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ABSTRACT  
 
Modern manufacturing methods enable screw compressors to be constructed to such close 
tolerances that full 3-D numerical calculation of the heat and fluid flow through them is 
required to obtain the maximum possible improvements in their design. An independent 
stand-alone CAD-CFD interface program has therefore been developed by the authors in 
order to generate a numerical grid for this purpose. Modifications implemented to the CFD 
procedure improved solutions in complex domains with strong pressure gradients. 
 
The interface employs a procedure to produce rotor profiles and an analytical transfinite 
interpolation method to obtain a fully structured 3-D numerical mesh, which is directly 
transferable to a CFD code. Some features, which include an adaptive meshing procedure, 
mesh orthogonalization and smoothing, are employed to generate a numerical mesh which 
can take advantage of the techniques used in recent finite volume numerical method solvers. 
 
These were required to overcome problems associated with 
 

i) rotor domains which stretch and slide relative to each other and along the housing 
ii) robust calculations in domains with significantly different geometry ranges.  
iii) a grid moving technique with a constant number of vertices. 
 

Some changes had to be made within the solver functions to increase the speed of calculation. 
These include a means to maintain constant pressures at the inlet and outlet ports and 
consideration of two-phase flow resulting from oil injection in the working chamber.  
 
The pre-processor code and calculating method have been tested on a commercial CFD solver 
to obtain flow simulations and integral parameter calculations. 
 
The results of calculations on an oil injected screw compressor are presented in this paper and 
compared with experimental results.  
 
 



LIST OF NOTATIONS 
 
A  - area of the cell surface 
a1, b1 - radius vectors of boundary points 
A1, A2 - saturation temperature equation 

constants 
bi - constant  
B1, B2 - compressibility factor equation  

constants 
ci - concentration of species 
c1-c4 - tension spline coefficients 
C1, C2 - orthogonalization procedure 

coefficients 
Cp - constant pressure specific heat 
C, σ - constants in k-ε model of  

turbulence 
di - distance in transformed  

coordinate system  
do - Sauther mean diameter 
D1-D4 - vapour specific heat equation 

constants 
e1, e2 - cell edges maximal values 

in coordinate directions  
fi(s) - adaptation variable 
fb - resultant body forces 
Fi(s) - integrated adaptation variable 
h1-h8 - Hermite interpolation blending  
      functions 
h - enthalpy 
hL - enthalpy of vaporisation 
k - turbulent kinetic energy 
K1, K2 - coefficients for Hermite  

interpolation 
m - mass 
mi - mass of species 

Nu - Nuselt number 
p - pressure 
P - production of turbulence energy 
Pr - Prandtl number 
qci - diffusion flux of species 
qh - heat flux  
qk - diffusion flux in kinetic energy  

   equation 
qε - diffusion flux in dissipation  

equation 
conQ&  - convective heat flux  

massQ&  - heat flux due to phase change 
r - radius vector 
Re - Reynolds number 
Ri - grid point ratio 
s - transformed coordinate  
s - area vector 
Sci - source term of species 
Sh - heat source term  
S - viscous part of stress tensor 
t - time 
T - temperature 
T - stress tensor 
v - velocity 
V - cell volume 
w - weight factor 
W - weight function  
Xξ - grid spacing 
x, y, z - physical coordinates  
X, Y, Z – points on physical boundaries 
z - compressibility factor 

 
α, β - tension spline coefficients 
α1, β1 - blending functions 
δ  - Kroneker delta function 
ε - dissipation of turbulent kinetic  

energy 
κ - thermal conductivity 
µ - viscosity 
µt - turbulent viscosity 
π - 3.14 

ρ - density 
σ - tension spline parameter 
σcv - normalised cell volume 
ξ, η - computational coordinates 

1
ˆ ˆ,oξ ξ  - one-dimensional stretching  

functions 
ξ̂  - multi-dimensional stretching 

function 

 



Indices: 
 
add - injected / subtracted fluid 
const - constant prescribed value 
o - oil 
v - vapour 
l  - liquid 

L - evaporated/condensed fluid  
m - mixture 
s - grid values 
sat - saturation  
t - turbulence 

 
 
 
1. INTRODUCTION 
 
Approximately 17% of all electrical power generated is used to drive compressors while majority  
of such machines currently manufactured for industrial applications are of the screw type.  
Improvements in the efficiency of screw compressors can therefore lead to significant energy 
savings at global level. 
 
Screw compressors are positive displacement rotary machines comprising a meshing pair of helical 
rotors on parallel axes, contained in a casing. Together, these form a succession of working 
chambers whose volume depends on the angle of rotation. 
 
An outline of the main elements of a screw compressor is presented in Figure 1, which shows how 
the two rotors are contained in the casing.  The main rotor, on the right, rotates counter clockwise, 
while the gate rotor, on the left, rotates clockwise. Admission of the gas to be compressed occurs 
through the low pressure port which is formed by opening of the casing surrounding the bottom and 
rear face of the rotors. Exposure of the space between the rotor lobes to the suction port, as their 
rear ends pass across it, allows the gas to fill the passage formed between them and the casing. 
Further rotation then leads to cut off of the port and progressive reduction in the trapped volume, 
thus causing the pressure of the contained gas to rise. The compression process continues until the 
front ends of the passages are exposed to the discharge port, the location of which is shown in 
outline.  The gas flows out through this at approximately constant pressure.  
 

 Figure 1 Twin Screw Compressor Rotors and Casing Outline 
 
The design parameter which influences screw compressor performance most strongly is the rotor 
profile and differences in shape, which can hardly be detected by the eye can effect significant 
changes in flow rates delivered and power consumption. Other features of the design also strongly 
affect the overall compressor performance.  Thus, clearances between the rotors and between the 
rotors and the casing determine the leakage through the compressor and hence both the volume flow 
rate and the power consumption. The shape and position of the suction and discharge ports 
influence the dynamic losses and, in the case of oil injected machines, the oil injection port position 
and the quantity of oil injected into the working chamber affect both the outlet temperature and the 
power consumption. Dimensionless or quasi-steady mathematical models predict the overall effects 
of changes in these parameters on compressor overall behaviour fairly accurately. However, how 
the internal flow within the machine is affected locally by changes in these parameters is only 
approximated by such models. Consequently, the simplified analytical models currently in use are 
not sufficiently accurate to design screw compressors to obtain the maximum possible 



improvements from the close manufacturing tolerances now achievable with contemporary 
numerically controlled machine tools. 
 
It is therefore timely to apply a more complex analytical procedure, such as a 3-D Computational 
Fluid Dynamics (CFD) method to determine the effects of changes in the compressor geometry on 
internal heat and fluid flow. Such an approach can produce reliable predictions only if calculated 
over a substantial number of grid points. Hence, a high computer potential and capacity is needed in 
order to use such procedures to analyse a screw compressor. If an inadequate numerical grid is used, 
or the solver parameters are not selected carefully, a convergent numerical solution may not be 
obtained. Calculation results must therefore be monitored closely and compared with the 
experimental data in order to avoid obtaining results which do not accord with real flow conditions. 
 
Apart from the authors' publications [1]-[3] and [4], there is hardly any reported activity in the use 
of CFD for screw compressor studies. This is mainly because the existing grid generators and the 
majority of solvers are still too weak to cope with the problems associated with both the screw 
compressor geometry and physics of the compressor process. Since a screw compressor comprises 
both moving rotors and a stationary housing, any numerical grid applied must move, slide and 
deform. Moreover, if flow is to be calculated through the compressor clearances, the geometric 
length scale ratio of the working chamber may rise to 1000:1. Despite this, the grid aspect ratio 
should be kept very low. This cannot be done with the majority of existing CFD grid generators. 
Compressor flow, even in its simplest form, is further complicated by sharp pressure changes and 
high accelerations, which may drastically affect the flow structure. If, in addition, the working fluid 
is a real gas or a two-phase fluid or it contains particles, then there is hardly any CFD solver which 
can produce a straightforward solution. Therefore, special care is needed to blend the grid 
generation procedure with an adequate numerical solver to obtain a useful numerical solution of 
screw compressor processes. 
 
Demirdzic and Peric, [5], [6] and Peric [7] set the guidelines for successful finite volume 
calculation of 3-D flows in complex curvilinear geometries. Based on this, Ferziger and Peric [8] 
published a book on finite volume methods for fluid dynamics.  Muzaferija [9] applied unstructured 
grids and used a multigrid method to accelerate calculations. Demirdzic and Muzaferija [10] 
showed the possibility of simultaneous application of the same numerical methods in fluid flow and 
structural analysis within moving frames. Contemporary grid generation methods are extensively 
discussed by many authors. The most detailed textbooks are Liseikin [11] and Thompson et al [12]. 
Adequately applied, the grid generation they describe, accompanied by an appropriate CFD solver, 
can lead to the successful prediction of screw compressor thermo-fluid flow. Such an approach 
resulted in the algebraic grid generation method, which employs a multi parameter adaptation. This 
is given in detail by the authors in [2] and [3], where an interface, which transfers the screw 
compressor geometry to a CFD solver, is also described and compressor suction flow is given as a 
working example. 
 
An advanced grid generation procedure is described in this paper.  By its use and the inclusion of 
additional source terms and boundary conditions in the standard governing equations, heat transfer 
and fluid flow within a screw compressor can be estimated by use of existing CFD solvers.  Once 
the velocity and pressure distribution are determined within the compressor, overall performance 
parameters such as flow rate, rotor loads, torque and power input may be derived from them. 
Consequently, the more conventional performance criteria used by compressor manufacturers, such 
as specific power and volumetric and adiabatic efficiencies can be calculated. These derived values 

 



may also be used for comparison of compressors and for further applications like rotor and 
compressor minimization and optimisation. 
 
 

2 GENERATION OF A SCREW COMPRESSOR GRID 

2.1 Fundamentals 
 
An appropriate numerical grid must be generated as a necessary preliminary to a CFD calculation.  
The grid must define both the stationary and moving parts of the compressor.  The rotors form the 
most complex part of the screw compressor grid and are the most important components since it is 
within the rotor interlobe chambers that the compression process occurs. Depending on the relative 
position of the rotors and the housing, the processes of suction, compression and discharge will 
occur within the compressor. Rotor rotation results in change in the volume of the chambers, which 
increases the pressure, while internal pressure changes cause leakage flow between the chambers.   
 
To apply a CFD procedure, the compressor spatial domain is replaced by a grid which contains 
discrete volumes. The number of these volumes depends on the problem dimensionality and 
accuracy required. A composite grid, made of several structured grid blocks patched together and 
based on a single boundary fitted co-ordinate system is used to transform the compressor geometry 
into discrete volumes. Grids are then connected over defined regions on their boundaries which 
coincide with other parts of the entire numerical mesh. More details of the different grid types and 
the relative advantages of each grid system are given by Shih et al [13]. 
 
The grid generation for compressor rotors starts with the definition of their spatial domains 
determined by the rotor profile coordinates and their derivatives. These are obtained by means of 
the rack generation procedure described in detail by Stosic [14]. The grid components define all 
connections between the rotors and the housing and contain the interlobe, tip and blow-hole leakage 
paths. The mesh calculation is based on an algebraic transfinite interpolation procedure with a static 
multi parameter adaptation. This includes stretching functions to ensure grid orthogonality and 
smoothness. More information about this particular grid generation method can be found in [11]. A 
grid for the stationary compressor components, like the housing and ports, is also produced. The 
suction port is divided into five sub-domains, while the discharge chamber consists of three sub-
domains. The complete grid generation procedure is programmed in FORTRAN and ensures 
automatic grid formation for various compressor shapes and sizes, given the housing geometry 
parameters.  

 
 

2.2 Discretization of the screw compressor rotor boundaries 
 
In general, the number of points required to define the rotor geometry accurately is not large.  
However, the number needed to establish a sliding interface between them may be so large that the 
numerical mesh, so formed cannot be used. One means of resolving this problem, which combines 
accuracy with fast solution, is to keep the number of computational cells as low as possible and to 
modify the distribution of points according to local requirements. An additional reason for such an 
approach is the large aspect ratio of the screw compressor chamber, the dimensions of which vary 
from as little as 30 micrometers to tens of millimetres. In the case of the numerical mesh for the 

 



compressor presented in this paper, the grid length scale ratio is approximately 500. Since the 
number of cells in the radial direction is the same in the chamber as in the gaps, the ratio between 
the circumferential and radial dimensions of the cell becomes unacceptable. However, the same 
number of cells can form a convenient grid if the boundary adaptation is applied carefully to keep 
the grid aspect ratio as uniform as possible.  
 
In algebraic grid adaptation, most techniques are based on an equidistribution technique [11]. This 
is the technique where the distribution error is minimized by redistributing points along the curve to 
keep the product of a ‘weight function’ and the grid spacing constant, i.e.  
 .X W constξ =          (1) 
 
where Xξ  represents grid spacing and W is a weight function. If the spacing of the computational 
coordinate is expressed with respect to the arc-length s, the adaptation function is in the form: 
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( )
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∫

∫
.         (2) 

 
There are various approaches to define the weight functions. Samareh et al. [16] suggested the 
form: 
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where i is number of variables for adaptation, bi are constants and f i(s) are adaptation variables or 
their first derivatives.  
 
When the adaptation variables are integrated along the boundary curve and if the grid point ratio is 
Ri, the final form of the adaptation function becomes: 
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The majority of grid generation methods produce numerical grids by use of just one adaptation 
variable. However, within a complex geometry, various parameters determine the distribution of 
numerical points. For example, in the case of long narrow clearances, the distance between the 
points should be smaller. Similarly, a shorter distance between the points is needed in regions where 
the curvature is high. Also, the point distribution in the rotor contact area should be modified to 
fulfil the requirements of a block connection procedure in the CFD code. In such cases, adaptation 
by means of two or more variables or conditions is necessary. This is possible by use of an 
equidistance technique in the form of equation (4). The different adaptation criteria, like the radius 
of curvature, distance from the rotor centre or angle of the tangent are applied independently in the 
above mentioned boundary adaptation procedure, developed by the authors, to ensure a viable 
numerical grid. In the example given in the paper, two adaptation functions are used 
simultaneously.  The tangent angle and a radius of curvature are applied to the male rotor. For the 
female rotor the flatness of the curve and the point centre distance are used as criteria for adaptation 
 

 



2.3 Transfinite interpolation  
 
To generate a three-dimensional numerical mesh of a screw compressor, the domain was divided 
into a number of cross sections along the rotor axis Figure 5. Each cross section was then calculated 
separately as a 2D face for both rotors by means of the following steps: 
 

1) Transformation from the ‘physical’ domain to the numerical non-dimensional domain. 
2) Definition of the edges by applying an adaptive technique, 
3) Selection and matching of four non-contacting boundaries. 
4) Calculation of the curves, which connect the facing boundaries by transfinite interpolation. 
5) Application of a stretching function to obtain the distribution of the grid points. 
6) Orthogonalization, smoothing and final checking of the grid consistency.  

 
Once the boundary faces are produced in steps 1-3, the distribution of internal points in steps 4-6 
can be found. A good summary of how to find the internal points from the boundary data by 
analytical transfinite interpolation is given by Smith [17]. 
The coordinates of the two opposite boundaries expressed in vector form are: 

 1

1

( , ) ( , ), 1, 2
( , ) ( , ), 1, 2 ,

l

l

l
l

ξ η ξ η
ξ η ξ η

= =
= =

a r
b r

      (5) 

 
where the coordinates of the transformed computational coordinate system,ξ and η , are: 
 ( 1) /( 1)i Iξ = − − and ( 1) /( 1j J )η = − − . 
 
i and j denote point numbers on the physical coordinate while I and J are overall number of points 
on these coordinates. The interior point then can be calculated as: 
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2
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l
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l
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=
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The blending functions 1( )α ξ  and 1( )β η can be arbitrary but must satisfy the cardinality 
conditions, given by (3), to ensure that the edges are reproduced as a part of the solution. 

1

1

( ) , =1,2 =1,2
( ) , =1,2 =1,2

k kl

k kl

k l
k l

α ξ δ
β η δ

=
=

       (7) 

      
δ  is Kronecker’s delta function [11].  
 
By use of equation (5), equation (6) for the 2-D domain can be written in the following general 
form, which connects the physical and numerical domain coordinates: 

 1 1 2 2

1 1 2 2

( , ) ( , ) ( ) ( , ) ( )
( , ) ( , ) ( ) ( , ) ( )

x X X
y Y Y

ξ η ξ η α ξ ξ η α ξ
ξ η ξ η β η ξ η β η

= +
= +

       (8) 

 
The success of the analytical transfinite interpolation method (8) to produce regular distribution of 
the internal points is highly dependent on the selection of blending functions. The simplest method 
to obtain the blending functions is Lagrangian interpolation. However, it produces a satisfactory 
mesh only for simple problems and this is not case for the screw compressor.  

 



 
A better and more accurate solution can be obtained by Hermite interpolation. More details of this 
are given by Smith, [17], Shih et al [13], and Thomson et al [12]. Only the final form of the 
equations is presented here. The four-boundary method, which assumes interpolation between all 
four boundaries of the 2-D domain can be written in the following form: 

 
( , ) '( , ) ( , )
( , ) '( , ) ( , )

x x x
y y y

ξ η ξ η ξ η
ξ η ξ η ξ

= + ∆
= + ∆ η

        (9) 

 
If the second term in equation (9) is neglected, then the first term on the right hand side of the 
equation implements the two-boundary method, which interpolates between two non connecting 
boundaries:    

 
1 1 2 2 3 4

1 1 2 2 3 4
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η
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  (10) 

 
where h1, h2, h3 and h4 are the Hermite interpolation blending functions given as: 

3 2 3
1 2

3 2 3 2
3 1

2 3 1, 2 3
2 ,

h h
h h
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η

1
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     (11) 

 
The boundary points are defined as: 

 1 1 1

2 2 2
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The aim of the partial derivatives at the boundaries is to ensure orthogonality. These are: 
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The coefficients K1 and K2 are positive numbers smaller than 1. They are usually chosen by trial and 
error to avoid the overlapping of connecting curves inside the domain. 
 
For the four-boundaries method, only two additional boundaries have to be mapped. They are: 

 3 3 3

4 4 4
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    (14) 

 
If the second term in equation (9) is not neglected, it defines the mapping between the other two 
boundaries: 
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The partial derivatives of the boundary points in the equation (15) are: 
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while the remaining partial derivatives in the same equation are: 
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and the remaining Hermite factors are: 

 
3 2 3
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The four-boundary Hermite interpolation method gives a reasonably good distribution of internal 
points with the freedom to maintain the orthogonality and proper curvature on and near to the 
boundaries. However, this method sometimes causes the curves to overlap. This is a frequent case 
in complex domains, such as those of the screw compressor when the rotor interlobes have to 
match. If the overlapping problems cannot be overcome by this method, multidimensional 
stretching functions can be applied as proposed by Steinthorrsson et al [18]. These are calculated 
using Hermite interpolation and are given as: 
 0 1 1 2( , ) ( ) ( ) ( ) ( )h hξ ξ η ξ ξ η ξ ξ η= +
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h1 and h2 are the Hermite factors while 0 ( )ξ ξ
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The problem associated with Hermite transfinite interpolation based on a cubic interpolation (11) 
and (18) is extensive skewness or overlap of the grid lines. Therefore, when the multidimensional 
stretching functions are employed for the Hermite interpolation, blending functions based on 
tension interpolation are used. The interpolation coefficients then become: 
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with coefficients: 
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This method should generally be sufficient to produce a satisfactory grid for the CFD analysis of 
screw compressor flows. If this is not case, as for rotors with a very small radius on the lobe tip, 
orthogonalization and smoothing should be applied. The approach to the orthogonalization used for 
the screw compressor computational grid is similar to one suggested by Lehtimaki, [11]. After the 
regular, though not necessarily orthogonal and smooth mesh is produced by Hermite transfinite 
interpolation, additional orthogonalization and smoothing are applied. Mesh orthogonalization is 
achieved by moving the grid point perpendicularly to the normal to the boundary. A weighing factor 
between the original point and the orthogonal projection of this point to the line extending 
perpendicularly from the boundary  is applied to avoid over specification caused by a 
discrepancy between the two boundaries. The coordinates of the new point are: 

,'i jr
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The weighing factor has the exponential form: 
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where 2
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0 )

−

.  The coefficient C1 in equation (25) controls the damping 
of the interior mesh. The second part of that equation is set to dump the end points of the boundary 
line where a high value of the coefficient C2 implies that the grid has to be orthogonalized only in 
the central region of the boundary. 
 
Smoothing of the interior lines is achieved by repetitive application of the following equations: 
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where C is a constant and n=0,1,2… 
 
Finally the grid must be checked for regularity. It can be accepted only if the skewness of all the 
cells within the domain is positive. This is calculated for every cell as a normalised cell 
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Figure 2 Final numerical mesh for the screw compressor rotors in 2-D 
 
The numerical mesh for the screw compressor rotors of 5/6 configuration produced by this complex 
method is shown in  
Figure 2. 
 

2.4 CAD-CFD interface 
 
All the procedures described in the previous sections have been employed to form a stand alone 
CAD -CFD interface to generate a regular 3-D mesh of the screw compressor working volume. The 
interface program is written in Fortran and is called SCORG, Screw COmpressor Rotor Geometry 
grid generator. More information on the interface is given by Kovacevic et al [1]. The program 
calculates the meshing rotor coordinates from given rack or rotor curves, by means of two 
parameter adaptation, and then calculates the grids for both rotors. It also calculates the grids for the 
inlet and outlet ports and prepares the control parameters necessary for the CFD calculation of the 
compressor fluid flow.  
 
A transfer file is given in ASCII format.  This includes the node and cell definitions, regions, 
boundary conditions, control parameters and post-processing functions. The file can be imported 
into a commercial CFD package through its pre-processor. These should be able to process control 
volumes with an arbitrary number of faces. The solution domain can be split into several regions, 
with separate grid generation in each of them, without the need for grid matching at the region 
interfaces. Despite the non-matching interfaces, the discretization method is fully conservative and 

 



all regions are coupled, so that the solution method converges as well as if the grid were made with 
one block only. This is very convenient when grids of different topology are generated to obtain the 
best fit for the geometry of each region. It is then possible to achieve high grid density without the 
large deformation that would result from a single-block grid.  The grid may also be refined locally 
by subdividing selected cells into a number of smaller cells. The fact that the control volumes may 
have any number of faces and that the grids do not have to match at interfaces makes it possible to 
compute flows where the grid moves in some regions while it remains stationary in others. 
 

2.5 Grid for a 5/6 oil flooded compressor 
 
An oil-injected screw compressor, designed and built at City University, for which the flow field 
was calculated, is shown in Figure 3. The Rotor profiles are of the ‘N’ type [14] with a 5/6 lobe 
configuration. The rotor outer diameters are 128 and 101 mm for the male and female rotors 
respectively, and their centre lines are 90 mm apart. The rotor length to diameter ratio is 1.66. Both 
a drawing and a photograph of the rotors are presented in Figure 4. 
 

Figure 3 Oil injected screw compressor with ‘N’ rotors.  
 

The male and female rotors both have 40 numerical cells along one interlobe in the circumferential 
direction, 6 cells in the radial direction and 112 in the axial direction. This forms total number of 
444830 cells for both the rotors and the housing. To avoid the need to increase the number of grid 
points if a more precise calculation is required, the adaptation method has been applied to the 
boundary definition. 

 

Figure 4 Drawing and photograph of 5/6 male and female ‘N’ rotors 
 
The compression in a screw compressor is caused by the rotor rotation induced by the driving motor 
coupled to the male rotor shaft. To simulate such a process, the numerical grid is modified for each 
time step.  The number of time changes was 25 for one interlobe cycle, or 125 for the full rotation 
of the male rotor. The number of numerical cells on the rotors was kept the same for each time step. 
To achieve this, a special grid moving procedure was developed in which the time step was 
determined by the compressor speed. The numerical grid for the initial time step is presented in 
Figure 5. 
 

Figure 5 Numerical grid for oil injected screw compressor with 444830 cells 
 

3 CALCULATION PROCEDURE AND BOUNDARY CONDITIONS 

3.1 Governing equations 
 
Fluid compressed within a screw compressor is gas, vapour or a wet mixture of liquid and vapour 
and its density varies with both pressure and temperature. The compressor flow is fully described by 
the mass averaged equations of continuity, momentum and energy conservation, which are 
accompanied by the turbulence model equations and an equation of state, as given by the authors in 
[3]. Equations are given for the control volume V bounded by surface S in the integral form similar 

 



for all conserved properties. They all contain local and convective rates of change on the left hand 
side and diffusive and source terms on the right hand side. 
 
The continuity equation is: 

 s( )
V S

d dV d
dt

ρ ρ+ − ⋅∫ ∫ v v s 0= ,         (28) 

 
where ρ is the density and v is the fluid velocity, while vs is the grid velocity. 
 
The momentum equation is: 

 s( ) bV S S V

d dV d d dV
dt

ρ ρ+ − ⋅ = ⋅ +∫ ∫ ∫ ∫v v v v s T s f ,     (29) 

 
where T is a stress tensor, and fb is the resultant body force. 

Since oil is injected into a screw compressor, the oil concentration i
i

mc
m

= , where m is the overall 

mass, is calculated from its equation as a passive component, which affects the air in the source 
term of the mass and enthalpy equation. The concentration equation is: 

 s( )i i ci ciV S S V

d c dV c d d s dV
dt

ρ ρ+ − ⋅ = ⋅ +∫ ∫ ∫ ∫v v s q s ,     (30) 

 
qci and sci  denote the diffusion flux and source or sink of oil. 
The transport equation of enthalpy is: 
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where S is the viscous part of the stress tensor,  p is pressure, qh is the heat flux and sh represents 
the heat source or sink.  
 
Since screw compressor CFD calculations involve a moving grid, the equation of space 
conservation must be solved: 

 s 0
V S

d dV d
dt

ρ+ ⋅ =∫ ∫ v s ,          (32) 

 
Stokes law is a constitutive relation that connects stress and rate of strain, through the viscosity µ  
and complements the momentum equation, while the transport equations of concentration and 
enthalpy are closed by Fick’s and Fourier’s laws respectively.  
 
Equations (28) to (32) are closed by the equation of state (33) and accompanied by equations of the 
k-ε  turbulence model (34).  
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k and ε are the turbulent kinetic energy and its dissipation, qk and qε are their diffusion fluxes, 

while P is the production of turbulence energy. 
2

t
kCµµ ρ
ε

= is the turbulent viscosity which 

complements viscosity µ . The constants of the k-ε turbulence model are:Cµ =0.09, kσ =1, 

eσ =1.3, C1=1.44, =1.92, C2C 3= -0.33. Standard wall functions are implemented on the walls 
 

3.2 Specific aspects of the compressor CFD calculation  

3.2.1 Oil injection and two phase flow 
 
It is a common situation to have multiphase flow in the screw compressor. When the working media 
is a two-phase fluid, as for example in refrigeration compressors, a two-phase flow occurs. In such a 
situation a part of the fluid may evaporate or condense.  The liquid phase of the working fluid is 
then treated as an ‘active’ phase, which requires all governing equations to be solved for the vapour 
– liquid mixture. The thermodynamic state of the mixture has a significant influence on the energy 
equation through the evaporated or condensed mass and the accompanying enthalpy of 
vaporisation. On the other hand, in the case of oil-flooded screw compressors the oil injected into 
the working chamber is treated as a dispersed phase and considered through its concentration. The 
oil fulfils several duties in the oil injected screw compressor since it seals, lubricates and cools the 
compressor working chamber. The influence of oil on the background fluid is accounted for by the 
convective heat flux, which is contained in the energy equation. However, the oil is treated as a 
‘passive’ species.  
 
The energy balance for two-phase flow with oil injection is given in the following form: 

 ( )
p con

d mTC Q
dt

= +& &
massQ ,        (35) 

 
The convective heat flux between the air and oil is given by: 

 (
ocon o p o o

dTQ m C d Nu T T
dt

π κ= =& )− ,      (36) 

 
and the heat flux caused by mass transfer between the phases is: 

 L
mass L

dmQ
dt

=& h

)

.         (37) 

 
where hL is the enthalpy of vaporisation. Energy exchanged during the evaporation or condensation 
processes should be the same as the energy required to keep the temperature of the mixture at its 
saturated value corresponding to the pressure within the control volume, ie: 
        (38) (mass L L pm satQ m h m C T T= ∆ ⋅ = ⋅ ⋅ −&

 

 



where m is the mass of mixture, Cpm is the constant pressure specific heat of the mixture of liquid 
and vapour and Tsat is the saturated vapour temperature. The calculating procedure for these values 
is presented in section 3.2.2. 
 
In these equations Cpo, To and κ are the specific heat, temperature and the thermal conductivity of 
oil, while Nu is the Nusselt number. The Sauter mean diameter do is the parameter, which through 
adequate area determines heat transfer between the dispersed and continuous phase. For the 
ordinary oil injected screw compressor, its value is usually between 10 and 50 µm.  Stosic at al 
gave more details on this in [19]. 
 
 

3.2.2 Equation of state for real fluids 
 
Screw compressors often work with fluids that cannot be regarded as ideal. This is the common 
situation in refrigeration and air conditioning systems. If the flow of the real fluid has to be solved, 
the following thermodynamic parameters are required: saturation temperature, density of the 
mixture, its specific heat, enthalpy of vaporization and the constant Cρ . The latest one appears in 
the correction for mass flux in the coupling of the mass flow equation and the equation of state, as 
presented by Ferziger and Peric [8]. 
 
There are standard software packages available for calculation of real fluid properties, like NIST 
and IIR routines. However, the variables derived from them are expressed implicitly and therefore 
are obtained by iterative procedures which are too slow for CFD calculations. Therefore, to 
accelerate the calculation, a simple explicit equation of state is used employing a compressibility 
factor z: 

 
v

p z RT
ρ

= ⋅           (39) 

  
where ρv is the vapour density  at the given pressure and temperature. The compressibility factor is 
assumed as linear function of pressure: 
 1 2z B p B= + ,          (40) 
  
where B1 and B2 are constants different for each fluid. If the fluid is ideal B1=0 and B2=1. Otherwise 
B1 is usually negative and B2 is less then 1. The coefficients B1 and B2 are calculated from known 
thermodynamic properties at saturated conditions for pressures between 1 and 20 bar. Screw 
machines usually operate within that range of working pressures regardless the application and the 
approximation does not introduce more than 2 % error into calculation of thermodynamic 
properties. The density of the liquid phase is assumed constant and the density of the mixture is 
thereby calculated as: 

1
1 l l

v l

c cρ

ρ ρ
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−

−
         (41) 

where cl is the concentration of the liquid phase in the control volume. 
 
Saturation temperature is calculated from the modified Antoine equation in the form which gives 
saturation temperature explicitly for a known pressure: 
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where A1 and A2 are constants. The enthalpy of vaporisation is calculated at the working saturation 
pressure by means of the Clausius-Clapeyron equation which may be written as: 

 L sat lv
sat

dph T v
dT

⎛ ⎞= ⎜ ⎟
⎝ ⎠

,         (43) 

 
where vlv is the difference between the vapour and liquid specific volumes.  
 
The specific heat of the mixture Cpm is the mass weighted sum of the vapour and liquid specific 
heats, Cpv and Cpl. The specific heat of the liquid is assumed to be constant, while the specific heat 
of the vapor is expressed as a cubic polynomial: 
        (44) 2

0 1 2 3pvC D D T D T D T= + + + 3

 
where D0, D1, D2 and D3 are constants different for each fluid.  
 

3.2.3 Boundary conditions 
 
A special treatment of the compressor boundaries was introduced in the numerical calculation as 
follows. The compressor was positioned between relatively small suction and discharge receivers. 
Therefore, the compressor system was separated from its surroundings only by walls. It 
communicates with the surroundings through the mass and energy source or sink placed in these 
receivers to maintain constant suction and discharge pressures. A volume source is used in the 
pressure correction procedure as the amount of mass added or removed from the computational cell 
within the receivers. It is calculated from the difference between the calculated pressure p and 
required pressure pconst as: 

 const
add

p const const

p pdm Vm
dt p t

ρ

=

−⎛ ⎞= ≈⎜ ⎟ ∆⎝ ⎠
&        (45) 

 
where V is the cell volume and ρ is the density. The volume source for the receiver cells in the 
energy equation is calculated from that mass as: 

 add add add add
p const

dmQ h m h
dt =

⎛ ⎞= =⎜ ⎟
⎝ ⎠

& &        (46) 

 
The compressor intake and discharge flows and pressure change within the compressor are solely 
due to the rotor movement. This allows the compressor calculation to start from rest with relatively 
coarse initial conditions and establish a full solution after only a fraction of a compressor cycle. 
Such an approach is different from the standard inlet and outlet boundary conditions, or pressure 
boundary condition. The first would not allow a flow reversal at the compressor discharge, while 
the latter would be prohibitively slow due to the unsteady character of the compressor process. This 
novel approach therefore introduces additional stability to accelerate calculation. The procedure 
secures full and precise control of the pressures in both reservoirs and reduces the calculation time 
required by a factor of five compared with any other approach. The same was used for the boundary 
conditions in the oil injection port.  

 



 
 
3.3  Calculation of the compressor performance 
 
Once the velocity, temperature and pressure fields in the compressor are calculated, the compressor 
volume flow is obtained at the screw compressor suction as a scalar product of the fluid velocity 
and corresponding surface vectors for each cell. When multiplied by the corresponding density and 
integrated over the entire cross section, compressor volume flow gives the compressor mass flow. 
Finally, the volume and mass flows were averaged for all time steps. A similar procedure was 
applied to calculate the outlet mass flow. Mass flow of the oil through the oil injection port was 
calculated from the mass concentration of oil in its port. The inlet air and oil injected mass flows 
should be equal to the outlet mass flow of the mixture for steady working conditions. 
 
Since the pressure in the working chamber does not vary too much in one interlobe within one time 
step, it was sufficiently accurate to average the pressure values arithmetically in each working 
chamber to plot pressure-shaft angle, p-α diagrams for all interlobes in all the time steps of the 
working cycle.  
 
However, the calculation of the torque and forces acting on the rotors requires pressure values in 
each cell of the working chamber to be considered. The forces acting on the rotor, which are caused 
by pressure in the working chamber, are calculated as a product of the pressure at the rotor face cell 
boundary and the corresponding cell area vector. The resultant force has three components, one in 
the rotor axial and two in the transverse directions. The cross product of the force and its coordinate 
forms a force moment, the components of which act in three directions. Two of them serve to 
calculate axial and radial force reactions in the suction and discharge bearings, while the third 
component is the torque acting on both, the male and female rotors. To obtain integral radial and 
axial forces and torque, the cell values are summed over the entire surfaces of both rotors. 
 
Once obtained, the torque is used to calculate the compressor power transmitted to the rotor shaft as 
a product of the torque and shaft speed. The shaft power should correspond to the indicated power 
calculated from the p-V diagram. Compressor specific power is calculated as the ratio of the input 
power to the compressor volume flow. The volumetric efficiency is calculated as the ratio of the 
compressor volume flow to the compressor theoretical displacement and the compressor adiabatic 
efficiency is calculated as the ratio of the compressor theoretical adiabatic power: to either the shaft 
or indicated power. 
 
 

4 RESULTS AND DISCUSSION 
 
4.1 Compressor measurements 
 
In the absence of flow field measurements in the compressor chamber, the experimentally obtained 
pressure history within the compressor cycle and the measured air flow and compressor power 
served as a valuable basis to validate the results of the CFD calculation.  To obtain these values, the 
5/6 oil flooded compressor, already described, was tested on a rig built at City University, which 
has been certified by Lloyd’s of London as fully meeting Pneurop/Cagi requirements for screw 
compressor acceptance tests. The compressor was tested according to the procedures specified in 

 



ISO 1706 and the delivered flow was measured in accordance with BS 5600.  High accuracy test 
equipment was used for the measurement of all relevant parameters.  
 
All measurements were made by transducers and both recorded and processed in a computerized 
data logger for real time presentation. A screen record of the compressor measurement is given in 
Figure 6. A Diesel engine of 100 kW maximum power output, which can operate at variable speed, 
was used as the prime mover. This permits the testing of oil-flooded screw compressors with 
discharge rates of up to 16 m3 /min.  

Figure 6 Compressor test layout and the computer screen 

 
4.2 CFD calculation 
 
A numerical solution of the system of equations was obtained from the CFD solver ‘Comet’, which 
is developed by the Institute of Computational Continuum Mechanics GmbH. This code is 
applicable not only to fluid flow but also for solid body analysis. It also meets the needs of coupled 
computation of gas and liquid flow including moving surfaces, non-Newtonian fluids, flows with 
both highly compressible as well as incompressible regions, flows with moving boundaries and 
particle flows. Hence, it contains all the essential features needed to obtain the ultimate aims of full 
machine simulation. All additional terms described in previous chapter were introduced through 
user functions.  The numerical mesh produced by the stand-alone grid generator was automatically 
transferred to the CFD solver together with all control parameters and user functions. 
 
To establish a full range of working conditions and to obtain an increase of pressure from 1 to 5, 7 
or 9 bars between the compressor suction and discharge with a numerical mesh of nearly 450000 
cells, only 25 time steps were required, following which a further 25 time steps were needed to 
complete a full compressor cycle.  Each time step needed about 30 minutes running time on an 800 
MHz AMD Athlon processor. The computer memory required was about 450 MB. 
 
4.3 Comparison of the CFD results and experimental data 
 
Results of the CFD calculation of an oil injected air compressor are presented in Figure 7-Figure 
10. Variation of pressure within the working cycle calculated from the CFD estimate is compared 
with measured values in Figure 11. The forces acting on the rotors and the bearing forces are shown 
in Figure 12 and Figure 13. 
 
In Figure 7 and  
Figure 8 the velocity vectors in two cross sections and two different time steps in the axial section 
are compared respectively. The high values of velocity in gaps both between the rotors and their 
housing and between the two rotors generated by the sharp pressure gradient through the clearances 
are clearly distinguished from the velocities in the highly turbulent regions in the interlobes where 
the movement is relatively slower. Velocity changes in space and time, as presented in two cross 
sections in the Figure 7, are caused only by the movement of the numerical mesh, which follows 
the rotation of the rotors. Velocity field in the axial section is shown in  
Figure 8. 

 

Figure 7 Velocity vectors in the two compressor cross sections 

Left – suction port, Right – working chamber  

 



 

Figure 8 Velocity vectors in the compressor axial section  

 

Figure 9 Cross section through the inlet port and oil injection port 

(Left – mass concentration of oil, Right - Pressure distribution) 

 

Figure 10 Axial section between two rotors  

(Top – mass concentration of oil, Bottom - Pressure distribution) 
 
The oil and pressure distribution in the cross section with the oil injection port are shown in Figure 
9.   The pressure rise within the machine when rotating at 5000 rpm with a discharge pressure of 7 
bar absolute is shown in Figure 10. The estimated thermodynamic and flow properties presented in 
previous figures were later used for calculation of the overall parameters of the analysed screw 
compressor. 
 

Figure 11 Pressure-shaft angle diagram, comparison of CFD calculations and measurements 

 

Figure 12 Radial bearing forces acting on supporting bearings compared for CFD and one- 
dimensional model 

 
The pressure within the working chamber is shown in Figure 11, where pressure-shaft angle 
diagrams are presented and compared with the results obtained with measurements on the modelled 
screw compressor. The given results were obtained for a shaft speed of 5000 rpm and discharge 
pressures of 6, 7, 8 and 9 bar absolute. In all cases, the inlet pressure was 1 bar.  The agreement 
between the predicted and estimated values is highly encouraging. 

 

Figure 13 Torque on the male and female rotors  
 

The radial bearing forces are given in Figure 12, while the torque on the male and female rotors are 
given in Figure 13. 
 
The compressor delivery and power of both CFD calculations and measurements for three different 
discharge pressures are presented in Figure 14.  
 

Figure 14 Comparison of the integral parameters at 5000 rpm shaft speed 
 

5 CONCLUSION  
 
Full CFD solutions of compressor thermodynamics and fluid flow have been obtained for an oil 
injected air compressor and integral compressor parameters such as the compressor flow, power, 
specific power and volumetric and adiabatic efficiencies have been derived from them. The 

 



compressor performance for two different discharge pressures obtained with a CFD model based on 
the SCORG, Screw COmpressor Rotor Geometry grid generator, and calculated by a commercial 
CFD solver COMET, have been compared with test results obtained from a real compressor. The 
good agreement between predicted and measured performance is a strong indication that CFD 
analysis can be developed further as a powerful tool for the design and optimisation of screw 
compressors. 
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Figure 1 Twin Screw Compressor Rotors and Casing Outline 
 
 

 

 

Figure 2 Final numerical mesh for the screw compressor rotors in 2-D 

 

 



Figure 3 Oil injected screw compressor with ‘N’ rotors. 
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