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Abstract

This paper studies the asymptotic power for the sphericity test in a fixed effect panel data
model proposed by Baltagi, Feng and Kao (2011), (Jprk). This is done under the alternative
hypotheses of weak and strong factors. By weak factors, we mean that the Euclidean norm of
the vector of the factor loadings is O(1). By strong factors, we mean that the Euclidean norm
of the vector of factor loadings is O(y/n), where n is the number of individuals in the panel.
To derive the limiting distribution of Jppx under the alternative, we first derive the limiting
distribution of its raw data counterpart. Our results show that, when the factor is strong, the
test statistic diverges in probability to infinity as fast as O,(nT). However, when the factor is
weak, its limiting distribution is a rightward mean shift of the limit distribution under the null.
Second, we derive the asymptotic behavior of the difference between Jprx and its raw data
counterpart. Our results show that when the factor is strong this difference is as large as O,(n).
In contrast, when the factor is weak, this difference converges in probability to a constant. Taken
together, these results imply that when the factor is strong, Jgrk is consistent, but when the
factor is weak, Jgpk is inconsistent even though its asymptotic power is nontrivial.
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1. INTRODUCTION

This paper studies the asymptotic power of the John (1972) test for sphericity of the covariance
matrix of the error term which was extended by Baltagi, Feng and Kao (2011) to a fixed effects
panel data model. We consider the large n large T" setup. Typically, the number of cross-sectional
units n in a panel is large, while the number of time series observations 1" could be either large
(in macro applications) or small in (micro applications). Labor panels are typical of micro-panels
with hundreds of individuals observed over a few time periods. While panels in finance may involve
hundreds of stocks observed over hundreds of days. When n tends to infinity jointly with T', generic
results in random matrix theory show that the spectral norm of the sample covariance matrix does
not converge to that of the population covariance matrix and follows a Tracy—Widom distribution
asymptotically, see Geman (1980) and Johnstone (2001). In addition, if 7+ — ¢ € (0,00), the
eigenvalues of the sample covariance matrix vary between (1 — /c)? and (1 + y/c)?, while the
eigenvalues of the population covariance matrix are all one, see Bai (1999). These results indicate
that when the dimension tends to infinity jointly with sample size, the sample covariance matrix
is no longer consistent for the population covariance matrix, and consequently cast doubt on the
consistency of BFK’s John test (Jprx) since the latter is based on the sample covariance matrix.
Furthermore, BFK’s John test is based on the within residuals rather than the real error term, and
its consistency is not guaranteed.

Studying the asymptotic power is also empirically motivated. Intuitively, the empirical power
should depend on how strong the cross-sectional dependence is. In case the cross-sectional de-
pendence is due to common factors, the cross-sectional dependence would be weak if factors are
weak. In case the cross-sectional dependence is due to spatial effects, the cross-sectional dependence
would still likely to be weak since spatial effects are typically local and thus can be regarded as
weak factors. Asymptotic power derived under the sequence of weak factor alternatives therefore
provides better approximation of the empirical power when cross-sectional dependence is weak.
The asymptotic scheme under the sequence of weak factor alternatives is also similar to the pitman
drift, which is used in Staiger and Stock (1997) to obtain the asymptotic approximation of the
finite sample distribution of 2SLS and LIML estimators when the instruments are weak.

In the statistics literature, several papers analyzed the asymptotic power of the test for sphericity
in a high dimensional setup. Srivastava (2005) proposed tests for the identity, sphericity and

diagonality of the covariance matrix based on estimators of the first and second moments of the



spectral distribution of the population covariance matrix. Srivastava derived limit distributions
under both the null and alternative. Wang, Cao and Miao (2013) proposed similar tests and
derived their limit distributions under both the null and alternative, but these tests were based on
estimators of the second and fourth moments rather than the first and second moments. Chen,
Zhang and Zhong (2010) proposed U-statistics based tests for the identity and sphericity of the
covariance matrix and derived their limit distribution under both the null and alternative. Cai and
Ma (2013), on the other hand, studied this problem from a minimax perspective. They characterized
the boundary that separates the testable region from the non-testable region by the Frobenius
norm when the ratio of the dimension and the sample size is bounded. Using Le Cam’s Lemma
1, Onatski, Moreira and Hallin (2013, 2014), hereafter (OMH), established mutual contiguity of
the joint distributions of the sample covariance eigenvalues under the null and alternative when
the alternative is a low rank perturbation of the null and the norm of perturbation is fixed and
less than a threshold. Next, they derived the asymptotic power of all sample covariance eigenvalue
based tests using Le Cam’s Lemma 3. OMH’s result is thought-provoking in the sense that it
builds up the connection between high dimensionality and Pitman drift, or roughly speaking, weak
identification, although only for a special class of alternatives. A key shortcoming of OMH’s result
is that it does not allow us to calculate the asymptotic power when the norm of perturbation is
greater than the threshold or when it goes to infinity.

This paper studies the asymptotic power of the BFK John test under the alternative hypotheses
of weak and strong factors. By weak factors, we mean that the Euclidean norm of the vector of the
factor loadings is O(1). By strong factors, we mean that the Euclidean norm of the vector of factor
loadings is O(n), where n is the number of individuals in the panel. These correspond to strong
and weak cross-sectional dependence, respectively, see Chudik and Pesaran (2013). To derive the
limiting distribution of Jprx under the alternative, we first derive the limiting distribution of its
raw data counterpart. Our results show that, when the factor is strong, it diverges to infinity in
probability as fast as Op(nT"). When the factor is weak, its limiting distribution is a rightward
mean shift of the limit distribution under the null. The magnitude of the mean shift is proportional
to the norm of variance adjusted factor loadings and the sample size, and inversely proportional to
the dimension. This result is in sharp contrast to the fixed dimension case in which the asymptotic
power tends to one as the sample size tend to infinity if the norm of perturbation is fixed. This result
also indicates that the effect of increasing the dimension on asymptotic power is similar to Pitman

drifting the parameter. We then derive the asymptotic behavior of the difference between Jppx



and its raw data counterpart. This difference is due to the additional noise in Jgpg resulting from
the estimation of the regression coefficients 8 and the fixed effects u;. Our results show that when
the factor is strong, this difference is as large as Op(n). When the factor is weak, this difference
converges in probability to a constant, ¢/2. These results also contrast with the fixed dimension
case in which the additional noise resulting from B— 3 and w; will be smoothed away as the sample
size tends to infinity. In summary, due to the effect of increasing dimension, Jprk is inconsistent
under the weak factor alternative, although it still has nontrivial asymptotic power. Under the
strong factor alternative, Jpp is consistent, since the cross-sectional dependence is strong enough
to outweigh the effect of increasing dimension, i.e., O,(nT") dominates Op(n). Our results also shed
light on the asymptotic power of the tests for cross-sectional independence in panel data recently
proposed in Pesaran (2004, 2012), Pesaran, Ullah and Yamagata (2008) and Baltagi, Feng and Kao
(2012). We leave these extensions for a future study.!

The organization of this paper is as follows. Section 2 introduces the model, notation and
assumptions. Section 3 introduces BFK’s John test of sphericity. Section 4 studies the asymptotic
power of BFK’s John test, and Section 5 concludes. The appendix contains all the proofs and

technical details.
2. NOTATION AND PRELIMINARIES
Consider the fixed effects panel data model,
Yit = TpB+ pi +vi, fori =1, ,nand t = 1,..., T, (1)

where i is the index of the cross-sectional units, ¢ is the index of the time series observations, p; is
the time invariant individual effects which could be fixed or random. v is the idiosyncratic error

term.

Assumption 1 For any i,7 = 1,...,n; and t,l = 1,...,T, the regressors x;; and the idiosyncratic

error terms vj are independent, and x; have finite 4th moments.

Assumption 2 Let vy = (vit, ..., vnt), the n X 1 vectors vy, ...,vp are iid N(0,%,), where %, is

an n X n general population covariance matrix.

! Cross-sectional dependence, due to either spatial or common factor effects, is prevalent in economic data. Chudik
and Pesaran (2013) argued that even after controlling for heterogeneity in panel data, cross-sectional dependence
still arises. Ignoring cross-sectional dependence may lead to misleading inference and even inconsistent estimation.
Therefore, testing the presence and extent of cross-sectional dependence is very important. See also the special issue
of Econometric Reviews edited by Baltagi and Maasoumi (2013) which deals with several aspects of dependence in
time-series, cross-section and panels.



Assumption 3 7 — c € (0,00), as n and T go to infinity jointly. This is diagonal path asymp-
totics not joint asymptotics as in Phillips and Moon (1999).

Assumption 1 is a standard but albeit restrictive requirement for the consistency of the fixed
effects estimator. Assumption 2 allows for any form of heteroskedasticity and cross-sectional de-
pendence. The covariance matrix is only required to be stable over time. The restrictive part of
Assumption 2 is the normality and no serial correlation over time of the error term. These are
assumed to simplify the derivation of the limiting distribution of BFK’s John test. Assumption
3 imposes a condition on the relative speed at which n and T go to infinity. More specifically, it
should be: Z& — ¢ € (0,00), but we suppress the subscript 7" hereafter for simplicity. This large
n and large T setup is more appropriate than the fixed n and large T' setup for macroeconomic
applications in which typically n and 1" are both large and of comparable magnitudes. In model

(1), the within estimator of 3 is

B=pB+ (Z;l ZtT:l iitfgt)il(zzlzl Zthl Titlit), (2)

where ;3 = xy — T;. and Uy = vy — 4., with Z;. = Zthl xi/T, and v;. = ZtT:l vit/T. Under
Assumptions 1, 2 and 3, 3 is a consistent estimator of 3.

Throughout the paper, ¢trA is the trace of matrix A, ||A]| = (trAA’ )% denotes the Frobenius
norm, ||z|| denotes the Euclidean norm of vector z, 2, denotes convergence in probability, <, denotes

convergence in distribution, (V,T) — oo denotes N and 1" going to infinity jointly.
3. BFK’S JOHN TEST

This section gives a quick review of BFK’s John test for sphericity. In order not to impose
any structure on the population covariance matrix, tests for sphericity are based on the sample
covariance matrix. It is important to note that when n > T the sample covariance matrix becomes
singular, and consequently the likelihood ratio test for sphericity is no longer feasible. As such,

John (1971) proposed a sphericity test defined as follows:
1 1 -1 2 1 21,
= —tr[(=t SR =(~t ZtrS?%) — 1,
U - r[(n rS) S ] (n rS) (n rS*) (3)

where S is sample covariance matrix and [, is an n x n identity matrix. Under the null of sphericity

and when n is fixed and T' — oo, %trS is a consistent estimator of the variance of the error term, o2.

Hence, (1trS)~1S is a normalized sample covariance matrix and tr[(1¢rS)~1S — I,,]> measures the



distance between this normalized sample covariance matrix and the identity matrix. John (1972)

showed that under the null with n fixed and T — oo,

_nT

7=

d 9
U — Xn(n;-l),l'

However, as n increases the John test is significantly oversized. In fact, it can be shown that as

n — 00, John’s test diverges to infinity in probability. To correct the size distortion, Ledoit and

Wolf (2002), hereafter (LW), recentered and rescaled John’s test as follows:

TU —n-—1 1 n: n
JLW:f:%(J_?_g)- (4)

Under the null hypothesis, with (n,T) — oo and % — ¢ € (0, 00), Ledoit and Wolf (2002) showed
that

JLW i N(O, 1). (5)

Both the John test and the LW’s John test are based on the true error term, while in the fixed
effects panel data model the test statistics are based on within residuals. In the fixed n and large
T setup, the extra noise contained in the within residuals vanishes gradually as T" — oco. Hence, it
is reasonable to believe that the test statistics based on the true error term and within residuals
should be asymptotically equivalent.

However, this is no longer true when n and 71" are both large and of comparable magnitudes,
since each 7;; contains an extra noise and their number is n. To bridge this gap, Baltagi, Feng and
Kao (2011) studied the asymptotic behavior of Jow — Jrw, where Jrw is LW’s John test based on
within residuals. They proved that under the null hypothesis with (n,7") — oo and 7+ — ¢ € (0, 00),

jLW —Jrw — ﬁ 2,0, Tt follows that under the null,

n

d
s VO, (6)

Jri = Jow —
4. ASYMPTOTIC POWER OF BFK’S JOHN TEST

This section studies the asymptotic power of BFK’s John test under the weak and strong factor

alternatives. The null hypothesis is:

Hy: %, = o2l,. (7)

Under the alternative, v; = Z;Zl Vij ftj + €it, where Vij 18 the factor loading of individual ¢ for
factor j, fi; is the factor j in period ¢, r is the known number of factors. Hence, ¥, = E(vv)) =

E (25:1 v fej + et)(2§:1 7, ftj + €)' To simplify the analysis, we make the following assumptions:

5



Assumption 4 1. Each factor fi; is tid N (0, ajz) across time, and the variance 0] is bounded.

2. The idiosyncratic error ey is iid N(0,02), and independent of all factors.
3. The correlation coefficient between factors fi;j and f. is zero, for all j, k and t.

4. The vectors of factor loading v; are orthogonal to each other.

Although these assumptions are restrictive, Assumption (4) will not lead to loss of generality.
Time dependence of the factors is likely present in real data, but as long as such dependence is
not strong, the asymptotic power property will not change qualitatively. The idiosyncratic error
€;¢ may still have cross-sectional dependence, if cross-sectional dependence in v;; cannot be totally
filtered by the factor structure. Nonetheless, adding additional cross-sectional dependence in €;
will not change the results as long as such dependence is weak. Parts 3 and 4 in assumption (4)
are innocuous since factors and factor loadings are identifiable only up to a rotation, and from this
normalization we can always redefine factors and factor loadings so that parts 3 and 4 are satisfied.

Under Assumption (4),

2
r r T o
E(ijl vl + Et)(zjzl vifii+e) = o (In+ ijl ;é7j’7;’)7 (8)

where v; = (715, - ’ynj)/ is the vector of factor loading. Normalizing v, we get

STEeT
=0 +Z] 152 H%Hz H'VjH H'YjH =0 +Z he] i) (9)
where h; = % H'yj||2, ej = m and ||e;|| = 1. Therefore, the sequence of alternative hypothesis is:
H,: %, =02 +Z hjee)). (10)

In this expression, the covariance matrix is a rank-r perturbation of sphericity. Each eje;
characterizes one direction of perturbation and h; is the magnitude of the perturbation along
this direction. Obviously, the asymptotic power under this sequence of alternatives depends upon
how h; evolves as (n,T) — oo. We will study two different cases, hj/n — d; € (0,00) and
hj — d; € (0,00), which correspond to the strong and weak factor cases considered recently by
Bai (2003), Onatski (2012) and Johnstone and Lu (2009). To calculate the asymptotic power of
the BFK’s John test, we need to derive the limiting distribution of Jprx under the alternative

hypothesis. This can be done in two steps. First, we derive the limiting distribution of Jry under



the alternative. Second, we derive the asymptotic behavior of J, w — Jrw under the alternative.
Note that Jgrprx = jLW — ﬁ, once the limiting distribution of jLW is known, that of Jppx

follows.
4.1. Asymptotic Power under the Weak Factor Alternative

Theorem 1 Under Assumptions 2-4, and under the weak factor alternative with h; — d; € (0, 00)

forjg=1,..r, -
JLW—TZ;Idj 4 N(0,1). (11)
or equivalently
Jow SN (chld? 1) . (12)

Theorem 1 implies that under the weak factor alternative, the limiting distribution of Jpw
is a mean shift of its limiting distribution under the null. The magnitude of the mean shift is
proportional to the magnitude of variance adjusted factor loadings 22:1 d? and the sample size T,
and inversely proportional to the dimension n. Here, 22:1 d? plays the role of the local parameter
in traditional asymptotic optimality analysis. On the one hand, the test statistic gets increasingly
sensitive to the underlying parameter as the sample size T' goes to infinity. On the other hand, the
weak factor alternative gets increasingly difficult to be discriminated as the dimension n goes to
infinity. This is because the effect of a perturbation of the covariance matrix with fixed norm on
Jrw'’s distribution gets dissipated as the dimension increases. In other words, the effective distance
between the null and weak factor alternative decreases as the dimension increases. Therefore, the
limiting distribution under the alternative also depends on the relative speed of n and T" and %;df
can be interpreted as a discounted local parameter. The detailed proof of this theorem is in the
Appendix. This result is also partially proved by Onatski, Moreira and Hallin (2013, 2014) in which
they derived the asymptotic power of all sample covariance eigenvalue based tests, including Jrwy,
but only when all h; are below the threshold +/c.

Next, we study the asymptotic behavior of J, w — Jrw under the weak factor alternative. Let

S be the sample covariance matrix calculated using the within residuals, it follows that

T(%trﬁ)_Q%tT‘SQ -T—-n 1 T(itr$)2LtrS2—T—-n 1

P e = 2 —3) 2 —5)
_ TlGtrS)*5trs? — (trS)* ) (13)
. 2(5trS)2(5trS)? '



Define Wy = %tr.SA’ — %trS and Wy = %trsﬂ — %trSQ, then

5 S TWo(trS)? — 2TWittrSiers? — w2l 1tr52 14
LW 2(Ltr5 + W1)2(Lerg)?

From this expression, we can clearly see that the asymptotic behavior of J; w — Jow depends upon
the asymptotic behavior of %trS, %trSQ, %trS’ — %trS and %tréﬂ - %trSQ. These, in turn, are

studied in the following proposition.

Proposition 1 Under Assumptions 1-4, and under the weak factor alternative with h; — d; €

(0,00) forj=1,..,r

(a) %trS =%+ Op(\/%),

(b) ttrS* = (% + 1)a4 +0p(75):

(c) Ltr§ — Lir§ = -2 + O o (7o)
4 — N 4

(@) ptrS? — LtrS® = — 2o — fro' + Op(5lm).

Part (a) describes the asymptotic behavior of the average of the sample variance. It implies that,
in estimating the population variance, the noise contained in the estimator ftrS is of magnitude

Op(—1=). Note that 1trS = Ler[L S0 v = L S°T S 12 so under the null, the above

VnT
result follows directly from the Central Limit Theorem. Under the alternative, with cross-sectional
dependence, %trS is no longer the sum of independent random variables. However, weak factor
implies weak cross-sectional dependence. Hence %trS has the same asymptotic behavior as that
obtained under the null.

Part (b) shows that under the weak factor alternative and with % — ¢ € (0, 00), %trS 2 converges
in probability to (¢ + 1)o*. This implies that, in the large n and large T setup, %trS2 is not a
consistent estimator of o*. Note that if n is fixed and T tends to infinity, as in deriving the
limiting distribution of the Breusch and Pagan (1980) test for cross-sectional dependence, %trS 2 is

consistent.”? What explains this difference? Note that the number of noisy terms in the expansion

of trS? is related to n?. After dividing by n, the number of noisy terms in %trS2 is related to n.

2One of the early tests for cross-sectional dependence is the traditional Breusch and Pagan (1980) test which
relies on fixed n and large T asymptotics. Empirical evidence shows that when n is large, the Breusch-Pagan test is
significantly oversized. In the statistics literature, this oversizing phenomenon also appears in the classic likelihood
ratio test of the covariance matrix, see Bai, et al. (2009). Several attempts have been made to improve the finite
sample properties of the Breusch-Pagan test. In fact, Frees (1995) proposed a nonparametric test based on the
spearman’s rank correlation coefficient, while Dufour and Khalaf (2002) suggested some Monte Carlo exact tests.
The Dufour and Khalaf tests are computationally intensive since they are based on the bootstrap method. Another
approach is to correct for the size distortion of the Breusch-Pagan test, see Pesaran (2004), Pesaran, Ullah and
Yamagata (2008) and Baltagi, Feng and Kao (2012).



On the other hand, the magnitude of noise in each term is Op(ﬁ)‘ As n and T tend to infinity
jointly, these noise can not be smoothed away and accumulate into a bias, %04.

Parts (c) and (d) show that, in %tré’ — LtrS, the additional noise contained in the within
residuals will accumulate into a term of magnitude —%2 + OP(T%/E)’ and in %trS’Q — %trSQ, this
additional noise will accumulate into a term of magnitude O,(7)+ Op(7=). These two results share
the same intuition with part (b). Note that v;; = vy —v;. —f;t(ﬁ — ), where v;; is the error term,
is the within residual, B is the within estimator and z;; = z;; — T;. denote the demeaned regressors.
From this expression, it is easy to see that the additional noise comes from B — B and v;.. B is vnT
consistent, hence ,5’ — [ converges to zero in probability no matter whether n is fixed or tends to
infinity jointly with 7. ;. is of magnitude 1/ VT, hence if n is fixed, 7;. would be smoothed away
as T — oo. However, if n goes to infinity jointly with 7', although each ;. converges to zero in
probability, the number of 7;. tends to infinity jointly. In the end, how this noise ;. accumulates
depends upon the specific form of the test statistic and the alternative. The detailed proof of this
proposition is in the Appendix.

Based on Proposition 1, we have the following theorem.

Theorem 2 Under Assumptions 1-4, and under the weak factor alternative with hy — d; € (0, 00)

forji=1,..r,
n

) 0. (15)

Jow — Jow —

This theorem implies that for Jry the additional noise contained in the within residuals will
accumulate into a constant, §. Note that this pattern of accumulation relies heavily on the as-
sumption % — ¢ € (0,00) and h; — d; € (0,00) for j =1,...,r. If 2 — oo or hj — oo for some j,
the accumulated noise may explode. The detailed proof is in the Appendix.

Note that Jgrprx = jLW — ﬁ, thus Theorem 2 implies Jgrpx — Jrw 2. Combining this

with Theorem 1, we have:

Corollary 1 Under Assumptions 1-4, and under the weak factor alternative with h; — d; € (0, 00)

T d?
Jprk > N (Zj_”, 1) . (16)

2c

forj=1,..r,

Recall that Baltagi, Feng and Kao (2011) proved that under the null, Jprx LA N(0,1), thus

the asymptotic power of Jprx under the weak factor alternative is given in the following theorem:



Theorem 3 Under Assumptions 1-4, and under the weak factor alternative with h; — d; € (0, 00)
for 5 =1,...,r, the asymptotic power of Jprx is

T 2
2j=14;

Power . (d) =1 —®(@ 1 —a)— 5
c

); (17)

where ® (-) denotes the cdf of a N (0,1) and d = (dy, ...,d,)".

Theorem 3 has several important implications. First, BFK’s John test is inconsistent in de-
tecting the factor structure when the factors are weak in the sense that h; — d; € (0,00) for
j=1,...,r. Second, BFK’s John test still has nontrivial asymptotic power, which is proportional
to Z;Zl d? and inversely proportional to the limit of 7. This result is in sharp contrast with the
fixed dimension case in which with fixed magnitude deviation from the null, the asymptotic power
tends to one as the sample size tends to infinity. Third, this inconsistency result can also be used to
check the extent of cross-sectional dependence due to common factors. If it is reasonable to assume

that common factors are the main source of cross-sectional dependence but the power of Jgr is

far below one even with large n and large T, then these common factors should be weak.
4.2. Asymptotic Power under the Strong Factor Alternative

Following the same analysis as in Section 4.1, the asymptotic behavior of Jprx under the strong

factor alternative is derived in the next theorem.

Theorem 4 Under Assumptions 2-4, and under the strong factor alternative with %J —d; € (0,00)
forg=1,..r,
Jiw = Oy (nT). (18)

Remark 1 The Oy (nT') in this theorem is real, i.e. Jpw # op (nT).

Recall that Jpw = % — 24l where U = 2tr[(LtrS)~1S — I,]* measures the distance between
the sample covariance matrix and sphericity. With %] — d; € (0,00) for j =1,...,7, as shown in
the Appendix, 1¢rS L oo?(14 > i—1d;) and 14r$% = O, (n). Hence U = O, (n) and it follows that
Jrw = Oy (nT).

Next, we study the asymptotic behavior of J; w — Jrw under the strong factor alternative,

which as in the weak factor case, depends on the asymptotic behavior of %trS, %trSQ, %trg — %trS

1,.82 1 2
and ﬁtTS — EtT‘S .

10



Proposition 2 Under Assumptions 1-4, and under the strong factor alternative with %J —dj €
(0,00) forj=1,..,r,

(a) LirS = (14 i, dy) + O ),

(b) 5irs? = "o [y d = S (S dye?y)) + Opl(v),

(c) 2trS — LirS = 0,(%),

(d) 1trS? — 1trS% = O, (Z).

Compared to Proposition 1, the stochastic order of part (a) and part (c¢) remain the same while
the stochastic order of part (b) and part (d) are significantly larger. This is because under the
strong factor alternative, cross-sectional dependence becomes stronger.

Based on Proposition 2, we have the following theorem.

Theorem 5 Under Assumptions 1-4, and under the strong factor alternative with ];—J —d; € (0,00)
forji=1,..r,
jLW — Jow = Op(n). (19)

Theorem 5 implies that under the strong factor alternative, the additional noise contained in
Jow — Jow is Op(n). This magnitude is smaller than O,(nT’), the magnitude of Jr, as shown
in Theorem 4. Thus J, w — Jrow is asymptotically dominated by Jry and this leads us to the

consistency of Jprk.

Theorem 6 Under Assumptions 1-4, and under the strong factor alternative with %J —dj € (0,00)

for 3 =1,...,r, Jgrk s consistent.
5. CONCLUSION

This paper studies the asymptotic power of BFK’s John test for sphericity of the covariance
matrix in a fixed effects panel data model under the strong and weak factor alternatives. In the
former case, Jgrk is consistent, while in the latter case Jgpk is inconsistent but has nontrivial
asymptotic power. This inconsistency reflects the effect of dimension on the power of statistical
tests. From an empirical perspective, the inconsistency also can be used as a model selection scheme
to check the extent of cross-sectional dependence resulting from common factors. Several questions
are left for future research. First, the normality and no temporal dependence in Assumption 2

are restrictive. Second, for microeconomic applications, one should study the asymptotic power as

11



7+ — o0. Third, it would be interesting to study the asymptotic power when the factor is neither
strong nor weak in the sense that % — dj € (0,00) for 0 < 0 < 1, and when the factors are weak

and the number of factors r goes to infinity jointly with n and T
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APPENDIX

Lemma 1 Suppose X,, is a sequence of random variables and EX2 = O(n"),where v is a constant,

then X, = O,(n"/?).

Lemma 1 will be used repeatedly in calculating the stochastic order of the cross product of error

terms in this appendix.

Lemma 2 Suppose v ~ N(0,%,), and let ag, be the typical element of the covariance matriz in
the s-th row and h-th column. Then for r,s, h,q,

(1) Evs =0,

(2) Evsvy = agh,

(3) Ev,vsvp, =0,

(4) EV2vgvy, = 2ag0an, + Qrragh,

(5) Eu?u% = Qssapp + 2a§h,

(6) Evivsvpvg = Qgrlng + Qsqhr + Gsplng,

(7) Evyvsvpvprg = 0,

(8) Eui’l/z = 9assappasn + 6a§’h

Lemma 2 will be used repeatedly in dealing with cross-sectional dependence under the alterna-

tive hypothesis.

Lemma 3 Define Ay = v.v/, A) = %Zle i (B — B}, Ay = Al = %Zle (B — B, Az =
% Zthl aNCt(B - B)(B — B8)'z}, and hence S—8=—Ag— A; — Ay + As.
Under the weak factor alternative, we have
(a) 2tr(SA1) = Op(Fs) + Op(5) + Op(
(b) =tr SA3) (nT)

T\/ﬁ)

(g) ftr SAO) TU4 + %04 + Op(ﬁ%
(h) Lir(A2) = Lot 4 0,(33),
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(j) 1tr(AoAs) = Op(72).
Under the strong factor alternative, we have

(a) 1tr(SAr) = O,(Y2),

This lemma can be proved following the same line of proof as Lemma 3 in the supplementary

appendix of Baltagi, Feng and Kao (2011).

A  Proof of Theorem 1

Proof. The proof of this theorem is based on Theorem 3.1 of Srivastava (2005). After some

notation translation, Srivastava’s Theorem 3.1 is equivalent to

T, . d
5(71 — ) = N(0,79)

provided T = O(n%),0 < § < 1, and M" — q; < oo for i =1,...,8, where

tr¥2 In
71 = TN /20
(tr¥,/n)

2T (aga? — 2a1a0a3 + a3 a2
7-% (41 164203 2)+2

nab a?’
1 1
and )
= iy [5/n — prs/?] fers i

Under the current setup with % — ¢ € (0,00) and h; — d; € (0,00) for j = 1,...,r, the two

conditions of Srivastava’s Theorem 3.1 are satisfied. Hence

T . T2 1 (T-1)(T+2) ( tr2/n
( 1),

=1 =g grryw - oT S, /n)?

15



1 (T—1)(T+2) < tr¥2/n >N_TZ§1d3- IR YR

T 2T (trS, /n)? mn 2
and
4 - 1.
Therefore,
Jow % N (Z:;;d? 1> .
[ ]

B Proof of Proposition 1

Proof of part (a). For notation simplicity, we will give the proof for the case where r = 1. Using
(O i)? < i, o7 repeatedly, the case where r > 1 can be proved similarly, as long as r is

fixed. Note that
1 1 1 T
—trS = =—trl= thl Vi)
1 T n 9
= S D Vi

h 1 T n
_ 2 hy 1 s o
= (l+-)+ = thl Zizl(”zt Ev2)

_ h 1
= a(1+n)+0p(\/7TT)
_ 1

= o —I—Op(\/ﬁ),

since

1 T n ) -
E[ﬁ Zt:l Zizl(’/it — Evy)]
1 T n n 9 ) ) X
T 2T Zt:l Zizl Zj:1 E(viy — Evy)(vj, — Evyy)
1 T n T . .
- W[thl Zi:l E(v — Bvi)® + Zt:1 Zi:l Z#i E(3 — EV?t)(’/?t — Ey?t)]
1 T n 9 9, 2.9 T n . ) ) )
_ 1 T n 9 9, 9\9 T n n A )
- n?T? [Zt=1 Zi:l 20" + 0 he)” + Zt=1 Zi:l Zj;ﬁi 20" (heie;)”]

1
= 2T Zj:1(04 + 2hote? + o*h%e}) + 20" Th(1 — Zn e)]
1

= 55 (2Tno" +4Tho" + 20" Th?)
n
).

1
= O(ﬁ
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This uses >
Proof of part (b). Note that

z1Z—1ade1/I/h—assahh—ﬁ—2a ]

1
ZtrS?
n

- %msﬂ[(% > W;x% S )= T2 ST
- # ZtT:1 Zstl Zn ) ’/zzt’/?t T W Zt . Zs# Zizl Z;Zl VitVisVjsVjt
- 7 S LA

nT2 Zt 128#2 VitVis + nT2 Zt 128# ZZ 12 VitlisVjsVjt

= O(%) + o +op<jf>]+[o4+0p< )+ 0y()

).

+ -
) VT
1
VT
This uses the following four results:

T T T
(1) ﬁ Zt:l Z?:l V?t = T:lﬂ Zt:l Z?:l Ey?t + ﬁ Zt:l Z?:l(y?t - EV?t) = Oy(

i o, o BA
- n2T4 Zt 121 123 1Zj 1 t_EV?t)(V;;S_EV?s)

= n2T4O( n’T?) = Op(

(5 + 1) + Oy

), since

S=

T2)

nTa S v
= Tz Zt 12]# leVnEVgﬁ 3 Zt 12#12; WAk — BVLEVY)
= Y YT (0P othed)(o? + o%hed)

+# Z; ZL ijl(uftyf.t - Eu?th@t)

=1, n=1_ , BPQA-30 ) 2 2
= o'+ —2hot 4 = nT2 Zt IZ#ZZZ (WA — EviEVY)
n—1, n-1 4 h2(1—ZTLfl 4) 4 1
— 2h i=1% 0
R w0 PO
n 4 1
= —0 +0,(—=),
T p(ﬁ)
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since

nT2 Zt 1 Zﬁéz Zz

2
EVZ1t1 Eyj1t1 )( Vigta J2t2
1

n2T*%
2
O(

[E(1,-) + E (2

n n

73) T O0l35) = 0(5

Here we used 7+ — ¢ € (0,00) and £ (2,-)

=
= 0(7).

= E(2,4) + E2,j < 4)

1 1t1/ _EVZZtEl/Z )]2

TZ2T4 Ztl 1 2]17511 221 1 th 1 Zgg;ﬁzz Zzg 1

— Ev? EI/]2t2)

ia2to

g lOM'T) + O(T?)

11t1

j1t1

= O(n3T?). Hereafter E(i,7)

denotes there are i different t-indices and j different n-indices in the summation. By using Fv? V,% =

2
GssGhh + 2a5h7

E(2,4)

NI DS
t1=1 J17£01 i1=1 to=

. EV]ltl VEW?, 12

i1t i2t2” Jata

< 408hiT? = O(T?).

There are at most n3T? terms in F(2,7 < 4), hence E(2,j < 4)
= 0(n®T?).

results, we have F (2,-) = O(T?) + O(n3T?)

(3)
T2 Zt 125#2 -1 Vi

n T
Ztlzl Zjl;éil Zh:l Zt2=
T n n T n n

CEOD DD DR DD SR DA )

R ON|

>
1 JaFi2

— Ev:, Ev

n
>
Jztz)

>

io=

11t1 Jltl

igta

>
1 JoFio

T2 Zt 1 Zsyét Z Evi BV, + nT? Zt 1 Zs;ét Zz 1 Vi
n

nT2 Zt 1 Zs;ﬁt i=1 EVZtEV t ﬁ Zt 1 257575 Z

nT2 Zt 1 Zs;ﬁt Zz 1 U t O'2h6 +

ufy

7 s S o

— EVviEV?)

L

- (T;la4+TnT 2ot Lot Y 16;*)
nT2 Zt 1287@52 ZtV

I R

= | +O( )]+ [Op(ﬁ)]—

VT
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= O(n3T?).

'LtV

eneq) 2h7egel,)

2 2 2 2
ig—1 G €71 %028

Combining these

— EVviEV?)
— EviEV?)

— EVviEV?)



since

nT2 Zt 125# Z (viv2, — EVviEV))?
= n2T4 Ztl 1 Zm#tl Zzl 1 Ztg 1 Zsz#tg Zzg 1 thl 7'151

EyzltlEyzlsl)( 122752 ’5282 El/zztzEyzgsg)
= 0T = 0().

When s1, 89, t1, to are different from each other, we have

2 2
E(V’thl 1181 EylltlEyzlsl)( Zztz ’5282 El/zztzEyzzsz) =0.

(4)# Zf:l Zf;t Doy D VitVisVisVjt = O, (). This is because

1
[W Zj:l Z:;ét z:j:l Z;:gl VitViststt]2

1 T T n n T T n n
n2T4 Zh:l Zsl#tl Zh:l Z]’lsﬁil Ztz=1 Zszsﬁh Zi2=1 ij#lé E

ViysiVijisiVijitiVistaVigsaVijasa Vj2t2)

il E(4,4) + E(4,3) + E(4,2) + B(3,4) +
E(3,3)+ E(3,2) + FE(2,4) + E(2,3) + E(2,2)]
1
n2T*
+O(T%/n) + O(T%) + O(T?) + O(T*n) + O(T*n?)

1 1 1 1

7))+ Olg) = Ol

[O(T*) + O(T*) + O(T*) + O(T?)

o(

The above calculation is based on the following results.

Ztl 1 2817@1 Zn 1 Z]l#h th 1 ZSz#b 212 1 Z]ﬁélz hezlejl) (heierQ)Q

E(4,4) =

IN

E(4,3)

LD NS SIS DD DD DD DITND DUND D
6 6 6 e
t1=1 s17#t1 i1=1 j1741 ta=1 so#lo ia=1 jaia U J1 72 j2

oShiTt = O(T?).

(Vi1t1

2

= Ztl 1281 " Z“ DN Zt2 1252 2 Zﬁ L, O (heie, ) (hejej)”

SEr D DD DD DD DD DD DT 1
t1=1 s17£t1 i1=1 J17#41 ta=1 soFfta Je#j1

< oiTt = Oo(T?).

E(47 2) - Ztl 1 Z817551 ZM 1 Z]l#h Zt2 1 28275t2 helle]1)4

S0 DD DD DD DI DD DRI
t1=1 s17#t1 11=1 J1741 to=1 saF#l2 1n

oShiTt = O(T?).

IN
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T T n n T n n
E(3’ 4) - Zh:l ZSl#h Zh:l Zjl#h Zh#tz Zizzl Zj27éi2 E(Vilsl

lesl)E(Viltl Vjit1Vigts Vj2t1)E(Vi2t2Vj2t2)

T T T
- Zh:l ZSl#h Zzzl Z:Héh Ztl#b Zzzl Z;;#iz (U2h€i1€jl)[(02h6ilejl)

(0%heze)y) + (0%heiei,) (07 hejiej,) + (02 heiegy ) (02 heizes, )] (0 heies,)

. 814 T T n n T n n 9 9 9 9
= 30°h ‘ o A . ejeseres
t1=1 s17#t 11=1 J1#41 t1#to ia=1 Gotip W I1T2772

< 36%RIT3 = O(T?),
with Ev.vsvpvg = asrhg + QsqQnr + Qshlrg.

E(3 3) = E E E E E E E E E
) =1 s17t =1 1 t1#ts o 115177151 nt1¥ g1t Y J2t J1t2¥ g2t2

B T T n n T n 9 o 9 2, 9 9 o
- Zh:l ZSl#h Zh:l Z]‘l?ﬁ’h Ztl#h Z]é#ﬁ (U helle]l)[(a to hejl)(a hei, 632)

+2(0”heiejy) (0 hejyej,)] (0% hejy e,)
T T n n T n
= 8pde2 o4 o2 8n3e. 3 2
- Z151:1 Z517531 Zh:l Zjl#’h Zh#tz ijéh (30°h CnCinCn T heei 6]16]2)’
with Eygysuh = 2ag4-ap, + arragy. Hence,
T T n n T n
< 8pde2 o4 o2
’E(& 3)‘ - Zh:l ZSl#h Zh:l Zjl#h Ztﬁftz Zjﬁéh so~h €11 %52
T T n n T n
8h3e. |3 | 2
" Ztl:l 2517’5"/1 Zil:l Zjl#il Ztl#h Z]é#h o hvei ‘ejl ‘ i
< 36%RAT3 4+ o8h3T3/n = O(T3V/n).
B 9 o T T T n n E E 2 9 E
(3,2) = Zm:l Zsﬁéh Zt1¢t2 Zizl Zj;éi VistVjsn BVi Vjt, BVit2Vjts
_ T T T n no 9 N21 2 23 2\ 2, 27 2
= Ztl:l stétl Ztl#2 Zi:l Z#i(a heie;)*[(c” + o°hei) (0 + o he3)

+2(0?he;ef)?]

T T T n n
- Z Z Z E : E  (o%Relel + oBhieled + o®hPeje] + 3o hlele])
t1=1 s1#t1 t17#£t2 =1 jF#£i J J J J

< oSRAT3 + 268R3T3 + 368RAT3 = O(T?),
with El/gy% = QssQpp + 2a§h.
E(2,4) = 2 Zthl Z;t 22:1 Z;ﬁ.l lel Z;&h EVi sV sVigsVijas EViytV i tVigt Vot
= 2y Z; S S L ST lethenen) (P henes)

+(02h6i1 612)(02hej1 612) + (UQheil €ja ) (02h6i2 €41 )]2

T T n n n n
= 180’8h4 E g g . E . . E . § . . 6121 ej21 61226§2
t= s#t i1=1 J1741 12=1 JoFi2

1868h1T? = O(T?),

IN
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with Ev,vsvpvg = Qsrhg + QsqQpr + Qsparg.

B T T n n n 2 2
E(2’ 3) = 2 Zt:l Zssﬁt Zilzl Zjl?éil ij#h EVilthlthQtEyilSyjlgl/hs
T T n n n
B 2 27 2N\ 2p, ..
= 2 thl Zs#t Zi1:1 Zjl#’h ij#]i KJ to he]l)(a he“ €j2)

+2(O’2h€i1 ejl)(02h6j1 ej2)]2

_ 8h2 8,32 2 2 8,42 4 2
= e2 €2 +60%h3e? 2 €2 4+ 908hte? et e
Zt 1257& Z“ 12]17&11 2327@1 11772 21771792 1771 J2>

< 20°%h3T%n + 120°%h3T? + 186°R*T? = O(T?n),
with Ey%ysyh = 204-Qpy + QppQsh,

E2,2) = 2 ZtT:l ZST# Z:;l Z;;Z EV 2 EI/ZQSZ/JZS
= 2 Zthl ZST# Z:;l Z:;:M[(J2 + 0'2]7,6?)(0'2 + U2hejz) + 2(02heiej)2]2
L) DI DD DR A R L R TS
+20%he} + 20%he? + 80 helel + 60°h’eled + 60°hPeje])
< 2087?02 + 4680270 + 1868 hAT? + 80®hT?n + 160°h>T? + 2405h3T?

= O(T?n?),
with El/gyz = QgsQpp + 2a§h. [

Proof of part (c). Recall that g;; = Z,+0it, Vit = Jir—T Ztﬂ = Uy— (ﬁ B), Uy = i —T(B—1),

~ — A _ 1 _
Vy=v—v,S=rp thl 00}, and S = # thl vvy. Hence,

“trS — l1,‘7”5’
n
1 1 T 1 T
= ﬁtr(T Zt:l ﬁtﬁg — T Zt:l l/tV;)
1 .1 1 1 ~
= ﬁtr[T Zj:l I;tﬂg — T Zj 1 Vtug — T Zj 1 ft(ﬁ — B)D;
]‘ !~/
S BB S (B B)(B - B
1, h 1
= —0t— 240, (Tr) Olir) + Opli)
B o? 1
T T P(ﬁ>’
since
1 ~ , 1
——trS0, (- )] = Oyl



= ) =7 **lef—*foJ;Efjwf

- LT *z 30

= TQZHZHJ + ohe?) ZHZ” (2 — Ev)
_W > Zs# S vieva

_ 1 5, o%h 1 1
= ot = T+ Ol =) + Oyl

T nT'
In establishing the above results, we have used:

Zt 1 Z $1t$zt = (nT)v
Zt 1 Z Titlit = (m)a
n n 1
= (ZtT:1 Zi:l jitigt)_l Zthl Zizl Zulir = Op (\/ﬁ) ’
n 1
LT ijl Ziﬂ(’/zzt ~Ev}y) =0, (\/ﬁ) ’

)-

and

nT2 Zt 125#2 visvi)®
= WZ L Zj 1 Zt 1 Z L Brisvisvav
= n2T4 > ZF — 1) E2v0;4
= WT(T -y Z]. Lol + S (0 +a%hed)?
2

sl (T — ) (no* + 20*h + o'h?)
n21
1
).

2
= 0T = Oy

n2T4
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Proof of part (d). Note that

1 A
—tr(S - S)?

l157’5'2 — l757"52
n n
2 N

= Etr[S(S - 9)] -

n

2 1
EtT[S(—AO — A — Ay + Ag)] + Etr(—Ao — A — Ay + A3)2

4 2 2 2 4
—EtT(SAl) + ﬁtT(SAg) + Etr(A%) + ﬁt’l“(AlAg) — 5t’l“(A1A3)

1 2 1 4 2
+Etr(A§) = ~tr(S4o) + Etr(Ag) + —tr(AogAr) = —tr(ApAg),

since

Using Lemma 3, we have

tr(AgAr) = tr(A1Ay) = tr(ApAs) = tr(Ax4y),
tr(A1As) = tr(A24;),
tr(AsA;) = tr(A1As) = tr(AsAs) = tr(Ax43),
tr(A) = tr(43)

tr(SAs) =tr(SA;).

1

ZtrS? — ZtrS?
IRV SN B vn

2[TU +T20 +Op(T\/T)]+[T2o +O][,(T2 )]

1 1 1

+Op(n7)+0p(ﬁ)+0p(7T\/n—T)

2 4 9 n oy 1

77 0 TO )

Here we used % — ¢ € (0,00) implicitly. =

C Proof of Theorem 2

Proof. Now

Jow —

TWo(trS)? — 2TWyttrSiers? — TW2Lers?

Jroy =
L 2(Ltr5 + Wh)2(Lerg)?
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For the numerator,

1 1.1 1
TWy(=trS)? — 2T W1 —trS—trS? — TWE=trS>
n n n n

vn

o 1

Tt Op(m)][(f + 1ot + Op(—=)]
1

P L 1 L
+2(% +1)o® + Op(\/lﬁ) + Op(\/lf)

+[=

For the denominator,
2(1t7’5 + W )2(ltr5)2
n )
2 o’ 21 2
= 2[0°+ O0p(—==) = 7 + Op( =) l0” + Oy
2(T — 1)2

= TOB + Op(

VnT’

n 8 n 8 1
-~ 70°—7250°+0p(7=) p
Hence Jpw — Jpw — 2(T"71) = 2(T_1)§ o - — 2(Tn71) — 0as (n,T) — oo and 7 — c € (0,00).
T2 o+ P(\/ﬁ)

D Proof of Theorem 4

Proof. Under the strong factor alternative, the n x 1 vectors vy, ...,vp are iid N(0,%,), where
Yn = 02(I, + > i—1 hjeje}) and %J —dj € (0,00) for j =1,...,7.
Yn = TpALTY,, where Ay, = diag(A1, ..., An). A1, ..., Ay, are eigenvalues of X, and \; = (1 +h;)

forj=1,..,r,\j=0%for j=7r+1,...,n. T\ = (€1,...r, g1, ..gn—r) and g1, ...gn—, are constructed
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such that I';, is orthogonal.
_1
Let wy = Ay, 2T} vy, then wy is iid N(0,1,). Let V = (vy,...,vp) and W = (wy,...,wr), then
_1
W = A, 2TV. Let W = (w1, ..wyp), then w; is #d N(0, IT), since we assume there is no time

dependence.

1 ’ ]. / 1 / -1 -1 !/ ]‘ !
— - e = — F ATL 2 An An 2F - — A’n,
trS = StrVV' = otrV'V = ctr(VTaAn ) An(An P T V) = ot WAL W

1 n , 1 n , 1 n
= Ttr(zizl )\iwiwi) = Ttr(zizl )\iwiwi) = T Zi:l )\Z'Ckii.

Here a;; = wiw; has a chi-squared distribution of with T degrees of freedom. Note that

1 1 n 1 n
E(trS) = ﬁE(Zi:1 Aicvii) = le =0 1+Z h;/n)
- 02(1+ijldj)

and
Var(ltrS) = E(ltrS)2 - Ez(ltTS) = LE(Zn Xicvii)? — (1 Zn Ai)?
n n2T?2 =1 n i=1""
1 n 1 n 9
= n2T2E(Zi A Ozu + 22 )\ Ajaiie;) (E Zi:l Ai)*s
with
E(a?)=T?+2T
E(aiiajj) = B(oi) E(ay;) = T2,
We have

Var(%trs) 2T2 QTZ )‘2+T2(Z@ 1)"')2)_(% Z:’L:I A)*
AT o

2
- TOA(ZJ 1 n 22] 1n2 —o

Therefore 1¢rS 20?21+ > j=1d;). Note that

l 2 _ L ! / L / / L / /
ntTS = tr(VV'VV') = T2 tr(V'VV'V) = T2 tr(W' A, WW'A, W)
1 n n ,
= —3 tr(z‘zl Aiwiwi)(zj,l Ajwjw;)

_ n;ﬂzi Nwiw)? +230,_ k(i)

- #(Z" 1A3a3+22 Aidjad,
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with a;; = wlw;. hj >0 for j =1,...,7, 80 A\; = 0%(1 + hj) > o2 for all j. Hence

1

1 h2 + 2h
gtrsz > W(A% — 04)04%1 gttt + 2 an

n T2

Note that aq; follows a Chi-square distribution with 7" degree of freedom. Hence a\l/l%T 4N (0,1),

and
11 — T
oy =T+ V2T =T+ 0,(VT).
11 ( T ) p(VT)
Consequently,
Lo o poahft2moly _ 4h3 420 T2+ Op(TVT)
n - n2 T2 n2 T2
h? 4 2hy h? 4 2hy 1 n
_ 4 alty 42

This implies %tr52 P, > at least as fast as n. On the other hand,

%trS2 = #(Z” Mo +37 Aidjal;
= nTQZZlh2+2h)“+ ;2 of + — Zz_ > Lmuh )(1+ hy)a
nTzZz 121 i) +*Z, THZJ (L ),
+W D i1 2o
- nT2Z (h? + 2h;)a +% A “+ ZZ 12] L hihjo 2
T2 Z 1Z] s 1) T2 Z 1Z] Lt o
nT2 Z 123 o 10t Z 1ZJ o %t nT2 Z —— ZJ ;e
+W >, —rt1 Zj 1%'+WZ¢ . Zj g O
— nT2Z (h? + 2h;)a? +? , u+ Zz 12] lmhh%
nT2 Z% 129 Lii " +7Zz Li#j Zj 1hjaij+WZz‘:1 Z::Lj#ia?j
= ?Z, (h? + 2h;)a?; +7ZZ 123 i hihjod;
Y 123 A =YD D

= Op(n)+0( )+O( )+ Op( Op(n).

T T T)
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This is because

Qij = Op(ﬁ)7

1 n n 9 1 ,
Wzizlzjzlaij - EtTWW —\p

1 T n 9 n
WZ¢=1 Zj=1,j7éi hiciy = Op(7)-

The last equation follows from

- 2)2 " Ea2a?
E(nT2 Zj:l,j#z‘ ;) n27T4 Zj:Lj#i o+ 2T4 Z] 1j#i Zk 1 ki kit B i
1 1
= W(n —1)[3T(T +2)] + W(n —1)(n—=2)[T(T + 2)]
1
= W(nZ -DT(T+2)= O(ﬁ)a
for any i = 1,...,r. Therefore, 1trS? = Op(n) exactly, i.e. 2trS? s op(n). Hence
U= (2tr8)2(Lirs?) — 1 = 0,(n)
T 'n n SRR
and
TU —n—1
Jrw = - = Op(nT).
[
E Proof of Proposition 2
Proof of part (a). Note that
1 1, .1 T
gtrs’ = Etr[f Zt 1 t t T Zt 1 Zz 1 Zt
D=1 J
_ 2 Zaj=1"
= 0'(1+ n TLTZt 1211 it Eyzt
1

— 2 .

= o1+ ijl d;) + op(ﬁ),
since

nT Zt 1 Zz 1 Zt Eyzt n2T2 Zt 1 Zz 1 EVzt)( EV +)
1 ) 1

[
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Proof of part (b). As shown in part (b) in Proposition 1,

1 1 T n
ftrSQ =— Zt X Z . v+ nT2 Zt ) Z#Z Z » th]t
T2 Zt 125;&2 zt 'Ls + Zt 125?% ZZ 12 VitVisVjsVjt
= 0y(7) + 0,(1) +0,(1) + {(T‘“aﬂz;l BSOS i)+ Oy
_ n(TT_l)U“[Z;ﬂ B3 (0 e OV,

Here we have used the following four results:

(1)
1 T n 4 4
S S = B s ST ST = B = O) + Opl) = Ol

(2) If 2 — c e (0,00),

1 r " noog o9
nT? Zt:l Zj;éi Zizl VigVije = Op(1).

TLTQ Zt 1 Zs;ﬁt Zz 1 ’Ltyzs = (1)

1 T T n n
nT? thl Zs;ﬁt Zizl Z#i VitVisVjsVjt
= DS @ (O died )+ OV,

This is because:

1 T T
E[W Zt:1 Zs;ﬁt ijl Z;;Z VitViSVjstt]2
1 T T n n T T n n
N W Ztl:l ZSl#tl Zil:l Zjlfil Zt2:1 ZSQ#Q Zzé:l Zj27éi2 E(Viltl

Viis Vj181Vj1t1VithVi282Vj252Vj2t2)
1
= o7 [E(4, 4) + E(4, 3) + E(4, 2) + E(3, 4)
+YE(3,3) + E(3,2) + E(2,4) + E(2,3) + B(2,2)]

1 (T -1)% 4
= B +00) =750 ZJ X h? Z“ X Z] X e’ ;)1 +0(n)
1 T T n
= EQ[W thl ZS# Zi:l Z#i vitvisVjsVjt] + O(n).
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With > = 1 for each j and >_7 ej, jej, x = 0, it can be shown that

T T n n T T n n
4) = Ztlzl 23175151 Zilzl Zjl;éil Ztgzl 2327&t2 Zizzl ijséiz a
(Z: h'eihjejl:j)z(z; hjeis.j€r i)
(T - Z“ 1 Zh;ézl Z] 1 h? 121,3 g T 22 h'hkeimejhjeil,kejl,k)]Q
= o°T*T - 1)2[2“:1(22 1 h§ Z21:3 — e, J) 22 hihwed, je i, ]’
= ST (3 M =D ek QZj hihiel, g, k)
= FTAT 1Y =Y (O ek )R

1 T T n n T — 1) 4 n n r 9
E[’I”LT2 Zt:l Zs#t Zi:l Zj;«éi VitVistsl/jt] = g thl Zjﬁéh (ijl hjeilyjejl’j)
_ (T-1) 4 r 2 n r 2 3\2
= Doy Wy (0 e

Ji ]1.7

Proof of part (c). Asshown in part (c) of Proposition 1,

1 T ~

1 N 1 n 1 T - ~
—tr(S —-8) = E”[ZZ 1(T Z vir)? — T thl i(6 — B,
150 2 _ AV
——ZH (BB + = ZH (B — B)(B — B)'T).
1
With %J — dj € (0,00), Ethl Sor @D = Op(vnT'). The proof is as follows. 7y = I'pAZy,

1
where wy = Ay, 2T vy is 4id N(0, I,,). Hence

T

T n T 1 5 1 N T -
thl Z TitVip = Zt . U A2y = thl T 0p(A2 —olp)w + o thl U Iy
T . P T o,
= Gzt :UtF Hwt+az .’L‘t nWt —azt lytHwt+UZt:13/twta
where H = diag(v/1+ h; —1,...,/1+ h, —1,0,...,0), y = ' Z;. Hence

Zthl Z:;l Tilit = 0 Z;:1 Zthl(‘/ 14+ h; — Dy + o Zthl ygzbt

r T 14+ hs; 1 - T -
= \/ﬁO‘ Zj:l thl( - J _ \/;)yjtwjt + o Zt:l y,'fwt

With some regularity conditions on X and %] — d; € (0,00), it is easy to see that

S S dabie = Op(VaT) + Op(VaT) = O, (V).

Consequently,

1 T n 1
- == T i 71 — Tt = _—
a TLT Zt 1 ZZ 1 thlt (nT Zt:]_ ZZ’:]_ :I:Ztylt) Op( /nT)7
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1 T 1
_niTtr[Zt—l ft(ﬁ - ﬁ)”t] = Op(niT)a
1 T 1
—ﬁﬁ"[zt:l (B —B)y) = OP(ﬁ)a
and
1 T N
—=tr[y S, @B = ) (B~ )E]] = Opl(—)
In addition,
1 n 1 T 1 n 1 T 9 l
n Zi:1(f thl vir)” = nT Zi:1(ﬁ Zt:l Vi) = OP(T)'
Therefore,
1 A 1 1 1 1 1
gtr(S -8) = Op(f) + Op(ﬁ) + Op(ﬁ) + Op(niT) = Op(f)
[ |
Proof of part (d). Asin part (d) of Proposition 1,
A 2 2 2 4
Lgr_ Lygr = —étr(SAl) + Ztr(SAs) + —tr(A3) + =tr(A14s) — —tr(A143)
n n n n n n n
1 2 1 4 2
+Et7’(A§) — Et?"(SA()) + gt’l”(A%) + ﬁtr(AOAl) — gt?“(AoA:g).
Using Lemma 3,
1,0 1, o /0 1 1 1 1
ntrS ntrS = Op(—= T )+ Op ( )+ O, ( 5)+O0p ( 5) + Op(i\/ﬁw)

FO,(t) + O(0) + 0<T2>+0<f>+0<1> o

Here we used 7 — c € (0,00) implicitly. m

F Proof of Theorem 5

TWa(LtrS)2—2TWy LtrSLirS2—TW2Ltrs?

Proof. Recall that Jrw — Jow = TS i)

For the numerator,
TWa(— trS) - szlltrsltTSQ - TW2%trS2
= TO, 1+Z T)]
970, 1+ZJ &) (\})][”(TT_ MDA -
Z;Qj; dye? ;)] + Op(V)]
0PSB ST (S e+ Oy

= Op(n) + Op(n) + Op(f) = Op(n).
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For the denominator,

Therefore,

implicitly. m

1 1
2(-trS+ Wl)z(gtrS)z

2[02(1+Z; d;) + O, (\}T)JFO +Z] ) 0, \/1?)]2

JLW - JLW = 20_8(1_’_27"71 ) +Op(\/>)

Op(n)

= Op(n). Here we used 7+ — ¢ € (0,00)

G Proof of Theorem 6

Proof. From the proof of Theorem 4, we know that %trS EN l—i—z 1d;jand 2trS? > o ahi J;%l o

T2
For any M > 0,
P(jLW > M):P(jLw—JLw+JLw>M)
— 5 O0p()+Jw M
= POp(n)+Jw > M) = P(T > ﬁ)
Lir52
N nT nT
1 9 1 M 1 T+1 1
= P(—trS >(—t7°5) (ﬁ+T+ T —i—Op(T)))
h? + 2h; o 1 M 1 T+1 1
> 4N T sl agy 4 2 M L =
= Plo"— 5 T2 > (trS) (ot +0p(T)))
a? 1 M 1 T+1 a? c
= P 11 t S 2/ - O > p Qi1 _c
( trS)? (A + L+ TH 4 0, (% ))<ﬁforalarge enough 7.
Hence
2 ~T Ve T
P > M) > P(CL s C ) p(@iL o Ve _ pou )y,

. a11—T d c
since yﬁTﬁN(O,l)and %i}[— L -0 m
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