

City, University of London Institutional Repository

Citation: Marques, P., Dabbabi, Z., Mironescu, M-M., Thonnard, O., Bessani, A.,

Buontempo, F. & Gashi, I. (2018). Detecting Malicious Web Scraping Activity: a Study with
Diverse Detectors. Paper presented at the The 23rd IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2018), 4-7 Dec 2018, Taipei, Taiwan.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/20597/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Detecting Malicious Web Scraping Activity: a

Study with Diverse Detectors

Pedro Marques

LaSIGE, Faculdade de Ciências

Universidade de Lisboa, Portugal

and

Centre for Software Reliability

City, University of London, UK

pedro.daniel@city.ac.uk

Zayani Dabbabi

Amadeus, France

zayani.dabbabi@amadeus.com

Miruna-Mihaela Mironescu

Amadeus, France

miruna-

mihaela.mironescu@amadeus.com

Olivier Thonnard

Amadeus, France

olivier.thonnard@amadeus.com

Alysson Bessani

LaSIGE, Faculdade de Ciências

Universidade de Lisboa, Portugal

anbessani@ciencias.ulisboa.pt

Frances Buontempo

Centre for Software Reliability

City, University of London, UK

frances.buontempo@city.ac.uk

Ilir Gashi

Centre for Software Reliability

City, University of London, UK

ilir.gashi.1@city.ac.uk

Abstract — We present results on the use of diverse

monitoring tools for the detection of malicious web scraping

activity. We have carried out an analysis of a real dataset of

Apache HTTP Access logs for an e-commerce application

provided by a large multinational IT provider for the global

travel and tourism industry. Two tools have been used to detect

scraping activities based on the HTTP requests: a commercial

tool, and an in-house tool called Arcane. We show the benefits

that can be achieved through the use of both systems, in terms

of overall sensitivity and specificity, and we discuss the potential

sources of diversity between the tool’s alert patterns.

Keywords— design diversity, malicious web scraping, botnet

detection, security assessment

I. INTRODUCTION

Web scraping is the process of using bots to extract
content and data from a website1. There are many legitimate
use cases of web scraping, such as a search engine bot
crawling a site, analysing its content and then ranking it;
price comparison sites deploying bots to auto-fetch prices
and product information for seller websites, etc. However,
web scraping is also used for illegal purposes. Use cases of
illegal malicious web scraping include undercutting of prices,
theft of copyrighted content, etc. In price scraping, a
perpetrator typically uses a botnet from which to launch
scraper bots to inspect competing business databases. The
goal is to access pricing information, undercut rivals and
boost sales. Attacks frequently occur in industries where
products are easily comparable, and price plays a major role
in purchasing decisions. Victims of price scraping can
include travel agencies, ticket sellers and online electronics
vendors. Large multi-nationals, in particular those active in
specific sectors (such as e-commerce, gambling, travel, etc),
are prime targets for this type of malicious activity.

One way of detecting malicious web scraping activity is
to look for evidence of the use of botnets. Resources needed
to run web scraper bots are substantial, due to the large
amount of data collected from any one site. Attackers, who
lack such resources, often resort to the use of botnets to carry
out these attacks. Finding these botnets can be done by
looking at the commonalities observed between different

1 https://www.incapsula.com/web-application-security/web-scraping-

attack.html

connecting clients, because these different clients will be
infected with the same malware. The operation mode of the
malware will yield similar requests from different clients,
thus pointing to the existence of botnets.

To protect themselves from malicious web scraping
attacks, organizations use specialized software that can
monitor for suspicious activity, attempt to separate bot traffic
from human traffic, use IP reputation websites to block
activities from suspicious IP addresses, monitor the
behaviour of visitors in the way in which they interact with
the website to check for abnormal browsing patterns.

In this paper we provide results from an analysis of a
large dataset in which we analyse a commercial tool (we
have anonymized the name and will refer to it as CommTool
for the rest of the paper) and an in-house tool called Arcane
developed by a large multi-national in the global travel
industry. Both of these tools monitor the same application
layer interactions to detect malicious web scraping
behaviour. The industrial partner that provided the dataset
carefully labelled the traffic into malicious and benign, hence
enabling an analysis with the conventional metrics of
analysing the performance of binary classifiers, namely
sensitivity and specificity2.

Our primary focus in this analysis was to investigate how
diverse these tools are in their behaviour. We find there is
significant diversity in the detection results of the tools. We
then investigated further the causes of the diversity in the
results (the design and configuration of the tools) and provide
a summary of these findings. The results will be of use to
practitioners in various industries that need to deal with
advanced malicious web scraping and botnet activities, and
how the use of diverse tools may help them counteract these
threats. To the best of our knowledge, a similar study on the
use of diverse tools for malicious web scraping has not been
published before.

The rest of the paper is organized as follows: Section II
presents related work. In Section III we provide a description
of the dataset we have analysed, as well as the monitoring
tools present in that dataset. In Section IV we start by giving
an overview of our initial results. We then describe the
diversity we have found between both tools employed in the
dataset, and finally we attempt to provide an explanation for

2 https://en.wikipedia.org/wiki/Sensitivity_and_specificity

mailto:pedro.daniel@city.ac.uk
mailto:zayani.dabbabi@amadeus.com
mailto:miruna-mihaela.mironescu@amadeus.com
mailto:miruna-mihaela.mironescu@amadeus.com
mailto:olivier.thonnard@amadeus.com
mailto:anbessani@ciencias.ulisboa.pt
mailto:frances.buontempo@city.ac.uk
mailto:ilir.gashi.1@city.ac.uk
https://www.incapsula.com/web-application-security/web-scraping-attack.html
https://www.incapsula.com/web-application-security/web-scraping-attack.html
https://en.wikipedia.org/wiki/Sensitivity_and_specificity

the diversity we observe in the alerting patterns of both tools.
Finally, in Section V we discuss the implication of our
findings, as well as our recommendations based on the results
we observed and conclude with future work related to our
analysis and findings.

II. RELATED WORK

The security community is well aware of diversity as
potentially valuable [4, 5]. Discussion papers argue the
general desirability of diversity among network elements,
like communication media, network protocols, operating
systems, etc., but only sparse research exists on how to
choose diverse defences (some examples in [5-8]).

There have been several works that have looked at ways
in which malicious web scraping activities can be detected
(with the use of data-mining algorithms [1], probabilistic and
machine-learning models [2], as well as more general
algorithmic approaches [3]), but none that we are aware of
that has looked at combining multiple diverse detectors.

Potential benefits from design diversity for safety and
reliability have been studied for many years. See for example
work on a probabilistic model of diversity outlined in [13],
[10] which were motivated by the work on N-version
programming [14]. It has been discussed as a risk reduction
strategy, particular at the start of a project [9]. The authors of
[9] also warn that different application areas require different
measures to calculate the effectiveness of design diversity,
and as such the publishing of results from one area might not
be directly applicable in other areas. Littlewood et al. further
compound this point by discussing how measuring the
performance of IDSs should be done based on categories of
attacks, rather than using an average mixture of attack classes
[4].

Work has also been done on providing statistical
measures of the diversity of ensemble methods, particularly
in the case of binary classifiers [11, 12].

III. DESCRIPTION OF THE DATASET AND TOOLS

The dataset consists of Apache HTTP Access logs for an
e-commerce application. The application is a fairly typical
electronic retail application in the travel industry. The dataset
covers a period of 5 days, from May 7th to May 12th, 2018.
Two tools, CommTool and Arcane have been used to detect
scraping activities based on the HTTP requests.

A. CommTool

The company that provided the dataset uses a version of
CommTool deployed in the cloud in front of the web servers
of the web application to protect. This means that all HTTP
requests coming from users are first inspected by
CommTool. Legitimate requests are forwarded to the web
application and requests deemed from bots are blocked.

CommTool (as well as many other bot detectors) use
different techniques to detect scrapers:

- Client-side fingerprinting – A JavaScript file is
downloaded from the protected website and run on the
client’s browser. This script extracts many device
attributes to create an accurate fingerprint of the client’s
system. The fingerprints are shared worldwide amongst
CommTool products, creating a global database of known
violator fingerprints. Bots and scrapers are detected based
on session attributes, such as session length, pages per
session, pages per minute, etc.

- JavaScript tests – For suspicious user sessions,
CommTool can run further client-side JavaScript tests,
such as inspecting the consistency of device attributes.

- Machine learning – CommTool uses evolving
behavioural user models based on the data collected from
different domains protected.

- Custom rules – For advanced scraping activities that are
not detected using the above methods, CommTool can
implement custom rules based on user device attributes.
Custom rules can also be created on request by the
customers of the tool (for example to monitor a particular
domain of interest to the customer).

- Known violator databases – CommTool uses a
worldwide database of known violators for easy
identification of bots. The known violators can be IP
addresses, subnets, ISPs and countries.

B. Arcane

Arcane is an internal tool to the company that provided
the data, used to detect scraping activities. Arcane is used to
monitor CommTool’s performance for domains which are
already protected by CommTool and assess robotic activities
for non-protected domains. Arcane uses only Apache HTTP
access logs and the information these contain to detect
scraping activities. HTTP access records are grouped into
HTTP sessions via a unique session identifier. The unique
session identifier is stored in the client browser cookies and
logged in the Apache audit trails. The features are collected
from these sessions are used to detect bot activity. The
session features used are shown in the table below.

TABLE I. ARCANE SESSION FEATURES.

Feature Description

Session Duration The time elapsed between the first

and last HTTP request in a session

Number of requests per session The number of dynamic requests

during an HTTP session

Burst rate The maximum number of requests

per time unit, made during a sliding
time window

Static/Dynamic request ratio The ratio between the number of

requests to static resources and the
number of requests to dynamic

pages

Entropy A measure of the diversity of

requests paths in session

Number of IP addresses The number of distinct IP addresses

used during the same session

Number of user agents The number of distinct user agent

strings in a session

Number of HTTP errors The number of requests that results

in 4xx or 5xx error pages for a

session

Ratio availability request The ratio between the number of
requests made to sensitive pages

and the total number of dynamic

requests during a session

For each of the features in Table I, a manually defined
scoring function is used to compute an anomaly score. These
scores are then aggregated into a global anomaly score used
to decide whether an HTTP session is legitimate or
malicious.

The company that provided the dataset uses a custom
known violator database, similarly to CommTool. While the
dataset provider uses CommTool in blocking mode, every
HTTP request is still observed by both tools, with Arcane
analysing the traffic after the fact.

IV. RESULTS

A. Overview reuslts

Table II shows the total number of requests present in the
dataset, as well as what portion of these were web scraping
attacks. Table III shows how both Arcane and CommTool
classified HTTP requests that were deemed as web scraping
attacks (4,825,011). Numbers under “reported” identify true
positives given by each tool, while “not reported” identify
false negatives. The same information is shown in Table IV,
for HTTP requests that were deemed as non-scraping traffic,
where “reported” identifies false positives, and “not
reported” identifies true negatives.

TABLE II. HTTP REQUEST COUNTS.

Total requests 5,028,429 (100%)

Total scraping requests 4,825,011 96%

Total non-scraping requests 203,418 4%

TABLE III. WEB SCRAPING REQUESTS ANALYSED BY BOTH TOOLS.

Web scraping requests
Arcane

Totals
Reported Not reported

CommTool
Reported 1,369,281 146,998 1,516,279

Not reported 1,430,200 1,878,532 3,308,732

Totals 2,799,481 2,025,530 4,825,011

TABLE IV. NON-SCRAPING REQUESTS ANALYSED BY BOTH TOOLS.

Non-scraping requests

Arcane

Totals Reported Not

reported

CommTool
Reported 353 270 623

Not reported 43,356 159,439 202,795

Totals 43,709 159,709 203,418

These numbers allow us to calculate sensitivity (positives
correctly classified as such) and specificity (negatives
correctly classified as such) rates for both tools, as shown in
Table V. We see that Arcane is a more sensitive, but less
specific system, meaning that it generates a higher number of
both true and false positives.

TABLE V. ARCANE AND COMMTOOL SENSITIVITY AND SPECIFICITY.

 Arcane CommTool

Sensitivity 58.02% 31.42%

Specificity 78.51% 99.69%

B. Diversity analysis

In monitoring environments adjudication systems are
often used to decide whether observed items are malicious or
not based on the decisions of multiple monitors. These are
often described as “r-out-of-n” (rooN) systems, where an r
number of systems, out of a total of n systems, need to raise
an alert for it to be raised as an alert by the system. For our
case study, where n=2, we can define 1oo2 and 2oo2
adjudication systems, which require just one or both systems
(Arcane and CommTool) to raise an alert, respectively.

Based on the counts present in Tables III and IV we can
extrapolate the results to 1oo2 and 2oo2 adjudication
systems, in order to understand what kind of improvements
can be achieved from using both systems in conjunction. We
show in Tables VI and VII how both of these adjudication
systems would have analysed web scraping and non-scraping
HTTP requests, respectively. We extend this in table VIII,
where we show the sensitivity and specificity rates for both
adjudication systems. The changes in sensitivity and
specificity when comparing each tool individually to the

adjudication systems can be seen in Fig. 1 (the y-axis shows
the absolute difference. e.g. 3.05 improvement in sensitivity
observed by users of Arcane from switching to a 1oo2
system, is 61.07 – 58.02, etc.).

TABLE VI. WEB SCRAPING REQUESTS ANALYZED BY ADJUDICATION

SYSTEMS.

 Reported Not reported

1oo2 2,946,479 1,878,532

2oo2 1,369,281 3,455,730

TABLE VII. NON-SCRAPING REQUESTS ANALYZED BY ADJUDICATION

SYSTEMS.

 Reported Not reported

1oo2 43,979 159,439

2oo2 353 203,065

TABLE VIII. ADJUDICATION SYSTEMS SENSITIVITY AND SPECIFICITY.

 1oo2 2oo2

Sensitivity 61.07% 28.38%

Specificity 78.37% 99.83%

Fig. 1. Sensitivity and specificity changes from single tools to adjudication

systems.

As expected, there is an increase in sensitivity in a 1oo2
system, in relation to both systems individually, while
specificity shows a slight decrease when compared to
Arcane, but a large decrease when compared to CommTool
(roughly 20%). For a 2oo2 adjudication system we see the
opposite, where sensitivity drops below that of either system
individually, but specificity significantly increases. This is to
be expected as:

- 1oo2 systems will, in all cases, perform:

- better or equal to the best single system in the pair for
malicious traffic, as any alarm from any of the two
systems will lead to an alarm in a 1oo2 system;

- equal or worse than the worst single system in the
pair for benign traffic, as any alarm from either
system for benign traffic will be incorrectly labelled
as malicious.

- 2oo2 systems will, in all cases, perform:

- better or equal to the best single system for benign
traffic as the 2oo2 system only raises an alarm for
benign traffic if both systems in the pair raise an
alarm;

- equal or worse than the worst single system in the
pair for malicious traffic, as the 2oo2 system will only
label an attack as malicious if both the systems in the
pair label it as such.

What is important is how much better, or how much
worse, would a diverse pair perform in these setups, and the
results in Table VIII and Figure 1 give us some indications
about this.

Based on the results presented here, it is clear that the
tools complement each other in their detection capability,
though which adjudication scheme to use would depend on
the losses associated with the different types of failures (false
positives and false negatives). From the perspective of a user
running only one of these tools the results suggest that: users
running Arcane should pair it with CommTool in a 1oo2
configuration, as they will see an improvement in sensitivity,
with seemingly only a negligible deterioration in specificity.
Users running CommTool can improve their sensitivity
significantly with a 1oo2 adjudication system that runs
Arcane alongside it, but this will lead to a large increase in
false positives and hence an increase in cost (through
additional personnel cost, for example).

C. Where does the diversity between the tools come from?

So far, we have demonstrated the presence of diversity in
the alerting patterns of both tools but have not shown where
this diversity is coming from, or why it exists. The way in
which both Arcane and CommTool detect scraping activity,
and the different techniques they employ is the main reason
for this difference.

In Tables IX and X we show the number of CommTool
and CommTool-only true positives based on the reasons
CommTool used to flag the connections. In some cases,
multiple reasons were used by CommTool to flag a request.
In these cases, we have counted the alert in more than one
category.

TABLE IX. COMMTOOL REASONS FOR TRUE POSITIVES (SHORTENED).

JavaScript Check Failed 1,422,528

JavaScript Not Loaded 797,420

JavaScript Not Loaded & JavaScript Check Failed 728,785

Rate Limited 671,081

Known Violator Data Center 157,920

Pages Per Session Exceeded 36,531

Session Length Exceeded 19,664

TABLE X. COMMTOOL-ONLY REASONS FOR TRUE POSITIVES

(SHORTENED).

JavaScript Check Failed 91,408

JavaScript Not Loaded 90,740

JavaScript Not Loaded & JavaScript Check Failed 90,090

Rate Limited 77,567

Known Violator Data Center 26,750

Known Violator 5,866

IP Pinning Failure 1,299

Referrer Block 556

As explained before, CommTool is a primarily client-side
tool that works by creating a fingerprint of the client’s device
and matching this fingerprint to a known violator database.
This fingerprint is generated early on in a session, through
the use of JavaScript. JavaScript checks are the most
common reason for CommTool’s true positives, including
true positives only generated by CommTool. Because Arcane
does not utilize JavaScript, this is theoretically a significant
source of diversity between the tools. Nevertheless, Arcane is
still able to detect most of the same connections detected by
CommTool’s JavaScript process (roughly 93.5%) since these

connections are initiated by hosts that are in Arcane’s
blacklist.

The reasons for CommTool alerts are roughly the same
between all CommTool true positives and CommTool-only
true positives, with the exception of “Pages Per Session
Exceeded”. For all CommTool true positives, this reason
accounts for a total of 36,531 alerts, while only accounting
for 52 alerts generated uniquely by CommTool. This is
because “Pages Per Session” is also a measure found in
Arcane, and as such it does not provide a meaningful source
of diversity between the tools.

1) Diversity based on bytes sent
Fig. 2 shows the number of true positives each tool had

for ranges of bytes sent in HTTP requests. The value of bytes
sent indicates the number of bytes that the response to the
client had. We can see that there are three main clusters of
activity when it comes to the tools’ true positives. The first of
these clusters corresponds to requests with responses within 0
to 8 kbytes. In this cluster we see that both Arcane and
CommTool are active, with Arcane having an overall large
number of unique alerts when compared to CommTool. This
inverts only for requests whose response had between 4 and
6 kbytes, for which Arcane does not alert uniquely. The
second cluster of activity concerns the range of 18 to 20
kbytes, where we see that both systems alert, but only
CommTool alerts uniquely. Finally, the third cluster of
activity is present between 30 to 36 kbytes. For this last
cluster of activity, we see that only Arcane alerts with true
positives. If we take a look at the same information for false
positives (Fig. 3) we see that CommTool does have activity
past the 20 kbytes mark, however, it only alerts with false
positives.

After further discussions with the dataset provider we
were told that neither CommTool nor Arcane make use of the
number of bytes sent for a particular request. Nevertheless,
this appears as a source of additional diversity between
Arcane and CommTool. Because Arcane’s output is based
solely on HTTP access logs, Arcane’s detection tends to
improve as the duration of sessions increase. Over time,
Arcane has access to more data and statistics that allow for a
greater confidence in the alerts generated. This could help to
explain why Arcane generates a higher number of alerts
(both true and false positives) when compared to CommTool,
as the number of bytes sent increases.

Taking a deeper look at the number of bytes sent in the
requests, we show in Fig. 4 the average number of bytes sent
for true positives over time. This information is shown for
true positives generated by Arcane, only by Arcane, by
CommTool and only by CommTool. What we see is that, for
either tool, the average number of bytes sent is consistently
higher for true positives they have uniquely alerted on when
compared to all of their true positives (the ones they
generated alerts for along with the other tool). This indicates
that the alerting patterns of Arcane and CommTool appear to
overlap for requests which generate responses with lower
bytes, and as the number of bytes sent increases they diverge
in their alerting behaviour.

Fig. 2. True positives by bytes sent.

Fig. 3. False positives by bytes sent.

Fig. 4. Average bytes sent for true positives.

2) Diversity based on HTTP status
Another area in which Arcane and CommTool seem to

differ in terms of their alerting patterns is based on the
response status for HTTP requests. Table XI is a shortened
version of the true positive counts generated by Arcane,
Arcane-only, CommTool and CommTool-only based on
HTTP response status. When considering that Arcane
generates overall more alerts than CommTool, we can see
that response statuses 302 and 405 are alerted differently by
Arcane and CommTool. Investigating further the unique
alerts generated by the tools we see that Arcane has a much
higher number of unique alerts for HTTP response status 302
(Found), while CommTool is the only tool that generates
unique alerts for status 405 (Method not found). Arcane does
alert for requests whose response status was 405, however it
does not do so uniquely, meaning that, for the case of HTTP
response status 405, CommTool is presented as a superset of
Arcane. From discussions with the dataset provider they
confirmed that this is because CommTool sent a CAPTCHA
at the start of the connection (with status 405). Because it
was at the start of the connection (i.e. the CAPTCHA test
was failed by the bot), CommTool detects it while Arcane
does not.

TABLE XI. TRUE POSITIVE COUNTS BY HTTP RESPONSE STATUS

(SHORTENED).

Status Arcane true positives
CommTool true

positives

200 (OK) 2,167,085 1,123,320

302 (Found) 418,115 143,578

405 (Method not
allowed)

213,929 248,825

Status
Arcane only true

positives
CommTool only true

positives

200 (OK) 1,138,231 94,466

302 (Found) 291,710 17,173

405 (Method not
allowed)

0 34,896

HTTP response status 302 (Found) indicates that the
resource requested has temporarily been moved to another
location, and the response returns a new URL that the client
follows to find said resource. Status 405 (Method not
allowed) indicates that the HTTP request method is not
allowed for the specified resource. In the standard HTTP
specification, the GET and HEAD methods should never
return status 405, however, looking at the 34,896 true
positives that only CommTool raised with this status, these
are split in half between GET and POST (GET=18,750 and
POST=16,146). CommTool-only alerts for status 405 are
raised for two URI’s, that being https://e-retail-domain.com
(anonymised), a total of 18,717 times, and “https://e-retail-
domain.com/fares.action” (anonymised), a total of 12,788.
We note that CommTool has a specific rule to look at the
latter of these URI’s.

Fig. 5 shows the distribution over time for Arcane-only
302 true positives, and CommTool-only 405 true positives.

The fact that these are spread throughout the lifetime of
the dataset indicates that this is a recurring difference
between the tools, rather than a random occurrence.

3) Diversity based on user agent and unique IPs
One way to detect the presence of web scraping activities

is to find evidence of botnets. This is because, as described
previously, attackers often lack the resources to establish a
centralized scraping system, and resort to the use of botnets
to launch their scraping attacks. Evidence of botnet activity
can be found by looking at the parameters sent with each
HTTP request, for example, looking at the value of user
agent. In HTTP requests, the value of user agent describes
the software from where the request originated. Under
normal circumstances, where a human performs a request,
this value takes on the name or description of the browser
that the user utilized. By looking at the value of user agent
across multiple unique requests generated by different client
IPs, we can correlate them in order to detect the presence of
botnets. In Table XII we show the top user agents based on
the number of total attack requests made. For each of them
we show how many requests have been attacks, the number
of unique IP addresses that have used the user agent for
malicious requests, and the number of alerts generated by
Arcane, Arcane-only, CommTool, and CommTool-only.
What we see is that Arcane has a large number of unique
alerts generated for the top 4 user agents (which have been
used by more than 1,000 unique IP addresses). After these
first 4, Arcane ceases to alert uniquely for any user agent.
Meanwhile, CommTool has a lower number of unique alerts
for the top 4 user agents, compared to Arcane, but from there
on appears as a superset of Arcane (i.e. it detects all that
Arcane does and more).

These results are aligned with the way both tools work.
Arcane is primarily server-side, therefore it has the ability to
look at multiple HTTP requests and correlate them together
to find botnets. As such, it is not surprising that it performs
better for user agents which have been used by more unique
IP addresses, as these potentially constitute evidence of
larger botnets. CommTool, being a client-side tool, cannot
look at multiple requests in order to correlate them, instead
analysing each connection individually.

We calculated the sensitivity and specificity rates that
Arcane and CommTool have for each individual user agent.
These are presented in Table XIII for the top 4 user agents
(the only user agents which had unique true positives from
both tools).What we see is that, as the number of unique IPs
using a specific user agent decreases, CommTool’s
sensitivity (true positives) increases. The same appears to be
true for CommTool’s and Arcane’s specificity.

Note that, for user agent (D), specificity cannot be
calculated due to the fact that all HTTP sessions with that
user agent were labelled as attacks.

Fig. 5. Arcane only 302 and CommTool only 405 true positives.

TABLE XII. TRUE POSITIVES BY USER AGENT (SHORTENED).

User agent
Total

attacks
Unique IP
addresses

Arcane true
positives

CommTool
true

positives

Arcane only
true

positives

CommTool
only true
positives

(A) - Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/52.0.2743.116 Safari/537.36 Edge/15.15063

2,775,396 162,149 983,747 537,247 540,126 93,626

(B) - Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0;

rv:11.0) like Gecko

1,109,404 21,195 1,037,946 469,769 581,221 13,044

(C) - Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0;
rv:11.0) like Gecko

705,335 14,783 550,182 293,541 292,321 35,680

(D) - Mozilla/5.0 (Windows NT 6.1; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/61.0.3163.100 Safari/537.36

230,682 1,053 226,742 211,528 16,532 1,318

(E) - Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1;

Trident/5.0)

789 297 590 789 0 199

(F) - Mozilla/5.0 (Windows NT 6.1; WOW64)

AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/53.0.2785.116 Safari/537.36

610 313 23 610 0 587

(G) - Mozilla/5.0 (Windows NT 10.0; WOW64)

AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/53.0.2785.116 Safari/537.36

559 271 11 559 0 548

(H) - Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:49.0)
Gecko/20100101 Firefox/49.0

505 269 16 505 0 489

(I) - Mozilla/5.0 (iPhone; CPU iPhone OS 11_3 like Mac OS X)
AppleWebKit/605.1.15 (KHTML, like Gecko) Version/11.0
Mobile/15E148 Safari/604.1

169 42 34 169 0 135

(J) - Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/59.0.3071.115 Safari/537.36

56 28 0 56 0 56

TABLE XIII. ARCANE AND COMMTOOL SENSITIVITY AND SPECIFICITY

FOR SPECIFIC USER AGENTS

User agent Arcane CommTool

(A)
Sensitivity 35.45% 19.36%
Specificity 38.39% 52.57%

(B)
Sensitivity 93.56% 42.34%
Specificity 83.18% 98.88%

(C)
Sensitivity 78.00% 41.62%
Specificity 91.02% 99.50%

(D)
Sensitivity 98.29% 91.70%
Specificity N/A N/A

By only taking into account Arcane’s alerts for the top 4

user agents we can substantially improve the specificity of
both Arcane by itself (78.51% to 99.81%) and 1oo2
adjudication system (78.37% to 99.60%), while keeping the
sensitivity of the 1oo2 the same (at 61.07%) as shown in
Table XIV (cf. Table V and VIII for comparison).

TABLE XIV. ARCANE TOP 4 USER AGENTS AND COMMTOOL ALL USER

AGENTS SENSTIVITY AND SPECIFICITY.

 Sensitivity Specificity

Arcane 58.002% 99.81%

CommTool 31.42% 99.69%

1oo2 61.07% 99.60%

2oo2 28.36% 99.91%

These results indicate that Arcane only brings benefits
when monitoring user agents used by more than 1000 unique
IP addresses. For any user agent with less than 1000
addresses, Arcane provides no extra benefits in true positives,
and yet provides a lot more false positives.

In Fig. 6 we show the sensitivity rates of each tool as well
as the 1oo2 and 2oo2 configurations when analysing requests
coming from user agents used by less than “x” unique IPs.
What we observe is that, for user agents used by less than

1000 unique IPs, CommTool has a perfect sensitivity value,
while Arcane has a sensitivity rate close to 10%. However,
when analysing user agents employed by more than 1000
unique IPs, Arcane appears as a more sensitivity system,
when compared to CommTool.

We note that, in the dataset we have analysed, there were
no instances of user agents used by more than 1000 unique IP
addresses but less than 14000. This means we cannot
correctly identify with precision, the point at which both
Arcane and CommTool have a drop in their sensitivity rates.

In Fig. 7 and 8 we show the specificity rates of each tool in
the same manner. Arcane (and consequently 1oo2) have the
biggest change in specificity based on the number of unique
IPs using the same user agent, with an increase of roughly
0.02 as the number of unique IPs using the same user agent
increases. For CommTool (and consequently 2oo2), there is a
slight decrease of roughly 0.001 as the number of unique IPs
increases.

Fig. 6. Sensitivity rates when analysing user agents used by less than “x” unique IPs.

Fig. 7. Specificity rates when analysing user agents used by less than “x” unique IPs (Arcane and 1oo2).

Fig. 8. Specificity rates when analysing user agents used by less than “x” unique IPs (CommTool and 2oo2).

D. Diversity in the geolocation of the IP addresses

Figure 9 below shows where the majority of malicious
web scraping requests were made from. It is possible to see
that they mostly originate from central Europe. The
distribution of true positives generated by both Arcane and
CommTool looks identical to that of all malicious web
scraping requests, where both tools generally raised alerts
for central Europe.

Figures 10 and 11 show the distribution of false
positives generated by Arcane-only and CommTool-only.
In this case we see a significant difference in the alerting
patterns. Arcane-only false positives mostly originate from
central Europe once again, but CommTool-only false
positives appear mostly to be coming from Mexico.

Fig. 9. Geolocation of all web scraping requests.

Fig. 10. Geolocation of Arcane-only false positives.

Fig. 11. Geolocation of CommTool-only false positives.

This difference in alerting patterns for the false
positives of either tool likely comes down to the use of
different IP reputation databases. Because the database
used by Arcane is built and maintained by the dataset
provider, it stands to reason that it would contain more IPs
and networks from central Europe, seeing as most
malicious requests observed on their networks are coming
from this area. For the case of CommTool however, the
database of known violators is a global one, and as such,
this pattern differs.

V. DISCUSSION, CONCLUSIONS AND FURTHER WORK

Our results show clear signs of diversity benefits, as
evidenced by the values of sensitivity and specificity for
1oo2 and 2oo2 adjudication systems. There are two major
factors for why we see differing alerting patterns between
Arcane and CommTool:

- Firstly, the mode of operation between the two tools is
substantially different from one another. CommTool
works primarily on the client-side, and most of its
detection capabilities are due to JavaScript tests run on
the client’s device. This translates to a generally faster
decision as to whether a request is malicious or not but
prevents CommTool from correlating between various
different connections. Arcane is exclusively server-
side, and thus is capable of looking and correlating
between multiple different client requests. This means
that Arcane can more easily detect the presence of
botnets. It also means that Arcane outputs more
accurate alerts for longer connections.

- Secondly, the use of different known violator databases
leads both tools to detect different connections. This,
however, is not inherent to their operation modes.

There are also general configuration changes between
Arcane and CommTool that make them alert differently.
Internally, Arcane is used only to analyse HTTP access
logs a posteriori, without taking actions upon them. This is
the case because Arcane is configured more loosely, so as
to generate more alerts overall. Because these alerts are not
acted upon automatically, the company that provided the
dataset can afford to generate more false positives, to
increase the probability of increasing the true positive rate.

Based on the results of our study and the observations
we made through the paper, we derived some practical
recommendations on the diverse deployment of these
tools:

- Arcane provides value for this application only when
monitoring user agents used by more than 1000 IP
addresses. For user agents with less than 1000 IP
addresses, all true positives from Arcane are also true
positives in CommTool, while Arcane also generates a
large number of false positives. For this application it
seems the SOC operator can ignore alerts generated by
Arcane-only for user agents with less than 1000 IP
addresses, as they are highly likely to be false positives.

- The geolocation of the malicious web scrapers for this
application seems to be primarily in Europe. It seems
that IP addresses that are not from Europe and reported
as such by CommTool are more likely to be false
positives for this application. It will be interesting to
see whether this also holds for other applications that
are monitored by the dataset provider.

- Even though the dataset provider confirmed that
neither CommTool nor Arcane make use of the number
of bytes sent for a particular request when making a
decision on whether to alert or not, it appears that the
alerting patterns of Arcane and CommTool appear to
overlap for requests which generate responses with
lower bytes, and as the number of bytes sent increases
they diverge in their alerting behaviour. Because
Arcane’s output is based solely on HTTP access logs,
Arcane’s detection tends to improve as the duration of
sessions increase. Arcane has access to more data and
statistics that allow for a greater confidence in the alerts
generated over time. This helps to explain why Arcane
generates a higher number of alerts (both true and false
positives) when compared to CommTool, as the
number of bytes sent increases. Hence bytes sent seems
to be an interesting parameter to consider when
considering changes to the configurations of these tools

The company that provided the dataset plan to
reconfigure the defences based on the findings and
recommendations made here. We will then do a follow up
study to check if the sensitivity and specificity of the
systems (including the diverse combinations) has improved
in the face of a changing threat profile.

We note that the results presented here are only prima
facie evidence of the usefulness of diversity. More analysis
with more datasets for more applications would enable us
to get more confidence on whether the diversity observed
here is indeed observed more generally in other

applications. To this end current and further work is to
analyse data from more applications to analyse whether
what we have observed here is a typical behaviour of these
tools, or whether they differ markedly depending on the
environment and the nature of the applications monitored.

ACKNOWLEDGMENT

This work is supported by the European Commission
through the H2020 programme under grant agreement
700692 (DiSIEM) and by the UK EPSRC project D3S.

REFERENCES

[1] D. Stevanovic, A. An and N. Vlajic, “Feature evaluation for web
crawler detection with data mining techniques”, Expect Systems
with Applications, vol. 39, no. 10, pp. 8707-8717, 2012.

[2] A. Stassopoulou and M. D. Dikaiakos, “Web robot detection: a
probabilistic reasoning approach”, Computer Networks, vol. 53, no.
3, pp. 265-278, 2009.

[3] A. Al-Bataineh and G. White, “Analysis and detection of malicious
data exfiltration in web traffic”, in 7th International Conference on
Malicious and Unwanted Software, Fajardo, PR, USA, 2012.

[4] B. Littlewood and L. Strigini, “Redundancy and diversity in
security”, Computer Security Esorics, 3193, pp. 423-438, 2004.

[5] M. Garcia, A. Bessani, I. Gashi, N. Neves, R. Obelheiro, “Analysis
of operating system diversity for intrusion tolerance”, Software –
Practice & Experience, vol. 44, no. 6, pp. 735-770, 2014.

[6] S. Singh, M. Cukier and W.H. Sanders, “Probabilistic validation of
an intrusion-tolerant replication system”, in 2003 International
Conference on Dependable Systems and Networks, San Francisco,
CA, USA, 2003.

[7] V. Gupta, V. Lam, H.V. Ramasamy, W. H. Sanders, S. Singh,
“Dependability and performance evaluation of intrusion-tolerant
server architectures, Lecture Notes in Computer Science, vol. 2847,
pp. 81-101, 2003.

[8] P. Bishop, R. Bloomfield, I. Gashi and V. Stankovic, “Diversity for
security: a study with off-the-shelf antivirus engines”, in IEEE 22nd
International Symposium on Software Reliability Engineering,
Hiroshima, Japan, 2011.

[9] P. Popov, A. Povyakalo, V. Stankovic and L. Strigini, “Software
diversity as a measure for reducing development risk”, in Tenth
European Dependable Computing Conference, Newcastle upon
Tyne, UK, 2014.

[10] B. Littlewood and D. R. Miller, “Conceptual modeling of
coincident failures in multiversion software”, IEEE Transactions
on software engineering, vol. 15, no. 12, pp. 1596-1614, 989.

[11] P. Cunningham and J. Carney, “Diversity versus quality in
classification ensembles based on feature selection”, in European
Conference on Machine Learning, 2000, pp. 109-116: Springer.

[12] L. I. Kincheva and C. J. Whitaker, “Measures of diversity in
classifier ensembles and their relationship with the ensemble
accuracy”, Machine learning, vol. 51, no. 2, pp. 181-207, 2003.

[13] D. E. Eckhardt, L. D. Lee, “A theoretical basis for the analysis of
multiversion software subject to coincident errors”, IEEE Trans.
Software Eng., vol. SE-11, no. 12, pp. 1511-1517, 1985.

[14] A. Avižienis, L. Chen, “On the implementation of n-version
programming for software fault-tolerance during program
execution”, Proc. COMPSAC 77, pp. 149-155, 1977.

