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Abstract 

 
We consider the effectiveness of an illustrative annuity hedging problem in which a forward 
annuity predicated on one population is hedged by a position in a forward annuity predicated 
on another population. Our analysis makes use of the age-period-cohort two-population gravity 
model that takes account of the observed inter-dependence between the two populations’ 
mortality rates; it also considers the implications of parameter uncertainty, individual death or 
Poisson risk and interest-rate risk for hedge effectiveness.  We consider horizons of up to 20 
years. For the most part, our results are robust and indicate strong hedge effectiveness, with 
estimates of relative risk reduction varying from about 0.70 in the least effective case to well 
over 0.95 in the most effective cases. 
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Hedging Pension Risks with the Age-Period-Cohort Two-Population Gravity Model 
 

 
1. Introduction 
 
Consider the problem of how to hedge an annuity predicated on a cohort from one population 
(e.g., that to which a pension fund is exposed) with an annuity predicated on another population 
(e.g., the national population). The annuity being hedged represents a typical pension fund’s 
exposure (to mainly longevity risk and interest rate risk) and the hedge instrument is a second 
annuity offered by a capital markets institution. Equivalently, the hedge can also be regarded 
as a deferred annuity swap.  
 
More specifically, the pension fund is assumed to have a deferred annuity exposure at horizon 
T ,  and its annuitant population is considered to be a representative large sample drawn from 
the UK Continuous Mortality Investigation (CMI) male assured lives  population. The pension 
fund seeks to hedge this exposure with a deferred annuity of the same horizon predicated on 
the England & Wales (E&W) male mortality index (i.e., on the national population of England 
& Wales). Both annuities involve annual payments beginning at future time T of £1 to each 
surviving member of a cohort who will be aged 65 at T. Using obvious notation, we denote 
these annuities as ( , ,65)a T CMI  and ( , & ,65)a T E W  respectively.  
 
We know that the mortality rates of the two populations are highly, but not perfectly, correlated. 
This suggests that a hedge might be useful in reducing the pension fund’s risk exposure, but is 
unlikely to be perfect: some basis risk is likely to remain. 
 
Our problem is to design and assess an appropriate hedge position with this hedge instrument.  
To do this, we use the framework for basis risk analysis and hedge effectiveness laid out in 
Coughlan et al. (2011). The framework has three components: (i) the development of an 
informed understanding of basis risk, (ii) the appropriate calibration of the hedging instrument 
and (iii) an evaluation of hedge effectiveness.  
 
In applying this framework, this article is organized as follows. Section 2 discusses why basis 
risk and hedge calibration requires a two-population mortality model that takes account of the 
two populations’ interdependence. Section 3 discusses basis risk and hedge effectiveness using 
the Age-Period-Cohort (APC) version of the two-population gravity model of Dowd et al. 
(2011a):1,2 we initially use the simplest version of the model which disregards parameter 
uncertainty and Poisson death risk.3 Section 4 then generalizes the analysis to cover these cases. 
Section 5 further generalizes the analysis to cover interest-rate risk. Section 6 offers some 
conclusions and suggestions for extensions of the present work.  
 

                                                 
1 Alternatively, we could have used the Markov chain Monte Carlo (MCMC) two-population model of Cairns et 
al. (2011a) or the cointegration model of Li and Hardy (2011). An analysis of model risk would be a natural 
extension to the analysis presented here.                                                                         
2 Our work also complements the earlier analyses of Coughlan et al. (2011) and Cairns et al. (2014), both of which 
have considered somewhat similar hedging problems to those considered here.  
3 By Poisson death risk, we mean the random variation risk associated with death rates in a small sample of the 
overall population. If the sample is small, as will be the case in a small pension fund, the realized pattern of deaths 
could differ significantly from that of the national population. Since we assume that actual deaths follow a Poisson 
distribution, we will call the random variation risk Poisson risk. 
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Appendices A-D deal with various technical issues: A outlines the two-population gravity 
model used in this paper, B discusses parameter simulation, C discusses the simulation of 
Poisson deaths uncertainty and D discusses the simulation of future annuity prices.  
 
 
2. Why We Need a Two-Population Mortality Model 
 
 
To see why we need a two-population mortality model for evaluating hedge effectiveness, first 
consider the result of using two independent mortality models: one for each population. To be 
more precise, let us assume that we wish to simulate mortality q rates using the APC model 
applied to each population independently. Assume also for the time being that the parameters 
of the mortality model are certain and there is no Poisson death risk.   
 

Figure 1: Fan Chart Projections of q Rates for Age 65: Populations Treated 

Independently 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials. The model used is the ‘parameters certain’ version of the APC model with no allowance for 
individual deaths Poisson risk.  
 
Fan chart projections of the two populations’ mortality or q  rates for age 65 are given in Figure 
1. Both mortality rates are projected to fall sharply, with the E&W mortality rates falling 
somewhat more rapidly than the CMI ones; the fan charts are also relatively narrow. At first 
sight, this looks promising as a way of capturing realistic future behaviour for the q rates for 
both populations. 
 
Following Coughlan et al. (2011) and Cairns et al. (2014), we now consider a hedging strategy 
in which the size of the hedge ratio (in terms of units of the E&W forward annuity) is given by 
the standard formula:4 
 
                                                 
4 See Coughlan et al. (2004) for more details of optimizing hedge effectiveness in a general setting and Coughlan 
et al. (2007a,b) for the first applications to longevity hedging. 
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where ( )Tρ  is the forward correlation between the projected values of the two annuities at 
horizon T  and ( )CMI Tσ  and & ( )E W Tσ  are the standard deviations of the projected values of 
the CMI and E&W annuities at horizon T .  
 
Thus, the unhedged and hedged positions are given by (2a) and (2b) below: 
 

( , ,65)a T CMI                                                                 (2a) 
( , ,65) ( ) ( , & ,65)a T CMI h T a T E W+ × .                                           (2b) 

 
Note that we are explicitly assuming that we can hedge one annuity position with another and 
we address in the conclusions how realistic this assumption is in the current state of 
development of the longevity risk transfer market.  
 
The effectiveness of the hedge can be assessed using the following formula for relative risk 
reduction ( RRR ): 
 

1 hedged

unhedged

R
RRR

R
= −                                                            (3) 

 
where hedgedR  and unhedgedR  are appropriate dispersion-based risk measures for the hedged 
position (i.e., original liability plus hedge) and unhedged position (i.e., original liability), 
respectively.5 By this criterion, a perfect hedge would have an RRR equal to 1 and a good 
hedge will have an RRR ‘close’ to 1; an RRR equal to 0 indicates a completely ineffective 
hedge and a negative RRR indicates a ‘hedge’ that is worse than useless because it increases 
overall risk exposure. 
 
The problem with modelling the two populations independently then becomes apparent: the 
forward correlation ( )Tρ  is zero, and the optimal size of the hedge position is itself also zero!  
Very simply, working with two independent models is, at best,6 useless for hedging analysis; 
instead, we need a two-population model that takes account of how the two populations are 
related.  
 
 
3. Basis Risk Analysis and Hedge Effectiveness Using a Two-Population Mortality Model 

 
We now assume that mortality rates are generated by a two-population model that takes account 
of how the two populations are related: such a model makes intuitive sense because in practice 
the two populations will have common mortality drivers and therefore their evolution will be 

                                                 
5 We take these to be the 95% Expected Shortfalls (ES) relative to the median, but the standard deviation or the 
VaR relative to the median would also do and appear to give much the same results, presumably because of the 
underlying assumption of bivariate Gaussianity. Similar results also hold for different prediction intervals.  
6 We say “at best” because simulation exercises suggest that the optimal hedge ratio is indeed zero: other hedge 
ratios appear to produce RRRs that are negative. This also makes intuitive sense: adding a substantial position to 
the first position which is uncorrelated with the first position merely adds noise.  
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related (see Coughlan et al. 2011). The particular model chosen is a gravity two-population 
generalisation of the APC model (Dowd et al., 2011a). (For further details on this model, see 
Appendix A.)     
 
Figure 2 gives fan chart projections of the two populations’ q  rates for age 65 using this two-
population model calibrated to actual historical data. At first sight, these projections are very 
close to those of Figure 1: the only notable difference is that the CMI fan charts are a little 
narrower than they were before.  
 
Figure 3 shows the forward correlations between the E&W and CMI q  rates for age 65 for 
horizons of up to 20 years, as generated by the parameter certain (PC) version of the gravity 
two-population model without taking account of individual death or Poisson risk: unlike the 
previous case where correlations were zero, these correlations rise from a little under 0.6 for a 
1-year horizon to a little over 0.9 for a horizon of 20 years.   
 

Figure 2: Fan Chart Projections of the APC Two-Population Gravity Model q Rates for 

Age 65 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials. The model used is the ‘parameters certain’ version with no allowance for individual deaths 
Poisson risk.  
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Figure 3: q Forward Correlations for Age 65: APC Two-Population Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials. The model used is the ‘parameters certain’ version of the gravity two-population model with no 
allowance for individual deaths Poisson risk.  

 
The effectiveness of the hedge is shown in Figure 4. The red curve represents the probability 
density of the projected future values of the original unhedged position, and the much narrower 
blue curve represents the distribution of possible future values of the hedged position. (For 
further details of the simulation approach, see Appendix D.) The narrowness of the latter 
relative to the former indicates that the hedge is highly effective, and this is borne out by the 
RRR which is 0.854: the hedge reduces the pension fund’s exposure by just over 85%.  
 

Figure 4: Hedged and Unhedged Annuity Positions for Age 65, T=10: APC Two-
Population Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials and an assumed constant interest rate of 0.04. The model used is the ‘parameters certain’ version 
of the model with no allowance for individual deaths Poisson risk. ‘RRR’ is relative risk reduction. 
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This is a great improvement in comparison with the case where the two populations are treated 
as independent of each other and confirms the appropriateness of using a two-population model 
for hedge effectiveness analysis.  
  
We are also interested in the effectiveness of hedges over a range of possible horizons. 
Accordingly, Figure 5 shows the fan chart projections of the future values of the hedged and 
unhedged positions:7 we see that the hedged position has projections that are much narrower 
than those of the unhedged position, and the narrowness of the former relative to the latter is 
particularly pronounced for longer horizons. This indicates that the hedge is very effective over 
a range of horizons, and that its effectiveness increases with the length of the hedge horizon.  
 
The observation that hedge effectiveness increases with the hedge horizon can be explained in 
two steps. The first step is to consider the forward correlations in Figure 3. Initially, the level 
of the curve reflects the short-term contemporaneous correlation between the period effects in 
the two-population APC model. As the projection horizon lengthens, the shape reflects mean 
reversion of the smaller population towards the larger population, as measured by the size of 
the gravity parameter.8 The second step follows from this and considers the distributions of the 
annuity functions a(T,CMI,65) and a(T,E&W,65). The standard deviations of both increase 
steadily with the hedge horizon, as illustrated by the widening green fan in Figure 5 in the case 
of a(T,CMI,65). If the correlation between a(T,CMI,65) and a(T,E&W,65) remained constant, 
the blue fan in Figure 5 – showing the impact of hedging a(T,CMI,65) with a(T,E&W,65) – 
would increase at the same rate as the green fan – which shows the unhedged position. 
However, because the correlation increases with time, the blue fan grows at a slower rate, due 
to the growing impact of the gravity effect.  
 

                                                 
7 More precisely, whereas Figure 4 shows probability density functions (pdf’s) for unhedged vs. hedged positions 
for T=10, Figure 5 shows fan chart representations of the pdf’s of unhedged vs. hedged positions for T values 
going from 1 to 20 years. 
8 See Equations (A6) and (A7) in Appendix A. 
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Figure 5: Fan Chart Projections of the Values of Hedged and Unhedged Positions for 
Age 65: APC Two-Population Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005, 1000 
simulation trials and an assumed constant interest rate of 0.04. The model used is the ‘parameters certain’ version 
of the gravity model with no allowance for individual deaths Poisson risk. The black line to year 2005 is a plot of 
model-based annuity prices.  
 

Figure 6: Relative Risk Reduction for Age 65: APC Two-Population Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005, 1000 
simulation trials and an assumed constant interest rate of 0.04. The model used is the ‘parameters certain’ version 
of the gravity model with no allowance for individual deaths Poisson risk.  
 
 
This conclusion is confirmed by Figure 6 which shows that the RRR is high and rises with T: 
the RRR rises from an initial value of almost 80% to nearly 90% for T = 20.  
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4. Allowing for Parameter Uncertainty and Poisson Risk 
 
We now generalize our analysis to incorporate the possibilities of parameter uncertainty and 
Poisson risk. (Appendix B gives further details on the parameter uncertainty simulations and 
Appendix C gives further details on the Poisson risk simulations.) Figure 7 gives the q forward 
correlations for age 65 for versions of the model with and without parameter uncertainty, and 
with and without Poisson deaths risk. We see that the PC and parameter uncertain (PU) 
correlations are close, but the correlations incorporating Poisson risk are notably lower than 
those leaving it out: incorporating Poisson risk leads to correlations of about 0.70 rather than 
about 0.90 for a horizon of 20 years.   
 

Figure 7: q Forward Correlations for Age 65: APC Two-Population Gravity Model 
 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials. ‘PC’ means ‘parameters certain’ and ‘PU’ means ‘parameters uncertain’. ‘Poisson Risk’ means 
that the simulations take account of individual deaths Poisson risk; ‘No Poisson Risk’ indicates the opposite.  
 
Figure 8 gives the corresponding fan chart projections of the two populations’ q  rates. We see 
that adding each extra source of risk – adding parameter uncertainty or adding Poisson risk – 
serves to widen the fan charts somewhat.  
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Figure 8: Fan Chart Projections of the q Rates for Age 65: APC Two-Population 
Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials. ‘PC’ means ‘parameters certain’ and ‘PU’ means ‘parameters uncertain’. ‘Poisson Risk’ means 
that the simulations take account of individual deaths Poisson risk; ‘No Poisson Risk’ indicates the opposite.  
 
Figure 9 presents the probability density functions of the hedged vs. unhedged annuity 
positions for all four cases, for a hedge horizon of 10T = . We see that the RRR is fairly high, 
ranging from 0.703 for the PU case with Poisson risk to the 0.854 for the PC case without 
Poisson risk.   
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Figure 9: Hedged and Unhedged Annuity Positions for Age 65, T=10: APC Two-
Population Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials, and assuming a constant interest rate of 0.04. ‘PC’ means ‘parameters certain’ and ‘PU’ means 
‘parameters uncertain’. ‘RRR’ is relative risk reduction. ‘Poisson Risk’ means that the simulations take account 
of individual deaths Poisson risk; ‘No Poisson Risk’ indicates the opposite.  

 
Figure 10 gives the corresponding fan chart projections for horizons of up to 20 years. As with 
those in Figure 5, these fan charts indicate a high degree of hedge effectiveness which increases 
with the length of the horizon period T. 
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Figure 10: Fan Chart Projections of the Values of Hedged and Unhedged Positions for 
Age 65: APC Two-Population Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials, and assuming a constant interest rate of 0.04. ‘PC’ means ‘parameters certain’ and ‘PU’ means 
‘parameters uncertain’. The black lines to year 2005 are plots of model-based annuity prices. ‘Poisson Risk’ means 
that the simulations take account of individual deaths Poisson risk; ‘No Poisson Risk’ indicates the opposite.  
 
Figure 11 shows the corresponding plots of relative risk reduction for horizons of up to 20 
years: we see that the additional each risk factors serve to lower the RRRs somewhat, although 
they are all still quite high.  
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Figure 11: Relative Risk Reduction for Age 65: APC Two-Population Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials, and assuming a constant interest rate of 0.04. ‘PC’ means ‘parameters certain’ and ‘PU’ means 
‘parameters uncertain’. ‘Poisson Risk’ means that the simulations take account of individual deaths Poisson risk; 
‘No Poisson Risk’ indicates the opposite.  
 
5. Allowing for Interest-Rate Risk 
 
A final extension is to incorporate interest-rate risk. We model interest-rate risk by assuming 
that the spot interest-rate process is governed by a Cox-Ingersoll-Ross (CIR, 1985) process 
with a mean reversion parameter 0.25, a mean interest rate of 0.04 and a standard deviation of 
0.01.9 The term structure of interest rates is assumed to be flat.  
 
Figure 12 gives the fan chart projects of the values of hedged and unhedged positions in the 
presence of interest-rate risk so modelled.10 The presence of interest-rate risk makes the fan 
charts somewhat wider than they were in Figure 10.  
 
 
 
 
 
 

                                                 
9 These values are taken from Dowd et al. (2011b). 
10 We recognize, of course, that practitioners would usually hedge interest rate and longevity risk exposures 
separately. It is, however, a useful exercise to see how the presence of interest rate risk affects the effectiveness 
of the longevity hedge. 
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Figure 12: Fan Chart Projections of the Values of Hedged and Unhedged Positions with 
Interest-Rate Risk for Age 65: APC Two-Population Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005, 1000 
simulation trials and an assumed initial interest rate of 0.04. The spot interest rate is assumed to be governed by a 
CIR process with a mean reversion parameter 0.25, a mean interest rate of 004 and a standard deviation of 0.01, 
and the spot term structure is assumed to be flat. The black lines to year 2005 are plots of model-based annuity 
prices. ‘PC’ means ‘parameters certain’ and ‘PU’ means ‘parameters uncertain’. ‘Poisson Risk’ means that the 
simulations take account of individual deaths Poisson risk; ‘No Poisson Risk’ indicates the opposite.  
 
The corresponding RRR plots are shown in Figure 13. If we compare these to the earlier ones 
of Figure 11, we draw the following conclusions: 
 

• Adding parameter uncertainty leads to slight falls in RRRs. 
• Adding Poisson risk usually (in 3 cases out of 4) leads to a reduction in RRRs. 
• Adding interest rate risk leads to an increase in RRRs. 

 
Of course, we should be careful about generalising from these results. In the worst case (PU, 
Poisson risk, no IRR) RRRs vary from just under 0.6 to about 0.75, but this is something of an 
outlier. In the best case (PC, Poisson risk, IRR) RRRs are very close to 0.9. However, in most 
cases, RRRs are in the region of about 0.8. Thus, our results suggest that a high degree of 
hedging effectiveness.  
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Figure 13: Hedge Effectiveness with Interest-Rate Risk for Age 65: APC Two-
Population Gravity Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005, 1000 
simulation trials and an assumed initial interest rate of 0.04. ‘PC’ means ‘parameters certain’ and ‘PU’ means 
‘parameters uncertain’. ‘Poisson Risk’ means that the simulations take account of individual deaths Poisson risk; 
‘No Poisson Risk’ indicates the opposite. The spot interest rate is assumed to be governed by a CIR process with 
a mean reversion parameter 0.25, a mean 0.04 and a standard deviation of 0.01, and the spot term structure is 
assumed to be flat.  
 
6. Conclusions and Possible Extensions 
 
This article has considered the effectiveness of an illustrative annuity hedging problem in 
which a forward annuity predicated on one population is hedged by a position in a forward 
annuity predicated on another population. Our analysis makes use of a two-population gravity 
model that takes account of the observed inter-dependence between the two populations’ 
mortality rates; it also considers the implications of parameter uncertainty, individual death or 
Poisson risk and interest-rate risk for hedge effectiveness.  We consider horizons of up to 20 
years.  
 
For the most part, our results are robust and indicate strong hedge effectiveness, with estimates 
of relative risk reduction varying from about 0.70 in the least effective case to well over 0.95 
in the most effective cases. This has important implications for defined benefit pension plans, 
annuity insurers and reinsurers. It suggests that hedges based on longevity indices based on 
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national populations (e.g., the LifeMetrics Indices11) can with appropriate calibration be highly 
effective in reducing longevity risk.  
 
There are many possible extensions of this work, including:  
 

• For the simple position considered here, we could try alternative hedging strategies 
(alternative hedge sizes, hedges based on alternative ages, more sophisticated hedges 
such as ‘gamma’ hedges instead of the simple ‘delta’ hedges considered here, etc), and 
we can examine cash-flow rather than value-hedges.  

• We could also consider the hedging of more complicated positions (e.g., portfolios of 
annuities predicated on different ages, genders or countries) and, besides the above 
extensions, consider the additional scope for diversification across ages, genders and 
countries.  

• Where interest-rate risk is present, we might consider hedging strategies that separate 
out the hedging of interest-rate risk from the hedging of longevity risk, and so bring to 
bear the existing corpus of interest-rate risk management tools.12  

• Given the similarities between mortality and interest-rate risks – both being positive 
random variables with term structures, etc – it would also be useful to explore how 
existing interest-rate risk management tools and strategies might be adapted to manage 
longevity risk exposures. 

• We could (and, indeed, should) extend our analysis to take account of credit risk 
considerations, e.g., such as the risk of counterparty default, which is not an 
inconsiderable risk especially over longer horizons. 

 
Despite a robust framework being available, the analysis of the hedge effectiveness of 
longevity-related securities is, thus, clearly still at a very early stage and a great deal remains 
to be done.  
 
We end with three caveats: 
 
First, we have only considered the effectiveness of a single longevity hedge. It is therefore 
quite possible, and indeed likely, that additional hedges would improve RRRs further: for 
example, a hedging strategy might also include an interest-rate hedge to supplement the 
longevity hedge we have considered here, and would likely produce higher RRRs than those 
we have reported. In short, we should not ignore the possible scope for additional hedges to 
generate further improvements in hedging effectiveness.  
 
Second, our results are projections based on assumptions and are only as good as those 
assumptions might turn out to be. Amongst the most important of these are that the underlying 
‘laws of motion’ remain stable over the long horizons we are considering, and that the economy 
does not experience shocks that might blow our projections well off course.13 These 
assumptions are self-evidently heroic; in any case, no projections can take account of the 
‘unknown unknowns’, to quote Donald Rumsfeld’s famous phrase. Thus, our projections are 
best interpreted as a form of stochastic scenario analysis and should not be interpreted as 
forecasts.  
                                                 
11 See llma.org 
12 For example, we might hedge each of the two annuities using bonds of the same value and duration. For more 
on fixed-interest hedging, see, e.g., Fabozzi (2000).  
13 Such possibilities include rapid inflation, which would undermine our interest rate assumptions, or mass 
defaults, which might cause the institution that issued the hedge to itself default.  
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Third, the theory of hedging longevity risk, even accounting for the above caveats, is ahead of 
practical developments in the market place. To illustrate, the hedge in our example is a deferred 
annuity swap involving a hedge instrument that is a deferred annuity predicated on a national 
population mortality index. Such annuities are not currently traded in a public spot capital 
market let alone in a forward market. Nevertheless, deferred index-based hedges very similar 
to this have been set up in recent years in the form of customized ‘tail risk protection’ hedges 
for three Dutch life companies: Aegon in 2012 and 2013, where the hedge providers were, 
respectively, Deutsche Bank and Société Générale; Delta Lloyd in 2014 and 2015, where the 
hedge provider was Reinsurance Group of America Re; and NN Life in 2017, where the hedge 
provider was Hannover Re. So while key details concerning the structure and pricing of these 
hedges remain confidential, the very existence of these deals shows that we are one step closer 
to the introduction of a capital market in the kind of instruments discussed in this paper. Of 
particular significance is the fact that two of the hedge providers are banks that are already 
deeply involved in the capital markets. There is also a market for buy-ins – transactions with 
insurance companies that involve the bulk purchase of annuities by a pension plan to hedge the 
annuity-related risks associated with a subset of the plan’s liabilities. This is a much bigger 
market and has been available since 2007. While buy-ins are also customized deals, the 
annuities purchased are not associated with any individual plan member by name and so can 
also be interpreted as index-based hedges, although the index depends on the specific mortality 
characteristics of each pension plan’s membership, rather than on the national population.14 So 
it is clear that the insurance and capital markets are rapidly catching up with theoretical 
developments. 
 

 
 
 

 
 

                                                 
14 For more details of all these transactions, see Blake et al. (2018). 
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Appendix A: The Age-Period-Cohort Two-Population Gravity Model 
 
A.1. Introduction 
 
The gravity model chosen is a two-population version of the APC model, alternatively known 
as M3B (see, e.g., Osmond (1985), Jacobsen et al. (2002) and Cairns et al.  (2009, Table 1)). 
The APC model is a useful one for our purposes because it is relatively tractable and because 
it has a cohort effect, which evidence suggests is an important feature of the behaviour 
exhibited in E&W mortality data and in a number of other important countries’ datasets. 
However, the general gravity approach can also be applied to most other stochastic mortality 
models.  
 
The successful implementation of any two-population gravity model also requires a solution to 
the difficult problem of obtaining consistent estimates of both the (unobservable) state 
variables of the model and of the parameters governing the dynamics of those state variables. 
In the case of the APC model, the state variables are the period effects (denoted tκ  below) and 
the cohort effects (denoted cγ  below).  
 
In the standard one-population context, it is relatively straightforward to obtain estimates of 
both the state variables and their parameters.  
 
However, in the two-population case, we also have to allow for the fact that the state variables 
themselves cannot be estimated without taking account of the two-population inter-dynamics 
and hence their parameters. The upshot is that estimation of the state variables requires 
estimates of the parameters that govern them, and yet we can only obtain estimates of those 
parameters if we have estimates of the state variables to start with. The solution to this ‘chicken 
and egg’ problem is an iterative approach in which we start with preliminary estimates of the 
state variables based on the assumption of population independence. We then estimate the 
parameters. After this, we revise the estimates of the state variables and then re-estimate the 
parameters again based on the new estimates of the state variables. We go on to repeat this 
process over and over again until estimates of both state variables and parameters have 
converged.  
 
A.2. Single-population APC model 
 
For the single-population case, the APC model postulates that the true underlying death rate, 

,t xm , satisfies: 
 

  1 1
,log t x x a t a cm n nβ κ γ− −= + +                                                (A1)  

 
where the xβ  are age-dependent parameters, tκ  is a time-dependent state variable that 
represents the period effect and cγ  is a year-of-birth-dependent state variable that represents 
the cohort effect, an  is the number of ages in the sample data used to estimate the parameters, 
and the variables x , t  and c t x= −  represent the age, current year and year of birth, 
respectively. We assume tκ  follows a one-dimensional random walk with drift: 
 

           1t t tCZκ κ µ−= + +                                                      (A2) 
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in which µ  is a constant drift term, C  a constant volatility and tZ  a one-dimensional iid 
N(0,1) error. We follow Cairns et al. (2011b) and model cγ  as an ARIMA(1,1,0) process: 
 

   ( ) ( ) ( ) ( ) ( )
1(1 )c c cC Zγ γ γ γ γγ α µ α γ −∆ = − + ∆ +                                    (A3) 

 
where  ( )γµ , ( )γα  and ( )C γ  are given parameters and ( )

cZ γ  is iid N(0,1). The parameters of this 
model can be estimated using MLE.  
 
This model requires the imposition of identifiability constraints.15 The first two are: 
 

                                   0t
t
κ =∑  and 0c

c
γ =∑                                                 (A4) 

 
We also need a third identifiability constraint based on a tilting parameter δ . This is chosen 
within an iterative scheme to minimize:  
 

( ) ( )( )2

x x
x

S x xδ β δ β= + − −∑  

where  1 log ( , )x y
t

n m t xβ −= ∑ . This then implies that:   

2

( )( )

( )

x x
x

x

x x

x x

β β
δ

− −
= −

−

∑
∑

                                                  (A5) 

 
Given that the tκ  and cγ  already satisfy the first two constraints, we now apply the third 
constraint which requires us to revise our parameter estimates according to the following 
formulae: 

( )t t an t tκ κ δ= − −  

( )( ) ( )c c an t t x xγ γ δ= + − − −                                              (A6) 

( )x x x xβ β δ= + −  
 
A.3. Two-population APC model 
 
We now wish to model q rates for two related populations, focussing on the case where one 
population is much larger than the other. Let us denote the large population using the 
superscript ‘(1)’ and the small population using the superscript ‘(2)’. The gravity model then 
involves the following 2-population tκ  process: 

(1) (1) (1) (11) (1)
1t t tC Zκ κ µ−= + +                                                (A6) 

(2) (2) ( ) (1) (2) (2) (21) (1) (22) (22)
1 1 1( )t t t t t tC Z C Zκκ κ φ κ κ µ− − −= + − + + +                           (A7) 

 

                                                 
15 See Hunt and Blake (2018) for more details. 
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where ( )0 1κφ≤ <  is the ‘gravity parameter’ that pulls the (2)
tκ  state variable towards the (1)

tκ  
state variable. Now let  ( 1)γµ  be the mean reversion level for (1)

cγ∆ , ( 2)γµ  be the mean reversion 

level for (2)
cγ∆ ,  1  be the AR(1) parameter for (1)

cγ∆   2  be the AR(1) parameter for (2)
cγ∆  

and  ( )0 1γφ≤ <  be the gravity parameter for the 2-population cγ  process. The 2-population 
AR(1) cγ  processes is then: 
 

(1) ( 1) (1) ( 1) (1) ( 1) ( 1) ( 11) ( 1)
1 2(1 ) (1 )c c c cC Zγ γ γ γ γ γγ α γ α γ µ α− −= + − + − +               (A8) 

(2) ( 2) ( ) (2) ( 2) (2) ( ) (1) ( 2) ( 2)
1 2 1

( 21) ( 1) ( 22) ( 2)

(1 ) (1 )c c c c

c cC Z C Z

γ γ γ γ γ γ

γ γ γ γ

γ α φ γ α γ φ γ µ α− − −= + − − + + − +

+
          (A9) 

 
Further details on the model and its calibration are given in Dowd et al. (2011a). 
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Appendix B: Parameter Simulation 

 
The simulation of the parameters is as follows: 
 

• The µ , V , ( )γµ  and ( )V γ  parameters are simulated using the algorithms set out in 
Cairns et al. (2006) and later set out for the gravity two-population APC model in Dowd 
et al. (2011a).  

• The ( )γα  parameters are simulated using the approach of Cairns (2000) and Dowd et 
al. (2011b).  

• The method used to simulate ( )κφ  and ( )γφ  parameters is based on the assumptions that 
(a) the relevant φ  comes from single-peaked beta ( , )υ ω  distribution (b) whose mean 
matches the empirical estimate of φ , φ̂ , and (c) which has the maximum dispersion, 
so the prior is as uninformative as possible. Combining these requirements means that 
ω  is the lowest possible value no less than 2 such that ˆ ˆ/ (1 )υ ωφ φ= − .    
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Appendix C: Simulation of the Poisson Process 
 
Where we wish to incorporate the Poisson (or individual deaths) process, we proceed as 
follows: 
 
For any given population and age x at t, we simulate the number of deaths ( , )D t x  from a 
Poisson process with ‘arrival rate’ ( , ) ( , )m t x E t x× , where ( , )m t x  is the crude central death 
rate in simulated (A1) and ( , )E t x  is the number of exposures. We then update the number of 
exposures next period using  
 

( , )( 1, 1) ( , ).e m t xE t x E t x −+ + =                                          (C1) 
 
based on an initial (i.e., t=0) exposure equal to the 2005 value for the appropriate age. (C1) 
ensures that the number of exposures is always positive, which is helpful computationally.16  

 

                                                 
16 Another consideration is that having extra Poisson risk in the ( , )E t x as well as ( , )D t x would not have a 
significant impact on the ( , )D t x Poisson randomness, except perhaps at the high ages and as ( , )E t x gets very 
small. 
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Appendix D: Simulation of Future Annuity Prices 
 
D.1. Annuity price simulation  
 
The model used to value the annuity at future time T involves the estimation of the expected 
survivor rates as of time T for the relevant cohort: these can then be treated as the expected 
annuity payments, and the annuity price is the present value of these payments. For any given 
version of the mortality model (i.e., with or without parameter uncertainty, and with or without 
Poisson risk), let ( ) ( , )iS t x  be the survivor index at time t of a cohort from population i (where 
i=1,2) aged x in year 0: that is, ( ) ( , )iS t x  is the probability, measured retrospectively, that an 
individual aged x at time 0 survives to time t. For any given x, ( ) (0, )iS x =1 and ( ) ( , )iS t x  will 
decrease as t gets bigger and eventually approach 0 as t gets large. Given any path of ( ) ( , )iq t x
, we then obtain a corresponding path of ( ) ( , )iS t x  from the relationship between the survivor 
index and q  rates:  
 
(D1)                                          ( ) ( ) ( )( 1, ) (1 ( 1, )) ( , )i i iS t x q t x S t x+ = − +  
 
These survivor rates are driven off the state variables (1)

tκ  and (2)
tκ . Hence, for our purposes, 

we wish to simulate sets of state variables out to a future date T and then estimate the 
expectations of (D1), conditional on surviving to the specified future date and conditional on 
the future values of the state variables, i.e., (1)

Tκ  and (2)
Tκ . 

 
We take j simulation paths of each state variable out to period T, and let ( ) (1 ) (2 )[ , ]j j j

T T Tκ κ κ=  be 
the jth set of simulated state variables for period T. Assuming for the moment that the interest 
rate R is constant throughout, then the fair value of the annuity for population i at time T, 
conditional on the time-T simulated state variables under simulation path j, is  
 

(D2)                ( )( ) ( ),ij j
Ta T κ = ( )

115
( ) ( ) ( )

0
(1 ) exp [ ( , ) / ( , ) | ]

x T
i i j

T
h

hR E S T h x S T xψ κ
− −

=

+ − +∑  

 
where ψ  is the loading factor built into the annuity value (assumed to be 0) and we assume 
that no-one lives beyond age 115. The term ( ) ( )[ ( , ) / ( , ) | ]i i

TE S T h x S T x κ+  is to be interpreted 
as the expected probability that an individual aged x will survive to year T h+ , conditional on 
their surviving to T  and conditional on the mortality state parameters ( )j

Tκ  at T .  

However, we cannot compute (D2) directly because there is no simple formula for 
( ) ( )[ ( , ) / ( , ) | ]i i

TE S T h x S T x κ+  in terms of the mortality state variables j
Tκ . Nor is it practically 

feasible to use stochastic simulation to estimate ( ) ( )[ ( , ) / ( , ) | ]i i
TE S T h x S T x κ+  for each set of 

( )j
Tκ , as this would require a simulation tree within a simulation tree and would be 

computationally prohibitively expensive.17 

                                                 
17 For example, with 1000 simulation paths in each stage for each of the mortality state variables, this would 
require 2 million simulation paths for the mortality state variables alone; combined with all the other calculations 
required, this implies a computational burden that is not practically feasible under real-time constraints.   
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A more practical approach is to use a Taylor series approximation, as first suggested by Cairns 
(2007) and developed further by Dowd et al. (2011b). Define ( ) ( , , )if h x κ  = 

( )1 ( ) ( )[ ( , ) / ( , ) | ]i i
TE S T h x S T x κ−Φ +  as the probit transformation of 

( )[ ( , ) / ( , ) | ]i
TE S T h x S T x κ+ , where (.)Φ  is the standard normal distribution function. Let 

ˆ [ ]T TEκ κ=  be the expectation of the mortality state variables at T. We then take the following 
first-order Taylor series expansion of ( ) ( , , , )i

Tf T h x κ  around ˆTκ :18 
 
(D3)                        ( ) ( ) ( )

0 1 ˆ( , , , ) ( , ) ( , ) '( )i i i
T T Tf T h x T h x T h xκ κ κ≈ ∆ + + ∆ + −  

 
where ( )

0 ( , , )i T h x∆  is a scalar function of h and x, and ( ) ( ) ( )
1 11 12( , , ) [ ( , , ), ( , , )]'i i iT h x T h x T h x∆ = ∆ ∆  

is a 12×  vector of first derivatives.  
 
For any given T, h and x, these ‘∆ ’ terms are parameters that are easily computed by Monte 
Carlo simulation. The simulated expected survivor rates out through to the time when the 
cohort has died out can then be recovered from   
 
(D4)                            ( ) ( )[ ( , ) / ( , ) | ]i i

TE S T h x S T x κ+ ≈ ( )( ) ( , , , )i
Tf T h x κΦ  

 
Finally, each simulated ( ) ( )[ ( , ) / ( , ) | ]i i

TE S T h x S T x κ+  can be plugged into (D2) to give the 
corresponding simulated future annuity value we are seeking.  
 
D.2. Interest-rate simulation 
 
We assumed earlier that the interest rate R was fixed throughout. Where we wish to randomize 
the interest rate, we simulate a random interest rate using the Cox-Ingersoll-Ross model (Cox 
et al., 1985). This model postulates that the instantaneous spot interest rate R obeys the 
continuous-time process: 
 
(D5)                                       ( ) ( ( )) ( ) ( )dR t R R t dt R t dW tα σ= − +  
 
where α  determines the strength of the mean-reversion process governing R, R is the long-
term mean instantaneous spot interest rate, σ  is the interest-rate standard deviation and )(tdW  
is a standard geometric Brownian motion.  
 

                                                 
18 Cairns (2007) actually suggests a second-order Taylor series expansion, but we use a first-order expansion here 
because the ‘∆ ’ parameters of the second population are sometimes very unstable when we allow for Poisson 
risk.  
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We can simulate values of ( )R T  directly from their exact distribution using the CIR parameters 
and the current instantaneous spot rate (0)R  as inputs.19 In our random interest-rate scenarios, 
we then assume for convenience that the term structure at T is flat at ( )R T . 
 
D.3. Implementation 
 
In principle, we can estimate the ‘∆ ’ terms for each horizon h, but this is computationally 
expensive.  
 
However, we can exploit the structure of the κ  process to economize on calculation time, i.e., 
in particular, we can assume that the slope or ( )

1
i∆  terms are constant across T. (By contrast, the 

( )
0
i∆  intercept terms are not constant; they reflect the expected survivorship rates for 

0,...,115h T x= − −  starting as of T, and these will generally increase with T.)  
 
We now estimate (D3) for T=0 and 0,...,115h T x= − − .20  
 
We then retain the ‘ ( )

1
i∆ ’ values so obtained throughout for all T simulations and re-estimate 

the ‘ ( )
0
i∆ ’ for each T.  

 
D.4. Estimates of the ‘∆ ’ terms 
 
Figure D1 shows estimates of the ‘ ( )

1
i∆ ’ terms. For age 65 and assuming that everyone dies by 

age 115, there are 50 values for each type of ‘ ( )
1
i∆ ’ term, i.e., one value of ( )

1
i∆ for each of up to 

h=50. One will note how the estimates with Poisson risk (i.e., the green ‘-.’ and red ‘- -’  plots 
) are somewhat less stable than the others, especially for population 2.  
 

                                                 
19 To be precise, if ( )R T  follows a CIR process, then 2(4 ( )) / { (1 exp[ ])}R T Tα σ α− −  has a non-central chi-

squared distribution with 24 /Rα σ  degrees of freedom and a non-centrality parameter equal to 
2(4 (0)) /{ (1 exp[ ])}R Tα σ α− −  (Cairns, 2004, Theorem 4.8 (c)). 

20 Estimating (D3) for T=0 gives plausible ‘ ( )
1
i∆ ’ results for our data set, but in principle any T value would do, 

provided the ‘ ( )
1
i∆ ’ values are plausible and fairly stable.  
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Figure D1: Estimates of the ‘ ( )
1
i∆ ’ Terms: Gravity Two-Population Model 

 
Notes: Based on E&W and CMI male deaths and exposures data over ages 60:84 and years 1961:2005 and 1000 
simulation trials. Black continuous refers to the PC case with no deaths Poisson risk, blue ‘..’ refers to the PU case 
with no Poisson risk, green ‘-.’ refers to the PC case with Poisson risk, and red ‘- -‘ refers to the PU case with 
Poisson risk.  
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