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SYNOPSIS 

 

Increasing demands for more efficient screw compressors require that compressor designs are 

tailored upon their duty, capacity and manufacturing capability. A suitable procedure for 

optimisation of the screw compressor shape, size, dimension and operating parameters is 

described here, which results in the most appropriate design for a given compressor 

application and fluid. It is based on a rack generation algorithm for rotor profile combined 

with a numerical model of the compressor fluid flow and thermodynamic processes. Some 

optimisation issues of the rotor profile and compressor parts are discussed, using 5/6 screw 

compressor rotors to present the results. It is shown that the optimum rotor profile, 

compressor speed, oil flow rate and temperature may significantly differ when compressing 

different gases or vapours or if working at the oil-free or oil flooded mode of operation. 

Compressors thus designed achieve higher delivery rates and better efficiencies than those 

using traditional approaches, which is illustrated in an example of the 3/5 screw rotors 

designed for a family of dry air compressors, produced and marketed by a renown British 

compressor manufacturer. 
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1. INTRODUCTION 

 

The screw compressor is a positive displacement rotary machine. It consists essentially of a 

pair of meshing helical lobed rotors, which rotate within a fixed casing that totally encloses 

them. Screw compressor rotors of various profiles can be today conveniently manufactured 

with small clearances at an economic cost. Internal leakages have been reduced to a small 

fraction of their values in earlier designs. Screw compressors are therefore efficient, compact, 

simple and reliable. Consequently, they have largely replaced reciprocating machines in 

industrial applications and in refrigeration systems.  

 

The oil injected compressors rely on relatively large masses of oil injected with the 

compressed gas in order to lubricate the rotor motion, seal the gaps and reduce the 

temperature rise during compression.  It requires no internal seals, it is simple in mechanical 

design, cheap to manufacture and highly efficient. Consequently it is widely used in both the 

compressed air and refrigeration industries. 

 

In the oil free machine, there is no mixing of the working fluid with oil and contact between 

the rotors is prevented by timing gears which mesh outside the working chamber and are 

lubricated externally.  In addition, to prevent lubricant entering the working chamber, internal 

seals are required on each shaft between the working chamber and the bearings. In the case of 

process gas compressors, double mechanical seals are used. Even with elaborate and costly 

systems such as these, successful internal sealing is still regarded as a problem by established 

process gas compressor manufacturers. It follows that such machines are considerably more 

expensive to manufacture than those which are oil injected. 

 

Screw compressors can be either single or multistage machines. Multistage are used for the 

compressor working with higher pressure ratios, while the single stages are used either for 

low pressure oil free machines or moderate pressure oil flooded compressors. A special 

challenge is imposed upon the multistage compressor optimisation, because not only the 

compressor geometry parameters and operational conditions, but also the interstage pressures 

are optimised.   

 



As other design processes, the design of screw compressors is an interactive feedback process 

where the performance of the compressor is compared with those specified in advance. 

Usually this is a manual process where the designer makes a prototype system which is tested 

and modified until it is satisfactory. With the help of a simulation model the prototyping can 

be reduced to a minimum. If the desired behaviour can be expressed as a figure of merit, as 

an object function, optimisation as a tool can be introduced to help the designer to reach an 

optimal solution.  

 

Recent advances in mathematical modelling and computer simulation can be used to form a 

powerful tool for the screw compressor process analysis and design optimisation. Such 

models have evolved greatly during the past ten years and, as they are better validated, their 

value as a design tool has increased. Their use has led to a steady evolution in screw rotor 

profiles and compressor shapes which should continue in future to lead to further 

improvements in machine performance.  Evidence of this may be seen in the publications by 

Tang and Fleming, 1992 and 1994, Sauls, 1994, Fleming et al, 1995 and Fujiwara and 

Osada, 1995. In order to make such computer models more readily accessible to designers 

and engineers, as well as specialists, the authors have developed a suite of subroutines for the 

purpose of screw machine design, Hanjalic and Stosic, 1997, which duly can be used in 

screw compressor optimisation.  

 

A problem in optimisation is a number of calculations which must be performed to identify 

and reach an optimum. Another problem is how to be certain that the optimum calculated is 

the global optimum. Among the optimisation methods frequently used in engineering are 

steepest descent, Newton's method, Davidon-Fletcher-Powell's method, random search, grid 

search method, search along coordinate axes, Powell's method, Hooke-Jeeves's method. A 

widely used method for optimisation of functions with several optima is the genetic 

algorithm. It requires only a value of the target function and it can conveniently handle 

discontinuities, however this method is slow in converging to a solution. Alternatively a 

constrained simplex method, known as Box complex method can be conveniently used. It 

also requires the function value only and not its gradient. The disadvantage is that it is less 

suitable for discrete parameters, for example, if a choice between discrete component sizes is 

required. 

 



Box complex method was therefore used here to find the local minima, which were input to 

an expanding compressor database. This finally served to estimate a global minimum. That 

database may be used later in conjunction with other results to accelerate the minimization. 

 

The constrained simplex method emerged form the evolutionary operation method which was 

introduced already in the 1950s by Box, 1957 and Box and Draper, 1969. The basic idea is to 

replace the static operation of a process by a continuous and systematic scheme of slight 

perturbations in the control variables. The effect of these perturbations is evaluated and the 

process is shifted in the direction of improvement. The basic simplex method was originally 

developed for evolutionary operation, but it was also suitable for the constrained simplex 

method. Its main advantage is that only a few starting trials are needed, and the simplex 

immediately moves away from unsuitable trial conditions. The simplex method is especially 

appropriate when more than three control variables are to be perturbed and the process 

requires a fresh optimisation with each new set of input data.  

 

There are several criteria for screw profile optimisation which are valid irrespective of the 

machine type and duty. Thus, an efficient screw machine must admit the highest possible 

fluid flow rates for a given machine rotor size and speed. This implies that the fluid flow 

cross-sectional area must be as large as possible. In addition, the maximum delivery per unit 

size or weight of the machine must be accompanied by minimum power utilization for a 

compressor and maximum power output for an expander. This implies that the efficiency of 

the energy interchange between the fluid and the machine is a maximum. Accordingly 

unavoidable losses such as fluid leakage and energy losses must be kept to a minimum.  

Therefore, increased leakage may be more than compensated by greater bulk fluid flow rates.  

However, specification of the required compressor delivery rate requires simultaneous 

optimisation of the rotor size and speed to minimise the compressor weight while maximising 

its efficiency. Finally, for oil-flooded compressors, the oil injection flow rate, inlet 

temperature and position needs to be optimised. It follows that a multivariable minimisation 

procedure is needed for screw compressor design with the optimum function criterion 

comprising a weighted balance between compressor size and efficiency or specific power. 

 



2. MINIMISATION METHOD USED IN SCREW COMPRESSOR OPTIMISATION 

 

The power and capacity of contemporary computers is only just sufficient to enable a full 

multivariable optimisation of both the rotor profile and the whole compressor design to be 

performed simultaneously in one pass.  

 

The optimisation of a screw compressor design is generically described as a multivariable 

constrained optimisation problem. The task is to maximise a target function 1 2( , ,..., )nf x x x , 

subjected simultaneously to the effects of the explicit and implicit constraints and limits, 

, 1,i i ig x h i n≤ ≤ = and , 1,i i ig y h i n m≤ ≤ = +  respectively, where the implicit variables 

yn+1,…,ym are dependent functions of xi. The constraints gi and hi are either constants or 

functions of the variables xi.  

 

When attempting to optimise a compressor design a criterion for a favourable result must be 

decided, for instance the minimum power consumption, or operation cost. However, the 

power consumption is coupled to other requirements which should be satisfied, for example a 

low compressor price, or investment cost. The problem becomes obvious if the requirement 

for low power consumption conflicts with the requirement of low compressor price. For a 

designer, the balance is often completed with sound judgement. For an optimisation program 

the balance must be expressed in numerical values. This is normally done with weights on the 

different parts of the target function.  

 

As an example of the usage of weights is a target function 1 2F w L w C= + , where L is 

calculated power loss and C is measure of the compressor price. The choice of weights may 

substantially change the target function, and some choices can lead to a target function which 

is difficult or impossible to optimise. Moreover, it is likely that many combinations of 

weights w1 and w2 will result in a target function with several equally good optima. It is 

obvious that with a large number of conflicting performance criteria, the tasks of the 

optimisation program and its user will be more difficult. When using multi-target 

optimisation, the separate parts of the objective function are evaluated which would eliminate 

some of the difficulties in the defining of the target function.  

 



Another important issue for real-world optimisation problems is constraints. In the general 

case, there are two types of constraints, explicit or implicit. The explicit ones are limitations 

in the range of optimised parameters, for example available component sizes. These two 

different constraints can, in theory, be handled more or less in the same way. In practice, 

however, they are handled differently.  

 

The implicit constraints are often more difficult to manage than explicit constraints. The most 

convenient and most common way is to use penalty functions and thus incorporate the 

constraints in the objective function. Another way is to tell the optimisation algorithm when 

the evaluated point is invalid and generate a new point according to some predetermined rule. 

Generally, it can be said that constraints, especially implicit constraints, make the 

optimisation problem harder to solve, since it reduces the solution space.  

 

In the early 1960s, a method called the simplex method emerged as an empirical method for 

optimisation, this should not be confused with the simplex method for linear programming. 

The simplex method was later extended by Box, 1965 to handle constrained problems. This 

constrained simplex method was appropriately called the complex method, from constrained 

simplex. Since then, several versions have been used. Here, the basic working idea is outlined 

for the complex method used. If the nonlinear problem is to be solved, it is necessary to use k 

points in a simplex, where k=2n. These starting points are randomly generated so that both 

the implicit and explicit conditions in are satisfied. Let the points xh and xg be defined by  
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calculate the centroid x of these points except lx by  
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The main idea of the algorithm is to replace the worst point lx  by a new and better point. The 

new point rx is calculated as a reflection of the worst point through the centroid. This is done 

as  



( )r lx x x xα= + −   

where the reflection coefficient α is chosen according to Box as α=1.3.  

The point rx is examined with regard to explicit and implicit constraints and if it is feasible 
lx is replaced with rx unless ( ) ( )r lf x f x≤ . In that case, it is moved halfway towards the 

centroid of the remaining points. This is repeated until it stops repeating as the lowest value. 

However, this cannot handle the situation where there is a local minimum located at the 

centroid. The method used here is to gradually move the point towards the maximum value if 

it continues to be the lowest value. This will, however, mean that two points can come very 

close to each other compared to other points, with a risk of collapsing the complex. 

Therefore, a random value is also added to the new point. In this way, the algorithm will take 

some extra effort to search for a point with a better value, but in the neighbourhood of the 

point of the maximum value. It is consequently guaranteed that a point better than the worst 

of the remaining points will be found. Expressed as an equation  

   ( ) ( )0.5 (1 ) ( )(1 )(2 1)r new r old h hx x cx c x x x c R = + + − + − − −   

where  
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and kr is the number of times the point has repeated itself as lowest value and nr is a constant. 

Here nr=4 has been used. R is a random number in the interval [0,1].  

If a point violates the implicit constraints, it is moved halfway towards the centroid. In order 

to handle the case of the centroid violating the implicit constraint, the point is gradually 

moved towards the maximum value. If the maximum value is located very close to the 

implicit constraint, this will take many iterations and the new point will be located very close 

to the maximum value and will not really represent any new information. Therefore a random 

value is added also in this case. Now  
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where kc is now the number of times the point has violated the constraint.  

These modifications of the complex method have led to a robust method which has already 

been used in many engineering applications.  

 

3. CALCULATION OF ROTOR PROFILES IN SCREW COMPRESSOR 

OPTIMISATION  

 

Screw machine rotors have parallel axes and a uniform lead and they are a form of helical 

gears. The rotors make line contact and the meshing criterion in the transverse plane 

perpendicular to their axes is the same as that of spur gears.  A procedure to get the required 

meshing condition as described in Stosic, 1998. More detailed information on the envelope 

method applied to gears can be found in Litvin, 1994. 

 

To start the procedure of rotor profiling, the profile point coordinates in the transverse plane 

of one rotor, and their first derivatives, must be known. This profile can be specified on either 

the male or female rotors or in sequence on both. Also the primary profile may also be 

defined as a rack as shown in Fig 1. 

 

A helicoid surface and its derivatives for the given rotor profile can be found from the 

transverse plane rotor coordinates. The envelope meshing condition for screw machine rotors 

defines the meshing condition obtainable either numerically, if the generating curves are 

given on the compressor rotors, or directly, if the curves are given on the rotor rack. This 

enables a variety of primary arc curves to be used and basically offers a general procedure. 

Moreover, numerical derivation of the primary arcs permits such an approach even when only 

the coordinates of the primary curves are known, without their derivatives.  

 

The following are the elements of the rack-generated ‘N’ profile. The primary curves are 

specified on the rack: D-C is a circle with radius r3 on the rack, C-B is a straight line, B-A is a 



parabola constrained by radius r1, A-H-G are trochoids on the rack generated by the small 

circles of radii r2 and r4 from the male and female rotors respectively, G-E is a straight line 

and E-F and E-D are circles on the rack. A full description of the rack generation procedure 

and rotor geometry is given in Stosic and Hanjalic, 1997. These three rotor radii, r1, male 

rotor lobe radius, r2, male rotor tip radius and r3, rack root radius and the female rotor 

addendum r0, as presented in Fig. 1, are used as variables for the rotor optimisation.  
 

Fig 1 Distribution of generating profile curves on the rack for ‘N’ rotors  

 

Full rotor and compressor geometry, like the rotor throughput cross section, rotor 

displacement, sealing lines and leakage flow cross section, as well as suction and discharge 

port coordinates are calculated from the rotor transverse plane coordinates and rotor length 

and lead. They are later used as input parameters for calculation of the screw compressor 

thermodynamic process. Four rotor parameters were used as independent variables for 

optimisation of the rotor profile in the calculations presented here, i.e. radii r0, r1, r2, and r3 

were rotor profile parameters. For any variation of input parameters r0 to r3, the primary arcs 

must be recalculated and a full transformation performed to obtain the current rotor and 

compressor geometry. Additionally the compressor built-in volume ratio is also used as a 

geometrical optimisation variable. 

 

Therefore, built–in volume ratio is another compressor geometry variable, while compressor 

speed is an operating variable and oil flow, temperature and injection position are oil 

optimisation parameters. Each of these rotor or compressor variables has its own influence 

upon the compressor process which is explained in the following qualitative diagrams, Figs 2 

to 5. 

 

Fig. 2 Qualitative dependence of the rotor displacement and compressor volumetric 

efficiency upon the rotor radius r0  

 

Radius r0, which is a female rotor addendum simultaneously increases the compressor 

displacement and length of a sealing line between the rotors. These are two conflicting 

effects, therefore there exists an optimum value of r0 for which the compressor performance is 

the best.  



 

Fig. 3 Qualitative dependence of the blow hole and sealing line leakages upon the rotor 

radius r1  

 

A somewhat similar effect is caused by change of the male tip radius r1. It simultaneously 

increases the blow-hole area and decreases sealing line length which are two opposing 

effects. Therefore, a value of r1 exists for which the smallest compound leakage through the 

blow-hole and sealing line is obtained, which gives the best compressor performance. 

 

Fig. 4 Mismatch in the built-in volume ratio: too large, overcompression, too small, 

undercompression   

 

A mismatch of the built-in volume ration and actual compressor pressure ratio causes either 

overcompression or undercompression, both of which cause higher compressor indicated 

losses. Only a matched built-in volume and pressure ratio give the best compressor 

performance. This value of the built-in volume ratio is at the same time the optimal one.     

 

Fig. 5 Influence of the compressor built-in volume ratio upon the compressor indicated 

efficiency 

 

4. CALCULATION OF THERMODYNAMIC PROCESSES IN SCREW 

COMPRESSOR OPTIMISATION 

  

The algorithm of the thermodynamic and flow processes used in optimisation calculations is 

based on a mathematical model comprising a set of equations which describe the physics of 

all the processes within the screw compressor. The mathematical model gives an 

instantaneous operating volume, which changes with rotation angle or time, together with the 

differential equations of conservation of mass and energy flow through it, and a number of 

algebraic equations defining phenomena associated with the flow. These are applied to each 

process that the fluid is subjected to within the machine; namely, suction, compression and 

discharge. The set of differential equations thus derived cannot be solved analytically in 

closed form.  In the past, various simplifications have been made to the equations in order to 



expedite their numerical solution. The present model is more comprehensive and it is possible 

to observe the consequences of neglecting some of the terms in the equations and to 

determine the validity of such assumptions. This provision gives more generality to the 

model and makes it suitable for optimisation applications.  

 

A feature of the model is the use the energy equation in the form which results in internal 

energy rather than enthalpy as the derived variable. This was found to be computationally 

more convenient, especially when evaluating the properties of real fluids because their 

temperature and pressure calculation is not explicit. However, since the internal energy can 

be expressed as a function of the temperature and specific volume only, pressure can be 

calculated subsequently directly. All the remaining thermodynamic and fluid properties 

within the machine cycle are derived from the internal energy and the volume and the 

computation is carried out through several cycles until the solution converges.  

 

The working fluid can be any gas or liquid-gas-mixture, i.e. any ideal or real gas or liquid-gas 

mixture of known properties. The model accounts for heat transfer between the gas and 

compressor and for leakage through the clearances in any stage of the process. The model 

works independently of the specification of compressor geometry. Liquid can be injected 

during any of the compressor process stages. The model also takes in consideration the gas 

solubility in the injected fluid. The thermodynamic equations of state and change of state of 

the fluid and the constitutive relationships are included in the model. 

  

The following forms of the conservation equations have been employed in the model. The 

conservation of internal energy is: 

 

in in out out
dU dVm h m h Q p
d d

ω ω
θ θ

  = − + −  
! !     

  

, ,in in suc suc l g l g oil oilm h m h m h m h= + +! ! ! !

, ,out out dis dis l l l lm h m h m h= +! ! !



where θ and ω are angle and angular speed of rotation of the male rotor respectively, h=h(θ) 

is specific enthalpy, ( )m m θ=! ! is mass flow rate going in or out, p=p(θ) is fluid pressure in 

the working chamber control volume, ( )Q Q θ=! ! , heat transfer between the fluid and the 

compressor surrounding, ( )V V θ=! !  local volume of the compressor working chamber. In the 

above equation the index in denotes inflow and the index out the fluid outflow. Oil and 

leakage are denoted by indices oil and l. 

 

The mass continuity equation is: 

 

in out
dm m m
d

ω
θ

= −! !          

 

The instantaneous density ρ=ρ(θ) is obtained from the instantaneous mass m trapped in the 

control volume and the size of the corresponding instantaneous volume V as ρ=m/V. 

 

The suction and discharge port flows are defined by velocity through them and their cross 

section area ,in in in in out out out outm w A m w Aρ ρ= =! ! . The cross-section area A is obtained from the 

compressor geometry and it was considered as a periodical function of the angle of rotation θ.  

 

Leakage in a screw machine forms a substantial part of the total flow rate and plays an 

important role because it affects the delivered mass flow rate and compressor work and hence 

both the compressor volumetric and adiabatic efficiencies.  

 

2 2
2 1

2 2

1

2 ln
l l l l

p pm w A
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p

ρ
ζ

−= =
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+ 
 

!  

where a is the speed of sound, ζ  is a compound resistance coefficient and indices l, 1 and 2 

represent leakage, upstream and downstream conditions. 

 

Injection of oil or other liquids for lubrication, cooling or sealing purposes, modifies the 

thermodynamic process in a screw compressor substantially. Special effects, such as gas or 



its condensate mixing and dissolving in or flashing out of the injected fluid must be 

accounted for separately if they are expected to affect the process. In addition to lubrication, 

the major purpose for injecting oil into a compressor is to seal the gaps and cool the gas.  

 

Flow of the injected oil, oil inlet temperature and injection position are additional 

optimisation variables if the oil-flooded compressors are in question. Heat transfer between 

oil and gas is modelled as a first order dynamic system. 

 

 

K is, therefore, a time constant and h and A are the heat transfer coefficient between oil and 

gas and effective area surface based on the mean Sauter diameter d of the oil droplet. C is 

specific heat. ∆θ is a time step and index p denotes previous.   

 

The solution of the equation set in the form of internal energy U and mass m is performed 

numerically by means of the Runge-Kutta 4th order method, with appropriate initial and 

boundary conditions. As the initial conditions were arbitrary selected, the convergence of the 

solution is achieved after the difference between two consecutive compressor cycles becomes 

sufficiently small. 

 

Once solved, internal energy U(θ) and mass in the compressor working chamber m(θ) serve 

to calculate the fluid pressure and temperature. Since U(θ)= (mu)+(mu)oil, specific internal 

energy is: 

 

As volume V(θ) is known, a specific volume is calculated as v=V/m. Therefore, temperature 

T and pressure p for ideal gas can be calculated as: 
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where R and γ are gas constant and isentropic exponent respectively. In the case of a real gas, 

u=f1(T,v) and p=f2(T,v) are known functions and should be solved to obtain the fluid 

temperature and pressure T and p. This task is simplified because internal energy u is not a 

function of pressure, therefore, f1 and f2 can be solved in a sequence. In the case of a wet 

vapour because of the fluid phase change either through evaporation or condensation, the 

saturation temperature and pressure determine each other between themselves and also the 

liquid and vapour internal energy and volume, u and v. Indices f and g denote liquid and gas 

phases. Therefore, vapour quality x can be calculated by successive approximations of u. 

Variables T or p and v can be obtained from:   

 

Numerical solution of the mathematical model of the physical process in the compressor 

provides a basis for a more exact computation of all desired integral characteristics with a 

satisfactory degree of accuracy. The most important of these properties are the compressor 

mass flow rate m!  [kg/s], the indicated work Wind [kJ] and power Pind [kW], specific indicated 

power Ps [kJ/kg], volumetric efficiency ηv, adiabatic efficiency ηi and isothermal efficiency 

ηt. Z1 and n are the number of lobes in the main rotor and main rotor rotational speed. F1 and 

F2 and L are the main and gate rotor cross section and length. Index s means theoretical and 

indices t and a denote isothermal and adiabatic. Isothermal and Wt adiabatic work Wa and are 

given here for ideal gas. 
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A full and detailed description of the presented model of the compressor thermodynamics is 

given in Hanjalic and Stosic, 1997.  

 

Compressor speed is used as the compressor operating variable and oil flow, temperature and 

oil injection position are oil optimisation parameters. Each of these rotor variables has its 

own influence upon the compressor process which is qualitatively explained in the following 

qualitative diagrams, Figs 6 and 7.   

 

Compressor shaft speed increases dynamic losses and decreases relative leakages. These two 

opposing effects cause that therefore, an optimum value of the shaft speed exists which gives 

the best compressor performance. 

 

Fig. 6 Influence of the compressor shaft speed upon the compressor volumetric and 

dynamic losses 

  

In oil flooded compressors oil is used to lubricate the rotors, seal the leakage gaps and cool 

the gas compressed. Therefore its influence upon the compressor process is complex. More 

oil improves the compressor volumetric efficiency and also improves cooling, however, it 

increase the friction drag between the rotors themselves and between the rotors and housing. 

Obviously an oil flow rate exists which will produce the best compressor performance.   

 

Fig. 7 Influence of the injected oil flow upon leakage and friction drag losses 

 

Each of the described geometry and operating parameters influences the compressor process 

on its own way and only a simultaneous minimization, which takes into consideration all the 

influences together will produce the best overall compressor performance. Therefore only a 

v
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multivariable optimisation finds its full sense in the evaluation of the best compressor 

performance.  

    

5. EXAMPLES OF OPTIMISATION OF THE ROTOR PROFILE, COMPRESSOR 

DESIGN AND OPERATING CONDITIONS 

 

Nine optimisation variables were used in the calculation of a single stage compressor 

presented here, radii r0, r1, r2, and r3 were four rotor profile parameters, while built–in volume 

ratio was another compressor geometry variable, compressor speed is an operation variable 

and oil flow, temperature and injection position are oil optimisation parameters. Each of these 

rotor variables has its own influence upon the compressor process which is explained in the 

qualitative diagrams given in Figs. 3 to 7. In the case of a two-stage compressor, a number of 

variables used were 19, two sets of the compressor stage variables plus the interstage 

pressure.   

Box constrained simplex method was used here to find the local minima. The Box method 

stochastically selects a simplex, which is a matrix of independent variables and calculates the 

optimisation target. This is later compared with those of previous calculations and then their 

minimization is performed. One or more optimisation variables may be limited explicitly or 

implicitly by the calculation results in the constrained Box method. This gives additional 

flexibility and maneuverability to the compressor optimisation. 

 

5.1 Optimisation of a Single Stage Compressor for Oil-Free and Oil-Flooded Air and   

Refrigeration Applications 

 

A 5/6 rotor configuration of 128 mm outer diameter of the male rotor was optimised to obtain 

the best compressor performance if used either in the dry air compressor, or oil-flooded air 

compressor or oil-flooded refrigeration compressor. The optimisation results, after being 

input to an expandable compressor database, finally served to estimate a global minimum. 

The database may be used later in conjunction with other results to accelerate the 

minimization. 

 



The suction and discharge pressures were 1 - 3 bar for the dry air compressor and 1 - 8 bar for 

the oil flooded compressor, while the evaporation and condensation temperatures were 5 and 

40 oC for R-134A. The centre distance and male rotor outer diameters were kept constant for 

all compressors, 90 and 128 mm respectively. 

 

The optimisation criterion was the lowest compressor specific power. As a result, three 

distinctively different rotor profiles were calculated, one for oil-free compression and the 

other two for oil-flooded air and refrigeration compression.  They are presented in Fig. 8. 

 

Fig. 8 Rotor profiles for the oil-free and oil-flooded air and refrigeration compressor 

duty, detail in bold, oil-flooded air, light, oil-free and refrigeration compressor duty 

 

As it can be noticed from the Fig. 8, although the profiles somewhat look alike, there is a 

substantial difference between their geometry which is given in the following table as well as 

further results of the compressor optimisation. These profiles are compared in Table 1. 

 

Table 1: Results of optimisation calculations for dry and oil flooded air 

compressors and oil flooded refrigeration compressor 

     DryAir  Oil-Flooded Air   Refrigeration 

 r0 [mm]    2.62  0.74   0.83  

 r1 [mm]    19.9  17.8   19.3 

 r2 [mm]    6.9  5.3   4.5 

 r3 [mm]    11.2  5.5   5.2 

Built-in volume ratio   1.83  4.1   3.7 

 Rotor speed [rpm]   7560  3690   3570 

 Oil flow [lit/min]   -   12   8 

 Injection position [o]     - 65   61 

Oil temperature [o]     - 33   32 

 

As in the case of any result of multivariable optimisation, the calculated screw compressor 

profile and compressor design parameters must be considered with the extreme caution. This 

is because multivariable optimisation usually finds only local minima, which may not 



necessarily be globally the best optimisation result. Therefore, extensive calculations should 

be carried out before a final decision on the compressor design is made. 

 

As an additional example, if the female rotor addendum is analysed in detail, it can be 

concluded that, the size of the rotor blow-hole area is proportional to the addendum. 

Therefore r0 should be made as small as possible in order to minimise the blow-hole. It would 

therefore appear that ideally, r0 should be equal to zero or even be 'negative'. However, 

reduction in r0 also leads to a decrease the fluid flow cross-sectional area and hence a 

reduction in the flow rate and the volumetric efficiency. It follows that there is a lower limit 

to the value of r0 to obtain the best result. More details of that single variable optimisation of 

screw compressor rotors can be found in Hanjalic and Stosic, 1994.  

 

Fig. 10 Variation of the compressor specific power as function of the compressor rotor 

parameters 

 

The dry air compressor was chosen for that analysis. This is because the compression process 

within it is close to that of an ideal gas compressed adiabatically in which γ, the isentropic 

exponent, has the relatively large value of approximately 1.4. As an example of how the 

optimisation variables influence the compressor specific power, the radii r0-r3 are considered.  

The influence of the female rotor tip addendum r0, and the female rotor radius r3 are 

presented in Fig. 9, as well as the male rotor radii r1 and r2. In Fig. 10, the influence of the 

compressor built-in volume ratio, as well as compressor speed is presented. Some details of a 

similar optimisation can be found in Stosic et al 2001. 

 

Fig. 11 Specific power as function of the compressor built-in volume and speed 

   

5.2 Optimisation of a Two Stage Oil-Flooded Air Compressor  

 

Only a brief description of the complex optimisation of the two-stage screw compressor is 

given here. A task was to find the best design of a family of the two-stage compressors which 

covers the shaft powers between 22 and 312 kW at 8 – 15 bars discharge pressure.  

 



Altogether 19 variables were used for this multivariable optimisation, 9 for each compressor 

stage plus the interstage pressure. The target function was minimum specific power without 

any other compromises. Therefore the compressor speed inevitably remained very low, rotor 

clearances are the lowest possible, rotor size is somewhat large and a variable frequency 

drive was chosen for each compressor stage to minimize the power required in the 

compressor part load.  

  

The first calculations were used to determine a number of compressor frames to form the 

compressor family. It was calculated that with the appropriate use of the variable frequency 

drives only three compressor frames will cover the whole range.  

 

A more detailed calculation was then used to find out the compressor stage sizes which will 

the best cover the range within the three compressor frames. A complex multivariable 

optimisation was used to determine the stage speed, built-in volume ratio and oil parameters 

together with the rotor profile details.  

 

The rotor configuration of 5 lobes in the male rotor and 6 lobes in the female rotor emerged 

as the best mutual configuration for both stages. Therefore, only the profile details are varied 

between the compressor stages. Once the profiles were determined, the rotor centre distances 

for both of the compressor stages were additionally constrained to accommodate the best 

possible choice of the compressor bearings. Both rotors are presented in Fig. 11, where it can 

bee seen that a distinctive difference between them exists. The rotor profile of the first stage 

is somewhat slender to achieve the maximum possible displacement, while the second stage 

rotors are stronger to survive the high pressure loads of the second compressor stage. A final 

optimisation calculation was performed to tune up all of the optimisation variables to the best 

compressor performance.  

 

Fig. 11 Rotor profiles optimised for a two stage oil-flooded air compressor duty 

 

Since the optimisation calculation of the two-stage screw compressor presented in this paper 

is the first of such character reported in the open literature, every calculation triggered more 

questions than offered available answers and additional analyses had to be performed to 

explain all the phenomena encountered.  



 

For example, since the oil of relatively low temperature and high pressure was injected into 

both compressor stages and due to the postponed air-oil mixing between the stages, it 

appeared that the air discharge temperature after the second stage was lower than the suction 

temperature to the same compressor stage. Since the first stage was extremely sensitive to the 

oil drag effect, the oil injection point to the first stage was chosen to be very late, contrary of 

the second stage, where the oil was injected very early. This even indicated a possibility to 

inject oil only to the discharge of the first stage. 

 

5.3 Optimisation of a  Family of Oil-Free Air Compressors Based on 3/5 Rotors  

 

A successful example of optimisation of a family of two oil-free compressors is presented 

here. XK12 and XK18 compressors, based on 3/5 rotor profiles, presented in Fig 12, have 

been developed by a renown British screw compressor manufacturer. Together, the two 

machines cover the discharge range of 350-1000 m3/h.  

 
Fig. 12 3/5 Rotor profile optimised for an oil-free compressor 

 

Prototype tests showed that both the volumetric and adiabatic efficiencies of these machines 

were higher than the published values of any equivalent compressors currently manufactured 

and marketed. This confirmed the advantages of both the rotor profile and the design 

optimisation procedure. 

 

In Fig. 13 the performance of these compressors at discharge pressure of 3 bars was compared 

with the reference compressor R2, D-9000 of the same manufacturer, R1, C-80 of GHH based 

on SRM ‘A’ profile rotors, which despite its age outperformed other reference compressors, for 

example the compressors R3, Typhoon by Mouvex which is based on modern screw compressor 

profiles and R4, GHH CS1000, which is again based on SRM ‘A’ profile.  

 

Fig. 13  Performance of the optimised compressors XK12 and XK18 compared with 
their market competition: R1, C-80, R2,  D-9000, R3, Typhoon and R4, CS-1000 

 

As it can be seen, the flow of the optimised compressors is at least 10% higher than of any other 

competitor for the same compressor power, which is actually greater than the expected and 



predicted value. The measured performance values were found to compare very favourably with 

published information for equivalent machines at present commercially available. More 

information about this optimisation can be found in McCreath et al, 2001. 

 

6. CONCLUSIONS 

 

A full multivariable optimisation of screw compressor geometry and operating conditions has 

been performed to establish the most efficient compressor design for any given duty. This has 

been achieved with a computer package for modelling compressor processes, developed by 

the authors, which provides the general specification of the lobe segments in terms of several 

key parameters and which can generate various lobe shapes and simultaneously calculates 

compressor thermodynamics. Computation of the instantaneous cross-sectional area and 

working volume could thereby be calculated repetitively in terms of the rotation angle. A 

mathematical model of the thermodynamic and fluid flow process is contained in the 

package, as well as models of associated processes encountered in real machines, such as 

variable fluid leakages, oil flooding or other fluid injection, heat losses to the surroundings, 

friction losses and other effects. All these are expressed in differential form in terms of an 

increment of the rotation angle. Numerical solution of these equations enables the screw 

compressor flow, power and specific power and compressor efficiencies to be calculated. 

 
Rack generated profiles in 5/6 configuration rotors were used in the paper as examples to 

show how optimisation may permit both better delivery and higher efficiency for the same tip 

speed. Several rotor geometrical parameters, namely the male and female tip radii, as well as 

the compressor built-in ratio and compressor speed and oil flow and temperature and 

injection position were used as optimisation variables and applied to the multivariable 

optimisation of the machine geometry and its working parameters for a defined optimisation 

target. In the case of the example given, this was minimum compressor specific power. It has 

thereby been shown that for each application, a different rotor design is required to achieve 

optimum performance. 

 
Finally, the rotors in 3/5 configuration optimised for an oil-free compressor duty were 

presented here to illustrate superiority of the optimised screw compressors over other 

compressors of similar size designed by use of classical design methods. 
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Fig. 1 N rotor variables used in optimisation calculations:   
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Qualitative dependence of the rotor displacement and compressor volumetric 

efficiency upon the rotor radius r0  



 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3 Qualitative dependence of the blow hole and sealing line leakages upon the rotor 
radius r1 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Mismatch in the built-in volume ratio: too large, overcompression, too small, 
undercompression   

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 5 Influence of the compressor built-in volume ratio upon the compressor indicated 
efficiency 



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 6 Influence of the compressor shaft speed upon the compressor volumetric and 
dynamic losses 

  
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 7 Influence of the injected oil flow upon leakage and friction drag losses 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Rotor profiles optimised for oil-free and oil-flooded air and refrigeration 
compressor duty 



 
Fig. 9 Specific power as function of the compressor built-in volume and speed 

 

 
Fig. 10 Variation of the compressor specific power as function of the compressor rotor 

parameters 



 
 

Fig. 11 Rotor profiles optimised for a two stage oil-flooded air compressor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 3/5 Rotor profile optimised for an oil-free compressor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13  Performance of the optimised compressors XK12 and XK18 compared with 
their market competition: R1, C-80, R2,  D-9000, R3, Typhoon and R4, CS-1000 
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