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Abstract  

In this paper, two fibre-based beam elements with enhanced capabilities to consider large 

displacements and rotations of slender reinforced concrete members are developed. Fibre beam 

elements were comprehensively used before to model the behaviour of different structural systems 

with great accuracy. To upsurge the use of the fibre beam elements in modelling complex reinforced 

concrete (RC) systems such as slender walls and columns, the elements are improved by including the 

second order effect. Available research from the literature related to large displacements focused 

mainly on modelling steel and composite members due to the limitations in their material model 

behaviour. Conversely, the newly developed elements introduced in this paper can precisely model 

RC members by accounting for their more complex nonlinear material behaviour under reversed 

cyclic loads. The first element is formulated using a displacement formulation, while the second 

element is based on a mixed approach that is computationally more complicated but numerically more 

efficient. Further, the adopted concrete constitutive law accounts for the effect of compression post-

peak softening as well as tension stiffening and degradation under cyclic loads.  Several correlation 

studies are presented to highlight the efficiency of the new elements in modelling slender RC 

structures.  
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Introduction 

Fibre beam elements are frequently used to predict the nonlinear response of RC 

structures under static and dynamic loads. Fibre beam elements use detailed geometry and 

material models to obtain accurate representation of yielding and inelastic behavior along the 

length of the member [1-2]. They require less storage capacity and short execution time 

compared to continuum elements such as membrane and solid elements. Yet, most available 

RC fibre beam elements do not consider second order effects. Existing second-order fiber-

based elements focused mostly on steel and composite structures under monotonic loads [3-

6]. Hence, in order to study the actual stability and performance of slender reinforced 

concrete structures under different loads, second order effects must be considered. The 

inclusion of second-order effects is necessary to examine slender structures such as long 

columns, arches, and tall buildings. In such frames, large displacements and rotations are 

expected to occur and the second-order effect can lead to a higher level of inelastic behaviour 

that must accounted for in nonlinear analysis. 

The calculation of second order forces in numerical algorithms can be carried out using 

matrix analysis where the geometric stiffness is directly derived from the governing 

differential equations that consider the second-order effect of the axial force on the flexure 

response. This offers a simple and accurate method for the consideration of second order 

effects for beam-column elements. This method is also called the second-order computer 

program method due to the ease of its implementation in computer routines compared to 

other conventional methods. The geometric stiffness effect on the forces and displacements 

of the member usually varies between 10 to 25% depending on the ratio between the lateral 

and axial loads [7]. 

Two types of deformations are associated with the second order analysis. First, the P-δ, 

(called the small P-delta), where δ is related to the local deformation with respect to the chord 
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of the element end nodes and can be considered by subdividing the element into smaller 

segments. Second, the P-Δ, (called the big P-delta), where Δ is related to member end 

displacements and should be considered in the numerical formulation to accurately model the 

second order structural response. 

In a previous study [8], the authors formulated a displacement-based beam element for 

large deformations of plastic plane frames. The effect of axial force was included in small 

deflection theories; and the element was formulated in a body-attached coordinate to separate 

between rigid body and deformational rotations.  

Another study presented a two-dimensional displacement-based and generalized mixed 

variational finite element that can be used to model arbitrary large displacements and 

rotations with small strains [9]. The research in [4] aimed to develop a three-dimensional 

force-based fibre beam element that considers inelastic large displacements. The algorithm is 

as a generalization of the state determination procedure presented in [10] for linear 

geometry/nonlinear material analysis, and the procedure described in [3] for linear 

material/nonlinear geometry. However, the element was only used to investigate the 

performance of steel frames under static monotonic loads. The element state determination 

was implemented in the software packages FedeasLab and OpenSees.   

 The authors in [5] presented several beam column finite element formulations for full 

nonlinear distributed plasticity analysis of two-dimensional steel frame structures. For the 

displacement-based and the mixed elements, the second order effect was included in the 

corotational formulation. Another research work in [11] promoted a numerical model for 

non-linear large-displacement dynamic analysis of steel beam-columns. The model was 

utilized to investigate the behaviour of beam-column steel elements subjected to blast 

loading. The steel members were restrained at their ends by rotational and translational 

springs producing second order effects. Further, the study in [6] developed a 3D distributed 
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plasticity beam element using mixed formulations for composite circular concrete-filled steel 

tubes. The formulation considered large displacements and rotations using a corotational 

frame transformation.  

Recently, a new study used a large displacement corotational formulation to analyse 

planar functionally graded sandwich beams [12]. The beams were composed of a metallic 

steel core and two top and bottom ceramic faces. The study highlighted the importance of 

considering the effect of plastic deformation in large displacement analysis.  

In this paper, two planar fibre beam elements are presented for the analysis of slender RC 

members under cyclic loads. The first one uses a displacement-based technique to calculate 

the stiffness and the resisting forces of members. In this method, the equilibrium is satisfied 

in a weighted integral sense. For this technique, the use of a fine mesh is essential in plastic 

zones in order to represent precisely the curvature and strain distributions. The second 

element uses a mixed-based technique, where both displacements and internal forces are 

interpolated independently and the equilibrium is satisfied in a section by section basis. The 

mixed method requires less number of finite elements to simulate structural responses; 

however its state determination algorithm is much more complex. 

The proposed elements are based on the work by [13] and [5]; to incorporate second 

order effects into displacement and mixed-based elements. Unlike the element of [5], which 

was used to analyse simple steel members under static monotonic loads only, the proposed 

elements developed herein are able to model the complex behaviour of normal and high-

performance reinforced concrete as well as steel members under both monotonic, and severe 

cyclic loads. They can also monitor the behaviour of the structure at the element, section and 

fibre level. Further, the state determination process of the elements is modified for improved 

numerical efficiency. 
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The newly developed elements will be used to analyse RC members under different 

static and dynamic loading conditions. They take into account the geometric nonlinearity and 

benefit from sophisticated material models that can accurately simulate the nonlinear 

behaviour of concrete and steel materials, which will help in studying local effects in details. 

The elements are implemented in the research-oriented finite element analysis program FEAP 

developed by Taylor [14]. 

Transformation between Corotational and Global Systems 

The two elements formulated in this chapter follow Navier’s three principles of 

mechanics: The stress equilibrium, the strain compatibility and the constitutive relationships 

of steel and concrete. First the two elements are formulated in a corotational system where 

rigid body modes are removed and small strains but large displacements are assumed. For the 

present formulation, the axial force is constant and does not change along the element, while 

distributed loads are not considered in the current fibre beam element formulation. Only 

internal loads on the members are lumped at nodal points along the members, and are 

transformed to the end loaded members. 

The matrix 𝑇𝑟 links the element nodal forces in the global system with the element internal 

forces in the corotational system [5]: 

�̅� = 𝑇𝑟
𝑇𝑄                                                                                                               (1)      
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                                                                             (2) 

 Where �̅� and Q are the nodal forces in the global and corotational systems respectively, and 

are shown in Figure (1), and 𝛽 is the final angle of the deformed beam element: 
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𝛽 = arctan  (
(𝑦2+𝑣2) −(𝑦1+𝑣1)

(𝑥2+𝑢2)−(𝑥1+𝑢1)
)                                                                               (3)                          

where 𝑢 is the end displacement in the horizontal direction and 𝑣 is the end displacement in 

the vertical direction. Subscripts 1 and 2 refer to the element ends respectively. 

In addition, the transformation matrix 𝑇𝑟 is also used for the transformation of the 

displacements between the corotational and global system:  

𝛿�̅� = 𝑇𝑟
𝑇𝛿𝑞                                                                                                             (4)                                     

Where �̅� and q are the element end displacements in the global and corotational systems 

respectively. 

Similarly, the stiffness matrix is transformed between the two systems using the same 

mapping matrix. However, an additional term 𝐾𝐺 that includes the effects of element internal 

forces on the element stiffness must be included: 

𝐾𝑒𝑙𝑒𝑚(𝑔𝑙𝑜𝑏𝑎𝑙) = 𝑇𝑟
𝑇𝐾𝑒𝑙𝑒𝑚 𝑇𝑟 + 𝐾𝐺                                                                          (5)     

Where KG is the well-established external geometric stiffness matrix.              

Formulation of the Displacement-Based Element 

In the classical displacement-based method, the equilibrium is achieved only in a 

weighted integral sense. The displacements serve as primary variables and the principle of 

virtual displacements is implemented to obtain the solution.  

The Green–Lagrange strain of the element reference axis in the natural frame that is derived 

from the displacement field can be defined as: 

𝜀̂ =
𝑑𝑢

𝑑𝑥
+

1

2
(

𝑑𝑣

𝑑𝑥
)
2

+
1

2
(
𝑑𝑢

𝑑𝑥
)
2

                                                                                                         (6) 
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Where the transverse and axial displacements 𝑣 and 𝑢 are represented,respectively, by cubic 

and linear functions along the element length: 

𝑣 = [0 𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2 −
𝑥2

𝐿
+

𝑥3

𝐿2
]  𝑞 = 𝑁𝑉

𝑇𝑞                                                                             (7) 

𝑢 = [𝑥/𝐿 0 0] 𝑞 =  𝑁𝑈
𝑇𝑞                                                                                                           (8) 

The third term in equation (6) is neglected since the axial deformation of the element chord 

within the natural system is relatively small. And thus the strain increment is represented by: 

∆𝜀̂ =  (𝑁′
𝑈
𝑇

+
1

2
𝑞𝑇𝑁𝑉

′𝑁′
𝑉
𝑇
) ∆𝑞                                                                        (9) 

and similarly for the curvature:  

∆�̂� =  (𝑁′′
𝑉
𝑇
) ∆𝑞                                                                                                                    (10) 

So the increment in the generalized strains can be stated as: 

∆�̂� = {
∆𝜀̂
∆�̂�

} =  𝑁∆ ∆𝑞                                                                                                             (11) 

Where the interpolation function 𝑁∆ accounts for P-∆ effects, and can be expressed as: 

𝑁∆ =
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                    (12) 

The increment in the generalized strains (curvature and axial strain) at any section can be 

assembled in a vector form as follows: 

Δ�̂� = 𝑁1Δ𝑞 + {
0
1
} Δ𝑞𝑇𝑁2𝑞

𝑖 +
1

2
{
0
1
} Δ𝑞𝑇𝑁2Δ𝑞                                                                       (13) 

Where Δ𝑞 is the increment between the current Newton-Raphson step i and the previous step 

i-1; while  𝑞𝑖  is the total value of the displacement at the current step. Consequently: 
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𝑁1 = [
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+
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                                 (15) 

𝑁1 and 𝑁2 are the final shape functions representing first-order and second-order effects 

respectively.  It can be noted that the second and third terms of equation (13) contain the P-

delta higher order terms.  

To avoid membrane locking effects [15], the second and third terms of the generalized 

strain equation are averaged along the element length. Therefore, equation (13) becomes: 

Δ�̂� = 𝑁1Δ𝑞 + {
0
1
}

1

𝐿
∫ Δ𝑞𝑇𝑁2𝑞

𝑖𝐿0

0
+

1

2
{
0
1
}

1

𝐿
∫ Δ𝑞𝑇𝑁2Δ𝑞

𝐿0

0
                                     (16)    

In the displacement formulation, the equilibrium equation is satisfied in a weak form. 

Accordingly, and with the substitution of the derived shape functions:  

𝛿𝑞𝑇 ∫ 𝑁∆
𝑇(𝐾𝑠𝑒𝑐

𝑖−1∆𝑑𝑖+ 𝐹𝑠𝑒𝑐
𝑖−1)

𝐿0

0
𝑑𝑥 = 0                                                            (17)                              

Where 𝛿𝑞 is a weighting function, 𝐾𝑠𝑒𝑐
𝑖−1 is the section stiffness matrix at the previous 

Newton-Raphson iteration i-1, and  𝐹𝑠𝑒𝑐
𝑖−1 is the corresponding section resisting force vector 

and is defined as {
𝑃
𝑀

}; 𝑃 is the section axial force and 𝑀 is the section bending moment. 

Finally, the previous equation is used to calculate the element stiffness matrix and the 

resisting load vector accounting for the second order effects [16]. Consequently, the element 

stiffness matrix is: 

𝑲 = (𝐾𝑔 + ∫ 𝑁∆
𝑇 𝐾𝑠𝑒𝑐 𝑁∆𝑑𝑥

𝐿0

0
)                                                                                             (18) 
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Where 𝐾𝑔 is the internal geometric stiffness matrix and is equal to: 

 𝐾𝑔 = 𝑄1 [

2𝐿

15

−𝐿

30
0

−𝐿

30

2𝐿

15
0

0 0 0

]                                                                                                            (19) 

and the element resisting load vector is: 

𝐹𝑒𝑙𝑒𝑚 = ∫ 𝑁∆
𝑇 𝐹𝑠𝑒𝑐 𝑑𝑥

𝐿0

0
           (20)                     

Formulation of the Mixed-Base Element 

In the mixed formulation, displacement fields and stress resultant forces are both interpolated 

individually along the length of the element [13, 5]. Linear and cubic interpolation functions 

are selected for the transverse (𝑣) and axial(𝑢) deformations respectively, so 𝑁𝑢 and 𝑁𝑣 are the 

same as in the displacement-based formulation (Equations 7 -8).                              

For the stress-resultant force fields, the shape functions are constructed from a constant axial 

force field and a linear moment field, resulting in: 

 𝐹𝑠𝑒𝑐 = 𝑁𝐹𝑄 ;  (21) 

𝑁𝐹 = [
1 0 0

0
𝑥

𝐿
− 1

𝑥

𝐿

]                   (22)           

Where 𝑁𝐹 is the force shape function.  

The compatibility is imposed in a weak form by multiplying the weighting function with 

the difference of the strains calculated from the displacement shape function �̂� at the current 

step, and the strains calculated from the inverse of the force-deformation relation; then 

integrating along the element length:  

∫ 𝛿𝐹𝑠𝑒𝑐
𝑇(�̂�𝑖 − (𝑓𝑠𝑒𝑐

𝑖−1∆𝐹𝑠𝑒𝑐
𝑖 + 𝑑𝑖−1))

𝐿0

0
𝑑𝑥 = 0                                                                       (23)                              



10 
 

Where 𝑓𝑠𝑒𝑐
𝑖−1 is the section flexibility matrix at the previous step, and is equal to the inverse of 

the section stiffness matrix. 

Substituting the displacement and force interpolation functions result in:  

𝐺∆𝑞𝑖 − 𝑓𝑒𝑙𝑒𝑚
𝑖−1 ∆𝑄𝑖 − 𝑞𝑟

𝑖−1 = 0                                                     (24)               

Where:                                                                                  

𝑓𝑒𝑙𝑒𝑚
𝑖−1 = ∫ 𝑁𝐹

𝑇 𝑓𝑠𝑒𝑐
𝑖−1 𝑁𝐹𝑑𝑥

𝐿0

0
  is the element flexibility matrix                                                 (25)                               

𝐺 = ∫ 𝑁𝐹
𝑇   𝑁∆𝑑𝑥

𝐿0

0
                                                                                                 (26)                               

𝐺 is the integration of the product of the displacement and force shape functions along the 

element length. It contains higher order terms to include the second order effects: 

𝐺 = [
1

2𝐿𝑞2

15
−

𝐿𝑞3

30
−

𝐿𝑞2

30
+

2𝐿𝑞3

15

0 1 0
0 0 1

]                                                                      (27)    

 and 𝑞𝑟
𝑖−1 = ∫ 𝑁𝐹

𝑇𝑑𝑖−1 𝑑𝑥
𝐿0

0
− 𝐺𝑞𝑖−1   (28) 

 𝑞𝑟
𝑖−1is the element residual deformation vector which represents the compatibility error 

between the nodal displacements and deformation fields.  

The weighted integral of the compatibility equation (23) is coupled with the weighted integral 

of the equilibrium equation (17) to evaluate the element stiffness matrix and resisting load 

vector, resulting in (29):  

𝐾𝑒𝑙𝑒𝑚 Δ𝑞 = 𝐹𝑒𝑥𝑡 − 𝐹𝑒𝑙𝑒𝑚                                                                                       (29)                

Where: 

𝐾𝑒𝑙𝑒𝑚 = (𝐾𝑔 + ∫ 𝐺𝑇 𝑓𝑒𝑙𝑒𝑚
−1  𝐺 𝑑𝑥

𝐿0

0
)                                                                      (30)                                           
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𝐹𝑒𝑙𝑒𝑚 = 𝐺𝑇𝐹𝑒𝑙𝑒𝑚 + 𝐺𝑇 𝑓𝑒𝑙𝑒𝑚
−1   𝑞𝑟

𝑖−1                                                                             (31)                  

and  𝐹𝑒𝑥𝑡 is the vector of external loads. 

The element state determination follows the procedure described in details in [13] and 

requires an internal element iteration in addition to the global Newton-Raphson iteration. At 

convergence of the internal iteration, the element residual deformation  𝑞𝑟
𝑖−1 vanishes. 

Material Models  

The advantage of this fibre beam element is that it combines the displacement and mixed 

based formulations that consider second order effects with advanced nonlinear material 

models that permit the accurate simulation of the behaviour of reinforced concrete members.  

The new elements use the modified Kent and Park [17] stress strain model for the concrete 

material, which is shown in Figure (2). The cyclic model takes into account the concrete 

damage and hysteresis, while retaining computational efficiency. 

The present concrete material model recognises the ability of concrete to carry tension and 

identifies the tension stiffening effect, which is known as the capability of cracked concrete 

to carry tensile stresses and to participate in the stiffness of the member. As the cracks 

increase, this participation diminishes and the tension stiffening decreases progressively. 

Therefore, the concrete stress-strain relation simulates this behaviour by reducing the tensile 

stress, after reaching the tensile strength, until it reaches a zero value.  The reduction of 

tensile stress can follow a linear, multilinear or exponential path. 

For the steel material model, the Menegotto-Pinto cyclic stress-strain curve of mild steel bar 

is used as shown in Figure (3). The model accounts for the Bauschinger effect under cyclic 

loads. The reinforcing steel model adopted with the current fibre beam element is the one 
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presented in [18], which modified the stress-strain relationship of steel originally developed 

in [19] to consider isotropic hardening.  

The fibrous materials are modelled by controlling the values of the concrete tensile strength 

and tension softening stiffness. Three cases are accounted for as shown in Figure (4): 

Case 1: simulates the presence of a high percentage of fibres; in this case the tensile strength 

ft is typically chosen more than 10% of the compression strength and the tension softening 

stiffness slope is chosen as close to zero to model an ideal constant tensile strength. 

Case 2: simulates the presence of a moderate percentage of fibres; in this case the tensile 

strength is chosen less than 10% of the compression strength and the tension softening 

stiffness value Ets is chosen as a linear moderate decreasing line (e.g. Ets = 1000 MPa). 

Case 3: simulates the absence of fibres leading to an infinite slope to simulate a brittle tension 

failure (e.g. Ets = 106). 

Validation of the Finite Element Model 

The recently developed models are validated by comparing their results with several 

benchmark experiments. All the chosen specimens undergo large deformations due to the 

slenderness of the section. I addition, fibrous materials were added to the concrete mix of 

several specimens and their effect was noted on the behaviour. As will be seen, the models 

were able to accurately imitate the performance of the RC sections under monotonic and 

cyclic loading, which emphasizes the accuracy and efficacy of the newly developed elements. 

Barrera et al. Experiment 

The first experiment that will be used for the validation of the new elements for 

reinforced concrete structures is a test performed in [20] by Barrera et al. to examine forty-

four rectangular slender reinforced concrete columns with different sections, under combined 
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axial load and lateral force. The use of high strength concrete (HSC) in the column produced 

smaller cross sections which increased its slenderness and resulted in a major second order 

effect.  A constant axial load and a monotonic lateral force were applied up to failure of the 

columns. The test setup is displayed in Figure (5), and the geometry and dimensions of the 

specimens are shown in Figure (6). After testing, two simplified methods from Eurocode 2 

and ACI-318 were used by the authors for comparison with the experimental results, and 

were both found very conservative.  

The developed elements are used to compare the results of specimen (H60-10.5-C0-2-

30). This sample has a cross section of 200x150 mm and a nominal concrete strength of 60.5 

MPa, steel young’s modulus of 200 GPa, longitudinal steel yielding stress of 537 MPa and 

longitudinal reinforcement of 6Ø10 bars. A constant axial force that equals 432 kN was 

applied to the specimen. The fibre beam model was constructed using only 4 elements. This 

was sufficient to reach convergence for both the displacement and the mixed elements. 

Further, every element was divided internally into 5 sections and the sections were divided 

into 10 concrete fibres and 6 steel fibres that represent the column reinforcement (Figure (7)). 

The concrete material parameters were assigned the following values: 

𝑓′𝑐 = 60.5 MPa, 𝜀𝑐 = 0.002, 𝜀𝑢 = 0.09, 𝜆 = 0.01 , 𝑓𝑡 = 3.0 MPa and 𝐸𝑡𝑠 = 106 MPa. 

Where: 

𝑓′
𝑐
: concrete compressive strength 

𝜀𝑐: concrete strain at maximum strength 

𝜀𝑢: concrete strain at crushing strength 

𝜆 =  
𝐸𝑐

𝐸𝑢
   (𝐸𝑐 and 𝐸𝑢 are defined in Figure (2)). 

𝑓𝑡: 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 tensile strength 

𝐸𝑡𝑠: tension softening stiffness (absolute value)  
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The steel material parameters were assigned the following values: 

𝑓𝑦 = 537.0 MPa, 𝐸0 = 200000 MPa, 𝑏 = 0.01, 𝑎1 = 0.01 , 𝑎2 = 20.0 MPa , 𝑎3 =

18.5 MPa and 𝑎4 = 0.1 

Where: 

𝑓𝑦: steel yield strength  

𝐸0: steel Young’s modulus 

𝑏: strain hardening ratio 

𝑎1 , 𝑎2, 𝑎3 𝑎𝑛𝑑 𝑎4: isotropic hardening parameters described in [18-19] 

Figure (8) shows the load displacement curve of the tested column. It is clear that both 

fibre beam elements were able to follow the output path of the experiment until failure. The 

previous displacement-based element that did not consider the second order analysis strongly 

missed the path and produced an error up to double the load value near failure. It is noticeable 

that the higher the load, the more the second order effect increases.  

Using the mixed element, Figure (9) presents the full vertical displacement distribution 

along the element length under four different lateral force values. These deformed shapes are 

very similar to the ones retrieved from the experiment. As an example, the experimental 

deformed shape at a lateral force of 16.56 KN, which is plotted in Figure (9) matches well 

with the analytical results using the mixed element. 

In Figure (10), a comparison is presented between the curvatures at the maximum load 

level for the displacement and mixed elements with the second order effect. It is clear that 

while the mixed element still produces a smooth curve, the displacement element requires 

more divisions to match with the mixed element’s results. The output curve of the 

displacement-based element with higher element divisions (12 elements) approaches the one 

of the mixed element (4 divisions); however, the produced curve was still not sufficiently 
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smooth and accurate. Consequently, the higher accuracy of the mixed element in the 

determination of the curvature in the case of inelastic deformations is apparent.   

Moreover, the moment-curvature plot for the section at midspan (section 5 of element 2) 

is shown in Figure (11). It is clear that the second order analysis produced a weaker behavior. 

it can be seen from the graph that the higher the curvature, the larger the second order effect. 

However, since the section behavior is only affected by Green-Lagrange small strains, second 

order effects are still not significant. It is clear that the second order analysis, at the section 

level, produced moments reduced by up to 9% than those without second order analysis. The 

major influence of second order effects are observed at the global level due to the effect of 

large displacements and rotations.  

Caballero-Morrison et al. Experiment  

Later, another experimental study in [21] used the same previous type of specimens, 

which represent two columns of two connected floors joined by a stub, to test steel fibre-

reinforced high strength concrete (SFRC) slender columns, but this time under cyclic loading. 

HSC was used for the slender columns to increase its deformation capacity. Two samples 

were selected to be modelled using the fibre beam elements. The detailed geometries of the 

specimens are the same as the ones used in the previous experiment. The first sample 

(NF00L05V2S100) is a normal strength concrete, with 𝑓′𝑐= 33.57 MPa, a cross section of 

260x150 mm and longitudinal reinforcement of 6Ø12. No steel fibres were added to this 

sample. The second specimen (HF60L05V1S50) is a HSC, with 𝑓′𝑐= 81.10 MPa, a cross 

section of 260x150 mm with longitudinal reinforcement of 6Ø12 and with steel fibre content 

of 60 kg/m
3 

(equivalent to a volumetric ratio of 0.76%). The fibre content was modelled by 

assigning the element a negligible post-peak tension softening stiffness.  

The concrete material parameters were assigned the following values: 
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For specimen (NF00L05V2S100): 

𝑓′𝑐 = 33.57 MPa, 𝜀𝑐 = 0.002, 𝜀𝑢 = 0.12, 𝜆 = 0.01 , 𝑓𝑡 = 0.1 MPa and 𝐸𝑡𝑠 = 106 MPa. 

For specimen (HF60L05V1S50): 

𝑓′𝑐 = 81.1 MPa, 𝜀𝑐 = 0.0027, 𝜀𝑢 = 0.20, 𝜆 = 0.01 , 𝑓𝑡 = 8.0 MPa and 𝐸𝑡𝑠 = 1000.0 MPa. 

The steel material parameters were assigned the following values: 

For specimens (NF00L05V2S100) and (HF60L05V1S50): 

𝑓𝑦 = 548.0 MPa, 𝐸0 = 200000 MPa, 𝑏 = 0.02, 𝑎1 = 0.01 , 𝑎2 = 20.0 MPa , 𝑎3 =

18.5 MPa and 𝑎4 = 0.1 

The test procedure consisted of first applying a constant compression horizontal load 

corresponding to the relative normal force, followed by the cyclic lateral load. The same 

finite element model described in the first experiment was used. Figure (12) shows the fibre 

beam element cross section mesh used for the two specimens. 

A sensitivity study was performed for the two models and it was found that the 

displacement-based model requires to be constructed with 14 elements to reach convergence 

and to capture the external retraction hysteric path; whereas the mixed-based model required 

only 4 elements to achieve full convergence. Five sections are typically adopted in the model 

since this discretization can accurately represent the plastic hinge zone in concrete structures 

and ten concrete fibres per section are typically selected [1]. 

In Figure (13), the results of the two fibre beam models are compared with the 

experimental data of specimen (NF00L05V2S100). It is clear that they were both able to 

model the behaviour to a very good extend. In Figure (14), the elements were compared with 

the experimental results of sample (HF60L05V1S50); also good matching can be seen in the 

output graph. Further, when second order effects are not considered, a higher load path is 

depicted, as shown in Figure (14).  
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From the plot in Figure (14), the influence of using HSC and adding fibrous materials 

can be distinguished with respect to the deformation that the sample has undergone and the 

shape of the hysteric curves. Therefore, this example establishes the ability of the enhanced 

elements to model slender reinforced concrete members subjected to cyclic loading while 

accounting for the presence of steel fibres in the concrete mix. 

Figure (15) shows the cyclic stress-strain curve of the bottom steel rebar at the midspan 

section of sample HF60L05V1S50. In this case, second order effects produced higher strain 

values that pushed the bar deep into the inelastic range further amplifying its nonlinear 

response.  

Dundar et al. Experiment 

The fibre beam elements are finally used to model the experimentally-tested specimens 

of Dundar et al. [22], where slender reinforced concrete columns strengthened with steel 

fibres and carbon fibre polymer sheets were tested under combined axial load and bending in 

order to determine their behaviour. 

The tested columns had a length of 1300 mm, a cross section of 125x125 mm along with 

two heavily reinforced concrete brackets with dimensions of 200x200x200 mm, that were 

installed at the columns ends to allow for the application of loads. The columns had a 

slenderness ratio of 34.67. Figure (16) shows the experiment setup.  

For all tested columns, the longitudinal reinforcement was Ø8 at each corner of the 

section and the lateral reinforcement was Ø6 with spacing 100 mm. The yield strength of the 

longitudinal reinforcement was 550 MPa. The columns were loaded with pinned-end 

conditions and lateral deformations of the specimens were recorded at the column mid height. 

Two specimens were chosen to be modelled with the fibre beam elements. Specimen 

(C2-II) with a concrete strength of 61.91 MPa and specimen (C2-II-SF) with a concrete 
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strength of 53.13 MPa and containing 60 kg/m
3
 steel fibre in the concrete mix. Both 

specimens had two layers of carbon fibre reinforced polymer (CFRP).  

The concrete material parameters were assigned the following values: 

For specimen (C2-II): 

𝑓′𝑐 = 61.91 MPa, 𝜀𝑐 = 0.002, 𝜀𝑢 = 0.12, 𝜆 = 0.01 , 𝑓𝑡 = 0.1 MPa and 𝐸𝑡𝑠 = 106 MPa. 

For specimen (C2-II-SF): 

𝑓′𝑐 = 53.13  MPa, 𝜀𝑐 = 0.002, 𝜀𝑢 = 0.12, 𝜆 = 0.01 , 𝑓𝑡 = 5.0 MPa and 𝐸𝑡𝑠 = 0.001 MPa. 

The steel material parameters were assigned the following values: 

For specimens (C2-II) and (C2-II-SF): 

𝑓𝑦 = 550.0 MPa, 𝐸0 = 210000 MPa, 𝑏 = 0.02, 𝑎1 = 0.01 , 𝑎2 = 20.0 MPa , 𝑎3 =

18.5 MPa and 𝑎4 = 0.1 

The two samples were subjected to an eccentricity of 50 mm around the two horizontal 

axis. Every column was divided into a number of elements and each element was divided 

internally into 5 sections. Two different types of cross sections were defined in the finite 

element models. The first one (125x125 mm), for the intermediate cross section, and was 

divided into 10 concrete fibres and 4 steel fibres; and the second one (200x200 mm), was 

assigned to the column ends, and was divided into 10 concrete fibres and 9 steel fibres as 

shown in Figures (17 & 18). 

The presence of the CFRP sheets affect the ductility and confinement of the columns and 

was taken into account in the finite element model by assigning a higher compression post-

peak stiffness value for the concrete material model resulting in a strain of 0.04 at a stress 

value of 20% of the concrete strength. Further, the addition of steel fibres was accounted for 

by assigning a negligible tension softening stiffness. The column was divided into only 4 

members for the mixed element per half span (the minimum possible number of division as 
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two different sections are assigned) and 12 members for the displacement-based element. The 

two fibre beam elements with the second order effect were able to model the two slender 

columns accurately and to follow the load displacement path for both (C2-II) & (C2-II-SF) as 

shown in Figures (19-20). From the plots, it can be seen that disregarding the second order 

effect gives an exaggerated path for the load-displacement curves. In addition, the plots 

reveals that both elements can recognise and simulate the presence of the fibrous material 

while taking into account the second order effect. 

Further, the mixed element with four divisions is then used to generate the vertical 

displacement along the length of the column (Figure 21) and moment distribution at the axial 

load axis (Figure 22). The results were selected at the case of maximum load (258 KN), 

where the middle of the column was subjected to the highest displacement of about 8.5 mm. 

The model was able to predict the maximum bending moment rather accurately, with a value 

of 2.4 KN.m. 

Conclusion 

Two robust finite element models based on a fibre beam element formulation were presented. 

The elements consider second order effects and can simulate the nonlinear behaviour of 

reinforced concrete members with great accuracy. The first element is formulated using a 

displacement-based method while the second adopts a mixed approach.  It was found that the 

displacement element requires more division to reach convergence; on the other hand, the 

mixed model requires fewer elements per member. Correlation studies with experimentally-

tested slender reinforced concrete specimens proved the elements can simulate the complex 

local and global nonlinear response of the members rather accurately, including the effect of 

fibrous materials in the concrete mix. The new elements can therefore be effectively used in 

modelling slender reinforced concrete structures such as tall columns and walls.  
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Figure (1): Element forces and displacement degrees of freedom in: (a) corotational and (b) global 

system 
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Figure (2): Stress-strain curve of softened Concrete (a) Cyclic (b) Material parameters of Monotonic 

envelopes of concrete model 
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Figure (3): Menegotto-Pinto Cyclic stress-strain curve of mild steel bar 
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Figure (4): Different tension softening stiffness 
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Figure (5): Test framework of Barrera et al. Specimen [20] 
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Figure (6): Geometry and dimensions of Barrera et al. Specimen [20] 
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Figure (7): Fibre beam element cross section mesh for specimen H60-10.5-C0-2-30 
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Figure (8): Analytical and Experimental Load displacement curve for column H60-10.5-C0-2-30  
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Figure (9): Vertical Displacements along the column H60-10.5-C0-2-30 under different Lateral 

Forces  
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Figure (10): Comparison between the Curvature at Maximum Lateral Load for the New and Original 

Fibre Beam Elements 
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Figure (11): Moment curvature relationship for element 2-section 5 of Barrera et al. Specimen 
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Figure (12): Fibre beam element cross section mesh for specimens NF00L05V2S100 and 

HF60L05V1S50 
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Figure (13): Analytical and Experimental Load Displacement Curve for Column NF00L05V2S100  
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Figure (14): Analytical and Experimental Load Displacement Curve for Column HF60L05V1S50  
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Figure (15): Comparison between the Stress-Strain Curves of Bottom Steel Fibre 3 for Element 2 

at Sec. 4 using the Mixed Element with and without the Second Order Effect (sample 

HF60L05V1S50) 
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Figure (16): Experiment setup of Dundar et al. Specimen [22] 
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Figure (17): Fibre beam element cross section mesh for intermediate section of specimens 

C2-II-SF and C2-II 
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Figure (18): Fibre beam element cross section mesh for end sections of specimens C2-II-SF 

and C2-II 
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Figure (19): Analytical and Experimental Load-Deflection Curve for Column C2-II-SF   
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Figure (20): Analytical and Experimental Load-Deflection curve for column C2-II  
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Figure (21): Vertical Displacement along the Column Length at Maximum Load for column C2-II-SF 

using the Mixed Fibre Beam Element 
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Figure (22): Moment along the Column Length at Maximum Load for Column C2-II-SF using the 

Mixed Fibre Beam Element 

 

 

 

 

 

 


