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Abstract — We present results on the use of diverse 

monitoring tools for the detection of malicious web scraping 

activity. We have carried out an analysis of a real dataset of 

Apache HTTP Access logs for an e-commerce application 

provided by a large multinational IT provider for the global 

travel and tourism industry. Two tools have been used to detect 

scraping activities based on the HTTP requests: a commercial 

tool, and an in-house tool called Arcane. We show the benefits 

that can be achieved through the use of both systems, in terms 

of overall sensitivity and specificity, and we discuss the potential 

sources of diversity between the tool’s alert patterns. 

Keywords— design diversity, malicious web scraping, botnet 

detection, security assessment 

I. INTRODUCTION 

Web scraping is the process of using bots to extract 
content and data from a website1. There are many legitimate 
use cases of web scraping, such as a search engine bot 
crawling a site, analysing its content and then ranking it; 
price comparison sites deploying bots to auto-fetch prices 
and product information for seller websites, etc. However, 
web scraping is also used for illegal purposes. Use cases of 
illegal malicious web scraping include undercutting of prices, 
theft of copyrighted content, etc. In price scraping, a 
perpetrator typically uses a botnet from which to launch 
scraper bots to inspect competing business databases. The 
goal is to access pricing information, undercut rivals and 
boost sales. Attacks frequently occur in industries where 
products are easily comparable, and price plays a major role 
in purchasing decisions. Victims of price scraping can 
include travel agencies, ticket sellers and online electronics 
vendors. Large multi-nationals, in particular those active in 
specific sectors (such as e-commerce, gambling, travel, etc), 
are prime targets for this type of malicious activity. 

One way of detecting malicious web scraping activity is 
to look for evidence of the use of botnets. Resources needed 
to run web scraper bots are substantial, due to the large 
amount of data collected from any one site. Attackers, who 
lack such resources, often resort to the use of botnets to carry 
out these attacks. Finding these botnets can be done by 
looking at the commonalities observed between different 

                                                           
1 https://www.incapsula.com/web-application-security/web-scraping-

attack.html  

connecting clients, because these different clients will be 
infected with the same malware. The operation mode of the 
malware will yield similar requests from different clients, 
thus pointing to the existence of botnets. 

To protect themselves from malicious web scraping 
attacks, organizations use specialized software that can 
monitor for suspicious activity, attempt to separate bot traffic 
from human traffic, use IP reputation websites to block 
activities from suspicious IP addresses, monitor the 
behaviour of visitors in the way in which they interact with 
the website to check for abnormal browsing patterns.  

In this paper we provide results from an analysis of a 
large dataset in which we analyse a commercial tool (we 
have anonymized the name and will refer to it as CommTool 
for the rest of the paper) and an in-house tool called Arcane 
developed by a large multi-national in the global travel 
industry. Both of these tools monitor the same application 
layer interactions to detect malicious web scraping 
behaviour. The industrial partner that provided the dataset 
carefully labelled the traffic into malicious and benign, hence 
enabling an analysis with the conventional metrics of 
analysing the performance of binary classifiers, namely 
sensitivity and specificity2.   

Our primary focus in this analysis was to investigate how 
diverse these tools are in their behaviour. We find there is 
significant diversity in the detection results of the tools. We 
then investigated further the causes of the diversity in the 
results (the design and configuration of the tools) and provide 
a summary of these findings. The results will be of use to 
practitioners in various industries that need to deal with 
advanced malicious web scraping and botnet activities, and 
how the use of diverse tools may help them counteract these 
threats. To the best of our knowledge, a similar study on the 
use of diverse tools for malicious web scraping has not been 
published before.  

The rest of the paper is organized as follows: Section II 
presents related work. In Section III we provide a description 
of the dataset we have analysed, as well as the monitoring 
tools present in that dataset. In Section IV we start by giving 
an overview of our initial results. We then describe the 
diversity we have found between both tools employed in the 
dataset, and finally we attempt to provide an explanation for 
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the diversity we observe in the alerting patterns of both tools. 
Finally, in Section V we discuss the implication of our 
findings, as well as our recommendations based on the results 
we observed and conclude with future work related to our 
analysis and findings. 

II. RELATED WORK 

The security community is well aware of diversity as 
potentially valuable [4, 5]. Discussion papers argue the 
general desirability of diversity among network elements, 
like communication media, network protocols, operating 
systems, etc., but only sparse research exists on how to 
choose diverse defences (some examples in [5-8]). 

There have been several works that have looked at ways 
in which malicious web scraping activities can be detected 
(with the use of data-mining algorithms [1], probabilistic and 
machine-learning models [2], as well as more general 
algorithmic approaches [3]), but none that we are aware of 
that has looked at combining multiple diverse detectors. 

Potential benefits from design diversity for safety and 
reliability have been studied for many years. See for example 
work on a probabilistic model of diversity outlined in [13], 
[10] which were motivated by the work on N-version 
programming [14]. It has been discussed as a risk reduction 
strategy, particular at the start of a project [9]. The authors of 
[9] also warn that different application areas require different 
measures to calculate the effectiveness of design diversity, 
and as such the publishing of results from one area might not 
be directly applicable in other areas. Littlewood et al. further 
compound this point by discussing how measuring the 
performance of IDSs should be done based on categories of 
attacks, rather than using an average mixture of attack classes 
[4].  

Work has also been done on providing statistical 
measures of the diversity of ensemble methods, particularly 
in the case of binary classifiers [11, 12]. 

III. DESCRIPTION OF THE DATASET AND TOOLS 

The dataset consists of Apache HTTP Access logs for an 
e-commerce application. The application is a fairly typical 
electronic retail application in the travel industry. The dataset 
covers a period of 5 days, from May 7th to May 12th, 2018. 
Two tools, CommTool and Arcane have been used to detect 
scraping activities based on the HTTP requests. 

A. CommTool 

The company that provided the dataset uses a version of 
CommTool deployed in the cloud in front of the web servers 
of the web application to protect. This means that all HTTP 
requests coming from users are first inspected by 
CommTool. Legitimate requests are forwarded to the web 
application and requests deemed from bots are blocked. 

CommTool (as well as many other bot detectors) use 
different techniques to detect scrapers: 

- Client-side fingerprinting – A JavaScript file is 
downloaded from the protected website and run on the 
client’s browser. This script extracts many device 
attributes to create an accurate fingerprint of the client’s 
system. The fingerprints are shared worldwide amongst 
CommTool products, creating a global database of known 
violator fingerprints. Bots and scrapers are detected based 
on session attributes, such as session length, pages per 
session, pages per minute, etc. 

- JavaScript tests – For suspicious user sessions, 
CommTool can run further client-side JavaScript tests, 
such as inspecting the consistency of device attributes. 

- Machine learning – CommTool uses evolving 
behavioural user models based on the data collected from 
different domains protected. 

- Custom rules – For advanced scraping activities that are 
not detected using the above methods, CommTool can 
implement custom rules based on user device attributes. 
Custom rules can also be created on request by the 
customers of the tool (for example to monitor a particular 
domain of interest to the customer). 

- Known violator databases – CommTool uses a 
worldwide database of known violators for easy 
identification of bots. The known violators can be IP 
addresses, subnets, ISPs and countries. 

B. Arcane 

Arcane is an internal tool to the company that provided 
the data, used to detect scraping activities. Arcane is used to 
monitor CommTool’s performance for domains which are 
already protected by CommTool and assess robotic activities 
for non-protected domains. Arcane uses only Apache HTTP 
access logs and the information these contain to detect 
scraping activities. HTTP access records are grouped into 
HTTP sessions via a unique session identifier. The unique 
session identifier is stored in the client browser cookies and 
logged in the Apache audit trails. The features are collected 
from these sessions are used to detect bot activity. The 
session features used are shown in the table below. 

TABLE I.  ARCANE SESSION FEATURES. 

Feature Description 

Session Duration The time elapsed between the first 

and last HTTP request in a session 

Number of requests per session The number of dynamic requests 

during an HTTP session 

Burst rate The maximum number of requests 

per time unit, made during a sliding 
time window 

Static/Dynamic request ratio The ratio between the number of 

requests to static resources and the 
number of requests to dynamic 

pages 

Entropy A measure of the diversity of 

requests paths in session 

Number of IP addresses The number of distinct IP addresses 

used during the same session 

Number of user agents The number of distinct user agent 

strings in a session 

Number of HTTP errors The number of requests that results 

in 4xx or 5xx error pages for a 

session 

Ratio availability request The ratio between the number of 
requests made to sensitive pages 

and the total number of dynamic 

requests during a session 

 

For each of the features in Table I, a manually defined 
scoring function is used to compute an anomaly score. These 
scores are then aggregated into a global anomaly score used 
to decide whether an HTTP session is legitimate or 
malicious. 

The company that provided the dataset uses a custom 
known violator database, similarly to CommTool. While the 
dataset provider uses CommTool in blocking mode, every 
HTTP request is still observed by both tools, with Arcane 
analysing the traffic after the fact. 



IV. RESULTS 

A. Overview reuslts 

Table II shows the total number of requests present in the 
dataset, as well as what portion of these were web scraping 
attacks. Table III shows how both Arcane and CommTool 
classified HTTP requests that were deemed as web scraping 
attacks (4,825,011). Numbers under “reported” identify true 
positives given by each tool, while “not reported” identify 
false negatives. The same information is shown in Table IV, 
for HTTP requests that were deemed as non-scraping traffic, 
where “reported” identifies false positives, and “not 
reported” identifies true negatives. 

TABLE II.  HTTP REQUEST COUNTS. 

Total requests 5,028,429 (100%) 

Total scraping requests 4,825,011 96% 

Total non-scraping requests 203,418 4% 

TABLE III.  WEB SCRAPING REQUESTS ANALYSED BY BOTH TOOLS. 

Web scraping requests 
Arcane 

Totals 
Reported Not reported 

CommTool 
Reported 1,369,281 146,998 1,516,279 

Not reported 1,430,200 1,878,532 3,308,732 

Totals 2,799,481 2,025,530 4,825,011 

TABLE IV.  NON-SCRAPING REQUESTS ANALYSED BY BOTH TOOLS. 

Non-scraping requests 

Arcane 

Totals Reported Not 

reported 

CommTool 
Reported 353 270 623 

Not reported 43,356 159,439 202,795 

Totals 43,709 159,709 203,418 

 

These numbers allow us to calculate sensitivity (positives 
correctly classified as such) and specificity (negatives 
correctly classified as such) rates for both tools, as shown in 
Table V. We see that Arcane is a more sensitive, but less 
specific system, meaning that it generates a higher number of 
both true and false positives.  

TABLE V.  ARCANE AND COMMTOOL SENSITIVITY AND SPECIFICITY. 

 Arcane CommTool 

Sensitivity 58.02% 31.42% 

Specificity 78.51% 99.69% 

B. Diversity analysis 

In monitoring environments adjudication systems are 
often used to decide whether observed items are malicious or 
not based on the decisions of multiple monitors. These are 
often described as “r-out-of-n” (rooN) systems, where an r 
number of systems, out of a total of n systems, need to raise 
an alert for it to be raised as an alert by the system. For our 
case study, where n=2, we can define 1oo2 and 2oo2 
adjudication systems, which require just one or both systems 
(Arcane and CommTool) to raise an alert, respectively. 

Based on the counts present in Tables III and IV we can 
extrapolate the results to 1oo2 and 2oo2 adjudication 
systems, in order to understand what kind of improvements 
can be achieved from using both systems in conjunction. We 
show in Tables VI and VII how both of these adjudication 
systems would have analysed web scraping and non-scraping 
HTTP requests, respectively. We extend this in table VIII, 
where we show the sensitivity and specificity rates for both 
adjudication systems. The changes in sensitivity and 
specificity when comparing each tool individually to the 

adjudication systems can be seen in Fig. 1 (the y-axis shows 
the absolute difference. e.g. 3.05 improvement in sensitivity 
observed by users of Arcane from switching to a 1oo2 
system, is 61.07 – 58.02, etc.). 

TABLE VI.  WEB SCRAPING REQUESTS ANALYZED BY ADJUDICATION 

SYSTEMS. 

 Reported Not reported 

1oo2 2,946,479 1,878,532 

2oo2 1,369,281 3,455,730 

TABLE VII.  NON-SCRAPING REQUESTS ANALYZED BY ADJUDICATION 

SYSTEMS. 

 Reported Not reported 

1oo2 43,979 159,439 

2oo2 353 203,065 

TABLE VIII.  ADJUDICATION SYSTEMS SENSITIVITY AND SPECIFICITY. 

 1oo2 2oo2 

Sensitivity 61.07% 28.38% 

Specificity 78.37% 99.83% 

 

 

Fig. 1. Sensitivity and specificity changes from single tools to adjudication 

systems. 

As expected, there is an increase in sensitivity in a 1oo2 
system, in relation to both systems individually, while 
specificity shows a slight decrease when compared to 
Arcane, but a large decrease when compared to CommTool 
(roughly 20%). For a 2oo2 adjudication system we see the 
opposite, where sensitivity drops below that of either system 
individually, but specificity significantly increases. This is to 
be expected as:  

- 1oo2 systems will, in all cases, perform: 

- better or equal to the best single system in the pair for 
malicious traffic, as any alarm from any of the two 
systems will lead to an alarm in a 1oo2 system;  

- equal or worse than the worst single system in the 
pair for benign traffic, as any alarm from either 
system for benign traffic will be incorrectly labelled 
as malicious.  

- 2oo2 systems will, in all cases, perform: 

- better or equal to the best single system for benign 
traffic as the 2oo2 system only raises an alarm for 
benign traffic if both systems in the pair raise an 
alarm; 

- equal or worse than the worst single system in the 
pair for malicious traffic, as the 2oo2 system will only 
label an attack as malicious if both the systems in the 
pair label it as such. 

What is important is how much better, or how much 
worse, would a diverse pair perform in these setups, and the 
results in Table VIII and Figure 1 give us some indications 
about this.  



Based on the results presented here, it is clear that the 
tools complement each other in their detection capability, 
though which adjudication scheme to use would depend on 
the losses associated with the different types of failures (false 
positives and false negatives). From the perspective of a user 
running only one of these tools the results suggest that: users 
running Arcane should pair it with CommTool in a 1oo2 
configuration, as they will see an improvement in sensitivity, 
with seemingly only a negligible deterioration in specificity. 
Users running CommTool can improve their sensitivity 
significantly with a 1oo2 adjudication system that runs 
Arcane alongside it, but this will lead to a large increase in 
false positives and hence an increase in cost (through 
additional personnel cost, for example). 

C. Where does the diversity between the tools come from? 

So far, we have demonstrated the presence of diversity in 
the alerting patterns of both tools but have not shown where 
this diversity is coming from, or why it exists. The way in 
which both Arcane and CommTool detect scraping activity, 
and the different techniques they employ is the main reason 
for this difference. 

In Tables IX and X we show the number of CommTool 
and CommTool-only true positives based on the reasons 
CommTool used to flag the connections. In some cases, 
multiple reasons were used by CommTool to flag a request. 
In these cases, we have counted the alert in more than one 
category. 

TABLE IX.  COMMTOOL REASONS FOR TRUE POSITIVES (SHORTENED). 

JavaScript Check Failed 1,422,528 

JavaScript Not Loaded 797,420 

JavaScript Not Loaded & JavaScript Check Failed 728,785 

Rate Limited 671,081 

Known Violator Data Center 157,920 

Pages Per Session Exceeded 36,531 

Session Length Exceeded 19,664 

TABLE X.  COMMTOOL-ONLY REASONS FOR TRUE POSITIVES 

(SHORTENED). 

JavaScript Check Failed 91,408 

JavaScript Not Loaded 90,740 

JavaScript Not Loaded & JavaScript Check Failed 90,090 

Rate Limited 77,567 

Known Violator Data Center 26,750 

Known Violator 5,866 

IP Pinning Failure 1,299 

Referrer Block 556 

As explained before, CommTool is a primarily client-side 
tool that works by creating a fingerprint of the client’s device 
and matching this fingerprint to a known violator database. 
This fingerprint is generated early on in a session, through 
the use of JavaScript. JavaScript checks are the most 
common reason for CommTool’s true positives, including 
true positives only generated by CommTool. Because Arcane 
does not utilize JavaScript, this is theoretically a significant 
source of diversity between the tools. Nevertheless, Arcane is 
still able to detect most of the same connections detected by 
CommTool’s JavaScript process (roughly 93.5%) since these 

connections are initiated by hosts that are in Arcane’s 
blacklist. 

The reasons for CommTool alerts are roughly the same 
between all CommTool true positives and CommTool-only 
true positives, with the exception of “Pages Per Session 
Exceeded”. For all CommTool true positives, this reason 
accounts for a total of 36,531 alerts, while only accounting 
for 52 alerts generated uniquely by CommTool. This is 
because “Pages Per Session” is also a measure found in 
Arcane, and as such it does not provide a meaningful source 
of diversity between the tools. 

1) Diversity based on bytes sent 
Fig. 2 shows the number of true positives each tool had 

for ranges of bytes sent in HTTP requests. The value of bytes 
sent indicates the number of bytes that the response to the 
client had. We can see that there are three main clusters of 
activity when it comes to the tools’ true positives. The first of 
these clusters corresponds to requests with responses within 0 
to 8 kbytes. In this cluster we see that both Arcane and 
CommTool are active, with Arcane having an overall large 
number of unique alerts when compared to CommTool. This 
inverts only for requests whose response had between 4 and 
6 kbytes, for which Arcane does not alert uniquely. The 
second cluster of activity concerns the range of 18 to 20 
kbytes, where we see that both systems alert, but only 
CommTool alerts uniquely. Finally, the third cluster of 
activity is present between 30 to 36 kbytes. For this last 
cluster of activity, we see that only Arcane alerts with true 
positives. If we take a look at the same information for false 
positives (Fig. 3) we see that CommTool does have activity 
past the 20 kbytes mark, however, it only alerts with false 
positives. 

After further discussions with the dataset provider we 
were told that neither CommTool nor Arcane make use of the 
number of bytes sent for a particular request. Nevertheless, 
this appears as a source of additional diversity between 
Arcane and CommTool. Because Arcane’s output is based 
solely on HTTP access logs, Arcane’s detection tends to 
improve as the duration of sessions increase. Over time, 
Arcane has access to more data and statistics that allow for a 
greater confidence in the alerts generated. This could help to 
explain why Arcane generates a higher number of alerts 
(both true and false positives) when compared to CommTool, 
as the number of bytes sent increases. 

Taking a deeper look at the number of bytes sent in the 
requests, we show in Fig. 4 the average number of bytes sent 
for true positives over time. This information is shown for 
true positives generated by Arcane, only by Arcane, by 
CommTool and only by CommTool. What we see is that, for 
either tool, the average number of bytes sent is consistently 
higher for true positives they have uniquely alerted on when 
compared to all of their true positives (the ones they 
generated alerts for along with the other tool). This indicates 
that the alerting patterns of Arcane and CommTool appear to 
overlap for requests which generate responses with lower 
bytes, and as the number of bytes sent increases they diverge 
in their alerting behaviour. 



 

Fig. 2. True positives by bytes sent. 

 

Fig. 3. False positives by bytes sent. 

 

Fig. 4. Average bytes sent for true positives. 

 

 

 

 

 



2) Diversity based on HTTP status 
Another area in which Arcane and CommTool seem to 

differ in terms of their alerting patterns is based on the 
response status for HTTP requests. Table XI is a shortened 
version of the true positive counts generated by Arcane, 
Arcane-only, CommTool and CommTool-only based on 
HTTP response status. When considering that Arcane 
generates overall more alerts than CommTool, we can see 
that response statuses 302 and 405 are alerted differently by 
Arcane and CommTool. Investigating further the unique 
alerts generated by the tools we see that Arcane has a much 
higher number of unique alerts for HTTP response status 302 
(Found), while CommTool is the only tool that generates 
unique alerts for status 405 (Method not found). Arcane does 
alert for requests whose response status was 405, however it 
does not do so uniquely, meaning that, for the case of HTTP 
response status 405, CommTool is presented as a superset of 
Arcane. From discussions with the dataset provider they 
confirmed that this is because CommTool sent a CAPTCHA 
at the start of the connection (with status 405). Because it 
was at the start of the connection (i.e. the CAPTCHA test 
was failed by the bot), CommTool detects it while Arcane 
does not. 

TABLE XI.  TRUE POSITIVE COUNTS BY HTTP RESPONSE STATUS 

(SHORTENED). 

Status Arcane true positives 
CommTool true 

positives 

200 (OK) 2,167,085 1,123,320 

302 (Found) 418,115 143,578 

405 (Method not 
allowed) 

213,929 248,825 

Status 
Arcane only true 

positives 
CommTool only true 

positives 

200 (OK) 1,138,231 94,466 

302 (Found) 291,710 17,173 

405 (Method not 
allowed) 

0 34,896 

 

HTTP response status 302 (Found) indicates that the 
resource requested has temporarily been moved to another 
location, and the response returns a new URL that the client 
follows to find said resource. Status 405 (Method not 
allowed) indicates that the HTTP request method is not 
allowed for the specified resource. In the standard HTTP 
specification, the GET and HEAD methods should never 
return status 405, however, looking at the 34,896 true 
positives that only CommTool raised with this status, these 
are split in half between GET and POST (GET=18,750 and 
POST=16,146). CommTool-only alerts for status 405 are 
raised for two URI’s, that being https://e-retail-domain.com 
(anonymised), a total of 18,717 times, and “https://e-retail-
domain.com/fares.action” (anonymised), a total of 12,788. 
We note that CommTool has a specific rule to look at the 
latter of these URI’s. 

Fig. 5 shows the distribution over time for Arcane-only 
302 true positives, and CommTool-only 405 true positives.  

The fact that these are spread throughout the lifetime of 
the dataset indicates that this is a recurring difference 
between the tools, rather than a random occurrence. 

3) Diversity based on user agent and unique IPs 
One way to detect the presence of web scraping activities 

is to find evidence of botnets. This is because, as described 
previously, attackers often lack the resources to establish a 
centralized scraping system, and resort to the use of botnets 
to launch their scraping attacks. Evidence of botnet activity 
can be found by looking at the parameters sent with each 
HTTP request, for example, looking at the value of user 
agent. In HTTP requests, the value of user agent describes 
the software from where the request originated. Under 
normal circumstances, where a human performs a request, 
this value takes on the name or description of the browser 
that the user utilized. By looking at the value of user agent 
across multiple unique requests generated by different client 
IPs, we can correlate them in order to detect the presence of 
botnets. In Table XII we show the top user agents based on 
the number of total attack requests made. For each of them 
we show how many requests have been attacks, the number 
of unique IP addresses that have used the user agent for 
malicious requests, and the number of alerts generated by 
Arcane, Arcane-only, CommTool, and CommTool-only. 
What we see is that Arcane has a large number of unique 
alerts generated for the top 4 user agents (which have been 
used by more than 1,000 unique IP addresses). After these 
first 4, Arcane ceases to alert uniquely for any user agent. 
Meanwhile, CommTool has a lower number of unique alerts 
for the top 4 user agents, compared to Arcane, but from there 
on appears as a superset of Arcane (i.e. it detects all that 
Arcane does and more). 

These results are aligned with the way both tools work. 
Arcane is primarily server-side, therefore it has the ability to 
look at multiple HTTP requests and correlate them together 
to find botnets. As such, it is not surprising that it performs 
better for user agents which have been used by more unique 
IP addresses, as these potentially constitute evidence of 
larger botnets. CommTool, being a client-side tool, cannot 
look at multiple requests in order to correlate them, instead 
analysing each connection individually. 

We calculated the sensitivity and specificity rates that 
Arcane and CommTool have for each individual user agent. 
These are presented in Table XIII for the top 4 user agents 
(the only user agents which had unique true positives from 
both tools).What we see is that, as the number of unique IPs 
using a specific user agent decreases, CommTool’s 
sensitivity (true positives) increases. The same appears to be 
true for CommTool’s and Arcane’s specificity. 

Note that, for user agent (D), specificity cannot be 
calculated due to the fact that all HTTP sessions with that 
user agent were labelled as attacks. 

 

 

 

 

 

 

 

 



 

Fig. 5. Arcane only 302 and CommTool only 405 true positives. 

TABLE XII.  TRUE POSITIVES BY USER AGENT (SHORTENED). 

User agent 
Total 

attacks 
Unique IP 
addresses 

Arcane true 
positives 

CommTool 
true 

positives 

Arcane only 
true 

positives 

CommTool 
only true 
positives 

(A) - Mozilla/5.0 (Windows NT 10.0; Win64; x64) 
AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/52.0.2743.116 Safari/537.36 Edge/15.15063 

2,775,396 162,149 983,747 537,247 540,126 93,626 

(B) - Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; 

rv:11.0) like Gecko 

1,109,404 21,195 1,037,946 469,769 581,221 13,044 

(C) - Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; 
rv:11.0) like Gecko 

705,335 14,783 550,182 293,541 292,321 35,680 

(D) - Mozilla/5.0 (Windows NT 6.1; Win64; x64) 

AppleWebKit/537.36 (KHTML, like Gecko) 

Chrome/61.0.3163.100 Safari/537.36 

230,682 1,053 226,742 211,528 16,532 1,318 

(E) - Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; 

Trident/5.0) 

789 297 590 789 0 199 

(F) - Mozilla/5.0 (Windows NT 6.1; WOW64) 

AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/53.0.2785.116 Safari/537.36 

610 313 23 610 0 587 

(G) - Mozilla/5.0 (Windows NT 10.0; WOW64) 

AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/53.0.2785.116 Safari/537.36 

559 271 11 559 0 548 

(H) - Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:49.0) 
Gecko/20100101 Firefox/49.0 

505 269 16 505 0 489 

(I) - Mozilla/5.0 (iPhone; CPU iPhone OS 11_3 like Mac OS X) 
AppleWebKit/605.1.15 (KHTML, like Gecko) Version/11.0 
Mobile/15E148 Safari/604.1 

169 42 34 169 0 135 

(J) - Mozilla/5.0 (Windows NT 10.0; Win64; x64) 
AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/59.0.3071.115 Safari/537.36 

56 28 0 56 0 56 

TABLE XIII.  ARCANE AND COMMTOOL SENSITIVITY AND SPECIFICITY 

FOR SPECIFIC USER AGENTS 

User agent  Arcane CommTool 

(A) 
Sensitivity 35.45% 19.36% 
Specificity 38.39% 52.57% 

(B) 
Sensitivity 93.56% 42.34% 
Specificity 83.18% 98.88% 

(C) 
Sensitivity 78.00% 41.62% 
Specificity 91.02% 99.50% 

(D) 
Sensitivity 98.29% 91.70% 
Specificity N/A N/A 

 
By only taking into account Arcane’s alerts for the top 4 

user agents we can substantially improve the specificity of 
both Arcane by itself (78.51% to 99.81%) and 1oo2 
adjudication system (78.37% to 99.60%), while keeping the 
sensitivity of the 1oo2 the same (at 61.07%) as shown in 
Table XIV (cf. Table V and VIII for comparison).  

TABLE XIV.  ARCANE TOP 4 USER AGENTS AND COMMTOOL ALL USER 

AGENTS SENSTIVITY AND SPECIFICITY. 

 Sensitivity Specificity 

Arcane 58.002% 99.81% 

CommTool 31.42% 99.69% 

1oo2 61.07% 99.60% 

2oo2 28.36% 99.91% 

 

These results indicate that Arcane only brings benefits 
when monitoring user agents used by more than 1000 unique 
IP addresses. For any user agent with less than 1000 
addresses, Arcane provides no extra benefits in true positives, 
and yet provides a lot more false positives.  

In Fig. 6 we show the sensitivity rates of each tool as well 
as the 1oo2 and 2oo2 configurations when analysing requests 
coming from user agents used by less than “x” unique IPs. 
What we observe is that, for user agents used by less than 



1000 unique IPs, CommTool has a perfect sensitivity value, 
while Arcane has a sensitivity rate close to 10%. However, 
when analysing user agents employed by more than 1000 
unique IPs, Arcane appears as a more sensitivity system, 
when compared to CommTool. 

We note that, in the dataset we have analysed, there were 
no instances of user agents used by more than 1000 unique IP 
addresses but less than 14000. This means we cannot 
correctly identify with precision, the point at which both 
Arcane and CommTool have a drop in their sensitivity rates. 

In Fig. 7 and 8 we show the specificity rates of each tool in 
the same manner. Arcane (and consequently 1oo2) have the 
biggest change in specificity based on the number of unique 
IPs using the same user agent, with an increase of roughly 
0.02 as the number of unique IPs using the same user agent 
increases. For CommTool (and consequently 2oo2), there is a 
slight decrease of roughly 0.001 as the number of unique IPs 
increases. 

 

 

Fig. 6. Sensitivity rates when analysing user agents used by less than “x” unique IPs. 

 

Fig. 7. Specificity rates when analysing user agents used by less than “x” unique IPs (Arcane and 1oo2). 



 
Fig. 8. Specificity rates when analysing user agents used by less than “x” unique IPs (CommTool and 2oo2). 

 

D. Diversity in the geolocation of the IP addresses 

Figure 9 below shows where the majority of malicious 
web scraping requests were made from. It is possible to see 
that they mostly originate from central Europe. The 
distribution of true positives generated by both Arcane and 
CommTool looks identical to that of all malicious web 
scraping requests, where both tools generally raised alerts 
for central Europe.  

Figures 10 and 11 show the distribution of false 
positives generated by Arcane-only and CommTool-only. 
In this case we see a significant difference in the alerting 
patterns. Arcane-only false positives mostly originate from 
central Europe once again, but CommTool-only false 
positives appear mostly to be coming from Mexico. 

 

Fig. 9. Geolocation of all web scraping requests. 

 

Fig. 10. Geolocation of Arcane-only false positives. 

 

Fig. 11. Geolocation of CommTool-only false positives. 

This difference in alerting patterns for the false 
positives of either tool likely comes down to the use of 
different IP reputation databases. Because the database 
used by Arcane is built and maintained by the dataset 
provider, it stands to reason that it would contain more IPs 
and networks from central Europe, seeing as most 
malicious requests observed on their networks are coming 
from this area. For the case of CommTool however, the 
database of known violators is a global one, and as such, 
this pattern differs.  

V. DISCUSSION, CONCLUSIONS AND FURTHER WORK 

Our results show clear signs of diversity benefits, as 
evidenced by the values of sensitivity and specificity for 
1oo2 and 2oo2 adjudication systems. There are two major 
factors for why we see differing alerting patterns between 
Arcane and CommTool: 

- Firstly, the mode of operation between the two tools is 
substantially different from one another. CommTool 
works primarily on the client-side, and most of its 
detection capabilities are due to JavaScript tests run on 
the client’s device. This translates to a generally faster 
decision as to whether a request is malicious or not but 
prevents CommTool from correlating between various 
different connections. Arcane is exclusively server-
side, and thus is capable of looking and correlating 
between multiple different client requests. This means 
that Arcane can more easily detect the presence of 
botnets. It also means that Arcane outputs more 
accurate alerts for longer connections. 



- Secondly, the use of different known violator databases 
leads both tools to detect different connections. This, 
however, is not inherent to their operation modes. 

There are also general configuration changes between 
Arcane and CommTool that make them alert differently. 
Internally, Arcane is used only to analyse HTTP access 
logs a posteriori, without taking actions upon them. This is 
the case because Arcane is configured more loosely, so as 
to generate more alerts overall. Because these alerts are not 
acted upon automatically, the company that provided the 
dataset can afford to generate more false positives, to 
increase the probability of increasing the true positive rate. 

Based on the results of our study and the observations 
we made through the paper, we derived some practical 
recommendations on the diverse deployment of these 
tools: 

- Arcane provides value for this application only when 
monitoring user agents used by more than 1000 IP 
addresses. For user agents with less than 1000 IP 
addresses, all true positives from Arcane are also true 
positives in CommTool, while Arcane also generates a 
large number of false positives. For this application it 
seems the SOC operator can ignore alerts generated by 
Arcane-only for user agents with less than 1000 IP 
addresses, as they are highly likely to be false positives. 

- The geolocation of the malicious web scrapers for this 
application seems to be primarily in Europe. It seems 
that IP addresses that are not from Europe and reported 
as such by CommTool are more likely to be false 
positives for this application. It will be interesting to 
see whether this also holds for other applications that 
are monitored by the dataset provider. 

- Even though the dataset provider confirmed that 
neither CommTool nor Arcane make use of the number 
of bytes sent for a particular request when making a 
decision on whether to alert or not, it appears that the 
alerting patterns of Arcane and CommTool appear to 
overlap for requests which generate responses with 
lower bytes, and as the number of bytes sent increases 
they diverge in their alerting behaviour. Because 
Arcane’s output is based solely on HTTP access logs, 
Arcane’s detection tends to improve as the duration of 
sessions increase. Arcane has access to more data and 
statistics that allow for a greater confidence in the alerts 
generated over time. This helps to explain why Arcane 
generates a higher number of alerts (both true and false 
positives) when compared to CommTool, as the 
number of bytes sent increases. Hence bytes sent seems 
to be an interesting parameter to consider when 
considering changes to the configurations of these tools 

The company that provided the dataset plan to 
reconfigure the defences based on the findings and 
recommendations made here. We will then do a follow up 
study to check if the sensitivity and specificity of the 
systems (including the diverse combinations) has improved 
in the face of a changing threat profile. 

We note that the results presented here are only prima 
facie evidence of the usefulness of diversity. More analysis 
with more datasets for more applications would enable us 
to get more confidence on whether the diversity observed 
here is indeed observed more generally in other 

applications. To this end current and further work is to 
analyse data from more applications to analyse whether 
what we have observed here is a typical behaviour of these 
tools, or whether they differ markedly depending on the 
environment and the nature of the applications monitored.   
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