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Non-negative Tensor Factorization Applied to Music
Genre Classification

Emmanouil Benetos and Constantine Kotropoulos,Senior Member, IEEE

Abstract—Music genre classification techniques are typically
applied to the data matrix whose columns are the feature vectors
extracted from music recordings. In this paper, a feature vector
is extracted using a texture window of one sec, which enables
the representation of any 30 sec long music recording as a
time sequence of feature vectors, thus yielding a feature matrix.
Consequently, by stacking the feature matrices associatedto any
dataset recordings, a tensor is created, a fact which necessitates
studying music genre classification using tensors. First, anovel
algorithm for non-negative tensor factorization (NTF) is derived
that extends the non-negative matrix factorization. Several vari-
ants of the NTF algorithm emerge by employing different cost
functions from the class of Bregman divergences. Second, a
novel supervised NTF classifier is proposed, which trains a basis
for each class separately and employs basis orthogonalization.
A variety of spectral, temporal, perceptual, energy, and pitch
descriptors is extracted from 1000 recordings of the GTZAN
dataset, which are distributed across 10 genre classes. TheNTF
classifier performance is compared against that of the multilayer
perceptron and the support vector machines by applying a
stratified 10-fold cross validation. A genre classificationaccuracy
of 78.9% is reported for the NTF classifier demonstrating the
superiority of the aforementioned multilinear classifier over
several data matrix-based state-of-the-art classifiers.

Index Terms—Non-negative tensor factorization, Bregman di-
vergences, Music genre classification.

I. I NTRODUCTION

CURRENT advances in multimedia data management and
retrieval have enabled the creation, distribution, and

availability of vast amounts of music data including new
content as well as digitized one from analog archives. Aided
by the growth of the internet, these databases have become
highly popular for personal as well as commercial use (e.g.
online music retailers or digital libraries). Accordingly, the
demand for tools to analyze and retrieve music content has
emerged, leading to flourishing music information retrieval
(MIR) research.

Music genres are the most popular music content descrip-
tors, since they are employed by both the users and the
music industry [1]. One may argue that the genres sum-
marize music recordings based on some common perceptual
characteristics [2]. However, music genres have not yet been
precisely defined, because they are primarily determined by
users’ taste and may be culturally dependent. Not to mention
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that more than one music genres may be associated with a
certain recording. Accordingly, the creation of a universal
genre taxonomy remains still infeasible. Automatic genre clas-
sification techniques classify recordings into distinguishable
genres by extracting relevant features and employing pattern
recognition algorithms [3]. The accuracy of such genre clas-
sification techniques often exceeds that reported for humans
with moderate music training [4]. However, the research on
automatic genre classification appears to have reached a local
maximum recently due to the lack of carefully annotated music
corpora with ground truth [5].

Most genre classification approaches represent each music
recording by a feature vector and consequently employ pattern
recognition algorithms in order to perform classification.In
this paper, each recording is represented by a time sequence
comprising feature vectors extracted every one sec, thus
forming a feature matrix. Starting with a comprehensive set
of features measuring spectral, temporal, perceptual, energy,
and pitch characteristics of the recordings, feature selection
is applied next by using a branch-and-bound search strategy
in order to determine the subset of the most discriminative
features with respect to the ratio of the inter-class dispersion
over the intra-class dispersion [9] and keep the number of
the features to be processed into a manageable size. By
stacking the feature matrices associated to recordings, a tensor
is created, which provides a more detailed representation of
music characteristics. Tensors are considered as extensions
of matrices or vectors [6]–[8]. A novel non-negative tensor
factorization (NTF) algorithm is proposed whose roots are
traced back in the non-negative matrix factorization (NMF).
The algorithm is able to decompose a tensor in Kruskal
format [8]. That is, to decompose a tensor into a sum of
elementary rank-1 tensors. The algorithm can employ sev-
eral cost functions, which belong to the class of Bregman
divergences [10]. The Bregman divergences have previously
been used to solve the non-negative matrix approximation
problem [11]. Details on the derivation of the tensor element
update equations are provided and the computational cost of
the algorithm is estimated. In addition, a novel supervised
classifier based on the NTF is proposed, which trains a basis
for each class separately and employs basis orthogonalization.
The proposed classifier extends a similar classifier that was
based on the NMF [34]. Preliminary results for music genre
classification using the NTF classifier with the Frobenius
norm as cost function were reported in [33]. Here, starting
from a larger feature set than that used in [33], results are
reported on extended experiments performed on the GTZAN
database, which contains 1000 music recordings covering
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10 music genre classes [12]. Several variants of the NTF
classifier employing different feature subset sizes are tested
and their music genre classification accuracy is measured using
a stratified 10-fold cross-validation. For comparison purposes,
support vector machines and multilayer perceptrons are also
tested on the same database. In addition, experiments are
performed using the features extracted by the MARSYAS
platform [39]. An average genre classification accuracy of
78.9% with standard deviation equal to 2.6% is reported for
the NTF classifier, when the Frobenius norm is utilized with
a subset of 80 features. The aforementioned accuracy places
the proposed NTF classifier within the most performing state-
of-the-art genre classification methods. The superiority of the
NTF classifier against the state-of-the-art data matrix-based
classifiers is also demonstrated. Such results motivate further
research using tensorial representations into audio processing
applications.

The outline of the paper is as follows. Related work on
automatic music genre classification is discussed in Section II.
Section III details the proposed NTF method and establishes
links with the NMF as well as other methods proposed for
the NTF. In this section, a supervised classifier based on the
proposed NTF is also described. Section IV briefly presents the
dataset used, the feature set employed in the experiments, and
thoroughly assesses the music genre classification accuracy
of the proposed NTF classifier against that of state-of-the-art
classifiers. Conclusions are drawn and future directions are
indicated in Section V.

II. RELATED WORK

Several benchmark datasets have been collected making
the performance of the various music genre classification
approaches comparable. Such benchmark datasets are listed
in Table I along with the best accuracy reported for state-of-
the-art classifiers in chronological order. The GTZAN dataset
was introduced by Tzanetakis and Cook [12]. It contains 1000
audio recordings split into 10 genre classes. The parameters
of a Gaussian mixture model (GMM) classifier were estimated
by the iterative expectation-maximization (EM) algorithmin
[12]. A 61% correct classification was reported for timbre,
rhythmic, and pitch features. The same dataset was used by
Li et al. who employed support vector machines (SVMs)
and linear discriminant analysis (LDA) for classification [13].
The Daubechies wavelet coefficient histograms were used
as features and the reported classification accuracy of the
SVM classifier reached 78.5%. Lidy and Rauber employed
a pairwise SVM classifier applied to the GTZAN dataset [3].
The extracted features include rhythm patterns, a statistical
spectrum descriptor, and rhythm histogram features. The re-
ported best classification accuracy was 74.9%. Bergstra et
al. tested the mel-frequency cepstral coefficients (MFCCs),
the fast Fourier Transform coefficients, the linear prediction
coefficients (LPCs), and the zero-crossing rate (ZCR) on the
GTZAN dataset [14] and reported a classification accuracy
reaching 82.5% for the ADABOOST meta-classifier. It should
be noted, however, that the classification accuracy in [14] was
measured without cross-validation. Holzapfel and Stylianou

TABLE I
CLASSIFICATION ACCURACY (IN %) OF SEVERAL MUSIC GENRE

CLASSIFIERS IN CHRONOLOGICAL ORDER. THE HIGHEST ACCURACY IS
SHOWN IN BOLDFACE.

Reference Dataset Classifier Best Accuracy
[12] GTZAN GMM 61.0
[13] GTZAN SVM - LDA 78.5
[3] GTZAN SVM 74.9
[14] GTZAN ADABOOST 82.5
[15] GTZAN GMM 74.0

[17] MIREX 2004 NN - GMM 82.3
[3] MIREX 2004 SVM 70.4
[15] MIREX 2004 GMM 83.5

also employed the same dataset. By utilizing a spectral basis
derived by the NMF, that is fed to a GMM classifier, they
obtained a 74.0% classification accuracy [15].

Another collection used extensively is the MIREX 2004
dataset, released for the MIREX genre and rhythm classifi-
cation contests [16]. The MIREX 2004 genre dataset contains
1458 recordings belonging into 6 genre classes. The best
accuracy (i.e. 83.5%) was reported by Holzapfel and Stylianou
[15]. Pampalk et al. used the nearest neighbor (NN) classifier
with GMMs and obtained an accuracy of 82.3% [17]. In our
experiments, we are confined to the GTZAN dataset, because
it contains more genre classes than the MIREX 2004 one, thus
being a more comprehensive dataset for genre classification.

Other notable music genre classification approaches include
that of Burred and Lerch, who proposed a 3-level music
genre taxonomy covering 13 genres [18]. In addition, 3
speech classes, and one class for background noise were also
considered. A dataset was created containing 50 recordings
for each genre. Timbral and rhythmic features were extracted
along with MPEG-7 audio descriptors. A GMM classifier
reached classification accuracy of 59.76% for all classes. In
2005, Meng et al. created two datasets for genre classification
[19]. The first dataset contains 100 recordings from 5 genres
and the second dataset 354 music samples from the ama-
zon.com database. Short, medium, and long-time features were
extracted, and two classifiers were tested. The first classifier
was a single-layer neural network and the second one was a
Gaussian classifier that employs full covariance matrices.The
reported best accuracy was 95% on the first dataset and about
68% on the second dataset. More recently, Barbedo and Lopes
proposed a 4-level hierarchical genre taxonomy covering 29
music genres [20]. Several timbre features were selected and
a classification procedure was developed that uses pairwise
genre comparison. Overall, a genre classification accuracy
of 61% at the lowest genre level was reported. Finally,
Cataltepe et al. employed 225 MIDI music pieces covering
9 genre classes [21]. Timbral, rhythmic, and pitch content
features were extracted, and the recordings were classified
using a 10-nearest neighbor classifier (10-NN) or a normalized
compression distance classifier. Using a combination of the
aforementioned classifiers, a genre classification accuracy of
62% was reported.
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III. N ON-NEGATIVE TENSORFACTORIZATION

In this section, a novel non-negative tensor factorization
(NTF) technique is developed. First, the non-negative matrix
factorization (NMF) is briefly discussed, because the NTF
could be treated as a high-order generalization of the NMF
for tensorial data. Some definitions from tensor algebra follow
and the motivation for using tensors is described. Previous
NTF algorithms are reviewed next and the proposed one is
detailed. Contrary to previous approaches, the proposed NTF
algorithm is not limited to 3rd order tensors, but can be applied
to nth (n > 3) order tensors. In addition, the algorithm can be
formulated using a variety of objective functions. Obviously,
its use is not restricted to audio processing only. Finally,a
novel supervised classifier based on NTF for 3rd order tensors
is proposed, which performs separate training for each class
and employs basis orthogonalization.

Throughout the paper, tensors are denoted by boldface Euler
script calligraphic letters (e.g.A), matrices are denoted by
uppercase boldface letters (e.g.U), and vectors are denoted
by lowercase boldface letters (e.g.u). The elements of all
the aforementioned mathematical structures are denoted by
lowercase letters indexed by one or more indices. For example,
the elements of matrixU are denoted asui1i2 . Let R andZ
be the sets of real and integer numbers, respectively.

A. Non-negative Matrix Factorization

Subspace analysis seeks low dimensional structures of pat-
terns within high dimensional spaces. NMF is a subspace
method able to obtain a parts-based representation of objects
by imposing non-negative constraints. It was first introduced
as positive matrix factorization by Paatero et al. [22] and
was re-termed as NMF by Lee and Seung [23]. The problem
addressed by the NMF is as follows. Given a non-negative
real-valued data matrixV 2 Rn�m+ , find the non-negative
matrix factorsW 2 Rn�k+ andH 2 Rk�m+ so thatV �WH = kXi=1 wi hTi , kXi=1 wi Æ hi (1)

whereÆ stands for the outer product. Obviously,wi are the
columns ofW andhTi are the rows ofH. W contains the
basis vectors, while the column vectors ofH contain the
weights needed to properly approximate the corresponding
column vector ofV as a linear combination of the column
vectors ofW. Usually,k is chosen so that(n+m)k < nm,
thus resulting in a compressed version of the original data
matrix. To find the approximate factorization (1), a suitable
objective function has to be minimized. LetV = [vij ℄ andWH , Y = [yij ℄. In [23], the generalized Kullback-Leibler
(KL) divergence betweenV andWH was used:D(VjjWH) = nXi=1 mXj=1�vij log vijyij � vij + yij� (2)

The minimization of (2) can be solved by using iterative
multiplicative rules [23]. Frequently, additional constraints are
incorporated into (2). For example, the local NMF algorithm

I2 I3I1 A
Fig. 1. 3rd order real-valued tensorA 2 RI1�I2�I3 .

imposes spatial locality in the solution and consequently
reveals local features in the data matrixV [24].

A more general view of the NMF is set under the so-
called non-negative matrix approximation (NNMA) in [11]. In
NNMA, instead of minimizing a specific objective function,
the minimization of a class of objective functions, called
Bregman divergences, is proposed. The same approach will
be adopted for the derivation of the NTF in Subsection III-D.

B. Tensors and Multilinear Algebra Basics

Quantities addressed by more than two indices are often
employed in signal processing applications. To describe such
quantities, tensors need to be employed. In multilinear algebra,
tensors are considered as high-order generalizations of matri-
ces and vectors [6]–[8]. A real-valued vectora 2 RI , I 2 Z is
treated as a first-order tensor. Similarly, a real-valued matrixA 2 RI1�I2 with I1; I2 2 Z is defined as a second-order
tensor. A real-valued tensorA of ordern is defined over the
vector spaceRI1�I2�����In , whereIi 2 Z, i = 1; : : : ; n. Each
element ofA is addressed byn indices, i.e.ai1i2:::in , whereii = 1; 2; : : : ; Ii. A 3rd order tensor is sketched in Figure 1.

Mode-i unfolding of the tensorA yields the matrixA(i) 2RIi�Ii , whereI i , I1I2 � � � Ii�1Ii+1 � � � In. In the following,
the operations on tensors are expressed in matricized form
[8]. The symbol�i stands for thei-mode product between a
tensor and a matrix [6]. It can be computed via the matrix mul-
tiplication B(i) = UA(i) followed by re-tensorization to undo
the mode-i unfolding for i = 1; 2; : : : ; n. For example, the
2-mode product between the 3rd order tensorA 2 RI1�I2�I3
and the matrixU 2 RI2�J yields the 3rd order tensorB = A �2 U 2 RI1�J�I3 . The inner product of twonth
order tensorsA andB is denoted as< A;B >. The norm
of tensorA is defined asjjAjj = p< A;A >.

An n-order tensorA has rank1, when it can be decomposed
as the outer product ofn vectorsu(1); u(2); : : :, u(n), i.e.A = u(1) Æ u(2) Æ : : : Æ u(n): (3)

That is, each element of the tensor in (3) is given byai1i2:::in = u(1)i1 u(2)i2 : : : u(n)in for all i` = 1; 2; : : : ; I` and` = 1; 2; : : : ; n. The rank of an arbitraryn-order tensorA
is the minimal number of rank-1 tensors that yieldA when
linearly combined.

In the following, several products between matrices shall be
needed, such as the Kronecker product denoted by
 and the
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Khatri-Rao product denoted by�, whose definitions can be
found elsewhere, e.g. [8].

C. Motivation for Using Tensors and the Proposed Non-
negative Tensor Factorization

The NMF has been used extensively in signal processing
yielding promising results in the past years. A list of the
numerous NMF applications can be found in [11]. However,
the NMF as any other subspace method deals only with
vectorized data. By vectorizing a typical 3rd order tensor
stemming from 900 training recordings, which are represented
by 30 feature vectors of 34 dimensions each, one obtains
900 vectors of 1020 dimensions. Many pattern classifiers
cannot cope with the aforementioned dimensionality given
the small number of training samples. In addition, handling
such high-dimensional samples is computationally expensive.
For example, eigen-analysis or singular value decomposition
cannot be easily performed. Despite implementation issues,
it is well understood that vectorization breaks the natural
structure and correlation in the original data. Thus, in order
to preserve the natural data structure and correlation, dimen-
sionality reduction operating directly on tensors rather than
vectors is desirable. The concept of low-rank decomposition
of high-order signal representations is addressed in [6], [25],
where several algorithms are reviewed. Thus, a high-order
generalization of the NMF could be of great importance in
the analysis of such high-order signal/pattern representations.

Some NMF generalizations have been proposed mostly for
3rd order tensors in face detection or recognition applications.
In 2005, Shashua and Hazan proposed a generalization of the
NMF for nth order tensors [26]. The problem was formulated
as the decomposition of a tensor into a sum ofk rank-1 tensors
using the Frobenius norm as distance. Multiplicative update
rules were employed and an application to sparse image coding
was discussed. Hazan et al. extended the previous work by
employing the KL divergence (also known as relative entropy)
as distance [27].

In 2006, Boutsidis et al. introduced an algorithm for 3rd
order tensor decomposition called projected alternating least
squares with initialization and regularization (PALSIR) [28].
This algorithm also employed the Frobenius norm as distance
and alternating least squares was used to derive the decompo-
sition. Experiments were performed on eye image databases
for biometric iris recognition applications. Heiler and Schnörr
proposed a generalization of the sparse NMF algorithm for 3rd
order tensors applied to face detection [29]. The Frobenius
norm was used as distance in this case, too. The algorithm
was termed as sparsity-constrained NTF, because a sparsity
maximization algorithm was employed.

In 2007, Cichocki proposed algorithms for 3rd order NTF
using alpha and beta divergences [30]. These algorithms
employed alternating interior-point gradient and fixed point
alternating least squares techniques incorporating sparsity
constraints into the decomposition. The just described NTF
method was incorporated into multilayer networks in order to
improve the performance of multi-way blind source separation
in EEG [31]. It should be noted that this model cannot be

generalized to higher order tensors nor can degenerate to the
NMF model for 2nd order tensors.

In this paper, we would like to derive a generic unified
NTF algorithm, which can handlenth order tensors and can
degenerate to the NMF, whenn = 2.

D. Proposed NTF Algorithm

Having set our objectives, we decided to build upon the
model proposed by Shashua and Hazan [26], which can be
extended tonth order tensors and degenerates to the NMF,
when n = 2. A preliminary version of the algorithm was
first introduced in [33], which was also the basis for the
Discriminant NTF algorithm in [32]. We resort to the Bregman
divergences in order to offer a unified factorization framework,
which includes as special cases the Frobenius norm, the KL-
divergence, and the Itakura-Saito (IS) distance. The Bregman
divergences, proposed by Bregman in 1967 [10], are defined
as D�(x; y) = �(x) � �(y)� �0(y)(x � y); (4)

where�(x) is a strictly convex function defined on a convex
set S � R and �0(y) denotes the first derivative of�()
evaluated aty. By definition, the Bregman divergences are
non-negative [11] and can be extended to tensors. Let us
consider thenth order tensorsX;Y 2 RI1�I2�����In . The
following identity holds:D�(X;Y) = I1Xi1=1 I2Xi2=1 � � � InXin=1D�(xi1i2:::in ; yi1i2:::in): (5)

For�(x) = 12x2,D�(x; y) corresponds to the Frobenius norm.
For �(x) = x log(x), the Bregman divergence coincides with
the KL divergence, whereas for�(x) = � log(x), the resultingD�(x; y) is recognized to be the Itakura-Saito (IS) distance.

Therefore, our goal is to decompose a tensorV 2RI1�I2�����In+ into a sum ofk rank-1 tensors:V = kXj=1 u(1)j Æ u(2)j Æ � � � Æ u(n)j (6)

where u(i)j 2 RIi+ and j = 1; 2; : : : ; k. Let U(i) ,[u(i)1 ju(i)2 j : : : ju(i)k ℄, i = 1; 2; : : : ; n. ObviouslyU(i) 2 RIi�k+ .
Let us introduce the compact notationKiU , U(n) � � � � �U(i+1) �U(i�1) � � � � �U(1): (7)

In matricized form, the factorization (6) can be written as:V(i) , U(i)|{z}W(i) �U(n) � � � � �U(i+1) �U(i�1) � � � �U(1)| {z }H(i) �T= U(i)�KiU�T : (8)

From the inspection of (8), one may readily see that the NMF
results ifW = W(1) = U(1) andH = [H(1)℄T = [U(2)℄T .
Let X%i , I1X%1=1 I2X%2=1 � � � Ii�1X%i�1=1 Ii+1X%i+1=1 � � � InX%n=1 : (9)
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The following minimization problem with Bregman diver-
gences is solvedminu(i)j �0D�� kXj=1 u(1)j Æ u(2)j Æ � � � Æ u(n)j ;V� (10)

by using auxiliary functions, as is analyzed in Appendix I.
In particular, for the KL divergence (i.e.�(x) = x log(x)),
the following multiplicative update rule is obtained for the
elements ofu(i)j denoted asu(i)jl :u(i)jl  ~u(i)jl �exp�P%i�j%1:::%i�1%i+1:::%n � log v%1:::%i�1l%i+1:::%n�%1:::%i�1l%i+1:::%nP%i�j%1:::%i�1%i+1:::%n �

(11)
where ~u(i)jl is the lth element of vectoru(i)j before updating,j = 1; 2; : : : ; k, i = 1; 2; : : : ; n, l = 1; 2; : : : ; Ii, and�j%1:::%i�1%i+1:::%n = u(1)j%1 � � �u(i�1)j%i�1u(i+1)j%i+1 � � �u(n)j%n (12)�%1:::%i�1l%i+1:::%n = kXj0=1u(1)j0%1 � � �u(i�1)j0%i�1u(i)j0lu(i+1)j0%i+1 � � �u(n)j0%n :

(13)

For �(x) = 12x2 (that is, when the Frobenius norm is used),
the resulting update rule is:u(i)jl  ~u(i)jl � P%i�j%1:::%i�1%i+1:::%n � v%1:::%i�1l%i+1:::%nP%i�j%1:::%i�1%i+1:::%n � �%1:::%i�1l%i+1:::%n :

(14)
Finally, for �(x) = � log(x) (i.e. when the IS distance is
employed), the update rule is:u(i)jl  ~u(i)jl � P%i �j%1 :::%i�1%i+1:::%n�%1:::%i�1l%i+1:::%nP%i �j%1 :::%i�1%i+1:::%nv%1:::%i�1l%i+1:::%n : (15)

In order to apply the aforementioned NTF algorithms to annth
order tensorV, then matricesU(i), i = 1; 2; : : : ; n, should be
initialized by random numbers between 0 and 1. The update
rules (11), (14), or (15) are applied to the column vectorsu(i)j
of matrixU(i), j = 1; 2; : : : ; k. The proof of convergence for
the Frobenius NTF algorithm can be found in Appendix I. The
computational cost of the various NTF algorithms is derived
in Appendix II.

E. Proposed 3rd Order NTF Classifier

The novel NTF classifier for 3rd order tensors discussed
next was inspired by the NMF classifier proposed in [34],
where a basis for each class was trained separately and the test
data were projected onto an orthogonalized basis. Preliminary
results using the proposed classifier for 3rd order tensors in
music genre classification were reported in [33]. LetC be
the number of genre classes. The proposed 3rd order NTF
classifier considers a tensorV
 2 RI
1�I2�I3 with I
1 being
the number of training recordings in class
, 
 = 1; 2; : : : ; C
(i.e. 90 for stratified 10-fold cross-validation in the GTZAN
dataset),I2 being the dimensionality of feature vectors,I3 =30 being the number of feature vectors extracted per recording
(i.e. the number of 1 sec segments each recording is split to).
The algorithm steps are as follows:

1) Decompose the training tensor for each genreV
 2RI
1�I2�I3 , 
 = 1; 2; : : : ; C, i.e.V
 = kXj=1 u(1)
j Æ u(2)
j Æ u(3)
j : (16)

2) Determine the 1st mode of the tensorV
 by unfolding
[6], [8]: V
(1) = U(1)
 �U(3)
 �U(2)
 �T

(17)

where� stands for the Khatri-Rao matrix product. Thus,U(3)
 �U(2)
 has dimensions(I3I2)� k, whileV
(1) is
a matrix with dimensionsI
1� (I3I2). In the following,
we deal with the transpose of matrixV
(1) , i.e.[V
(1) ℄T = �U(3)
 �U(2)
 � [U(1)
 ℄T : (18)

3) Perform QR decomposition on the basis matrixU(3)
 �U(2)
 : U(3)
 �U(2)
 = Q
 R
 (19)

whereQ
 is a (I3I2)�k column-orthogonal matrix (i.e.QT
 Q
 is thek� k identity matrix)1 andR
 is a k� k
upper triangular matrix. Store matricesQ
 andH
 =R
 [U(1)
 ℄T . It is worth noting that the Gram-Schmidt
orthogonalization does not affect the non-negativity of
the basis matrix. It is used to calculatecorrectly theL2
norms in a non-orthogonal basis.

4) For testing, the feature matrixVt of dimensionsI2 �I3 is considered. The feature matrix is arranged to a
column vectorvt of dimensionsI2I3 by concatenating
its columns. The column vectorvt is projected onto the
subspaces defined by the basis matrices of the classes:h
t = QT
 vt (20)

and has lengthk.
5) LetCSMtm(
) be the cosine similarity measure (CSM)

betweenh
t andh
m, m = 1; 2; : : : ; I
1 (i.e. themth
column of matrixH
):CSMtm(
) = hT
t h
mjjh
tjj jjh
mjj : (21)

Let CSMt[m℄(
) denote themth largest element in the
set fCSMtm(
); m = 1; 2; : : : ; I
1g. The decision
taken by the classifier is based on$t(
) = KXm=1CSMt[m℄(
) (22)

whereK � I
1 (e.g.K = 3). The class label of the
test patternvt is determined by the maximum among$t(
), i.e.: 
̂t = argmax
=1;2;:::;Cf$t(
)g: (23)

A block diagram of the testing procedure of the proposed
supervised NTF classifier is sketched in Figure 2.

1Obviously,Q
QT
 is not equal to the identity matrix.
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vt
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.
.

.

.

QT1QT2QTC
h1t H1H2HC arg

max

h
t = QT
 vt $t(C)
$t(1)$t(2)

Fig. 2. The proposed supervised NTF classifier.

IV. EXPERIMENTAL RESULTS

In this Section, music genre classification experiments are
discussed. In subsection IV-A, the employed dataset is de-
scribed. The feature extraction is detailed in subsection IV-B,
while the feature selection method is discussed in subsection
IV-C. Finally, the accuracy using the various classifiers is
reported in subsection IV-D.

A. Dataset

The GTZAN database was employed for genre classification
experiments. The database contains 1000 audio recordings
distributed across 10 music genres [12], namely: Classical,
Country, Disco, HipHop, Jazz, Rock, Blues, Reggae, Pop,
and Metal. 100 recordings are collected for each genre. All
recordings are mono channel, are sampled at 22050 Hz rate,
and have a duration of approximately 30 sec. Each recording
is separated into 30 segments (i.e. texture windows) of 1 sec
duration. Such a texture window has commonly been used
in genre classification experiments, because it increases the
classification accuracy compared to direct analysis frames[2],
[12], [19]. For each 1 sec long texture window, 207 features
are extracted, which are described next.

B. Feature Extraction

In music genre classification experiments, the extracted fea-
tures usually belong into 3 categories, namely timbre, rhythm,
and pitch-based ones [1], [2]. In this paper, a combination of
descriptors measuring energy, spectral, temporal, perceptual,
and pitch characteristics of the music recordings is explored
[35]. The complete list of the extracted features can be found
in Table II.

The 1st feature measures the energy of the audio signal.
Feature 2 is computed by maximum likelihood harmonic
matching. Features 3 and 4 refer to the perceptual modeling of
the human auditory system [17]. The spectral shape is captured
by features 5-9 and 14-15. The temporal properties of the
signals are correlated with features 10-13 and 16. Feature 17
describes the amplitude of the maximum peak of the folded
histogram [36]. Feature 18 was proposed in [37]. Features 1,
2, 5, 7, 11, and 12 were computed using the definitions of
the MPEG-7 audio framework [38]. It should be noted that
24 Mel-frequency cepstral coefficients and 8 specific loudness

TABLE II
THE FEATURE SET.

No. Feature # Values per segment
1 Short-Time Energy (STE) 1� 4 = 4
2 Fundamental Frequency (FF) 1� 4 = 4
3 Total Loudness (TL) 1� 4 = 4
4 Specific Loudness Sensation (SONE) 8� 4 = 32
5 Spectrum Centroid (SC) 1� 4 = 4
6 Spectrum Rolloff Frequency (SRF) 1� 4 = 4
7 Spectrum Spread (SS) 1� 4 = 4
8 Spectrum Flatness (SF) 4� 4 = 16
9 Mel-frequency Cepstral Coefficients (MFCCs) 24� 4 = 96
10 Auto-Correlation Values (AC) 13
11 Log Attack Time (LAT) 1
12 Temporal Centroid (TC) 1
13 Zero-Crossing Rate (ZCR) 1� 4 = 4
14 Spectral Difference (SD) 1� 4 = 4
15 Bandwidth (BW) 1� 4 = 4
16 Phase Deviation (PD) 1� 4 = 4
17 Pitch Histogram (PH) 1� 4 = 4
18 Rhythmic Periodicity (RP) 1� 4 = 4

Total number of features 207

sensation (SONE) coefficients are extracted for each audio
frame of 10 msec duration.

Except features 10-12, the remaining features are computed
on frame basis and their 1st and 2nd moments are exploited
by averaging over the frames within each 1 sec long texture
window. Similarly, the 1st and 2nd moments of the first-order
frame-based feature differences are computed. This explains
the factor 4 appearing in Table II. In total, 207 features
are extracted from each texture window. All features but the
MFCCs are non-negative. Accordingly, they can be employed
directly into the NTF. For the MFCCs, their magnitude is
retained only. The computation of the aforementioned features
every 1 sec yields the tensorV of dimensions1000�207�30.

For comparison purposes, a smaller feature set is also tested,
which includes the features extracted by the Music Analysis,
Retrieval and Synthesis for Audio Signals (MARSYAS) plat-
form [39]. This feature set consists of the 1st order moments
of the following timbral features: Spectral Centroid, Spectral
Rolloff Frequency, Spectral Difference (also known as spectral
flux), and 30 MFCCs per frame, which are averaged over 1 sec
texture windows. Thus, the tensor of the MARSYAS features
has dimensions1000� 34� 30.

C. Feature Selection

Careful feature selection is essential for classification.Here,
the optimal feature subset maximizes the ratio of the inter-class
dispersion over the intra-class dispersion:J = tr(S�1w Sb),
wheretr(�) stands for the trace of a matrix,Sw is the within-
class scatter matrix, andSb is the between-class scatter matrix.
Details on the computation ofSw and Sb can be found in
any textbook on pattern recognition (e.g. [9]). Because, in
our case, the number of distinct subsets having cardinalityI2
(1 � I2 � 207) is 207!(207�I2)!I2! , the branch-and-bound search
strategy is employed for complexity reduction. In this strategy,
a tree structure of(207�I2+1) levels is created, where every
node corresponds to a subset. The tree root corresponds to the
full set (e.g. 207 features), while each leaf node corresponds
to a subset of cardinalityI2. The branch-and-bound search
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TABLE IV
AVERAGE ACCURACY ACHIEVED BY SEVERAL CLASSIFIERS WHEN EITHER

THE SUBSET OF80 SELECTED FEATURES OR THEMARSYAS FEATURE
SET WAS EMPLOYED.

Classifier 80 Feature Subset MARSYAS Feature Set
NTF Frobenius 78.9% 68.3%

SVM 77.2% 67.6%
MLP 77.0% 69.1%

NTF KL 70.4% 61.4%
NTF IS 63.6% 55.0%

strategy traverses the structure using a depth-first searchwith
backtracking [9].

In order to apply the feature selection algorithm, the data
tensor should be transformed into a matrix by unfolding [6].
Thus, the unfoldingV(2) 2 R207�30000+ is computed from
tensorV 2 R1000�207�30+ . Several feature subsets were derived
with respect to maximizingJ comprisingI2 2 f60; 70; 80; 90g
features out of the 207 initial features. The subset comprising
80 features listed in Table III is found to yield the highest
music genre classification accuracy, when it is employed in
the proposed NTF Frobenius classifier (cf. subsection IV-D).
It is seen that 31 out of the 80 selected features are moments
of the MFCCs or their first-order differences.

D. Performance Assessment

Experiments were performed by employing various subsets
of selected features as well as the MARSYAS feature set using
a stratified 10-fold cross validation, which is widely used in
genre classification experiments on the GTZAN dataset.

The rank of the 3rd order genre class-dependent tensorV

should satisfy [8] (and references therein)k � minfI
1I2; I
1I3; I2I3g: (24)

Since by the experimental protocolI
1 andI3 are fixed to 90
and 30, respectively, the inequality (24) impliesk � 30I2,
if I2 � 90. Various values ofk were tested for the NTF
algorithms within the proposed NTF classifier. The highest
genre classification accuracy was obtained for the following
values of k: k = 55, when the feature subset comprisesI2 = 60 features;k = 61, when the number of selected
featuresI2 is 70 or 80; andk = 64, whenI2 = 90 features are
selected. For the MARSYAS set,k was set to 22. The number
of termsK taken into account in (22) was set to 3 for all NTF
classifiers.

The performance of the NTF classifier was compared
against that of multilayer perceptron (MLP) and SVMs. In
particular, a 3-layered perceptron with the logistic activation
function was used. Its training was performed by the back-
propagation algorithm with learning rate equal to 0.3 and
momentum equal to 0.2 for 500 training epochs. A multi-
class SVM classifier with a 2nd order polynomial kernel with
unit bias/offset was also tested [40]. The experiments with
the aforementioned classifiers were conducted on the matrix
unfoldingV(2) 2 RI2�30000+ using 10-fold cross validation,
whereI2 = f60; 70; 80; 90g.

The average music genre classification accuracy achieved
by the classifiers over the 10 folds is listed in Table IV, when
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Fig. 3. Average music genre classification accuracy for the various feature
subsets.

either the subset of 80 selected features or the MARSYAS
feature set was employed. In Figure 3, the average accuracy
of the SVM, MLP, and NTF Frobenius classifier is plotted
versus several subset cardinalities. From Figure 3, it can be
seen that the highest average accuracy of 78.9% was obtained
by the proposed NTF Frobenius classifier, when it is applied
to the subset of 80 selected features listed in Table III.
The standard deviation of the accuracy achieved by the NTF
Frobenius classifier is found to be 2.60%. The aforementioned
classification accuracy outperforms that reported in [12] (i.e.
61.0%), [3] (i.e. 74.9%), [15] (i.e. 74.0%), and slightly ex-
ceeds that reported in [13] (i.e. 78.5%). In [14], a greater
classification accuracy than ours is reported (i.e. 82.5%) by
employing boosting. However, since cross-validation was not
used, the latter accuracy is not directly comparable with ours
(i.e. 78.9%). The NTF classifier, when the Frobenius norm
was used, attained a higher accuracy than that achieved by the
SVM or the MLP for 80 selected features. This was not the
case when 60 or 70 features were selected, as can be seen in
Figure 3.

Concerning the classification accuracy when the full set of
207 features is used with , it was measured 54.7%, 49.2%,
and 40.8% for the NTF Frobenius, NTF KL, and NTF IS
classifiers, respectively, withk set to 86. The corresponding
accuracies for the SVM or the MLP classifiers were 51.8%
and 53.5%, respectively.

The NTF Frobenius classifier outperforms the SVM for all
subset feature cardinalities tested. The NTF classifier achieved
a lower accuracy, when either the KL divergence or the IS
distance was employed, than that when the Frobenius norm
was used.

If the comparison is made across the sets of features
employed, the inspection of Table IV reveals that the set of
80 features listed in Table III clearly performs better than
the MARSYAS feature set within all classifiers. Using the
MARSYAS features, the best classification accuracy of 69.1%
was achieved by the MLP classifier. When the NTF Frobenius
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TABLE III
THE 80 FEATURES SELECTED BY THE BRANCH-AND-BOUND ALGORITHM.

No. Selected Feature No. Selected Feature
1 Mean of 2nd SF coefficient 41 Mean of 1st order difference of 2nd SF coefficient
2 Variance of 1st SONE 42 Variance of SS
3 Mean of SF 43 Mean of 8th SONE
4 Mean of 2nd SONE 44 Variance of 2nd SF coefficient
5 Mean of BW 45 Variance of 1st order difference of 20th MFCC
6 Variance of 1st order difference of 13rd MFCC 46 Mean of 9th MFCC
7 Mean of 12th MFCC 47 Variance of 1st order difference of 2nd MFCC
8 Mean of SC 48 Mean of 1st order difference of 10th MFCC
9 Mean of 1st SF coefficient 49 Mean of 5th MFCC
10 Mean of SS 50 Mean of 3rd MFCC
11 Variance of TL 51 Variance of 1st order difference of 1st SF coefficient
12 Variance of 1st order difference of 5th MFCC 52 7th AC coefficient
13 Mean of 3rd SF coefficient 53 Mean of SRF
14 Variance of 8th MFCC 54 Variance of 1st order difference of 24th MFCC
15 Variance of SD 55 3rd AC coefficient
16 Mean of RP 56 Variance of 1st order difference of 12th MFCC
17 Variance of PD 57 Mean of 6th SONE
18 Mean of 4th SF coefficient 58 4th AC coefficient
19 Variance of 1st order difference of SS 59 Variance of 9th MFCC
20 Variance of 1st order difference of 8th MFCC 60 Variance of 2nd SONE coefficient
21 Variance of 1st order difference of 11th MFCC 61 Variance of 1st MFCC
22 Variance of 1st order difference of 10th MFCC 62 Mean of 14th MFCC
23 Mean of 11th MFCC 63 Mean of 1st MFCC
24 Variance of 4th SF 64 Variance of 1st order difference of 4th SF coefficient
25 Mean of TL 65 Mean of 2nd MFCC
26 Variance of 1st order difference of 1st SONE 66 Variance of 1st order difference of 3rd SF coefficient
27 Mean of 1st order difference of RP 67 Variance of 1st order difference of 8th SONE coefficient
28 Variance of 3rd SONE 68 Variance of 1st order difference of 5th SONE coefficient
29 Mean of FF 69 Variance of 1st order difference of 3rd SONE coefficient
30 Variance of 1st order difference of 9th MFCC 70 Mean of 1st order difference of 1st SF coefficient
31 Mean of 1st order difference of 11th MFCC 71 Variance of STE
32 Variance of 1st order difference of RP 72 Variance of BW
33 Mean of 13th MFCC 73 Mean of 1st order difference of 12th MFCC
34 Variance of 1st order difference of SC 74 Mean of 16th MFCC
35 Mean of 1st order difference of 14th MFCC 75 Variance of 1st order difference of 7th MFCC
36 Variance of SC 76 Variance of SRF
37 Variance of 2nd MFCC 77 Variance of 1st order difference of 2nd SF coefficient
38 Variance of 1st SF coefficient 78 Variance of 7th MFCC
39 Variance of 3rd SF coefficient 79 Mean of 4th MFCC
40 Variance of 5th SONE 80 Mean of PD

classifier was used with MARSYAS features, the second best
accuracy 68.3% was obtained. The superiority of the extracted
features over the MARSYAS ones is partially attributed to the
fact that the latter features roughly consist a subset of the
former ones. For the MARSYAS features, the NTF classifier
with either the KL divergence or the IS distance is less
performing than the NTF classifier with the Frobenius norm.

Next, the statistical significance of the accuracy differ-
ences between the classifiers was addressed by employing
the method described in [41], where the number of correctly
classified patterns is assumed to be distributed according to the
binomial distribution. It can easily be shown that the perfor-
mance gains obtained by the NTF Frobenius classifier against
the SVM and MLP classifiers are not statistically significantat
95% confidence level. On the contrary, the accuracy difference
between the NTF classifier with the Frobenius norm and the

same classifier, when either the KL divergence or the IS
distance is used, is found to be statistically significant at95%
confidence level. It should be noted that the difference of 0.4%
between the one-vs-the-rest SVMs [13] and the NTF Frobenius
classifier is statistically insignificant as well. However,the
performance gain obtained by the NTF Frobenius against the
classifiers employed in [3], [12], [15] is statistically significant.

Insight to the performance of the NTF Frobenius, SVM,
and MLP classifiers is offered by the confusion matrices
averaged over the 10 splits determined by 10-fold stratified
cross-validation, in Tables V, VI, and VII, respectively. The
columns of the confusion matrix correspond to the predicted
music genre and the rows to the actual one. For the NTF
Frobenius classifier, most misclassifications occur among the
Hiphop, Pop, and Rock genres. Concerning the SVM classifier,
most misclassifications occur for Rock recordings, which are
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TABLE V
AVERAGE CONFUSION MATRIX FOR THENTF FROBENIUS CLASSIFIER

USING THE 80 SELECTED FEATURES OVER THE10 SPLITS DETERMINED
BY 10-FOLD STRATIFIED CROSS-VALIDATION .

Genre Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock
Blues 86 1 6 1 0 1 0 0 1 4

Classical 1 88 9 0 0 1 0 0 0 1
Country 2 0 87 1 0 3 0 0 1 6
Disco 2 0 4 76 4 0 0 3 3 8

Hiphop 3 0 2 11 67 0 3 5 8 1
Jazz 4 1 10 2 0 77 4 0 0 2

Metal 1 0 0 1 0 1 92 0 0 5
Pop 3 1 3 15 3 0 0 72 1 2

Reggae 2 0 2 5 5 1 0 5 73 7
Rock 4 0 5 4 0 2 7 2 5 71

TABLE VI
AVERAGE CONFUSION MATRIX FOR THESVM CLASSIFIER USING THE80

SELECTED FEATURES OVER THE10 SPLITS DETERMINED BY10-FOLD

STRATIFIED CROSS-VALIDATION .

Genre Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock
Blues 84 0 4 2 1 2 0 1 2 4

Classical 0 97 1 0 0 1 0 0 0 1
Country 6 2 73 4 0 2 0 1 0 12
Disco 2 0 3 77 2 0 1 4 3 8

Hiphop 2 0 0 8 73 0 2 3 11 1
Jazz 5 5 7 0 1 80 0 0 0 2

Metal 0 0 0 1 3 0 90 1 0 5
Pop 1 1 5 3 3 0 2 77 3 5

Reggae 4 0 1 9 11 1 0 3 67 4
Rock 7 0 17 11 1 0 5 2 3 54

misclassified as either Country or Disco ones. The same occurs
for the MLP classifier. It is worth noting that the boundaries
between genres such as Pop and Rock as well as Rock and
Metal still remain fuzzy [2], a fact that is reflected in the
annotations accompanying the dataset.

V. CONCLUSIONS- FUTURE WORK

In this paper, music genre recognition experiments have
been performed using a variety of sound description features
and multilinear classification techniques. Novel algorithms for
the NTF have been derived from first principles and their
computational cost has been estimated. An NTF classifier that
trains a basis for each class separately and employs basis
orthogonalization has also been proposed. The NTF classifier
has been tested against state-of-the-art classifiers. It has been
found to be slightly superior than them. This superiority is
attributed to the higher expressive power of the multilinear
representations than that of the pattern matrix the standard
pattern recognition algorithms they depend on.

NTF classifiers compared to standard machine learning
approaches, such as MLPs and SVMs, are not limited to vec-
torized data, but can be used for higher order representations.

TABLE VII
AVERAGE CONFUSION MATRIX FOR THEMLP CLASSIFIER USING THE80

SELECTED FEATURES OVER THE10 SPLITS DETERMINED BY10-FOLD

STRATIFIED CROSS-VALIDATION .

Genre Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock
Blues 80 3 4 0 0 3 2 1 1 6

Classical 0 93 0 0 0 3 0 1 0 3
Country 3 1 74 3 0 5 0 2 1 11
Disco 4 1 8 72 3 0 2 3 4 3

Hiphop 2 0 1 2 80 0 2 5 7 1
Jazz 9 4 2 0 0 82 1 0 1 1

Metal 1 0 0 2 2 0 87 3 0 5
Pop 1 0 6 3 2 0 1 79 1 7

Reggae 4 0 3 3 9 1 0 3 72 5
Rock 6 0 19 8 1 2 6 2 5 51

For example, tensors can be used for modeling any recording
as a time series of potentially different genre labels. NTF offers
an attractive framework for modeling data as a multilinear
combination of features and can extract basis features enabling
a greater interpretability of the basis contributions to the clas-
sification than SVMs and MLPs. Such factorizations can also
be used for dimensionality reduction prior to the application
of standard machine learning algorithms (e.g. SVMs). NTF is
not limited to music genre classification, but it can be utilized
in various cases associated with feature vectors computed
over time, such as for multiple frequency estimation in audio
recordings in order to provide a global spectral basis for a
whole set instead of a basis for each recording [42].

In the future, the performance of NTF will be assessed
on hierarchical music genre databases, which offer additional
flexibility over the flat classification approaches. In addition,
the NTF algorithms could be enhanced by incorporating
penalty functions into the factorization problem, which can
control the outcome of the factorization. Finally, various
initialization techniques similar to those proposed for the NMF
algorithm [44], could be developed for the NTF algorithms
aiming to reduce the number of iterations.

APPENDIX I

A. Problem Formulation

As stated in Section III-D, the following minimization
problem is treated:minu(i)j �0D�� kXj=1 u(1)j Æ u(2)j Æ � � � Æ u(n)j ;V�:
Let l = 1; 2; : : : ; Ii and i = 1; 2; : : : ; n. The goal is to find
a multiplicative updating rule for the elements of vectorsu(i)l
denoted asu(i)jl , j = 1; 2; : : : ; k. From (5), it can be seen that:D�� kXj=1 u(1)j Æ u(2)j Æ � � � Æ u(n)j ;V� =IiXl=1 D�� kXj=1 u(1)j Æ u(2)j Æ � � �u(i�1)j u(i)jl Æ u(i+1)j Æ � � � Æ u(n)j ;V%i=l�

(25)

whereV%i=l 2 RI1�I2�����Ii�1�Ii+1�����IN is a sub-tensor
with the ith index fixed tol whose elements are denoted byv%1:::%i�1l%i+1:::%n , %` = 1; 2; : : : ; I` and` = 1; 2; : : : ; i�1; i+1; : : : ; n.

B. Auxiliary function

The minimization problem can be solved using auxiliary
functions [11], [23]. LetF (u(i)l ) denote the divergence term
in (25), i.e.F (u(i)l ) = D�� kXj=1 u(1)j Æu(2)j Æ� � �u(i�1)j u(i)jl Æu(i+1)j Æ� � �Æu(n)j ;V%i=l�:

(26)
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The application of (4) and (5) to (26) yields:F (u(i)l ) =X%i�� kXj=1 u(1)j%1 � � �u(i�1)j%i�1u(i)jl u(i+1)j%i+1 � � �u(n)j%n�� �(v%1:::%i�1l%i+1:::%n)�  (v%1:::%i�1l%i+1:::%n)�� � kXj=1 u(1)j%1 � � �u(i�1)j%i�1u(i)jl u(i+1)j%i+1 � � �u(n)j%n � v%1:::%i�1l%i+1:::%n�;
(27)

where (x) = �0(x). The following auxiliary function forF (u(i)l ) is proposed:G(u(i)l ; ~u(i)l ) =X%i� kXj=1 �%1:::j:::%n � ��u(1)j%1 � � �u(i�1)j%i�1u(i)jl u(i+1)j%i+1 � � �u(n)j%n�%1:::%i�1j%i+1:::%n �!� �(v%1:::%i�1l%i+1:::%n)�  (v%1:::%i�1l%i+1:::%n)�� � kXj=1 u(1)j%1 � � �u(i�1)j%i�1u(i)jl u(i+1)j%i+1 � � �u(n)j%n � v%1:::%i�1l%i+1:::%n�
(28)

where�%1:::%i�1j%i+1:::%n = u(1)j%1 � � �u(i�1)j%i�1 ~u(i)jl u(i+1)j%i+1 � � �u(n)j%nPkj0=1 u(1)j0%1 � � �u(i�1)j0%i�1 ~u(i)j0lu(i+1)j0%i+1 � � �u(n)j0%n :
(29)

It can easily be shown thatG(u(i)l ;u(i)l ) = F (u(i)l ). In
addition, using Jensen’s inequality for convex functions,it can
be verified thatG(u(i)l ; ~u(i)l ) � F (u(i)l ). Accordingly, indeedG(u(i)l ; ~u(i)l ) is an auxiliary function forF (u(i)l ).
C. Minimization of the auxiliary function

In order to derive a multiplicative update rule foru(i)jl ,

the auxiliary functionG(u(i)l ; ~u(i)l ) should be minimized with
respect tou(i)jl . The partial derivative ofG(u(i)l ; ~u(i)l ) with

respect tou(i)jl is set to zero:�G(u(i)l ; ~u(i)l )�u(i)jl =X%i�%1:::%i�1j%i+1 :::%n �  �u(1)j%1 � � �u(i�1)j%i�1u(i)jl u(i+1)j%i+1 � � �u(n)j%n�%1:::%i�1j%i+1:::%n �� u(1)j%1 � � �u(i�1)j%i�1u(i+1)j%i+1 � � �u(n)j%n�%1:::%i�1j%i+1:::%n�X%i (v%1:::%i�1l%i+1:::%n) � �u(1)j%1 � � �u(i�1)j%i�1u(i+1)j%i+1 � � �u(n)j%n�
(30)

By replacing (29) into (30) and after performing some alge-
braic manipulations, we obtain:�G(u(i)l ; ~u(i)l )�u(i)jl =X%i�u(1)j%1 � � �u(i�1)j%i�1u(i+1)j%i+1 � � �u(n)j%n��  � kXj0=1u(1)j0%1 � � �u(i�1)j0%i�1 ~u(i)j0lu(i+1)j0%i+1 � � �u(n)j0%n � u(i)jl~u(i)jl ��X%i (v%1:::%i�1l%i+1:::%n) ��u(1)j%1 � � �u(i�1)j%i�1u(i+1)j%i+1 � � �u(n)j%n�

(31)

The equation �G(u(i)l ; ~u(i)l )�u(i)jl = 0 (32)

cannot be analytically solved for any (). If  () is assumed
to be multiplicative as in [11] (i.e. (xy) =  (x) (y)), the
substitution of (31) in (32) yields the following update rule:u(i)jl  ~u(i)jl � �1 P%i (v%1:::%i�1l%i+1:::%n) � �j%1:::%i�1%i+1:::%nP%i�j%1:::%i�1%i+1:::%n �  (�%1:::%i�1l%i+1:::%n)!

(33)
where�j%1:::%i�1%i+1:::%n and�%1:::%i�1l%i+1:::%n are defined in
(12) and (13), respectively. The update rule (33) should be
applied to all elementsu(i)jl for j = 1; 2; : : : ; k, i = 1; 2; : : : ; n,
and l = 1; 2; : : : ; Ii. It should be noted that () is multiplica-
tive for the Frobenius norm, since�(x) = 12x2 )  (x) = x.
The update rule for the Frobenius norm given in (14) can be
easily derived from (33).

However, (33) cannot be applied to the KL divergence or
the IS distance, since the associated functions () are not
multiplicative. Indeed, we have�(x) = x log(x) )  (x) =log(x) + 1 for the KL divergence. By replacing the explicit
form of  (x) into (31), we obtainX%i�j%1:::%i�1%i+1:::%n � log�%1:::%i�1l%i+1:::%n + log u(i)jl~u(i)jl !�X%i log �v%1:::%i�1l%i+1:::%n� � �j%1:::%i�1%i+1:::%n = 0;

(34)

which leads to the update rule (11). Similarly, for the IS
distance,�(x) = � log(x) )  (x) = � 1x . By replacing the
explicit form of (x) into (31), we obtain the update rule (15).

D. Proof of Convergence

To prove the convergence of the multiplicative update rule
for the Frobenius NTF algorithm (14), one needs to show
that F (u(i)l ) � F (~u(i)l ). Using the definition ofF (u(i)l ),�j%1:::%i�1%i+1:::;%n and�%1:::%i�1l%i+1:::;%n given in (27), (12),
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and (13), respectively, it can be shown that:F (~u(i)l )� F (u(i)l ) =X%i� kXj=1 �j%1:::%i�1%i+1:::;%n � u(i)jl � v%1:::%i�1l%i+1:::%n��� � (�%1:::%i�1l%i+1:::;%n)�  ( kXj=1 �j%1:::%i�1%i+1:::;%n � u(i)jl )�+X%iD���%1:::%i�1l%i+1:::;%n ; kXj=1 �j%1:::%i�1%i+1:::;%n � u(i)jl �:
(35)

Since the 2nd term is by definition non-negative, it suffices
to prove that the first term in (35) is non-negative. For the
Frobenius norm, (x) = x, a fact that facilitates further the
derivations. Moving the denominator in (14) to the left hand
side part and summing overj, we getX%i�%1:::%i�1l%i+1:::;%n � v%1:::%i�1l%i+1:::%n =X%i� kXj=1 �j%1:::%i�1%i+1:::;%n � u(i)jl � � �%1:::%i�1l%i+1:::;%n :

(36)

Using (36) into the algebraic manipulations of the first term
in (35), we conclude that it is sufficient to proveX%iv%1:::%i�1l%i+1:::%n �� kXj=1 �j%1:::%i�1%i+1:::;%n � u(i)jl � �X%i� kXj=1 �j%1:::%i�1%i+1:::;%n � u(i)jl ��� kXj0=1�j0%1:::%i�1%i+1:::;%n � u(i)j0l� (37)

(14) implies thatX%i�j%1:::%i�1%i+1:::;%n � v%1:::%i�1l%i+1:::%n =X%i�j%1:::%i�1%i+1:::;%n � �%1:::%i�1l%i+1:::;%n � u(i)jl~u(i)jl (38)

Using (38), the inequality (37) is rewritten asX%i kXj=1 �j%1:::%i�1%i+1:::;%n � [u(i)jl ℄2~u(i)jl ! � �%1:::%i�1l%i+1:::;%n �X%i� kXj=1 �j%1:::%i�1%i+1:::;%n � u(i)jl ��� � kXj0=1�j0%1:::%i�1%i+1:::;%n � u(i)j0l� (39)

Inequality (39) holds thanks to Lemma 4 [11], which con-
cludes the proof.

APPENDIX II

The computational cost of the NTF is derived forn = 3 (3rd
order tensors), when the Frobenius norm is used. We assume
that one flop corresponds to a single floating point operation,
i.e. a floating point addition or a floating point multiplication
[43]. The computational cost is detailed in Table VIII. We
explicitly calculate the cost for the computation of the matrixU(1) 2 RI1�k having columnsu(i)j . The first entry refers to
terms�j%2%3 defined by (12), which arekI2I3 in total and each
of them requires 1 multiplication. The second entry refers to
terms�l%2%3 defined by (13), which areI1I2I3 in total and
each of them requires2k multiplications andk� 1 additions.
The cost for one update ofu(1)jl given by (14) is2(I2I3 + 1)
multiplications and2(I2I3 � 1) additions, therefore in total4I2I3. There areI1k elements that should be computed. In
total, one needs(7k � 1)I1I2I3 + kI2I3 flops per iteration in
order to compute the full matrixU(1). By repeating the same
computation forU(2) andU(3) and multiplying by the number
of iterationsr needed for convergence, we obtain:3r(7k � 1)I1I2I3 + rk(I2I3 + I1I3 + I1I2): (40)

It can be said that the Itakura-Saito NTF and the Kullback-
Leibler NTF algorithms have a computational cost of the same
order to that given by (40), if a constant cost is assumed for
the computation of logarithms and exponentials.

The inspection of (40) reveals that the cost of the non-
negative training tensorV
 factorization depends linearly on
the number of the training recordingsI
1 for each genre class.
Besides the NTF, the computational cost of the proposed NTF
classifier training in Section III-E involves tensor unfolding (of
no cost), the Khatri-Rao matrix productU(3)
 �U(2)
 , its QR
decomposition, and the matrix productH
 = R
 [U(1)
 ℄T for
each genre. The just mentioned Khatri-Rao matrix product is
computed at a cost ofI3I2k flops. The QR decomposition can
be performed at a cost of2I3I2k2 flops, if the modified Gram-
Schmidt method is used [43].H
 can be computed at a cost
of I
1(2k�1)k flops. The test phase involves (20)-(22), which
implies a computational cost ofO(I
1k2) for each genre.

TABLE VIII
3RD ORDERFROBENIUSNTF COMPUTATIONAL COST.

Term Flops�j%2%3 I2I3k�l%2%3 (3k � 1)I1I2I3u(1)jl given�j%2%3 and�l%2%3 4I1I2I3kU(1) per iteration (7k � 1)I1I2I3 + kI2I3U(i), i = 1; 2; 3, per iteration 3(7k � 1)I1I2I3 + k(I2I3 + I1I3 + I1I2)
Frobenius NTF forr iterations 3r(7k � 1)I1I2I3 + rk(I2I3 + I1I3 + I1I2)
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