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Abstract 

 

Four experiments investigated the classic issue in semantic memory of whether people organize 

categorical information in hierarchies and use inference to retrieve information from them, as 

proposed by Collins & Quillian (1969). Past evidence has focused on RT to confirm sentences 

such as “All birds are animals” or “Canaries breathe.” However, confounding variables such as 

familiarity and associations between the terms have led to contradictory results. Our experiments 

avoided such problems by teaching subjects novel materials. Experiment 1 tested an implicit 

hierarchical structure in the features of a set of studied objects (e.g., all brown objects were 

large). Experiment 2 taught subjects nested categories of artificial bugs. In Experiment 3, 

subjects learned a tree structure of novel category hierarchies. In all three, the results differed 

from the predictions of the hierarchical inference model. In Experiment 4, subjects learned a 

hierarchy by means of paired associates of novel category names. Here we finally found the RT 

signature of hierarchical inference. We conclude that it is possible to store information in a 

hierarchy and retrieve it via inference, but it is difficult and avoided whenever possible. The 

results are more consistent with feature comparison models than hierarchical models of semantic 

memory.



Hierarchies in the Mind  3 

 Hierarchical classification has long been identified as one of the most important aspects of 

human knowledge representation. In the sciences, management, and law, hierarchies have been 

used to structure the relations among domain entities, and tree diagrams representing such 

relations can be found in many different texts. Hierarchical structure has also been found in 

human knowledge representation (Markman & Callanan, 1984; Rosch, 1978). Our concepts 

seem to be structured in levels of classification in which specific concepts fall under increasingly 

higher-level concepts. For example, an object identified as a beach novel also falls under more 

general classes of novel, book, and publication, forming a series of inclusion relations: Beach 

novels are novels, novels are books, and books are publications. 

 The advantage of hierarchical representation has long been noted (Linnaeus, 1758; Quillian, 

1968). The main benefit is that facts known about higher-level concepts apply to lower ones as 

well. So, after learning that all publications have an author, one knows that all novels have an 

author. This is an important benefit, because there are dozens or even hundreds of types of dogs, 

cars, musical instruments, hammers, contracts, investments, cultures, and so on, and if we had to 

learn the properties of each type separately, it would be extremely difficult and time-consuming. 

For example, if you had to learn that Scottish terriers have skin, move, breathe, have livers, have 

a four-chambered heart, and all their other biological properties, you might never get around to 

learning about Airedales, Jack Russell terriers, or Yorkshire terriers (much less poodles). 

However, by knowing that those properties are true of animals or mammals, you don’t have to 

relearn them for dogs, terriers, and every type of terrier separately. Over and above this benefit, 

the power and flexibility of the representational format is greatly increased with the notion of a 

“default hierarchy” (Quillian, 1968), in which lower branches can contain exceptions to the 

general properties stored higher up. For example the fact that penguins do not fly is treated as an 
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exception to the general rule stored higher up that birds do fly. Default hierarchies are an 

essential tool in database design and in knowledge-based systems architecture in Artificial 

Intelligence, suggesting their direct relevance for representing human conceptual knowledge. 

 The hierarchical structure of categories seems to be descriptively correct of a significant 

subset of semantic memory, but what is less well understood is how that knowledge is stored and 

accessed in memory. A major research question in the 1970s proposed two general approaches to 

explaining hierarchical structure (see Smith, 1978, for an excellent contemporary review). One 

view proposed that something much like an actual hierarchy was represented in memory, through 

an associative network in which different categories were connected by “IS-A” links: a terrier IS-

A dog, a dog IS-A mammal, and so on (Collins & Quillian, 1969). To represent the information 

associated with each category, other links such as “HAS” or “CAN” would connect properties to 

the categories. So, the dog concept would have a HAS link to the legs concept, and the animal 

concept would have a CAN link to the breathes concept. Such a structure follows the principle of 

cognitive economy. By linking “breathes” to the animal concept, one does not have to link it to 

the concepts of fish, birds, mammals, and all of their many subtypes—the information is placed 

at the highest level in the hierarchy only. However, a corresponding drawback to such efficiency 

is that processing is slowed when deriving general features for lower-level categories (Collins & 

Quillian, 1969). To realize that Airedales breathe, one must traverse the hierarchy through the 

concepts dog and mammal to arrive at animal, which is linked to the breathes feature. Similarly, 

classification judgments such as that an Airedale is a living creature, require traversing the links 

in memory between Airedale and the living creature concept, which must take longer than 

judging that the Airedale is a dog, since these two concepts are linked directly. In short, there is a 

distance effect between levels of the hierarchy, such that the farther apart information is stored in 
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the hierarchy, the longer it takes to retrieve or confirm it. Although Collins and Quillian found 

such a distance effect, others have not or have questioned whether it is due to the inferential 

process they propose (see Chang, 1986; Smith, 1978). 

 The inferential-network model has had as much lasting power as any idea in cognitive 

psychology. A survey of our cognition textbooks finds very similar illustrations to Collins and 

Quillian’s (1969) Figure 1 in almost every one, ranging from 1972 (Lindsay & Norman, 1972) 

through 2010 (Ashcraft & Radvansky, 2010). 

 A different approach to hierarchies in semantic memory proposes that the hierarchies are 

only implicit in our category knowledge rather than characterizing memory structures. Instead, 

each concept is represented by its defining and characteristic features (Smith, Rips, & Shoben, 

1974). The relations between the features of different concepts would define their categorical 

relation, if any. For example, the concept animal is associated with the relatively few features 

that are common to (all) animals. To decide whether an Airedale is an animal, one could check 

whether those animal features are found in the features known of Airedales: Given that Airedales 

move independently, breathe, and reproduce, they must be animals. This feature-comparison 

process yields no distance effect. Furthermore, given that categories are associated to 

characteristic features, the similarity of two concepts could determine how long it took to judge 

their relation, independently of their distance in the hierarchy. Such typicality effects are 

extremely widespread (Hampton, 1979; 1997; McCloskey & Glucksberg, 1979; Rips, Shoben, & 

Smith, 1973; Rosch, 1973; Rosch & Mervis, 1975). 

 Ultimately, these two approaches generated considerable research but no clear resolution. 

Chang’s (1986) comprehensive review makes it clear that all models have unexplained 

phenomena. Our interpretation of this is that people take advantage of both processes proposed 
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by these approaches, in various combinations. Imagine that you were to learn that your friend has 

a new kind of dog, a muffelet. Without knowing anything about it, you can infer that muffelets 

have four legs, breathe, probably bark, wag their tails, and so on. You would hardly be puzzled if 

your friend said that her muffelet chewed up her slippers. Since you have no features associated 

to the name muffelet, you couldn’t have been using the feature comparison process to draw these 

conclusions but were likely performing the kind of inference envisioned by Quillian’s theory: 

The muffelet chews slippers because it is a dog, and that is what juvenile dogs do. On the other 

hand, the evidence that this inference process takes place when making judgments about familiar 

categories is weak. The distance effect is often not found and unpredicted effects often are 

(Chang, 1986). Sometimes inference is not transitive, as it should be according to this view 

(Hampton, 1982). 

 Hampton (1997) demonstrated that categorization can use both stored associations and 

featural similarity, finding independent effects of category production frequency (how likely an 

exemplar is to be generated as a category member) and typicality (how representative a member 

is of its category) on categorization times. A double dissociation was obtained, with a priming 

task removing frequency effects, and a manipulation of task difficulty affecting typicality effects 

(see also Moss et al., 1995). Similarly, Kounois, Osman, and Meyer (1987), in a study using 

speed-accuracy decomposition, proposed fast retrieval of some facts followed by a slower 

feature comparison process as one explanation of their results. 

 Typicality effects fall more readily out of the similarity-comparison model (McCloskey & 

Glucksberg, 1979; Smith et al., 1974), and it now seems to be the more popular approach—

except for a general rejection of the notion of defining features (Hampton, 1979; Rosch, 1973). 

However, even featural similarity may not explain all category judgments (e.g., Hampton, 1998). 
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More Recent Approaches  

 The importance of hierarchically organized knowledge has been recognized in recent models 

of semantic memory, most notably the very ambitious project of Rogers and McClelland (2004; 

see Close & Pothos, in press, for an alternative). They addressed issues of why very general 

categories may be learned first and are the most resistant to effects of brain damage. They also 

addressed the presence of a preferred, basic level of categorization (Rosch, Mervis, Gray, 

Johnson, & Boyes-Braem, 1976). 

 Their connectionist model does not align neatly with either of the two previous approaches. 

They used a Rumelhart network in which input nodes interpreted as objects activate two hidden 

layers, which, along with context units, activate an output layer containing features and category 

names. After training, the network was able to respond that a given object breathes or is a canary. 

The context units refer to behaviors/functions, properties, and names, serving to selectively 

access the information in the output layer. So, with one context unit activated, the network might 

respond that a given object has legs, wings, and eyes; with another context unit activated, the 

same object might yield the response that it is a canary and a bird. 

 Because of the distributed nature of the conceptual representations and the network 

architecture, the Rogers and McClelland model is different from the two approaches we have 

been discussing. Perhaps the greatest difference is that there are no “concept nodes” in the 

system. Input nodes correspond to objects, and output nodes include features and the objects’ 

names. In between are hidden nodes that form semantic representations of the kinds of objects 

the network has learned. There is no node corresponding to the concept of canaries, which is then 

related to its features or subordinate and superordinate categories. Instead, the semantic 

representations in the hidden layers activate various features in a graded response. This directly 
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yields typicality effects, as typical objects (like robins) will activate category names and 

properties most strongly, whereas less typical objects (like penguins) will activate them less 

strongly. 

 There is no distance effect in the network corresponding to the Collins and Quillian inference 

effect. The semantic representations activate specific and general names, and there is no link 

between the names themselves. As a result, their model does not provide a simple way to 

evaluate statements such as “A robin is a fish.” However, following a procedure they use for 

introducing novel category exemplars (p. 64), one can derive a way for the model to answer such 

questions. If the node representing the first term of the sentence is activated, that activation can 

be backwards-generated to derive the hidden layer representation that is most compatible with it 

(the prototypical robin). Then, that activation pattern can be run forward in order to discover 

whether the second term of the sentence is activated (whether the prototypical robin is a fish). As 

this description shows, name activation in the model occurs through semantic representations 

and not through networks of associations between categories or category names. As a result, this 

model is closer to the feature-based accounts of semantic memory than to the network-based 

accounts. It seems very likely that the model, like Smith et al.’s (1974), could predict that some 

long-distance inferences like “A penguin is an animal” are faster to confirm than short-distance 

links like “A penguin is a bird,” if the penguin’s features overlap more with the typical animal’s 

than with the typical bird’s. (Indeed, Rogers & McClelland, 2004, ch. 5, document in detail the 

effects of the similarity of such atypical items to other categories.) 

 In summary, Rogers and McClelland’s (2004) semantic memory model seems much closer to 

the featural approaches, as do recent competitors such as Close and Pothos (in press). It clearly 

does not contain a hierarchical network of associations that directly lead to the Collins and 
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Quillian effects, and its predicted effects are largely based on semantic similarity and details of 

the learning regimen (ch. 5). In Experiment 2, which had stimuli comparable to their simulations, 

we will attempt to draw specific predictions from their model. 

The Present Study 

 It is not our intention to attempt to resolve the semantic memory debate 25 years on. If our 

conclusion is correct, there is no simple right answer to the question of how hierarchical 

information is represented. It may be either inferred or explicitly represented, depending on the 

categories and features. As people become experts or learn specific facts, their knowledge could 

pre-empt more general retrieval processes. Someone with great experience with killer whales 

might well store the fact “killer whales breathe air” but would not store the fact “robins breathe 

air.” Therefore, retrieving information about breathing killer whales might not involve 

hierarchical inference, whereas retrieving this fact about robins might. 

 One reason for confusion in the literature is that researchers do not have experimental control 

over the stimuli of semantic memory and people’s experience with them. People may form 

implicit categories such as four-legged mammals, which investigators do not take into account, 

making predictions of hierarchical distance incorrect. People may also have learned some of the 

specific categorical relations tested in an experiment, like whales being mammals, but have 

never even encountered others. Familiarity with properties and categories has also been argued to 

underlie some effects (Malt & Smith, 1982; McCloskey, 1980). Such confounding variables 

could obscure the basic properties of semantic memory retrieval but are very difficult to control 

in naturally occurring semantic domains. 

 In part because of such problems, it is still not clear how people structure and retrieve 

information from hierarchically organized domains. One important question is whether people 
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spontaneously form memory structures of the Quillian type—efficient hierarchical networks of 

associations. Although such a structure seems ideal, in practice people may make redundant links 

or omit links in a way that results in a much more complex memory structure. Another question 

is whether retrieval of information about hierarchically structured material has the profile that 

Collins and Quillian (1969) originally identified for it, and in particular, whether it shows the 

distance effect. Later theorizing weakened that prediction (e.g., Collins & Loftus, 1975), but this 

was in large part due to uncontrolled associations of the whale-mammal sort. 

 Whether people form internal hierarchies when all those confounding variables are absent 

remains an open question. Our goal was to investigate not retrieval of information from familiar 

semantic domains but the underlying psychological question of whether people create and use 

mental hierarchies when the conditions are ideal to do so. The answer to this question will then 

inform the debate about how information is stored in the messier, more complex world of actual 

semantic memory. If people do not form mental hierarchies even under these ideal 

circumstances, this will cast strong doubt on whether such hierarchies play a role with real 

semantic information. If they do so, this will suggest a stronger potential role for such hierarchies 

in everyday semantic memory. 

 Our approach was to teach people novel, hierarchically organized information and then to 

perform the classic tests of information retrieval. In the first experiment, the hierarchy was 

implicit in the features of a set of learned exemplars. For example all the shapes of a given color 

were always shaded in a particular manner. In this case, people would have had to notice the 

hierarchical structure on their own and use it to represent the information. Since it is possible that 

the usual profile of hierarchical retrieval will only be found when the information is presented as 

explicitly hierarchical (“Robins are birds; birds are animals.”), in a further two experiments we 
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explicitly taught people this information. An early experiment by Smith, Haviland, Buckley, and 

Sack (1972) also taught people hierarchies with novel features. However, their hierarchies were 

considerably more modest than ours, and they used already familiar categories such as hawk-

bird-animal. Thus, they did not avoid the problems associated with familiar items. 

 Like the traditional semantic memory literature, our experiments focused on categorical 

relations, comparable to verifying sentences such as “A fish is an animal” or “A claw hammer is 

a tool.” The main effect to be expected according to the hierarchical retrieval model (Collins & 

Quillian, 1969) is the distance effect. When the two categories are directly linked, confirming 

their relationship should be faster than when there is an intervening category; and that should be 

faster than when there are two intervening categories. By using novel categories and names, we 

avoided problems such as implicit categories people might form (e.g., four-legged mammals) 

and specific facts that people might memorize, pre-empting inference (e.g., killer whales being 

mammals and breathing air). 

 Learning hierarchically organized categories is not a trivial task. People can only learn and 

remember so much information in an experimental session, and hierarchies have the unfortunate 

property of expanding by a factor of two or more with each level that is added. (If they do not, 

then they are probably not really hierarchies, as we explain below.) We constructed hierarchies 

with four levels, each of which had a binary branching structure. However, we pruned the 

category tree in order to limit the number of categories to be learned. 

 Past research using a similar method has found that order of learning the levels can have an 

effect. Murphy and Smith (1982) found that the first-learned level was faster in perceptual 

classification, and it is likely advantaged in sentence verification tasks as well. We addressed this 

issue by using two different learning orders. If there is a distance effect, it should be present 
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when averaged across such orders. In addition, there may be an effect of the overall level of 

category asked about. For example, questions involving the highest level of categories could be 

answered faster than those involving lower levels, as in Rogers and McClelland’s (2004) model. 

The distance and level effects can be partly separated (see below), and the effects of these 

different variables should give insight into how hierarchical information is represented and then 

retrieved. Of course, retrieving information from recently learned material may be different from 

retrieving it from very familiar concepts, a possibility we address in the General Discussion. 

 Our expectation was that under some conditions, with the confounds of differing familiarity 

and pre-emptive associations gone, people would show the classic distance effect proposed by 

Collins and Quillian (1969). We thought it was an open question whether such evidence of 

hierarchical memory structure would be found in all conditions or only when the hierarchy was 

clearly evident. The pattern of results would be revealing about when we might expect such 

effects in natural categories. However, our expectations were not actually met, as we did not find 

distance effects until Experiment 4, and so we postpone consideration of interpretations until the 

General Discussion. 

Experiment 1 

 The first experiment used a set of items that had an implicit hierarchical structure: The 

properties of the stimuli were structured in inclusion relations as shown in Figure 1. The stimuli 

were all rectangular colored shapes with different sizes, screen locations, and textures. Initially, 

people simply studied these shapes for a memory test. Afterwards, they judged the truth of 

sentences about the stimuli, such as “All pink things are empty” or “All left things are small.” Of 

the possible ways of establishing a hierarchy, this condition is perhaps the least amenable  to the 

classic distance effect, since the “categories” were never explicitly learned but were implicit in 
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the stimuli. Finding a distance effect here would therefore provide the strongest evidence for the 

hierarchical representation of information. 

 Each item is described by a vertical path through the taxonomy. For example the first 

stimulus in Form B (Figure 1) was striped, red, large, and on the left; another stimulus was 

empty, red, large, and on the left. Because there were ten such paths in the taxonomy, there were 

ten distinct items, although subjects saw many examples of each one. We limited the size of the 

hierarchies by not using the complete binary branching structure, which would have resulted in 

16 distinct items and 32 nodes in the taxonomy. This seemed too many for people to learn 

accurately (and this was especially true for later experiments when we taught the categories 

explicitly). Therefore, we divided each taxonomy into two branches: a fully branching hierarchy 

and a pruned branch with only one stimulus. For example, in Figure 1, Form B, the left 

taxonomy is divided into a fully branching hierarchy (the large items) and the pruned branch (the 

tiny, black, wavy figure). The pruned branch was necessary to obtain four distinct levels. To 

understand why, consider the pruned branch itself. We have maintained its levels of attributes in 

the figure so that size is the second level, color the third, and texture the fourth, as in the rest of 

the stimuli. In reality, there is no way to establish higher or lower-order attributes when there is 

no branching. That is, although all wavy things are black, all black things are also wavy; 

although all black things are tiny, all tiny things are black. Therefore, none of these attributes is 

“above” any of the others, because none of them includes two different kinds of things. The 

feature tiny would be above black only if there were two or more colors of tiny things, so that the 

colors are a subset of tiny objects. For the same reason, in order to ensure that the category of 

things on the left is superordinate to large things, there need to be two kinds of left things, and 

the same for right things. (That is, without the pruned branch, left and large would be at the same 
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level.) Thus, the pruned branches were necessary to establish the taxonomic structure shown, but 

they were not themselves organized hierarchically and were not involved in the predictions. 

 We used two different sets of materials that had the identical taxonomic structure but with 

different attributes at each level. In Form B, location was at the top level, followed by size, color, 

and texture. In Form A, size was at the top, followed by location, texture, and color. This helped 

to ensure that the effects would not be due to idiosyncrasies of a particular property. We could 

not create four different versions with each dimension (shape, texture, color, size) at each level, 

however, because people could not learn to distinguish ten different sizes or locations (at the 

bottom level), whereas they could distinguish ten colors or textures. 

 The goal of the experiment, then, was to discover whether people formed a hierarchical 

memory structure of the sort shown in Figure 1 and retrieved information in the classic manner 

indicated by the distance effect. For example, if those who learned Form B realized that there 

were two different kinds of large figures, red and green, and that the green items were either 

dotted or zig-zagged, then they might be very fast to verify that all dotted items are green 

(distance = 1) but slower to verify that all dotted items are large (distance = 2).  

 We also considered an alternative process, in which people used exemplar retrieval to judge 

the sentences. When answering whether all dotted shapes are green, one could attempt to retrieve 

examples of dotted shapes and see if all are green. After completing retrieval, failure to identify 

any non-green items would lead to a “true” answer. In contrast, if asked whether all striped 

things are green, retrieval of remembered striped exemplars should lead to the recall of red 

striped objects, yielding a “false” answer. 

 This exemplar retrieval strategy does not yield a distance effect. It should be just as easy to 

verify that dotted items are all green (in Form B) as to verify that they are all on the left, because 
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all of the retrieved dotted items are both green and on the left. The fact that many other items are 

on the left (leading to its higher placement in the taxonomy) does not affect this decision. 

However, what should lead to difficulties in the exemplar strategy is the size of the subject 

category in true trials. There are relatively few dotted figures, so retrieving and judging them 

should be simple. There are four times as many large figures in this hierarchy, so any judgment 

about them should require more retrieved items, leading to longer RTs. As a result, there should 

be a level effect, such that questions about higher-level categories take longer: “All dotted things 

are green” should be confirmed faster than “All large things are left.” In contrast, if people form 

a taxonomic structure in memory and use it to retrieve information, there should be a clear 

distance effect (“All dotted things are green” much faster than “all dotted things are left”) but no 

strong level effect. 

 In summary, in Experiment 1, people memorized colored figures whose features were 

structured in a hierarchy. They were tested in the standard semantic memory sentence 

verification task. In particular, we looked for evidence of distance and level/category size effects. 

Method 

 Subjects. Twenty-four students from New York University received course credit for their 

participation in the experiment. They were tested individually on a PC. 

 Materials. Two hierarchically structured sets of colored shapes, Forms A and B, served as 

the stimuli. The taxonomies had four levels, each level represented by a particular feature 

dimension: size, position on the screen, pattern, and color. The assignment of features to levels in 

the hierarchical structure was different in the two forms, as shown in Figure 1. The taxonomy’s 

branching was binary with the exception of one pruned branch described above (see Figure 1). 

Each taxonomy defined ten types of exemplar, which were the stimuli shown to the subjects in 
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the learning phase. 

 Forty sentences of the form All S things are P were constructed for purposes of sentence 

verification, where S and P referred to features in the taxonomy (e.g., green, tiny, left), e.g., All 

red things are spotted. We describe sentences with a numerical code in which the first digit 

represents the level of the S term in the hierarchy, and the second digit represents the level of the 

P term. This represents both the level of the sentence (the taxonomic level of the S term) and, 

implicitly, its distance (the difference between the two numerals). Sentence 2-4 is thus a sentence 

where the first term is from the level 2 and the second term from level 4, yielding a distance of 2. 

The true sentences were constructed so that each feature from one level was paired with all the 

values above it in the hierarchy. This resulted in the lowest features appearing in sentences of 

distances 1, 2, and 3, when they were paired with the features at levels 2, 3, and 4, respectively. 

Features at level 2 varied in distance from 1 to 2, and features at level 3 only had true sentences 

with distance of 1. 

 An equal number of false sentences were constructed by pairing S features with higher-level 

features that did not appear above them in the taxonomy. These false P features were the nearest 

neighbor to the true P features. For example, in Form B a true sentence was “All starred things 

are brown,” and the corresponding false sentence would be “All starred things are blue,” since 

blue is the sibling of brown in the taxonomy. This type of false item was used by Smith et al. 

(1973; see Table 1) and Collins and Quillian (1969; they also used same-level false items in 

Experiment 2). This design has the desirable property of yielding equal numbers of true and false 

responses for each S and P term, even though there are more possible true statements for lower-

level than higher-level categories. Since the number of possible sentences decreases at the higher 

levels in taxonomy, the sentences of the 3-4 type were repeated, resulting in a total of 42 true and 
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42 false sentences in the test. 

 Procedure. Subjects were randomly assigned to one of the two forms. There were two 

phases, learning and sentence verification. In the learning phase, subjects observed all exemplars 

from the taxonomy they were studying. We wanted to ensure that subjects would attend to all the 

features of an item and also that they would encode them using the words that would be tested in 

the test phrase. Therefore, a verbal description of the item’s features appeared for 4 s in a 

randomized order (e.g. pink, empty, left, large). After an ISI of 1 s, the image of the exemplar 

with the listed features was presented for 5 seconds. Subjects were instructed to learn the 

attributes of the presented objects. Subjects were also instructed to think of features of the 

exemplar in exactly the terms presented before the image because they were going to be tested 

on verbal descriptions of features later during the experiment. Nothing else was said about the 

nature of the upcoming test. The exemplars were presented in three randomly ordered blocks for 

a total of 30 presentations. 

 After the learning phase, subjects performed sentence verification. All sentences were 

presented in each of two blocks in a randomized order. On each trial, a fixation cross was 

presented for 500 ms in the left middle of the screen and then replaced by the sentence, which 

remained on screen until response. The next trial began 1 s after response. Subjects were 

instructed to respond as fast as they could without sacrificing accuracy. 

Results 

 The main theoretical questions involve the effects of level (of the S term) and distance 

(between S and P). However, the nature of hierarchies does not permit a completely crossed 

design with these two variables, because as level in the hierarchy increases, the greatest possible 

distance decreases correspondingly. Therefore, we performed two analyses that focused on the 



Hierarchies in the Mind  18 

theoretically significant variables. In an analysis of level, we kept distance constant at 1 and 

varied the level of the S term. In an analysis of distance, we kept the S term constant at level 1 

and compared the distances 1-3 created by varying the P term. Correct reaction times (RTs) 

within 2 SD of the condition mean for each subject were included in the analyses. Four subjects 

with missing cells were omitted from the RT analysis of level in true sentences. Table 1 shows 

the mean RTs and accuracies of each condition (including all subjects). 

 The first analysis tested the effect of the level of the S term in true sentences by including 

only sentences with distance 1 (i.e., sentence types 1-2, 2-3, and 3-4) in a 2 X 3 ANOVA with 

variables form (A or B) and level (1-3). The effect of the level was reliable, F(2, 36) = 11.13, p < 

.01, as RT increased steadily from level 1 to level 3 (2157 to 2525 to 2746 ms). There was also a 

main effect of form, F(1, 18) = 7.03, p < .02, as well as an interaction of the two variables, F(2, 

36) = 7.00, p < .005. Form B showed a particularly large increase from level 2 to 3 (3044 to 3846 

ms), with a smaller increase from level 1 to 2 (2721 to 3044ms), whereas in Form A, the greatest 

difference was between levels 1 and 2 (1781 to 2178ms), with levels 2 and 3 about the same 

(2178 and 2012 ms). These effects appear to have been caused by greater difficulty in answering 

questions about location (top, left, bottom, right), perhaps due to the slightly unusual syntax of 

these sentences (“Striped things are top”), which was used to maintain uniformity of the 

questions across features. In any case, there was a strong effect of the taxonomic level of the S 

term. 

 Analysis of the accuracy data (see Table 1) yielded a similar pattern. There was a strong 

effect of level, primarily shown by a reduction in accuracy at level 3 (only 57% correct, 

compared to about 72% for the other levels), F(2, 44) = 10.30, p < .001. There were again effects 

of form, F(1, 22) = 14.97, p < .002, and the interaction of form and level, F(2, 44) = 14.05, p < 
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.001. As in the RTs, the biggest effect was between levels 2 and 3 in Form B.
1
 

 The second analysis used only sentences whose S term was at the lowest level, varying the 

distance of the P term. There was no distance effect in the RTs, F(2, 44) = 1.21, nor was there an 

interaction with form, F < 1. Form B was slower overall, as before, F(1, 22) = 9.42, p < .01. 

Thus, the signature effect of retrieval from hierarchical memory structures was not obtained. The 

analysis of accuracy data had the same pattern, with no effect of distance p’s > .10, but 

marginally higher accuracy of set A, F (1, 22) = 3.65, p < .10. 

 We also analyzed the results of the false sentences. Such sentences do not allow as firm 

predictions as the true ones, absent a clear model of how the false answer is derived. (For 

example, Collins & Quillian, 1969, considered three different proposals for how false sentences 

were evaluated, none of which received strong support. See Holyoak & Glass, 1975, for more 

discussion of false judgments.
2
) 

 In the levels analysis, there was a main effect of level, such that level 3 was slower than the 

lower levels, F(2, 44) = 13.96, p < .001. The pattern was stronger for Form B, but was found in 

both, F(2, 44) = 3.60, p < .04, for the interaction. And Form B was again slower overall, F(1, 22) 

= 7.01, p < .02. There was only a marginal effect of level on accuracy, F(2, 44) = 3.12, p < .06. 

 As in the true sentences, there was no significant distance effect, F(2, 44) = 1.60, p > .20, and 

Form B was slower than Form A, F(1, 22) = 8.90, p < .01. In accuracy, there were no significant 

                                                 
1
 Recall that subjects with missing cells were excluded from the RT analysis. We included all 

subjects in the accuracy analysis, since errors are not missing data there. However, the 

interaction with form was much stronger in the accuracy data, apparently reflecting a number of 

subjects in Form B who did not learn the taxonomy well or who reversed left and right. 

Therefore, the RT data probably are a better reflection of memory retrieval by people who 

successfully learned the categories. 
2
 Indeed, a reading of the literature suggests that no account of false items has been generally 

accepted. Different kinds of false items may be answered in different ways (e.g., “close” items 

by a search for contradiction, and “distant” items by similarity judgment). In our data, the false 

items tended to show similar effects as the true items, though often weaker. 
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differences at all. In short, the false sentences were quite similar to the true sentences. 

Discussion 

 As one might expect, there were some idiosyncratic effects of the different features that 

characterized the levels in our hierarchy, such that people found it somewhat difficult to keep 

track of location and also seemed to find the two-size alternation easier than distinguishing four 

sizes. Such effects probably account for the interactions involving set. However, what is striking 

is that the results do not show a distance effect. Instead, the strongest effect is that people took 

longer to answer questions when the S term was higher in the taxonomy—that is, when it 

included a larger set. Figure 2 illustrates the two effects for the true RTs. 

 This profile of results is not consistent with the hierarchy-in-memory notion originally 

proposed by Collins and Quillian (1969). Instead, it seems much more in keeping with a strategy 

in which people retrieve exemplars using the S term as the cue, and then test them to see if they 

have the P feature. The number of exemplars retrieved by the S term would clearly affect RT, as 

the more items to be checked, the longer it will take to arrive at an answer. However, the 

distance in the taxonomy between S and P should have no effect on RT, since there is no 

“distance” between features in retrieved exemplars. 

 It is interesting that category size influenced RT, because people could have answered the 

“All” question via a simpler “Some” question and not produced this effect. If one empty square 

was large, then all empty squares were large, and so other empty squares didn’t need to be 

checked. However, answering the “Some” question actually makes the false sentences more 

difficult. A single counterexample can disconfirm an “All” sentence, but all items have to be 

checked to disconfirm “Some” statements. That may explain why subjects apparently did not 

adopt this strategy, taking longer to answer questions about the larger categories. 
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 An important result is simply that people could confirm the hierarchical structure of the 

stimuli in spite of not having been trained on the hierarchy, or, indeed, its ever having been 

mentioned. As we noted in the Introduction, hierarchical structure can be implicit in semantic 

memory; here, by retrieving memories of individual exemplars, hierarchical relations could be 

accurately evaluated without being directly represented. There was one clear failure of this 

process, involving the highest level of set B (where four subjects had zero accuracy), which we 

suspect has to do with left-right confusion of some kind. Either the subjects reversed the 

directions or suffered response competition (when confirming a correct statement about a figure 

being on the left, they might have pressed the left button rather than the “true” button on the 

right). However, even when these subjects were omitted, the RT results showed a level effect and 

no distance effect. 

 One limitation of this study is that the nodes in the hierarchy are not traditional categories but 

rather features. The taxonomy in Figure 1 does not refer to classes of entities like Airedales, 

dogs, and mammals, but rather to properties of the entities. There is much similarity between 

these two situations, as a given item is simultaneously in all its higher-level categories in both 

cases. In Figure 1, a single item is checkered (level 1), brown (level 2), small (level 3), and on 

the right (level 4). Similarly, a given Airedale is also a dog, a mammal, and an animal. However, 

the latter categories are not defined by a single feature and generally have nouns as names rather 

than the adjectival forms used in our taxonomies. For these reasons, we turned next to teaching 

people category hierarchies of the more traditional sort. Unlike Experiment 1, the hierarchical 

structure was now very transparent during the learning process itself. After subjects had learned 

the lower-level categories, when they were then taught higher-level categories it was 

immediately apparent that the stimuli just learned were also in these categories. Experiment 2 
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asks whether subjects will encode such categorical relations into memory and confirm statements 

using the resulting hierarchical structure. 

Experiment 2 

 Figure 3 depicts one of the taxonomies used in Experiment 2, and Figure 4 shows exemplars 

of two categories, HOBNIKs and LARs. The stimuli were schematic drawings of bugs which 

varied in their shape, pattern, number of legs, and color. We constructed categories at four 

different levels, as shown in Figure 3, by successively combining lower-level categories into 

more general ones. To make learning easier, the categories at each level were defined by the 

features of the category immediately above them together with one new stimulus dimension to 

differentiate the categories at that level. For example, the highest-level categories separated the 

two shapes, oval and angular, and the next level additionally grouped the bugs by the number 

and arrangement of their legs, and so on. As in natural categories, more specific categories were 

therefore associated with more features—SUPs were rounded; ZIMs were rounded, brown, 

spotted, and two-legged. Each category was given a pseudo-word name. 

 The learning procedure and structure of the stimuli made it clear that the categories were 

hierarchically organized, but subjects did not see a depiction of that hierarchy, nor were they 

trained on the IS-A relations (cf. Experiment 3). Therefore, it was possible for a subject to learn 

all the categories without abstracting the hierarchical structure. Our assumption was that most 

subjects would identify the inclusion relations, and the question was whether they would form a 

memory structure in which the hierarchical connections have functional consequences. In 

particular, would they form something like the tree structure shown in Figure 3 and use the links 

to draw inferences such as all BOTs being LAMMELs? Because all our subjects would have had 

vast experience with hierarchically organized categories, it seems very possible that they would 
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abstract the categorical hierarchy, and we would now find the distance effect we did not observe 

in Experiment 1. 

 Rogers and McClelland (2004) taught their network hierarchies of roughly this sort. They 

generally found that when category names did not have their frequencies restricted, the highest 

level categories were learned fastest and were more strongly activated after learning. However, 

when they provided category names in learning proportionally to their real-life frequencies 

(basic-level category terms much more frequent than superordinates), they then found a basic-

level advantage. In our experiment, frequencies were not specifically controlled: During learning 

each category received its own page depicting its exemplars, and in the tests each object had all 

its names tested equally often. Such uncontrolled frequencies result in larger categories being 

tested more often (as in Rogers & McClelland’s earlier simulations), because there are more 

animals (SUPs) than there are birds (LARs), and so animal would be tested more than bird in 

such a paradigm. Therefore, we suggest that if Rogers and McClelland’s approach is 

psychologically correct, we should find that the highest-level categories have an advantage in 

this task, as in their simulations with uncontrolled frequencies. This is because networks have a 

preference to learn broader distinctions before narrower distinctions and because the unequal 

frequencies favor the higher levels. As a result, sentences about the higher levels should be 

answered faster than questions about lower levels. 

Method 

 Subjects. We tested 33 NYU undergraduates. Since the RT data are only interpretable for 

subjects who correctly learned the categories and their relations, we analyzed the data only from 

the 23 subjects who scored 85% or higher on the categorization and sentence verification tasks 

described below. Given the amount of material to be learned, this high drop-out rate was not 
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unexpected. 

 Materials. We designed a hierarchically structured set of schematic bugs. The bugs differed 

in their shape (oval or angular), pattern (striped, spotted, empty, or solid), number and 

arrangement of legs, and color (red, blue, brown, orange, white, light blue, green, pink, gray, and 

violet). The hierarchy was produced by nesting the categories in four levels, as shown in Figure 

3. Each level was characterized by distinctions in different stimulus dimensions. The top two 

categories distinguished bugs on the basis of overall shape; categories at the next level also 

differed in pattern; the next categories differed also in the number and arrangement of legs; and 

the lowest categories also differed in color. This structure avoided creation of a basic level in 

which information would be accumulated at one preferred level of categorization (Murphy, 2002, 

ch. 7). Each category received a pseudo-word name. Within the most specific categories (e.g., 

NOP or PIM), there were two bugs with identical values on all four dimensions but differing in 

size. Thus, all categories contained multiple distinct objects. 

 For the study phase, we prepared a sheet of paper for each category containing its name and 

pictures of all the bugs in that category: 16 bugs for the top level, and 8, 4, and 2 bugs for the 

lower levels. 

 Sentences for the verification test were construvted in the form “All Ss are Ps.” True 

sentences matched an S term with a P term at a higher level of the same taxonomical branch. 

There were 34 such sentences. False sentences matched the S term with the nearest 

corresponding category name from the higher level not on the same branch of the hierarchy. For 

the ZIM category, the false sentences would be “All ZIMs are LARs,” “All ZIMs are MAZes,” 

and “All ZIMs are LAMMELs.” There were 34 such false sentences. As in Experiment 1, we 

repeated the true and false 3-4 sentences to result in 72 total test sentences. 



Hierarchies in the Mind  25 

 Procedure. Subjects were randomly assigned to one of two learning orders in the study 

phase. In the bottom-up order, they learned category names at the lowest level in the taxonomy 

first, and then progressed to the second, third, and fourth levels. The top-down order was the 

reverse. At the beginning of the study phase, subjects were told they would learn categories of 

artificial bugs whose drawings would be presented on separate pages and that their task was to 

learn the bugs’ names such that they could produce the name when presented with a drawing of a 

bug. They were informed of the relevant stimulus dimensions. After reading the instructions, the 

experimenter handed the pages containing the categories of the first level to be learned. For 

example, if the order of learning was bottom-up, the subject would first receive eight pages each 

presenting a category belonging to the lowest level of the taxonomy. The subjects were told that 

they could choose any way of learning the categories’ names they liked and that they should call 

the experimenter when they felt they had learned the categories. 

 Subjects then took a test on their knowledge of the categories. The computer presented a 

single bug together with a list of category names from the corresponding level in the taxonomy. 

Subjects had to choose the correct category name of that bug. For example, after learning the 

third level of the taxonomy, FACNER, MAZ, REL, and NURIS, the subjects would view all the 

bugs one by one and press a key corresponding to one of these four names. Subjects received 

feedback on their responses. If any response was incorrect, the subject had to review the 

drawings and repeat the test until performance was perfect. 

 After successfully passing the test of each level and completing the study phase, subjects 

reviewed all the categories that they had previously learned. The experimenter handed all the 

pages of each category of bugs to the subject in the same order in which they were learned in the 

study phase. The subjects were thus able to remind themselves of all categories and their names. 
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The categorization task was then conducted on a computer. A category name appeared for 1000 

ms followed by a blank screen for 500 ms, and then a picture of a bug. The subjects’ task was to 

respond by pressing the “Yes” key if the presented bug was a member of the category and “No” 

if it was not. There was no feedback, and the next trial started 500 ms after the response. Each 

bug was paired with all its true category names. The false items were produced by matching a 

bug with the closest incorrect category from a particular level. There were 48 pairs of bugs and 

category names in total, tested in a random order. The subjects were told that they had unlimited 

time to respond and that they should try to be as accurate as possible. 

 After the categorization task, the subjects performed the sentence verification task. There 

were two blocks, resulting in a total of 144 sentences per subject, randomized within each block. 

The sentences were presented on a screen of a PC, flush left and centered vertically. The fixation 

point appeared for 250 ms, followed by the sentence. The subjects were instructed to respond 

whether a sentence was true or false by pressing the Z and M keys labeled as “Yes” and “No” on 

a keyboard as quickly as possible without sacrificing accuracy. No feedback was provided; 750 

ms after response, the next trial began. 

Results 

 Categorization. Prior to sentence verification, subjects took a picture categorization task in 

which they had to confirm that a picture had a given name. After removing 10 subjects who 

failed to learn (see above), the remaining subjects performed well, scoring at least 94% correct 

overall, as shown in Table 2. There was a significant main effect of level on accuracy, F(3, 69) = 

3.13, p < .05, MSE = 0.024, and an interaction of level and learning order, F(3, 69) = 2.99, p < 

.05, MSE = 0.023. Accuracy was fairly flat across levels in the bottom-up condition, and the 

highest and lowest levels were most accurate in the top-down condition. Most importantly, 
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accuracy was generally high and did not differ greatly across learning orders. 

Sentence Verification. Table 3 presents the mean RTs and accuracies. As in Experiment 1, 

the analyses focused on two effects: the level of the first term in the sentence (comparing 1-2, 2-

3, and 3-4 sentences) and the distance between the terms in the sentence (comparing 1-2, 1-3, 

and 1-4 sentences). There was a marginal effect of hierarchical level on the RTs for TRUE 

sentences, F(2, 46) = 2.91, p < .07, MSE = 3622111, and no effect of learning order. Subjects 

responded fastest to the 3-4 sentences, contrary to the effect in Experiment 1. The highest level 

sentences were also answered most accurately, F(2, 46) = 7.30, p < .01, MSE = .073. There was 

no effect of learning order. In the false sentences, there was no level effect in RTs—only a 

marginal interaction of order of learning and level, F(2, 46) = 2.72, p < .08, MSE = 7916470. 

However, the higher levels were more accurate than the lowest level, F(2, 46) = 5.13, p < .01, 

MSE = .177, with no order effect. 

The analysis of the distance in true sentences revealed a significant main effect in RT, F(2, 

46) = 7.10, p < .01, MSE = 5295480, and accuracy, F(2, 46) = 3.88, p <.05, MSE = .044. In both 

cases, subjects performed better in the longer distances, contrary to the expected distance effect 

with hierarchies. There were no effects of learning order. The distance and level effects are 

presented in Figure 5. 

 The false sentences showed a similar “negative” distance effect, except for the data point of 

distance 2 in bottom-up learners, which was faster and more accurate than distance 3 in that 

group. One subject with missing cells was omitted from this analysis. This pattern resulted in a 

main effect of distance in RTs, F(2, 44) = 3.50, p < .05, MSE = 5473612, plus a marginally 

significant interaction with learning order, F(2, 44) = 3.15, p = .053, MSE = 4916086. Both 

effects were marginally reliable in the accuracy data, F(2, 46) = 2.47, p < .10, MSE = .092; F(2, 
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46) = 2.50, p < .10, MSE = .093. 

Discussion 

 The results were quite different from those of Experiment 1 (compare Figures 2 and 5), 

which is perhaps not surprising given the differences in the stimuli. However, like Experiment 1, 

the data did not follow the expected pattern of hierarchical retrieval. First, there was a levels 

effect in which the more general categories were responded to significantly more accurately and 

marginally faster than the lower-level categories. This could potentially be due to the fact that 

there are fewer categories at these levels than at lower ones, thereby reducing memory 

interference. However, it should be noted that when tested on categorization, there was no 

general advantage for classifying into the highest category, and in fact the lowest level was 

slightly more accurate there (Table 2). Smith et al. (1972) paired familiar categories with novel 

features and also found faster responses for higher-level categories and features. 

 Second, and more significant, there was a distance effect, but it was opposite to the expected 

one. Rather than people being faster in verifying categorical relations of adjacent levels, they 

were faster the farther apart the categories were. Putting the two effects together, one possible 

explanation is that people were faster in answering questions when the sentence P term was from 

the highest level (3-4 and 1-4 in the two analyses). This does not seem to be caused by learning 

the highest level first, because the pattern is also evident in the bottom-up learners (see Table 3). 

 One possible explanation for this advantage for level 4 P terms is that as the categories move 

up in the hierarchy, they become more abstract, that is, are associated with fewer features. So, 

the bugs in the VADUS category (level 1) were all angular, striped, and green, with four rear 

legs. In contrast, the LAMMEL bugs (level 4) had only one feature in common, their angular 

shape. According to the feature-comparison account (Smith et al., 1974), people judge category 
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relations by comparing the concepts’ features and looking for overlap. Therefore, the fewer the 

features in the P term, the quicker the comparison can be, because there are fewer features to be 

checked (Smith et al., 1972, give a similar explanation for their results). For example, when 

asked if VADUSes are LAMMELs, one might judge whether VADUSes are angular, which is 

the only feature common to LAMMELs. However, to decide whether VADUSes are 

WAMMERs, one must judge their shape, pattern, and legs to ensure that the WAMMER features 

are also found in VADUSes. 

 If the highest level categories were unusual for some reason, one might wonder if there were 

signs of the expected distance effect when that category was not involved. This can be answered 

by examining distances 1 vs. 2 at level 1 in Table 3. One can see that across the four cases (true-

false X 2 learning orders), there is no sizeable slowdown or loss of accuracy at distance 2. In 

fact, by far the largest effect is in the false sentences, bottom-up order, where accuracy and RT 

are much better for the longer distance. So, it does not seem that the advantage of the highest 

level—whatever its cause—is masking a distance effect. 

 The results are broadly consistent with predictions we attributed to Rogers and McClelland 

(2004). There was no (normal) distance effect, and questions about the highest level seemed to 

have an advantage. They provide detailed analyses and explanation of why more global features 

should be learned prior to features used to distinguish specific categories. Like our explanation, 

their proposal is that superordinate categories have the advantage of a small number of features 

that distinguish large categories of objects. Without actually running our stimuli in their model, it 

is difficult to say exactly what it predicts, because we controlled the learning order by presenting 

the categories from specific to general or vice versa. The former order might have negated their 

model’s preference for global features and categories. However, the overall results seem 
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consistent with their analysis of semantic memory. 

Experiment 3 

 Our goal in this research has been to investigate the development and use of hierarchical 

memory structures for artificial materials that did not have the potential confounding variables 

that could influence natural category hierarchies. For example, if children are told that penguins 

are birds or worms are animals, these learned facts could influence their sentence verification, 

probably pre-empting the use of hierarchical inference or feature comparison. After all, a learned 

fact is likely to be retrieved faster than an inference can be drawn. Therefore, in Experiments 1 

and 2, we did not make any mention of the hierarchies and inclusion relations. 

 However, in real life people know some taxonomic relations. Students encounter taxonomic 

trees in biology classes; bird-watchers read about the orders, genera, and species of different 

birds; people encounter statements in the media such as palm trees not being “real trees”; and so 

on. Possibly such explicit information is necessary for people to form hierarchies in memory that 

conform to the Collins and Quillian retrieval processes. We interpreted Experiment 2 as 

revealing a feature comparison process, but that may have arisen because people learned the 

items’ names and not the taxonomy per se. Perhaps when people explicitly learn a taxonomy, 

this useful tool will organize their memory and their answering of questions about the categories. 

 To explore this possibility, we investigated how people would perform the sentence 

verification task if they only knew the taxonomy and did not have conceptual knowledge. That 

is, subjects were shown a tree structure like Figure 3, and they learned the category names and 

their relations. They did not learn, however, that VADUSes were angular, green, etc. bugs—they 

only learned that VADUSes were at the bottom level of the hierarchy, subordinate to 

WAMMER, which was subordinate to REL, and so on. With only this schematic information, it 
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seems more likely that memory retrieval will follow the Collins and Quillian profile. If VADUS 

is associated to WAMMER, which is associated to REL, which is associated to LAMMEL, then 

it might well take longer to confirm that a VADUS is a LAMMEL than that a VADUS is a 

WAMMER. We used the same taxonomy as in Experiment 2, so that a direct comparison of their 

results would be interpretable. 

Method 

 Participants. Twenty students from New York University received course credit for their 

participation in the experiment. They were randomly assigned to one of the two presentation 

orders. Four other subjects were omitted because they did not follow instructions or had accuracy 

below .65 in the sentence verification task. 

 Materials. The hierarchical category structure used in Experiment 3 was identical to the one 

used in Experiment 2 except for a few changes in category names to make them more distinctive. 

We presented subjects with an illustration of the hierarchy itself, as shown in Figure 3. 

 Procedure. Subjects read instructions that mentioned biological taxonomies and told them 

that they would learn category taxonomies with novel names. No information was given about 

the nature of these categories. They initially saw a schema of the taxonomy containing empty 

boxes rather than category names. They were instructed that they would be given the category 

names level by level and that they should learn the whole taxonomy with the category names in 

correct positions. As in Experiment 2, there were two orders of learning: 11 subjects learned the 

taxonomy starting from the bottom level, and 9 started at the top level. There were no exemplars 

or features associated with the categories—the sole task was to learn the structure of the 

taxonomy and the category names as shown in Figure 3. A sentence in the instructions 

emphasized the importance of learning the inclusion relations in the taxonomy. After the 
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presentation of the empty schema of the taxonomy, the experimenter provided a picture of the 

taxonomy with the category names of one level filled in (replacing the empty boxes). The 

subjects could spend as much time as they wanted to study each level. They then had to draw the 

entire hierarchy and write down in correct positions all the category names that they had 

previously learned. If this reproduction was correct, the experimenter would hand the taxonomy 

with the next level’s category names filled in. If the drawing was incorrect, the study taxonomy 

with the category names was presented again, followed by another test. This procedure was 

repeated until subjects could reproduce the drawing with all elements of the taxonomy. 

 The sentence verification phase was identical to the one employed in Experiment 2.  

Results 

 Mean RTs and accuracies are presented in Table 4. We again performed two analyses in 

order to test the levels and distance effects. The analyses of true RTs revealed a significant main 

effect of the level of the first term in the sentence, F(2, 36) = 12.88, p < .01, MSE = 34587377, 

and a marginally significant interaction of level and order of learning, F(2, 36) = 2.80, p = .07, 

MSE = 7512771. This pattern seems to reflect two effects: First, the highest level was faster than 

the others, and second, the level learned first had an advantage. As a result, in the top-down 

order, the highest level (which benefited from both effects) was confirmed almost 3 s faster than 

the other levels, but in the bottom-up order, the lowest level (learned first) was also relatively 

fast. The accuracy data showed a very similar pattern and revealed the same two effects: the 

main effect of level, F(2, 36) = 18.03, p < .01, MSE = .277, and a marginally significant 

interaction of level and order, F(2, 36) = 2.80, p = .07, MSE = .043. 

 In the false sentences, there was only a significant main effect of level in RTs, in which the 

highest level was again fastest, F(2, 36) = 3.67, p < .05, MSE = 10132534. There were no 
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reliable differences in the accuracy data of the false sentences, but the overall pattern was 

consistent with the levels effect in the RTs. 

 The second set of analyses tested for the distance effect. As in Experiment 2, the RTs for true 

sentences showed a negative distance effect, F(2, 36) = 8.93, p < .01, MSE = 14808954, along 

with another marginally significant interaction of distance and presentation order, F(2, 36) = 

2.86, p = .07, MSE = 4750611. Distance 3 was over a second faster to confirm than the others, 

and there was also an effect that the 1-2 sentences were relatively fast when level 1 was learned 

first. The same pattern appeared in accuracy: a distance effect, F(2, 36) = 11.79, p < .01, MSE = 

.140, and interaction with order, F(2, 36) = 5.82, p < .01, MSE = .069. In the false sentences, the 

only reliable result was the same distance effect in RTs, F(2, 36) = 7.55, p < .01, MSE = 

11067474. 

Discussion 

 Surprisingly, the results of Experiment 3, in which people learned only the taxonomy without 

knowing anything about the categories themselves, were very similar to those of Experiment 2, 

in which people learned the categories but not the hierarchies. In particular, both experiments 

showed a levels effect in which the sentences with terms 3-4, highest in the hierarchy, were 

answered faster than others. Both experiments also showed a reverse distance effect in which 

sentences with the greatest distance, 1-4 sentences, were faster than sentences with adjacent 

terms, like 1-2. As in Experiment 2, the absence of the expected distance effect was not solely 

due to the speed of answering questions about the top level. There was no consistent increase in 

RT (or decrease in accuracy) from distance 1 to distance 2 (at level 1) in Table 4. These results 

are inconsistent with the usual predictions involving inferences from hierarchies in memory. We 

discuss possible explanations of this unexpected reversal in the General Discussion. 
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Experiment 4 

 The repeated finding of no distance effect—or even a negative distance effect—within 

hierarchies is surprising. In fact, the result may raise a concern that there is something wrong 

with our tested hierarchy, the names, or some aspect of the testing procedure. There is a certain 

logic to the claim that drawing inferences must take longer than retrieving known information 

and that inferences involving more steps must take longer than those involving fewer steps. The 

failure to find such effects in experiment after experiment naturally raises the concern that 

something has gone wrong. 

 We addressed this concern by using the same hierarchy as in previous experiments but with a 

different training regimen designed to reveal the expected distance effects. In the previous 

experiments, people learned colored shapes, categories, or a visual depiction of a hierarchy. It is 

possible (and in light of the results, likely) that with such materials they could develop specific 

processing strategies that obviate the need for inference within the hierarchy. For example, 

memories of exemplars could be consulted, or the spatial characteristics of the displayed 

hierarchy could be used to answer questions. 

 Experiment 4 used a learning procedure that seemed much less open to such possibilities—a 

simple verbal learning procedure in which pairwise links were memorized. Subjects learned 

sentences such as “All FACNERs are SUPs,” “All HOBNIKs are FACNERs,” and “All ZIMs 

are HOBNIKs.” During the learning phase, people learned only the individual sentences; they 

saw neither the taxonomic tree nor category exemplars, though they were told that these names 

referred to categories that were nested. At test, subjects had to confirm not only the learned 

sentences but also the ones that are true by inference—e.g., for the above, “All HOBNIKs are 

SUPs” and “All ZIMs are FACNERs.” Under the assumption that most people would not 
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spontaneously draw and learn the inferences during the learning procedure, we should now find a 

distance effect. The learned sentences should be fastest, and the sentences requiring a one- or 

two-step inference should be correspondingly slower and less accurate. 

 Such a finding would confirm that there is nothing in the hierarchy, names, testing procedure, 

and so on that is preventing the distance effect from revealing itself in our experiments. 

Furthermore, a finding of the distance effect will support the contention that in “normal” 

circumstances, when people have more knowledge about the categories and stimuli than simple 

pairwise associations, the hierarchical retrieval model does not apply to newly learned 

conceptual hierarchies. 

Method 

 Subjects. Twenty-two NYU undergraduates served in the experiment to receive course 

credit. 

 Stimuli. The materials were the same category names as in the previous two experiments, 

organized into all the set-inclusion sentences from one level to the next highest level in the form 

“All PIMs are BOTs.” There were 16 such sentences, all of which were distance 1 category 

relations. The test sentences were identical to those used in Experiments 2 and 3, so that the 

questions and answers were the same across the two experiments. Thus, in addition to the 

learned sentences, longer-distance true and false sentences also appeared in the test. 

 Procedure. A fair test of the distance effect can only be made if people have actually learned 

the original sentences. Clearly, no one can draw an inference that a PIM is a REL, if they do not 

know both that PIMs are BOTs and that BOTs are RELs. We used a learning procedure similar 

to that of the Experiment 2, in which we presented the sentences from one level first, followed 

by a test of that level, and then presented sentences from the next level, its test, and so on. 
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Learning proceeded either from top to bottom through the hierarchy or from bottom to top, as 

before. The sentences were said to describe category relations similar to all chairs being furniture 

or all whales being mammals. 

 For each level, subjects viewed a list of all the inclusion sentences at that level on the 

computer screen and were instructed to remember them. When they had indicated they were 

done, they received a cued recall test in which the first category name was provided and the 

second had to be filled in: “All PIMs are ____.” In the second and third levels, there were fewer 

sentences, and so each was tested twice. When subjects gave the wrong category name, an error 

message appeared along with the correctly completed sentence. If performance was not perfect in 

the test of a given level, the original screen of all its sentences was re-presented for more study, 

followed by another test. 

 After all levels had been learned, there was a final phase to remind subjects of the sentences 

that had been learned earlier. They reviewed the sentences from each level separately and could 

cycle through the three lists of sentences as many times as they wanted. They then received a 

cued recall test in the same format as the previous tests. Subjects needed to get at least 80% 

correct to move on to the next phase. If they scored below 80%, they reviewed the sentences as 

before, and took the test again. 

 At test, subjects were reminded that the sentences described category relations, which are 

transitive. So, if All Xs are Ys and all Ys are Zs, it follows that all Xs are Zs. The final task was 

to read each sentence and to decide whether it was true based on what was learned. Obviously, 

the learned sentences were true, but other sentences would be as well. It was stressed that 

accuracy was important and that subjects should take the time to remember the relevant 

sentences to respond correctly. However, they were to press the response button as soon as they 
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had arrived at an answer. 

Results and Discussion 

 All subjects successfully passed the final test of all learned sentences and entered the test 

phase. The mean number of blocks in that final learning test was 2.2, with proportion correct of 

.91 in the final block. Some people’s performance in the test phase was nonetheless low, and 

subjects were dropped from the RT analyses if they had empty cells in that particular analysis 

(reflected in the degrees of freedom). We included learning order as a variable but mention it 

only when it interacts with the theoretically relevant variables. Because of the difficulty of this 

task, we expected that more of the effects might be seen in accuracy than in the previous 

experiments. Results are shown in Table 5. 

 There was no effect of level in the accuracy analyses of either the true or false sentences, 

F(2, 40) < 1, F(2, 40) = 1.45, p > .20. This is perhaps not surprising, as all of these sentences 

involved distances of 1 that were directly presented and learned. However, even for distance 2, 

which was inferred, there was no difference between level 1 and level 2 sentences (.67 and .70 

accuracy in the trues). 

 There was an effect of level in true RTs, with the lowest level faster than the other two, F(2, 

38) = 3.84, p < .05. There were no differences due to level in the False RTs, F < 1. Across the 

dependent measures, there seems to have been no consistent effect of level. 

 In contrast, there was a clear distance effect, as accuracy declined from learned to inferred 

sentences (Ms of .87, .67, and .69 for distances 1-3), F(2, 40) = 8.44, p < .001. There was no 

distance effect in the False sentences, F < 1. That result could reflect a bias to answer “false” 

when unsure of the answer, inflating accuracy of the false responses at the unlearned higher 

distances. There was also an interaction with learning order in the false sentences, F(2, 40) = 
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4.95, p < .02, which may derive from an advantage to the most recently learned levels (the most 

accurate condition was the 1-1 sentences in the top-down order). 

  As can be seen in Figure 6, the true RTs showed a strong distance effect, increasing from 3.3 

to 5.3 to 6.9 s with distances of 1-3, F(2, 38) = 25.10, p < .001. A similar though less dramatic 

pattern obtained with false RTs, F(2, 40) = 6.22, p < .01. The most important effect is probably 

the increase from distance 2 to 3, as sentences with distance 1 were learned and therefore would 

be faster than the others on any account. A key test, then, is to show that it takes longer to make 

two inferences than one, and this was in fact the case t(20) = 2.47, p < .02. 

 Overall, there was a clear distance effect, which was especially noticeable in RT. This shows 

that the Collins and Quillian distance effect does in fact obtain when the memory structure is 

likely to be what that model assumes. That is, if people store pairwise associations, they can then 

draw inferences across those associations, from lower levels to higher levels. The inferences 

were less accurate than the learned relations, and their RT increased monotonically with the 

number of steps required. 

 It is possible that subjects did not view the items as categories, given that they knew nothing 

about their contents. However, the instructions did present them as nested categories, analogous 

to real-life examples, and people were generally accurate in verifying the inferred IS-A relations. 

There is nothing in the hierarchical inference account that requires that the categories be richly 

represented—indeed, we can draw inferences about categories we know virtually nothing about 

other than their IS-A relations (like rheas or Lamborghinis). 

 The importance of this result is in its contrast to the results of all the previous experiments, 

which found either no distance effect or a negative effect. Even though the names and 

hierarchical structure were the same as those of Experiments 2 and 3, and even though the test 
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phases of all three experiments were identical, only this experiment conformed to the expected 

pattern of results for hierarchical inference. This shows that the hierarchy tested, names, and test 

procedure of the previous experiments had no unknown problem that prevented a distance effect 

from revealing itself. Instead, it seems clear that when people learn categories or explicitly learn 

the hierarchy as a whole, they do not produce the predicted distance effects. 

General Discussion 

We began this investigation by asking whether retrieval of information from a newly learned set 

of categories would produce the pattern predicted by Collins and Quillian (1969) in their classic 

semantic memory model, when confounding effects of familiarity, differences in associations, 

and specific learned facts are removed. This question is really two interrelated questions: Do 

people actually form mental representations in the efficient hierarchical structure C&Q assume? 

and Does retrieval from such representations reveal the effect of number of intervening links, the 

distance effect? Questions of representation and process of this sort cannot be answered 

independently (Anderson, 1978). However, the results are clear enough that we can provide a 

joint answer. 

 To start at the end, the results of Experiment 4 suggest that when we are fairly certain that 

people’s mental representations consist of pairwise linked associations in memory (PIMs are 

BOTs; BOTs are RELs; etc.), the results do in fact follow the expected predictions. The more 

links required to answer the question, the longer subjects took to respond and the more errors 

they made. 

 One issue with that experiment might be the extremely long RTs, ranging as high as 7 s for 

the longest distances, which are much higher than category membership verification in most 

studies (e.g., means of around 1 s in McCloskey & Glucksberg, 1979). Of course, our RTs reflect 
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judgments of newly learned materials with nonsense names, so longer times are to be expected. 

However, note that the RTs in Experiments 2 and 3 were shorter, with the same test materials. As 

we suggest below, the shorter RTs in other kinds of tasks may reflect a reorganization of 

memory that is inconsistent with the simple hierarchical model. That is, it may be no coincidence 

that the experiment with longest RTs was the only one to show the distance effect. 

 The problem for the hierarchical inference model is that its predicted pattern appeared only 

when people engaged in what was essentially a verbal-learning task, in which all inferences had 

to be drawn at test. Of course, it would have been logically possible for people to draw the 

inferences during study. However, given the need to memorize and pass a test on 16 sentences 

with novel names, the task no doubt discouraged the learning of inferences that were not on the 

test. When people were exposed to a depicted hierarchy (Experiment 3) or learned meaningful 

content with the categories (Experiments 1 and 2), the distance effect failed to appear. Instead, 

effects of category level (specificity) or even a negative distance effect obtained. Understanding 

these effects, which are not predicted by the hierarchy model, will tell us more about how people 

structured this information in memory. 

The Unpredicted Effects 

 In Experiment 1, questions about more general properties took longer than questions about 

properties lower in the hierarchy. This effect seems most explicable as due to exemplar retrieval. 

Because the more general properties appeared in more items, they engendered more checking. If 

there were eight items on the left but only two that were red, it would take longer to answer 

questions beginning “All left objects...” than “All red objects...,” because there would be more 

exemplars to retrieve and check in the former. This explanation entails that people did not form a 

hierarchy like that shown in Figure 1 but remembered the stimuli as distinct exemplar types. This 



Hierarchies in the Mind  41 

experiment did not use traditional categories or category names, so perhaps the failure to 

organize the material according to the hierarchical relations of the features is not very surprising. 

 Experiments 2 and 3 did use categories and discovered a surprising reverse distance effect in 

which the longer the distance to be traversed in the hierarchy, the shorter the RT and more 

accurate the judgment. This result directly contradicts the prediction of inference in a hierarchy 

and also raises the question of just why it occurs. One possible explanation is that the effect is 

really an overall preference for answering questions about the highest level of the taxonomy. 

Both experiments revealed a reliable effect of hierarchy level, with the highest level being 

fastest; that level is involved in the longest distance (1-4) sentences as well. So, a simple 

explanation of much of the results may be that questions about level 4 are generally easier than 

questions about other levels. 

 It is not obvious why this should happen in both Experiments 2 and 3, however, because their 

stimuli and learning procedures were so different. In Experiment 2, people learned actual 

categories and were not trained on the taxonomy per se. The highest categories were the most 

inclusive, and they were associated with a single feature. Therefore, the semantic simplicity of 

that level could have made it easier, since only one feature had to be retrieved and compared to 

the representation of the subject term. SUPs were all rounded, but HOBNIKs were rounded, 

dotted figures with two feet, so it should take less time to judge whether something was a SUP 

than whether it was a HOBNIK. Under this explanation, people represented the categories as 

features, and the number of features involved predicts performance, as in feature comparison 

accounts. However, that explanation cannot account for Experiment 3, where there were no 

features known of the categories. Those subjects only learned the hierarchical structure. 

 One possible explanation of the results in Experiment 3 refers to the spatial nature of the 
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taxonomic representation. A salient feature of each category may have been whether it was in the 

tree shown on the left or right (see Figure 3). If people learned these locations and associated 

them with the top nodes of the tree on each side, it might have been easy for them to answer 

questions of the sort “Ss are SUPs” or “Ss are LAMMELs,” because they would have essentially 

been judging whether both terms occurred on the same side. Perhaps all the left categories were 

encoded as the SUP categories, and the right ones as the LAMMEL categories. This strategy 

would help only the highest categories. Given the visual presentation of the hierarchy, we 

suspect that physical location accounts for the ease with which judgments were made regarding 

the top two categories, and this accounts for the reverse distance and level effects. 

 Thus, it may well be coincidence that Experiments 2 and 3 had such similar results, given the 

large differences in what was learned about the two sets of categories. However, both illustrate 

that people may actively organize the material they receive into representations that are efficient 

for information retrieval. The Quillian hierarchy is particularly efficient in terms of the number 

of nodes and associations that need to be stored—that is, memory space. However, preserving 

memory space may not be the most important form of efficiency. If memory is cheap but 

processing time is valuable, then storing information redundantly could lead to better overall 

performance (Logan, 1988). Just as it is probably useful to memorize the fact that whales are 

mammals rather than deriving it every time this information is needed, it may be useful to 

remember categories’ features or the spatial locations in a viewed taxonomy. Given that in real 

life it is the content of concepts that is essential, people may well compare concepts in terms of 

their features and learned short-cuts rather than relying on inference to save memory space. It is 

important to have quick access to conceptual information about what a dog or a chair is in 

language comprehension and in dealing with everyday objects. Thus, even though one could 
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save memory by storing the fact that mammals breathe and give birth to live young and by not 

representing the same facts about dogs, this may conflict with the more useful ability to retrieve 

information about dogs quickly and accurately. 

 In Experiments 2 and 3, which included conceptual content or spatial relations, subjects 

responded much faster to long-distance test questions than when such information was lacking in 

Experiment 4. Thus, all the “confounds” that make it difficult to provide a fair test of semantic 

memory models, like familiarity or specific associations, may be exactly the things in real life 

that people use in order to avoid the slow inference process that is necessary within a hierarchical 

network (though see the Limitations section). Certainly, people can make long-distance 

inferences when faced with novel questions such as whether wombats have heart valves or 

whether ambulances have rudders. But the results of the present research suggest that people try 

to avoid relying on those inferences when possible. 

 If we are right, then the inferential model proposed by Collins and Quillian is more of a fall-

back measure than the preferred way that semantic information is stored and retrieved. In that 

sense, the model is not wrong so much as being only one possible way of retrieving information, 

a slow and onerous one. 

Implications for Theories 

 The semantic memory models of the 1970s and 80s may seem somewhat simplistic in the 

light of newer, large connectionist models of conceptual knowledge (Rogers & McClelland, 

2004) or sophisticated mathematical models of semantic organization (Close & Pothos, in press; 

Shafto et al., 2006; Tenenbaum, 1999). However, our own feeling is that these earlier models 

capture some aspects of how people can represent and retrieve information from memory. 

 The Collins and Quillian approach can explain how we can derive novel inferences. This 
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occurs when we think about general properties of a specific object (e.g., that tea roses must 

perform photosynthesis) or about properties of a newly learned kind of thing (e.g., that a long-

tailed dachshund is an animal and probably barks). Models in which concepts are represented as 

feature lists cannot explain such cases, given that the concept and features have never been 

encoded together. Assuming that such cases of retrieval by inference exist, Experiment 4 shows 

that they occur in the way that the original Collins and Quillian model would predict. 

 When people learned richer representations of our materials (Experiments 1 and 2), however, 

the results did not support this model. Instead, people seemed to rely on exemplar retrieval or 

feature comparison. Experiment 2 seems to be the experimental situation that is closest to real-

world categories, which are richly represented and hierarchically organized (though our stimuli 

were not nearly as rich as actual categories). Subjects could have formed a hierarchical network 

of category names when learning these categories but failed to do so, suggesting that people 

prefer to compare conceptual representations. Feature comparison models (Hampton, 1979; 

McCloskey & Glucksberg, 1979; Smith et al., 1974) have generally seemed more consistent with 

the overall results in the field, though there are still phenomena they do not account for (Chang, 

1986; Smith, 1978). 

 The use of an exemplar strategy in Experiment 1 is reminiscent of exemplar models in 

category learning (Medin & Schaffer, 1978). Indeed, the experiment had the properties argued to 

be ideal for exemplar learning—small numbers of items, presented repeatedly (Smith & Minda, 

1998). Such a strategy seems less likely to work for most real-world categories. One likely 

cannot retain distinct memories of every chair, car, dog, or reality-TV contestant one encounters. 

Furthermore, no exemplar-based model of hierarchical categorization has yet been proposed (see 

Murphy, 2002, ch. 7). 
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 One cannot confirm universally quantified statements by retrieving a finite number of 

exemplars, so exemplar retrieval is not logically able to confirm statements such as “All birds 

have feathers” or “No mammals have feathers.” However, when general knowledge is lacking, 

people may rely on retrieving examples to give their best guess at the answer. For example, to 

decide whether only mammals play, one could retrieve memories of playing animals and check 

to see if any of them are not mammals. This strategy would be effective under the assumption 

that counterexamples would come to one’s notice if they existed (see Gentner & Collins, 1981). 

However, even that strategy would not work for properties that are not normally noticed and 

encoded into exemplar memory, e.g., “All squirrels have lungs” or even “All squirrels breathe.” 

Although we have seen hundreds of squirrels, we don’t recall ever noticing that they were or 

weren’t breathing. Our strength of belief in this proposition probably derives from the Quillian-

like inference that all mammals breathe air, squirrels are mammals, hence they breathe. 

 This discussion is consistent with a number of recent conclusions from the experimental 

literature on category learning that multiple systems are involved in learning categories, 

depending on the type of category and learning procedure (e.g., Ashby, Alfonso-Reese, Turken, 

& Waldron, 1998; Nosofsky, Palmeri, & McKinley, 1994; Poldrack et al., 2001). More 

generally, Murphy (2002) concluded after an extensive review of the concepts literature that 

concepts are something of a mess. He pointed out that there are many different means to 

accomplish the tasks we refer to as conceptual, and it seems likely that all those means are used 

at one time or another (see also Hampton, 2010). The present research provides an example of 

this state of affairs even within a circumscribed topic, where exemplar use, feature matching, 

spatial strategies, and spreading activation across associations all appear to have been used, 

depending on what information was presented. Indeed, Smith (1978, p. 35) noted that feature 
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comparison and learned associations both might underlie performance, “for the issue is not really 

one of a dichotomy.” 

 The Rogers and McClelland (2004) approach to semantic memory did fairly well in the 

experiment that was most similar to its model domain (see Discussion of Experiment 2), with 

object categories that were associated to features. Rogers and McClelland note that their model is 

intended to capture the long-term representation of semantic knowledge. They explicitly refer to 

other components that will be necessary for a complete theory, such as episodic memory needed 

to encode newly learned facts. Their theory was not intended to learn paired associates of the sort 

tested in Experiment 4. Their model also does not have a reasoning component, which could be 

necessary for novel induction questions. Such a component could act on their semantic 

representations. In short, we believe that their model has considerable promise as a 

representation of semantic information in long-term memory but that other processes will be 

involved in explaining all the tasks that are tested in semantic memory research. 

Limitations 

 An experimental study of this sort can allow the manipulation of variables that are not easily 

controlled with natural materials. But such studies also are unlike actual semantic memory in a 

number of respects, such as having smaller, more recently learned networks that are semantically 

reduced compared to real concepts. One potentially important difference is that semantic 

organization may take place over multiple exposures to material over a very long time frame. 

Rogers and McClelland (2004) emphasize this aspect and contrast their model of semantic 

learning with a hippocampal-based system of episodic memory. This suggests that an important 

extension of our work might be to use a larger network learned over days and see how retrieval 

of information changes as it becomes more entrenched. 
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 Our own intuition, however, is not that the distance effects that were absent from 

Experiments 2 and 3 will appear in entrenched categories. Inference through the hierarchy is 

what one does when one has not encoded the specific facts well enough to directly retrieve them 

(Logan, 1988). As marine biologists become more and more familiar with killer whales, we 

don’t think that they rely on inference to decide whether they breathe air or are animals. 

Research on visual categorization into familiar categories suggests that people classify objects 

directly into superordinates like animal or vehicle, rather than using inference up the taxonomy 

after identifying the object as a sparrow or truck (Mack & Palmeri, 2011; Murphy & Brownell, 

1985). Of course, that is not to say that there will be no difference between retrieving newly 

learned and entrenched information from memory; there well may be. Our guess is that, rather 

than showing a positive distance effect, the present effects would flatten out with practice, as 

people get faster and faster at retrieving the information from memory. 

 Experimental studies using constructed categories are certainly not the only way to study 

semantic memory. Studies of semantic memory using natural categories should continue, 

perhaps in combination with experimentally controlled materials (as in Smith et al.’s, 1972 

study). 

Conclusion 

Even taking into account the diversity of ways that hierarchical information might be encoded 

and retrieved, we did not find that the traditional Quillian hierarchy was the favored method. 

Instead, it appeared to be used only when other sources of information and retrieval strategies 

were entirely removed. Therefore, we suspect that in everyday life, such a model of hierarchical 

concepts is probably not the default way that information is retrieved from semantic memory. 
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Table 1 

Mean sentence verification RTs (and accuracies) in Experiment 1  

True sentences  False sentences  

 Distance   Distance  

Level 1 2 3  Level 1 2 3  

1 2196 

(.72) 

2386 

(.76) 

2382 

(.78) 

 1 2075 

(.89) 

2249 

(.90) 

2335 

(.85) 

 

2 2525 

(.73) 

2453 

(.78) 

  2 2078 

(.92) 

2192 

(.87) 

  

3 2746 

(.57) 

   3 2671 

(.85) 

   

 

  

 

 

Table 2 

 

 Mean categorization accuracies (and SDs) in Experiment 2 

________________________________________________________________________ 

Order of Learning  Level  

 1 2 3 4 

  Bottom-up .97 (.04) .94 (.07) .97 (.03) .93 (.10) 

  Top-down .99 (.02) .92 (.11) .86 (.15) .95 (.07) 
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Table 3 

 

Mean sentence verification RTs (and accuracies) in Experiment 2 

 

True sentences 

Bottom-Up Top-Down 

 Distance   Distance  

Level 1 2 3  Level 1 2 3  

1 3465 

(.83) 

3340 

(.86) 

2907 

(.88) 

 1 4244 

(.79) 

4393 

(.83) 

3208 

(.91) 

 

2 3762 

(.83) 

3638 

(.92) 

  2 4185 

(.82) 

3609 

(.90) 

  

3 3217 

(.88) 

   3 3299 

(.95) 

   

False sentences 

Bottom-Up Top-Down 

 Distance   Distance  

Level 1 2 3  Level 1 2 3  

1 4059 

(.77) 

2306 

(.95) 

3196 

(.84) 

 1 4093 

(.78) 

4072 

(.79) 

3467 

(.92) 

 

2 2529 

(.97) 

3470 

(.92) 

  2 4560 

(.82) 

3584 

(.93) 

  

3 3072 

(.93) 

   3 3176 

(.94) 
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Table 4 

 

Mean sentence verification RTs (and accuracies) in Experiment 3 

 

True sentences 

Bottom-Up  Top-Down  

 Distance   Distance  

Level 1 2 3  Level 1 2 3  

1 4872 

(.84) 

5761 

(.65) 

3807 

(.89) 

 1 5711 

(.81) 

4641 

(.85) 

3694 

(.94) 

 

2 6865 

(.64) 

3445 

(.91) 

  2 5565 

(.78) 

3823 

(.92) 

  

3 4253 

(.94) 

   3 2964 

(.94) 

   

False sentences 

Bottom-Up  Top-Down  

 Distance   Distance  

Level 1 2 3  Level 1 2 3  

1 4918 

(.78) 

4960 

(.78) 

3748 

(.87) 

 1 5085 

(.76) 

4568 

(.87) 

3461 

(.84) 

 

2 5154 

(.78) 

3997 

(.88) 

  2 5266 

(.79) 

4248 

(.88) 

  

3 4604 

(.88) 

   3 3156 

(.86) 
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Table 5 

 

Mean sentence verification RTs (and accuracies) in Experiment 4 

 

True sentences 

Bottom-Up  Top-Down  

 Distance   Distance  

Level 1 2 3  Level 1 2 3  

1 3152 

(.89) 

4945 

(.80) 

6896 

(.77) 

 1 3364 

(.85) 

5604 

(.54) 

6965 

(.61) 

 

2 5958 

(.92) 

4139 

(.76) 

  2 4345 

(.69) 

5560 

(.65) 

  

3 5203 

(.87) 

   3 4233 

(.83) 

   

False sentences 

Bottom-Up  Top-Down  

 Distance   Distance  

Level 1 2 3  Level 1 2 3  

1 5245 

(.70) 

5587 

(.69) 

6982 

(.83) 

 1 4500 

(.87) 

4430 

(.81) 

6491 

(.72) 

 

2 5448 

(.70) 

6102 

(.73) 

  2 4137 

(.76) 

4726 

(.74) 

  

3 4601 

(.81) 

   3 4473 

(.83) 
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Figure 1. The taxonomies used in Experiment 1. Subjects learned either Form A or Form B. 
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Figure 2. Mean sentence verification reaction times in Experiment 1 as a function of level of the 

S term (solid line) and distance in the hierarchy (dotted line). 
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Figure 3. The taxonomy used in Experiments 2–4. 
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Figure 4. Two of the categories from Experiment 2. In the original presentation, the two bugs on 

the left in the HOBNIK category were red, and the other two were blue. In the LARs, the first 

two were brown and the second two orange. Each distinct bug appeared in two sizes, as shown. 
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Figure 5. Mean sentence verification reaction times in Experiment 2 as a function of level of the 

S term (solid line) and distance in the hierarchy (dotted line). 
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Figure 6. Mean sentence verification reaction times in Experiment 4 as a function of level of the 

S term (solid line) and distance in the hierarchy (dotted line). 

 


