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Joint Multi-pitch Detection using Harmonic
Envelope Estimation for Polyphonic Music
Transcription

Emmanouil Benetostudent Member, IEEE and Simon Dixon

Abstract—In this paper, a method for automatic transcrip- transcription include pitch estimation, onset/offsetedébn,
tion of music signals based on joint multiple-FO estimationis |oudness estimation, instrument recognition, and extract

proposed. As a time-frequency representation, the const&iQ o rpythmic information. For an overview on transcription
resonator time-frequency image is employed, while a novelaise

suppression technique based on pink noise assumption is afgul approa_ches, the reader is referred to_[3], _Wh'le in [4] "’_‘GWY'

in a preprocessing step. In the multiple-FO estimation stag, the Of multiple fundamental frequency estimation systemsvegi
optimal tuning and inharmonicity parameters are computed and Proposed methods for automatic transcription can be orga-
a salience function is proposed in order to select pitch candates. njzed according to the various techniques or models emgloye

For each pitch candidate combination, an overlapping partal ;
treatment procedure is used, which is based on a novel speeatr A large subset of the proposed systems employ signal process

envelope estimation procedure for the log-frequency domai in Ing tEChn'queS'. usually for featurg eXtraCt'onj withowsoming
order to compute the harmonic envelope of candidate pitches 1O any SuperV|s_ed or u_nsu_perwsed learning procedu_res or
In order to select the optimal pitch combination for each time classifiers for pitch estimation (see [3] for an overview).

frame, a score function is proposed which combines spectraind Several approaches for note tracking have been proposed

temporal characteristics of the candidate pitches and als@ims ,ging variants of non-negative matrix factorization (NVEY.
to suppress harmonic errors. For postprocessing, hidden M&ov

models (HMMs) and conditional random fields (CRFs) trained [5]- Max'_mum I'Kel'hoqd approgches, usually employing the
on MIDI data are employed, in order to boost transcription €Xpectation-maximization algorithm, have been also psefo
accuracy. The system was trained on isolated piano soundsin order to estimate the spectral envelope of candidat&estc
from the MAPS database and was tested on classic and jazzor to estimate the likelihood of a set of pitch candidates

recordings from the RWC database, as well as on recordings ;
from a Disklavier piano. A comparison with several state-ofthe- (e.g. 2], [6]). Hidden Markov models (HMMs) are frequently

art systems is provided using a variety of error metrics, whee used in _a postprocessing stage for note tracking, due to the
encouraging results are indicated. sequential structure offere_d py the models (e.g. [7], [8]).
Index Terms—Automatic music transcription, Harmonic en- Approaches for transcription related to the current work

velope estimation, Conditional random fields, Resonator the- &€ discussed here. Yeh et al. in [9] present a multipitch
frequency image estimation algorithm based on a pitch candidate set score

function. The front-end of the algorithm consists of an STFT
computation followed by an adaptive noise level estimation
method based on the assumption that the noise amplitude
UTOMATIC music transcription is the process of confollows a Rayleigh distribution. Given a pitch candidate, se
verting an audio recording into a symbolic representatidhe overlapping partials are detected and smoothed aceprdi
using some form of musical notation. Even for expert musie the spectral smoothness principle. The weighted score
cians, transcribing polyphonic pieces of music is not adtiv function consists of 4 features: harmonicity, mean bantwid
task, and while the problem of automatic pitch estimatiogpectral centroid, and synchronicity. A polyphony inferen
for monophonic signals is considered to be a solved profmechanism based on the score function increase selects the
lem, the creation of an automated system able to transcrilygtimal pitch candidate set. Zhou [10] proposed an itegativ
polyphonic music without setting restrictions on the degremethod for polyphonic pitch estimation using a complex
of polyphony and the instrument type still remains open. Iresonator filterbank as a front-end, called resonator time-
the past years, the problem of automatic music transcriptifrequency image (RTFI). FO candidates are selected acwprdi
has gained considerable research interest due to the nusneto their pitch energy spectrum value and a set of rules is
applications associated with the area, such as automatichse utilized in order to cancel extra estimated pitches. Thesesr
and annotation of musical information, interactive musis-s are based on the number of harmonic components detected
tems (i.e. computer participation in live human perfornmemc for each pitch and the spectral irregularity measure, which
score following, and rhythm tracking), as well as musicelogneasures the concentrated energy around possibly ovedapp
ical analysis [1]-[3]. Important subtasks for automaticsicu partials from harmonically-related FOs.
A probabilistic method is proposed by in [6], where pi-
The authors are with the Queen Mary University of London, #n ang notes are jointly estimated using a likelihood function
for Digital Music, School of Electronic Engineering and Quouter Sci- . .
ence, E1 4NS London, UK. (e-mail: emmanouilb@eecs.qouka si- which models the spectral envelope of overtones using a
mond@eecs.gmul.ac.uk). smooth autoregressive (AR) model and models the residual
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noise using a low-order moving average (MA) model. The Il. PREPROCESSING
likelihood function is able to handle inharmonicity and the\ Respnator Time-Frequency Image
ignrr?“:Zgeéa%gg\;irt;?]?jscﬁria?izsbl::elg [t?] bF?oﬁr?greZﬁszﬁy Eirstly, the input music signal is loudness-normalized to

b . o ' e "0dB relative to the reference amplitude for 16-bit audio
used STFT bins for frame-level piano note classificationgisi

one-versus-all support vector machines (SVMs). In order %es’ as in [16]. The resonator time-frequency image (RTFI)

improve transcription performance, the classificatiorpatibf 'S employed as a time-frequency representation [10]. The

: : RTFI selects a first-order complex resonator filter bank to
the SVMs was fed as input to HMMs for post-processing. implement a frequency-dependent time-frequency analitsis

Finally, previous work by the authors includes an iterativean be formulated as:
system for multiple-FO estimation for piano sounds [11]athi
incorporates temporal information for pitch estimatiorséx RTFI(t,w) = z(t) * Ir(t,w) @)
on the common amplitude modulation (CAM) assumptiowhere
and a public evaluation of the aforementioned system for Ir(t,w) = r(w)el ")t )
the MIREX 2010 multiple fundamental frequency estimation

. —x(t) stands for the input signallr(¢,w) is the impulse
task [12]. Results for the MIREX task were encourag|_ngesponse of the first-order complex resonator filter withliasc

considering that the system was trained on isolated Piapg e cauencyw and (w) is a decay factor which additionall
sounds and tested on woodwind and string recordings, notlneq q Yo rw) s y y
also that no note tracking procedure was incorporated Sets the frequency resolutlo_n ' ,
' Here, a constant-Q RTFI is selected for the time-frequency

In this work, a system for automatic transcription is proanalysis, due to its suitability for music signal procegsin
posed which is based on joint multiple-FO estimation an@chniques, because the inter-harmonic spacings are he sa
subsequent note tracking. The constant-Q RTFI is used g any periodic sounds. The time interval between two
a suitable time-frequency representation for music s&na&uccessive frames is set to 40ms, which is typical for miektip
and a noise suppression method based on cepstral smootlifip@stimation approaches [3]. A sampling rate of 44.1 kHz is
and pink noise assumption is proposed. For the multipleonsidered for the input samples (some recordings with sam-
FO estimation step, a salience function is proposed foihpitgling rate 8 kHz which are presented in subsection V-A were
candidate selection that incorporates tuning and inhaititgn up-converted) and the centre frequency difference betiveen
estimation. For each possible pitch combination, an operlaneighboring filters is set to 10 cents (thus, the number of
ping partial treatment procedure is proposed that is basedfins per octave is set to 120). The frequency range is set
a novel method for spectral envelope estimation in the logom 27.5 Hz (AQ) to 12.5 kHz (which reaches up to the 3rd
frequency domain, used for computing the harmonic enveloRgrmonic of C8). The employed absolute value of the RTFI
of candidate pitches. A score function which combines spkctwill be denoted asX [n, k] from now on, where: denotes the
and temporal features is proposed in order to select thenapti time frame andk the log-frequency bin. When needek k]
pitch set. Note smoothing is also applied in a postprocgssiill stand for the RTFI slice for a single time-frame.
stage, employing HMMs and conditional random fields (CRFs)
[13]. To the best knowledge of the authors, CRFs have nBt Spectral Whitening
been uged in the past for 'Franscription approaches. Themyst Spectral whitening (or flattening) is a key preprocessing
was trained on a set of piano chords from the MAPS datasgb, applied in multiple-FO estimation systems, in order to
[6], and tested on classic, jazz, and random piano chords frQypress timbral information and make the following arialys
the same set, as well as on recordings from the RWC databgg§e robust to different sound sources. When viewed from an
[14], Disklavier recordings prepared in [7], and the MIREXy gitory perspective, it can be interpreted as the norwaidia
recording used for the multiple-FO estimation task [15]eThyt the hair cell activity level [17]. In this paper, we employ
proposed system is compared with several approachesyifnethod similar to the one in [3], but modified for log-
the literature, where competitive results are providedgisi frequency spectra instead of linear frequency ones. Fdr eac
several error metrics which indicate that the current WStq:requency bin, the power within a subband %)foctave span

outperforms state-of-the-art methods in many cases. multiplied by a Hann-windowiVi,..[k] is computed. The
The outline of the paper is as follows. Section Il describesjuare root of the power within each subband is:

the preprocessing steps used in the transcription system. k+K/2 1/2

The proposed multiple-FO estimation method is presented in olk] = (i Z Whann[lHX[lHQ) ©)

Section Ill. The HMM- or CRF-based postprocessing steps K I—h—K)2

of the system are detailed in Section IV. In Section V
the datasets used for training and testing are presented, . )
employed error metrics are defined, and experimental ESLﬂ{:cordmg to: 1
are shown and discussed. Finally, conclusions are drawn and Ykl = (ofk])"™ X[k] )
future directions are indicated in Section VI, while in thevhere v is a parameter which determines the amount of
Appendices a derivation for the noise suppression algarittepectral whitening applied and [] is the absolute value of
is given and the proposed log-frequency spectral enveloie RTFI for a single time frame, and%]| is the final whitened
estimation method is described. RTFI slice. As in [3],v was set to 0.33.

ere K = b/3 = 40 bins. Afterwards, each bin is scaled
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AUDIO LOUDNESS RTFI SPECTRAL NOISE
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Fig. 1. Diagram for the proposed automatic transcriptiostey.

C. Noise Suppression distribution, the expected value of the noise log amplitude

In [9], an algorithm for noise level estimation was propgsed £ {1og(|Ne(@)])} is equal tolog(A™1) — v, wherey is
based on the assumption that noise peaks are generated from {1& Euler constant~ 0.5772). Since the mean of an
white Gaussian process, and the resulting spectral ardpitu ~ €XPenential distribution is equal g, the noise level in
obey a Rayleigh distribution. Here, an approach based onthe linear amplitude scale can be described as:
pink noise assumption (elsewhere calletf noise or equal- Ln(@) = N (@) - e (7)
loudness noise) is proposed. In pink noise, each octaveesarr
an equal amount of energy, which corresponds well to the The analytic derivation of/{log(|N.(w)[)} can be found
approximately logarithmic frequency scale of human augito I Appendix A.
perception. Additionally, it occurs widely in nature, coary In this work, the number of cepstral coefficients used wasoset
to white noise and is also suitable for the employed timé? = 50. Let Z[k] stand for the whitened and noise-suppressed
frequency representation used in this work. Initial expents RTFI representation.
were performed using a pink noise generator and the MAT-

LAB distribution fitting toolbox. It was shown that when fittj I1l. M ULTIPLE-FO ESTIMATION

the pink noise amplitudes with the exponential probability |n this section, multiple-FO estimation, being the core of
distribution, the resulting log likelihood was -286, com@a  the proposed transcription system, is described. Perfbne
to -539 for the Rayleigh distribution, thus motivating féret 3 frame-by-frame basis, a pitch salience function is geadra

exponential distribution assumption. o _tuning and inharmonicity parameters are extracted, catelid
~ The proposed signal-dependent noise estimation algoritijches are selected, and for each possible pitch combinati
is as follows: an overlapping partial treatment is performed and a score

1) Perform a two-stage median filtering procedureojt], function is computed. In Fig. 1, the diagram for the proposed
in a similar way to [18]. The span of the filter is set tcautomatic transcription system is depicted, where theouari
+ octave. The resulting noise representatifk] gives a stages for multiple-FO estimation can be seen.
rough estimate of the noise level.
2) Using the noise estimate, a transformation from the log: Sglience Function Generation
frequency spectral coefficients to cepstral coefficients is

performed [19]; In the linear frequency domain, considering a pitgh

of a musical instrument sound with fundamental frequency
fp1 and inharmonicity coefficieng,, partials are located at

K
ce = Y _log(N[k]) cos (5 (k - %) %) (5) frequencies:
k=1

whereK’ = 1043 is the total number of log-frequency bins Ton = Ppayf1+ (0% = 1)fy ®)

in the RTFI and= is the number of cepstral coefficientsvhere h, > 1 is the partial index [3]. Inharmonicity occurs

employed¢ =0,...,2 — 1. due to string stiffness, where all partials of an inharmonic
3) A smooth curve in the log-magnitude, log-frequency danstrument have a frequency that is higher than their exgect

main is reconstructed from the first cepstral coefficients: harmonic value [20]. Consequently in the log-frequency do-

D1 main, considering a pitcp at bin &, o, overtones are located
log | N.(@)| ~ exp <co +2 Z ce - cos(gw)) (6) atbins:
- b
! b = o+ [+ og (1) + 5 o (14 (2 = )3, ) | @)

4) The resulting smooth curve is mapped framinto .
Assuming that the noise amplitude follows an exponentialhereb = 120 refers to the number of bins per octave.
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In addition, variations occur concerning the position df th @
fundamental; in [21], a model is proposed assuming that thi ' ' ' ' '
frequency of the first partial can be shifted by a specific |
tuning factor. In this work, a pitch salience functiep, 6, 5,]
operating in the log-frequency domain is proposed, whict |
incorporates tuning and inharmonicity information: | )\ L
0 ‘ AN AN

0 200 400 600 800 1000 1200

H
IXWAEDS 123?‘{‘7 i+ 8y ﬁp]} (10) :

where

N
T

Ik, mp, By] = \/Z [k + {bmh + glogQ(l + (h? — 1)ﬁp)H

(11)
dp is the tuning deviation, andh;, € N* specifies a search 0~ 520 20 20 = 60 70 80 90
range around overtone positions, belonging to the interva P

1 (logz(h—l)Jr(M—l) 1082(h)J m

l
(my, m}), wherem; = i , . . i
(M —1) log, (h)+log, (h+1) ; . Fig. 2. (a) The RTFI sliceX[k] of an A3 piano sound. (b) The corresponding
[ 2 2 |. M € R? is a factor controlling pitch salience function’ [p].

the width é\?the interval, since in the log-frequency domain
the search space for each harmonic is inversely propoitiona
to the harmonic index. Herg/ was set to 60, so the searcha piano is seen, along with its corresponding saliesi¢e.
range for the 2nd harmonic {s-2, 2] log-frequency bins, and The highest peak ir’[p] corresponds tp = 34, thus E3.
for the 3rd and 4th harmonics |s-1, 1] bins.

While the employed salience functions in the linear freg pitch Candidate Selection
guency domain (e.g. [18]) used a constant search space for . . _ .
each overtone, the proposed log-frequency salience fmcti A set of conservative rules examining the harmonic partial

sets the search space to be inversely proportional to fHeluence structure of each pitch candidate is. applied wiic
partial index. The number of considered overtoiieds set Inspired by work from [1], [23]. These rules aim to reduce the

to 13 at maximum. The tuning deviatidp takes values from pitch candidate _set for computational speed purposes. A§ ca
[—4,...,4] log-frequency bins for each pitch (thus havin e seen from Fig. 2, false peaks that correspond to multiples

a tuning search space af40 cents around the reference nd su_b-multiples of the actual pit_ches occursip]. Here,
tuning frequency), thus allowing the detection of notest thReaks ins"[p] that occur at sub-mglﬂples of the actual FOs are
are not tuned using the reference frequency. The rangeS&?’Psi%uigtgf%eted' In th.et sem|tfone st%ace,:helselfekt]aks oc
the inharmonicity coefficieng, is set betweetd (completely a _{_ ,19,24,28, ...} semitones from he aclual pitch.
harmonic sounds) arid 10~* (moderately inharmonic sounds, A first rule for suppressing salience function peaks issgtti

; L . minimum number for partial detection Wi[p, h], similar to
e.g. from a baby grand piano [20]). The explicit modelling OE . \ I
inharmonicity can also be useful for temperament estimati 1]t.hAttI1east th_ree p?rtllals out of the.flrst tSrI1X need tobbe pme_s .
systems, such as [22]. in the harmonic partial sequence (since there may be a missin

. . . fundamental). A second rule discards pitch candidates aith
In order to accurately estimate the ideal tuning factor &ed tsal'ence alue less thanl ; as in [23]
inharmonicity coefficient for each pitch, a 2-D maximizatio 1€ val . 'max(.s [P]). ' L
procedure is applied ta[p,,, 3,] for each pitchp, in a Finally, after spurious peaks isi[p] have been ellmlnat.ed,
similar manner to the work7 irZ;’[GIi Herg — 1 38 Which Cx = 10 candidate pitches are selected from the highest
' o amplitudes ofs’[p] [6]. The set of selected pitch candidates

corresponds to notes AO to C8, where the pitch referenc . :
is A4 (MIDI note 69) = 440 Hz. This results in a pitchwﬁl be denoted a<C. Thus, the maximum number of possible

salience function estimaté[p], a tuning deviation vector and pitch candidate combinations that will be considered

. - . : compared ta2®® if the aforementioned procedures were not
an inharmonicity coefficient vector. All in all, the compu- .
. : : . .~ employed. It should be stressed that this procedure does not
tational complexity for the salience function generati@n i -
affect the transcription performance of the system, asdest

géj\z(xﬁhgi‘lﬁge:\@f ;?S]Zfe;%gélﬁls :ealcgh f/\gr;bgl)é ?nges ith the training set of piano chords described in subsactio

Using the information extracted from the tuning and in-
harmonicity estimation, a harmonic partial sequence (HPS) . ]
Vp, k], which contains magnitude information froii[k] for C. Overlapping Partial Treatment
each harmonic of each candidate pitch, is also stored forCurrent approaches in the literature rely on certain as-
further processing. For exampl&[39, 2] corresponds to the sumptions in order to recover the amplitude of overlapped
magnitude of the 2nd harmonic pf= 39 (which is note B3). harmonics. In [24], it is assumed that harmonic amplitudes d
An example of the salience function generation is given @ Ficay smoothly over frequencggdectral smoothness). Thus, the
2, where the RTFI spectrum of an isolatefBfote played by amplitude of an overlapped harmonic can be estimated from
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the amplitudes of neighboring non-overlapped harmonies. &re defined as:
[25], the amplitude of the overlapped harmonic is estimate

through non-linear interpolation on the neighboring hamine. =7 — w Flfp] + wzSmlp] — w3 SCp] + waPRlp] — ws AMp]

In [26], each set of harmonics is filtered from the spectrudires = we FI[Res] (13)
gnd in the case of overlapping harmonics, linear interjumiat Fl[p] denotes the spectral flatness of the harmonic partial
is employed. sequence:

In this work, an overlapping partial treatment procedure o[ H log(V [p.h])]/H
based on spectral envelope estimation of candidate pitches Fllp] = (24)
: o LSy b
is proposed. The proposed spectral envelope estimatian alg 7 2n=1 VP, hl

rithm for the log-frequency domain is presented in Appendikhe spectral flatness is a measure of the ‘whiteness’ of the
B. For each possible pitch combinatiéh C C, overlapping spectrum. Its values lie between 0 and 1 and it is maximized
partial treatment is performed, in order to accuratelynesté when the input sequence is smooth, which is the ideal case for
the partial amplitudes. The proposed overlapping pamégtt an HPS. It has been used previously for multiple-FO estonati

ment procedure is as follows: in [6], [23]. Here, the definition given for the spectral flags
1) Given a setC of pitch candidates, estimate a partiameasure is the one adapted by the MPEG-7 framework, which
collision list. can be seen in [27].

2) For a given harmonic partial sequence, if the number of Sm[p] is the smoothness measure of a harmonic partial
overlapped partials is less thaW,,.,, then estimate the sequence, which was proposed in [23]. The definition of
harmonic envelope E,[k] of the candidate pitch using Smoothness stems from the spectral smoothness princidle an
only amplitude information from non-overlapped partialdts definition stems from the definition sharpness:

3) For a given harmonic partial sequence, if the number H
of overlapped partials is equal or greater th&p,.., Srlp] = Z(SEP[kah] —Vp, k) (15)
estimate the harmonic envelope using information from he1

the complete harmonic partial sequence. , Here, instead of a low-pass filtered HPS using a Gaussian win-
4) For each oyerlapped partial, estimate its ampI|tudngS|BOW as in [23], the estimated harmonic enveldjig, of each
the harmonic envelope parameters of the correspondifghgigate pitch is employed for the smoothness computation
pitch candidate (see Appendix B). Sr(p] is normalized intoSr[p] and the smoothness measure
The output of the overlapping partial treatment procedsire §m|[p| is defined as:Sm[p] = 1 — Sr[p]. A high value of
the updated harmonic partial sequencp, h] for each pitch Sm/[p] indicates a smooth HPS.
set combination. SC|p] is the spectral centroid for a given HPS and has been
used for the score function in [9]:

D. Pitch set score function Yhey - [VIp, b2
Having selected a set of possible pitch candidates and 5Clpl = 4|2 ZH V[p, h]|2
performed overlapping partial treatment on each possiie-c h=1 ’
bination, the goal is to select the optimal pitch combinafar It indicates the center of gravity of an HPS; for pitched
a specific time frame. In [9], Yeh proposed a score functigpercussive instruments it is positioned at lower partidls.
which combined four criteria for each pitch: harmonicitytypical value for a piano note would be5 denoting that
bandwidth, spectral centroid, and synchronicity. Also[28], the center of gravity of its HPS is between the 1st and 2nd
a simple score function was proposed for pitch set selectidrarmonic.
based on the smoothness of the pitch set. Finally, in [6] aPR[p] is a novel feature, which stands for the harmonically-
multipitch detection function was proposed, which emptbyegelated pitch ratio. Here, harmonically-related pitch@sdre
the spectral flatness of pitch candidates along with thetsgdeccandidate pitches irC that have a semitone difference of
flatness of the noise residual. [12 - logy(1)] = {12,19,24,28,...}, wherel > 1, € N.
Here, a weighted pitch set score function is proposed, whi¢H[p] is applied only in cases of harmonically-related pitches,
combines spectral and temporal characteristics of theidared in an attempt to estimate the ratio of the energy of the
FOs, and also attempts to minimize the noise residual $8100thed partials of the higher pitch compared to the energy
avoid any missed detections. Also, features which concedfthe smoothed partials of the lower pitch. It is formulated
harmonically-related FOs are included in the score functioas follows:

(16)

in order to suppress any harmonic errors. Given a candidate 3. v 191 Dk
pitch setC C C with size |C|, the proposed pitch set score PR;[p] = Z lp+ L[ l(-)%]( ). bl a7
function is: h=1 P
IC| .
wherep stands for the lower pitch anght- [12-log, (1) ] for the
L(C) = Z(ﬁp) + Lres (12) higher harmonically-related pitchstands for the harmonic re-
p=1 lation between the two pitchegf;gn = [ fiow). IN case of more

whereL, is the score function for each candidate pitca C, than one harmonic relation between the candidate pitches,
and L, is the score for the residual spectruly, andL,., @ mean value is compute®R[p] = x— > ey, PRilp),
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whereN},. is the set of harmonic relations. A high value/R . -
indicates the presence of a pitch in the higher harmonicallye °F,. = e L

related position.
Another novel feature applied in the case of harmonically-= _—— T = =

50 -- . N

related FOs, measuring the amplitude modulation simyarit —_— e e
between an overlapped partial and a non-overlapped parti 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
frequency region, is proposed. The feature is based on tr @

common amplitude modulation (CAM) assumption, which R

states that partial amplitudes of a harmonic source are COe o - S s
related over time [28]. Here, an extra assumption is madi ol - - . T T .T
that frequency deviations are also correlated over time Thg ol - - - _. -

time-frequency region of a non-overlapped partial is coraga —_— T .

with the time-frequency region of the fundamental. In order 200 200 600 800 1000 1200 1400 1600 1800 2000 2200
to compare 2-D time-frequency patrtial regions, the norreali (®)
tensor scalar product [29] is used:

60f =+ | - A ==

IDI Sci
1
H

Fig. 3. Transcription output of an excerpt of ‘RWC MDB-J-200l0. 2’
3 Z *Aith' (jazz piano) in a 10 ms time scale (a) Output of the multipledstimation
4, ij

AMl[p] — Z : (18) system (b) Piano-roll transcription after HMM postprodegs
h=1 \/Zm— Aii Bl - \/Zi,j Aij By
where for postprocessing. In [32], three-state note-event HMNMsew
trained for each pitch, where the input features were the
A = Xno:nykpy —4: k1 +4] pitch salience value and the onset strength of the current
B" = Xno:ni,kpn —4:kyp +4] (19) frame. Poliner and Ellis [7] trained two-state HMMs for each

. . . h note using MIDI data from the RWC database and used as
wherei, j denote the indexes of matricasand B" andn, and . e .

. . observation probabilities the pseudo-posteriors of the-on
n1 = ng + 5 denote the frame boundaries of the time-frame

. : : . versus-all SVM classifiers used for frame-based multifle-F
region selected for consideration. The normalized tensalas - . . .
estimation of piano recordings. In [33], each possible note

prqduct is a generalization of '_[he_ cosine similarity measur?ombination between two onsets is represented by one HMM
g:;@zecﬁmi?;es two vectors, finding the cosine of the angs%‘ate, where the state transitions were also learned usibg M

ata and the observation probability is given by the spkctra
é p yis g y p

. . d
Res denotes the residual spectrum, which can be expressd. < of the HPS of the pitch set. Finally, Cafiadas-Qlaesa

: - : I i a
ina similar way to the linear frequency version in [6]: et al. also utilized two-state HMMs for each pitch that were
Res = {Z[/{]/Vp7 Vh,

bk > Aw (20) trained using MIDI data, where the observation likelihoed i
pih 2 given by the salience of the candidate pitch [8]. In all cases
where Ay, denotes the mainlobe width of the employeg]ent'oned' the Viterbi algorithm is used to extract the best
window I¥. In order to find a measure of the ‘whiteness’ of th§At€ Sequence.

residual,1 — FI[Res], which denotes the residual smoothnessh In_thls V\_/ork, two postprocessing mef[hods were employed:
is used. the first using HMMs and the second using conditional random

It should be noted that featurdd, Sr, SC. PR, AM have fields (CRFs), which to the authors’ knowledge have not been

also been weighted by the salience function of the candidé&%ed before in music transcription research.
pitch and divided by the sum of the salience function of th i

candidate pitch set, for normalization purposes. In order tE HMM Postprocng. .

train the weight parametets;,i = 1,. .., 6 of the features in  IN this work, each pitctp = 1,...,88 is modeled by a
(13), we used the Nelder-Mead search algorithm for paramet@0-state HMM, denoting pitch activity/inactivity, as i]|
estimation [30]. The training set employed for experimasts [8]- The observation sequence is given by the output of the
described in subsection V-A. Finally, the pitch candidase sframe-based multiple-FO estimation step for each pitch

that maximizes the score function: Op ={op[n]},n = 1,..., N, while the state sequence is given
. by @, = {gp[n]}. Essentially, in the HMM post-processing
C = argmax L(C) (21) step, detected pitches from the multiple-FO estimatiom ste
ccc . . o :
_ _ _ are tracked over time and their note activation boundaries
is selected as the pitch estimate for the current frame.  are estimated using information from the salience function
In order to estimate the state priof(¢,[1]) and the state
V. POSTPROCESSING transition matrix P(g,[n]|gp,[n — 1]), MIDI files from the

Although temporal information has been included in thBWC database [14] from the classic and jazz subgenres were
frame-based multiple-FO estimation system, additionaitpo€mployed, as in [8]. For each pitch, the most likely state
processing is needed in order to track notes over time, affRAuence is given by:

eliminate any single-frame errors. In the transcriptidari- ' — aremax 1T Pla.nllain — 1NP(o. nlla. In 22
ture, hidden Markov models (HMMSs) [31] have been used i 1;[ (@lnllax] DE(oplnllgpl) (22)

[n]
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in order to estimate the observation probabilities ol m m
P(op[n]lgp[n]), we employ a sigmoid curve which has

as input the salience function of an active pitch from the

output of the multiple-FO estimation step:

1
P(op[n]lgpln] = 1) = ppp e ) (23) @ @
where s[p,n] denotes the salience function value at frame
n. The output of the HMM-based postprocessing step is (
generated using the Viterbi algorithm. The transcriptiatpat /\ N\
of an example recording at the multiple-FO estimation stage ol2) = %13]
and after the HMM postprocessing is depicted in Fig. 3. In

addition, in Fig. 4(a) the graphical structure of the emplby
HMMs is displayed.

B. CRF Postprocessing

Although the HMMs have repeatedly proved to be an
invaluable tool for smoothing sequential data, they suff@m ()
the limitation that the observation at a given time framgg 4. Graphical structure of the employed (a) HMM (b) Linehain CRF
depends only on the current state. In addition, the curtete s networks for postprocessing.
depends only on its immediate predecessor. In order toiallev
ate these assumptions, conditional random fields (CRF$§) [13
can be employed. CRFs are undirected graphical models tNe#APS database contains real and synthesized recordings of
directly model the conditional distributioR(Q|O) instead of isolated notes, musical chords, random chords, and music
the joint probability distributionP(Q,O) as in the HMMs. pieces, produced by 9 real and synthesized pianos in differe
This indicates that HMMs belong to the class geherative recording conditions, containing around 10000 soundstad.to
models, while the un-directed CRFs akiecriminative models. Recordings are stereo, sampled at 44.1 kHz, while MIDI files
The assumptions concerning the state independence andaige provided as ground truth. Here, 103 samples from two
observation dependence on the current state which are pogido types were employed for trainhgvhile 6832 samples
for the HMMs are relaxed. from the remaining 7 piano types were used for testing on
In this work, 88 linear-chain CRFs are employed (one fgrolyphonic piano sounds. The test set consists of classig, j
each pitchp), where the current statgn] is dependent not and randomly generated chords of polyphony levels 1-6,ewhil
only on the current observatiarin], but also oro[n — 1]. For the note range was C2-B6, in order to match the experiments
learning, we used the same note priors and state transitig@sformed in [6]. It should be noted that the postprocessing
from the RWC database which were also utilized for thgtage was not employed for the MAPS dataset, since it censist
HMMs post-processing. For inference, the most likely staf isolated chords.
sequence for each pitch is computed using a Viterbi-like For the transcription experiments, we firstly used 12 ex-

recursion which estimates: cerpts from the RWC database [14], which have been used in
;L the past to evaluate polyphonic music transcription apgresa
Qp = argQTaXP(QPwP) (24) in [8], [34], [35]. A list of the employed recordings along

. with the instruments present in each one is shown in the top
where P(Q|0p) =TI, P(g,[n]|Op) and the observation i of Taple 1. The recordings containing ‘MDB-J' in their

probgbility for a given state is given as a sum of two poténtigyyc 1D belong to the jazz genre, while those that contain
functionsTs: ‘MDB-C’ belong to the classic genre. For the recording §tle
P(O —1)= 1 L and composer, the reader can refer to [35]. Five additional
(Oslgpln] =1) S XD L e e PRI e VY i
1+e P, 1+e P pieces were also selected from the RWC database, which

: (25) have not yet been evaluated in the literature. These pigees a
It should be noted that in our employed CRF model we assUMEscribed in the bottom half of Table | (data 13-17). Also

that each note state depends only on its immediate prednceﬁ

oo : : e full wind quintet recording from the MIREX multi-FO
(like in the HMMs), while the relaxed assumption over th%(?velopment set was also used for experiments [15]. Finally

HMMs concerns _the obse_rvatlon potgnuals. The grgphmt%e test dataset developed by Poliner and Ellis [7] was also
structure of the linear-chain CRF which was used in our _ . . .
experiments is presented in Fig. 4(b). used fpr transcription experiments. It contains 10 onetrtein
recordings from a Yamaha Disklavier grand piano, sampled at
8 kHz.
As far as ground-truth for the RWC data 1-12 Table |,
A. Datasets non-aligned MIDI files are provided along with the origi-
For training the system parameters, samples from the MIDI
Aligned Piano Sounds (MAPS) database [6] were used. ThéTrained weight parameters; were {1.3,1.4,0.6,0.5,0.2, 25}.

V. EVALUATION
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| | RWC 1D | 'nStr_“mems pitches at frame, N,,s[n] the number of detected pitches, and
1 RWC-MDB-J-2001 No. 1 Piano N th b f tlv detected pitch Th b
> RWC-MDB-J2001 No_ 2 PTano corr|T] e number of correctly detected pitches. The number
3 | RWC-MDB-J-2001 No. 6 Gutar of false negatives at the current frameNig, [»], the number of
4 | RWC-MDB-J-2001 No. 7 Guitar false positives iV, [n], and the number of substitution errors
5 RWC-MDB-J-2001 No. 8 Guitar ; ; T s
6 | RWC-MDB-J-2001 No. 9 Guitar is given by Niups[n] = min(Ngm[n], Npp[n]). The accuracy
7 | RWC-MDB-C-2001 No. 30 PTano measure is defined as:
8 RWC-MDB-C-2001 No. 35 Piano
9 | RWC-MDB-J-2001 No. 12 Flute + Piano Aeey — 2on Nrer[n] = Nyn[n] = Nyp [n] + Nsuvs[1] (28)
10 | RWC-MDB-C-2001 No. 12| Flute + String Quartet ez = S Nyes[n]
11 | RWC-MDB-C-2001 No. 42 Cello + Piano "
12 | RWC-MDB-C-2001 No. 49 Tenor + Piano . o .
. From the aforementioned definitions, several error metrics
13 | RWC-MDB-C-2001 No. 13 String Quartet . ) e
14 | RWC-MDB-C-2001 No. 16 | Clarinet + String Quartet have beeq defined in [7] that measure the substitution errors
15 | RWC-MDB-C-2001 No. 243 Harpsichord (Esupbs), Miss detection errorshy, ), false alarm errorsHy,),
16 | RWC-MDB-C-2001 No. 36 Violin (polyphonic) and the total errorlct t):
17 | RWC-MDB-C-2001 No. 38 Violin °
TABLE | Eope = Zn min(Nmf [n], Nays [n]) — Neorr[n]
Ssubs -
THE RWC DATA USED FOR TRANSCRIPTION EXPERIMENTS Zn Nref [n]
E _ n max(0, Nyey [n] — Nisys [n])
fn =
2 Nreg 1]
nal 44.1 kHz recordings. However, these MIDI files contain E, = 2 max(0, Niys[n] — Nyes [n])
several note errors and omissions, as well as unrealistic > Niep[n]
note durations, thus making them unsuitable for trandonpt Ewor = Esubs + Ep + Epp (29)

evaluation. As in [8], [34], [35], aligned ground-truth MID
data was created for the first 23s of each recording, usiigshould be noted that the aforementioned error metrics can
Sonic Visualiser [36] for spectrogram visualization andiM| exceed 100% if the number of false alarms is very high [7].
editing. For the RWC data 13-17 in Table I, the newly-reldase
syncRWC ground truth annotations were utilized

C. Results

B. Figures of Merit 1) MAPS Database: For the isolated chord experiments
In order to assess and compare the performance of {ing the MAPS database, the performance of the proposed
proposed system, several figures of merit from the automafiignscription system compared with the results shown in
transcription literature are employed. For the piano chorgh1] and [6] is shown in Fig. 5, organized according to
using the MAPS dataset, the precision, recall, and F-meastie polyphony level of the ground truth (experiments were

are used: performed with unknown polyphony). The mean F-measures
Pre — tp Rec — tp o 2. Pre - Rec (26) for polyphony levelsL = 1,...,6 are 91.86%, 88.61%,
= tp+ fp’ = tp+ fn’ " Pre + Rec 91.30%, 88.83%, 88.14%, and 69.55% respectively. It should

where tp is the number of correctly estimated pitchgs,is be noted that the subset of polyphony level 6 consists only

the number of false pitch detections, afidis the number of °f 350 samples of random notes and not of classical and
missed pitches jazz chords. As far as precision is concerned, reported rate

For the recordings used for the transcription experimenfﬁre thh fqr all polyphony Ie\_/e_ls, ranging from 89.88% to
several metrics are employed. It should be noted that gff-19%. with the lowest precision rate reported for= 1.

evaluations take place by comparing the transcribed outgtgc@ll displays the opposite performance, reaching 9660%
and the ground-truth MIDI files at a 10 ms scale, as is tHf§€-note polyphony, and decreasing with the polyphonylleve
standard for the multiple-FO MIREX evaluation [15]. The ffirs'®aching 86.53%, 88.65%, 85.00%, and 83.14%, and 57.44%

metric that is used is the overall accuracy, defined by DixdAr levels 2-6.

[37]: In terms of a general comparison between all systems, the
Aeer — tp 27) global F-measure for all sounds was used, where the proposed
Y+t tp system outperforms all other approaches, reaching 88.54%.

When Acc; = 1, a perfect transcription is achieved [7]. For! N€ System in [11] reports 87.47%, the system in [6] 83.70%,

(27), tp, fp, andfn refer to the number of true positives, falsénd finally the algorithm of [24] used for comparison in [6]

positives, and false negatives respectively, for all framigthe "€POTtS 85.25%. By applying the same significance tests as in

recording. [11], it can be seen that the proposed method outperforms the
A second accuracy measure is also used, which was pfegthods of [6], [11], [24] in a statistically significant neer

posed by Kameoka et al. [34] which also includes pitch subs‘ﬂ’ith 95% confidence. The aforementioned methods used for

tution errors. LetV,.;[n] stand for the number of ground-truthcomparison follow the same pattern whéhe and Rec are
concerned, reporting higire rates for all polyphony levels

2http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotah/SyncRWC/ and decreasind@ec rates as polyphony increases.
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[ NN Proposed [N [11] | | [6] | | 24 ]  erate these error ratesgs= 12- 23- 100 = 27600. Considering
100 ' ' ' ' ' ' 95% confidence, it can be seen that— ¢, > 2.051/2€/C,
% B M M - 1 wherei=2,...,5, é = £4% andz o5 = 1.65 which can be
80F M 1 determined from tables of the Normal law. This demonstrates
70l M | that the performance of the proposed transcription system

is significantly better when compared with the methods in
[8], [12], [34], [35]. It should be noted however that the
significance threshold was only just surpassed when cormdpare

60 b

%

50 b

408 1 with the method of [34].
30t 1 Additional insight to the proposed system’s performance
20l | for all 17 RWC recordings and the MIREX one is given

in Table 1V, where the error metrics of subsection V-B are
presented using different postprocessing configuratiomsin
1 2 3 4 5 6 be seen that without any postprocessiig, = 53.8%, while
L when using the HMMs an improvement of 4.6% is reported
Fio 5. Mulile-FO estimai s for the MAPS databéis £ and when the CRFs are employed, the improvement is 5.7%.
o u‘nkn(;’w'r?solypﬁgr:;?%:gg;;zé :ngrdiig 1o the grougﬁqtpg?;;ﬁggs) It can also be seen that the note postprocessing procedures
level L. mainly decrease the number of false alarms (as can be seen
in Ey,), at the expense however of missed detectidiig, X
Especially for the HMM postprocessing, a large number of
2) RWC + MIREX Database: Transcription results using missed detections have impaired the system’s performéince.
the RWC recordings 1-12 for the proposed system with CRfhould be also noted that the accuracy improvement of the
postprocessing can be found in Table Il. A comparison GRF postprocessing step over the HMM one is statistically
made using several reported results in the literature fer thignificant with 95% confidence, using the technique in [38].
same files [8], [34], [35], where the proposed method repospecifically, the number of examples used to generate tbe err
improved meanAcc,. Additional results were also producedates is¢ = 42200, the error rate for the CRF postprocessing
for this paper using a previous method [12] submitted by thgep isé¢rr = 0.405, for the HMM step isé g = 0.416,
authors for the MIREX 2010 evaluation, which has a similaind the significance threshold for this experiment was found
front-end but performs multiple-FO estimation in an iter@t to be 0.72% in terms of the error rate, which is surpassed by
fashion. Additional comparative results which demonstrathe CRF postprocessing (being 1.1%).
lower accuracy rates compared to the proposed system cam order to test the contribution of each feature in the pitch
be found in [8], that are omitted here for brevity. It shoul@et score function (13) to the performance of the trangoript
be noted that the proposed system demonstrates impressiystem, experiments were made on RWC recordings 1-12.
results for some recordings compared to the state-ofitheBor each experiment, the weight;, i = 1,...,6 in the
(e.g. in file 11, which is a cello-piano duet) while in somecore function that corresponds to each feature was set to
cases it falls behind. In file 4 for example, results are iofer 0. Results are shown in Table V, where it can clearly be
compared to state-of-the-art, which could be attributeth®® seen that the most crucial feature i8[Res], which is the
digital effects applied in the recording (the present systeas residual flatness. Without that feature, the score funatiaght
created mostly for transcribing classical and jazz mu#s). select a single pitch candidate and produce several missed
far as the standard deviation of thiec, metric is concerned, detections. However, it can clearly be seen that each featur
the proposed system reports 11.5% which is comparablesignificantly contributes to the final transcription resolt
the approaches in Table Il, although it is worth noting that t 60.5%. When testing the contribution of the inharmonicity
lowest standard deviation is reported for the method in.[12kstimation in the salience function, the same experimeak to
For the RWC recordings 13-17 and the MIREX recordingplace with no inharmonicity search, wherkeco = 59.7%.
transcription results can be found in Table IIl. It should bBy employing the statistical significance test of [38], the
noted that no results have been published in the literature performance improvement when inharmonicity estimation is
these recordings. In general, it can be seen that bowedj strémabled is significant with 90% confidence. It should be noted
transcriptions are more accurate than woodwind transenipt however that the contribution of the inharmonicity estiimat
Concerning the statistical significance of the proposgaocedure depends on the instrument sources that are presen
method’s performance for the RWC recordings 1-12 compargdthe signal. In addition, by disabling the overlappingtjsdr
to the various methods shown in Table II, the recognizéreatment procedure for the same experiment, it was shown
comparison technique described in [38] was employed. Theat Acco = 38.0%, with Ep, = 20.4%, which indicates that
number of pitch estimation errors of the two methods ifalse alarms from the overlapped peaks might be detected by
comparison is assumed to be distributed according to tthee system. The2.5% difference in terms of accuracy for
binomial law. The error rate of the proposed method the overlapping partial treatment is shown to be statiyica
é1 = Eir = 0.395, while the error rate for the methods of [8],significant with 95% confidence, using the method in [38].
[12], [34], [35] is é2 = 0.488, é3 = 0.409, ¢4 = 0.438, and Concerning the performance of the proposed noise suppres-
é5 = 0.404, respectively. The number of examples used to gesion algorithm, comparative experiments were performed us

10 b

0
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Proposed| [12] [8] [35] [34] Method Accy Acca FEiot FEsups Efn Efp
1 60.2% 58.1% | 63.5% | 59.0% | 64.2% No Post. 54.4% | 53.8% | 46.2% | 11.9% | 19.4% | 14.9%
2 74.1% 50.6% | 72.1% | 63.9% | 62.2% HMM Post. | 57.3% | 58.4% | 41.6% | 5.4% | 32.2% | 4.0%
3 50.0% 42.8% | 58.6% | 51.3% | 63.8% CRF Post. | 58.9% | 59.5% | 40.5% | 7.1% | 25.3% | 8.2%
4 35.7% 28.8% | 79.4% | 68.1% | 77.9%
5 75.0% 63.9% | 55.6% | 67.0% | 75.2% TABLE IV
6 57.9% | 52.0% | 70.3% | 77.5% | 81.2% TRANSCRIPTION ERROR METRICS FOR THE PROPOSED METHOD USING
7 66.8% 51.5% | 49.3% | 57.0% | 70.9% RWC RECORDINGS1-17AND THE MIREX RECORDING USING
8 54.8% 47.0% | 64.3% | 63.6% | 63.2% DIFFERENT POSTPROCESSING TECHNIQUES
9 74.4% 54.9% | 50.6% | 44.9% | 43.2%

10 64.0% 58.4% | 55.9% | 48.9% | 48.1%
11 58.9% 46.2% | 51.1% | 37.0% | 37.6%
12 53.9% 47.6% | 38.0% | 35.8% | 27.5%
Mean 60.5% 51.2% | 59.1% | 56.2% | 59.6%
Std. 11.5% 9.0% | 11.5% | 12.9% | 16.9%

All Fl Sm SC PR AM | Fl[Res]
60.5% | 56.3% | 59.2% | 58.6% | 53.5% | 59.4% | 29.1%

TABLE V
TRANSCRIPTION RESULTY Accg) FOR THERWC RECORDINGS1-12

T ATABLE I RWC 112 USING CRFPOSTPROCESSINGWHEN FEATURES ARE REMOVED FROM
RANSCRIPTION RESULTY Accz) FOR THE RECORDINGSL1- THE SCORE FUNCTION(13).

USING THE PROPOSED METHOD WITHCRFPOSTPROCESSINGCOMPARED
WITH OTHER APPROACHES

Proposed| [12] HMMs a small improvement of 0.4% is reported, while the
13 48.2% | 38.4% improvement for the CRFs is 2.6%. The difference in the
14 41.8% | 41.2% : X
15 66.5% | 41.0% improvement over the RWC data can be attributed to the
16 70.7% | 57.0% faster tempo of the Disklavier pieces. It has been argued]in [
17 752% | 52.2% that HMM note smoothing provides greater improvement for
MIREX | 41.3% | 39.9% music pieces with slow tem For the HMM t i
Noan 5749 42-5% p . po. For the postprocessing,
Sl 153% | 7.7% false alarms are again reduced at the expense of additional
missed detections, while the CRF postprocessing displays a
TABLE IIl improvement over the missed detection errors, at the expens

TRANSCRIPTION RESULTY Acca) FORRWC RECORDINGS13-17AND
THE MIREX RECORDING, USING THE PROPOSED METHOD WITHCRF
POSTPROCESSINGCOMPARED WITH THE METHOD IN[12].

of false alarms.

VI. CONCLUSIONS

In this work, a joint multiple-FO estimation system for au-
(}Qmatic transcription of polyphonic music was proposedaAs

Ing the 2-stage noise suppression procedure that was op front-end, the constant-Q resonator time-frequency inveae

for multiple-FO estimation in [18], using the RWC recording . oS L .
1-12. The noise suppression procedure of [18] consists %}Iect.ed _due to its su|tab|I|Fy for music signal represeoma
median filtering on the whitened spectrum, followed by gontributions of the paper include:

second median filtering which does not take into accounte A noise suppression algorithm based on a pink noise
spectral peaks. Experiments with CRF postprocessing showe assumption

that transcription accuracy using the 2-state noise sspjme ¢ A l0g-frequency salience function that supports tuning

algorithm wasAcc, = 56.0%, compared to th&0.5% of the and inharmonicity estimation . .
proposed method. The performance difference is statiistica ¢ Overlapping partial treatment procedure using harmonic
significant with 95% confidence, using the method of [38]. envelopes of pitch candidates

3) Disklavier dataset [7]: Transcription results using the 10 + A pitch set score function incorporating spectral and
Disklavier recording test set created by Poliner and Eblis c temporal features
be found in Table VI, along with results from other approache « An algorithm for log-frequency spectral envelope estima-
reported in [7]. Also, additional results were produced g t tion based on the discrete cepstrum
authors using our iterative MIREX-submitted method, which « Note smoothing using conditional random fields (CRFs)
has a similar preprocessing front-end and the same salienc&he system was trained on a set of isolated piano chords
function [12]. It can be seen that the best results are regorfrom the MAPS database and tested on recordings from the
for the method in [7] while the proposed system is seconBWC database, the Disklavier database from [7], and the
best, although it should be noted that the training set fer tMIREX multipitch estimation recording [15]. Comparative
method by Poliner and Ellis used data from the same sourcerasults are provided using various evaluation metrics over
the test set. In addition, the method in [7] has displayed pogseveral state-of-the-art methods, as well as on a method
generalization performance when tested on different d&tas previously developed by the authors. The proposed system
as can be seen from results shown in [7] and [8]. displays promising and robust results, surpassing sfate-o

In Table VII, several error metrics are displayed for théhe-art performance in many cases, considering also tte fac
Disklavier dataset, using different postprocessing caomdig that the training and testing datasets originate from wffe
tions for the proposed method. The same pattern that wssirces. For the RWC recordings, the improvement by the
shown for the RWC data is shown here, where using tipeoposed system was found statistically significant corgbar



BENETOS AND DIXON: JOINT MULTI-PITCH DETECTION USING HARM®IIC ENVELOPE ESTIMATION FOR POLYPHONIC MUSIC TRANSCRIPTKD 11

Method | Proposed| [11] [7] [32] [39]

Ace; | 49.4% | 43.3% | 56.5% | 41.2% | 38.4% APPENDIXB
LOG-FREQUENCY SPECTRAL ENVELOPE ESTIMATION
TABLE VI An algorithm for posterior-warped log-frequency regular-

MEAN TRANSCRIPTION RESULTY Acc1) FOR THE RECORDINGS FROM7]

USING CRFPOSTPROCESSINGCOMPARED WITH OTHER APPROACHEs 1280 Spectral envelope estimation is proposed. Given a set

of harmonic partial sequences (HPS) in the log-frequency
domain, the algorithm estimates the log-frequency enwelop
N'V'Oeg‘ggt ;‘écgé/ ﬁ;gﬁ/ Sf’itgz/ fc;%bf; 3?;)/ 5{5} using linear regularized discrete cepstrum estimatiorj40j
e e X Lo a method for estimating the spectral envelope using discret
CRF Post. | 49.4% | 49.8% | 50.2% | 10.19% | 31.4% | 8.6% cepstrum coefficients in the Mel-scale was proposed. The
superiority of discrete cepstrum over the continuous capst
TABLE VII coefficients and the linear prediction coefficients for spdc
TRANSCR'PT'ODNlf;iiﬂ"g;gﬁi‘éi'gg;ﬁgfEECC:’NRIg'J';SSFRO[M] AND - envelope estimation was argued in [41]. Other methods for
envelope estimation in the linear frequency domain include
a weighted maximum likelihood spectral envelope estinmatio
technique in [42], which was employed for multiple-FO es-
to other approaches in the literature. For public evalmaim timation experiments in [6]. To the authors’ knowledge, no
iterative variant of this system was submitted for the MIREXther log-frequency harmonic envelope estimation algorit
2010 multiple-FO estimation task [12] displaying encoimgg has been proposed in the literature. The proposed algorithm
results, even without any postprocessing. In general, tbe pcan be outlined as follows:
posed system showed improvement over the one in [12] thgt Extract the harmonic partial sequeniép, h] and corre-
can be attributed to the use of pitch combinations instead of sponding log-frequency bink, , for a given pitchp and

iterative selection, and the postprocessing module. harmonic index, = 1,.. ., 13.
next MIREX evaluation. In general, results generally iradc frequenciesw, , (where f, = 44.1 kHz and the lowest

a relatively low false alarm rate, but a considerable number frequency for analysis i, = 27.5 Hz):

of missed detections. This can be rectified in the future 9 .

by relaxing several assumptions concerning the inharmonic Wpp =27.5- 2T 9F (32)
ity range and spectral smoothness (which would also allow 8

for multipitch estimation of inharmonic instruments such a3) Perform spectral envelope estimation 6ip, 4] andw,, j,
marimba or vibraphone), but at the expense of additionaéfal using linear regularized discrete cepstrum (estimateficoef
positives. Also, in order to improve transcription perfamee, cientsc,). Coefficientsc, are estimated as:

training could be applied using a multi-instrument dataset T B
such as the one used in [24]. In addition, more general forms ¢ = (MM, +0K)™ "M, &, (33)
of CRFs that link multiple states together could improveenot | here a, = In(Vp,1])...In(V[p, H])],

prediction and smoothing. Finally, system performancelman ¢ _ diag[0 12 22 .- (K —1)2]), K is the cepstrum
improved by performing joint multiple-FO estimation and@o order, o is the regularization parameter, and
tracking, instead of frame-based multipitch estimatiorthwi
subsequent note tracking. 1 2cos(wp1) -+ 2cos(Kwp,1)
A A My = | : : (34)
PPENDIX
EXPECTEDVALUE OF NOISE LOG-AMPLITUDES L 2cos(wpn) -+ 2cos(Kwpn)

We assume that the noise amplitude follows an exponentfl EStimate the vector of log-frequency discrete cepstaf-c

distribution. In order to find the expected value of the ndisp ficientsd, fromc, . In order to estimate, fromc,, we note
amplitudesE {log(|N.(@)|)}, we adopt a technique similar to that the function which converts linear angular frequesicie

[9]. Let © = log(N.(@)) = ®(N): into log-frequencies is given by:
o0 oo aa-1(g _190. _forw
E{6} = / 9p(9)d9:/ Op(® 1(9))‘7()‘ g9(w) =120 log2<2ﬂl27_5 (35)
+oo “+o0 H H . 2m-27.5 H H
B 2 9an A which is defined forw € [, n]. Functiong(w) is
- Lm Afe " endf) = /0 Alog(y)e™dy normalized usingj(w) = -5 g(w), which becomes:
+oo
= —W—Alog(k%/ e Mdy 3lw) = ——— .10g2<7f5'w > (36)
7 . 0 10g2(T§5) 21 - 27.5
= log(A\™) =~ (30) . : .
) The inverse function, which converts angular log-
wherev is the Euler constant: frequencies into angular linear frequencies is given by:
+oo
= v ~ 21 - 27.5 _@losa(gdis)
N = —/ e Y log(y)d ~ 0.57721. (31) 1y o2 los2(zatE)
| ) gl @) == (37)
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Fig. 6. Log-frequency spectral envelope of an F#4 piano teitle P = 50.
The circle markers correspond to the detected overtones.

which is defined in0, 7] — [##7%2, 7]. From [40], it can
be seen that:

d,=A-c, (38)
where
~ (2 —d01) = __1,TN mnk
Akt1i+1 = N 7;0 cos| Ig (N) cos I

(39)
where N is the size of the spectrum in samples, and
range from O toP — 1.

5) Estimate the log-frequency spectral enveldfiefrom d,,.
The log-frequency spectral envelope is defined as:

P-1

SE, (@) = exp (dop +2 Z dkp cos(kw)) . (40)
k=1

(8]
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In Fig. 6, the warped log-frequency spectral envelope of an
F#4 note produced by a piano (from the MAPS dataset) is

depicted.
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