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Abstract

In this paper, we develop a two-step maximum likelihood estimator of time-varying loadings in

high-dimensional factor models. We specify the loadings to evolve as stationary vector autore-

gressions (VAR) and show that consistent estimates of the loadings parameters can be obtained.

In the first step, principal components are extracted from the data to form factor estimates. In the

second step, the parameters of the loadings VARs are estimated as a set of linear regression mod-

els with time-varying coefficients. We document the finite-sample properties of the maximum

likelihood estimator through an extensive simulation study and illustrate the empirical relevance

of the time-varying loadings structure using a large quarterly dataset for the US economy.
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1 Introduction

In this paper, we develop a two-step estimator of time-varying loadings in high-dimensional

factor models, where factors are estimated with principal components. We show that this

estimator maximizes the infeasible likelihood where the factors are unobserved, since the feasible

likelihood, using principal components, converges uniformly to the infeasible likelihood.

The problem of time-varying loadings in factor models is important because the assumption

of constant loadings has been found to be implausible in a number of studies considering

structural instability in factor models. In a large macroeconomic dataset for the U.S., Stock and

Watson (2009) find considerable instability in factor loadings around 1984, and they improve

factor-based forecast regressions of individual variables by allowing factor coefficients to change

after the break point. Breitung and Eickmeier (2011) develop Chow-type tests for structural

breaks in factor loadings and find similar evidence of structural instability around 1984. They

also find evidence of structural breaks in the Euro area around 1992 and 1999. Del Negro and

Otrok (2008), Liu, Mumtaz, and Theophilopoulou (2011), and Eickmeier, Lemke, and Marcellino

(2015) estimate factor models where the factor loadings are modelled as random walks using

large panels of data, but theoretical results for models with time-varying parameters in a high-

dimensional setting are scant.

The econometric theory on factor models explicitly addresses the high dimensionality of

these datasets by developing results in a large N and large T framework. The central results in the

literature on consistent estimation of the factor space by principal components as N ,T →∞ have

been developed in Stock and Watson (1998, 2002), and Bai and Ng (2002). Forni, Hallin, Lippi,

and Reichlin (2000) consider estimation in the frequency domain. Principal components have

the advantage of being easy to compute and feasible even when the cross-sectional dimension N

is larger than the sample size T . Bates, Plagborg-Møller, Stock, and Watson (2013) characterize

the types and magnitudes of structural instability in factor loadings under which the principal

components estimator of the factor space is consistent.

Another strand of literature is concerned with estimation by maximum likelihood. Doz,

Giannone, and Reichlin (2012) study the asymptotic properties of the maximum likelihood

estimator of a factor model in a large N ,T setting. The likelihood is evaluated assuming VAR

dynamics for the factors and constant loadings using the Kalman filter. Bai and Li (2012) study

the asymptotic theory of maximum likelihood estimation of the factor model for large N ,T as

well, and they explore the consequences of different identifying assumptions. In their setup,

the factors are a sequence of fixed constants, and the loadings are constant. Bai and Li (2016)
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extend this analysis to non-diagonal covariance matrices and serial correlation of the error in the

measurement equation. The factors are again assumed to be a sequence of constants and the

loadings are constant as well.

We consider a factor model of the form Xi t =λ′
i t Ft +ei t for i = 1, ...N and t = 1, ...,T , where

the data Xi t depend on a small number r ¿ N of unobserved common factors Ft . The r ×1

vector of factor loadings λi t evolves over time. We model λi t for each i as a stationary vector

autoregression, and our main contribution is to show that the parameters of these time-varying

loadings can be consistently estimated by maximum likelihood. Our estimation procedure

consists of two steps. In the first step, the common factors are estimated by principal components,

and in the second step we estimate the loadings parameters by maximum likelihood, treating the

principal components as observed data.

The principal components estimator is robust to stationary variations in the loadings. By

averaging over the cross-section, the temporal instabilities in the loadings are smoothed out

and the factor space is consistently estimated. Mean squared consistency of the factor space is

shown by Bates et al. (2013), and we extend the result to uniform consistency in t to analyse the

maximum likelihood estimator.

In the second step, we estimate a panel of regression models with time-varying coefficients.

By treating the principal components as observable regressors, the loadings parameters can be

estimated as a set of N regression models with time-varying coefficients. Under the condition

that T
N 2 → 0, the maximum likelihood estimator of the time-varying loadings is consistent as

N ,T →∞, and estimation error from the principal components does not affect the consistency

of the estimator.

The computation of the maximum likelihood estimator is relatively simple. Principal compo-

nents are easily available, and the set of N regression models with time-varying parameters can

be readily estimated by Kalman-filter procedures.

The rest of the paper is organized as follows. Section 2 introduces the model and the two-step

estimation procedure. Section 3.1 states the assumptions and consistency results for the principal

components estimator, and Section 3.2 discusses identification of the loadings parameters. Our

main result on consistency of the maximum likelihood estimator of the time-varying loadings

and the associated assumptions are stated in Section 3.3. In Section 4 we report the results of a

Monte Carlo study, and in Section 5 we provide an empirical illustration. Section 6 concludes.
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2 Model and estimation

We consider the following model:

X t =Λt Ft +et , (1)

where X t = (X1t , ..., XN t )′ is the N -dimensional vector of observed data at time t . The observa-

tions are generated by a small number r ¿ N of unobserved common factors Ft = (F1t , ...,Fr t )′,
time-varying factor loadings Λt = (λ1t , ...,λN t )′, and idiosyncratic errors et = (e1t , ...,eN t ) with

covariance matrix E (et e ′t ) =Ψ0. The N ×r loadings matrixΛt = (λ1t , ...,λN t )′ is time-varying and

each λi t ∈Rr×1 evolves as an r -dimensional vector autoregression:

B 0
i (L)(λi t −λ0

i ) = ηi t , (2)

where λ0
i = E(λi t ) is the unconditional mean, and B 0

i (L) = I −B 0
i ,1L − ...−B 0

i ,p Lp is a p th-order

lag polynomial where the roots of |B 0
i (L)| are outside the unit circle. The autoregressive order p

can be allowed to vary over i such that pi differs over i . We suppress the subscript for notational

convenience. The innovations ηi t have covariance matrix E(ηi tη
′
i t ) =Q0

i .

Our goal is to estimate the parameters of each of the loadings processes (2) and the variance

parameter of each of the idiosyncratic elements E(e2
i t ) =ψ0

i . We therefore write the model in

terms of each Xi :

Xi = FΛi +ei , (3)

where Xi = (Xi 1, ..., Xi T )′, ei = (ei 1, ...,ei T )′, F = di ag
{
F ′

t

}
t=1,...,T is a T ×r T block-diagonal matrix,

and Λi = (λ′
i 1, ...,λ′

i T )′. The mean and variance of Xi are E(Xi ) = (F ′
1λ

0
i , ...,F ′

Tλ
0
i )′ and Σi :=

V ar (Xi ) = FΦi F′+ψi IT whereΦi =V ar (Λi ) is of dimension r T ×r T . Equation (3) is a regression

model with time-varying coefficients. The factors Ft are the regressors, and the loadings λi t

are the time-varying coefficients. We can thus specify a Gaussian likelihood function for Xi

conditional on the factors F = (F1, ...,FT )′ as:

LT (Xi |F ;θi ) =−1

2
log(2π)− 1

2T
log|Σi |− 1

2T
(Xi −E(Xi ))′Σ−1

i (Xi −E(Xi )), (4)

with parameter vector θi =
{
Bi (L),λi ,Qi ,ψi

}
. Equations (2) and (3) can be written as a linear

state-space model, and the likelihood can therefore be calculated with the Kalman filter.

It is not feasible to estimate θi with (4), however, as the likelihood depends on the unob-

servable factors F . We therefore replace the unobservable factors F in (4) with an estimate F̃ to

form the feasible likelihood function L̃T (Xi |F̃ ;θi ). Define the estimator θ̃i which maximizes the
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feasible likelihood function as:

θ̃i = argmax
θi

L̃T (Xi |F̃ ;θi ). (5)

This is our object of interest, and we show that the estimator θ̃i
p→ θ0

i for each i , where θ0
i ={

B 0
i (L),λ0

i ,Q0
i ,ψ0

i

}
is the true value of the parameters.

We use the principal components estimator to estimate the factors. The principal compo-

nents estimator treats the loadings as being constant over time,Λt ≡Λ, and solves the minimiza-

tion problem:

(F̃ ,Λ̃) = min
F,Λ

(N T )−1
N∑

i=1

T∑
t=1

(Xi t −λ′
i Ft )2, (6)

where F̃ is T × r and Λ̃ is N × r . To uniquely define the minimizers, it is necessary to impose

identifying restrictions on the estimators, as only Xi t is observed. By concentrating outΛ and

using the normalization F ′F /T = Ir , the problem is equivalent to maximizing tr (F ′(X X ′)F ),

where X = (X1, ..., XT )′ is the T ×N matrix of observations. The resulting estimator F̃ is given byp
T times the eigenvectors corresponding to the r largest eigenvalues of the T ×T matrix X X ′.

The solution is not unique: any orthogonal rotation of F̃ is also a solution. Bai and Ng (2008b)

give an extensive treatment of the principal components estimator. We use F̃ to form the feasible

likelihood function L̃T (Xi |F̃ ;θi ).

The estimation procedure thus consists of two steps. In the first step, we extract principal

components from the observable data to estimate the factors Ft under the assumption of con-

stant loadings. In the second step, we use the factor estimates together with the observable data

to maximize the likelihood function and estimate the parameters of the time-varying loadings,

θi , for each i . Our main result in Section 3.3 shows that this yields a consistent estimator for the

parameters of the time-varying loadings.

3 Asymptotic theory

In this section, we present the asymptotic theory for the two-step estimation method discussed

in Section 2. The main result is Theorem 1 on consistent estimation of the loadings parameters by

maximum likelihood; it is given in Section 3.3. Our result builds on the work by Bates et al. (2013),

who show mean squared consistency of the principal components estimator when loadings

are subject to structural instability. We use a different rotation of the principal components
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estimator, and in Section 3.1 we restate their result in Lemma 1. Furthermore, we provide a result

on uniform consistency in t of the principal components estimator in Proposition 1. Section 3.2

discusses identification of the factors and loadings parameters. All results are for N ,T →∞, and

the factor rank r is assumed to be known.

We introduce the following notation. ‖A‖ = [tr(A′A)]1/2 denotes the Frobenius norm of the

matrix A. The subscripts i , j are cross-sectional indices taking values from 1, ..., N , the subscripts

t , s are time indices taking values from 1, ...,T , and p, q are factor indices taking values from

1, ...,r . The constant M ∈ (0,∞) is a constant common to all the assumptions below. Finally,

define CN T = min{
p

N ,
p

T }.

3.1 Principal components estimation

Let ξi t :=λi t −λ0
i = B 0

i (L)−1ηi t be the loadings innovations and write (1) as:

X t =Λ0Ft +ξt Ft +et ,

whereΛ0 = (λ0
1, ...,λ0

N )′ and ξt = (ξ1t , ...,ξN t )′ are the N × r matrices of loadings means and inno-

vations, respectively. The vector ξi t is the moving average representation of the loadings. The

following Assumptions A-C are standard for factor models and are the same as Assumptions A-C

in Bai and Ng (2002):

Assumption A (Factors). E‖Ft‖4 ≤ M <∞, and T −1 ∑T
t=1 Ft F ′

t
p→ ΣF for some r × r positive

definite matrix ΣF .

Assumption B (Loadings). ‖λ0
i ‖ ≤ M <∞, and ‖Λ0′Λ0/N−ΣΛ‖→ 0 for some positive definite

matrix ΣΛ.

Assumption C (Idiosyncratic Errors). There exists a positive constant M <∞, such that for

all N and T :

1. E(ei t ) = 0, E |ei t |8 ≤ M .

2. E(e ′set /N ) = E(N−1 ∑N
i=1 ei sei t ) = γN (s, t ), |γN (s, s)| ≤ M for all s, and

T −1 ∑T
s,t=1 |γN (s, t )| ≤ M .

3. E(ei t e j t ) = τi j ,t with |τi j ,t | ≤ |τi j | for some τi j and for all t . In addition
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N−1 ∑N
i , j=1 |τi j | ≤ M .

4. E(ei t e j s) = τi j ,t s , and (N T )−1 ∑N
i , j=1

∑T
t ,s=1 |τi j ,t s | ≤ M .

5. For every (s, t ), E |N−1/2 ∑N
i=1[ei sei t −E(ei sei t )]|4 ≤ M .

Under Assumption A, the factors are allowed to be dynamic such that they follow a V AR : A(L)Ft =
ut . Assumption A, however, allows more general dynamics for the factors, i.e. they do not need

to be stationary. Assumption B requires the columns ofΛ0 to be linearly independent, such that

the matrix ΣΛ is non-singular. Assumptions A and B together imply the existence of r common

factors. Assumption C allows for heteroskedasticity and limited time-series and cross-section

dependence in the idiosyncratic errors. Note that if ei t is independent for all i and t , Assumptions

C.2-C.5 follow from C.1.

We impose the following assumption on the factor loadings innovations and the factors,

which are from Bates et al. (2013):

Assumption D (Factor Loadings Innovations). The following conditions hold for all N ,T and

factor indices p1, q1, p2, q2 = 1, ...,r :

1. sup
s,t≤T

N−1 ∑N
i , j=1 |E(ξi sp1ξ j t q1 Fsp1 Fsq1 )| ≤ M .

2. N−1T −2 ∑T
s,t=1

∑N
i , j=1 |E(ξi sp1ξ j sq1 Fsp1 Fsq1 Ft p2 Ft q2 )| ≤ M .

3. N−2T −2 ∑T
s,t=1

∑N
i , j=1 |E(ξi sp1ξ j sq1ξi t p2ξ j t q2 Fsp1 Fsq1 Ft p2 Ft q2 )| ≤ M .

Assumption D limits the degree of cross-sectional dependence of factors and loadings, but

does not require full independence. The effect of the factors on the observable variables might

reasonably change when the factors differ substantially from their mean levels. However, if the

factors and loadings are assumed to be independent, and the loadings evolve as stationary vector

autoregressions that are independent over i , Assumptions D.1-D.3 can easily be shown to hold.

For simplicity, take r = 1. By Assumption A and independence of the loadings, Assumptions D.1

can be bounded by:

sup
s,t

{|E(FsFt )|
N∑

i , j=1
|E(ξi sξ j t )|} ≤ M

N∑
i=1

sup
s,t

|E(ξi sξi t )|

The terms E (ξi sξi t ) are the autocovariances of the moving average representation of the loadings.

As the loadings are stationary, these autocovariances are bounded, and the rate O(N ) is obtained.
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The rate O(N T 2) in Assumption D.2 easily follows from D.1 when the factors and the loadings are

independent. Assumption 4.3 can be bounded by:

M
T∑

s,t=1

N∑
i , j=1

|E(ξi sξ j sξi tξ j t )| = M
T∑

s,t=1

N∑
i=1

|E(ξ2
i sξ

2
i t )|

+M
T∑

s,t=1

N∑
i 6= j

|E(ξi sξi t )E(ξ j sξ j t )| ≤ M
T∑

s,t=1

N∑
i=1

|E(ξ4
i s)1/2E(ξ4

i t )1/2|

+M
N∑

i 6= j

T∑
t=1

(
T∑

s=1
|E(ξi sξi t )|2

)1/2 (
T∑

s=1
E |(ξ j sξ j t )|2

)1/2

.

The first term is O(N T 2) if E(ξ4
i s) <∞, and the second term is O(N 2T ) if the autocovariances

E (ξi sξi t ) are square-summable. Assumption D.3 is therefore satisfied when the loadings and the

factors are independent. We assume the same rates to hold without imposing independence

between the factors and the loadings.

Finally, we impose independence between the idiosyncratic errors and the factors and load-

ings innovations and a moment condition on their products.

Assumption E (Independence). For all (i , j , s, t ), the scalar idiosyncratic errors ei t are inde-

pendent of the factor and loading vectors (Fs ,ξ j s). For a small positive number u and all (i , s, t ),

the random variable zi st := ei s wi t , where wi t = ξ′i t Ft , has the property

E

exp

(
uT −1

T∑
s=1

‖N−1/2
N∑

i=1
zi st‖2

)≤ M .

Assumptions A-E are sufficient to consistently estimate the space spanned by the factors.

For this purpose, we use the result of Lemma 1 below, which is a modified version of Theorem

1 in Bates et al. (2013).1 We use a rescaled estimator that is more convenient for the rest of the

analysis and therefore restate their result:

Lemma 1. Under Assumptions A-E there exists an r × r matrix H such that

T −1
T∑

t=1
‖F̃t −H ′Ft‖2 =Op (C−2

N T )

1Bates et al. (2013) use the estimator F̂ = F̃VN T , where VN T is the diagonal matrix of the r largest eigenvalues of
(N T )−1 X X ′.
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as N ,T →∞.

Proof. See the Appendix.

Lemma 1 shows that the mean-squared deviation between the principal components and

the common factors disappears as the sample size T and the cross-sectional dimension N tend

to infinity.2 The convergence rate CN T is the same as in Bai and Ng (2002), and the principal

components estimator is thus robust to stationary deviations in the loadings around a constant

mean. Note that the common factors are only identified up to a rotation, so the principal

components converge to a rotation of the common factors.

The convergence rate is central to other results in the literature. Stock and Watson (2002)

show that estimated factors can be used in diffusion index forecasting to obtain consistent

forecasts. F AV ARs, introduced by Bernanke, Boivin, and Eliasz (2005), use factor estimates to

model the joint dynamics of a vector of observable variables, Yt , and unobserved factors, Ft .

Inferential theory for diffusion index forecasting and F AV ARs using PC estimates of the factors is

given in Bai and Ng (2006). Doz, Giannone, and Reichlin (2011) also show consistent estimation

of factor dynamics by regressing the PC estimates on its own past.

Lemma 1 does not imply uniform convergence in t , but only mean squared consistency of

the principal components. In order to analyse the properties of the feasible likelihood function

L̃T (Xi , F̃ |θi ), we need uniform consistency of the estimated factors, in addition to the mean

squared consistency of Lemma 1. To establish uniform convergence, we make additional mo-

ment assumptions:

Assumption F (Uniform consistency) There exists a positive constant M <∞ such that for

all N and T and factor indices p1, q1, p2, q2 = 1, ...,r :

1.
∑T

s=1 |γN (s, t )| ≤ M for all t .

2. E‖(N T )−1/2 ∑T
s=1

∑N
k=1 Fs[eksekt −E(eksekt )]‖2 ≤ M for all t .

3. E‖N−1/2 ∑N
i=1λ

0
i ei t‖8 ≤ M for all t .

4. E

(
exp

(
u
N

∑N
i , j=1 ξi sp1ξ j t q1 Fsp1 Ft q1

))
≤ M for all s, t and for u sufficiently small.

2Lemma 1 also holds when the factor rank is unknown. By setting the number of estimated factors to any fixed
m ≥ 1, the Lemma can be stated as T−1 ∑T

t=1 ‖F̃ m
t −Hm′Ft ‖2 =Op (C−2

N T ), where F̃ m
t is a vector of dimension m ×1

and Hm is a r ×m matrix, and F̃ m
t consistently estimates the space spanned by m of the true factors
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5. E

(
exp

(
u

N 2+N T

∑T
s=1

∑N
i , j=1 ξi sp1ξi t q1ξ j sp2ξ j t q2 Ft p1 Ft q1 Fsp2 Fsq2

))
≤ M for all t and for u suf-

ficiently small.

Assumptions F.1-F.3 are from Bai and Ng (2006, 2008a). Assumption F.1 is stronger than

Assumption C.2, but still reasonable: If ei t is assumed to be stationary with absolutely summable

autocovariances, Assumption F.1 holds. Assumptions F.2 and F.3 are reasonable as they involve

zero-mean random variables. The moment conditions in Assumptions F.4 and F.5 are needed

to obtain uniform convergence of principal components with time-varying loadings. They en-

sure that the summands in F.4 and F.5 are not too heavy-tailed, and can be shown to hold for

simple cases such as constant factors and independent sub-exponential loadings. For exam-

ple, if we consider the case of one constant factor equal to one and time-varying loadings ξi t ,

i .i .d . ∼ N (0,σ2), i = 1, . . . , N , t = 1, . . . ,T , then Assumption F.4 amounts to E [exp(u/N
∑N

i j ξiξ j )] =
E [exp(uZ 2)] <∞ for Z = ∑N

i ξi /
p

N and u small enough. Following from results such as, for

example, Proposition 5.16 in Vershynin (2012)3, which states that

P

(∣∣∣∣∣ 1p
N

N∑
i=1

ξi t

∣∣∣∣∣≥ x

)
≤ 2e−cx2

,

where c is a positive real constant, we get

P
(
exp(uZ 2) ≥ z

)
= P

|Z | ≥
(

1

u
log z

) 1
2

≤ 2z− c
u , for z > 1,

which is integrable if u < c:

E(exp(uZ 2)) =
∫ ∞

1
P

(
exp(uZ 2) ≥ z

)
d z ≤ 2

∫ ∞

1
z− c

u d z <∞.

In the form Assumptions F.4 and F.5 are stated, they also allow for a degree of serial and cross-

sectional correlation.

The following proposition extends the mean squared consistency result of Bates et al. (2013)

to uniform consistency.

3Proposition 5.16 in Vershynin (2012) holds for independent variables. Theorem 1 in Doukhan and Neumann
(2007) proves a similar inequality for weakly dependent variables.
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Proposition 1. Under Assumptions A-F and additionally if max
t

‖Ft‖ =Op (αT ),

max
t

‖F̃t −H ′Ft‖ =Op

(
T 1/8

N 1/2

)
+Op (αT N−1/2)+Op (αT T −1)+Op

(
log(T )

N

)1/2

+Op

(
log(T )

T

)1/2

.

as N ,T →∞.

Proof. See the Appendix.

Proposition 1 shows that the maximum deviation between the factors and the principal

components depends onαT . The convergence rate thus depends on the assumption imposed on

max
t

‖Ft‖. The factors are allowed to display arbitrary dynamics under Assumption A. However,

if the parameters governing these dynamics are not of direct interest, nothing is lost by assuming

the factors to be a sequence of fixed and bounded constants, i.e. max
t

‖Ft‖ ≤ M .4 For the purpose

of estimating the loadings parameters, it is not needed to model the dynamics of the factors, so

we can take Op (αT ) to be O(1) in our results. However, Proposition 1 is of independent interest,

so we state Proposition 1 in its more general form. Bai (2003) and Bai and Ng (2008a) derive a

similar result for factor models with constant loadings. Uniform convergence when loadings

undergo small variations is also considered by Stock and Watson (1998), who obtain a slower

convergence rate and require T = o(N 1/2).

3.2 Identification

It is well known that without identifying restrictions, factors and loadings are not separately

identified in (1). The common component Ct =Λt Ft is identified, but normalizations are needed

to separate factor and loadings from the common component. This has implications for the

identification of the loadings parameters as well, which we now illustrate. The model defined by

(1) and (2) is observationally equivalent to:

X t =Λt H ′−1H ′Ft +et ,

Bi (L)H−1(λi t −λi ) = H−1ηi t , f or i = 1, ..., N ,

for any invertible matrix H . Lemma 1 states that the principal components estimator F̃t is a

consistent estimate of a rotation of the true factors, H ′Ft . The two-step estimation procedure

4Bai and Li (2012, 2016) treat the factors as a sequence of fixed constants when providing inferential theory for
maximum likelihood estimation of factor models with constant loadings.
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fixes the rotational indeterminacy by imposing the normalization in the principal components

step. By replacing the unobserved factors Ft with F̃t for maximum likelihood estimation, we are

thus estimating the parameters of λ∗
i t = H−1λi t .

To clarify the issue, consider the following example. Using the same notation as above, the

elements of the r ×1 vector λi t = (λi t ,1...,λi t ,r )′ refer to the loadings of variable i at time t on each

of the r factors, andλi = E (λi t ) = (λi ,1, ...,λi ,r )′ are the corresponding unconditional expectations

of the factor loadings. Assume that the matrices ΣF and ΣΛ are diagonal. In this case it is not

hard to show that the rotation matrix H converges to Σ−1/2
F . Let the number of factors r = 2 with

variance ΣF = di ag (σ2
1,σ2

2) and let the data-generating parameters of the loadings be

λ0
i =

 λi ,1

λi ,2

 , Q0
i =

 qi ,1 0

0 qi ,2

 , B 0
i (L) = I2 −

 bi ,11 0

0 bi ,22

 .

We can now make precise what role the rotation matrix H plays for estimation of θi . With the

normalization F̃ ′F̃ /T = I2, the principal components will be close to Σ−1/2
F Ft in large samples.

Using the principal components in place of the unobserved factors means that we are estimating

the following model:

X t =Λ∗
t F̃t +et ,

λ∗
i t −λ∗

i = B∗
i (λ∗

i ,t−1 −λ∗
i )+ vi t , f or i = 1, ..., N ,

where λ∗
i t =Σ1/2

F λi t =
 σ1λi t ,1

σ2λi t ,2

 and vi t =Σ1/2
F ηi t . The loadings λi t are scaled by the standard

deviations of the unobserved factors, and it is the parameters of the rotated loadings λ∗
i t that can

be estimated. In large samples the estimate of the loadings mean λ∗
i will be therefore close to

Σ1/2
F λ0

i =
 σ1λi ,1

σ2λi ,2

 ,

and the variance estimate V ar (vi t ) =V ar (Σ1/2
F ηi t ) will be close to

Σ1/2
F Q0

i Σ
1/2
F =

 σ2
1qi ,1 0

0 σ2
2qi ,2

 .

The mean and variance parameters are thus scaled by the standard deviation of the factors. The
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matrices Bi (L) and Q0
i of the data-generating model are diagonal in this example, so the diagonal

elements of B∗
i are the autocorrelations of λ∗

i t ,1 and λ∗
i t ,2. In large samples the first diagonal

element of B∗
i will therefore be close to

b∗
i ,11 =

Cov(λ∗
i t ,1,λ∗

i ,t−1,1)

V ar (λ∗
i t ,1)

= Cov(σ1λi t ,1,σ1λi ,t−1,1)

V ar (σ1λi t ,1)

= σ2
1Cov(λi t ,1,λi ,t−1,1)

σ2
1V ar (λi t ,1)

= Cov(λi t ,1,λi ,t−1,1)

V ar (λi t ,1)
= bi ,11,

and similarly for b∗
i ,22. The estimates of the autoregressive matrix B∗

i are therefore unaffected by

the normalization imposed on the principal components, and the estimate of B∗
i is consistent

for the autoregressive parameters Bi of the data-generating process λi t .

The arguments of this example apply to the general setting as well. The maximum likelihood

estimator (5) of the loadings parameters is estimating Bi (L), Hλi , and HQi H ′. The mean and

variance parameters of (2) are identified up to the unknown rotation matrix H , while the dynamic

parameters Bi (L) are not subject to any rotation. The rotation is determined by the restriction

used to identify the principal components. Using another normalization in the first step will

thus change the estimates of λi and Qi , while the estimate of Bi (L) is unaffected. The dynamic

properties of the loadings are therefore uniquely identified. In the following, we assume for

simplicity that H = Ir . This is just a normalization and can be achieved by imposing further

assumptions on the matrices ΣF and ΣΛ.

3.3 Maximum likelihood estimation

Our method of proof relies on showing that the feasible likelihood function with principal

components is asymptotically equivalent to the infeasible likelihood function (4) where the

factors are observed. To establish our result, we impose distributional assumptions on the

loadings and idiosyncratic errors that enable maximum likelihood estimation of the parameters

θi =
{
Bi (L),λi ,Qi ,ψi

}
.

Assumption G (Distributions) For all i = 1, ..., N , it holds:

1. The loadings λi t follow a finite-order Gaussian VAR:

Bi (L)(λi t −λi ) = ηi t ,
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with the r ×r filter Bi (L) = I −Bi ,1L−...−Bi ,p Lp having roots outside the unit circle, and ηi t

is an r -dimensional Gaussian white noise process, ηi t ∼ i.i.d. N(0,Qi ), where Qi is positive

definite with all elements bounded.

2. The idiosyncratic errors ei t are serially uncorrelated Gaussian white noise, ei t ∼N(0,ψi ),

with ψi > 0 and bounded for all i .

Assumption G.1 assumes the loadings to evolve as stationary vector autoregressions. We

rule out the possibility of I (1) loadings as this would be in violation of Assumption D. With non-

stationary loadings the principal components estimator cannot consistently estimate the factor

space.5 Assumption G.2 assumes that the idiosyncratic errors to be serially uncorrelated. This

assumption is made only for simplicity of presentation, and can be relaxed in a straightforward

manner. We return to this in the discussion following Theorem 1 below. Note that it is not

necessary to assume the loadings or the idiosyncratic errors to be independent over the cross-

section dimension. The loadings parameters are estimated by regressions with time-varying

parameters, and it is therefore sufficient to analyse the likelihood function for each Xi separately.

The innovations ηi t and ei t are assumed to be Gaussian such that the likelihood function is

correctly specified. However, the distributions do need to be Gaussian. If the data generating

process is non-Gaussian, the infeasible likelihood function (4) will be a quasi-likelihood function

in the sense of White (1982).

With observed regressors, consistency is known to hold, see e.g. Pagan (1980). We summarize

this result in Assumption H on the infeasible likelihood function.

Assumption H (MLE with observed factors) For each i :

1. There exists a function L0,i (θi ) that is uniquely maximized at θ0
i .

2. θ0
i ∈Θi , which is compact.

3. L0,i (θi ) is continuous at each θi ∈Θi .

4. sup
θi∈Θi

|LT (Xi |F ;θi )−L0,i (θi )| p→ 0 for T →∞.

5Bates et al. (2013) consider random walk loadings of the form λi t =λi ,t−1 +T−3/4ζi t and show that Assumption

D is satisfied with this specification. However, the scaling of the loadings innovations by the factor T−3/4 is crucial for
Lemma 1 to hold. With a pure random walk of the form λi t =λi ,t−1 +ζi t , principal components cannot estimate the
factor space consistently.
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The assumptions are standard for consistency and imply that the maximum likelihood es-

timator with observed factors θ̂i = argmax
θi

LT (Xi |F ;θi ) is consistent for each i : θ̂i
p→ θ0

i . This

follows from standard arguments as in Newey and McFadden (1994), Thm 2.1. If the data generat-

ing process is non-Gaussian, the infeasible estimator θ̂i is a quasi-maximum likelihood estimator

and will be consistent for the pseudo-true value θ∗i . Assumption H.2 restricts the parameters to be

in a compact set, which is usually assumed for nonlinear models. The autoregressive parameters

of the loadings are thus assumed to be bounded away from the non-stationary region.6

Replacing the unobserved factors with the principal components estimates yields the feasible

likelihood function L̃T (Xi |F̃ ;θi ) and the maximum likelihood estimator defined in (5). We now

state our main result.

Theorem 1. Let Assumptions A-H hold and T /N 2 → 0. Then, for each i , the estimator θ̃i defined

in (5) is consistent:

θ̃i
p→ θ0

i .

Proof. See the Appendix.

Theorem 1 states that using the principal component estimates instead of the unobserved

factors does not affect the consistency of the maximum likelihood estimator. The main argu-

ment in proving Theorem 1 is that the feasible likelihood function converges uniformly to the

infeasible likelihood function. Asymptotically, the feasible likelihood function therefore has

the same properties as the infeasible likelihood function, for which consistency is known to

hold. Assumption H thus holds for L̃T (Xi |F̃ ;θi ) in the limit and consistency follows. With a

misspecified likelihood function, the estimator is consistent for the pseudo-true value θ∗i . The

rate condition T /N 2 → 0 ensures that max
t

‖F̃t −H ′Ft‖ = op (1). The rate condition is stronger

than needed. For max
t

‖F̃t −H ′Ft‖ to be op (1), the condition
p

T /N 2 → 0 would suffice. We state

Theorem 1 with the condition T /N 2 → 0, as this rate is common in the factor literature.

In the proof of Theorem 1 we use the following normalization that is convenient for the

calculations: If F ′F /T = Ir andΛ0′Λ0 is a diagonal matrix with distinct elements, we show in the

Appendix that the rotation matrix H converges to the identity Ir . Lemma 1 and Proposition 1 then

holds with H replaced by the identity matrix, and θi can be estimated asymptotically without

rotation. Such normalizations are inconsequential for the results as H is asymptotically bounded,

6Pagan (1980) also rules out non-stationarity when proving identification of regression models with time-varying
coefficents.
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and they are only for ease of notation. Without such normalizations the feasible likelihood

converges to LT (Xi |F H ;θi ) and θ̃i is consistent for the parameters of the process λ∗
i t = Hλi t as

discussed in Section 3.2.

We have assumed that the factors are estimated by the method of principal components.

Note, however, that the proof of Theorem 1 does not rely on the principal components estimator.

Theorem 1 holds for all estimators F̃ that satisfy the conditions for Lemma 1 and Proposition 1.

Our analysis does not make any formal statements about the limiting distribution of θ̃i . In

Section 4 we assess the limiting distribution of the estimator. We compare the finite-sample per-

formance of the maximizer θ̃i of the feasible likelihood function L̃T (Xi |F̃ ;θi ) with the maximizer

θ̂i of the infeasible likelihood function LT (Xi |F ;θi ) for which asymptotic normality holds, see

Pagan (1980). The simulations show that the root-mean-squared error of the feasible estimator

θ̃i seems to convergence to that of the infeasible estimator θ̂i .

In Assumption G.2 we assume that the idiosyncratic errors have no temporal dependence.

It is straightforward to relax this assumption. We could model the idiosyncratic errors as cross-

sectionally uncorrelated autoregressions and estimate the parameters by including ei t in the

state equation of the state space representation of the model and compute the likelihood with

the Kalman filter. The proof of Theorem 1 applies with very minor changes. The assumption of

no temporal dependence in ei t is thus only for expositional simplicity.

4 Monte Carlo simulations

In this section, we conduct a simulation study to assess the finite-sample performance of the

two-step estimator. We provide results for both principal components and maximum likelihood

estimates. Section 4.1 describes the simulation design, and Section 4.2 reports and discusses the

results.

4.1 Design

The simulation design broadly follows that of Stock and Watson (2002):

Xi t =λ′
i t Ft +ei t ,

(Ir −Bi L)(λi t −λi ) = ηi t ,

Ft p = ρFt−1,p +ut p ,

(1−αL)ei t = vi t ,

ηi t ∼ i.i.d. N(0,Qi ),

ut p ∼ i.i.d. N(0,1−ρ2),

vt ∼ i.i.d. N(0,Ω),
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where i = 1, ..., N , t = 1, ...,T , p = 1, ...,r . The processes {ηi t },{ut p }, and {vt } are mutually indepen-

dent. The autoregressive matrix Bi determines the degree of persistence of the loadings and has

eigenvalues inside the unit circle in all simulations. The unconditional mean of the loadings is

λi = (λi 1, ...,λi r )′ and λi p ∼ i.i.d. N(0,1) in all simulations. The matrix Qi is the covariance matrix

of the loadings innovations. The model allows for cross-sectional and temporal dependence in

the errors ei t . The parameter α determines the degree of serial correlation in the idiosyncratic

errors, and cross-sectional correlation is modelled by specifying the variance matrix of vt as

Ω=
(
β|i− j |√ψiψ j

)
i j

for i , j = 1, ..., N . The matrix is thus a Toeplitz matrix and the cross-sectional

correlation between the idiosyncratic elements is therefore limited and determined by the coef-

ficient β. We allow for factor persistence through the coefficient ρ. Furthermore, we consider

the case where the loadings are weakly dependent across i . We model the correlation such that

Cor r (ηi pt ,η j pt ) =π|i− j | for i , j = 1, ..., N . Finally, we introduce correlation between factors and

loadings through ut and ηi t . For each i , we simulate the variables

(
u∗

t p

η∗i t p

)
∼ AN(0, Ir ), where A

is the lower triangular Cholesky decomposition matrix such that A A′ =
(

1 γ

γ 1

)
. The variables

u∗
t p and η∗i t p are then rescaled to get the innovations ut p = u∗

t p (1−ρ2)1/2 and ηi t p = η∗i t p q1/2
i ,

respectively.

We generate the model 2000 times for each of the different combinations of T and N . To

avoid any dependence on initial values of the simulated processes we discard a ’burn-in’ period

of 200 observations for each simulation. The principal components are calculated with the

estimator F̃t defined in (6). The data Xi t are standardized to have mean zero and variance equal

to one prior to extracting principal components. The principal components are identified only

up to an orthogonal rotation. In order to directly compare the maximum likelihood estimates

with data-generating parameters, we therefore rotate the principal components to resemble the

simulated factors. More specifically, we solve for the orthogonal r × r matrix A∗ that maximizes

tr[corr(F, F̃ A)].7 The estimates are then rescaled to have the same standard deviation as the true

simulated factors:

F̃∗
p = σ(Fp )

σ(F̃p )
F̃p , p = 1, ...,r

where F̃p is the p th column of the rotated principal components matrix F̃ A∗. Such rotations

7The solution is A∗ = V U ′ where V and U are the orthogonal matrices of the singular value decomposition
corr(F, F̃ ) =U SV ′. When the number of principal components k is not equal to the true number of factors r , we only
rotate the first l = min{k,r } principal components. Eickmeier et al. (2015) use the same rotation.

17



are innocuous and allow us to directly compare the estimated parameter values with the data-

generating parameters. The principal components are treated as data thereafter, and we maxi-

mize the feasible likelihood L̃T (Xi |F̃∗;θi ) to estimate θi .

The performance of the principal component estimator F̃ is measured by the trace statistic:

R2
F̃ ,F

= Ê [tr(F ′F̃ (F̃ ′F̃ )−1F̃ ′F )]

Ê [tr(F ′F )]
,

where Ê denotes the average over the 2000 Monte Carlo simulations. The trace statistic R2
F̃ ,F

is a

multivariate R2 from a regression of the true data-generating factors on the principal components.

It is smaller than 1 and tends to 1 as the canonical correlation between the factors and the

principal components tends to 1.

For the maximum likelihood estimates θ̃i we compute the mean estimates over the Monte

Carlo repetitions for each parameter.8 However, for the mean parameter λi ,p we report the

bias of the estimates λ̃i ,p as the true value of λi ,p varies over p. Furthermore, we calculate the

root-mean-squared error of the estimates θ̃i and also of the infeasible estimates θ̂i where the

true data-generating factors are used in the maximum likelihood estimation. We report the

relative root-mean-squared error between the estimates θ̃i and θ̂i . This gives us a measure of the

estimation error in θ̃i that is due to estimation error from the principal components estimates.

The parameters are identically chosen across the cross-section.9 The properties of the

estimated parameters θ̃i are thus the same for all i and we only report the results for a single

cross-section index.10 In the baseline case, we set Bi = diag{bi p }p=1,...,r , Qi = diag{qi p }p=1,...,r ,

and choose the loadings persistence and variance parameters to be bi p = 0.9 and qi p = 0.2. The

idiosyncratic errors are cross-sectionally and temporally uncorrelated, i.e. α = 0, β = 0, and

the variance is set to ψi = 1. The loadings are cross-sectionally independent, π = 0, and also

independent of the factors, γ= 0. Finally, we set ρ = 0 such that the factors are white noise.

We introduce serial correlation and cross-sectional dependence separately in the idiosyn-

cratic errors. We set α= 0.5 and estimate this parameter by including ei t in the state equation.

8Convergence is generally very good, with all 1-factor estimations having over 99% convergence rate, and most
estimations with 2 and 3 factors have over 98% convergence rate. Exceptions are sample sizes of T = 50 for the 2-
and 3-factor models where the lowest convergence rate is 92%. However, this is expected as we are estimating up to
10 parameters in a highly non-linear model with 50 observations. Convergence statistics using the true factors are
similar, but with somewhat better convergence rates for calibrations with 2 and 3 factors and T = 50.

9The mean parameters λi are not the same for all i . This is necessary for Assumption B to be satisfied. With λi
identical over i , the matrixΛ0 does not have full rank andΛ0′Λ0/N will not converge to a positive definite matrix.

10Simulations with loadings parameters calibrated with heterogeneous values across i show similar results as in
Table 1. The results are available upon request.

18



To consider the effect of cross-sectional correlation, we set β= 0.5. We also report results with

persistent factors with ρ set to both 0.9 and 0.5. Results with cross-sectionally correlated loadings

are reported for π= 0.3, and for the correlation parameter between loadings and factors set to

γ= 0.3. Finally, we consider the consequences of estimating the wrong number of factors, i.e.

extracting one principal component too few and one too many, respectively.

4.2 Results

Table 1 reports the results for one factor, r = 1. Panel I shows the results for the baseline model

with no serial correlation, no cross-sectional dependence in errors, and no factor dependence.

The R2
F̃ ,F

statistics show that the factor estimates are close to the true factors even for small

sample sizes. For the autoregressive parameter bi , the estimates improve as the sample size T

increases. Increasing the cross-sectional dimension N only gives minor improvements for fixed

T . This is unsurprising as a larger N can only improve the parameter estimates through better

factor estimates which are already quite good even for N = 50. The estimate of the loadings

innovation variance qi is closely related to the estimate of bi . As bi gets closer to its true value, so

does qi , and vice versa. For T ≥ 200 the estimates are close to the true values. The small-sample

bias of bi is not a consequence of estimation error from principal components. Using the true

factors instead of principal components to estimate the parameters of the latent process λi t also

shows that T ≥ 200 is needed for the bias of bi and qi to be less than 10% of the true value. The

loadings mean λi and the error variance ψi are very precisely estimated for all sample sizes.

In Panel II, the idiosyncratic errors are serially correlated, and the autoregressive parameters

for the errors are estimated along with the other parameters. The R2
F̃ ,F

statistic is hardly affected

by serially correlated errors. The results are very close to the corresponding values in the first

panel. The results for the loadings parameters are also very similar and are not markedly affected.

The estimates of the autoregressive parameter for the errors α and the variance parameter ψ are

very close to their true value for all sample sizes. The model with serially correlated errors can

thus be estimated equally well as the model with i.i.d. errors.

Next, in Panel III we consider the effect of cross-sectional correlation in the errors. The results

are very similar to the results in Panel I. Cross-sectional correlation in the idiosyncratic errors

has little effect on the parameter estimates.

High factor persistence has a larger impact on the R2
F̃ ,F

statistic. Panel IV shows much lower

values of these statistics for all but the largest sample sizes. However, this estimation error

does not seem to influence the estimate of the loadings parameters. The estimates for bi , and
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accordingly qi , are similar to the case of white noise factors. The most notable impact of the

lower R2
F̃ ,F

is in the estimate of ψi . The increase in factor estimation error seems to inflate the

error variance, which is larger for all sample sizes, but the results do show convergence for the

largest sample size. Results for more moderate levels of factor persistence are shown in Panel V.

The drop in the R2
F̃ ,F

is less severe in this case and the estimate of ψi thus less biased.

In Table 2, the relative root-mean-squared errors of the estimates using principal components

(numerator) and the true simulated factors (denominator) are reported. Values close to 1 indicate

that the asymptotic variance of the parameter estimates is unaffected by the estimation error

from principal components estimation of the factors. In Panels I-III, all the statistics are close

to 1 even for the smallest sample sizes. In Panel IV, the statistics for the loadings parameters

are somewhat higher for the smaller sample sizes, but close to one for large sample sizes. The

statistics for the idiosyncratic variances are much larger than 1. This is partly due to the bias of

these estimates evident in Panel IV of Table 1, but it also reflects higher variability of the estimates.

High factor persistence thus mainly affects the idiosyncratic variance parameters. Unreported

results show that the estimates improve for larger sample sizes. In Panel V, the factor persistence

is more moderate and the relative root-mean-squared errors are much closer to 1.

Panel I in Table 3 reports results for the case where the loadings are cross-sectionally cor-

related. The results are very similar to Panel I in Table 1. The R2
F̃ ,F

statistic and the parameter

estimates are not influenced by cross-sectional dependence in the loadings. Unreported results

show that stronger cross-sectional dependence has only very minor effects on the results. The

R2
F̃ ,F

statistics generally falls by a single percentage point, but the loadings parameters are not

affected.

In Panel II, the loadings and factors are correlated. Correlation between factors and loadings

leads to a minor inflation of the estimates of qi for the largest sample sizes. This is not simply

sampling variation. Unreported results for larger sample sizes show that the estimates of qi do

not converge to 0.2. When factors and loadings are correlated, the data exhibits some variance

that is not captured by any parameter in the model. The variance in the data that is due to

Cov(ξi t ,Ft ) shows up in the estimate of the loadings variance. Stronger correlation between

factors and loadings inflates the estimate of qi further. The argument of Theorem 1 are, however,

still valid. The infeasible likelihood function convergences to the infeasible likelihood function.

Using the simulated factors instead of the principal components to estimate the model leads to

similar parameter estimates. This is evident from Table 4, Panel II. Here we report the relative

root-mean-squared errors of the estimates using principal components and the true simulated

factors. The results are all close to 1. The estimates using principal components and simulated
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factors are therefore consistent for the same parameter. Correlation between factors and loadings

do not affect the estimates of the other parameters. They are similar to the results in Panel I,

Table 1.

Table 5 displays the simulations results for the model with 2 and 3 factors with i.i.d. errors

and white noise factors. Compared to the 1-factor model, the R2
F̃ ,F

statistics are lower, reflecting

the increasing difficulties in extracting additional factors. In Panel I, the estimates for the second

set of loadings parameters are worse than for the first set and the same pattern is evident for

the 3-factor model (Panel II). The results for the third set of loadings parameters are worse than

for the second, which are worse than for the first. However, all the estimates are converging

to their true values. Compared to the 1-factor model, larger sample sizes are generally needed

to get precise estimates due to the increased number of parameters. Introducing serial and

cross-sectional correlation in the errors, correlated factors and loadings, or persistence in factors

does not reveal any additional insights compared to the 1-factor model. The results generalize

and are therefore omitted. Table 6 shows the relative root-mean-squared errors for the 2- and

3-factor model. The statistics are somewhat larger than 1 for the smaller sample sizes, but get

increasingly closer to one as the sample sizes grow. This indicates that the estimation error of the

principal components does not affect the asymptotic variance of the estimates.

Table 7 shows the results of estimating the wrong number of factors. For these simulations,

we report two convergence statistics for the principal components. The first is the R2 from a

regression of the principal components on the true factors, R2(1)
F̃ ,F

= Ê [F̃ ′F (F ′F )−1F ′F̃ ]
Ê [F̃ ′F̃ ]

and the second

is the R2 from a regression of the true factors on the principal components. In Panel I, the

simulated data have two factors, but only one principal component is extracted. The first statistic

R2(1)
F̃ ,F

is close to 1 for all sample sizes. Hence, the two factors explain all the variation in the

single principal component. The second statistic R2(2)
F̃ ,F

does not tend to 1, as a single principal

component cannot span the two-dimensional factor space. The results show that the loadings

parameters for the first factor can still be estimated consistently. The consequence of excluding

a factor is that the estimate of the error variance ψi gets larger, reflecting the variability in the

data from the excluded factor and its loadings. Panel II displays results for the 1-factor model

with two principal components extracted from the data. R2(2)
F̃ ,F

tends to 1, and the two principal

components thus explain all the variation in the single factor. The other measure R2(1)
F̃ ,F

tends to 0.5

as the single factor can only span half of the two-dimensional space of the principal components.

The loadings on the first factor are estimated consistently. For the second factor, the mean and
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variance of the loadings are being estimated as zero.11 The estimated parameters thus show that

the data do not load on the second factor and therefore correctly dismiss the second factor. The

results are thus very encouraging even with the number of principal components different from

the true number of factors.

The main insights from the simulations can be summarized as follows. The loadings and

idiosyncratic variance parameters are estimated consistently. The sample size T needs to be

sufficiently large (≥ 200) for the bias in the autoregressive parameters to be less than 10%. Fur-

thermore, the loadings parameters are consistently estimated even when an incorrect number of

principal components are extracted. Too few principal components increase the error variance

estimate, and loadings means and variances are correctly estimated as zero for principal com-

ponents in excess of the true number of factors. Finally, the relative root-mean-squared errors

indicate that the asymptotic variance is unaffected by replacing the factors with the principal

components estimates.

5 An empirical illustration

We provide an empirical illustration of the model using the data set of Stock and Watson (2009),

who analyze a balanced panel of 144 quarterly time series for the United States, focusing on

structural instability in factor loadings. The data set consists of 144 quarterly time series for the

United States, spanning the sample period 1959:I-2006:IV. The data series are transformed to

be stationary, and the first two quarters are thus excluded because of differencing, resulting in

T = 190 observations used for estimation. We exclude a number of series that are higher-level

aggregates of the included series, which brings the number of series used for estimation to

N = 109. For a complete data description and details on data transformations, see the appendix

of Stock and Watson (2009).

Stock and Watson (2009) argue for four factors in the sample, and perform robustness checks

of their results using different numbers of factors. We therefore extract four principal components

from the standardized data and estimate the loadings parameters and the idiosyncratic variances

for each of the 109 variables. The system matrices Bi and Qi are specified to be diagonal, i.e., the

loadings are estimated as univariate autoregressions uncorrelated over the factor indices. The

lag polynomials Bi (L) are of order one for all i .

Figure 1 shows the squared correlation coefficient R2 of the four principal components with

11The results for bi 2 are not indicative of any convergence. Histograms of the estimated values show that the
parameter is not identified as the values are randomly estimated anywhere between -1 and 1.

22



the 109 time series in the cross-section. The first factor correlates most strongly with series that

measure output, labor, and inventories, with many correlation coefficients larger than 0.5 for

these variables. The second factor correlates across the board, never above 0.50, and close to

zero for prices and wages and for monetary variables. The third and fourth factors never exceed

correlations of 0.40, but show clustering in the financial and monetary groups of variables.

Table 8 shows the in-sample R2 from estimated factor models with four principal components

and constant loadings (const.) in comparison to time-varying loadings (tv.). The gains in R2

from employing a time-varying factor model range from 0 (for two series, Emp: services and

Orders [NDCapGoods], the loadings are estimated as constant) up to 95 percent (for example, for

PCED-NDUR-ENERGY). The mean gain in R2 across the 109 time series is 38 percent.

We select three time series and display the estimation results in Figures 2 to 4. The first panel

of each figure shows the time series and the common components from factor models with

constant loadings and with time-varying loadings. The second panel of each figure shows the

estimated time-varying loadings for the four estimated factors (principal components).

The series in Figure 2 is the exchange rate CHF/USD, for which the in-sample R2 increases

from 0.064 for a factor model with constant loadings to 0.98 for a factor model with time-varying

loadings. The first panel illustrates this difference: The common component from a factor model

with constant loading captures very little of the variation in the series, whereas the common

component of the factor model with time-varying loadings provides a close fit. The estimated

time-varying loadings in the second panel show that most of the dynamics in the common

component stem from the first and fourth factors for most of the sample period. The loadings

of the second and third factors oscillate around zero, with some pronounced exceptions in the

mid-80s and early 2000s, where the loadings on the third factor spike. The absolute value of the

mean of the loadings on the first factor is 0.19 (note that the sign is not identified). The absolute

value of the mean of the loadings on the fourth factor is 0.26. The absolute values of the means of

the loadings on the second and third factors are 0.003 and 0.03, respectively. Since the fourth

factor has the strongest correlations with the financial group of variables (see Figure 1), its large

influence on this exchange rate is not unexpected. The loadings on the first and second factor

are negatively serially correlated; the loadings on the third and fourth factor are positively serially

correlated.

Figure 3 displays the time series of unit labor costs (total labor compensation divided by

real output) and its estimated common components from factor models with constant and with

time-varying loadings in the first panel. The in-sample R2 for this series improves from 0.04 to

0.97 when introducing time-varying loadings. Same as in the case of the CHF/USD exchange
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rate, the common component from constant loadings explains very little of the variation in

the series. The estimated time-varying loadings in the second panel show in this case that the

first factor, associated with output, consumption, labor, housing, and inventories, is the most

important in explaining the variation in the series. This illustrates that in the factor model with

time-varying loadings, a single factor can dominate even though it is not able to explain much

of the variation under constant loadings. All estimated time-varying loadings display strong

positive autocorrelation. Stock and Watson (2009) find strong support for a structural break in

1984:I for this series using a Chow split-sample test (their Table 3). Figure 3 implies that there is

strong positive autocorrelation in the residuals from a factor model with constant loadings, and

a Chow test is likely to reject parameter constancy for a wide range of possible change-points.

Finally, Figure 4 displays the time series of the number of employees in the service sector. In

this case, the factor model with time-varying loadings returned constant loadings, and so there

is no difference in the R2 and in the common components compared to a model with constant

loadings.

6 Conclusion

We proposed a two-step maximum likelihood estimator for time-varying loadings in high-

dimensional factor models. The loadings parameters are estimated by a set of N univariate

regression models with time-varying coefficients, where the unobserved regressors are estimated

by principal components. Replacing the unobservable factors with principal components gives a

feasible likelihood function that is asymptotically equivalent to the infeasible one with observable

factors and therefore gives consistent estimates of the loadings parameters as N ,T →∞. The

finite-sample properties of our estimator were assessed via an extensive simulation study. The

results showed that the loadings means and idiosyncratic error variances are estimated precisely

even for small sample sizes. A somewhat larger sample size is needed to get precise estimates

of the loadings variance and dynamic parameters. Furthermore, the simulations showed very

satisfactory results when the number of principal components is different from the number of

factors in the data.

We illustrated the empirical relevance of the time-varying loadings structure using the large

quarterly dataset of Stock and Watson (2009) for the US economy. For the majority of the variables

we found evidence of time-varying loadings, and we showed that a large increase in the in-sample

fit of the common component can be obtained by modelling the loadings as time-varying.
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Table 1: Simulation results for 1-factor model.

T N R2
F̃ ,F

bi λi qi ψi α

Panel True values 0.9 0 0.2 1

α= 0, β= 0, ρ = 0, π= 0, γ= 0

I

50 50 0.943 0.603 -0.022 0.302 0.970 -
100 50 0.941 0.785 -0.005 0.258 1.005 -

50 100 0.960 0.607 0.023 0.307 0.978 -
100 100 0.969 0.792 -0.043 0.260 1.010 -
100 200 0.976 0.797 -0.011 0.256 0.993 -
200 200 0.984 0.864 0.003 0.224 1.003 -
400 200 0.986 0.884 -0.019 0.213 1.009 -
600 300 0.991 0.890 0.012 0.208 0.997 -

α= 0.5, β= 0, ρ = 0, π= 0, γ= 0

II

50 50 0.939 0.617 -0.005 0.296 0.934 0.500
100 50 0.934 0.805 -0.009 0.246 0.992 0.494

50 100 0.956 0.614 0.033 0.290 0.929 0.494
100 100 0.966 0.805 -0.060 0.246 0.978 0.509
100 200 0.974 0.812 0.015 0.242 0.969 0.493
200 200 0.982 0.870 0.001 0.223 0.990 0.497
400 200 0.985 0.885 -0.027 0.212 0.994 0.500
600 300 0.989 0.890 0.011 0.206 0.995 0.499

α= 0, β= 0.5, ρ = 0, π= 0, γ= 0

III

50 50 0.943 0.613 -0.019 0.309 0.974 -
100 50 0.942 0.805 -0.016 0.247 1.010 -

50 100 0.958 0.607 0.008 0.301 0.972 -
100 100 0.968 0.790 -0.043 0.259 1.024 -
100 200 0.976 0.797 0.002 0.255 0.999 -
200 200 0.983 0.865 -0.005 0.225 0.999 -
400 200 0.986 0.886 -0.003 0.209 1.025 -
600 300 0.990 0.891 0.012 0.206 0.993 -

α= 0, β= 0, ρ = 0.9, π= 0, γ= 0

IV

50 50 0.652 0.587 0.000 0.355 1.177 -
100 50 0.785 0.784 0.019 0.255 1.134 -

50 100 0.651 0.606 -0.031 0.392 1.257 -
100 100 0.809 0.828 0.010 0.291 1.385 -
100 200 0.806 0.781 0.009 0.269 1.116 -
200 200 0.896 0.865 -0.024 0.237 1.065 -
400 200 0.941 0.894 -0.050 0.221 1.122 -
600 300 0.961 0.895 0.026 0.211 1.040 -

α= 0, β= 0, ρ = 0.5, π= 0, γ= 0

V

50 50 0.905 0.625 -0.033 0.306 1.017 -
100 50 0.920 0.803 -0.010 0.249 1.023 -

50 100 0.916 0.606 0.044 0.307 1.045 -
100 100 0.950 0.803 -0.060 0.254 1.076 -
100 200 0.955 0.803 0.019 0.254 1.015 -
200 200 0.973 0.865 -0.010 0.226 1.012 -
400 200 0.981 0.885 -0.022 0.214 1.026 -
600 300 0.987 0.889 0.012 0.209 1.006 -

NOTE: The columns T and N report the sample sizes. The column
R2

F̃ ,F
reports the convergence statistic for the principal compo-

nents estimator. The remaining columns report the mean of the
parameter estimates over the Monte Carlo simulations. For the
parameter λi , the bias is reported.



Table 2: Relative root-mean-squared error for 1-factor model.

T N R2
F̃ ,F

bi λi qi ψi α

Panel True values 0.9 0 0.2 1

α= 0, β= 0, ρ = 0, π= 0, γ= 0

I

50 50 0.943 1.043 1.056 0.983 1.024 -
100 50 0.941 1.083 1.062 0.986 1.024 -

50 100 0.960 1.032 1.042 1.039 1.030 -
100 100 0.969 1.065 1.033 1.017 1.076 -
100 200 0.976 1.009 1.033 1.032 1.020 -
200 200 0.984 1.029 1.019 0.992 1.005 -
400 200 0.986 0.995 1.013 1.008 1.039 -
600 300 0.991 0.979 1.011 0.989 0.997 -

α= 0.5, β= 0, ρ = 0, π= 0, γ= 0

II

50 50 0.939 1.040 1.065 1.063 0.997 1.006
100 50 0.934 1.022 1.072 0.985 1.025 1.014

50 100 0.956 1.021 1.054 0.989 0.988 1.001
100 100 0.966 1.105 1.051 1.032 1.015 1.017
100 200 0.974 0.999 1.043 1.020 0.998 1.002
200 200 0.982 0.977 1.021 1.011 0.998 0.999
400 200 0.985 0.985 1.019 1.018 1.015 0.999
600 300 0.989 0.980 1.012 1.007 1.000 1.007

α= 0, β= 0.5, ρ = 0, π= 0, γ= 0

III

50 50 0.943 1.014 1.060 0.950 1.016 -
100 50 0.942 1.071 1.070 1.019 1.029 -

50 100 0.958 1.045 1.038 1.133 1.027 -
100 100 0.968 1.177 1.033 1.030 1.095 -
100 200 0.976 1.043 1.035 1.015 1.021 -
200 200 0.983 1.029 1.016 0.996 1.007 -
400 200 0.986 0.986 1.007 0.996 1.075 -
600 300 0.990 0.975 1.010 0.998 1.000 -

α= 0, β= 0, ρ = 0.9, π= 0, γ= 0

IV

50 50 0.652 1.060 1.147 1.339 1.926 -
100 50 0.785 1.106 1.127 1.060 1.778 -

50 100 0.651 1.038 1.147 1.451 2.415 -
100 100 0.809 0.854 1.166 1.468 4.506 -
100 200 0.806 1.047 1.085 1.083 1.665 -
200 200 0.896 0.947 1.085 1.101 1.455 -
400 200 0.941 0.851 1.099 1.130 2.743 -
600 300 0.961 0.921 1.044 1.021 1.432 -

α= 0, β= 0, ρ = 0.5, π= 0, γ= 0

V

50 50 0.905 1.061 1.064 0.936 1.086 -
100 50 0.920 1.043 1.067 1.049 1.039 -

50 100 0.916 1.024 1.046 1.030 1.241 -
100 100 0.950 0.956 1.043 1.060 1.415 -
100 200 0.955 1.090 1.040 1.070 1.057 -
200 200 0.973 1.012 1.028 1.023 1.038 -
400 200 0.981 0.984 1.014 1.013 1.169 -
600 300 0.987 0.971 1.011 0.990 1.040 -

NOTE: The columns T and N report the sample sizes. The col-
umn R2

F̃ ,F
reports the convergence statistic for the principal com-

ponents estimator. The remaining columns report the relative
root-mean-squared error of the parameter estimates using prin-
cipal components (numerator) and the true simulated factors
(denominator).



Table 3: Simulation results for 1-factor model.

T N R2
F̃ ,F

bi λi qi ψi

Panel True values 0.9 0 0.2 1

α= 0, β= 0, ρ = 0, π= 0.3, γ= 0

I

50 50 0.944 0.584 -0.016 0.311 0.970
100 50 0.941 0.796 -0.003 0.253 1.008

50 100 0.959 0.591 0.032 0.311 0.975
100 100 0.969 0.794 -0.038 0.248 1.024
100 200 0.976 0.804 -0.023 0.256 0.993
200 200 0.983 0.864 -0.008 0.225 1.001
400 200 0.986 0.885 -0.025 0.212 1.010
600 300 0.990 0.889 0.003 0.205 1.000

α= 0, β= 0, ρ = 0, π= 0, γ= 0.3

II

50 50 0.941 0.604 -0.020 0.303 0.986
100 50 0.939 0.797 0.004 0.258 1.012

50 100 0.957 0.572 0.008 0.316 0.985
100 100 0.967 0.788 -0.045 0.259 1.028
100 200 0.973 0.793 -0.000 0.264 0.997
200 200 0.983 0.861 -0.011 0.239 1.001
400 200 0.985 0.883 -0.026 0.213 1.014
600 300 0.990 0.888 0.007 0.214 1.001

NOTE: The columns T and N report the sample sizes.
The column R2

F̃ ,F
reports the convergence statistic for

the principal components estimator. The remaining
columns report the mean of the parameter estimates
over the Monte Carlo simulations. For the parameter λi ,
the bias is reported.



Table 4: Relative root-mean-squared error for 1-factor model.

T N R2
F̃ ,F

bi λi qi ψi

Panel True values 0.9 0 0.2 1

α= 0, β= 0, ρ = 0, π= 0.3, γ= 0

I

50 50 0.944 1.059 1.057 0.989 1.019
100 50 0.941 1.036 1.062 1.026 1.035

50 100 0.959 1.066 1.047 1.047 1.014
100 100 0.969 1.069 1.031 1.014 1.096
100 200 0.976 1.019 1.040 1.017 1.016
200 200 0.983 1.047 1.016 0.998 1.010
400 200 0.986 0.978 1.017 1.004 1.033
600 300 0.990 0.991 1.008 0.996 1.005

α= 0, β= 0, ρ = 0, π= 0, γ= 0.3

II

50 50 0.941 1.057 1.052 1.009 1.025
100 50 0.939 1.061 1.057 1.039 1.053

50 100 0.957 1.088 1.038 0.979 1.042
100 100 0.967 1.074 1.029 0.991 1.180
100 200 0.973 1.040 1.043 1.017 1.019
200 200 0.983 0.998 1.019 1.008 1.016
400 200 0.985 0.976 1.011 0.967 1.101
600 300 0.990 0.982 1.004 0.982 1.018

NOTE: The columns T and N report the sample sizes.
The column R2

F̃ ,F
reports the convergence statistic for

the principal components estimator. The remaining
columns report the relative root-mean-squared error of
the parameter estimates using principal components
(numerator) and the true simulated factors (denomina-
tor).
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Table 8: Comparison of in-sample R2 from factor models with constant loadings (const.) and from factor
models with time-varying loadings (tv.).

Description const. tv. Description const. tv. Description const. tv.

Cons-Dur 0.62 0.93 U < 5 wks 0.39 0.86 OilPrice (Real) 0.32 0.57

Cons-NonDur 0.22 0.43 U 5-14 wks 0.43 0.91 NAPM com price 0.57 0.98

Cons-Serv 0.74 0.87 U 15+ wks 0.32 0.8 Real AHE: const 0.51 0.96

NonResInv-Struct 0.6 0.96 U 15-26 wks 0.59 0.92 Real AHE: mfg 0.58 0.93

NonResInv-Bequip 0.6 0.84 U 27+ wks 0.83 0.95 Labor Prod 0.47 0.7

Res.Inv 0.82 0.94 HStarts: NE 0.82 0.95 Real Comp/Hour 0.047 0.95

Exports 0.066 0.82 HStarts: MW 0.56 0.98 Unit Labor Cost 0.036 0.97

Imports 0.81 0.88 HStarts: South 0.67 0.87 FedFunds 0.43 0.92

Gov Fed 0.4 0.81 HStarts: West 0.7 0.89 3 mo T-bill 0.55 0.86

Gov State/Loc 0.33 0.57 PMI 0.27 0.76 1 yr T-bond 0.68 0.93

IP: cons dble 0.35 0.65 NAPM new ordrs 0.022 0.49 10 yr T-bond 0.6 0.85

iIP:cons nondble 0.17 0.9 NAPM vendor del 0.073 0.4 fygm6-fygm3 0.5 0.77

IP:bus eqpt 0.56 0.82 NAPM Invent 0.054 0.52 fygt1-fygm3 0.38 0.79

IP: dble mats 0.84 0.99 Orders (ConsGoods) 0.056 0.84 fygt10-fygm3 0.38 0.74

IP:nondble mats 0.66 0.93 Orders (NDCapGoods) 0.032 0.032 FYAAAC-Fygt10 0.087 0.24

IP: mfg 0.8 0.94 PCED-DUR-MOTORVEH 0.081 0.65 FYBAAC-Fygt10 0.55 0.86

IP: fuels 0.78 0.93 PCED-DUR-HHEQUIP 0.071 0.55 M1 0.53 0.85

NAPM prodn 0.76 0.88 PCED-DUR-OTH 0.01 0.77 MZM 0.6 0.98

Capacity Util 0.62 0.86 PCED-NDUR-FOOD 0.036 0.37 M2 0.41 0.87

Emp: mining 0.31 0.79 PCED-NDUR-CLTH 0.017 0.96 MB 0.52 0.75

Emp: const 0.33 0.78 PCED-NDUR-ENERGY 0.022 0.96 Reserves tot 0.22 0.78

Emp: dble gds 0.77 0.85 PCED-NDUR-OTH 0.12 0.45 Reserves nonbor 0.34 0.98

Emp: nondbles 0.75 0.98 PCED-SERV-HOUS 0.1 0.72 BUSLOANS 0.27 0.77

Emp: services 0.65 0.65 PCED-SERV-H0-ELGAS 0.023 0.71 Cons credit 0.066 0.47

Emp: TTU 0.75 0.81 PCED-SERV-HO-OTH 0.077 0.83 Ex rate: avg 0.099 0.66

Emp: wholesale 0.26 0.79 PCED-SERV-TRAN 0.22 0.6 Ex rate: Switz 0.064 0.98

Emp: retail 0.62 0.67 PCED-SERV-MED 0.019 0.86 Ex rate: Japan 0.16 0.61

Emp: FIRE 0.8 0.94 PCED-SERV-REC 0.15 0.77 Ex rate: UK 0.16 0.4

Emp: Govt 0.54 0.72 PCED-SERV-OTH 0.23 0.86 EX rate: Canada 0.098 0.72

Help wanted indx 0.49 0.55 PFI-NRES-STR Price Index 0.013 0.69 S&P 500 0.27 0.91

Help wanted/emp 0.62 0.85 PFI-NRES-EQP 0.072 0.39 S&P: indust 0.0075 0.22

Emp CPS nonag 0.67 0.87 PFI-RES 0.35 0.61 S&P div yield 0.17 0.53

Emp. Hours 0.57 0.67 PEXP 0.19 0.57 S&P PE ratio 0.76 0.98

Avg hrs 0.57 0.8 PIMP 0.53 0.8 DJIA 0.28 0.61

Overtime: mfg 0.57 0.76 PGOV-FED 0.21 0.71 Consumer expect 0.4 0.74

U: all 0.39 0.77 PGOV-SL 0.23 0.77

U: mean duration 0.39 0.91 Com: spot price (real) 0.19 0.33
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Figure 1: Squared correlations of principal components with time series.
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Figure 2: Common components and time-varying factor loadings for the Exchange rate CHF/USD.
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Figure 3: Common components and time-varying factor loadings for Unit labor costs (= total labor
compensation / real output).
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Figure 4: Common components and time-varying factor loadings for Number of employees in service
industry.
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A.1 Appendix

Let X = (X1, ..., XT )′ be the T ×N matrix of observations, and let VN T be the r × r diagonal matrix

of the r largest eigenvalues of (N T )−1X X ′ in decreasing order. By the definition of eigenvalues

and eigenvectors, we have (N T )−1X X ′F̃ = F̃VN T or (N T )−1X X ′F̃V −1
N T = F̃ , where F̃ ′F̃ /T = Ir .

Let H = (Λ0′Λ0/N )(F ′F̃ /T )V −1
N T be the r × r rotation matrix. Assumption A and B together with

Lemma A.1 below implies that ‖H‖ =Op (1). Let wt = ξt Ft . We can write (1) as:

X t =Λ0Ft +ξt Ft +et =Λ0Ft +wt +et .

Define e = (e1, ...,eT )′ and w = (w1, ..., wT )′. We use the following expression from Bates et al.

(2013):

X X ′ = FΛ0′Λ0F ′+FΛ0′(e +w)′+ (e +w)Λ0F ′+ (e +w)(e +w)′. (A.1)

Let vt denote a conforming unit vector with zeros in all entries except the t th . We then have:

X X ′v = FΛ0′Λ0Ft +FΛ0′(et +wt )+ (e +w)Λ0Ft + (e +w)(et +wt ).

Using the definition of F̃t and H , we can then write:

F̃t −H ′Ft =V −1
N T (N T )−1F̃ ′X X ′v −V −1

N T (F̃ ′F /T )(Λ0′Λ0/N )Ft

=V −1
N T (N T )−1

{
F̃ ′FΛ0′et + F̃ ′eΛ0Ft + F̃ ′eet

+F̃ ′FΛ0′wt + F̃ ′wΛ0Ft + F̃ ′w wt + F̃ ′ewt + F̃ ′wet

}
.

Denote each term on the right-hand as A1t , ..., A8t , respectively. We get:

F̃t −H ′Ft =V −1
N T

8∑
n=1

Ant . (A.2)

The following is a generalization of Lemma A.3 in Bai (2003). They consider constant loadings;

we generalize the proof to autoregressive loadings.

Lemma A.1. Under Assumptions A-E, as N,T →∞:

(i)
∥∥VN T − F̃ ′F

T
Λ0′Λ0

N
F ′F̃

T

∥∥2 =Op (C−2
N T ),

(ii) F̃ ′F
T

Λ0′Λ0

N
F ′F̃

T

p→V ,
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where V is the diagonal matrix consisting of the eigenvalues of ΣΛΣF .

Proof. From VN T = T −1F̃ ′(N T )−1X X ′F̃ we get using (A.1):

VN T − F̃ ′F
T

Λ0′Λ0

N

F ′F̃
T

= T −1F̃ ′(N T )−1
{

FΛ0′(e +w)′ +(e +w)Λ0F ′+ (e +w)(e +w)′)
}

F̃

= T −1
T∑

t=1
F̃t

8∑
n=1

A′
nt .

Hence,

‖T −1
T∑

t=1
F̃t

8∑
n=1

A′
nt‖2 ≤

(
T −1

T∑
t=1

‖F̃t‖2

)(
T −1

T∑
t=1

∥∥∥∥ 8∑
n=1

Ant

∥∥∥∥2
)

≤ 8r T −1
T∑

t=1

8∑
n=1

‖Ant‖2,

where the last inequality uses tr (F̃
′
F̃ /T ) = tr (Ir ) = r and Loève’s inequality. The right-hand side

is Op (C−2
N T ) by Theorem 1 of Bates et al. (2013).

Statement (ii) is implicitly proven by Stock and Watson (1998). It should be noted that their

paper considers the model X t =Λ0Ft +et , i.e. a factor model with constant loadings. However,

their proof only uses the asymptotic representation VN T = F̃ ′F
T

Λ0′Λ0

N
F ′F̃

T +op (1) and the normal-

ization F̃ ′F̃ /T = Ir . Their proof is thus applicable for our model as well.

Proof of Lemma 1. From (A.2) we have:

T −1
T∑

t=1
‖F̃t −H ′Ft‖2 ≤ ‖V −1

N T ‖28T −1
T∑

t=1

8∑
n=1

‖Ant‖2.

Since VN T converges to a positive definite matrix, it follows that ‖V −1
N T ‖2 =Op (1). The right-hand

side is thus Op (C−2
N T ) by Theorem 1 in Bates et al. (2013).

42



Proof of Proposition 1. Using (A.2) we have:

max
t

‖F̃t −H ′Ft‖ = max
t

‖V −1
N T

8∑
n=1

Ant‖ ≤ ‖V −1
N T ‖

8∑
n=1

max
t

‖Ant‖.

Lemma A.1 implies that ‖V −1
N T ‖ =Op (1). We can write A1t as:12

A1t = (N T )−1
T∑

s=1
(F̃s −H ′Fs)F ′

sΛ
0′et + (N T )−1

T∑
s=1

H ′FsF ′
sΛ

0′et .

The first term is less than:(
T −1

T∑
s=1

‖F̃s −H ′Fs‖2

)1/2 (
N−2T −1

T∑
s=1

‖F ′
sΛ

0′et‖2

)1/2

.

We have:

N−2T −1
T∑

s=1
‖F ′

sΛ
0′et‖2 ≤ N−1‖N−1/2Λ0′et‖2T −1

T∑
s=1

‖Fs‖2.

By Assumption F.3, the maximum of ‖N−1/2Λ0′et‖2 over t is Op (T 1/4), and Assumption A implies

T −1 ∑T
s=1 ‖Fs‖2 = Op (1). By Lemma 1, we have T −1 ∑T

s=1 ‖F̃s − H ′Fs‖2 = Op (C−2
N T ). Taking the

square root then gives that the first term is Op

(
C−1

N T

)
Op

(
T 1/8

N 1/2

)
. For the second term, we have:

(N T )−1‖
T∑

s=1
H ′FsF ′

sΛ
0′et‖ ≤ N−1/2‖H‖‖N−1/2Λ0′et‖T −1

T∑
s=1

‖Fs‖2,

where ‖H‖ =Op (1) and T −1 ∑T
s=1 ‖Fs‖2 =Op (1) by Assumption A. The maximum of ‖N−1/2Λ0′et‖

over t is Op (T 1/8). The second term is thus equal to Op

(
T 1/8

N 1/2

)
and dominates the first.

Consider A2t , which can be written as:

(N T )−1
T∑

s=1
(F̃s −H ′Fs)e ′sΛ

0Ft + (N T )−1
T∑

s=1
H ′Fse ′sΛ

0Ft .

The first term is bounded by

(
T −1

T∑
s=1

‖F̃s −H ′Fs‖2

)1/2 (
N−2T −1

T∑
s=1

‖e ′sΛ
0Ft‖2

)1/2

.

12The terms A1t , A2t , A3t have been shown to be Op (αT T−1)+Op (T 1/8)N−1/2 by Bai and Ng (2008a). They do,
however, rely on intermediate results, which we have not proved for the model with time-varying loadings. We
therefore provide an alternative proof for A1t , A2t , A3t .
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Now,

N−2T −1
T∑

s=1
‖e ′sΛ

0Ft‖2 ≤ max
t

‖Ft‖2N−1T −1
T∑

s=1
‖N−1/2e ′sΛ

0‖2 =Op (α2
T )N−1

by Assumption F.3. The first term is thus equal to Op (C−1
N TαT N−1/2). The second term is equal to:

(N T )−1
T∑

s=1

N∑
i=1

H ′Fsei sλ
0′
i Ft ,

which is bounded by:

N−1/2Mmax
t

‖Ft‖‖H‖
(

T −1
T∑

s=1
‖Fs‖2

)1/2
(N T )−1

T∑
s=1

N∑
i , j=1

ei se j s

1/2

.

This is equal to Op (αT )N−1/2 by Assumption C.3 and dominates the first term.

We can write A3t as:

(N T )−1
T∑

s=1
(F̃s −H ′Fs)[e ′set −E(e ′set )]+ (N T )−1

T∑
s=1

H ′Fs[e ′set −E(e ′set )]

+ (N T )−1
T∑

s=1
(F̃s −H ′Fs)E(e ′set )+ (N T )−1

T∑
s=1

H ′FsE(e ′set ).

The first term is bounded by:

(
T −1

T∑
s=1

‖F̃s −H ′Fs‖2

)1/2
N−1T −1

T∑
s=1

∣∣∣∣∣N−1/2
N∑

i=1
[e ′i sei t −E(e ′i sei t )]

∣∣∣∣∣
2
1/2

.

By Assumption C.5, max
t

∣∣∣N−1/2 ∑N
i=1[e ′i sei t −E(e ′i sei t )]

∣∣∣2 =Op (
p

T ), so the first term is equal to

Op (C−1
N T )Op ( T 1/4

N 1/2 ). The second term is bounded by:

(N T )−1/2‖H‖‖(N T )−1/2
T∑

s=1

N∑
i=1

Fs[e ′i sei t −E(e ′i sei t )]‖.

By Assumption F.2, the maximum of this expression over t is Op (N−1/2). The third term is

bounded by:

T −1/2

(
T −1

T∑
s=1

‖F̃s −H ′Fs‖2

)1/2 (
T∑

s=1
γN (s, t )2

)1/2

.
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By Assumption F.1 and Lemma 1, this is equal to T −1/2Op (C−1
N T ). The fourth term is bounded by:

T −1max
t

‖Ft‖‖H‖
T∑

s=1
|γN (s, t )|,

which is Op (αT T −1).

For A4t , the term to be bound is

max
t

(N T )−1‖F̃ ′FΛ0′wt‖,

where F̃ and F are T × r ,Λ0 is N × r , wt is N ×1. The vector wt itself is given by wt = ξt Ft , where

ξt is N × r and Ft is r ×1.

We begin by bounding

(N T )−1‖F̃ ′FΛ0′wt‖ ≤ N− 1
2 ‖T − 1

2 F̃‖‖T − 1
2 F‖‖N− 1

2Λ0′wt‖.

The first terms ‖T − 1
2 F̃‖ and ‖T − 1

2 F‖ are Op (1) by construction of principal components and

Assumption A. It thus remains to bound

max
t

‖N− 1
2Λ0′wt‖.

Note that

Λ0′wt =
(

N∑
i=1

λ0
i p wt ,i

)
p=1,...,r

. (A.3)

and thus

‖N− 1
2Λ0′wt‖2 = N−1

r∑
p=1

(
N∑

i=1
λ0

i p wt ,i

)(
N∑

i=1
λ0

i p wt ,i

)
.

Since by Assumption B,
N∑

i=1
λ0

i p wt ,i ≤ M
N∑

i=1
wt ,i ,
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we can write

‖N− 1
2Λ0′wt‖2 ≤ N−1

r∑
p=1

M 2

(
N∑

i=1
wt ,i

) N∑
j=1

wt , j

 ,

= N−1r M 2
N∑

i=1

N∑
j=1

wt ,i wt , j .

Next, note that

wt = ξt Ft =
 r∑

p=1
ξi t p Ft p


i=1,...,N

.

It then follows that

wt ,i wt , j =
 r∑

p=1
ξi t p Ft p

 r∑
p=1

ξ j t p Ft p

 ,

=
r∑

p=1

r∑
q=1

ξi t pξ j t q Ft p Ft q ,

≤ r 2 max
p,q

(
ξi t pξ j t q Ft p Ft q

)
.

Denote the maximum by

ξi t p1ξ j t q1 Ft p1 Ft q1
:= max

p,q

(
ξi t pξ j t q Ft p Ft q

)
.

Then,

‖N− 1
2Λ0′wt‖2 ≤ N−1r 3M 2

N∑
i=1

N∑
j=1

ξi t p1ξ j t q1 Ft p1 Ft q1 .

In finding a bound for the maximum over t in expectation, the factor r 3M 2 can be ignored since
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it does not change the conclusion:

E

max
t

N−1
N∑

i=1

N∑
j=1

ξi t p1ξ j t q1 Ft p1 Ft q1




= 1

u
E

max
t

uN−1
N∑

i=1

N∑
j=1

ξi t p1ξ j t q1 Ft p1 Ft q1




= 1

u
E

logexp

max
t

uN−1
N∑

i=1

N∑
j=1

ξi t p1ξ j t q1 Ft p1 Ft q1


 ,

≤ 1

u
E

log
T∑

t=1
exp

uN−1
N∑

i=1

N∑
j=1

ξi t p1ξ j t q1 Ft p1 Ft q1


 ,

≤ 1

u
log

T∑
t=1

E

exp

uN−1
N∑

i=1

N∑
j=1

ξi t p1ξ j t q1 Ft p1 Ft q1


 ,

≤ 1

u
log(T M) by Assumption F.4,

where the second to last inequality is the Jensen inequality. Thus, by the Markov inequality,

max
t

(N T )−1‖F̃ ′FΛ0′wt‖ = N− 1
2 Op (log(T )

1
2 ).

Consider A5t : The term to be bound is

max
t

(N T )−1‖F̃ ′wΛ0Ft‖ = max
t

(N T )−1‖
T∑

s=1
F̃s w ′

sΛ
0Ft‖,

where w = (w1, . . . , wT )′ is T ×N . We begin by bounding

(N T )−1‖
T∑

s=1
F̃s w ′

sΛ
0Ft‖ ≤ N− 1

2 max
t

‖Ft‖
(

T −1
T∑

s=1
‖F̃s‖2

) 1
2
(

T −1
T∑

s=1
‖N− 1

2 w ′
sΛ

0‖2

) 1
2

.

The object maxt ‖Ft‖ is Op (αT ), as assumed in Proposition 1 and discussed in the subsequent

text. The term involving F̃ is O(1), by construction of principal components. The term to be
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controlled is

T −1
T∑

s=1
‖N− 1

2 w ′
sΛ

0‖2,

where the summand is exactly the term studied for A4t . We thus obtain

E

[
T −1

T∑
s=1

‖N− 1
2 w ′

sΛ
0‖2

]
≤ (uT )−1

T∑
s=1

r 3M 2E

uN−1
N∑

i=1

N∑
j=1

ξi t p1ξ j t q1 Ft p1 Ft q1

 ,

≤ r 3M 2(uT )−1
T∑

s=1
log

E exp

uN−1
N∑

i=1

N∑
j=1

ξi t p1ξ j t q1 Ft p1 Ft q1


 ,

≤ r 3M 2(uT )−1
T∑

s=1
log M = 1

u
r 3M 2 log M ,

by Assumption F.4. Thus, by the Markov inequality,

max
t

(N T )−1‖F̃ ′wΛ0Ft‖ =Op (αt N− 1
2 ).

For A6t , the term to be bound is

max
t

(N T )−1‖
T∑

s=1
F̃s w ′

s wt‖.

We begin by bounding

max
t

(N T )−1‖
T∑

s=1
F̃s w ′

s wt‖ ≤ N−1T − 1
2

(
T −1

T∑
s=1

‖F̃s‖2

) 1
2
(

T∑
s=1

‖w ′
s wt‖2

) 1
2

.

The first term on the right-hand side is O(1) by construction of principal components. The term

to be controlled is

max
t

(
N−2T −1

T∑
s=1

‖w ′
s wt‖2

) 1
2

.

Since

wt = ξt Ft =
 r∑

p=1
ξi t p Ft p


i=1,...,N

,
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we have that

wt ,i ws,i =
 r∑

p=1
ξi t p Ft p

 r∑
p=1

ξi sp Fsp

=
r∑

p=1

r∑
q=1

ξi t pξi sq Ft p Fsq ,

and

w ′
s wt =

N∑
i=1

r∑
p=1

r∑
q=1

ξi t pξi sq Ft p Fsq .

Thus,

‖w ′
s wt‖2 =

N∑
i=1

N∑
j=1

r∑
pi=1

r∑
qi=1

r∑
p j=1

r∑
q j=1

ξi t pi ξi sqi ξ j t p j ξ j sq j Ft pi Fsqi Ft p j Fsq j .

Let

ξi t p1ξi sq1ξ j t p2ξ j sq2 Ft p1 Fsq1 Ft p2 Fsq2
:= max

pi ,qi ,p j ,q j
ξi t pi ξi sqi ξ j t p j ξ j sq j Ft pi Fsqi Ft p j Fsq j .

Then,

‖w ′
s wt‖2 ≤ r 4

N∑
i=1

N∑
j=1

ξi t p1ξi sq1ξ j t p2ξ j sq2 Ft p1 Fsq1 Ft p2 Fsq2

and, ignoring r 4 since it does not influence the conclusion,

E

max
t

N−2T −1
T∑

s=1

N∑
i , j=1

ξi t p1ξi sq1ξ j t p2ξ j sq2 Ft p1 Fsq1 Ft p2 Fsq2


= N 2 +N T

uN 2T
E

max
t

u

N 2 +N T

T∑
s=1

N∑
i , j=1

ξi t p1ξi sq1ξ j t p2ξ j sq2 Ft p1 Fsq1 Ft p2 Fsq2

 ,

≤ N 2 +N T

uN 2T
logE

exp

max
t

u

N 2 +N T

T∑
s=1

N∑
i , j=1

ξi t p1ξi sq1ξ j t p2ξ j sq2 Ft p1 Fsq1 Ft p2 Fsq2


 ,

≤ N 2 +N T

uN 2T
log

 T∑
t=1

E exp

 u

N 2 +N T

T∑
s=1

N∑
i , j=1

ξi t p1ξi sq1ξ j t p2ξ j sq2 Ft p1 Fsq1 Ft p2 Fsq2


 ,

≤ N 2 +N T

uN 2T
log(T M) = log(T M)

uT
+ log(T M)

uN
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by Assumption F.5. The third to last inequality is again Jensen’s. Thus, by the Markov inequality,

max
t

(N T )−1‖
T∑

s=1
F̃s w ′

s wt‖ =Op

(
log(T )

T
+ log(T )

N

) 1
2

.

The seventh term A7t is bounded by:

N−1/2

(
T −1

T∑
s=1

‖F̃s‖2

)1/2 (
N−1T −1

T∑
s=1

‖e ′s wt‖2

)1/2

= r 1/2N−1/2

(
T −1

T∑
s=1

‖N−1/2
N∑

i=1
ei s wi t‖2

)1/2

The maximum over t of the term inside the parenthesis can be bounded in expectation:

E

(
max

t
T −1

T∑
s=1

‖N−1/2
N∑

i=1
ei s wi t‖2

)
= 1

u
E

(
log exp max

t

u

T

T∑
s=1

‖N−1/2
N∑

i=1
ei s wi t‖2

)

≤ 1

u
log

 T∑
t=1

(
E exp

u

T

T∑
s=1

‖N−1/2
N∑

i=1
ei s wi t‖2

)≤ log

(
T∑

t=1
M

)
= log(T M),

by Assumption E. The seventh term is thus max
t

‖A7t‖ = N−1/2Op (log(T )1/2).

Finally, we have for A8t :

N−1/2

(
T −1

T∑
s=1

‖F̃s‖2

)1/2 (
N−1T −1

T∑
s=1

‖w ′
set‖2

)1/2

= r 1/2N−1/2

(
T −1

T∑
s=1

‖N−1/2
N∑

i=1
ei t wi s‖2

)1/2

.

The last term is bounded by:

E

(
max

t
T −1

T∑
s=1

‖N−1/2
N∑

i=1
ei t wi s‖2

)
= 1

u
E

(
log exp max

t

u

T

T∑
s=1

‖N−1/2
N∑

i=1
ei t wi s‖2

)

≤ 1

u
log

 T∑
t=1

(
E exp

u

T

T∑
s=1

‖N−1/2
N∑

i=1
ei t wi s‖2

)≤ log

(
T∑

t=1
M

)
= log(T M),

again by Assumption E. The last term is thus N−1/2Op (log(T )1/2). All terms are dominated by

Op

(
T 1/8

N 1/2

)
+Op (αT N−1/2)+Op (αT T −1)+Op

(
log(T )

N

)1/2+Op

(
log(T )

T

)1/2
. If we takeαT =O(1), these

terms are dominated by Op

(
T 1/8

N 1/2

)
+Op

(
log(T )

T

)1/2
, as Op

(
log(T )

N

)1/2
is dominated by Op ( T 1/8

N 1/2 ).

Proposition 1 follows.
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Lemma A.2. Let Assumption A-E hold. If F ′F /T = Ir and Λ0′Λ0 is a diagonal matrix with

distinct entries,

H = Ir +Op (C−2
N T ).

Proof. First we need to show that (F̃ −F H)′F /T and (F̃ −F H)′F̃ /T are both Op (C−2
N T ). We

have:

‖(F̃ −F H)′F /T ‖2 = ‖T −1
T∑

t=1
(F̃t −H ′Ft )F ′

t‖2

≤
(

T −1
T∑

t=1
‖F̃t −H ′Ft‖2

)(
T −1

T∑
t=1

‖Ft‖2

)
=Op (C−2

N T ),

where the last equality follows from Lemma 1 and Assumption A. By similar arguments (F̃ −
F H)′F̃ /T =Op (C−2

N T ). The rest of the proof is identical to the proof of equation (2) in Bai and Ng

(2013).

Lemma A.2 shows that if the imposed normalization holds for the process generating the

data, the factors can be estimated without rotation. This implies that θi can be estimated without

rotation as well. In the proof of Theorem 1 below, we assume that H = Ir for notational conve-

nience only. In general, the feasible likelihood converges to LT (Xi |F H ;θi ), and θ̃i is consistent

for a rotation of θ0
i as discussed in Section 3.2.

Proof of Theorem 1. It suffices to show that the feasible likelihood function L̃T (Xi |F̃ ;θi )

converges uniformly to the infeasible one LT (Xi |F ;θi ). This will imply that L̃T (Xi |F̃ ;θi ) satisfies

the conditions of Assumption H and θ̃i
p→ θ0

i . We thus need:

sup
θi∈Θi

∣∣∣L̃T (Xi |F̃ ;θi )−LT (Xi |F ;θi )
∣∣∣ p→ 0.

By the mean value expansion, we can write:

L̃T (Xi |F̃ ;θi ) =LT (Xi |F ;θi )+
T∑

t=1
∇FtLT (Xi |F∗;θi )(F̃t −Ft ),

where ∇FtLT (Xi |F∗;θi ) = ∂LT (Xi |F ;θi )
∂Ft

∣∣∣
F=F∗ , and F∗ is between F and F̃ . For uniform convergence
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the last term needs to be op (1) uniformly inΘi , when F∗
t is in a neighbourhood of Ft , such that

max
t

‖F∗
t −Ft‖ = op (1).

Let λmax(A) and λmin(A) denote the largest and smallest eigenvalue of a matrix A, and let

(A)(s,t ) denote entry (s, t ) of a T ×T matrix A. Furthermore, let φi be the r ×r block matrix on the

diagonal ofΦi , i.e. φi =V ar (λi t ). The derivative of LT (Xi |F ;θi ) takes the form:13,14

∇FtLT (Xi |F ;θi )′ =−T −1φi FtΣ
−1
i ,(t ,t ) +T −1λi

T∑
s=1

(Xi s −F ′
sλi )Σ−1

i ,(s,t )

+T −1φi Ft

(
Σ−1

i (Xi −E(Xi ))(Xi −E(Xi ))′Σ−1
i

)
t ,t

,

where Ft is to be evaluated at F∗
t . Denote the three terms above by Bnt , for n = 1, ...,3. We can

then write:

sup
θi∈Θi

∣∣∣L̃T (Xi |F̃ ;θi )−LT (Xi |F ;θi )
∣∣∣= sup

θi∈Θi

∣∣∣∣∣ T∑
t=1

3∑
n=1

(F̃t −Ft )′Bnt

∣∣∣∣∣
≤ sup
θi∈Θi

∣∣∣∣∣ T∑
t=1

(F̃t −Ft )′B1t

∣∣∣∣∣+ sup
θi∈Θi

∣∣∣∣∣ T∑
t=1

(F̃t −Ft )′B2t

∣∣∣∣∣+ sup
θi∈Θi

∣∣∣∣∣ T∑
t=1

(F̃t −Ft )′B3t

∣∣∣∣∣ .

(A.4)

For the term involving B1t , we have:∣∣∣∣∣T −1
T∑

t=1
(F̃t −Ft )′φi F∗

t Σ
−1
i ,(t ,t )

∣∣∣∣∣≤λmax(Σ−1
i )T −1

T∑
t=1

‖F̃t −Ft‖‖φi‖‖F∗
t ‖, (A.5)

since each entry in Σ−1
i is bounded by the largest eigenvalue. For the largest eigenvalue of

Σ−1
i , we have λmax(Σ−1

i ) = [λmin(Σi )]−1, and it therefore follows from the Weyl inequality that

λmax(Σ−1
i ) ≤ M as:15

λmin(Σi ) ≥λmin(FΦi F′)+λmin(ψi IT ) ≥ψi > 0

uniformly inΘi . The term ‖φi‖ is also uniformly bounded, as the parameters of Bi (L) are in the

stationary region, and the elements of Qi are bounded. We can therefore bound (A.5) by:

O(1)T −1
T∑

t=1
‖F̃t −Ft‖‖F∗

t −Ft‖+O(1)T −1
T∑

t=1
‖F̃t −Ft‖‖Ft‖.

13The calculations of the derivative are omitted for brevity. They are available upon request.
14With autocorrelated errors, the derivative takes the same form, but the variance matrix is Σi = FΦi F ′+Ψi , where
Ψi = E(ei e′i ) is non-diagonal.

15This also holds withΨi = E(ei e′i ) non-diagonal, as we can bound the smallest eigenvalue of Σi uniformly iΘi .
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Since F∗
t is between Ft and F̃t , the first term is less than T −1 ∑

t ‖F̃t −Ft‖2 and is Op (C−2
N T ) by

Lemma 1. Note that T −1 ∑
t ‖F̃t −Ft‖2 does not depend on θi , and the result is thus uniform in

Θi . For the second term, we can write:

T −1
T∑

t=1
‖F̃t −Ft‖‖Ft‖ ≤

(
T −1

T∑
t=1

‖F̃t −Ft‖2

)1/2 (
T −1

T∑
t=1

‖Ft‖2

)1/2

,

which is Op (C−1
N T ) by Lemma 1 and Assumption A, also uniformly inΘi .

For the term involving B3t in (A.4), we can write:∣∣∣∣∣T −1
T∑

t=1
(F̃t −Ft )′φi F∗

t

(
Σ−1

i (Xi −E(Xi ))(Xi −E(Xi ))′Σ−1
i

)
t ,t

∣∣∣∣∣≤
max

t

∣∣∣(F̃t −Ft )′φi F∗
t

∣∣∣T −1

∣∣∣∣∣ T∑
t=1

(
Σ−1

i (Xi −E(Xi ))(Xi −E(Xi ))′Σ−1
i

)
t ,t

∣∣∣∣∣ .

For the term outside the sum, we have:

max
t

∣∣∣(F̃t −Ft )′φi F∗
t

∣∣∣≤ ‖φi‖max
t

‖F̃t −Ft‖‖F∗
t ‖

≤O(1)max
t

‖F̃t −Ft‖2 +O(1)max
t

‖F̃t −Ft‖‖Ft‖.

If we take Ft to be a sequence of fixed and bounded constants, max
t

‖Ft‖ ≤ M , and the second

term is then op (1) by Proposition 1, which is uniform inΘi as the proof of Proposition 1 does not

depend on θi . The first term is bounded by the second.

The term involving the sum can be written as

T −1

∣∣∣∣∣ T∑
t=1

(
Σ−1

i (Xi −E(Xi ))(Xi −E(Xi ))′Σ−1
i

)
t ,t

∣∣∣∣∣
= T −1

∣∣∣∣tr
(
Σ−1

i (Xi −E(Xi ))(Xi −E(Xi ))′Σ−1
i

)∣∣∣∣ ,

(A.6)

which is bounded by

λmax(Σ−2
i )T −1|tr(Xi −E(Xi ))(Xi −E(Xi ))′| ≤ M 2T −1

T∑
t=1

‖Xi t −F∗′
t λi‖2

≤ 4M 2T −1
T∑

t=1

(
‖F ′

tλ
0
i ‖2 +‖F ′

t (λi t −λ0
i )‖2 +‖ei t‖2 +‖F∗′

t λi‖2
)

.
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The first term in the sum is bounded by T −1M 2 ∑T
t=1 ‖Ft‖2 =Op (1). For the second term in the

sum, we can write:

T −1
T∑

t=1
‖F ′

t (λi ,t −λ0
i )‖2 ≤

(
T −1

T∑
t=1

‖Ft‖4

)1/2 (
T −1

T∑
t=1

‖λi ,t −λ0
i ‖4

)1/2

.

This is Op (1) by Assumption A and G. By Assumption C we have T −1 ∑T
t=1 e2

i t =Op (1), and for the

last term, we can write:

T −1
T∑

t=1
‖F∗′

t λi‖2 ≤ M 2T −1
T∑

t=1
‖F∗′

t −Ft‖2 +M 2T −1
T∑

t=1
‖Ft‖2 =Op (C−2

N T )+Op (1),

as λi is estimated in a bounded parameter space. The second term in (A.4) is thus max
t

‖F̃t −
Ft‖Op (1) = op (1) uniformly inΘi .

For the term involving B2t in (A.4), we can write:∣∣∣∣∣T −1
T∑

t=1
(F̃t −Ft )′λi

T∑
s=1

(Xi s −F∗′
s λi )Σ−1

i ,(s,t )

∣∣∣∣∣
≤

(
T −1

T∑
t=1

|(F̃t −Ft )′λi |2
)1/2

T −1
T∑

t=1

∣∣∣∣∣ T∑
s=1

(Xi s −F∗′
s λi )Σ−1

i ,(s,t )

∣∣∣∣∣
2
1/2

.

The first term in parentheses is less than M 2T −1 ∑T
t=1 ‖F̃t −Ft‖2 =Op (C−2

N T ) uniformly inΘi . The

second term in parentheses is equal to

T −1
∣∣∣∣tr

(
Σ−1

i (Xi −E(Xi ))(Xi −E(Xi ))′Σ−1
i

)∣∣∣∣ ,

which is Op (1) uniformly inΘi from the arguments above, see (A.6). By taking the square root,

the second term is thus Op (C−1
N T ) and dominated by the third. Collecting the results gives:

sup
θi∈Θi

∣∣∣L̃T (Xi |F̃ ;θi )−LT (Xi |F ;θi )
∣∣∣=Op

(
max

t
‖F̃t −Ft‖

)
= op (1).

54


	Introduction
	Model and estimation
	Asymptotic theory
	Principal components estimation
	Identification
	Maximum likelihood estimation

	Monte Carlo simulations
	Design
	Results

	An empirical illustration
	Conclusion
	Appendix

