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3.2 Boxplots of fitted ĉ, d̂1 and d̂2 for empirical solutions to Problem 3.3.1
with Pareto loss distribution and various sample sizes n. . . . . . . . 61

3.3 Empirical solutions of y∗1 and z∗2 for Model (A) (left column) and Model
(B) with ρ ∈ {0.3, 0.8} (middle and right column). . . . . . . . . . . . 66

3.4 Empirical solutions of y∗1 and z∗2 for Model (C) with δ ∈ {0.2, 1.2, 2.2}. 67

5.1 Boxplots comparing ∆∗wa and ∆∗AIC computed from the VaR0.75-based
optimisation cases. Each graph constitutes of four groups of boxplots
that correspond to various sample sizes of n. The boxplot on the
left/right-hand side represents ∆∗wa/∆∗AIC . The top row boxplots are
corresponding to distribution collections M5, M4 and M2, while the
bottom row relates to M∗

4 and M∗
2, respectively. . . . . . . . . . . . . 135

5.2 Boxplots comparing ∆∗wa and ∆∗AIC computed from the CVaR0.75-based
optimisation cases. Each graph constitutes of four groups of boxplots
that correspond to various sample sizes of n. The boxplot on the
left/right-hand side represents ∆∗wa/∆∗AIC . The top row boxplots are
corresponding to distribution collections M5, M4 and M2, while the
bottom row relates to M∗

4 and M∗
2, respectively. . . . . . . . . . . . . 138

5.3 Boxplots comparing ∆∗wa and ∆∗AIC computed from the PHT0.2-based
optimisation cases. Each graph constitutes of four groups of boxplots
that correspond to various sample sizes of n. The boxplot on the
left/right-hand side represents ∆∗wa/∆∗AIC . The top row boxplots are
corresponding to distribution collections M5, M4 and M2, while the
bottom row relates to M∗

4 and M∗
2, respectively. . . . . . . . . . . . . 140

viii



5.4 Boxplots comparing ∆∗wa and ∆∗AIC computed from the SD-based op-
timisation cases with b = 0.2. Each graph constitutes of four groups of
boxplots that correspond to various sample sizes of n. The boxplot on
the left/right-hand side represents ∆∗wa/∆∗AIC . The top row boxplots
are corresponding to distribution collections M5, M4 and M2, while
the bottom row relates to M∗

4 and M∗
2, respectively. . . . . . . . . . 143

5.5 Scatter plots of empirical robust optimal insurance contracts found
from various robust optimisation models and sample sizes. The plots
in each row (from top to bottom) correspond to the VaR-, CVaR-
and PHT -based Weighted Average Models and the SD-based Additive
Model, respectively. The plots in each column (from left to right)
correspond to the sample size of n = 25, 100 and 250, respectively. . . 144

ix



City, University of London 
Northampton Square 

London 
EC1V 0HB 

United Kingdom 

T +44 (0)20 7040 5060

www.city.ac.uk   Academic excellence for business and the professions

Chapters 2-5 of this thesis contain published articles. The full 
text of these has been redacted from this version of the thesis 
for copyright reasons.



Acknowledgements

Firstly, I would like to thank Dr. Alexandru V. Asimit for introducing me to the

world of research and encouraging me to find out the research topic that I am truly

enthusiastic about. I am specially thankful for his patience and support in overcoming

numerous obstacles I have been facing through my research.

I also owe many thanks to Dr. Andreas Tsanakas for his practical advice and

constant support from stage to stage during my PhD research.

I am especially grateful to my parents, Yuehua and Qinfang, and my brother,

Shenggang, for their loving support and encouragement to achieve my goals.

Last but not the least, I owe many thanks to my, husband Tao, our son, Gabriel,

and our dogs, Yuki and Penny, whose spiritual support helped me to smoothly grad-

uate from this programme.

x



Co-Authorship Statement

Each of the chapters in this thesis are my own original idea and work. The works

have been obtained through collaborations with my supervisor, Dr. Alexandru V.

Asimit.

Chapter 2 has been published by Insurance: Economics and Mathematics, and is

a joint work with Dr. Alexandru V. Asimit and Dr. Yichun Chi. Chapter 3 has been

accepted and published online by North American Actuarial Journal, and is a joint

work with Dr. Alexandru V. Asimit, Dr. Tao Gao and Dr. Kim Eun-Seok. Chapter

4 has been published by European Journal of Operational Research, and is a joint

work with Dr. Alexandru V. Asimit, Dr. Valeria Bignozzi, Dr. Ka Chun Cheung

and Dr. Eun-Seok Kim. Chapter 5 has been submitted for publication, and is a joint

work with Dr. Alexandru V. Asimit and Professor Yuantao Xie.

xi



Abstract

Insurance and reinsurance are important tools of risk management. A well-
designed (re)insurance strategy can help individuals and institutions to effectively
adjust its risk position to match its risk appetite while meeting other targets such
as profitability. Thus, optimal (re)insurance design has been a popular research area
during the last fifty years.

The first contribution investigates the optimal reinsurance contract from the per-
spective of an insurer who would like to minimise its risk exposure under Solvency II.
Under this regulatory framework, the insurer is exposed to the retained risk, reinsur-
ance premium and change in the risk margin requirement as a result of reinsurance.
Depending on how the risk margin corresponding to the reserve risk is calculated, two
optimal reinsurance problems are formulated. We show that the optimal reinsurance
policy can be in the form of two layers. Further, numerical examples illustrate that
the optimal two-layer reinsurance contracts are only slightly different under these two
methodologies.

In the second contribution, numerical optimisation methods that are practically
implementable and solvable are discussed with actuarial applications. The efficiency
of these methods is extremely good for some well-behaved convex problems, such as
the Second-Order Conic Problems. Specific numerical solutions are provided in or-
der to better explain the advantages of appropriate numerical optimisation methods
chosen to solve various risk transfer problems. The stability issues are also investi-
gated together with a case study performed for an insurance group that aims capital
efficiency across the entire organisation.

The next two contributions aim to identify a robust optimal insurance contract
that is not sensitive to the chosen risk distribution. The first of the two contributions
focuses on the classical robust optimisation models, namely the worst-case and the
worst-regret model, which have been already investigated in literature relating to op-
timal investment portfolio problems, while Bayesian type robust optimisation models
are discussed in the second contribution. A caveat of robust optimisation is that
the optimal solution may not be unique, and therefore, it may not be economically
acceptable, i.e. not Pareto optimal. This issue is numerically addressed and sim-
ple numerical methods are found for constructing insurance contracts that are both
Pareto and robust optimal.

Keywords: General Premium Principle, Linear Programming, Optimal Reinsur-
ance, Risk Margin, Risk Measure, Risk Transfer, Robust optimisation, Robust/Pareto
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Chapter 1

Introduction

The topic of optimal insurance/reinsurance design has attracted particular interests

from both the academics and practitioners since the pioneering work of Borch (1960).

A well-constructed (re)insurance strategy is an efficient risk management tool, and

hence, better reinsurance strategies are being constantly sought. Closed-form solu-

tion of optimal (re)insurance problem, including risk measure minimisation, expected

utility maximisation and employment of various reinsurance premium principle, has

been widely discussed by, for example, Arrow (1963), Gajek and Zagrodny (2000),

Kaluszka (2001), Cai et al. (2008) and Chi and Tan (2011, 2013). Although some

carefully constructed optimal (re)insurance models, which are usually built with sim-

plifying assumptions, can be solved theoretically for closed-form solutions, the ma-

jority of the problems can only be solved numerically. A good reference is given by

Tan and Weng (2014).

Most of the existing literature on optimal (re)insurance assumes that the under-

lying risk distribution is completely known, i.e. the parameter and model risks are

ignored. However, whenever such risks are present, it is prudent to identify a robust

optimal contract that is not sensitive to the chosen risk distribution, which is pre-

cisely what robust optimisation does. It is a vast area of research with applications in

various fields and a standard reference is Ben-Tal et al. (2009), while comprehensive

surveys can be found in Ben-Tal and Nemirovski (2008), Bertsimas et al. (2011) and

Gabrel et al. (2014).

1
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Chapter 2 investigates the optimal reinsurance strategies when new regulations

on capital requirement introduced by Solvency II are adopted. Two different opti-

misation models are formulated depending on how risk margin of the reserve risk is

measured. Closed-form solutions are found when expected-value premium principle

is employed, while the problem is solved numerically under a wide class of premium

principle known as the Wang’s principle. We find that insurer demands for reinsur-

ance cover in a more conservative manner when capital requirements in Solvency II

are included, which is in line with the principle of Solvency II Regime.

Chapter 3 focuses on numerical optimisation methods with actuarial applications.

Various optimal risk transfer problems are discussed to demonstrate the computa-

tional efficiency of the methods, which can also be easily extended to other actuarial

problems. It also shows how one can take the advantage of computational methods

when the underlying risk distribution is unknown. That is, rather than focusing on

model-specific closed-form solutions, it is possible to search for robust decisions using

efficient numerical methods. The stability issues are also investigated together with

a case study performed for an insurance group that aims capital efficiency across the

entire organisation, which demonstrates how a practical problem may be implemented

via existing optimisation techniques.

In Chapters 4 and 5, optimal insurance problems are studied by taking into ac-

count the presence of parameter and model risks, i.e. the decision-maker aims to

identify the optimal insurance contract that is robust to the choice of risk distribu-

tion. Chapter 4 considers two robust optimisation models, namely the Worst-case

model and the Worst-regret model, which have been already used in robust optimi-

sation literature related to the investment portfolio problem. Closed-form solutions

are obtained for the VaR Worst-case scenario, while Linear Programming (LP) for-

mulations are provided for all other cases. Bayesian type robust optimisation models,

such as the Additive model, the Weighted Average model and the Weighted Worst-case

model, are discussed in Chapter 5, which could be efficiently solved using numerical

methods. Extensive numerical experiments have been carried out under various risk

preference choices and various sample sizes of data. We found that, with relatively
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large sample size, the modeller should focus on finding the best possible fit for the

unknown probability model in order to achieve the most robust decision. When only

small samples are available, the modeller should consider either the Weighted Aver-

age Model or the Weighted Worst-case Model depending on how much interest the

modeller puts on the tail risk when defining its objective function. A caveat of robust

optimisation is that the optimal solution may not be unique, and therefore, it may

lead to Pareto inefficient solutions. This issue has been numerically addressed in both

Chapters by proposing simple numerical methods of identifying insurance contracts

that are both Pareto and robust optimal.

Finally, Chapter 6 discusses my considerations on future research in two parts.

The first part considers some possible extensions of works discussed in Chapters 4

and 5, while the second part outlines the idea of a new project relating to data

visualisation with actuarial applications.
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Chapter 2

Optimal Non-life Reinsurance

under Solvency II Regime

2.1 Introduction

A standard reinsurance contract is usually reached between two parties: the insurer,

also known as cedent, insurance buyer, or even simpler, buyer, who has an interest

in transferring part of its risk to the reinsurer, also known as insurance seller, or

even simpler, seller. Mathematically, let X ≥ 0 be the total risk that the insurer

faces during a fixed period, with distribution function denoted by F (·) and survival

function F̄ (·) = 1 − F (·). In addition, the right end-point of F (·) is denoted by

xF := inf{z ∈ < : F (z) = 1}, where inf ∅ = +∞ by convention. The reinsurance

seller agrees to pay, R[X], the amount by which the entire loss exceeds the insurer’s

amount, I[X], and therefore I[X] + R[X] = X. Two most common reinsurance

contracts are the Quota-share and Stop-loss, where I[X] = cX (with 0 ≤ c ≤ 1) and

I[X] = X ∧M := min{X,M} (with 0 ≤ M ≤ xF ), respectively. In order to avoid

potential moral hazard issues arising from the reinsurance arrangement, the set of

feasible contracts is usually given by

F := {0 ≤ R[x] ≤ x : R[x] and x−R[x] are non-decreasing functions} . (2.1.1)

1A version of this chapter is published: Insurance: Mathematics and Economics, 65, 227–237.
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Chapter 3

Optimal Risk Transfer: A

Numerical Optimisation Approach

3.1 Introduction

Various actuarial problems involve decision-making procedures that evaluate the most

favourable risk position of an insurance company. For example, capital efficiency and

asset/liability management are part of the Enterprise Risk Management Process of

any insurance/reinsurance conglomerate and serve as quantitative methods to fulfill

the strategic planning within the organisation. The decision-makers are prone to

combine expert judgement with core quantitative methods, which involve numeri-

cal optimisation and often, intensive computing skills. Therefore, many optimisation

problems are not practically implementable in a straightforward manner to practition-

ers and academics that are not operation research inclined. Unfortunately, numerical

issues are anecdotally disregarded and for this reason, we aim to implement optimi-

sation algorithms that are hardly accessible to non-specialists in this field. In order

to better communicate the advantages and caveats of possible solutions, we plan to

focus on optimal risk transfer problems, but the numerical methods are transferable

skills when implementing other actuarial problems.

Consider a two-player insurance setting where the first player is the risk holder

who transfers a portion of its risk to the second player. At the same time, the

second player charges the first player to cover its cost of transfer. This setting in-

2A version of this chapter is accepted and published online by: North American Actuarial Journal.
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Chapter 4

Robust and Pareto Optimality of

Insurance Contracts

4.1 Introduction

Finding the optimal insurance contract has represented a topic of interest in the ac-

tuarial science and insurance literature for more than 50 years. The seminal papers of

Borch (1960) and Arrow (1963) had opened this field of research and since then, many

papers discussed this problem under various assumptions on the risk preferences of

the insurance players involved in the contract and how the cost of insurance (known

as premium) is quantified. Specifically, the optimal contracts in the context of Ex-

pected Utility Theory are investigated amongst others in Kaluszka (2005), Kaluszka

and Okolewski (2008) and Cai and Wei (2012). Extensive research has been carried

out when the preferences are made via coherent risk measures (as defined in Artzner et

al., 1999; recall that CVaR is an element of this class) and VaR; for example, see Cai

and Tan (2007), Balbás et al. (2009 and 2011), Asimit et al. (2013b), Cheung et al.

(2014) and Cai and Weng (2016) among others.

The choice of a risk measure is usually subjective, but VaR and CVaR repre-

sent the most known risk measures used in the insurance industry. Solvency II and

Swiss Solvency Test are the regulatory regimes for all (re)insurance companies that

operate within the European Union and Switzerland, respectively, and their capital

4A version of this chapter is published: European Journal of Operational Research, 262(2), 720–
732.
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Chapter 5

Optimal Robust Insurance with a

Finite Uncertainty Set

5.1 Introduction

The seminal works by Borch (1960) and Arrow (1963) mark the beginning of the

theory of optimal insurance/reinsurance in the field of actuarial science, but the

same problem is known as the insurance demand problem in insurance economics

field. In the last 50 years, many research outputs have contributed into these fields

of research by identifying the optimal insurance/reinsurance contracts under var-

ious risk preferences. Examples outside the Expected Utility Theory are numer-

ous; for example, risk measure-based models have been studied by Cai et al. (2008),

Balbás et al. (2009 and 2011), Chi and Tan (2011), Asimit et al. (2013 and 2015),

Cheung et al. (2014), Lu et al. (2014) and Cai and Weng (2016), where Value-

at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) based decisions are the focal

interest, since these particular risk preferences are easy to interpret and are the most

common in the insurance sector.

The majority of the contributions from the existing literature assumes that the

model specifications are completely known, which purposely removes the model and

parameter risks – the risk of choosing a “wrong” model or the risk of choosing the

“right” parametric model with the “wrong” parameter values/estimates. Such risks
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Chapter 6

Future Research

Some extensions of the present work might be considered for future research. In the

last two Chapters, the robust optimal insurance problem focuses only on the non-life

business sector. It will be of great interest to extend the research to the life sector,

as uncertainties in the mortality risk is considered as a major factor that drives the

realisation of loss away from its expected value. The nature of life insurance problem

that often lasts for more than one time period may bring extra complexity, and

therefore, closed-form solution will be difficult to obtain, while numerical approach

may still be feasible to seek.

Another idea for future research focuses on data visualisation methods with ap-

plications to actuarial problems. This data mining subfield has been a very hot topic

for some time and enables to detect interpretable patterns and gain information from

massive data sets. The visualisation tool has its obvious great advantage of reducing

the mathematical complexity for the end-user, which explains why such methods are

so popular amongst practitioners. In particular, a group of projection methods in

data visualisation aiming dimensionality reduction, known as Multidimensional Scal-

ing (MDS), is one of the most popular tool of visualising high-dimensional data. It is

a technique of analysing (dis)similarity data on a set of n-dimensional objects by rep-

resenting them as points in the space of lower-dimensionality d, d < n, such that the

(dis)similarities, usually measured as distances among points in a geometric space,

are preserved as much as possible through the projection. The objective data may
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be performance measurement of test items, credit ratings of insurance companies or

macroeconomic indices of countries, and hence, MDS has very wide application areas,

e.g. business analysis, psychometrics, pharmacology etc. Although MDS enables a

graphical display of the structure of high-dimensional data that is much easier to

understand than an array of numbers as noises are smoothed out, its descriptive so-

lution is usually derived upon a particular observed sample without any assessment

on issues such as stability or sampling error. Therefore, finding possible remedies to

address such inference issues in MDS applications is a popular topic to investigate. In

fact, inference strategies such as the Maximum Likelihood and Bayesian approaches

have been proposed for both parametric and non-parametric MDS models in the last

50 years. Another potential candidate of inference strategy that may be worth in-

vestigating is bootstrapping, which is a well known resampling method of estimating

statistical properties such as the variance.




