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Abstract

This paper studies the asymptotic power for the sphericity test in a fixed effect panel data

model proposed by Baltagi, Feng and Kao (2011), (JBFK). This is done under the alternative

hypotheses of weak and strong factors. By weak factors, we mean that the Euclidean norm of

the vector of the factor loadings is O(1). By strong factors, we mean that the Euclidean norm

of the vector of factor loadings is O(
√
n), where n is the number of individuals in the panel.

To derive the limiting distribution of JBFK under the alternative, we first derive the limiting

distribution of its raw data counterpart. Our results show that, when the factor is strong, the

test statistic diverges in probability to infinity as fast as Op(nT ). However, when the factor is

weak, its limiting distribution is a rightward mean shift of the limit distribution under the null.

Second, we derive the asymptotic behavior of the difference between JBFK and its raw data

counterpart. Our results show that when the factor is strong this difference is as large as Op(n).

In contrast, when the factor is weak, this difference converges in probability to a constant. Taken

together, these results imply that when the factor is strong, JBFK is consistent, but when the

factor is weak, JBFK is inconsistent even though its asymptotic power is nontrivial.
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1. INTRODUCTION

This paper studies the asymptotic power of the John (1972) test for sphericity of the covariance

matrix of the error term which was extended by Baltagi, Feng and Kao (2011) to a fixed effects

panel data model. We consider the large n large T setup. Typically, the number of cross-sectional

units n in a panel is large, while the number of time series observations T could be either large

(in macro applications) or small in (micro applications). Labor panels are typical of micro-panels

with hundreds of individuals observed over a few time periods. While panels in finance may involve

hundreds of stocks observed over hundreds of days. When n tends to infinity jointly with T , generic

results in random matrix theory show that the spectral norm of the sample covariance matrix does

not converge to that of the population covariance matrix and follows a Tracy—Widom distribution

asymptotically, see Geman (1980) and Johnstone (2001). In addition, if n
T → c ∈ (0,∞), the

eigenvalues of the sample covariance matrix vary between (1 −
√
c)2 and (1 +

√
c)2, while the

eigenvalues of the population covariance matrix are all one, see Bai (1999). These results indicate

that when the dimension tends to infinity jointly with sample size, the sample covariance matrix

is no longer consistent for the population covariance matrix, and consequently cast doubt on the

consistency of BFK’s John test (JBFK) since the latter is based on the sample covariance matrix.

Furthermore, BFK’s John test is based on the within residuals rather than the real error term, and

its consistency is not guaranteed.

Studying the asymptotic power is also empirically motivated. Intuitively, the empirical power

should depend on how strong the cross-sectional dependence is. In case the cross-sectional de-

pendence is due to common factors, the cross-sectional dependence would be weak if factors are

weak. In case the cross-sectional dependence is due to spatial effects, the cross-sectional dependence

would still likely to be weak since spatial effects are typically local and thus can be regarded as

weak factors. Asymptotic power derived under the sequence of weak factor alternatives therefore

provides better approximation of the empirical power when cross-sectional dependence is weak.

The asymptotic scheme under the sequence of weak factor alternatives is also similar to the pitman

drift, which is used in Staiger and Stock (1997) to obtain the asymptotic approximation of the

finite sample distribution of 2SLS and LIML estimators when the instruments are weak.

In the statistics literature, several papers analyzed the asymptotic power of the test for sphericity

in a high dimensional setup. Srivastava (2005) proposed tests for the identity, sphericity and

diagonality of the covariance matrix based on estimators of the first and second moments of the
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spectral distribution of the population covariance matrix. Srivastava derived limit distributions

under both the null and alternative. Wang, Cao and Miao (2013) proposed similar tests and

derived their limit distributions under both the null and alternative, but these tests were based on

estimators of the second and fourth moments rather than the first and second moments. Chen,

Zhang and Zhong (2010) proposed U-statistics based tests for the identity and sphericity of the

covariance matrix and derived their limit distribution under both the null and alternative. Cai and

Ma (2013), on the other hand, studied this problem from a minimax perspective. They characterized

the boundary that separates the testable region from the non-testable region by the Frobenius

norm when the ratio of the dimension and the sample size is bounded. Using Le Cam’s Lemma

1, Onatski, Moreira and Hallin (2013, 2014), hereafter (OMH), established mutual contiguity of

the joint distributions of the sample covariance eigenvalues under the null and alternative when

the alternative is a low rank perturbation of the null and the norm of perturbation is fixed and

less than a threshold. Next, they derived the asymptotic power of all sample covariance eigenvalue

based tests using Le Cam’s Lemma 3. OMH’s result is thought-provoking in the sense that it

builds up the connection between high dimensionality and Pitman drift, or roughly speaking, weak

identification, although only for a special class of alternatives. A key shortcoming of OMH’s result

is that it does not allow us to calculate the asymptotic power when the norm of perturbation is

greater than the threshold or when it goes to infinity.

This paper studies the asymptotic power of the BFK John test under the alternative hypotheses

of weak and strong factors. By weak factors, we mean that the Euclidean norm of the vector of the

factor loadings is O(1). By strong factors, we mean that the Euclidean norm of the vector of factor

loadings is O(n), where n is the number of individuals in the panel. These correspond to strong

and weak cross-sectional dependence, respectively, see Chudik and Pesaran (2013). To derive the

limiting distribution of JBFK under the alternative, we first derive the limiting distribution of its

raw data counterpart. Our results show that, when the factor is strong, it diverges to infinity in

probability as fast as Op(nT ). When the factor is weak, its limiting distribution is a rightward

mean shift of the limit distribution under the null. The magnitude of the mean shift is proportional

to the norm of variance adjusted factor loadings and the sample size, and inversely proportional to

the dimension. This result is in sharp contrast to the fixed dimension case in which the asymptotic

power tends to one as the sample size tend to infinity if the norm of perturbation is fixed. This result

also indicates that the effect of increasing the dimension on asymptotic power is similar to Pitman

drifting the parameter. We then derive the asymptotic behavior of the difference between JBFK

2



and its raw data counterpart. This difference is due to the additional noise in JBFK resulting from

the estimation of the regression coeffi cients β and the fixed effects µi. Our results show that when

the factor is strong, this difference is as large as Op(n). When the factor is weak, this difference

converges in probability to a constant, c/2. These results also contrast with the fixed dimension

case in which the additional noise resulting from β̂−β and µi will be smoothed away as the sample

size tends to infinity. In summary, due to the effect of increasing dimension, JBFK is inconsistent

under the weak factor alternative, although it still has nontrivial asymptotic power. Under the

strong factor alternative, JBFK is consistent, since the cross-sectional dependence is strong enough

to outweigh the effect of increasing dimension, i.e., Op(nT ) dominates Op(n). Our results also shed

light on the asymptotic power of the tests for cross-sectional independence in panel data recently

proposed in Pesaran (2004, 2012), Pesaran, Ullah and Yamagata (2008) and Baltagi, Feng and Kao

(2012). We leave these extensions for a future study.1

The organization of this paper is as follows. Section 2 introduces the model, notation and

assumptions. Section 3 introduces BFK’s John test of sphericity. Section 4 studies the asymptotic

power of BFK’s John test, and Section 5 concludes. The appendix contains all the proofs and

technical details.

2. NOTATION AND PRELIMINARIES

Consider the fixed effects panel data model,

yit = x′itβ + µi + νit, for i = 1, ..., n and t = 1, ..., T, (1)

where i is the index of the cross-sectional units, t is the index of the time series observations, µi is

the time invariant individual effects which could be fixed or random. νit is the idiosyncratic error

term.

Assumption 1 For any i, j = 1, ..., n; and t, l = 1, ..., T, the regressors xit and the idiosyncratic

error terms νjl are independent, and xit have finite 4th moments.

Assumption 2 Let νt = (ν1t, ..., νnt)
′, the n × 1 vectors ν1, ..., νT are iid N(0,Σn), where Σn is

an n× n general population covariance matrix.
1Cross-sectional dependence, due to either spatial or common factor effects, is prevalent in economic data. Chudik

and Pesaran (2013) argued that even after controlling for heterogeneity in panel data, cross-sectional dependence
still arises. Ignoring cross-sectional dependence may lead to misleading inference and even inconsistent estimation.
Therefore, testing the presence and extent of cross-sectional dependence is very important. See also the special issue
of Econometric Reviews edited by Baltagi and Maasoumi (2013) which deals with several aspects of dependence in
time-series, cross-section and panels.
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Assumption 3 n
T → c ∈ (0,∞), as n and T go to infinity jointly. This is diagonal path asymp-

totics not joint asymptotics as in Phillips and Moon (1999).

Assumption 1 is a standard but albeit restrictive requirement for the consistency of the fixed

effects estimator. Assumption 2 allows for any form of heteroskedasticity and cross-sectional de-

pendence. The covariance matrix is only required to be stable over time. The restrictive part of

Assumption 2 is the normality and no serial correlation over time of the error term. These are

assumed to simplify the derivation of the limiting distribution of BFK’s John test. Assumption

3 imposes a condition on the relative speed at which n and T go to infinity. More specifically, it

should be: nT
T → c ∈ (0,∞), but we suppress the subscript T hereafter for simplicity. This large

n and large T setup is more appropriate than the fixed n and large T setup for macroeconomic

applications in which typically n and T are both large and of comparable magnitudes. In model

(1), the within estimator of β is

β̃ = β + (
∑n

i=1

∑T

t=1
x̃itx̃

′
it)
−1(
∑n

i=1

∑T

t=1
x̃itν̃it), (2)

where x̃it = xit − x̄i· and ν̃it = νit − ν̄i·, with x̄i· =
∑T

t=1 xit/T , and ν̄i· =
∑T

t=1 νit/T . Under

Assumptions 1, 2 and 3, β̃ is a consistent estimator of β.

Throughout the paper, trA is the trace of matrix A, ‖A‖ = (trAA′)
1
2 denotes the Frobenius

norm, ‖x‖ denotes the Euclidean norm of vector x, p→ denotes convergence in probability, d→ denotes

convergence in distribution, (N,T )→∞ denotes N and T going to infinity jointly.

3. BFK’S JOHN TEST

This section gives a quick review of BFK’s John test for sphericity. In order not to impose

any structure on the population covariance matrix, tests for sphericity are based on the sample

covariance matrix. It is important to note that when n > T the sample covariance matrix becomes

singular, and consequently the likelihood ratio test for sphericity is no longer feasible. As such,

John (1971) proposed a sphericity test defined as follows:

U =
1

n
tr[(

1

n
trS)−1S − In]2 = (

1

n
trS)−2(

1

n
trS2)− 1, (3)

where S is sample covariance matrix and In is an n×n identity matrix. Under the null of sphericity

and when n is fixed and T →∞, 1
n trS is a consistent estimator of the variance of the error term, σ

2.

Hence, ( 1
n trS)−1S is a normalized sample covariance matrix and tr[( 1

n trS)−1S− In]2 measures the
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distance between this normalized sample covariance matrix and the identity matrix. John (1972)

showed that under the null with n fixed and T →∞,

J =
nT

2
U

d→ χ2
n(n+1)

2
−1
.

However, as n increases the John test is significantly oversized. In fact, it can be shown that as

n → ∞, John’s test diverges to infinity in probability. To correct the size distortion, Ledoit and

Wolf (2002), hereafter (LW), recentered and rescaled John’s test as follows:

JLW =
TU − n− 1

2
=

1

n
(J − n2

2
− n

2
). (4)

Under the null hypothesis, with (n, T ) → ∞ and n
T → c ∈ (0,∞), Ledoit and Wolf (2002) showed

that

JLW
d→ N(0, 1). (5)

Both the John test and the LW’s John test are based on the true error term, while in the fixed

effects panel data model the test statistics are based on within residuals. In the fixed n and large

T setup, the extra noise contained in the within residuals vanishes gradually as T →∞. Hence, it

is reasonable to believe that the test statistics based on the true error term and within residuals

should be asymptotically equivalent.

However, this is no longer true when n and T are both large and of comparable magnitudes,

since each ν̃it contains an extra noise and their number is n. To bridge this gap, Baltagi, Feng and

Kao (2011) studied the asymptotic behavior of ĴLW −JLW , where ĴLW is LW’s John test based on

within residuals. They proved that under the null hypothesis with (n, T )→∞ and n
T → c ∈ (0,∞),

ĴLW − JLW − n
2(T−1)

p→ 0. It follows that under the null,

JBFK = ĴLW −
n

2(T − 1)

d→ N(0, 1). (6)

4. ASYMPTOTIC POWER OF BFK’S JOHN TEST

This section studies the asymptotic power of BFK’s John test under the weak and strong factor

alternatives. The null hypothesis is:

H0 : Σn = σ2In. (7)

Under the alternative, νit =
∑r

j=1 γijftj + εit, where γij is the factor loading of individual i for

factor j, ftj is the factor j in period t, r is the known number of factors. Hence, Σn = E(νtν
′
t) =

E(
∑r

j=1 γjftj + εt)(
∑r

j=1 γjftj + εt)
′. To simplify the analysis, we make the following assumptions:
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Assumption 4 1. Each factor ftj is iid N(0, σ2
j ) across time, and the variance σ

2
j is bounded.

2. The idiosyncratic error εit is iid N(0, σ2), and independent of all factors.

3. The correlation coeffi cient between factors ftj and ftk is zero, for all j, k and t.

4. The vectors of factor loading γj are orthogonal to each other.

Although these assumptions are restrictive, Assumption (4) will not lead to loss of generality.

Time dependence of the factors is likely present in real data, but as long as such dependence is

not strong, the asymptotic power property will not change qualitatively. The idiosyncratic error

εit may still have cross-sectional dependence, if cross-sectional dependence in νit cannot be totally

filtered by the factor structure. Nonetheless, adding additional cross-sectional dependence in εit

will not change the results as long as such dependence is weak. Parts 3 and 4 in assumption (4)

are innocuous since factors and factor loadings are identifiable only up to a rotation, and from this

normalization we can always redefine factors and factor loadings so that parts 3 and 4 are satisfied.

Under Assumption (4),

E(
∑r

j=1
γjftj + εt)(

∑r

j=1
γjftj + εt)

′ = σ2(In +
∑r

j=1

σ2
j

σ2
γjγ
′
j), (8)

where γj = (γ1j , ..., γnj)
′ is the vector of factor loading. Normalizing γj , we get

Σn = σ2(In +
∑r

j=1

σ2
j

σ2

∥∥γj∥∥2 γj∥∥γj∥∥ γ′j∥∥γj∥∥) = σ2(In +
∑r

j=1
hjeje

′
j), (9)

where hj =
σ2j
σ2

∥∥γj∥∥2, ej =
γj

‖γj‖ and ‖ej‖ = 1. Therefore, the sequence of alternative hypothesis is:

Ha : Σn = σ2(In +
∑r

j=1
hjeje

′
j). (10)

In this expression, the covariance matrix is a rank-r perturbation of sphericity. Each eje
′
j

characterizes one direction of perturbation and hj is the magnitude of the perturbation along

this direction. Obviously, the asymptotic power under this sequence of alternatives depends upon

how hj evolves as (n, T ) → ∞. We will study two different cases, hj/n → dj ∈ (0,∞) and

hj → dj ∈ (0,∞), which correspond to the strong and weak factor cases considered recently by

Bai (2003), Onatski (2012) and Johnstone and Lu (2009). To calculate the asymptotic power of

the BFK’s John test, we need to derive the limiting distribution of JBFK under the alternative

hypothesis. This can be done in two steps. First, we derive the limiting distribution of JLW under
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the alternative. Second, we derive the asymptotic behavior of ĴLW − JLW under the alternative.

Note that JBFK = ĴLW − n
2(T−1) , once the limiting distribution of ĴLW is known, that of JBFK

follows.

4.1. Asymptotic Power under the Weak Factor Alternative

Theorem 1 Under Assumptions 2-4, and under the weak factor alternative with hj → dj ∈ (0,∞)

for j = 1, ..., r,

JLW −
T
∑r

j=1 d
2
j

2n

d→ N (0, 1) . (11)

or equivalently

JLW
d→ N

(∑r
j=1 d

2
j

2c
, 1

)
. (12)

Theorem 1 implies that under the weak factor alternative, the limiting distribution of JLW

is a mean shift of its limiting distribution under the null. The magnitude of the mean shift is

proportional to the magnitude of variance adjusted factor loadings
∑r

j=1 d
2
j and the sample size T ,

and inversely proportional to the dimension n. Here,
∑r

j=1 d
2
j plays the role of the local parameter

in traditional asymptotic optimality analysis. On the one hand, the test statistic gets increasingly

sensitive to the underlying parameter as the sample size T goes to infinity. On the other hand, the

weak factor alternative gets increasingly diffi cult to be discriminated as the dimension n goes to

infinity. This is because the effect of a perturbation of the covariance matrix with fixed norm on

JLW’s distribution gets dissipated as the dimension increases. In other words, the effective distance

between the null and weak factor alternative decreases as the dimension increases. Therefore, the

limiting distribution under the alternative also depends on the relative speed of n and T and
∑r
j=1 d

2
j

2c

can be interpreted as a discounted local parameter. The detailed proof of this theorem is in the

Appendix. This result is also partially proved by Onatski, Moreira and Hallin (2013, 2014) in which

they derived the asymptotic power of all sample covariance eigenvalue based tests, including JLW ,

but only when all hj are below the threshold
√
c.

Next, we study the asymptotic behavior of ĴLW − JLW under the weak factor alternative. Let

Ŝ be the sample covariance matrix calculated using the within residuals, it follows that

ĴLW − JLW = (
T ( 1

n trŜ)−2 1
n trŜ

2 − T − n
2

− 1

2
)− (

T ( 1
n trS)−2 1

n trS
2 − T − n

2
− 1

2
)

=
T [( 1

n trS)2 1
n trŜ

2 − ( 1
n trŜ)2 1

n trS
2]

2( 1
n trŜ)2( 1

n trS)2
. (13)
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Define W1 = 1
n trŜ −

1
n trS and W2 = 1

n trŜ
2 − 1

n trS
2, then

ĴLW − JLW =
TW2( 1

n trS)2 − 2TW1
1
n trS

1
n trS

2 − TW 2
1

1
n trS

2

2( 1
n trS +W1)2( 1

n trS)2
. (14)

From this expression, we can clearly see that the asymptotic behavior of ĴLW −JLW depends upon

the asymptotic behavior of 1
n trS,

1
n trS

2, 1
n trŜ −

1
n trS and

1
n trŜ

2 − 1
n trS

2. These, in turn, are

studied in the following proposition.

Proposition 1 Under Assumptions 1-4, and under the weak factor alternative with hj → dj ∈

(0,∞) for j = 1, ..., r,

(a) 1
n trS = σ2 +Op(

1√
nT

),

(b) 1
n trS

2 = ( nT + 1)σ4 +Op(
1√
T

),

(c) 1
n trŜ −

1
n trS = −σ2

T +Op(
1

T
√
n

),

(d) 1
n trŜ

2 − 1
n trS

2 = − 2
T σ

4 − n
T 2
σ4 +Op(

1
T
√
T

).

Part (a) describes the asymptotic behavior of the average of the sample variance. It implies that,

in estimating the population variance, the noise contained in the estimator 1
n trS is of magnitude

Op(
1√
nT

). Note that 1
n trS = 1

n tr[
1
T

∑T
t=1 νtν

′
t] = 1

nT

∑T
t=1

∑n
i=1 ν

2
it, so under the null, the above

result follows directly from the Central Limit Theorem. Under the alternative, with cross-sectional

dependence, 1
n trS is no longer the sum of independent random variables. However, weak factor

implies weak cross-sectional dependence. Hence 1
n trS has the same asymptotic behavior as that

obtained under the null.

Part (b) shows that under the weak factor alternative and with n
T → c ∈ (0,∞), 1

n trS
2 converges

in probability to (c + 1)σ4. This implies that, in the large n and large T setup, 1
n trS

2 is not a

consistent estimator of σ4. Note that if n is fixed and T tends to infinity, as in deriving the

limiting distribution of the Breusch and Pagan (1980) test for cross-sectional dependence, 1
n trS

2 is

consistent.2 What explains this difference? Note that the number of noisy terms in the expansion

of trS2 is related to n2. After dividing by n, the number of noisy terms in 1
n trS

2 is related to n.

2One of the early tests for cross-sectional dependence is the traditional Breusch and Pagan (1980) test which
relies on fixed n and large T asymptotics. Empirical evidence shows that when n is large, the Breusch-Pagan test is
significantly oversized. In the statistics literature, this oversizing phenomenon also appears in the classic likelihood
ratio test of the covariance matrix, see Bai, et al. (2009). Several attempts have been made to improve the finite
sample properties of the Breusch-Pagan test. In fact, Frees (1995) proposed a nonparametric test based on the
spearman’s rank correlation coeffi cient, while Dufour and Khalaf (2002) suggested some Monte Carlo exact tests.
The Dufour and Khalaf tests are computationally intensive since they are based on the bootstrap method. Another
approach is to correct for the size distortion of the Breusch-Pagan test, see Pesaran (2004), Pesaran, Ullah and
Yamagata (2008) and Baltagi, Feng and Kao (2012).
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On the other hand, the magnitude of noise in each term is Op( 1√
T

). As n and T tend to infinity

jointly, these noise can not be smoothed away and accumulate into a bias, nT σ
4.

Parts (c) and (d) show that, in 1
n trŜ −

1
n trS, the additional noise contained in the within

residuals will accumulate into a term of magnitude −σ2

T + Op(
1

T
√
n

), and in 1
n trŜ

2 − 1
n trS

2, this

additional noise will accumulate into a term of magnitude Op( 1
T )+Op(

n
T 2

). These two results share

the same intuition with part (b). Note that ν̂it = νit−ν̄i·−x̃′it(β̃−β), where νit is the error term, ν̂it

is the within residual, β̃ is the within estimator and x̃it = xit− x̄i· denote the demeaned regressors.

From this expression, it is easy to see that the additional noise comes from β̃−β and ν̄i·. β̃ is
√
nT

consistent, hence β̃ − β converges to zero in probability no matter whether n is fixed or tends to

infinity jointly with T . ν̄i· is of magnitude 1/
√
T , hence if n is fixed, ν̄i· would be smoothed away

as T → ∞. However, if n goes to infinity jointly with T , although each ν̄i· converges to zero in

probability, the number of ν̄i· tends to infinity jointly. In the end, how this noise ν̄i· accumulates

depends upon the specific form of the test statistic and the alternative. The detailed proof of this

proposition is in the Appendix.

Based on Proposition 1, we have the following theorem.

Theorem 2 Under Assumptions 1-4, and under the weak factor alternative with hj → dj ∈ (0,∞)

for j = 1, ..., r,

ĴLW − JLW −
n

2(T − 1)

p→ 0. (15)

This theorem implies that for JLW the additional noise contained in the within residuals will

accumulate into a constant, c
2 . Note that this pattern of accumulation relies heavily on the as-

sumption n
T → c ∈ (0,∞) and hj → dj ∈ (0,∞) for j = 1, ..., r. If nT →∞ or hj →∞ for some j,

the accumulated noise may explode. The detailed proof is in the Appendix.

Note that JBFK = ĴLW − n
2(T−1) , thus Theorem 2 implies JBFK − JLW

p→ 0. Combining this

with Theorem 1, we have:

Corollary 1 Under Assumptions 1-4, and under the weak factor alternative with hj → dj ∈ (0,∞)

for j = 1, ..., r,

JBFK
d→ N

(∑r
j=1 d

2
j

2c
, 1

)
. (16)

Recall that Baltagi, Feng and Kao (2011) proved that under the null, JBFK
d→ N(0, 1), thus

the asymptotic power of JBFK under the weak factor alternative is given in the following theorem:
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Theorem 3 Under Assumptions 1-4, and under the weak factor alternative with hj → dj ∈ (0,∞)

for j = 1, ..., r, the asymptotic power of JBFK is

PowerJBFK (d) = 1− Φ(Φ−1(1− α)−
∑r

j=1 d
2
j

2c
), (17)

where Φ (·) denotes the cdf of a N (0, 1) and d = (d1, ..., dr)
′.

Theorem 3 has several important implications. First, BFK’s John test is inconsistent in de-

tecting the factor structure when the factors are weak in the sense that hj → dj ∈ (0,∞) for

j = 1, ..., r. Second, BFK’s John test still has nontrivial asymptotic power, which is proportional

to
∑r

j=1 d
2
j and inversely proportional to the limit of

n
T . This result is in sharp contrast with the

fixed dimension case in which with fixed magnitude deviation from the null, the asymptotic power

tends to one as the sample size tends to infinity. Third, this inconsistency result can also be used to

check the extent of cross-sectional dependence due to common factors. If it is reasonable to assume

that common factors are the main source of cross-sectional dependence but the power of JBFK is

far below one even with large n and large T , then these common factors should be weak.

4.2. Asymptotic Power under the Strong Factor Alternative

Following the same analysis as in Section 4.1, the asymptotic behavior of JBFK under the strong

factor alternative is derived in the next theorem.

Theorem 4 Under Assumptions 2-4, and under the strong factor alternative with hj
n → dj ∈ (0,∞)

for j = 1, ..., r,

JLW = Op (nT ) . (18)

Remark 1 The Op (nT ) in this theorem is real, i.e. JLW 6= op (nT ).

Recall that JLW = TU
2 −

n+1
2 , where U = 1

n tr[(
1
n trS)−1S − In]2 measures the distance between

the sample covariance matrix and sphericity. With hj
n → dj ∈ (0,∞) for j = 1, ..., r, as shown in

the Appendix, 1
n trS

p→ σ2(1 +
∑r

j=1 dj) and
1
n trS

2 = Op (n). Hence U = Op (n) and it follows that

JLW = Op (nT ).

Next, we study the asymptotic behavior of ĴLW − JLW under the strong factor alternative,

which as in the weak factor case, depends on the asymptotic behavior of 1
n trS,

1
n trS

2, 1
n trŜ−

1
n trS

and 1
n trŜ

2 − 1
n trS

2.

10



Proposition 2 Under Assumptions 1-4, and under the strong factor alternative with hj
n → dj ∈

(0,∞) for j = 1, ..., r,

(a) 1
n trS = σ2(1 +

∑r
j=1 dj) +Op(

1√
T

),

(b) 1
n trS

2 = n(T−1)
T σ4[

∑r
j=1 d

2
j −

∑n
i=1(

∑r
j=1 dje

2
i,j)

2] +Op(
√
n),

(c) 1
n trŜ −

1
n trS = Op(

1
T ),

(d) 1
n trŜ

2 − 1
n trS

2 = Op(
n
T ).

Compared to Proposition 1, the stochastic order of part (a) and part (c) remain the same while

the stochastic order of part (b) and part (d) are significantly larger. This is because under the

strong factor alternative, cross-sectional dependence becomes stronger.

Based on Proposition 2, we have the following theorem.

Theorem 5 Under Assumptions 1-4, and under the strong factor alternative with hj
n → dj ∈ (0,∞)

for j = 1, ..., r,

ĴLW − JLW = Op(n). (19)

Theorem 5 implies that under the strong factor alternative, the additional noise contained in

ĴLW − JLW is Op(n). This magnitude is smaller than Op(nT ), the magnitude of JLW , as shown

in Theorem 4. Thus ĴLW − JLW is asymptotically dominated by JLW and this leads us to the

consistency of JBFK .

Theorem 6 Under Assumptions 1-4, and under the strong factor alternative with hj
n → dj ∈ (0,∞)

for j = 1, ..., r, JBFK is consistent.

5. CONCLUSION

This paper studies the asymptotic power of BFK’s John test for sphericity of the covariance

matrix in a fixed effects panel data model under the strong and weak factor alternatives. In the

former case, JBFK is consistent, while in the latter case JBFK is inconsistent but has nontrivial

asymptotic power. This inconsistency reflects the effect of dimension on the power of statistical

tests. From an empirical perspective, the inconsistency also can be used as a model selection scheme

to check the extent of cross-sectional dependence resulting from common factors. Several questions

are left for future research. First, the normality and no temporal dependence in Assumption 2

are restrictive. Second, for microeconomic applications, one should study the asymptotic power as

11



n
T → ∞. Third, it would be interesting to study the asymptotic power when the factor is neither

strong nor weak in the sense that hj
nδ
→ dj ∈ (0,∞) for 0 < δ < 1, and when the factors are weak

and the number of factors r goes to infinity jointly with n and T .
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APPENDIX

Lemma 1 Suppose Xn is a sequence of random variables and EX2
n = O(nv),where v is a constant,

then Xn = Op(n
v/2).

Lemma 1 will be used repeatedly in calculating the stochastic order of the cross product of error

terms in this appendix.

Lemma 2 Suppose ν ∼ N(0,Σn), and let ash be the typical element of the covariance matrix in

the s-th row and h-th column. Then for r, s, h, q,

(1) Eνs = 0,

(2) Eνsνh = ash,

(3) Eνrνsνh = 0,

(4) Eν2
rνsνh = 2asrahr + arrash,

(5) Eν2
sν

2
h = assahh + 2a2

sh,

(6) Eνrνsνhνq = asrahq + asqahr + asharq,

(7) Eνrνsνhνpνq = 0,

(8) Eν3
sν

3
h = 9assahhash + 6a3

sh.

Lemma 2 will be used repeatedly in dealing with cross-sectional dependence under the alterna-

tive hypothesis.

Lemma 3 Define A0 = ν̄·ν̄ ′·, A1 = 1
T

∑T
t=1 x̃t(β̃ − β)ν̃ ′t, A2 = A′1 = 1

T

∑T
t=1 ν̃t(β̃ − β)′x̃′t, A3 =

1
T

∑T
t=1 x̃t(β̃ − β)(β̃ − β)′x̃′t, and hence Ŝ − S = −A0 −A1 −A2 +A3.

Under the weak factor alternative, we have

(a) 1
n tr(SA1) = Op(

1
T 2

) +Op(
1
nT ) +Op(

1
T
√
nT

),

(b) 1
n tr(SA3) = Op(

1
nT ),

(c) 1
n tr(A

2
1) = Op(

1
nT 2

),

(d) 1
n tr(A1A2) = Op(

1
T 2

),

(e) 1
n tr(A1A3) = Op(

1
nT 2

),

(f) 1
n tr(A

2
3) = Op(

1
nT 2

),

(g) 1
n tr(SA0) = 1

T σ
4 + n

T 2
σ4 +Op(

1
T
√
T

),

(h) 1
n tr(A

2
0) = n

T 2
σ4 +Op(

√
n

T 2
),

(i) 1
n tr(A0A1) = Op(

1
T 2

),
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(j) 1
n tr(A0A3) = Op(

1
nT 2

).

Under the strong factor alternative, we have

(a) 1
n tr(SA1) = Op(

√
n
T ),

(b) 1
n tr(SA3) = Op(

1
T ),

(c) 1
n tr(A

2
1) = Op(

1
T 2

),

(d) 1
n tr(A1A2) = Op(

1
T 2

),

(e) 1
n tr(A1A3) = Op(

1√
nT 2

),

(f) 1
n tr(A

2
3) = Op(

1
nT 2

),

(g) 1
n tr(SA0) = Op(

n
T ),

(h) 1
n tr(A

2
0) = Op(

n
T 2

),

(i) 1
n tr(A0A1) = Op(

√
n

T 2
),

(j) 1
n tr(A0A3) = Op(

1
T 2

).

This lemma can be proved following the same line of proof as Lemma 3 in the supplementary

appendix of Baltagi, Feng and Kao (2011).

A Proof of Theorem 1

Proof. The proof of this theorem is based on Theorem 3.1 of Srivastava (2005). After some

notation translation, Srivastava’s Theorem 3.1 is equivalent to

T

2
(γ̂1 − γ1)

d→ N(0, τ2
1)

provided T = O(nδ), 0 < δ ≤ 1, and trΣin
n → ai <∞ for i = 1, ..., 8, where

γ1 =
trΣ2

n/n

(trΣn/n)2
,

τ2
1 =

2T (a4a
2
1 − 2a1a2a3 + a3

2)

na6
1

+
a2

2

a4
1

,

and

γ̂1 =
T 2

(T − 1)(T + 2)

[
trS2/n− n

T
(trS/n)2

]
/(trS/n)2.

Under the current setup with n
T → c ∈ (0,∞) and hj → dj ∈ (0,∞) for j = 1, ..., r, the two

conditions of Srivastava’s Theorem 3.1 are satisfied. Hence

T

2
(γ̂1 − γ1) =

T 2

(T − 1)(T + 2)
(JLW +

1

T
− (T − 1)(T + 2)

2T

(
trΣ2

n/n

(trΣn/n)2
− 1

)
,
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1

T
− (T − 1)(T + 2)

2T

(
trΣ2

n/n

(trΣn/n)2
− 1

)
≈ −

T
∑r

j=1 d
2
j

2n
→ −

∑r
j=1 d

2
j

2c
,

and

τ2
1 → 1.

Therefore,

JLW
d→ N

(∑r
j=1 d

2
j

2c
, 1

)
.

B Proof of Proposition 1

Proof of part (a). For notation simplicity, we will give the proof for the case where r = 1. Using

(
∑r

i=1 xi)
2 ≤ r

∑r
i=1 x

2
i repeatedly, the case where r > 1 can be proved similarly, as long as r is

fixed. Note that

1

n
trS =

1

n
tr[

1

T

∑T

t=1
νtν
′
t]

=
1

nT

∑T

t=1

∑n

i=1
ν2
it

= σ2(1 +
h

n
) +

1

nT

∑T

t=1

∑n

i=1
(ν2
it − Eν2

it)

= σ2(1 +
h

n
) +Op(

1√
nT

)

= σ2 +Op(
1√
nT

),

since

E[
1

nT

∑T

t=1

∑n

i=1
(ν2
it − Eν2

it)]
2

=
1

n2T 2

∑T

t=1

∑n

i=1

∑n

j=1
E(ν2

it − Eν2
it)(ν

2
jt − Eν2

jt)

=
1

n2T 2
[
∑T

t=1

∑n

i=1
E(ν2

it − Eν2
it)

2 +
∑T

t=1

∑n

i=1

∑n

j 6=i
E(ν2

it − Eν2
it)(ν

2
jt − Eν2

jt)]

=
1

n2T 2
[
∑T

t=1

∑n

i=1
2(σ2 + σ2he2

i )
2 +

∑T

t=1

∑n

i=1

∑n

j 6=i
(Eν2

itν
2
jt − Eν2

itEν
2
jt)]

=
1

n2T 2
[
∑T

t=1

∑n

i=1
2(σ2 + σ2he2

i )
2 +

∑T

t=1

∑n

i=1

∑n

j 6=i
2σ4(heiej)

2]

=
1

n2T 2
[2T

∑n

i=1
(σ4 + 2hσ4e2

i + σ4h2e4
i ) + 2σ4Th(1−

∑n

i=1
e4
i )]

=
1

n2T 2
(2Tnσ4 + 4Thσ4 + 2σ4Th2)

= O(
1

nT
).
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This uses
∑n

i=1 e
2
i = 1 and Eν2

sν
2
h = assahh + 2a2

sh.

Proof of part (b). Note that

1

n
trS2

=
1

n
trS2[(

1

T

∑T

t=1
νtν
′
t)(

1

T

∑T

s=1
νsν
′
s)] =

1

nT 2

∑T

t=1

∑T

s=1
ν ′tνsν

′
sνt

=
1

nT 2

∑T

t=1

∑T

s=1

∑n

i=1
ν2
itν

2
jt +

1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j=1
νitνisνjsνjt

=
1

nT 2

∑T

t=1

∑n

i=1
ν4
it +

1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
ν2
itν

2
jt

+
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
ν2
itν

2
is +

1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j 6=i
νitνisνjsνjt

= Op(
1

T
) + [

n

T
σ4 +Op(

1√
T

)] + [σ4 +Op(
1√
T

)] +Op(
1

T
)

= (
n

T
+ 1)σ4 +Op(

1√
T

).

This uses the following four results:

(1) 1
nT 2

∑T
t=1

∑n
i=1 ν

4
it = 1

nT 2
∑T

t=1

∑n
i=1Eν

4
it + 1

nT 2
∑T

t=1

∑n
i=1(ν4

it − Eν4
it) = Op(

1
T ), since

E[
1

nT 2

∑T

t=1

∑n

i=1
(ν4
it − Eν4

it)]
2

=
1

n2T 4

∑T

t=1

∑n

i=1

∑T

s=1

∑n

j=1
E(ν4

it − Eν4
it)(ν

4
js − Eν4

js)

=
1

n2T 4
Op(n

2T 2) = Op(
1

T 2
).

(2)

1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
ν2
itν

2
jt

=
1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
Eν2

itEν
2
jt +

1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
(ν2
itν

2
jt − Eν2

itEν
2
jt)

=
1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
(σ2 + σ2he2

i )(σ
2 + σ2he2

j )

+
1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
(ν2
itν

2
jt − Eν2

itEν
2
jt)

=
n− 1

T
σ4 +

n− 1

nT
2hσ4 +

h2(1−
∑n

i=1 e
4
i )

nT
σ4 +

1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
(ν2
itν

2
jt − Eν2

itEν
2
jt)

=
n− 1

T
σ4 +

n− 1

nT
2hσ4 +

h2(1−
∑n

i=1 e
4
i )

nT
σ4 +Op(

1√
T

)

=
n

T
σ4 +Op(

1√
T

),
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since

E[
1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
(ν2
itν

2
jt − Eν2

itEν
2
jt)]

2

=
1

n2T 4

∑T

t1=1

∑n

j1 6=i1

∑n

i1=1

∑T

t2=1

∑n

j2 6=i2

∑n

i2=1
E(ν2

i1t1ν
2
j1t1

−Eν2
i1t1Eν

2
j1t1)(ν

2
i2t2ν

2
j2t2 − Eν

2
i2t2Eν

2
j2t2)

=
1

n2T 4
[E(1, ·) + E (2, ·)] =

1

n2T 4
[O(n4T ) +O(n3T 2)]

= O(
n2

T 3
) +O(

n

T 2
) = O(

1

T
).

Here we used n
T → c ∈ (0,∞) and E (2, ·) = E (2, 4) + E(2, j < 4) = O(n3T 2). Hereafter E(i, j)

denotes there are i different t-indices and j different n-indices in the summation. By using Eν2
sν

2
h =

assahh + 2a2
sh,

E (2, 4)

=
∑T

t1=1

∑n

j1 6=i1

∑n

i1=1

∑T

t2=1

∑n

j2 6=i2

∑n

i2=1
E(ν2

i1t1ν
2
j1t1

−Eν2
i1t1Eν

2
j1t1)E(ν2

i2t2ν
2
j2t2 − Eν

2
i2t2Eν

2
j2t2)

=
∑T

t1=1

∑n

j1 6=i1

∑n

i1=1

∑T

t2=1

∑n

j2 6=i2

∑n

i2=1
σ8(2h2e2

i1e
2
j1)(2h

2e2
i2e

2
j2)

= 4σ8h4
∑T

t1=1

∑n

j1 6=i1

∑n

i1=1

∑T

t2=1

∑n

j2 6=i2

∑n

i2=1
e2
i1e

2
j1e

2
i2e

2
j2

≤ 4σ8h4T 2 = O(T 2).

There are at most n3T 2 terms in E(2, j < 4), hence E(2, j < 4) = O(n3T 2). Combining these

results, we have E (2, ·) = O(T 2) +O(n3T 2) = O(n3T 2).

(3)

1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
ν2
itν

2
is

=
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
Eν2

itEν
2
is +

1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
(ν2
itν

2
is − Eν2

itEν
2
is)

=
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
Eν2

itEν
2
is +

1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
(ν2
itν

2
is − Eν2

itEν
2
is)

=
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
(σ2 + σ2he2

i )
2 +

1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
(ν2
itν

2
is − Eν2

itEν
2
is)

= (
T − 1

T
σ4 +

T − 1

nT
2σ4h+

T − 1

nT
σ4h2

∑n

i=1
e4
i )

+
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
(ν2
itν

2
is − Eν2

itEν
2
is)

= [
T − 1

T
σ4 +O(

1

n
)] + [Op(

1√
T

)] = σ4 +Op(
1√
T

)
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since

E[
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
(ν2
itν

2
is − Eν2

itEν
2
is)]

2

=
1

n2T 4

∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑T

t2=1

∑T

s2 6=t2

∑n

i2=1
E(ν2

i1t1ν
2
i1s1

−Eν2
i1t1Eν

2
i1s1)(ν

2
i2t2ν

2
i2s2 − Eν

2
i2t2Eν

2
i2s2)

=
1

n2T 4
O(n2T 3) = O(

1

T
).

When s1, s2, t1, t2 are different from each other, we have

E(ν2
i1t1ν

2
i1s1 − Eν

2
i1t1Eν

2
i1s1)(ν

2
i2t2ν

2
i2s2 − Eν

2
i2t2Eν

2
i2s2) = 0.

(4) 1
nT 2

∑T
t=1

∑T
s 6=t
∑n

i=1

∑n
j 6=i νitνisνjsνjt = Op(

1
T ). This is because

E[
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j 6=i
νitνisνjsνjt]

2

=
1

n2T 4

∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t2=1

∑T

s2 6=t2

∑n

i2=1

∑n

j2 6=i2
E(νi1t1

νi1s1νj1s1νj1t1νi2t2νi2s2νj2s2νj2t2)

=
1

n2T 4
[E(4, 4) + E(4, 3) + E(4, 2) + E(3, 4) +

E(3, 3) + E(3, 2) + E(2, 4) + E(2, 3) + E(2, 2)]

=
1

n2T 4
[O(T 4) +O(T 4) +O(T 4) +O(T 3)

+O(T 3√n) +O(T 3) +O(T 2) +O(T 2n) +O(T 2n2)]

= O(
1

n2
) +O(

1

n
3
2T

) +O(
1

T 2
) = O(

1

T 2
).

The above calculation is based on the following results.

E(4, 4) =
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t2=1

∑T

s2 6=t2

∑n

i2=1

∑n

j2 6=i2
σ8(hei1ej1)

2(hei2ej2)
2

= σ8h4
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t2=1

∑T

s2 6=t2

∑n

i2=1

∑n

j2 6=i2
e2
i1e

2
j1e

2
i2e

2
j2

≤ σ8h4T 4 = O(T 4).

E(4, 3) =
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t2=1

∑T

s2 6=t2

∑n

j2 6=j1
σ8(hei1ej1)

2(hej1ej2)
2

= σ8h4
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t2=1

∑T

s2 6=t2

∑n

j2 6=j1
e2
i1e

4
j1e

2
j2

≤ σ8h4T 4 = O(T 4).

E(4, 2) =
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t2=1

∑T

s2 6=t2
σ8(hei1ej1)

4

= σ8h4
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t2=1

∑T

s2 6=t2
e4
i1e

4
j1

≤ σ8h4T 4 = O(T 4).
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E(3, 4) =
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t1 6=t2

∑n

i2=1

∑n

j2 6=i2
E(νi1s1

νj1s1)E(νi1t1νj1t1νi2t1νj2t1)E(νi2t2νj2t2)

=
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t1 6=t2

∑n

i2=1

∑n

j2 6=i2
(σ2hei1ej1)[(σ

2hei1ej1)

(σ2hei2ej2) + (σ2hei1ei2)(σ
2hej1ej2) + (σ2hei1ej2)(σ

2hei2ej1)](σ
2hei2ej2)

= 3σ8h4
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t1 6=t2

∑n

i2=1

∑n

j2 6=i2
e2
i1e

2
j1e

2
i2e

2
j2

≤ 3σ8h4T 3 = O(T 3),

with Eνrνsνhνq = asrahq + asqahr + asharq.

E(3, 3) =
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t1 6=t2

∑n

j2 6=j1
Eνi1s1νj1s1Eνi1t1ν

2
j1t1νj2t1Eνj1t2νj2t2

=
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t1 6=t2

∑n

j2 6=j1
(σ2hei1ej1)[(σ

2 + σ2he2
j1)(σ

2hei1ej2)

+2(σ2hei1ej1)(σ
2hej1ej2)](σ

2hej1ej2)

=
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t1 6=t2

∑n

j2 6=j1
(3σ8h4e2

i1e
4
j1e

2
j2 + σ8h3ei1e

3
j1e

2
j2),

with Eν2
rνsνh = 2asrahr + arrash. Hence,

|E(3, 3)| ≤
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t1 6=t2

∑n

j2 6=j1
3σ8h4e2

i1e
4
j1e

2
j2

+
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t1 6=t2

∑n

j2 6=j1
σ8h3ei1

∣∣e3
j1

∣∣ e2
j2

≤ 3σ8h4T 3 + σ8h3T 3√n = O(T 3√n).

E(3, 2) =
∑T

t1=1

∑T

s1 6=t1

∑T

t1 6=t2

∑n

i=1

∑n

j 6=i
Eνis1νjs1Eν

2
it1ν

2
jt1Eνit2νjt2

=
∑T

t1=1

∑T

s1 6=t1

∑T

t1 6=t2

∑n

i=1

∑n

j 6=i
(σ2heiej)

2[(σ2 + σ2he2
i )(σ

2 + σ2he2
j )

+2(σ2heiej)
2]

=
∑T

t1=1

∑T

s1 6=t1

∑T

t1 6=t2

∑n

i=1

∑n

j 6=i
(σ8h2e2

i e
2
j + σ8h3e4

i e
2
j + σ8h3e2

i e
4
j + 3σ8h4e4

i e
4
j )

≤ σ8h2T 3 + 2σ8h3T 3 + 3σ8h4T 3 = O(T 3),

with Eν2
sν

2
h = assahh + 2a2

sh.

E(2, 4) = 2
∑T

t=1

∑T

s 6=t

∑n

i1=1

∑n

j1 6=i1

∑n

i2=1

∑n

j2 6=i2
Eνi1sνj1sνi2sνj2sEνi1tνj1tνi2tνj2t

= 2
∑T

t=1

∑T

s 6=t

∑n

i1=1

∑n

j1 6=i1

∑n

i2=1

∑n

j2 6=i2
[(σ2hei1ej1)(σ

2hei2ej2)

+(σ2hei1ei2)(σ
2hej1ej2) + (σ2hei1ej2)(σ

2hei2ej1)]
2

= 18σ8h4
∑T

t=1

∑T

s 6=t

∑n

i1=1

∑n

j1 6=i1

∑n

i2=1

∑n

j2 6=i2
e2
i1e

2
j1e

2
i2e

2
j2

≤ 18σ8h4T 2 = O(T 2),
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with Eνrνsνhνq = asrahq + asqahr + asharq.

E(2, 3) = 2
∑T

t=1

∑T

s 6=t

∑n

i1=1

∑n

j1 6=i1

∑n

j2 6=j1
Eνi1tν

2
j1tνj2tEνi1sν

2
j1sνj2s

= 2
∑T

t=1

∑T

s 6=t

∑n

i1=1

∑n

j1 6=i1

∑n

j2 6=j1
[(σ2 + σ2he2

j1)(σ
2hei1ej2)

+2(σ2hei1ej1)(σ
2hej1ej2)]

2

= 2
∑T

t=1

∑T

s 6=t

∑n

i1=1

∑n

j1 6=i1

∑n

j2 6=j1
(σ8h2e2

i1e
2
j2 + 6σ8h3e2

i1e
2
j1e

2
j2 + 9σ8h4e2

i1e
4
j1e

2
j2)

≤ 2σ8h2T 2n+ 12σ8h3T 2 + 18σ8h4T 2 = O(T 2n),

with Eν2
rνsνh = 2asrahr + arrash,

E(2, 2) = 2
∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j 6=i
Eν2

itν
2
jtEν

2
isν

2
js

= 2
∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j 6=i
[(σ2 + σ2he2

i )(σ
2 + σ2he2

j ) + 2(σ2heiej)
2]2

= 2
∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j 6=i
(σ8 + σ8h2e4

i + σ8h2e4
j + 9σ8h4e4

i e
4
j

+2σ8he2
i + 2σ8he2

j + 8σ8h2e2
i e

2
j + 6σ8h3e4

i e
2
j + 6σ8h3e2

i e
4
j )

≤ 2σ8T 2n2 + 4σ8h2T 2n+ 18σ8h4T 2 + 8σ8hT 2n+ 16σ8h2T 2 + 24σ8h3T 2

= O(T 2n2),

with Eν2
sν

2
h = assahh + 2a2

sh.

Proof of part (c). Recall that ỹit = x̃′itβ+ν̃it, ν̂it = ỹit−x̃′itβ̃ = ν̃it−x̃′it(β̃−β), ν̂t = ν̃t−x̃t(β̃−β),

ν̃t = νt − ν̄·, Ŝ = 1
T

∑T
t=1 ν̂tν̂

′
t, and S = 1

T

∑T
t=1 νtν

′
t. Hence,

1

n
trŜ − 1

n
trS

=
1

n
tr(

1

T

∑T

t=1
ν̂tν̂
′
t −

1

T

∑T

t=1
νtν
′
t)

=
1

n
tr[

1

T

∑T

t=1
ν̃tν̃
′
t −

1

T

∑T

t=1
νtν
′
t −

1

T

∑T

t=1
x̃t(β̃ − β)ν̃ ′t

− 1

T

∑T

t=1
ν̃t(β̃ − β)′x̃′t +

1

T

∑T

t=1
x̃t(β̃ − β)(β̃ − β)′x̃′t]

= − 1

T
σ2 − h

nT
+Op(

1

T
√
nT

) +Op(
1

T
√
n

) +Op(
1

nT
)

= −σ
2

T
+Op(

1

T
√
n

),

since

− 1

nT
tr[
∑T

t=1
x̃t(β̃ − β)ν̃ ′t] = Op(

1

nT
),

− 1

nT
tr[
∑T

t=1
ν̃t(β̃ − β)′x̃′t] = Op(

1

nT
),
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1

nT
tr[
∑T

t=1
x̃t(β̃ − β)(β̃ − β)′x̃′t] = Op(

1

nT
),

1

nT
tr[
∑T

t=1
ν̃tν̃
′
t −

1

T

∑T

t=1
νtν
′
t]

= − 1

n
tr(ν̄·ν̄

′
·) = − 1

n
ν̄ ′·ν̄· = −

1

n

∑n

i=1
ν̄2
i· = −

1

n

∑n

i=1
(

1

T

∑T

t=1
νit)

2

= − 1

nT 2

∑T

t=1

∑n

i=1
ν2
it −

1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
νisνit

= − 1

nT 2

∑T

t=1

∑n

i=1
(σ2 + σ2he2

i )−
1

nT 2

∑T

t=1

∑n

i=1
(ν2
it − Eν2

it)

− 1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
νisνit

= − 1

T
σ2 − σ2h

nT
+Op(

1

T
√
nT

) +Op(
1

T
√
n

).

In establishing the above results, we have used:

∑T

t=1

∑n

i=1
x̃itx̃

′
it = Op(nT ),

∑T

t=1

∑n

i=1
x̃itν̃it = Op(

√
nT ),

β̃ − β = (
∑T

t=1

∑n

i=1
x̃itx̃

′
it)
−1
∑T

t=1

∑n

i=1
x̃itν̃it = Op

(
1√
nT

)
,

1

nT

∑T

t=1

∑n

i=1
(ν2
it − Eν2

it) = Op

(
1√
nT

)
,

and

E(− 1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
νisνit)

2

=
2

n2T 4

∑n

i=1

∑n

j=1

∑T

t=1

∑T

s 6=t
Eνisνjsνitνjt

=
2

n2T 4

∑n

i=1

∑n

j=1
T (T − 1)E2νisνjs

=
2

n2T 4
T (T − 1)[

∑n

i=1

∑n

j 6=i
σ4h2e2

i e
2
j +

∑n

i=1
(σ2 + σ2he2

i )
2]

=
2

n2T 4
T (T − 1)(nσ4 + 2σ4h+ σ4h2)

=
2

n2T 4
Op(nT

2) = Op(
1

nT 2
).
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Proof of part (d). Note that

1

n
trŜ2 − 1

n
trS2

=
2

n
tr[S(Ŝ − S)]− 1

n
tr(Ŝ − S)2

=
2

n
tr[S(−A0 −A1 −A2 +A3)] +

1

n
tr(−A0 −A1 −A2 +A3)2

= − 4

n
tr(SA1) +

2

n
tr(SA3) +

2

n
tr(A2

1) +
2

n
tr(A1A2)− 4

n
tr(A1A3)

+
1

n
tr(A2

3)− 2

n
tr(SA0) +

1

n
tr(A2

0) +
4

n
tr(A0A1)− 2

n
tr(A0A3),

since

tr(A0A1) = tr(A1A0) = tr(A0A2) = tr(A2A0),

tr(A1A2) = tr(A2A1),

tr(A3A1) = tr(A1A3) = tr(A3A2) = tr(A2A3),

tr(A2
1) = tr(A2

2),

tr(SA2) = tr(SA1).

Using Lemma 3, we have

1

n
trŜ2 − 1

n
trS2

= −2[
1

T
σ4 +

n

T 2
σ4 +Op(

1

T
√
T

)] + [
n

T 2
σ4 +Op(

√
n

T 2
)]

+Op(
1

nT
) +Op(

1

T 2
) +Op(

1

T
√
nT

)

= − 2

T
σ4 − n

T 2
σ4 +Op(

1

T
√
T

).

Here we used n
T → c ∈ (0,∞) implicitly.

C Proof of Theorem 2

Proof. Now

ĴLW − JLW =
TW2( 1

n trS)2 − 2TW1
1
n trS

1
n trS

2 − TW 2
1

1
n trS

2

2( 1
n trS +W1)2( 1

n trS)2
.
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For the numerator,

TW2(
1

n
trS)2 − 2TW1

1

n
trS

1

n
trS2 − TW 2

1

1

n
trS2

= T [− 2

T
σ4 − n

T 2
σ4 +Op(

1

T
√
T

)][σ2 +Op(
1√
nT

)]2

−2T [−σ
2

T
+Op(

1

T
√
n

)][σ2 +Op(
1√
nT

)][(
n

T
+ 1)σ4 +Op(

1√
T

)]

−T [−σ
2

T
+Op(

1

T
√
n

)]2[(
n

T
+ 1)σ4 +Op(

1√
T

)]

= [−2σ4 − n

T
σ4 +Op(

1√
T

)][σ4 +Op(
1√
nT

)]

+[2σ2 +Op(
1√
n

)][σ2 +Op(
1√
nT

)][(
n

T
+ 1)σ4 +Op(

1√
T

)]

+[−σ
4

T
+Op(

1

T
√
n

)][(
n

T
+ 1)σ4 +Op(

1√
T

)]

= −2σ8 − n

T
σ8 +Op(

1√
T

) +Op(
1√
nT

)

+2(
n

T
+ 1)σ8 +Op(

1√
n

) +Op(
1√
T

)

=
n

T
σ8 − n

T 2
σ8 +Op(

1√
T

).

For the denominator,

2(
1

n
trS +W1)2(

1

n
trS)2

= 2[σ2 +Op(
1√
nT

)− σ2

T
+Op(

1

T
√
n

)]2[σ2 +Op(
1√
nT

)]2

= 2[
(T − 1)2

T 2
σ4 +Op(

1√
nT

)][σ4 +Op(
1√
nT

)]

=
2(T − 1)2

T 2
σ8 +Op(

1√
nT

).

Hence ĴLW − JLW − n
2(T−1) =

n
T
σ8− n

T2
σ8+Op( 1√

T
)

2(T−1)2
T2

σ8+Op( 1√
nT

)
− n

2(T−1)

p→ 0 as (n, T )→∞ and n
T → c ∈ (0,∞).

D Proof of Theorem 4

Proof. Under the strong factor alternative, the n × 1 vectors ν1, ..., νT are iid N(0,Σn), where

Σn = σ2(In +
∑r

j=1 hjeje
′
j) and

hj
n → dj ∈ (0,∞) for j = 1, ..., r.

Σn = ΓnΛnΓ′n, where Λn = diag(λ1, ..., λn). λ1, ..., λn are eigenvalues of Σn and λj = σ2(1+hj)

for j = 1, ..., r, λj = σ2 for j = r+ 1, ..., n. Γn = (e1, ...er, g1, ...gn−r) and g1, ...gn−r are constructed
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such that Γn is orthogonal.

Let wt = Λ
− 1
2

n Γ′nνt, then wt is iid N(0, In). Let V = (ν1, ..., νT ) and W = (w1, ..., wT ), then

W = Λ
− 1
2

n Γ′nV . Let W
′ = (ω1, ...ωn), then ωi is iid N(0, IT ), since we assume there is no time

dependence.

trS =
1

T
trV V ′ =

1

T
trV ′V =

1

T
tr(V ′ΓnΛ

− 1
2

n )Λn(Λ
− 1
2

n Γ′nV ) =
1

T
trW ′ΛnW

=
1

T
tr(
∑n

i=1
λiωiω

′
i) =

1

T
tr(
∑n

i=1
λiω
′
iωi) =

1

T

∑n

i=1
λiαii.

Here αii = ω′iωi has a chi-squared distribution of with T degrees of freedom. Note that

E(
1

n
trS) =

1

nT
E(
∑n

i=1
λiαii) =

1

n

∑n

i=1
λi = σ2(1 +

∑r

j=1
hj/n)

→ σ2(1 +
∑r

j=1
dj)

and

V ar(
1

n
trS) = E(

1

n
trS)2 − E2(

1

n
trS) =

1

n2T 2
E(
∑n

i=1
λiαii)

2 − (
1

n

∑n

i=1
λi)

2

=
1

n2T 2
E(
∑n

i=1
λiα

2
ii + 2

∑
i<j

λiλjαiiαjj)− (
1

n

∑n

i=1
λi)

2,

with

E(α2
ii) = T 2 + 2T

E(αiiαjj) = E(αii)E(αjj) = T 2.

We have

V ar(
1

n
trS) =

1

n2T 2
(2T

∑n

i=1
λ2
i + T 2(

∑n

i=1
λi)

2)− (
1

n

∑n

i=1
λi)

2

=
2

n2T

∑n

i=1
λ2
i =

2

n2T
σ4(
∑r

j=1
h2
j + 2

∑r

j=1
hj + n)

=
2

T
σ4(
∑r

j=1
(
hj
n

)2 + 2
∑r

j=1

hj
n2

+
1

n
)→ 0.

Therefore 1
n trS

p→ σ2(1 +
∑r

j=1 dj). Note that

1

n
trS2 =

1

nT 2
tr(V V ′V V ′) =

1

nT 2
tr(V ′V V ′V ) =

1

nT 2
tr(W ′ΛnWW ′ΛnW )

=
1

nT 2
tr(
∑n

i=1
λiωiω

′
i)(
∑n

J=1
λjωjω

′
j)

=
1

nT 2
[
∑n

i=1
λ2
i (ω
′
iωi)

2 + 2
∑

i<j
λiλj(ω

′
iωj)

2]

=
1

nT 2
(
∑n

i=1
λ2
iα

2
ii + 2

∑
i<j

λiλjα
2
ij)
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with αij = ω′iωj . hj ≥ 0 for j = 1, ..., r, so λj = σ2(1 + hj) ≥ σ2 for all j. Hence

1

n
trS2 ≥ 1

nT 2
(λ2

1 − σ4)α2
11 = σ4h

2
1 + 2h1

n

α2
11

T 2
.

Note that α11 follows a Chi-square distribution with T degree of freedom. Hence α11−T√
2T

d→ N(0, 1),

and

α11 = T +
√

2T (
α11 − T√

2T
) = T +Op(

√
T ).

Consequently,

1

n
trS2 ≥ nσ4h

2
1 + 2h1

n2

α2
11

T 2
= nσ4h

2
1 + 2h1

n2

T 2 +Op(T
√
T )

T 2

= nσ4h
2
1 + 2h1

n2
+ nσ4h

2
1 + 2h1

n2
Op(

1√
T

) = nσ4d2
1 +Op(

n√
T

).

This implies 1
n trS

2 p→∞ at least as fast as n. On the other hand,

1

n
trS2 =

1

nT 2
(
∑n

i=1
λ2
iα

2
ii +

∑
i 6=j

λiλjα
2
ij)

=
1

nT 2

∑r

i=1
(h2
i + 2hi)α

2
ii +

1

nT 2

∑n

i=1
α2
ii +

1

nT 2

∑r

i=1

∑r

j=1,j 6=i
(1 + hi)(1 + hj)α

2
ij

+
1

nT 2

∑r

i=1

∑n

j=r+1
(1 + hi)α

2
ij +

1

nT 2

∑n

i=r+1

∑r

j=1
(1 + hj)α

2
ij

+
1

nT 2

∑n

i=r+1

∑n

j=r+1,j 6=i
α2
ij

=
1

nT 2

∑r

i=1
(h2
i + 2hi)α

2
ii +

1

nT 2

∑n

i=1
α2
ii +

1

nT 2

∑r

i=1

∑r

j=1,j 6=i
hihjα

2
ij

+
1

nT 2

∑r

i=1

∑r

j=1,j 6=i
(hi + hj)α

2
ij +

1

nT 2

∑r

i=1

∑r

j=1,j 6=i
α2
ij

+
1

nT 2

∑r

i=1

∑n

j=r+1
hiα

2
ij +

1

nT 2

∑r

i=1

∑n

j=r+1
α2
ij +

1

nT 2

∑n

i=r+1

∑r

j=1
hjα

2
ij

+
1

nT 2

∑n

i=r+1

∑r

j=1
α2
ij +

1

nT 2

∑n

i=r+1

∑n

j=r+1,j 6=i
α2
ij

=
1

nT 2

∑r

i=1
(h2
i + 2hi)α

2
ii +

1

nT 2

∑n

i=1
α2
ii +

1

nT 2

∑r

i=1

∑r

j=1,j 6=i
hihjα

2
ij

+
1

nT 2

∑r

i=1

∑n

j=1,j 6=i
hiα

2
ij +

1

nT 2

∑n

i=1,i 6=j

∑r

j=1
hjα

2
ij +

1

nT 2

∑n

i=1

∑n

j=1,j 6=i
α2
ij

=
1

nT 2

∑r

i=1
(h2
i + 2hi)α

2
ii +

1

nT 2

∑r

i=1

∑r

j=1,j 6=i
hihjα

2
ij

+2
1

nT 2

∑r

i=1

∑n

j=1,j 6=i
hiα

2
ij +

1

nT 2

∑n

i=1

∑n

j=1
α2
ij

= Op(n) +Op(
n

T
) +Op(

n

T
) +Op(

n

T
) = Op(n).
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This is because

αij = Op(
√
T ),

1

nT 2

∑n

i=1

∑n

j=1
α2
ij =

1

n
trWW ′ = (

n

T
+ 1)σ4 +Op(

1√
T

),

1

nT 2

∑r

i=1

∑n

j=1,j 6=i
hiα

2
ij = Op(

n

T
).

The last equation follows from

E(
1

nT 2

∑n

j=1,j 6=i
α2
ij)

2 =
1

n2T 4

∑n

j=1,j 6=i
Eα4

ij +
1

n2T 4

∑n

j=1,j 6=i

∑n

k=1,k 6=i,k 6=j
Eα2

ijα
2
ik

=
1

n2T 4
(n− 1)[3T (T + 2)] +

1

n2T 4
(n− 1)(n− 2)[T (T + 2)]

=
1

n2T 4
(n2 − 1)T (T + 2) = O(

1

T 2
),

for any i = 1, ..., r. Therefore, 1
n trS

2 = Op(n) exactly, i.e. 1
n trS

2 6= op(n). Hence

U = (
1

n
trS)−2(

1

n
trS2)− 1 = Op(n),

and

JLW =
TU − n− 1

2
= Op(nT ).

E Proof of Proposition 2

Proof of part (a). Note that

1

n
trS =

1

n
tr[

1

T

∑T

t=1
νtν
′
t] =

1

nT

∑T

t=1

∑n

i=1
ν2
it

= σ2(1 +

∑r
j=1 hj

n
) +

1

nT

∑T

t=1

∑n

i=1
(ν2
it − Eν2

it)

= σ2(1 +
∑r

j=1
dj) +Op(

1√
T

),

since

E[
1

nT

∑T

t=1

∑n

i=1
(ν2
it − Eν2

it)]
2 =

1

n2T 2

∑T

t=1

∑n

i=1

∑n

j=1
E(ν2

it − Eν2
it)(ν

2
jt − Eν2

jt)

=
1

n2T 2
O(n2T ) = O(

1

T
).
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Proof of part (b). As shown in part (b) in Proposition 1,

1

n
trS2 =

1

nT 2

∑T

t=1

∑n

i=1
ν4
it +

1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
ν2
itν

2
jt

+
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1
ν2
itν

2
is +

1

nT 2

∑T

t=1

∑T

s6=t

∑n

i=1

∑n

j 6=i
νitνisνjsνjt

= Op(
1

T
) +Op(1) +Op(1) + {n(T − 1)

T
σ4[
∑r

j=1
d2
j −

∑n

i=1
(
∑r

j=1
dje

2
i,j)

2] +Op(
√
n)}

=
n(T − 1)

T
σ4[
∑r

j=1
d2
j −

∑n

i=1
(
∑r

j=1
dje

2
i,j)

2] +Op(
√
n).

Here we have used the following four results:

(1)

1

nT 2

∑T

t=1

∑n

i=1
ν4
it =

1

T
Eν4

it +
1

nT 2

∑T

t=1

∑n

i=1
(ν4
it − Eν4

it) = Op(
1

T
) +Op(

1

T
) = Op(

1

T
).

(2) If nT → c ∈ (0,∞),

1

nT 2

∑T

t=1

∑n

j 6=i

∑n

i=1
ν2
itν

2
jt = Op(1).

(3)
1

nT 2

∑T

t=1

∑T

s6=t

∑n

i=1
ν2
itν

2
is = Op(1).

(4)

1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j 6=i
νitνisνjsνjt

=
n(T − 1)

T
σ4[
∑r

j=1
d2
j −

∑n

i=1
(
∑r

j=1
dje

2
i,j)

2] +Op(
√
n).

This is because:

E[
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j 6=i
νitνisνjsνjt]

2

=
1

n2T 4

∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t2=1

∑T

s2 6=t2

∑n

i2=1

∑n

j2 6=i2
E(νi1t1

νi1s1νj1s1νj1t1νi2t2νi2s2νj2s2νj2t2)

=
1

n2T 4
[E(4, 4) + E(4, 3) + E(4, 2) + E(3, 4)

+E(3, 3) + E(3, 2) + E(2, 4) + E(2, 3) + E(2, 2)]

=
1

n2T 4
E(4, 4) +O(n) =

(T − 1)2

n2T 2
σ8[
∑r

j=1
h2
j −

∑n

i1=1
(
∑r

j=1
hje

2
i1,j)

2]2 +O(n)

= E2[
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j 6=i
νitνisνjsνjt] +O(n).
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With
∑n

j1
e2
j1,j

= 1 for each j and
∑n

j1
ej1,jej1,k = 0, it can be shown that

E(4, 4) =
∑T

t1=1

∑T

s1 6=t1

∑n

i1=1

∑n

j1 6=i1

∑T

t2=1

∑T

s2 6=t2

∑n

i2=1

∑n

j2 6=i2
σ8

(
∑r

j=1
hjei1,jej1,j)

2(
∑r

j=1
hjei2,jej2,j)

2

= σ8T 2(T − 1)2[
∑n

i1=1

∑n

j1 6=i1
(
∑r

j=1
h2
je

2
i1,je

2
j1,j + 2

∑
j<k

hjhkei1,jej1,jei1,kej1,k)]
2

= σ8T 2(T − 1)2[
∑n

i1=1
(
∑r

j=1
h2
je

2
i1,j(1− e

2
i1,j)− 2

∑
j<k

hjhke
2
i1,je

2
i1,k]

2

= σ8T 2(T − 1)2[
∑n

i1=1
(
∑r

j=1
h2
je

2
i1,j −

∑r

j=1
h2
je

4
i1,j)− 2

∑
j<k

hjhke
2
i1,je

2
i1,k]

2

= σ8T 2(T − 1)2[
∑r

j=1
h2
j −

∑n

i1=1
(
∑r

j=1
hje

2
i1,j)

2]2,

E[
1

nT 2

∑T

t=1

∑T

s 6=t

∑n

i=1

∑n

j 6=i
νitνisνjsνjt] =

(T − 1)

nT
σ4
∑n

i1=1

∑n

j1 6=i1
(
∑r

j=1
hjei1,jej1,j)

2

=
(T − 1)

nT
σ4[
∑r

j=1
h2
j −

∑n

i1=1
(
∑r

j=1
hje

2
i1,j)

2].

Proof of part (c). As shown in part (c) of Proposition 1,

1

n
tr(Ŝ − S) =

1

n
tr[
∑n

i=1
(

1

T

∑T

t=1
νit)

2 − 1

T

∑T

t=1
x̃t(β̃ − β)ν̃ ′t

− 1

T

∑T

t=1
ν̃t(β̃ − β)′x̃′t +

1

T

∑T

t=1
x̃t(β̃ − β)(β̃ − β)′x̃′t].

With hj
n → dj ∈ (0,∞),

∑T
t=1

∑n
i=1 x̃

′
itν̃it = Op(

√
nT ). The proof is as follows. ν̃t = ΓnΛ

1
2
n w̃t,

where wt = Λ
− 1
2

n Γ′nνt is iid N(0, In). Hence∑T

t=1

∑n

i=1
x̃itν̃it =

∑T

t=1
x̃′tΓnΛ

1
2
n w̃t =

∑T

t=1
x̃′tΓn(Λ

1
2
n − σIn)w̃t + σ

∑T

t=1
x̃′tΓnInw̃t

= σ
∑T

t=1
x̃′tΓnHw̃t + σ

∑T

t=1
x̃′tΓnw̃t = σ

∑T

t=1
y′tHw̃t + σ

∑T

t=1
y′tw̃t,

where H = diag(
√

1 + h1 − 1, ...,
√

1 + hr − 1, 0, ..., 0), yt = Γ′nx̃t. Hence∑T

t=1

∑n

i=1
x̃itν̃it = σ

∑r

j=1

∑T

t=1
(
√

1 + hj − 1)yjtw̃jt + σ
∑T

t=1
y′tw̃t

=
√
nσ
∑r

j=1

∑T

t=1
(

√
1 + hj
n
−
√

1

n
)yjtw̃jt + σ

∑T

t=1
y′tw̃t.

With some regularity conditions on X and hj
n → dj ∈ (0,∞), it is easy to see that∑T

t=1

∑n

i=1
x̃itν̃it = Op(

√
nT ) +Op(

√
nT ) = Op(

√
nT ).

Consequently,

β̃ − β = (
1

nT

∑T

t=1

∑n

i=1
x̃itx̃

′
it)
−1(

1

nT

∑T

t=1

∑n

i=1
x̃itν̃it) = Op(

1√
nT

),
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− 1

nT
tr[
∑T

t=1
x̃t(β̃ − β)ν̃ ′t] = Op(

1

nT
),

− 1

nT
tr[
∑T

t=1
ν̃t(β̃ − β)′x̃′t] = Op(

1

nT
),

and
1

nT
tr[
∑T

t=1
x̃t(β̃ − β)(β̃ − β)′x̃′t] = Op(

1

nT
).

In addition,
1

n

∑n

i=1
(

1

T

∑T

t=1
νit)

2 =
1

nT

∑n

i=1
(

1√
T

∑T

t=1
νit)

2 = Op(
1

T
).

Therefore,
1

n
tr(Ŝ − S) = Op(

1

T
) +Op(

1

nT
) +Op(

1

nT
) +Op(

1

nT
) = Op(

1

T
).

Proof of part (d). As in part (d) of Proposition 1,

1

n
trŜ2 − 1

n
trS2 = − 4

n
tr(SA1) +

2

n
tr(SA3) +

2

n
tr(A2

1) +
2

n
tr(A1A2)− 4

n
tr(A1A3)

+
1

n
tr(A2

3)− 2

n
tr(SA0) +

1

n
tr(A2

0) +
4

n
tr(A0A1)− 2

n
tr(A0A3).

Using Lemma 3,

1

n
trŜ2 − 1

n
trS2 = Op(

√
n

T
) +Op(

1

T
) +Op(

1

T 2
) +Op(

1

T 2
) +Op(

1√
nT 2

)

+Op(
1

nT 2
) +Op(

n

T
) +Op(

n

T 2
) +Op(

√
n

T 2
) +Op(

1

T 2
) = Op(

n

T
).

Here we used n
T → c ∈ (0,∞) implicitly.

F Proof of Theorem 5

Proof. Recall that ĴLW − JLW =
TW2( 1

n
trS)2−2TW1

1
n
trS 1

n
trS2−TW 2

1
1
n
trS2

2( 1
n
trS+W1)2( 1

n
trS)2

.

For the numerator,

TW2(
1

n
trS)2 − 2TW1

1

n
trS

1

n
trS2 − TW 2

1

1

n
trS2

= TOp(
n

T
)[σ2(1 +

∑r

j=1
dj) +Op(

1√
T

)]2

−2TOp(
1

T
)[σ2(1 +

∑r

j=1
dj) +Op(

1√
T

)][
n(T − 1)

T
σ4[
∑r

j=1
d2
j −∑n

i=1
(
∑r

j=1
dje

2
i,j)

2] +Op(
√
n)]

−T [Op(
1

T
)]2[

n(T − 1)

T
σ4[
∑r

j=1
d2
j −

∑n

i=1
(
∑r

j=1
dje

2
i,j)

2] +Op(
√
n)]

= Op(n) +Op(n) +Op(
n

T
) = Op(n).
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For the denominator,

2(
1

n
trS +W1)2(

1

n
trS)2

= 2[σ2(1 +
∑r

j=1
dj) +Op(

1√
T

) +Op(
1

T
)]2[σ2(1 +

∑r

j=1
dj) +Op(

1√
T

)]2

= 2σ8(1 +
∑r

j=1
dj)

4 +Op(
1√
T

).

Therefore, ĴLW − JLW =
Op(n)

2σ8(1+
∑r
j=1 dj)

4+Op( 1√
T

)
= Op(n). Here we used n

T → c ∈ (0,∞)

implicitly.

G Proof of Theorem 6

Proof. From the proof of Theorem 4, we know that 1
n trS

p→ 1+
∑r

j=1 dj and
1
n trS

2 ≥ σ4 h
2
1+2h1
n

α211
T 2
.

For any M > 0,

P (ĴLW > M) = P (ĴLW − JLW + JLW > M)

= P (Op(n) + JLW > M) = P (
Op(n) + JLW

nT
>
M

nT
)

= P (
Op(n) + [T

1
n
trS2

( 1
n
trS)2

− T − n− 1]

nT
>
M

nT
)

= P (
1

n2
trS2 > (

1

n
trS)2(

M

nT
+

1

T
+
T + 1

nT
+Op(

1

T
)))

≥ P (σ4h
2
1 + 2h1

n2

α2
11

T 2
> (

1

n
trS)2(

M

nT
+

1

T
+
T + 1

nT
+Op(

1

T
)))

= P (
α2

11

T 2
>

1

σ4d2
1

(
1

n
trS)2(

M

nT
+

1

T
+
T + 1

nT
+Op(

1

T
))) ≥ P (

α2
11

T 2
>

c√
T

)

for some c > 0. This holds since 1
σ4d21

( 1
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for a large enough T .

Hence
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since α11−T√
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√

T
2
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T
1
4
−
√

T
2 → −∞.
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