration of the best fit for
the aforementioned distributions to the empirical disttibn of speaker utterance durations can be seen
in Figure 2 with respect to the probability-probability (P-Pptp. Let us denote the mean and the
standard deviation of durations hy and . Let Fj(-) be the kth normalized theoretical cumulative

density function (cdf) tested. To make a P-P plot, uniformmiiles ¢; = i =12,...,N, are

defined in the horizontal axis, whel® is the number of the samples whose distribution is estimated
The vertical axis represents the value admitted by the thieatedf att“{%“, i.e. Fk(t“{%“), wheret ;)

is theith order statistic of utterance durations. That is, the domatare arranged in an increasing order
and theith sorted value is chosen. The better the theoretical cdfoappates the empirical one, the
closer the pointsg, Fk(t“{%“)) are to the diagonal [29].

To validate that IG distribution generally fits best the ernagir speaker utterance duration distribution,
another dataset has been employed, to be referred to as the dataset [30]. In this dataset, 25 audio
recordings are included that have been extracted from siwanmf different genres, namely: Analyze
That, Cold Mountain, Jackie Brown, Lord of the Rings I, Platoang Secret Window. Indeed, Analyze
That is a comedy, Platoon is an action, and Cold Mountain ismardhus, dialogues of different natures
are included in the movie dataset. Speaker segmentatioreleasgerformed by human agents. Having the
ground-truth speaker change points, the distribution efkpr utterance duration for the movie dataset
is modeled by applying the same procedure as for the conTIkéihihg-1 dataset. The best fit is found
to be the IG distribution, once again, with respect to bottlikelihood and Kolmogorov-Smirnov test.
This outcome is of great importance, since the dialogues@trecoorded in a clean environment. Longer
pauses or overlaps between the actor utterances exist akgrband music or noise occurs. However, as
expected, different parameters from those estimated ircanh@IMIT training-1 dataset are obtained. In
the movie dataset, the mean duration equals 5.333 s, wilailstdmdard deviation is 6.189 s. Accordingly,
modeling the duration of speaker utterances by an |G digtab helps to predict the next speaker change

point.
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(a) The P-P plots for distributions Birnbaum-Saunders, Expt@aieExtreme value, Gamma for the conTIMIT training-1

dataset. (b) The P-P plots for distributions |G, Log-Logistic, Logistic fer ¢onTIMIT training-1 dataset. (c) The P-P plots for
distributions Lognormal, Nakagami, Normal, Reyleigh for the conTIMIdirting-1 dataset. (d) The P-P plots for distributions
Rician, t-location scale, Weibull for the conTIMIT training-1 dataset.

B. Mathematical properties of the IG distribution and its &pgtion

Some of the main mathematical properties of the IG distrilutire briefly discussed next. The IG

distribution, or Wald distribution, has probability detysiunction (pdf) with parameters and ;s [31],

[32]:
_ _ 2
1) = V 2)\7;?) exp( )\IG2,Ef2t 2 >

t € (0,00) 1)
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where \;¢, > 0. The IG probability density is always positively skewed.rtégis is positive as well.
For N realizationst,ts,. . .,t y of an IG random variable the MLEs &f and . are:o = Af\ , Where

1G

)TIE = ﬁ%%) andt = g = % Zf\’zl t;. Obviously,o does not coincide with the sample dispersion.
One of the m’lost important properties of the IG distributi®its infinite divisibility, which implies that the
IG distribution generates a class of increasirgyiLprocesses [33]. &vi processes contain both “small
jumps” and “big jumps”. Such jumps are Poisson point procesisasare commonly used to model
the arrival time of an event. In the case under consideratlmarrival time refers to a speaker change
point. This property makesdvi processes candidates for modeling the speaker uteedhmation. “Small
jumps” occur if there are lively exchanges (stichomythiadl dbig jumps” occur for monologues.

In conclusion, modeling the speaker utterance duratioblesais to perform BIC tests when a speaker
change point is most probable to occur. The simplest apprisdolassume that a probable speaker change
point occurs every: seconds, where is a submultiple of the expected duration of speaker uttasmn
should be chosen at the same order of magnitude as the saigpézsibn. This technical solution does
not exclude other alternatives, such as setttnp a submultiple of the mode of (1) that is given by
A1+ 43%‘;2)% - ] [34)

If the total length of the audio recording i5,, then L%J BIC tests take place. In straightforward

implementation of BIC-based speaker segmenta{iéﬁj BIC tests are performed, whetds the window
shift of several ms. Thus;—*% less BIC tests are performed by taking into account the tiduraf
utterances, when compared to the straightforward impléatien of BIC-based speaker segmentation. If
a probable change point is not confirmed through the BIC thst,riformation contained in the last
seconds updates the existing speaker model. The use of a kiplenaf the expected speaker utterance
duration enables us to reduce the probability of missedkgpednange points, as explained in Section V.
Previous experiment demonstrates that under-segmentatiaeed by a high number of miss detections,
is more cumbersome to remedy than over-segmentation cdoysadhigh number of false alarms [12],
[13], [15], [16], [23], [40]. For example, over-segmentati could be alleviated by clustering and/or

merging. The use of within the context of BIC is described in Section IV.

I11. FEATURE EXTRACTION AND SELECTION

Different features yield a varying performance level in &g segmentation applications [13]. This

fact motivated the authors to invest in feature selectiansfmeaker segmentation, which is the second
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contribution of the paper.

MFCCs, sometimes with their first-order (delta) and/or seeomttr differences (delta-delta) are the
most commonly used features in speaker segmentation. Fmahe MFCCs were used in various
techniques besides BIC such as HMMs [9] or SVMs [10]. Still, aditthe researchers employ the
same MFCC order in BIC-based approaches. For example, 24 MEB@&Cemployed in [7], while 12
MFCCs and their first differences are utilized in [12] and [2B%. MFCCs are used in [11]. In [4], 16
MFCCs are applied, while 12 MFCCs along with their delta andadéélta coefficients are employed
in [9]. 23 MFCCs are utilized in [1], [8] and 24 MFCCs are appliad5], [15], [18]. A more detailed
study is presented in [22], where a comparative study betvieMFCCs, 13 MFCCs and their delta
coefficients, and 13 MFCCs, their delta, and delta-delta cisffis is performed.

A different approach is investigated here. Instead of tytio reveal the MFCC order that yields the
most accurate speaker turn point detection results, amt éfonade to find out an MFCC subset that is
more suitable for detecting a speaker change. The MFCCs andatald every 10 ms with 62.5% overlap
by the algorithm described in [35]. An initial set consigtinf 36 MFCCs is formed and the goal is to
derive the subset, which contains the 24 more suitable MF@Cspeaker segmentation, since utilizing
24 coefficients is commonplace in [5], [15], [18].

Let us test the hypothesis there is a speaker change pointsaghé hypothesis there is no speaker
change point. Speakers change once under the first hypotkdsis, a monologue is observed under
the second one. For training purposes, an additional davd<$s® recordings was created from speaker
utterances derived in the TIMIT database, referred to asdh&IdIT training-2 dataset, that is disjoint
to the conTIMIT datasét 25 out of the 50 recordings contain a speaker change poihtrenremaining
25 recordings do not. In this way, two classes are presunhedfirst class represents a speaker change
and includes 25 recordings with one speaker change and tumdelass corresponds to no speaker
changes and includes 25 recordings with monologues. Wemessiat the mean feature vectors in the
two different classes are different in order to enable disiciation [24]. The goal of feature selection
is to find a feature subsdf;(D) of dimensionD. In our case,D = 24. Let J denote the performance
measure. Feature selection findg D) such that/(F;(D)) > J(F;(D)), wherej € {1,...,¢(D)} and

2conTIMIT training-2 dataset is available at http://poseidon.csd.auttAg/IRESEARCH/Latest/data/
conTIMITtraining-2dataset.zip
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q(D) is the number of distinguishable subsets contaifinglements. If 24 out of the 36 coefficients are
to be selected, theq(24)= (22) is enormous. As a result, a more efficient search strategyetkfaawstive
search is required. Such an alternative is branch and bouridhwattains an almost optimal performance
[24]. The search process is accomplished systematically égnshof a tree structure consisting of 36-
24+1=13 levels. A level is composed of a number of nodes antl eade corresponds to a coefficient
subset. At the highest level, there is only one node corredipg to the full set of coefficients. At the
lowest level, there are nodes containing 24 coefficients. Elaech process starts from the highest level
by systematically traversing all levels until the lowestdkis reached. The traversing algorithm uses
depth-first search with a backtracking mechanism. This mdaatsift./; is the best performance found
so far, then branches whose performance is worse fhare skipped [24].

The selection criterio’ can be defined in terms of scatter matrices. A scatter matresgnformation
about the dispersion of samples around their mean. The withss scatter matrix$,,, describes the
within-class dispersion. The between-class scatter maffix describes the dispersion of the class-

dependent sample means around the gross mean. Matheiyatica defined by
J = tr(S,'S)) 2)

wheretr(-) stands for the matrix trace operator. J, as defined in (2), isreotonically increasing function
of the distance between the mean vectors and a monotoniedheasing function of the scattering around
the mean vectors. Moreover, (2) is invariant to reversibledr transformations. In addition, it is ideal
for Gaussian distributed feature vectors. To a first appration, MFCCs are assumed to follow the
Gaussian distribution. Under this assumption, (2) guaesthe best performance [24].

From each recording, 36-order MFCCs are extracted. The seél@teMFCCs for the conTIMIT
training-2 dataset can be seen in Table I. Although the Beteof MFCCs, as in Table I, might depend
on the dataset used for feature selection, the aforemeuatidbsature selection can be applied to any
dataset. MFCCs shown in Table | are used in conjunction widir thelta and delta-delta coefficients,
in order to capture their temporal evolution that carriediti@hal useful information. In general, the
temporal evolution is found to increase efficiency [9], [1E0], [22]. However, in [12], it is reported
that using delta and delta-delta coefficients impairs effmien

Alternatively, one could replace (2) with BIC (5) itself. Tihdeature selection is performed by a
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TABLE |
THE SELECTED24 MFCCs FOR THE CONTIMIT TRAINING-2 DATASET.

# 1 2 3 4 5 6 7 8 9 10 11 12
MFCC 1st 3rd 4th 5th 6th 7th 8th 9th 10th | 11th | 13th | 16th
# 13 14 15 16 17 18 19 20 21 22 23 24
MFCC 22th | 23th | 24th | 25th | 26th | 27th | 28th | 29th | 31th | 33th | 35th | 36th

wrapper instead of a filter [36], as (2) implies. In such cabe,gelected MFCCs are: : 1st-18th, 22nd,
23rd, 27th, 28th, 31st, and 35th. The computation time requby (2) is less by 187.06% than that
required by BIC, when a PC with a 3 GHz Athlon processor and 1 GRAM is used. In Section V,

we comment on the accuracy of the latter feature selectiathade

IV. BIC-BASED SPEAKER SEGMENTATION

In this section, the BIC criterion is detailed and an eq@aélBIC criterion is derived, that is consid-
erably less computationally demanding. It is also explihew the contributions of Sections Il and IlI
are utilized in conjunction with BIC.

BIC is a maximum likelihood, asymptotically optimal, Bajes model selection criterion penalized
by the model complexity. For speaker turn detection, twéediint models are employed. Assume that
there are two neighboring chunks andY around timet;. The problem is to decide whether or not
a speaker change point existstatLet Z = X UY and Nx, Ny, Nz be the numbers of samples in
chunks X, Y, and Z, respectively. ObviouslyNy = Nz — Nx. The problem is formulated as a two
hypothesis testing problem.

Under H, there is no speaker change point at timje MLE is used to compute the parameters of
a Gaussian distribution that models the data samplées. ihet us denote by, the parameters of the

Gaussian distribution, i.e. the mean vectoy and the full covariance matriXz. The log-likelihoodL

under Hy is
NX NZ
Lo=> Inp(zi|0z)+ Y Inpz|0z) 3
i=1 i=Nx+1
wherez; € R%, i =1,2,..., Nz which are assumed to be independemntconsists of the 24 selected

MFCCs with their delta and delta-delta coefficients, ile= 72. Under H; there is a speaker change

point at timet;. The chunksX andY are modeled by distinct multivariate Gaussian densitidgss
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parameters are denoted By and@y, respectively. Their definition is similar #,. The log-likelihood

L, under H; is given by:

NX NZ
Ly=) Inp(zl6x)+ Y Inp(zl6y). 4)
i=1 i=Nx+1
The BIC is defined as
1
5_L1—L0—%<d+@> InNz 20 (5)
~——————

model parameters

where) is a data-dependent penalty factor (ideally 1.0). ¥ 0, then timet; is considered to be a speaker
change point. Otherwise, there is no speaker change potithat;. The standard BIC formulation for

multivariate Gaussian densitie$z;|0x ), p(z;|0y ), p(z;|6z) can be analytically written as

Nz
—Z —pz) 2, (zi—py +Z —px) 2N (zimpx)+ Z (zi—py) =y (zi—py) 2 VBIC,
(6)
where~prc is defined as
d(d+1
YBIC = Nzln‘zz‘ — lenIEX] — Nyln|2y’ + A <d—|— %) In Ny. (7)

In the light of the discussion made in Section Il, BIC tests peeformed everyr seconds, where
r is a submultiple of the expected duration of speaker utta®nThe window size is also set equal
to r taking into consideration as many data as possible. Where Mata are available, more accurate
Gaussian models are built, since BIC behaves better foe laigdows, whereas short changes are not
easily detectable by BIC [12], [16]. Moreover, it was showr{22], that the bigger the window size, the
better the performance.

Next, a novel formulation of the BIC is theoretically demvdt is assumed thaE x, Xy, andX; are
full covariance matrices. Moreover, the covariance matgiimators are not limited to sample dispersion
matrices for which BIC defined in (6)-(7) obtains the simpliffedn (21), as explained in Appendix |. For
example, one may employ the robust estimators of covariaratgces [25], [26] or the regularized MLEs
[27]. To obtain the novel formulation, we apply first centgrimnd then simultaneous diagonalization for

the pairs ofXy,X, and Xy, X ;. Let us define the mean vector ifi chunk asu,. The centering
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transformation isz; = z; — p,. Next, simultaneous diagonalization Bfy and X, is applied. LetA
be the diagonal matrix of the eigenvalues3f and® be the corresponding modal matrix. Let us define
K = A?@TEXQA;% = WAPT, whereAg is the diagonal matrix of eigenvalues Bf and ¥ is
the corresponding modal matrix. The simultaneous diagpet#din transformation yields fog; € Z N
X=X

@ = UTA, ®7%,. ®)

Let H = A, 2873, ®A, > andH = EAET. Following the same strategy, we obtain fer €
ZNY =Y

v, =ETA2 97z, (9)

In Appendix |, it is shown that (6) is equivalently rewritteis

NX NZ
> ow (A =D+ Y B (Au =15 2o (10)
i=1 i=Nx+1

where~/ is an appropriate threshold derived analytically in (26).

Concerning the computational cost, simultaneous diagzatadn replaces matrix inversions and simpli-
fies the quadratic forms to be computed. This leads to a sulzhatéss computational costly transformed
BIC, as opposed to the standard BIC. As it is detailed in Appetl, the computational cost of the

standard BIC in flops, excluding the costot;c, is
3d® + 6Nzd? + (8N + 3)d + 2, (11)
whereas the computational cost of the transformed BIC uekat) the cost ofyz;c, equals
30d> + (4Nz + 4)d* + (TNz + 9)d + 5. (12)

Sinced < Nz, by comparing (11) and (12), it can be seen that the stand@dsBnore computationally
costly than its transformed alternative.

To sum up, the algorithm can be roughly sketched as follows:

1) Initialize the intervalja, b] to [0, 2r] and letv = 2.

2) Until the audio recording end, use BIC with the selected I@6Qo evaluate if there is a change

point in [a, b].
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3) If there is no speaker change point[inb], thenb = b+ r. Go to step 2).

4) If there is a speaker change point[inb], thena = v, b = v + r. Go to step 2).
It is reminded that is a submultiple of the mean utterance duration, which isioled by the analysis in
Section Il and the term selected MFCCs refers to the MFCCs chogéime feature selection algorithm,

described in Section IlI.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Figures of Merit

To judge the efficiency of speaker turn point detection atbors, two sets of figures of merit are
commonly used. On the one hand, one may use the false alaen(iftdtR) and the miss detection rate

(M DR) defined as

FA
FAR = 74— MDR =2 (13)

where F'A denotes the number of false alarmig,D the number of miss detections, a6’ stands for
the number of actual speaker turns, i.e. the ground truthalgefalarm occurs when a speaker turn is
detected although it does not exist, while a miss detectmurs, when the process does not detect an
existing speaker turn [12], [23]. On the other hand, one nmapley the precision ® RC"), recall (RCL)

and F; rates given by

_Crc _ _ CFC CFrC _ CFrC _ 9 PRC RCL
PRC = DET — CFC+FA> RCL = GI' — CFC+MD> = 2PRC’+RCL (14)

where CFC' denotes the number of correctly found changes &dl" = CFC + F'A is the number
of detected speaker changds. admits a value between 0 and 1. The higher its value is, therbett
performance is obtained [8], [18]. Between the paiFsAR, M DR) and (PRC, RCL), the following

relationships hold:

RCL FA
MDR=1-RCL, FAR= pprpebtid (15)

In order to facilitate a comparative assessment of our tesvith others reported in the literature, the

evaluation of the proposed approach is carried out usinthallaforementioned figures of merit.
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B. Evaluation

1) Comparative performance evaluation on the conTIMIT tesaskt: The total number of recordings
in the conTIMIT dataset is 55. The evaluation is performed ugérrandomly selected recordings of
the conTIMIT dataset, forming the conTIMIT test dataset. Thaaming 6 were used to determine the
value of the BIC penalty-factok and to create the conTIMIT training-3 dataset. Although theTdMIT
dataset is an artificially created dataset and includes nacos&ersations, performance assessment over
the conTIMIT test dataset is still informative. It is also riened that 10 randomly chosen recordings out
of the 55 ones of the conTIMIT dataset, are employed to modespieaker utterance duration (conTIMIT
training-1 dataset). Consequently, there is a partial lapebetween the conTIMIT test dataset and the
conTIMIT training-1 dataset. It has been reported that Bl@gemance is likely to reach a limit [20].
There are 4 reasons for that: (a) estimates of the BIC modahpeters are used, (b) the penalty-factor
A may not be tuned properly, (c) the data are assumed to bdyjoiatmal, but this is an assumption,
frequently not validated, for example when voiced spee@mibedded into noise [37], and (d) researchers
have found that BIC faces problems for small sample sets [38]. Researchers tend to agree that BIC
performance deteriorates when a speaker utterance dodsawetsufficient duration, which should be
more than about 2 s. For the conTIMIT test dataset, the tateraquals 1 s. That is, 0.5 s before and
after the actual speaker change point.

For evaluation purposes, 4 systems are assessed, namdie(8IC system without speaker utterance
duration estimation and feature selection. This is the basslystem (system 1). (b) The BIC system with
speaker utterance duration estimation (system 2). (c) Tikedgbktem with feature selection (system 3).
(d) The proposed system, that is the BIC system with speakerance duration estimation and feature
selection (system 4). The window shifiis set equal to the half of the average speaker utterancéaura
for systems 2 and 4, whereass equal to 0.2 s for systems 1 and 3.

BIC performance on the conTIMIT test dataset without modgtime speaker utterance duration and
feature selection is depicted in Table Il. The performanc8Iaf with modeling the distribution of the
speaker utterance is exhibited in Table Ill, while its parfance when feature selection is applied only
is summarized in Table 1V. The overall performance of the pegal system (system 4) is summarized
in Table V. For all systems, the figures of merit are computedetch audio recording and then their

corresponding mean value and standard deviation are egpj@3]. Concerning system 4, if (2) is replaced
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TABLE Il

PERFORMANCE OFBIC ON THE CONTIMIT TEST DATASET TABLE Il

WITHOUT MODELING THE SPEAKER UTTERANCE DURATION

NOR APPLYING FEATURE SELECTION

PERFORMANCE OFBIC ON THE CONTIMIT TEST DATASET
WITH FEATURE SELECTION

PERFORMANCE OFBIC ON THE CONTIMIT TEST DATASET
WITH MODELING THE SPEAKER UTTERANCE DURATION

PRC | RCL| F, | FAR | MDR PRC | RCL | Fy | FAR | MDR
mean 0.613| 0.895| 0.723| 0.311| 0.105
e 014605171 9.516) 03521 0353 tandard deviation | 0.079 | 0.116| 0.077| 0.114| 0.116
standard deviation | 0.094 | 0.137| 0.081| 0.157| 0.137 | > viat : : : - :
TABLE IV TABLE V

PERFORMANCE OF THE PROPOSED SYSTEM ON THE
CONTIMIT TEST DATASET SYSTEM(WITH MODELING THE
SPEAKER UTTERANCE DURATION AND FEATURE SELECTION

PRC | RCL | F, | FAR | MDR ,
mean 0.527| 0.654] 0.567| 0.295| 0.335 — g I(-‘f?% ggfg 01;177 g ;1:; ]g(’;’sli

fation | 0.159 | 0.137] 0.110] 0.177| 0.1 : ' : : :
standard deviation | 0.159] 0.137] 0.110] 0 0.150 standard deviation | 0.106 | 0.056| 0.069| 0.139| 0.056

by BIC, itis found that? RC=0.685,RC L= 0.951,F,=0.974,F AR= 0.303, and\/ D R=0.049. However,
it is reminded that the improvement is achieved at the cosbaftraining the generalization ability.

Our aim is to validate that each system differentiates 8imitly from the others concerning their
mean figures of merit. First, one-way analysis of variance {(@ag ANOVA) is applied. The null
hypothesis tested is that the 4 system mean figures of mergcural. The alternative hypothesis states
that the differences among the figures of merit are not duertdora errors, but due to variation among
unequal mean figures of merit. That is, the null hypothesisadeslthat the systems do not differentiate
significantly from one another, while the alternative hymsils suggests that at least one of the systems
differs from the remaining. The F-statistic value and its pugafor all five efficiency measures are

indicated in Table VI. From Table VI, it is evident that the 4s@®ms are statistically different, with

TABLE VI
F-STATISTIC VALUES AND P-VALUES FORPRC, RCL, Fy, FAR, AND M DR OF THE4 SYSTEMS TESTED ON THE
CONTIMIT TEST DATASET.

respect toPRC, RCL, Fi, and M DR, whereas there appears to be no significant difference with

PRC RCL iz FAR MDR
F-statistic | 36.322 90.295 103.931 1.794 81.576
p-value 1.945 1075 | 2.743107% | 1.009 1077 | 0.150 9.324 1077

respect to the” AR at 95% confidence level.
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TABLE VII TABLE VI

95% CONFIDENCE INTERVALS FOR ALL PAIRWISE 95% CONFIDENCE INTERVALS FOR ALL PAIRWISE
COMPARISONS OF THE4 SYSTEMS FORPRC. COMPARISONS OF THE4 SYSTEMS FORRC'L.
systems compared 95% confidence interval systems compared 95% confidence interval
15t - ond [-0.224,-0.107] 150 - gnd [-0.309,-0.188]
15t - 37d [-0.140,-0.022] 150 -3 [-0.067,-0.054]

150 - 4th [-0.282,-0.164] 150 - 4th [-0.363,-0.241]
ond  3rd [0.027,0.145] ond - grd [0.181,0.302]
ond _ 4th [-0.116,-0.002] ond _ yth [-0.114,-0.007]
3rd - 4 [-0.201,-0.083] 3rd _ 4th [-0.356,-0.235]

One-way ANOVA assures us that at least one system is diffeirem the others. However no
information is provided about the pairs of systems thaedé#htiate. Tukey's method or honestly significant
difference method is applied to find the pairs of systems tifi@rentiate [39]. Tukey’s method is designed
to make all pairwise comparisons of means, while maintgitive confidence level at a pre-defined level.
Moreover, it is optimal for balanced one-way ANOVA, whichadsr scenario. Fok systems, there are
k(k—21> possible combinations (e.g. 6 possible combinations aaeaed fork = 4). Tukey's method
for the same number of measurements is applied, i.e. 49. Ttieattest statistic is obtained from the
Studentized range statistic.

Since one-way ANOVA has validated tha&tAR differences are not significant, Tukey’s method is
applied to the remaining figures of merit i.B2RC, RCL, Fy, and M DR for the same confidence level
95%. The corresponding confidence intervals for all pairws@mgarisons among the 4 systems for the
aforementioned figures of merit can be seen in Tables VII - Xpeetively. If the confidence interval
includes zero, the difference is not significant. It is cleant Tables VII - X that zero is not included in
any interval. Thus, for any pairwise system comparison andfigmre of merit romPCR, RCL, Fi,
and M DR the difference is significant.

Accordingly, there is statistical evidence that both speakterance modeling and feature selection
improve performance significantly either individually ayrobinedfor PRC, RCL, Fy and M DR. This
is not the case foF" AR.

2) MDR histogram of the conTIMIT test datasétfe focus on the results of the proposed system for
the conTIMIT test dataset depicted in Table V. TheD R histogram is plotted in Figure 3. A clear peak
exists near to 0, which is the ideal case. The latter is a doattome of the fact that two-hypothesis

BIC tests are carried out at times, where a speaker changeé ipanost probable to occur.
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TABLE IX TABLE X
95% CONFIDENCE INTERVALS FOR ALL PAIRWISE 95% CONFIDENCE INTERVALS FOR ALL PAIRWISE

COMPARISONS OF THE4 SYSTEMS FORF}. COMPARISONS OF THE4 SYSTEMS FORM DR.
systems compared 95% confidence interval systems compared 95% confidence interval

15t - gnd [-0.251,-0.162] 15t - gnd [0.186,0.311]

15t - 3rd [-0.095,-0.006] 15t - 3rd [-0.044,-0.081]

15t - 4th [-0.307,-0.218] I [0.240,0.364]

ond _ 3rd [0.112,0.201] ond _grd [-0.292,-0.168]

ond . 4th [-0.101,-0.012] ond _ 4R [-0.009,-0.116]

374 - 4 [-0.257,-0.168] 374 - 4 [0.221,0.346]

25

20

15

frequency

10

0

0 002 004 006 008 01 012 014 016 0.18
MDR

Fig. 3. The histogram o DR in the conTIMIT test dataset.

3) Correlation among figures of merit on the conTIMIT test data The correlation coefficient
between the figures of merit for the conTIMIT test dataset carsd®n in Table XI. The correlation
coefficient betweerRC'L and M DR is -1, as a consequence of (15). The pairs: RR(C, RCL) and
(PRC, MDR) (i) (F1, RCL) and (1, MDR) (iii) (FAR, RCL) and AR, M DR) have opposite
signs. That is, when the first quantity increases, the secorreéawses and vice versa. The degree of linear
dependence is indicated by the absolute value of the ctaelandex. It is seen that{RC',F;) and

(PRC,F AR) exhibit the strongest correlation.

TABLE XI
THE CORRELATION COEFFICIENT BETWEEN THE PAIRS OF FIGURES OFERIT FOR THE CONIIMIT TEST DATASET.

PRC RCL Iy FAR MDR
PRC 1 -0.344 0.939 -0.945 0.344
RCL 1 -0.014 0.628 -1
Iy 1 -0.778 0.014
FAR 1 -0.628
MDR 1
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4) Performance evaluation on the HUB-4 1997 English BroadcasivdN Speech dataseiAiming
to verify the efficiency of the proposed contributions, i.eoduling the speaker utterance duration and
feature selection on real data, RT-03 MDE Training Data Spéseatilized [44]. To facilitate performance
comparisons between the proposed system and other systennfine ourselves to broadcast news
audio recordings, that is the HUB-4 1997 English BroadcastdNSpeech dataset [41]. The recordings
are mono-channel, the sampling frequency is 16 KHz, and tldégoaPCM samples are quantized in 16
bits. The selected audio recordings have a duration of appedgly 1 hour.

20% of the selected audio recordings are used for estimttagpeaker utterance duration distribution.
For the third time, IG distribution is verified to be the best &it inodeling speaker utterance duration
by both the log-likelihood and the Kolmogorov-Smirnov crige In this case, the mean duration equals
23.541 s and the standard deviation equals 24.210 s. Sincgahéard deviation value is considerably
large,r is set equal to one eighth of the mean speaker utterancdatur@his rather small submultiple
aims to reduce the probability of missing a speaker changéhoreasons explained in Section I1-B.

To assess the robustness of the MFCCs shown in Table |, the saefficients along with their
corresponding delta and delta-delta coefficients have beed in the HUB-4 1997 English Broadcast
News Speech dataset. The proposed algorithm is tested on rtt@nieg 80% of the selected audio
recordings. For the HUB-4 1997 English Broadcast News Speatdset, since the dialogues are real,
the tolerance should be greater, as is explained in [12]ivslietd by [23], that also employs broadcasts,
the tolerance is equal to 2 s. The achieved figures of meritfaRe” = 0.634, RC'L = 0.922, F} = 0.738,
FAR = 0.309, and M DR = 0.078.

5) Performance discussiorBefore discussing the performance of the proposed systémraspect to
other systems, let us argue why it is generally a good chaiggihimize M D even if F'A is high [12].
F'A can be more easily removed [13], [15], [16], [40], for exampirough clusteringPRC and FAR
are associated witlt' A, while RC'L and M DR depend onM D. This means thaPRC and FFAR are
less cumbersome to remedy th&4'L and M DR.

The proposed system is evaluated on the conTIMIT test datasietfioutperforms three other systems
tested on a similar dataset, created by concatenating sfeflom the TIMIT database, as described
in [21]. Although the dataset in [21] is substantially srealthan the conTIMIT test dataset, the nature

of the audio recordings is the same enabling us to conductdanparisons. The performance achieved
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by the previous approaches is summarized in Table Xll. Mgsintries are due to the fact that not all
researchers use the same set of figures of merit, which crfeatiesr implications in direct comparisons.
PRC and F AR of the proposed system on the conTIMIT test dataset are lighteriorated than those
obtained by the multiple pass system with a fusion schemeanspeakers are modeled by quasi-GMMs
system. HoweverRCL and M DR are substantially improvedRCL and M DR are also improved
with respect to the two remaining systems. Finally, the Sogér of the proposed system against the
three systems developed in [21] is demonstrated by the Fettits £ value is relatively improved

by 7.917%, 6.438%, and 28.007%, respectively. In [12], thedudataset was created by concatenating

TABLE Xl
AVERAGE FIGURES OF MERIT IN[12] AND [21] ON A SIMILAR DATASET CREATED BY CONCATENATING SPEAKERS FROM
THE TIMIT DATABASE.

system Database used PRC | RCL P FAR | MDR
Proposed system concatenated utterances from speakers of t8&670 | 0.949 | 0.777 | 0.289 | 0.051
TIMIT database (not the same concatenation
as in [12])

Multiple pass system| concatenated utterances from speakers of the80 | 0.700 | 0.720 | 0.218 | 0.305
with a fusion scheme| TIMIT database
[21]
Speakers modeled by concatenated utterances from speakers of t8&680 | 0.800 | 0.730 | 0.280 | 0.200
quasi-GMMs system[21] | TIMIT database
Auxiliary  second-order | concatenated utterances from speakers of t8et90 | 0.812 | 0.607 | 0.455 | 0.188
and 72 Hotelling statistic | TIMIT database

system[21]
Delacourt and Wellekens| concatenated utterances from speakers ofl the 0.282 | 0.156
[12] TIMIT database

speaker utterances from the TIMIT database, too. Howevisrctincatenation is not the same to the one
employed here. Althougl’ AR is slightly better that ours, the reportdd DR for the proposed system
is considerably lower. The relative/ D R improvement equal§7.308%.

The proposed system is also assessed on the HUB-4 1997 Engbslddast News Speech dataset.
As is demonstrated in Table XIll, the same dataset is utllime[13]. The system presented in [13] is a
two-step system. The first step is a "coarse to refine” step, \@bdree second step is a refinement one
that aims at reducing”AR. Both our algorithm and the one in [13] apply incrementalaies model
updating to deal with the problem of insufficient data in estimg the speaker model. However, the
updating strategy is not the same. In [13], quasi-GMMs ailezed. Both algorithms considef" As less

cumbersome thad/ Ds. In [13], down-sampling takes place from 16 KHz to 8 KHz amdaaaptive
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background noise level detection algorithm is applied. Thisot required here. Another interesting point
is that the tolerance in our approach is 2 s, whereas in [X}dterance is 3 s. Improvefl AR in [13]
may be partially attributed to the increased toleranceumrary, the proposed system, when compared
to that in [13], yields a relatively improvefC L by 3.600% at the expense of doubliftd R. The latter
is more easily manageable th&CT L.

A dataset of the same nature with the HUB-4 1997 English Brastdiews Speech is employed in
[18]. The greatestP RC relative improvement of the system proposed in [18] when manmed to the

proposed system 8.256%. The corresponding relativBC L deterioration is29.501%.

TABLE Xl
THE EFFICIENCY AND THE DATASET USED BY THE PROPOSED SYSTEM ANDTHER BENCHMARK SYSTEMS

| System | Database used | PRC | RCL | F | FAR | MDR |
Proposed system HUB-4 1997 English Broadcast News0.634 | 0.922 | 0.738 | 0.309 | 0.078
Speech [41]
Lu and Zhang [13] HUB-4 1997 English Broadcast News 0.89 0.15
Speech [41]
Ajmera et al. [18] HUB-4 English Evaluation Speech and Trgn.68 0.65 0.67
scripts [42]
Cheng and Wang[23] MATBN-2002 [23] 0.289 | 0.100
Kim et al. [8] audio track from television talk show prg-0.754 | 0.864 | 0.805
gram [8]

It should be noted that the efficiency of a speaker segmentatgorithm depends highly on the nature
of the data it is designed for. There are experimental resutifable for different datasets, such as the
MATBN-2002 database. However, a direct comparison is ndiitida For the remaining of the section,
a rough discussion between systems tested on differerdedates attempted.

Concerning the performance of the proposed system on Zrdliffedatasets, namely the conTIMIT
dataset and the subset of the HUB-4 1997 English Broadcasts NBpeech dataset, all five figures
of merit are slightly deteriorated for the HUB-4 1997 EngliBlnadcast News Speech dataset, when
compared to those measured on the conTIMIT. This is expectedialthe nature of the conTIMIT.

Metric-SEQDAC is another approach introduced by Cheng andgwW28]. The dataset employed is
the MATBN-2002 Mandarin Chinese broadcast news corpus. A f@gram is provided in [23] to
demonstrate the efficiency of metric-SEQDAC algorithm. Fromdlagram it can be deducted that for

FAR=0.289 (equal to the® AR of the proposed system on the conTIMIT test dataset), thertegbo
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MDR is roughly equal to 0.100. Once again, a great relalif® R improvement equal t@8.205% is
achieved at the expense 0f6at72% relative AR deterioration.

Kim et al. [8] presented a hybrid speaker-based segmentatioich combines metric-based and model-
based techniques. Audio track from a television talk shosgmm is used to evaluate the performance.
Comparing the proposed system to the one in [BRC is relatively deteriorated by5.915%, while
RCL is relatively improved by6.713%.

To sum up, the proposed system demonstrates a veryMdwR compared to state-of-the-art systems.

VI. CONCLUSIONS

A novel efficient and robust approach for automatic BIC-baspdaker segmentation is proposed.
Computational efficiency is achieved through the speakerante modeling and the transformed BIC for-
mulation, whereas robustness is attained by feature &miesnhd application of BIC tests at appropriately
selected time stamps. The first contribution of the paper isddeting the duration of speaker utterances.
As a result, computational needs are reduced in terms ofdimdememory. The IG distribution is found
to be the best fit for the empirical distribution of speakeernahce duration. The second contribution
of the paper is in MFCC selection. The third contribution is lie new theoretical formulation of BIC
after centering and simultaneous diagonalization, whoseptitational complexity is less than that of the
standard BIC, when covariance matrix estimators other tharsample dispersion matrices are used.

In order to attest that speaker utterance duration modelitdy feature selection yield more robust
systems, 4 systems are tested on the conTIMIT test datasefirghutilizes the standard BIC approach,
the second applies speaker utterance duration estim#imthird employs feature selection, and the fourth
is the proposed system that combines all proposals madésipdper. One-way ANOVA and a posteriori
Tukey’s method confirm that the 4 systems, when compared ig&inare significantly different from one
another forPRC, RCL, Fy, and M DR. Accordingly, the proposed contributions either indivatly
or in combination improve performance. Moreover, to overecthe restrictions posed by the artificial
dialogues in the conTIMIT dataset, first experimental resuttshe HUB-4 1997 English Broadcast News

Speech dataset have verified the robustness of the propogedsys
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APPENDIXI

A detailed proof of the new formulation of BIC follows. Assing that the chunksX, Y, and Z are

modeled by Gaussian density functions, we define

Nx
d 1 1 _
AL —NX(§ In(2m) + ks 1Xz]) - 3 ;(Zi —pz) 25 (zi — py)
d 1 1 o)
+NX(§ In(27) + 5 ln 1Zx|) + 3 ;(Zi — px) SNz — py),
d 1 1 &
B & =Ny (5 n(27) + 5 In[3z]) - 5 i—;ﬂ(zi —p) TS (2 — py)
o (17)
d 1 1 & S
+Ny(§ In(27) 4+ 3 In |2y |) + 2 Z (zi = py)" By (20 — py)-
l:Nx+1
Under these assumptions, (5) equals to
A d(d+1
5_A+B—§<d+ (; )> In Ny = 0. (18)
If Xx, ¥y, andX; are estimated by sample dispersion matrices, it is true that
NX NX
Z(Zi —pz) 2 (zi - py) = {2 Z(zi —pz)(zi—pz)"Y (19)
i=1 i=1
NX NX
D (zi—px) 25 (zi - px) = 0{=" ) (20 — px)(zi — px)"} = dNx. (20)
=1 =1

So, (16) can be written asd = —Nx (¢In(27) + 3 In[Sz]) — tr{=' SN (2 — py)(zi — py)T}

+Nx(41In(27) + 2 In|Sx|) + £Nx. Applying the same estimation fdB allows us to rewrite (18) as

N, N N A d(d+1
—7Z1n]22\+TX1n|EX|+TY1n|Ey]— <d+ (d+1)

3 5 ) In Ny =0, (21)

which according to (7) corresponds ig;c < 0.
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If we apply simultaneous diagonalization ¥oy andX z, thenX, = ®A,®7, whereA; and® are
the diagonal matrix of eigenvalues and modal matriXof, respectively. Moreover, l&=A,: TSy
®A, 3. Ak is the diagonal matrix of eigenvalues Kf and ¥ is the corresponding modal matrix, i.e.
Ax = OTK¥. W is defined asw 2 ®A, :W. It is straightforward to prove thaW’X, W = I
and WISy W = Ag. The same procedure for simultaneous diagonalizatiorEef and X, takes
place. LetH = A, :®T%,®A, :. Additionally, Ay is the diagonal matrix of eigenvalues bf
and E is the corresponding modal matrix i.A.y = ETHE. If Q is defined af? £ <I>AZ*§E, it is

straightforward to prove th&” £,Q = I andQ” Sy Q = Ay. The transformed (21) i8x In %

+ 21 m‘ég?' L2 <d+ (d“)> In Nz = 0 or equivalently,

d d
N A d(d+1
= 2 mNi(Ag) + 5 Y InAi(Ay) - 5 <d+ %) InNz 2 0, (22)
1=1 i=1

where \;(A i) stands for theth eigenvalue ofA i and \;(A ) stands for theth eigenvalue ofA .
However, sample dispersion matrices are not the only etinqdor Xy, Xy, and X ;. Besides
the sample dispersion matrix, there exist other estimaibthe covariance matrix, such as the robust
estimators [25], [26] or the regularized MLEs [27]. For thadgen, in the remaining of Appendix I, (19)

and (20) are not required. Accordingly, the transformatioids for any covariance matrix estimators.

In the general case, the first transformation that takes ptacentering forz; € XNZ =X

Zi =2 — MUz, IJ‘,X = NLXZ: —Hz = 1 Zl 1zl7 (23)

the centered! is re-written asd’ = - &< In \'2 “ LS ZIs 2+ S ET e s e s

B is transformed taB’ by an exactly similar procedure. Fer € Y N Z =Y, it holds

> .. r 1 Nz . _ 1 Nz =
Zi=%zi—Hz, Hy =75, Zi:Nx+1 Zi — Mz = N, Zi:NX+1 Zi- (24)

By doing so (6) can be written as:

NX NX NZ NZ
=D EDSEA) EEYE - ) EHES a4 ) E S Ezy (25)
=1 =1 1=Nx+1 i=Nx+1
where
Y =810+ Nxp/ 35 0 x + Ny /'y 257wy (26)
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with vgrc defined in (7). Let us define the foIIowing auxiliary variablé$ and B” as: A" £ - ZiN:Xl z!

M E ST, B A - L E i+ N 1 Z] By'Z;. The second transformation
is the simultaneous diagonalization Bfy andX ;. For that casez; € X N Z = X are transformed to
w; = WTA, 287z, = WT'z,. Therefore,4” is equal to

Nx Nx

> W WAL ST AL W + Y wl O AL BT S BA L B,
i=1 i=1

:—Z wZ—I—ZwTAK w;.

=1

(27)

The same procedure for simultaneous diagonalizatiokpfand X is applied. Thenz;, € Y N Z =

Y are transformed t@; = 27A, 2 ®7%; = QT%,. Accordingly, we obtain

Nz Nz
B'=— > % v+ oF Ay, (28)
’L—Nx-‘rl Z:Nx-‘rl

By using (27) and (28), (25) is rewritten as:

NX NZ
Swl(Ax T =D+ Y. v (Ag Dy =9 (29)
=1 i=Nx+1

whose left side is a weighted sum of squares.

APPENDIXII

The computational cost of the left part of standard BIC, asappin (6), is calculated here approx-
imately. By flop we denote a single floating point operation, adloating point addition or a floating
point multiplication [45]. This is a crude method for estimgtthe computational cost. Robust statistics
[25], [26] are assumed for the computation ®f, 3y, 3. The standard BIC left part computational
cost is detailed in Table XIV.

Adding all the above computational costs plus 2 flops for thaitemhs among the terms (13)-(15) of
Table XIV, the final cost is

3d + 6Nzd? + (8Nz + 3)d + 2. (30)

For the left part of the transformed BIC, the calculation usnsnarized in Table XV. It includes the
cost for all the transformations, as described in Appendixnd for the computation of the left part of

transformed BIC, as appears in (29). It should be noted tiatcomputational cost for the derivation
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TABLE XIV TABLE XCV
STANDARD BIC LEFT PART COMPUTATIONAL TRANSFORMEDBIC LEFT PART
COST. COMPUTATIONAL COST.
Term Index | Evaluated Term Computational Cost Term Index | Evaluated Term Computa}nonal Cost
1 = N 1 Sx Nxd
2 Sy Ny &2 2 3y Nyd
3 = Nod 3 7 Nyd®
Z ~Z 4 1y Nyd+d
4 Kz Nzd+d -
5 m Nyd 1 d 5 zi — py, for X N Z in (23) Nxd
6 X Nodtd 6 'y in (23) Nyd+d
: ’Z‘Y7 — e 7 Z — ny, for YN Z in (24) Nyd
8 zl—uz’ i= NA s\rdd 8 W'y in (24) Nyd +d
iy s, Ny Nx 9 W 14d°[45)
9 Zi—py,t=1,..., Ny Nyd 3
0 ST 7 10 Q T4 [45]
1 EZ,I o 11 W, = Wz, forw, € X 2Ny d?
o Ef*‘ F 12 v, =0Tz, forv, €Y 2Ny d?
— — — - 13 AT d
13 SN(Zi - ) Sy (Z - py) Nz(2d* + 2d) -
14 S E - py) SN (E - py) N (2d + 2d) 4 Ay d
= e TXE T o 1 2 15 S @l (AT - D, 4Nyd
PNy, (Zi—py) By (Zi—py) v (2d° + 2d) 16 A S T ANyd

of W that simultaneously diagonaliz&,, and Xy, such thatW’ X, W =T and W S xW = Ay

is included [45, pp. 463-464]. This is also true for matfixthat simultaneously diagonalizés,, and
3y. The total cost of the transformations and the left part of ttaesformed BIC equals the sum of
the terms that appear in Table XV plus 1 for the addition betwthe terms (15) and (16). This cost is
28d% + 4Nzd? 4+ (TN + 5)d + 1. Moreover, as can be seen in (26), there is an additionareiftial
cost with respect to BIC for the right part of the transforni®€. This cost is analyzed in Table XVI.
The total differential cost for the right part of the transfmd BIC, is the sum of the terms (1)-(4) that

TABLE XVI
DIFFERENTIAL COMPUTATIONAL COST FOR THE RIGHT PART OF THE TRRSFORMEDBIC.

Term Index | Evaluated Term Computational Cost
1 D% d3
2 =T &
3 ;L'&E}lu’x 2d° + 2d
4 wrstly 242 + 2d

appear in Table XVI, plus 2 multiplications and 2 additions, 2d* 4 4d> + 4d + 4. Accordingly, the

total computational cost for the transformed BIC, exclgdihe cost ofyg ¢ is
30d° + (4Nz + 4)d* + (TNz + 9)d + 5. (31)

Since Nz > d, it is obvious thatV; bears the main computational cost. In particular, typicdues

ared = 72, Ny = 25,000. By comparing (30) and (31), it is clear that transformed Bi&s a
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significantly reduced computational cost. The computatigaa in flops is defined as the subtraction of

the standard BIC computational cost minus the transform@dd@mputational cost. The aforementioned

computational gain, with respect to variolé, and d values, can be seen in Figure 4. The total

Computational gain in flops

1 15 2 25 3 35 4

Fig. 4. The computational gain in flops for severd andd values.

computational cost gain if the speaker utterance duratiiimation is used in conjunction with the

transformed BIC rather than the standard BIC with no spealterance duration estimation, equals

1—

(1]

(2]

(3]
(4]

(5]

(6]

(7]

u 30d°+-(4Nz +4)d*+-(TNz+9)d+5 o
r 3dP+G6NZd2+ (8N +3)d+2 70
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